xref: /openbmc/linux/fs/ext4/inode.c (revision 2acf2c261b823d9d9ed954f348b97620297a36b5)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44 
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46 
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 					      loff_t new_size)
49 {
50 	return jbd2_journal_begin_ordered_truncate(
51 					EXT4_SB(inode->i_sb)->s_journal,
52 					&EXT4_I(inode)->jinode,
53 					new_size);
54 }
55 
56 static void ext4_invalidatepage(struct page *page, unsigned long offset);
57 
58 /*
59  * Test whether an inode is a fast symlink.
60  */
61 static int ext4_inode_is_fast_symlink(struct inode *inode)
62 {
63 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
64 		(inode->i_sb->s_blocksize >> 9) : 0;
65 
66 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 }
68 
69 /*
70  * The ext4 forget function must perform a revoke if we are freeing data
71  * which has been journaled.  Metadata (eg. indirect blocks) must be
72  * revoked in all cases.
73  *
74  * "bh" may be NULL: a metadata block may have been freed from memory
75  * but there may still be a record of it in the journal, and that record
76  * still needs to be revoked.
77  *
78  * If the handle isn't valid we're not journaling so there's nothing to do.
79  */
80 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81 			struct buffer_head *bh, ext4_fsblk_t blocknr)
82 {
83 	int err;
84 
85 	if (!ext4_handle_valid(handle))
86 		return 0;
87 
88 	might_sleep();
89 
90 	BUFFER_TRACE(bh, "enter");
91 
92 	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93 		  "data mode %lx\n",
94 		  bh, is_metadata, inode->i_mode,
95 		  test_opt(inode->i_sb, DATA_FLAGS));
96 
97 	/* Never use the revoke function if we are doing full data
98 	 * journaling: there is no need to, and a V1 superblock won't
99 	 * support it.  Otherwise, only skip the revoke on un-journaled
100 	 * data blocks. */
101 
102 	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103 	    (!is_metadata && !ext4_should_journal_data(inode))) {
104 		if (bh) {
105 			BUFFER_TRACE(bh, "call jbd2_journal_forget");
106 			return ext4_journal_forget(handle, bh);
107 		}
108 		return 0;
109 	}
110 
111 	/*
112 	 * data!=journal && (is_metadata || should_journal_data(inode))
113 	 */
114 	BUFFER_TRACE(bh, "call ext4_journal_revoke");
115 	err = ext4_journal_revoke(handle, blocknr, bh);
116 	if (err)
117 		ext4_abort(inode->i_sb, __func__,
118 			   "error %d when attempting revoke", err);
119 	BUFFER_TRACE(bh, "exit");
120 	return err;
121 }
122 
123 /*
124  * Work out how many blocks we need to proceed with the next chunk of a
125  * truncate transaction.
126  */
127 static unsigned long blocks_for_truncate(struct inode *inode)
128 {
129 	ext4_lblk_t needed;
130 
131 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132 
133 	/* Give ourselves just enough room to cope with inodes in which
134 	 * i_blocks is corrupt: we've seen disk corruptions in the past
135 	 * which resulted in random data in an inode which looked enough
136 	 * like a regular file for ext4 to try to delete it.  Things
137 	 * will go a bit crazy if that happens, but at least we should
138 	 * try not to panic the whole kernel. */
139 	if (needed < 2)
140 		needed = 2;
141 
142 	/* But we need to bound the transaction so we don't overflow the
143 	 * journal. */
144 	if (needed > EXT4_MAX_TRANS_DATA)
145 		needed = EXT4_MAX_TRANS_DATA;
146 
147 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 }
149 
150 /*
151  * Truncate transactions can be complex and absolutely huge.  So we need to
152  * be able to restart the transaction at a conventient checkpoint to make
153  * sure we don't overflow the journal.
154  *
155  * start_transaction gets us a new handle for a truncate transaction,
156  * and extend_transaction tries to extend the existing one a bit.  If
157  * extend fails, we need to propagate the failure up and restart the
158  * transaction in the top-level truncate loop. --sct
159  */
160 static handle_t *start_transaction(struct inode *inode)
161 {
162 	handle_t *result;
163 
164 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
165 	if (!IS_ERR(result))
166 		return result;
167 
168 	ext4_std_error(inode->i_sb, PTR_ERR(result));
169 	return result;
170 }
171 
172 /*
173  * Try to extend this transaction for the purposes of truncation.
174  *
175  * Returns 0 if we managed to create more room.  If we can't create more
176  * room, and the transaction must be restarted we return 1.
177  */
178 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179 {
180 	if (!ext4_handle_valid(handle))
181 		return 0;
182 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183 		return 0;
184 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185 		return 0;
186 	return 1;
187 }
188 
189 /*
190  * Restart the transaction associated with *handle.  This does a commit,
191  * so before we call here everything must be consistently dirtied against
192  * this transaction.
193  */
194 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195 {
196 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
197 	jbd_debug(2, "restarting handle %p\n", handle);
198 	return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 }
200 
201 /*
202  * Called at the last iput() if i_nlink is zero.
203  */
204 void ext4_delete_inode(struct inode *inode)
205 {
206 	handle_t *handle;
207 	int err;
208 
209 	if (ext4_should_order_data(inode))
210 		ext4_begin_ordered_truncate(inode, 0);
211 	truncate_inode_pages(&inode->i_data, 0);
212 
213 	if (is_bad_inode(inode))
214 		goto no_delete;
215 
216 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217 	if (IS_ERR(handle)) {
218 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
219 		/*
220 		 * If we're going to skip the normal cleanup, we still need to
221 		 * make sure that the in-core orphan linked list is properly
222 		 * cleaned up.
223 		 */
224 		ext4_orphan_del(NULL, inode);
225 		goto no_delete;
226 	}
227 
228 	if (IS_SYNC(inode))
229 		ext4_handle_sync(handle);
230 	inode->i_size = 0;
231 	err = ext4_mark_inode_dirty(handle, inode);
232 	if (err) {
233 		ext4_warning(inode->i_sb, __func__,
234 			     "couldn't mark inode dirty (err %d)", err);
235 		goto stop_handle;
236 	}
237 	if (inode->i_blocks)
238 		ext4_truncate(inode);
239 
240 	/*
241 	 * ext4_ext_truncate() doesn't reserve any slop when it
242 	 * restarts journal transactions; therefore there may not be
243 	 * enough credits left in the handle to remove the inode from
244 	 * the orphan list and set the dtime field.
245 	 */
246 	if (!ext4_handle_has_enough_credits(handle, 3)) {
247 		err = ext4_journal_extend(handle, 3);
248 		if (err > 0)
249 			err = ext4_journal_restart(handle, 3);
250 		if (err != 0) {
251 			ext4_warning(inode->i_sb, __func__,
252 				     "couldn't extend journal (err %d)", err);
253 		stop_handle:
254 			ext4_journal_stop(handle);
255 			goto no_delete;
256 		}
257 	}
258 
259 	/*
260 	 * Kill off the orphan record which ext4_truncate created.
261 	 * AKPM: I think this can be inside the above `if'.
262 	 * Note that ext4_orphan_del() has to be able to cope with the
263 	 * deletion of a non-existent orphan - this is because we don't
264 	 * know if ext4_truncate() actually created an orphan record.
265 	 * (Well, we could do this if we need to, but heck - it works)
266 	 */
267 	ext4_orphan_del(handle, inode);
268 	EXT4_I(inode)->i_dtime	= get_seconds();
269 
270 	/*
271 	 * One subtle ordering requirement: if anything has gone wrong
272 	 * (transaction abort, IO errors, whatever), then we can still
273 	 * do these next steps (the fs will already have been marked as
274 	 * having errors), but we can't free the inode if the mark_dirty
275 	 * fails.
276 	 */
277 	if (ext4_mark_inode_dirty(handle, inode))
278 		/* If that failed, just do the required in-core inode clear. */
279 		clear_inode(inode);
280 	else
281 		ext4_free_inode(handle, inode);
282 	ext4_journal_stop(handle);
283 	return;
284 no_delete:
285 	clear_inode(inode);	/* We must guarantee clearing of inode... */
286 }
287 
288 typedef struct {
289 	__le32	*p;
290 	__le32	key;
291 	struct buffer_head *bh;
292 } Indirect;
293 
294 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295 {
296 	p->key = *(p->p = v);
297 	p->bh = bh;
298 }
299 
300 /**
301  *	ext4_block_to_path - parse the block number into array of offsets
302  *	@inode: inode in question (we are only interested in its superblock)
303  *	@i_block: block number to be parsed
304  *	@offsets: array to store the offsets in
305  *	@boundary: set this non-zero if the referred-to block is likely to be
306  *	       followed (on disk) by an indirect block.
307  *
308  *	To store the locations of file's data ext4 uses a data structure common
309  *	for UNIX filesystems - tree of pointers anchored in the inode, with
310  *	data blocks at leaves and indirect blocks in intermediate nodes.
311  *	This function translates the block number into path in that tree -
312  *	return value is the path length and @offsets[n] is the offset of
313  *	pointer to (n+1)th node in the nth one. If @block is out of range
314  *	(negative or too large) warning is printed and zero returned.
315  *
316  *	Note: function doesn't find node addresses, so no IO is needed. All
317  *	we need to know is the capacity of indirect blocks (taken from the
318  *	inode->i_sb).
319  */
320 
321 /*
322  * Portability note: the last comparison (check that we fit into triple
323  * indirect block) is spelled differently, because otherwise on an
324  * architecture with 32-bit longs and 8Kb pages we might get into trouble
325  * if our filesystem had 8Kb blocks. We might use long long, but that would
326  * kill us on x86. Oh, well, at least the sign propagation does not matter -
327  * i_block would have to be negative in the very beginning, so we would not
328  * get there at all.
329  */
330 
331 static int ext4_block_to_path(struct inode *inode,
332 			ext4_lblk_t i_block,
333 			ext4_lblk_t offsets[4], int *boundary)
334 {
335 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337 	const long direct_blocks = EXT4_NDIR_BLOCKS,
338 		indirect_blocks = ptrs,
339 		double_blocks = (1 << (ptrs_bits * 2));
340 	int n = 0;
341 	int final = 0;
342 
343 	if (i_block < 0) {
344 		ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345 	} else if (i_block < direct_blocks) {
346 		offsets[n++] = i_block;
347 		final = direct_blocks;
348 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
349 		offsets[n++] = EXT4_IND_BLOCK;
350 		offsets[n++] = i_block;
351 		final = ptrs;
352 	} else if ((i_block -= indirect_blocks) < double_blocks) {
353 		offsets[n++] = EXT4_DIND_BLOCK;
354 		offsets[n++] = i_block >> ptrs_bits;
355 		offsets[n++] = i_block & (ptrs - 1);
356 		final = ptrs;
357 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358 		offsets[n++] = EXT4_TIND_BLOCK;
359 		offsets[n++] = i_block >> (ptrs_bits * 2);
360 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361 		offsets[n++] = i_block & (ptrs - 1);
362 		final = ptrs;
363 	} else {
364 		ext4_warning(inode->i_sb, "ext4_block_to_path",
365 				"block %lu > max in inode %lu",
366 				i_block + direct_blocks +
367 				indirect_blocks + double_blocks, inode->i_ino);
368 	}
369 	if (boundary)
370 		*boundary = final - 1 - (i_block & (ptrs - 1));
371 	return n;
372 }
373 
374 /**
375  *	ext4_get_branch - read the chain of indirect blocks leading to data
376  *	@inode: inode in question
377  *	@depth: depth of the chain (1 - direct pointer, etc.)
378  *	@offsets: offsets of pointers in inode/indirect blocks
379  *	@chain: place to store the result
380  *	@err: here we store the error value
381  *
382  *	Function fills the array of triples <key, p, bh> and returns %NULL
383  *	if everything went OK or the pointer to the last filled triple
384  *	(incomplete one) otherwise. Upon the return chain[i].key contains
385  *	the number of (i+1)-th block in the chain (as it is stored in memory,
386  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
387  *	number (it points into struct inode for i==0 and into the bh->b_data
388  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
389  *	block for i>0 and NULL for i==0. In other words, it holds the block
390  *	numbers of the chain, addresses they were taken from (and where we can
391  *	verify that chain did not change) and buffer_heads hosting these
392  *	numbers.
393  *
394  *	Function stops when it stumbles upon zero pointer (absent block)
395  *		(pointer to last triple returned, *@err == 0)
396  *	or when it gets an IO error reading an indirect block
397  *		(ditto, *@err == -EIO)
398  *	or when it reads all @depth-1 indirect blocks successfully and finds
399  *	the whole chain, all way to the data (returns %NULL, *err == 0).
400  *
401  *      Need to be called with
402  *      down_read(&EXT4_I(inode)->i_data_sem)
403  */
404 static Indirect *ext4_get_branch(struct inode *inode, int depth,
405 				 ext4_lblk_t  *offsets,
406 				 Indirect chain[4], int *err)
407 {
408 	struct super_block *sb = inode->i_sb;
409 	Indirect *p = chain;
410 	struct buffer_head *bh;
411 
412 	*err = 0;
413 	/* i_data is not going away, no lock needed */
414 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
415 	if (!p->key)
416 		goto no_block;
417 	while (--depth) {
418 		bh = sb_bread(sb, le32_to_cpu(p->key));
419 		if (!bh)
420 			goto failure;
421 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
422 		/* Reader: end */
423 		if (!p->key)
424 			goto no_block;
425 	}
426 	return NULL;
427 
428 failure:
429 	*err = -EIO;
430 no_block:
431 	return p;
432 }
433 
434 /**
435  *	ext4_find_near - find a place for allocation with sufficient locality
436  *	@inode: owner
437  *	@ind: descriptor of indirect block.
438  *
439  *	This function returns the preferred place for block allocation.
440  *	It is used when heuristic for sequential allocation fails.
441  *	Rules are:
442  *	  + if there is a block to the left of our position - allocate near it.
443  *	  + if pointer will live in indirect block - allocate near that block.
444  *	  + if pointer will live in inode - allocate in the same
445  *	    cylinder group.
446  *
447  * In the latter case we colour the starting block by the callers PID to
448  * prevent it from clashing with concurrent allocations for a different inode
449  * in the same block group.   The PID is used here so that functionally related
450  * files will be close-by on-disk.
451  *
452  *	Caller must make sure that @ind is valid and will stay that way.
453  */
454 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
455 {
456 	struct ext4_inode_info *ei = EXT4_I(inode);
457 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
458 	__le32 *p;
459 	ext4_fsblk_t bg_start;
460 	ext4_fsblk_t last_block;
461 	ext4_grpblk_t colour;
462 
463 	/* Try to find previous block */
464 	for (p = ind->p - 1; p >= start; p--) {
465 		if (*p)
466 			return le32_to_cpu(*p);
467 	}
468 
469 	/* No such thing, so let's try location of indirect block */
470 	if (ind->bh)
471 		return ind->bh->b_blocknr;
472 
473 	/*
474 	 * It is going to be referred to from the inode itself? OK, just put it
475 	 * into the same cylinder group then.
476 	 */
477 	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
478 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
479 
480 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
481 		colour = (current->pid % 16) *
482 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
483 	else
484 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
485 	return bg_start + colour;
486 }
487 
488 /**
489  *	ext4_find_goal - find a preferred place for allocation.
490  *	@inode: owner
491  *	@block:  block we want
492  *	@partial: pointer to the last triple within a chain
493  *
494  *	Normally this function find the preferred place for block allocation,
495  *	returns it.
496  */
497 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
498 		Indirect *partial)
499 {
500 	/*
501 	 * XXX need to get goal block from mballoc's data structures
502 	 */
503 
504 	return ext4_find_near(inode, partial);
505 }
506 
507 /**
508  *	ext4_blks_to_allocate: Look up the block map and count the number
509  *	of direct blocks need to be allocated for the given branch.
510  *
511  *	@branch: chain of indirect blocks
512  *	@k: number of blocks need for indirect blocks
513  *	@blks: number of data blocks to be mapped.
514  *	@blocks_to_boundary:  the offset in the indirect block
515  *
516  *	return the total number of blocks to be allocate, including the
517  *	direct and indirect blocks.
518  */
519 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
520 		int blocks_to_boundary)
521 {
522 	unsigned int count = 0;
523 
524 	/*
525 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
526 	 * then it's clear blocks on that path have not allocated
527 	 */
528 	if (k > 0) {
529 		/* right now we don't handle cross boundary allocation */
530 		if (blks < blocks_to_boundary + 1)
531 			count += blks;
532 		else
533 			count += blocks_to_boundary + 1;
534 		return count;
535 	}
536 
537 	count++;
538 	while (count < blks && count <= blocks_to_boundary &&
539 		le32_to_cpu(*(branch[0].p + count)) == 0) {
540 		count++;
541 	}
542 	return count;
543 }
544 
545 /**
546  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
547  *	@indirect_blks: the number of blocks need to allocate for indirect
548  *			blocks
549  *
550  *	@new_blocks: on return it will store the new block numbers for
551  *	the indirect blocks(if needed) and the first direct block,
552  *	@blks:	on return it will store the total number of allocated
553  *		direct blocks
554  */
555 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
556 				ext4_lblk_t iblock, ext4_fsblk_t goal,
557 				int indirect_blks, int blks,
558 				ext4_fsblk_t new_blocks[4], int *err)
559 {
560 	struct ext4_allocation_request ar;
561 	int target, i;
562 	unsigned long count = 0, blk_allocated = 0;
563 	int index = 0;
564 	ext4_fsblk_t current_block = 0;
565 	int ret = 0;
566 
567 	/*
568 	 * Here we try to allocate the requested multiple blocks at once,
569 	 * on a best-effort basis.
570 	 * To build a branch, we should allocate blocks for
571 	 * the indirect blocks(if not allocated yet), and at least
572 	 * the first direct block of this branch.  That's the
573 	 * minimum number of blocks need to allocate(required)
574 	 */
575 	/* first we try to allocate the indirect blocks */
576 	target = indirect_blks;
577 	while (target > 0) {
578 		count = target;
579 		/* allocating blocks for indirect blocks and direct blocks */
580 		current_block = ext4_new_meta_blocks(handle, inode,
581 							goal, &count, err);
582 		if (*err)
583 			goto failed_out;
584 
585 		target -= count;
586 		/* allocate blocks for indirect blocks */
587 		while (index < indirect_blks && count) {
588 			new_blocks[index++] = current_block++;
589 			count--;
590 		}
591 		if (count > 0) {
592 			/*
593 			 * save the new block number
594 			 * for the first direct block
595 			 */
596 			new_blocks[index] = current_block;
597 			printk(KERN_INFO "%s returned more blocks than "
598 						"requested\n", __func__);
599 			WARN_ON(1);
600 			break;
601 		}
602 	}
603 
604 	target = blks - count ;
605 	blk_allocated = count;
606 	if (!target)
607 		goto allocated;
608 	/* Now allocate data blocks */
609 	memset(&ar, 0, sizeof(ar));
610 	ar.inode = inode;
611 	ar.goal = goal;
612 	ar.len = target;
613 	ar.logical = iblock;
614 	if (S_ISREG(inode->i_mode))
615 		/* enable in-core preallocation only for regular files */
616 		ar.flags = EXT4_MB_HINT_DATA;
617 
618 	current_block = ext4_mb_new_blocks(handle, &ar, err);
619 
620 	if (*err && (target == blks)) {
621 		/*
622 		 * if the allocation failed and we didn't allocate
623 		 * any blocks before
624 		 */
625 		goto failed_out;
626 	}
627 	if (!*err) {
628 		if (target == blks) {
629 		/*
630 		 * save the new block number
631 		 * for the first direct block
632 		 */
633 			new_blocks[index] = current_block;
634 		}
635 		blk_allocated += ar.len;
636 	}
637 allocated:
638 	/* total number of blocks allocated for direct blocks */
639 	ret = blk_allocated;
640 	*err = 0;
641 	return ret;
642 failed_out:
643 	for (i = 0; i < index; i++)
644 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
645 	return ret;
646 }
647 
648 /**
649  *	ext4_alloc_branch - allocate and set up a chain of blocks.
650  *	@inode: owner
651  *	@indirect_blks: number of allocated indirect blocks
652  *	@blks: number of allocated direct blocks
653  *	@offsets: offsets (in the blocks) to store the pointers to next.
654  *	@branch: place to store the chain in.
655  *
656  *	This function allocates blocks, zeroes out all but the last one,
657  *	links them into chain and (if we are synchronous) writes them to disk.
658  *	In other words, it prepares a branch that can be spliced onto the
659  *	inode. It stores the information about that chain in the branch[], in
660  *	the same format as ext4_get_branch() would do. We are calling it after
661  *	we had read the existing part of chain and partial points to the last
662  *	triple of that (one with zero ->key). Upon the exit we have the same
663  *	picture as after the successful ext4_get_block(), except that in one
664  *	place chain is disconnected - *branch->p is still zero (we did not
665  *	set the last link), but branch->key contains the number that should
666  *	be placed into *branch->p to fill that gap.
667  *
668  *	If allocation fails we free all blocks we've allocated (and forget
669  *	their buffer_heads) and return the error value the from failed
670  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
671  *	as described above and return 0.
672  */
673 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
674 				ext4_lblk_t iblock, int indirect_blks,
675 				int *blks, ext4_fsblk_t goal,
676 				ext4_lblk_t *offsets, Indirect *branch)
677 {
678 	int blocksize = inode->i_sb->s_blocksize;
679 	int i, n = 0;
680 	int err = 0;
681 	struct buffer_head *bh;
682 	int num;
683 	ext4_fsblk_t new_blocks[4];
684 	ext4_fsblk_t current_block;
685 
686 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
687 				*blks, new_blocks, &err);
688 	if (err)
689 		return err;
690 
691 	branch[0].key = cpu_to_le32(new_blocks[0]);
692 	/*
693 	 * metadata blocks and data blocks are allocated.
694 	 */
695 	for (n = 1; n <= indirect_blks;  n++) {
696 		/*
697 		 * Get buffer_head for parent block, zero it out
698 		 * and set the pointer to new one, then send
699 		 * parent to disk.
700 		 */
701 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
702 		branch[n].bh = bh;
703 		lock_buffer(bh);
704 		BUFFER_TRACE(bh, "call get_create_access");
705 		err = ext4_journal_get_create_access(handle, bh);
706 		if (err) {
707 			unlock_buffer(bh);
708 			brelse(bh);
709 			goto failed;
710 		}
711 
712 		memset(bh->b_data, 0, blocksize);
713 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
714 		branch[n].key = cpu_to_le32(new_blocks[n]);
715 		*branch[n].p = branch[n].key;
716 		if (n == indirect_blks) {
717 			current_block = new_blocks[n];
718 			/*
719 			 * End of chain, update the last new metablock of
720 			 * the chain to point to the new allocated
721 			 * data blocks numbers
722 			 */
723 			for (i=1; i < num; i++)
724 				*(branch[n].p + i) = cpu_to_le32(++current_block);
725 		}
726 		BUFFER_TRACE(bh, "marking uptodate");
727 		set_buffer_uptodate(bh);
728 		unlock_buffer(bh);
729 
730 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
731 		err = ext4_handle_dirty_metadata(handle, inode, bh);
732 		if (err)
733 			goto failed;
734 	}
735 	*blks = num;
736 	return err;
737 failed:
738 	/* Allocation failed, free what we already allocated */
739 	for (i = 1; i <= n ; i++) {
740 		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
741 		ext4_journal_forget(handle, branch[i].bh);
742 	}
743 	for (i = 0; i < indirect_blks; i++)
744 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
745 
746 	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
747 
748 	return err;
749 }
750 
751 /**
752  * ext4_splice_branch - splice the allocated branch onto inode.
753  * @inode: owner
754  * @block: (logical) number of block we are adding
755  * @chain: chain of indirect blocks (with a missing link - see
756  *	ext4_alloc_branch)
757  * @where: location of missing link
758  * @num:   number of indirect blocks we are adding
759  * @blks:  number of direct blocks we are adding
760  *
761  * This function fills the missing link and does all housekeeping needed in
762  * inode (->i_blocks, etc.). In case of success we end up with the full
763  * chain to new block and return 0.
764  */
765 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
766 			ext4_lblk_t block, Indirect *where, int num, int blks)
767 {
768 	int i;
769 	int err = 0;
770 	ext4_fsblk_t current_block;
771 
772 	/*
773 	 * If we're splicing into a [td]indirect block (as opposed to the
774 	 * inode) then we need to get write access to the [td]indirect block
775 	 * before the splice.
776 	 */
777 	if (where->bh) {
778 		BUFFER_TRACE(where->bh, "get_write_access");
779 		err = ext4_journal_get_write_access(handle, where->bh);
780 		if (err)
781 			goto err_out;
782 	}
783 	/* That's it */
784 
785 	*where->p = where->key;
786 
787 	/*
788 	 * Update the host buffer_head or inode to point to more just allocated
789 	 * direct blocks blocks
790 	 */
791 	if (num == 0 && blks > 1) {
792 		current_block = le32_to_cpu(where->key) + 1;
793 		for (i = 1; i < blks; i++)
794 			*(where->p + i) = cpu_to_le32(current_block++);
795 	}
796 
797 	/* We are done with atomic stuff, now do the rest of housekeeping */
798 
799 	inode->i_ctime = ext4_current_time(inode);
800 	ext4_mark_inode_dirty(handle, inode);
801 
802 	/* had we spliced it onto indirect block? */
803 	if (where->bh) {
804 		/*
805 		 * If we spliced it onto an indirect block, we haven't
806 		 * altered the inode.  Note however that if it is being spliced
807 		 * onto an indirect block at the very end of the file (the
808 		 * file is growing) then we *will* alter the inode to reflect
809 		 * the new i_size.  But that is not done here - it is done in
810 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
811 		 */
812 		jbd_debug(5, "splicing indirect only\n");
813 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
814 		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
815 		if (err)
816 			goto err_out;
817 	} else {
818 		/*
819 		 * OK, we spliced it into the inode itself on a direct block.
820 		 * Inode was dirtied above.
821 		 */
822 		jbd_debug(5, "splicing direct\n");
823 	}
824 	return err;
825 
826 err_out:
827 	for (i = 1; i <= num; i++) {
828 		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
829 		ext4_journal_forget(handle, where[i].bh);
830 		ext4_free_blocks(handle, inode,
831 					le32_to_cpu(where[i-1].key), 1, 0);
832 	}
833 	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
834 
835 	return err;
836 }
837 
838 /*
839  * Allocation strategy is simple: if we have to allocate something, we will
840  * have to go the whole way to leaf. So let's do it before attaching anything
841  * to tree, set linkage between the newborn blocks, write them if sync is
842  * required, recheck the path, free and repeat if check fails, otherwise
843  * set the last missing link (that will protect us from any truncate-generated
844  * removals - all blocks on the path are immune now) and possibly force the
845  * write on the parent block.
846  * That has a nice additional property: no special recovery from the failed
847  * allocations is needed - we simply release blocks and do not touch anything
848  * reachable from inode.
849  *
850  * `handle' can be NULL if create == 0.
851  *
852  * return > 0, # of blocks mapped or allocated.
853  * return = 0, if plain lookup failed.
854  * return < 0, error case.
855  *
856  *
857  * Need to be called with
858  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
859  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
860  */
861 static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
862 				  ext4_lblk_t iblock, unsigned int maxblocks,
863 				  struct buffer_head *bh_result,
864 				  int create, int extend_disksize)
865 {
866 	int err = -EIO;
867 	ext4_lblk_t offsets[4];
868 	Indirect chain[4];
869 	Indirect *partial;
870 	ext4_fsblk_t goal;
871 	int indirect_blks;
872 	int blocks_to_boundary = 0;
873 	int depth;
874 	struct ext4_inode_info *ei = EXT4_I(inode);
875 	int count = 0;
876 	ext4_fsblk_t first_block = 0;
877 	loff_t disksize;
878 
879 
880 	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
881 	J_ASSERT(handle != NULL || create == 0);
882 	depth = ext4_block_to_path(inode, iblock, offsets,
883 					&blocks_to_boundary);
884 
885 	if (depth == 0)
886 		goto out;
887 
888 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
889 
890 	/* Simplest case - block found, no allocation needed */
891 	if (!partial) {
892 		first_block = le32_to_cpu(chain[depth - 1].key);
893 		clear_buffer_new(bh_result);
894 		count++;
895 		/*map more blocks*/
896 		while (count < maxblocks && count <= blocks_to_boundary) {
897 			ext4_fsblk_t blk;
898 
899 			blk = le32_to_cpu(*(chain[depth-1].p + count));
900 
901 			if (blk == first_block + count)
902 				count++;
903 			else
904 				break;
905 		}
906 		goto got_it;
907 	}
908 
909 	/* Next simple case - plain lookup or failed read of indirect block */
910 	if (!create || err == -EIO)
911 		goto cleanup;
912 
913 	/*
914 	 * Okay, we need to do block allocation.
915 	*/
916 	goal = ext4_find_goal(inode, iblock, partial);
917 
918 	/* the number of blocks need to allocate for [d,t]indirect blocks */
919 	indirect_blks = (chain + depth) - partial - 1;
920 
921 	/*
922 	 * Next look up the indirect map to count the totoal number of
923 	 * direct blocks to allocate for this branch.
924 	 */
925 	count = ext4_blks_to_allocate(partial, indirect_blks,
926 					maxblocks, blocks_to_boundary);
927 	/*
928 	 * Block out ext4_truncate while we alter the tree
929 	 */
930 	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
931 					&count, goal,
932 					offsets + (partial - chain), partial);
933 
934 	/*
935 	 * The ext4_splice_branch call will free and forget any buffers
936 	 * on the new chain if there is a failure, but that risks using
937 	 * up transaction credits, especially for bitmaps where the
938 	 * credits cannot be returned.  Can we handle this somehow?  We
939 	 * may need to return -EAGAIN upwards in the worst case.  --sct
940 	 */
941 	if (!err)
942 		err = ext4_splice_branch(handle, inode, iblock,
943 					partial, indirect_blks, count);
944 	/*
945 	 * i_disksize growing is protected by i_data_sem.  Don't forget to
946 	 * protect it if you're about to implement concurrent
947 	 * ext4_get_block() -bzzz
948 	*/
949 	if (!err && extend_disksize) {
950 		disksize = ((loff_t) iblock + count) << inode->i_blkbits;
951 		if (disksize > i_size_read(inode))
952 			disksize = i_size_read(inode);
953 		if (disksize > ei->i_disksize)
954 			ei->i_disksize = disksize;
955 	}
956 	if (err)
957 		goto cleanup;
958 
959 	set_buffer_new(bh_result);
960 got_it:
961 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
962 	if (count > blocks_to_boundary)
963 		set_buffer_boundary(bh_result);
964 	err = count;
965 	/* Clean up and exit */
966 	partial = chain + depth - 1;	/* the whole chain */
967 cleanup:
968 	while (partial > chain) {
969 		BUFFER_TRACE(partial->bh, "call brelse");
970 		brelse(partial->bh);
971 		partial--;
972 	}
973 	BUFFER_TRACE(bh_result, "returned");
974 out:
975 	return err;
976 }
977 
978 /*
979  * Calculate the number of metadata blocks need to reserve
980  * to allocate @blocks for non extent file based file
981  */
982 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
983 {
984 	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
985 	int ind_blks, dind_blks, tind_blks;
986 
987 	/* number of new indirect blocks needed */
988 	ind_blks = (blocks + icap - 1) / icap;
989 
990 	dind_blks = (ind_blks + icap - 1) / icap;
991 
992 	tind_blks = 1;
993 
994 	return ind_blks + dind_blks + tind_blks;
995 }
996 
997 /*
998  * Calculate the number of metadata blocks need to reserve
999  * to allocate given number of blocks
1000  */
1001 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1002 {
1003 	if (!blocks)
1004 		return 0;
1005 
1006 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1007 		return ext4_ext_calc_metadata_amount(inode, blocks);
1008 
1009 	return ext4_indirect_calc_metadata_amount(inode, blocks);
1010 }
1011 
1012 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1013 {
1014 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1015 	int total, mdb, mdb_free;
1016 
1017 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1018 	/* recalculate the number of metablocks still need to be reserved */
1019 	total = EXT4_I(inode)->i_reserved_data_blocks - used;
1020 	mdb = ext4_calc_metadata_amount(inode, total);
1021 
1022 	/* figure out how many metablocks to release */
1023 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1024 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1025 
1026 	if (mdb_free) {
1027 		/* Account for allocated meta_blocks */
1028 		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1029 
1030 		/* update fs dirty blocks counter */
1031 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1032 		EXT4_I(inode)->i_allocated_meta_blocks = 0;
1033 		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1034 	}
1035 
1036 	/* update per-inode reservations */
1037 	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1038 	EXT4_I(inode)->i_reserved_data_blocks -= used;
1039 
1040 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1041 }
1042 
1043 /*
1044  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1045  * and returns if the blocks are already mapped.
1046  *
1047  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1048  * and store the allocated blocks in the result buffer head and mark it
1049  * mapped.
1050  *
1051  * If file type is extents based, it will call ext4_ext_get_blocks(),
1052  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1053  * based files
1054  *
1055  * On success, it returns the number of blocks being mapped or allocate.
1056  * if create==0 and the blocks are pre-allocated and uninitialized block,
1057  * the result buffer head is unmapped. If the create ==1, it will make sure
1058  * the buffer head is mapped.
1059  *
1060  * It returns 0 if plain look up failed (blocks have not been allocated), in
1061  * that casem, buffer head is unmapped
1062  *
1063  * It returns the error in case of allocation failure.
1064  */
1065 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1066 			unsigned int max_blocks, struct buffer_head *bh,
1067 			int create, int extend_disksize, int flag)
1068 {
1069 	int retval;
1070 
1071 	clear_buffer_mapped(bh);
1072 
1073 	/*
1074 	 * Try to see if we can get  the block without requesting
1075 	 * for new file system block.
1076 	 */
1077 	down_read((&EXT4_I(inode)->i_data_sem));
1078 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1079 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1080 				bh, 0, 0);
1081 	} else {
1082 		retval = ext4_get_blocks_handle(handle,
1083 				inode, block, max_blocks, bh, 0, 0);
1084 	}
1085 	up_read((&EXT4_I(inode)->i_data_sem));
1086 
1087 	/* If it is only a block(s) look up */
1088 	if (!create)
1089 		return retval;
1090 
1091 	/*
1092 	 * Returns if the blocks have already allocated
1093 	 *
1094 	 * Note that if blocks have been preallocated
1095 	 * ext4_ext_get_block() returns th create = 0
1096 	 * with buffer head unmapped.
1097 	 */
1098 	if (retval > 0 && buffer_mapped(bh))
1099 		return retval;
1100 
1101 	/*
1102 	 * New blocks allocate and/or writing to uninitialized extent
1103 	 * will possibly result in updating i_data, so we take
1104 	 * the write lock of i_data_sem, and call get_blocks()
1105 	 * with create == 1 flag.
1106 	 */
1107 	down_write((&EXT4_I(inode)->i_data_sem));
1108 
1109 	/*
1110 	 * if the caller is from delayed allocation writeout path
1111 	 * we have already reserved fs blocks for allocation
1112 	 * let the underlying get_block() function know to
1113 	 * avoid double accounting
1114 	 */
1115 	if (flag)
1116 		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1117 	/*
1118 	 * We need to check for EXT4 here because migrate
1119 	 * could have changed the inode type in between
1120 	 */
1121 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1122 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1123 				bh, create, extend_disksize);
1124 	} else {
1125 		retval = ext4_get_blocks_handle(handle, inode, block,
1126 				max_blocks, bh, create, extend_disksize);
1127 
1128 		if (retval > 0 && buffer_new(bh)) {
1129 			/*
1130 			 * We allocated new blocks which will result in
1131 			 * i_data's format changing.  Force the migrate
1132 			 * to fail by clearing migrate flags
1133 			 */
1134 			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1135 							~EXT4_EXT_MIGRATE;
1136 		}
1137 	}
1138 
1139 	if (flag) {
1140 		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1141 		/*
1142 		 * Update reserved blocks/metadata blocks
1143 		 * after successful block allocation
1144 		 * which were deferred till now
1145 		 */
1146 		if ((retval > 0) && buffer_delay(bh))
1147 			ext4_da_update_reserve_space(inode, retval);
1148 	}
1149 
1150 	up_write((&EXT4_I(inode)->i_data_sem));
1151 	return retval;
1152 }
1153 
1154 /* Maximum number of blocks we map for direct IO at once. */
1155 #define DIO_MAX_BLOCKS 4096
1156 
1157 int ext4_get_block(struct inode *inode, sector_t iblock,
1158 		   struct buffer_head *bh_result, int create)
1159 {
1160 	handle_t *handle = ext4_journal_current_handle();
1161 	int ret = 0, started = 0;
1162 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1163 	int dio_credits;
1164 
1165 	if (create && !handle) {
1166 		/* Direct IO write... */
1167 		if (max_blocks > DIO_MAX_BLOCKS)
1168 			max_blocks = DIO_MAX_BLOCKS;
1169 		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1170 		handle = ext4_journal_start(inode, dio_credits);
1171 		if (IS_ERR(handle)) {
1172 			ret = PTR_ERR(handle);
1173 			goto out;
1174 		}
1175 		started = 1;
1176 	}
1177 
1178 	ret = ext4_get_blocks_wrap(handle, inode, iblock,
1179 					max_blocks, bh_result, create, 0, 0);
1180 	if (ret > 0) {
1181 		bh_result->b_size = (ret << inode->i_blkbits);
1182 		ret = 0;
1183 	}
1184 	if (started)
1185 		ext4_journal_stop(handle);
1186 out:
1187 	return ret;
1188 }
1189 
1190 /*
1191  * `handle' can be NULL if create is zero
1192  */
1193 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1194 				ext4_lblk_t block, int create, int *errp)
1195 {
1196 	struct buffer_head dummy;
1197 	int fatal = 0, err;
1198 
1199 	J_ASSERT(handle != NULL || create == 0);
1200 
1201 	dummy.b_state = 0;
1202 	dummy.b_blocknr = -1000;
1203 	buffer_trace_init(&dummy.b_history);
1204 	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1205 					&dummy, create, 1, 0);
1206 	/*
1207 	 * ext4_get_blocks_handle() returns number of blocks
1208 	 * mapped. 0 in case of a HOLE.
1209 	 */
1210 	if (err > 0) {
1211 		if (err > 1)
1212 			WARN_ON(1);
1213 		err = 0;
1214 	}
1215 	*errp = err;
1216 	if (!err && buffer_mapped(&dummy)) {
1217 		struct buffer_head *bh;
1218 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1219 		if (!bh) {
1220 			*errp = -EIO;
1221 			goto err;
1222 		}
1223 		if (buffer_new(&dummy)) {
1224 			J_ASSERT(create != 0);
1225 			J_ASSERT(handle != NULL);
1226 
1227 			/*
1228 			 * Now that we do not always journal data, we should
1229 			 * keep in mind whether this should always journal the
1230 			 * new buffer as metadata.  For now, regular file
1231 			 * writes use ext4_get_block instead, so it's not a
1232 			 * problem.
1233 			 */
1234 			lock_buffer(bh);
1235 			BUFFER_TRACE(bh, "call get_create_access");
1236 			fatal = ext4_journal_get_create_access(handle, bh);
1237 			if (!fatal && !buffer_uptodate(bh)) {
1238 				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1239 				set_buffer_uptodate(bh);
1240 			}
1241 			unlock_buffer(bh);
1242 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1243 			err = ext4_handle_dirty_metadata(handle, inode, bh);
1244 			if (!fatal)
1245 				fatal = err;
1246 		} else {
1247 			BUFFER_TRACE(bh, "not a new buffer");
1248 		}
1249 		if (fatal) {
1250 			*errp = fatal;
1251 			brelse(bh);
1252 			bh = NULL;
1253 		}
1254 		return bh;
1255 	}
1256 err:
1257 	return NULL;
1258 }
1259 
1260 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1261 			       ext4_lblk_t block, int create, int *err)
1262 {
1263 	struct buffer_head *bh;
1264 
1265 	bh = ext4_getblk(handle, inode, block, create, err);
1266 	if (!bh)
1267 		return bh;
1268 	if (buffer_uptodate(bh))
1269 		return bh;
1270 	ll_rw_block(READ_META, 1, &bh);
1271 	wait_on_buffer(bh);
1272 	if (buffer_uptodate(bh))
1273 		return bh;
1274 	put_bh(bh);
1275 	*err = -EIO;
1276 	return NULL;
1277 }
1278 
1279 static int walk_page_buffers(handle_t *handle,
1280 			     struct buffer_head *head,
1281 			     unsigned from,
1282 			     unsigned to,
1283 			     int *partial,
1284 			     int (*fn)(handle_t *handle,
1285 				       struct buffer_head *bh))
1286 {
1287 	struct buffer_head *bh;
1288 	unsigned block_start, block_end;
1289 	unsigned blocksize = head->b_size;
1290 	int err, ret = 0;
1291 	struct buffer_head *next;
1292 
1293 	for (bh = head, block_start = 0;
1294 	     ret == 0 && (bh != head || !block_start);
1295 	     block_start = block_end, bh = next)
1296 	{
1297 		next = bh->b_this_page;
1298 		block_end = block_start + blocksize;
1299 		if (block_end <= from || block_start >= to) {
1300 			if (partial && !buffer_uptodate(bh))
1301 				*partial = 1;
1302 			continue;
1303 		}
1304 		err = (*fn)(handle, bh);
1305 		if (!ret)
1306 			ret = err;
1307 	}
1308 	return ret;
1309 }
1310 
1311 /*
1312  * To preserve ordering, it is essential that the hole instantiation and
1313  * the data write be encapsulated in a single transaction.  We cannot
1314  * close off a transaction and start a new one between the ext4_get_block()
1315  * and the commit_write().  So doing the jbd2_journal_start at the start of
1316  * prepare_write() is the right place.
1317  *
1318  * Also, this function can nest inside ext4_writepage() ->
1319  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1320  * has generated enough buffer credits to do the whole page.  So we won't
1321  * block on the journal in that case, which is good, because the caller may
1322  * be PF_MEMALLOC.
1323  *
1324  * By accident, ext4 can be reentered when a transaction is open via
1325  * quota file writes.  If we were to commit the transaction while thus
1326  * reentered, there can be a deadlock - we would be holding a quota
1327  * lock, and the commit would never complete if another thread had a
1328  * transaction open and was blocking on the quota lock - a ranking
1329  * violation.
1330  *
1331  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1332  * will _not_ run commit under these circumstances because handle->h_ref
1333  * is elevated.  We'll still have enough credits for the tiny quotafile
1334  * write.
1335  */
1336 static int do_journal_get_write_access(handle_t *handle,
1337 					struct buffer_head *bh)
1338 {
1339 	if (!buffer_mapped(bh) || buffer_freed(bh))
1340 		return 0;
1341 	return ext4_journal_get_write_access(handle, bh);
1342 }
1343 
1344 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1345 				loff_t pos, unsigned len, unsigned flags,
1346 				struct page **pagep, void **fsdata)
1347 {
1348 	struct inode *inode = mapping->host;
1349 	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1350 	handle_t *handle;
1351 	int retries = 0;
1352 	struct page *page;
1353  	pgoff_t index;
1354 	unsigned from, to;
1355 
1356 	trace_mark(ext4_write_begin,
1357 		   "dev %s ino %lu pos %llu len %u flags %u",
1358 		   inode->i_sb->s_id, inode->i_ino,
1359 		   (unsigned long long) pos, len, flags);
1360  	index = pos >> PAGE_CACHE_SHIFT;
1361 	from = pos & (PAGE_CACHE_SIZE - 1);
1362 	to = from + len;
1363 
1364 retry:
1365 	handle = ext4_journal_start(inode, needed_blocks);
1366 	if (IS_ERR(handle)) {
1367 		ret = PTR_ERR(handle);
1368 		goto out;
1369 	}
1370 
1371 	page = grab_cache_page_write_begin(mapping, index, flags);
1372 	if (!page) {
1373 		ext4_journal_stop(handle);
1374 		ret = -ENOMEM;
1375 		goto out;
1376 	}
1377 	*pagep = page;
1378 
1379 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1380 							ext4_get_block);
1381 
1382 	if (!ret && ext4_should_journal_data(inode)) {
1383 		ret = walk_page_buffers(handle, page_buffers(page),
1384 				from, to, NULL, do_journal_get_write_access);
1385 	}
1386 
1387 	if (ret) {
1388 		unlock_page(page);
1389 		ext4_journal_stop(handle);
1390 		page_cache_release(page);
1391 		/*
1392 		 * block_write_begin may have instantiated a few blocks
1393 		 * outside i_size.  Trim these off again. Don't need
1394 		 * i_size_read because we hold i_mutex.
1395 		 */
1396 		if (pos + len > inode->i_size)
1397 			vmtruncate(inode, inode->i_size);
1398 	}
1399 
1400 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1401 		goto retry;
1402 out:
1403 	return ret;
1404 }
1405 
1406 /* For write_end() in data=journal mode */
1407 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1408 {
1409 	if (!buffer_mapped(bh) || buffer_freed(bh))
1410 		return 0;
1411 	set_buffer_uptodate(bh);
1412 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1413 }
1414 
1415 /*
1416  * We need to pick up the new inode size which generic_commit_write gave us
1417  * `file' can be NULL - eg, when called from page_symlink().
1418  *
1419  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1420  * buffers are managed internally.
1421  */
1422 static int ext4_ordered_write_end(struct file *file,
1423 				struct address_space *mapping,
1424 				loff_t pos, unsigned len, unsigned copied,
1425 				struct page *page, void *fsdata)
1426 {
1427 	handle_t *handle = ext4_journal_current_handle();
1428 	struct inode *inode = mapping->host;
1429 	int ret = 0, ret2;
1430 
1431 	trace_mark(ext4_ordered_write_end,
1432 		   "dev %s ino %lu pos %llu len %u copied %u",
1433 		   inode->i_sb->s_id, inode->i_ino,
1434 		   (unsigned long long) pos, len, copied);
1435 	ret = ext4_jbd2_file_inode(handle, inode);
1436 
1437 	if (ret == 0) {
1438 		loff_t new_i_size;
1439 
1440 		new_i_size = pos + copied;
1441 		if (new_i_size > EXT4_I(inode)->i_disksize) {
1442 			ext4_update_i_disksize(inode, new_i_size);
1443 			/* We need to mark inode dirty even if
1444 			 * new_i_size is less that inode->i_size
1445 			 * bu greater than i_disksize.(hint delalloc)
1446 			 */
1447 			ext4_mark_inode_dirty(handle, inode);
1448 		}
1449 
1450 		ret2 = generic_write_end(file, mapping, pos, len, copied,
1451 							page, fsdata);
1452 		copied = ret2;
1453 		if (ret2 < 0)
1454 			ret = ret2;
1455 	}
1456 	ret2 = ext4_journal_stop(handle);
1457 	if (!ret)
1458 		ret = ret2;
1459 
1460 	return ret ? ret : copied;
1461 }
1462 
1463 static int ext4_writeback_write_end(struct file *file,
1464 				struct address_space *mapping,
1465 				loff_t pos, unsigned len, unsigned copied,
1466 				struct page *page, void *fsdata)
1467 {
1468 	handle_t *handle = ext4_journal_current_handle();
1469 	struct inode *inode = mapping->host;
1470 	int ret = 0, ret2;
1471 	loff_t new_i_size;
1472 
1473 	trace_mark(ext4_writeback_write_end,
1474 		   "dev %s ino %lu pos %llu len %u copied %u",
1475 		   inode->i_sb->s_id, inode->i_ino,
1476 		   (unsigned long long) pos, len, copied);
1477 	new_i_size = pos + copied;
1478 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1479 		ext4_update_i_disksize(inode, new_i_size);
1480 		/* We need to mark inode dirty even if
1481 		 * new_i_size is less that inode->i_size
1482 		 * bu greater than i_disksize.(hint delalloc)
1483 		 */
1484 		ext4_mark_inode_dirty(handle, inode);
1485 	}
1486 
1487 	ret2 = generic_write_end(file, mapping, pos, len, copied,
1488 							page, fsdata);
1489 	copied = ret2;
1490 	if (ret2 < 0)
1491 		ret = ret2;
1492 
1493 	ret2 = ext4_journal_stop(handle);
1494 	if (!ret)
1495 		ret = ret2;
1496 
1497 	return ret ? ret : copied;
1498 }
1499 
1500 static int ext4_journalled_write_end(struct file *file,
1501 				struct address_space *mapping,
1502 				loff_t pos, unsigned len, unsigned copied,
1503 				struct page *page, void *fsdata)
1504 {
1505 	handle_t *handle = ext4_journal_current_handle();
1506 	struct inode *inode = mapping->host;
1507 	int ret = 0, ret2;
1508 	int partial = 0;
1509 	unsigned from, to;
1510 	loff_t new_i_size;
1511 
1512 	trace_mark(ext4_journalled_write_end,
1513 		   "dev %s ino %lu pos %llu len %u copied %u",
1514 		   inode->i_sb->s_id, inode->i_ino,
1515 		   (unsigned long long) pos, len, copied);
1516 	from = pos & (PAGE_CACHE_SIZE - 1);
1517 	to = from + len;
1518 
1519 	if (copied < len) {
1520 		if (!PageUptodate(page))
1521 			copied = 0;
1522 		page_zero_new_buffers(page, from+copied, to);
1523 	}
1524 
1525 	ret = walk_page_buffers(handle, page_buffers(page), from,
1526 				to, &partial, write_end_fn);
1527 	if (!partial)
1528 		SetPageUptodate(page);
1529 	new_i_size = pos + copied;
1530 	if (new_i_size > inode->i_size)
1531 		i_size_write(inode, pos+copied);
1532 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1533 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1534 		ext4_update_i_disksize(inode, new_i_size);
1535 		ret2 = ext4_mark_inode_dirty(handle, inode);
1536 		if (!ret)
1537 			ret = ret2;
1538 	}
1539 
1540 	unlock_page(page);
1541 	ret2 = ext4_journal_stop(handle);
1542 	if (!ret)
1543 		ret = ret2;
1544 	page_cache_release(page);
1545 
1546 	return ret ? ret : copied;
1547 }
1548 
1549 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1550 {
1551 	int retries = 0;
1552        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1553        unsigned long md_needed, mdblocks, total = 0;
1554 
1555 	/*
1556 	 * recalculate the amount of metadata blocks to reserve
1557 	 * in order to allocate nrblocks
1558 	 * worse case is one extent per block
1559 	 */
1560 repeat:
1561 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1562 	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1563 	mdblocks = ext4_calc_metadata_amount(inode, total);
1564 	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1565 
1566 	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1567 	total = md_needed + nrblocks;
1568 
1569 	if (ext4_claim_free_blocks(sbi, total)) {
1570 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1571 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1572 			yield();
1573 			goto repeat;
1574 		}
1575 		return -ENOSPC;
1576 	}
1577 	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1578 	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1579 
1580 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1581 	return 0;       /* success */
1582 }
1583 
1584 static void ext4_da_release_space(struct inode *inode, int to_free)
1585 {
1586 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1587 	int total, mdb, mdb_free, release;
1588 
1589 	if (!to_free)
1590 		return;		/* Nothing to release, exit */
1591 
1592 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1593 
1594 	if (!EXT4_I(inode)->i_reserved_data_blocks) {
1595 		/*
1596 		 * if there is no reserved blocks, but we try to free some
1597 		 * then the counter is messed up somewhere.
1598 		 * but since this function is called from invalidate
1599 		 * page, it's harmless to return without any action
1600 		 */
1601 		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1602 			    "blocks for inode %lu, but there is no reserved "
1603 			    "data blocks\n", to_free, inode->i_ino);
1604 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1605 		return;
1606 	}
1607 
1608 	/* recalculate the number of metablocks still need to be reserved */
1609 	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1610 	mdb = ext4_calc_metadata_amount(inode, total);
1611 
1612 	/* figure out how many metablocks to release */
1613 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1614 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1615 
1616 	release = to_free + mdb_free;
1617 
1618 	/* update fs dirty blocks counter for truncate case */
1619 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1620 
1621 	/* update per-inode reservations */
1622 	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1623 	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1624 
1625 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1626 	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1627 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1628 }
1629 
1630 static void ext4_da_page_release_reservation(struct page *page,
1631 						unsigned long offset)
1632 {
1633 	int to_release = 0;
1634 	struct buffer_head *head, *bh;
1635 	unsigned int curr_off = 0;
1636 
1637 	head = page_buffers(page);
1638 	bh = head;
1639 	do {
1640 		unsigned int next_off = curr_off + bh->b_size;
1641 
1642 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1643 			to_release++;
1644 			clear_buffer_delay(bh);
1645 		}
1646 		curr_off = next_off;
1647 	} while ((bh = bh->b_this_page) != head);
1648 	ext4_da_release_space(page->mapping->host, to_release);
1649 }
1650 
1651 /*
1652  * Delayed allocation stuff
1653  */
1654 
1655 struct mpage_da_data {
1656 	struct inode *inode;
1657 	struct buffer_head lbh;			/* extent of blocks */
1658 	unsigned long first_page, next_page;	/* extent of pages */
1659 	get_block_t *get_block;
1660 	struct writeback_control *wbc;
1661 	int io_done;
1662 	int pages_written;
1663 	int retval;
1664 };
1665 
1666 /*
1667  * mpage_da_submit_io - walks through extent of pages and try to write
1668  * them with writepage() call back
1669  *
1670  * @mpd->inode: inode
1671  * @mpd->first_page: first page of the extent
1672  * @mpd->next_page: page after the last page of the extent
1673  * @mpd->get_block: the filesystem's block mapper function
1674  *
1675  * By the time mpage_da_submit_io() is called we expect all blocks
1676  * to be allocated. this may be wrong if allocation failed.
1677  *
1678  * As pages are already locked by write_cache_pages(), we can't use it
1679  */
1680 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1681 {
1682 	long pages_skipped;
1683 	struct pagevec pvec;
1684 	unsigned long index, end;
1685 	int ret = 0, err, nr_pages, i;
1686 	struct inode *inode = mpd->inode;
1687 	struct address_space *mapping = inode->i_mapping;
1688 
1689 	BUG_ON(mpd->next_page <= mpd->first_page);
1690 	/*
1691 	 * We need to start from the first_page to the next_page - 1
1692 	 * to make sure we also write the mapped dirty buffer_heads.
1693 	 * If we look at mpd->lbh.b_blocknr we would only be looking
1694 	 * at the currently mapped buffer_heads.
1695 	 */
1696 	index = mpd->first_page;
1697 	end = mpd->next_page - 1;
1698 
1699 	pagevec_init(&pvec, 0);
1700 	while (index <= end) {
1701 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1702 		if (nr_pages == 0)
1703 			break;
1704 		for (i = 0; i < nr_pages; i++) {
1705 			struct page *page = pvec.pages[i];
1706 
1707 			index = page->index;
1708 			if (index > end)
1709 				break;
1710 			index++;
1711 
1712 			BUG_ON(!PageLocked(page));
1713 			BUG_ON(PageWriteback(page));
1714 
1715 			pages_skipped = mpd->wbc->pages_skipped;
1716 			err = mapping->a_ops->writepage(page, mpd->wbc);
1717 			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1718 				/*
1719 				 * have successfully written the page
1720 				 * without skipping the same
1721 				 */
1722 				mpd->pages_written++;
1723 			/*
1724 			 * In error case, we have to continue because
1725 			 * remaining pages are still locked
1726 			 * XXX: unlock and re-dirty them?
1727 			 */
1728 			if (ret == 0)
1729 				ret = err;
1730 		}
1731 		pagevec_release(&pvec);
1732 	}
1733 	return ret;
1734 }
1735 
1736 /*
1737  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1738  *
1739  * @mpd->inode - inode to walk through
1740  * @exbh->b_blocknr - first block on a disk
1741  * @exbh->b_size - amount of space in bytes
1742  * @logical - first logical block to start assignment with
1743  *
1744  * the function goes through all passed space and put actual disk
1745  * block numbers into buffer heads, dropping BH_Delay
1746  */
1747 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1748 				 struct buffer_head *exbh)
1749 {
1750 	struct inode *inode = mpd->inode;
1751 	struct address_space *mapping = inode->i_mapping;
1752 	int blocks = exbh->b_size >> inode->i_blkbits;
1753 	sector_t pblock = exbh->b_blocknr, cur_logical;
1754 	struct buffer_head *head, *bh;
1755 	pgoff_t index, end;
1756 	struct pagevec pvec;
1757 	int nr_pages, i;
1758 
1759 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1760 	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1761 	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1762 
1763 	pagevec_init(&pvec, 0);
1764 
1765 	while (index <= end) {
1766 		/* XXX: optimize tail */
1767 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1768 		if (nr_pages == 0)
1769 			break;
1770 		for (i = 0; i < nr_pages; i++) {
1771 			struct page *page = pvec.pages[i];
1772 
1773 			index = page->index;
1774 			if (index > end)
1775 				break;
1776 			index++;
1777 
1778 			BUG_ON(!PageLocked(page));
1779 			BUG_ON(PageWriteback(page));
1780 			BUG_ON(!page_has_buffers(page));
1781 
1782 			bh = page_buffers(page);
1783 			head = bh;
1784 
1785 			/* skip blocks out of the range */
1786 			do {
1787 				if (cur_logical >= logical)
1788 					break;
1789 				cur_logical++;
1790 			} while ((bh = bh->b_this_page) != head);
1791 
1792 			do {
1793 				if (cur_logical >= logical + blocks)
1794 					break;
1795 				if (buffer_delay(bh)) {
1796 					bh->b_blocknr = pblock;
1797 					clear_buffer_delay(bh);
1798 					bh->b_bdev = inode->i_sb->s_bdev;
1799 				} else if (buffer_unwritten(bh)) {
1800 					bh->b_blocknr = pblock;
1801 					clear_buffer_unwritten(bh);
1802 					set_buffer_mapped(bh);
1803 					set_buffer_new(bh);
1804 					bh->b_bdev = inode->i_sb->s_bdev;
1805 				} else if (buffer_mapped(bh))
1806 					BUG_ON(bh->b_blocknr != pblock);
1807 
1808 				cur_logical++;
1809 				pblock++;
1810 			} while ((bh = bh->b_this_page) != head);
1811 		}
1812 		pagevec_release(&pvec);
1813 	}
1814 }
1815 
1816 
1817 /*
1818  * __unmap_underlying_blocks - just a helper function to unmap
1819  * set of blocks described by @bh
1820  */
1821 static inline void __unmap_underlying_blocks(struct inode *inode,
1822 					     struct buffer_head *bh)
1823 {
1824 	struct block_device *bdev = inode->i_sb->s_bdev;
1825 	int blocks, i;
1826 
1827 	blocks = bh->b_size >> inode->i_blkbits;
1828 	for (i = 0; i < blocks; i++)
1829 		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1830 }
1831 
1832 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1833 					sector_t logical, long blk_cnt)
1834 {
1835 	int nr_pages, i;
1836 	pgoff_t index, end;
1837 	struct pagevec pvec;
1838 	struct inode *inode = mpd->inode;
1839 	struct address_space *mapping = inode->i_mapping;
1840 
1841 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1842 	end   = (logical + blk_cnt - 1) >>
1843 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
1844 	while (index <= end) {
1845 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1846 		if (nr_pages == 0)
1847 			break;
1848 		for (i = 0; i < nr_pages; i++) {
1849 			struct page *page = pvec.pages[i];
1850 			index = page->index;
1851 			if (index > end)
1852 				break;
1853 			index++;
1854 
1855 			BUG_ON(!PageLocked(page));
1856 			BUG_ON(PageWriteback(page));
1857 			block_invalidatepage(page, 0);
1858 			ClearPageUptodate(page);
1859 			unlock_page(page);
1860 		}
1861 	}
1862 	return;
1863 }
1864 
1865 static void ext4_print_free_blocks(struct inode *inode)
1866 {
1867 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1868 	printk(KERN_EMERG "Total free blocks count %lld\n",
1869 			ext4_count_free_blocks(inode->i_sb));
1870 	printk(KERN_EMERG "Free/Dirty block details\n");
1871 	printk(KERN_EMERG "free_blocks=%lld\n",
1872 			(long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1873 	printk(KERN_EMERG "dirty_blocks=%lld\n",
1874 			(long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1875 	printk(KERN_EMERG "Block reservation details\n");
1876 	printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
1877 			EXT4_I(inode)->i_reserved_data_blocks);
1878 	printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
1879 			EXT4_I(inode)->i_reserved_meta_blocks);
1880 	return;
1881 }
1882 
1883 /*
1884  * mpage_da_map_blocks - go through given space
1885  *
1886  * @mpd->lbh - bh describing space
1887  * @mpd->get_block - the filesystem's block mapper function
1888  *
1889  * The function skips space we know is already mapped to disk blocks.
1890  *
1891  */
1892 static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1893 {
1894 	int err = 0;
1895 	struct buffer_head new;
1896 	struct buffer_head *lbh = &mpd->lbh;
1897 	sector_t next;
1898 
1899 	/*
1900 	 * We consider only non-mapped and non-allocated blocks
1901 	 */
1902 	if (buffer_mapped(lbh) && !buffer_delay(lbh))
1903 		return 0;
1904 	new.b_state = lbh->b_state;
1905 	new.b_blocknr = 0;
1906 	new.b_size = lbh->b_size;
1907 	next = lbh->b_blocknr;
1908 	/*
1909 	 * If we didn't accumulate anything
1910 	 * to write simply return
1911 	 */
1912 	if (!new.b_size)
1913 		return 0;
1914 	err = mpd->get_block(mpd->inode, next, &new, 1);
1915 	if (err) {
1916 
1917 		/* If get block returns with error
1918 		 * we simply return. Later writepage
1919 		 * will redirty the page and writepages
1920 		 * will find the dirty page again
1921 		 */
1922 		if (err == -EAGAIN)
1923 			return 0;
1924 
1925 		if (err == -ENOSPC &&
1926 				ext4_count_free_blocks(mpd->inode->i_sb)) {
1927 			mpd->retval = err;
1928 			return 0;
1929 		}
1930 
1931 		/*
1932 		 * get block failure will cause us
1933 		 * to loop in writepages. Because
1934 		 * a_ops->writepage won't be able to
1935 		 * make progress. The page will be redirtied
1936 		 * by writepage and writepages will again
1937 		 * try to write the same.
1938 		 */
1939 		printk(KERN_EMERG "%s block allocation failed for inode %lu "
1940 				  "at logical offset %llu with max blocks "
1941 				  "%zd with error %d\n",
1942 				  __func__, mpd->inode->i_ino,
1943 				  (unsigned long long)next,
1944 				  lbh->b_size >> mpd->inode->i_blkbits, err);
1945 		printk(KERN_EMERG "This should not happen.!! "
1946 					"Data will be lost\n");
1947 		if (err == -ENOSPC) {
1948 			ext4_print_free_blocks(mpd->inode);
1949 		}
1950 		/* invlaidate all the pages */
1951 		ext4_da_block_invalidatepages(mpd, next,
1952 				lbh->b_size >> mpd->inode->i_blkbits);
1953 		return err;
1954 	}
1955 	BUG_ON(new.b_size == 0);
1956 
1957 	if (buffer_new(&new))
1958 		__unmap_underlying_blocks(mpd->inode, &new);
1959 
1960 	/*
1961 	 * If blocks are delayed marked, we need to
1962 	 * put actual blocknr and drop delayed bit
1963 	 */
1964 	if (buffer_delay(lbh) || buffer_unwritten(lbh))
1965 		mpage_put_bnr_to_bhs(mpd, next, &new);
1966 
1967 	return 0;
1968 }
1969 
1970 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1971 		(1 << BH_Delay) | (1 << BH_Unwritten))
1972 
1973 /*
1974  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1975  *
1976  * @mpd->lbh - extent of blocks
1977  * @logical - logical number of the block in the file
1978  * @bh - bh of the block (used to access block's state)
1979  *
1980  * the function is used to collect contig. blocks in same state
1981  */
1982 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1983 				   sector_t logical, struct buffer_head *bh)
1984 {
1985 	sector_t next;
1986 	size_t b_size = bh->b_size;
1987 	struct buffer_head *lbh = &mpd->lbh;
1988 	int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1989 
1990 	/* check if thereserved journal credits might overflow */
1991 	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1992 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1993 			/*
1994 			 * With non-extent format we are limited by the journal
1995 			 * credit available.  Total credit needed to insert
1996 			 * nrblocks contiguous blocks is dependent on the
1997 			 * nrblocks.  So limit nrblocks.
1998 			 */
1999 			goto flush_it;
2000 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2001 				EXT4_MAX_TRANS_DATA) {
2002 			/*
2003 			 * Adding the new buffer_head would make it cross the
2004 			 * allowed limit for which we have journal credit
2005 			 * reserved. So limit the new bh->b_size
2006 			 */
2007 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2008 						mpd->inode->i_blkbits;
2009 			/* we will do mpage_da_submit_io in the next loop */
2010 		}
2011 	}
2012 	/*
2013 	 * First block in the extent
2014 	 */
2015 	if (lbh->b_size == 0) {
2016 		lbh->b_blocknr = logical;
2017 		lbh->b_size = b_size;
2018 		lbh->b_state = bh->b_state & BH_FLAGS;
2019 		return;
2020 	}
2021 
2022 	next = lbh->b_blocknr + nrblocks;
2023 	/*
2024 	 * Can we merge the block to our big extent?
2025 	 */
2026 	if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
2027 		lbh->b_size += b_size;
2028 		return;
2029 	}
2030 
2031 flush_it:
2032 	/*
2033 	 * We couldn't merge the block to our extent, so we
2034 	 * need to flush current  extent and start new one
2035 	 */
2036 	if (mpage_da_map_blocks(mpd) == 0)
2037 		mpage_da_submit_io(mpd);
2038 	mpd->io_done = 1;
2039 	return;
2040 }
2041 
2042 /*
2043  * __mpage_da_writepage - finds extent of pages and blocks
2044  *
2045  * @page: page to consider
2046  * @wbc: not used, we just follow rules
2047  * @data: context
2048  *
2049  * The function finds extents of pages and scan them for all blocks.
2050  */
2051 static int __mpage_da_writepage(struct page *page,
2052 				struct writeback_control *wbc, void *data)
2053 {
2054 	struct mpage_da_data *mpd = data;
2055 	struct inode *inode = mpd->inode;
2056 	struct buffer_head *bh, *head, fake;
2057 	sector_t logical;
2058 
2059 	if (mpd->io_done) {
2060 		/*
2061 		 * Rest of the page in the page_vec
2062 		 * redirty then and skip then. We will
2063 		 * try to to write them again after
2064 		 * starting a new transaction
2065 		 */
2066 		redirty_page_for_writepage(wbc, page);
2067 		unlock_page(page);
2068 		return MPAGE_DA_EXTENT_TAIL;
2069 	}
2070 	/*
2071 	 * Can we merge this page to current extent?
2072 	 */
2073 	if (mpd->next_page != page->index) {
2074 		/*
2075 		 * Nope, we can't. So, we map non-allocated blocks
2076 		 * and start IO on them using writepage()
2077 		 */
2078 		if (mpd->next_page != mpd->first_page) {
2079 			if (mpage_da_map_blocks(mpd) == 0)
2080 				mpage_da_submit_io(mpd);
2081 			/*
2082 			 * skip rest of the page in the page_vec
2083 			 */
2084 			mpd->io_done = 1;
2085 			redirty_page_for_writepage(wbc, page);
2086 			unlock_page(page);
2087 			return MPAGE_DA_EXTENT_TAIL;
2088 		}
2089 
2090 		/*
2091 		 * Start next extent of pages ...
2092 		 */
2093 		mpd->first_page = page->index;
2094 
2095 		/*
2096 		 * ... and blocks
2097 		 */
2098 		mpd->lbh.b_size = 0;
2099 		mpd->lbh.b_state = 0;
2100 		mpd->lbh.b_blocknr = 0;
2101 	}
2102 
2103 	mpd->next_page = page->index + 1;
2104 	logical = (sector_t) page->index <<
2105 		  (PAGE_CACHE_SHIFT - inode->i_blkbits);
2106 
2107 	if (!page_has_buffers(page)) {
2108 		/*
2109 		 * There is no attached buffer heads yet (mmap?)
2110 		 * we treat the page asfull of dirty blocks
2111 		 */
2112 		bh = &fake;
2113 		bh->b_size = PAGE_CACHE_SIZE;
2114 		bh->b_state = 0;
2115 		set_buffer_dirty(bh);
2116 		set_buffer_uptodate(bh);
2117 		mpage_add_bh_to_extent(mpd, logical, bh);
2118 		if (mpd->io_done)
2119 			return MPAGE_DA_EXTENT_TAIL;
2120 	} else {
2121 		/*
2122 		 * Page with regular buffer heads, just add all dirty ones
2123 		 */
2124 		head = page_buffers(page);
2125 		bh = head;
2126 		do {
2127 			BUG_ON(buffer_locked(bh));
2128 			/*
2129 			 * We need to try to allocate
2130 			 * unmapped blocks in the same page.
2131 			 * Otherwise we won't make progress
2132 			 * with the page in ext4_da_writepage
2133 			 */
2134 			if (buffer_dirty(bh) &&
2135 				(!buffer_mapped(bh) || buffer_delay(bh))) {
2136 				mpage_add_bh_to_extent(mpd, logical, bh);
2137 				if (mpd->io_done)
2138 					return MPAGE_DA_EXTENT_TAIL;
2139 			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2140 				/*
2141 				 * mapped dirty buffer. We need to update
2142 				 * the b_state because we look at
2143 				 * b_state in mpage_da_map_blocks. We don't
2144 				 * update b_size because if we find an
2145 				 * unmapped buffer_head later we need to
2146 				 * use the b_state flag of that buffer_head.
2147 				 */
2148 				if (mpd->lbh.b_size == 0)
2149 					mpd->lbh.b_state =
2150 						bh->b_state & BH_FLAGS;
2151 			}
2152 			logical++;
2153 		} while ((bh = bh->b_this_page) != head);
2154 	}
2155 
2156 	return 0;
2157 }
2158 
2159 /*
2160  * mpage_da_writepages - walk the list of dirty pages of the given
2161  * address space, allocates non-allocated blocks, maps newly-allocated
2162  * blocks to existing bhs and issue IO them
2163  *
2164  * @mapping: address space structure to write
2165  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2166  * @get_block: the filesystem's block mapper function.
2167  *
2168  * This is a library function, which implements the writepages()
2169  * address_space_operation.
2170  */
2171 static int mpage_da_writepages(struct address_space *mapping,
2172 			       struct writeback_control *wbc,
2173 			       struct mpage_da_data *mpd)
2174 {
2175 	int ret;
2176 
2177 	if (!mpd->get_block)
2178 		return generic_writepages(mapping, wbc);
2179 
2180 	mpd->lbh.b_size = 0;
2181 	mpd->lbh.b_state = 0;
2182 	mpd->lbh.b_blocknr = 0;
2183 	mpd->first_page = 0;
2184 	mpd->next_page = 0;
2185 	mpd->io_done = 0;
2186 	mpd->pages_written = 0;
2187 	mpd->retval = 0;
2188 
2189 	ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2190 	/*
2191 	 * Handle last extent of pages
2192 	 */
2193 	if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2194 		if (mpage_da_map_blocks(mpd) == 0)
2195 			mpage_da_submit_io(mpd);
2196 
2197 		mpd->io_done = 1;
2198 		ret = MPAGE_DA_EXTENT_TAIL;
2199 	}
2200 	wbc->nr_to_write -= mpd->pages_written;
2201 	return ret;
2202 }
2203 
2204 /*
2205  * this is a special callback for ->write_begin() only
2206  * it's intention is to return mapped block or reserve space
2207  */
2208 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2209 				  struct buffer_head *bh_result, int create)
2210 {
2211 	int ret = 0;
2212 
2213 	BUG_ON(create == 0);
2214 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2215 
2216 	/*
2217 	 * first, we need to know whether the block is allocated already
2218 	 * preallocated blocks are unmapped but should treated
2219 	 * the same as allocated blocks.
2220 	 */
2221 	ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2222 	if ((ret == 0) && !buffer_delay(bh_result)) {
2223 		/* the block isn't (pre)allocated yet, let's reserve space */
2224 		/*
2225 		 * XXX: __block_prepare_write() unmaps passed block,
2226 		 * is it OK?
2227 		 */
2228 		ret = ext4_da_reserve_space(inode, 1);
2229 		if (ret)
2230 			/* not enough space to reserve */
2231 			return ret;
2232 
2233 		map_bh(bh_result, inode->i_sb, 0);
2234 		set_buffer_new(bh_result);
2235 		set_buffer_delay(bh_result);
2236 	} else if (ret > 0) {
2237 		bh_result->b_size = (ret << inode->i_blkbits);
2238 		ret = 0;
2239 	}
2240 
2241 	return ret;
2242 }
2243 #define		EXT4_DELALLOC_RSVED	1
2244 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2245 				   struct buffer_head *bh_result, int create)
2246 {
2247 	int ret;
2248 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2249 	loff_t disksize = EXT4_I(inode)->i_disksize;
2250 	handle_t *handle = NULL;
2251 
2252 	handle = ext4_journal_current_handle();
2253 	BUG_ON(!handle);
2254 	ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2255 			bh_result, create, 0, EXT4_DELALLOC_RSVED);
2256 	if (ret > 0) {
2257 
2258 		bh_result->b_size = (ret << inode->i_blkbits);
2259 
2260 		if (ext4_should_order_data(inode)) {
2261 			int retval;
2262 			retval = ext4_jbd2_file_inode(handle, inode);
2263 			if (retval)
2264 				/*
2265 				 * Failed to add inode for ordered
2266 				 * mode. Don't update file size
2267 				 */
2268 				return retval;
2269 		}
2270 
2271 		/*
2272 		 * Update on-disk size along with block allocation
2273 		 * we don't use 'extend_disksize' as size may change
2274 		 * within already allocated block -bzzz
2275 		 */
2276 		disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2277 		if (disksize > i_size_read(inode))
2278 			disksize = i_size_read(inode);
2279 		if (disksize > EXT4_I(inode)->i_disksize) {
2280 			ext4_update_i_disksize(inode, disksize);
2281 			ret = ext4_mark_inode_dirty(handle, inode);
2282 			return ret;
2283 		}
2284 		ret = 0;
2285 	}
2286 	return ret;
2287 }
2288 
2289 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2290 {
2291 	/*
2292 	 * unmapped buffer is possible for holes.
2293 	 * delay buffer is possible with delayed allocation
2294 	 */
2295 	return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2296 }
2297 
2298 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2299 				   struct buffer_head *bh_result, int create)
2300 {
2301 	int ret = 0;
2302 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2303 
2304 	/*
2305 	 * we don't want to do block allocation in writepage
2306 	 * so call get_block_wrap with create = 0
2307 	 */
2308 	ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2309 				   bh_result, 0, 0, 0);
2310 	if (ret > 0) {
2311 		bh_result->b_size = (ret << inode->i_blkbits);
2312 		ret = 0;
2313 	}
2314 	return ret;
2315 }
2316 
2317 /*
2318  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2319  * get called via journal_submit_inode_data_buffers (no journal handle)
2320  * get called via shrink_page_list via pdflush (no journal handle)
2321  * or grab_page_cache when doing write_begin (have journal handle)
2322  */
2323 static int ext4_da_writepage(struct page *page,
2324 				struct writeback_control *wbc)
2325 {
2326 	int ret = 0;
2327 	loff_t size;
2328 	unsigned int len;
2329 	struct buffer_head *page_bufs;
2330 	struct inode *inode = page->mapping->host;
2331 
2332 	trace_mark(ext4_da_writepage,
2333 		   "dev %s ino %lu page_index %lu",
2334 		   inode->i_sb->s_id, inode->i_ino, page->index);
2335 	size = i_size_read(inode);
2336 	if (page->index == size >> PAGE_CACHE_SHIFT)
2337 		len = size & ~PAGE_CACHE_MASK;
2338 	else
2339 		len = PAGE_CACHE_SIZE;
2340 
2341 	if (page_has_buffers(page)) {
2342 		page_bufs = page_buffers(page);
2343 		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2344 					ext4_bh_unmapped_or_delay)) {
2345 			/*
2346 			 * We don't want to do  block allocation
2347 			 * So redirty the page and return
2348 			 * We may reach here when we do a journal commit
2349 			 * via journal_submit_inode_data_buffers.
2350 			 * If we don't have mapping block we just ignore
2351 			 * them. We can also reach here via shrink_page_list
2352 			 */
2353 			redirty_page_for_writepage(wbc, page);
2354 			unlock_page(page);
2355 			return 0;
2356 		}
2357 	} else {
2358 		/*
2359 		 * The test for page_has_buffers() is subtle:
2360 		 * We know the page is dirty but it lost buffers. That means
2361 		 * that at some moment in time after write_begin()/write_end()
2362 		 * has been called all buffers have been clean and thus they
2363 		 * must have been written at least once. So they are all
2364 		 * mapped and we can happily proceed with mapping them
2365 		 * and writing the page.
2366 		 *
2367 		 * Try to initialize the buffer_heads and check whether
2368 		 * all are mapped and non delay. We don't want to
2369 		 * do block allocation here.
2370 		 */
2371 		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2372 						ext4_normal_get_block_write);
2373 		if (!ret) {
2374 			page_bufs = page_buffers(page);
2375 			/* check whether all are mapped and non delay */
2376 			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2377 						ext4_bh_unmapped_or_delay)) {
2378 				redirty_page_for_writepage(wbc, page);
2379 				unlock_page(page);
2380 				return 0;
2381 			}
2382 		} else {
2383 			/*
2384 			 * We can't do block allocation here
2385 			 * so just redity the page and unlock
2386 			 * and return
2387 			 */
2388 			redirty_page_for_writepage(wbc, page);
2389 			unlock_page(page);
2390 			return 0;
2391 		}
2392 		/* now mark the buffer_heads as dirty and uptodate */
2393 		block_commit_write(page, 0, PAGE_CACHE_SIZE);
2394 	}
2395 
2396 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2397 		ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2398 	else
2399 		ret = block_write_full_page(page,
2400 						ext4_normal_get_block_write,
2401 						wbc);
2402 
2403 	return ret;
2404 }
2405 
2406 /*
2407  * This is called via ext4_da_writepages() to
2408  * calulate the total number of credits to reserve to fit
2409  * a single extent allocation into a single transaction,
2410  * ext4_da_writpeages() will loop calling this before
2411  * the block allocation.
2412  */
2413 
2414 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2415 {
2416 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2417 
2418 	/*
2419 	 * With non-extent format the journal credit needed to
2420 	 * insert nrblocks contiguous block is dependent on
2421 	 * number of contiguous block. So we will limit
2422 	 * number of contiguous block to a sane value
2423 	 */
2424 	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2425 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2426 		max_blocks = EXT4_MAX_TRANS_DATA;
2427 
2428 	return ext4_chunk_trans_blocks(inode, max_blocks);
2429 }
2430 
2431 static int ext4_da_writepages(struct address_space *mapping,
2432 			      struct writeback_control *wbc)
2433 {
2434 	pgoff_t	index;
2435 	int range_whole = 0;
2436 	handle_t *handle = NULL;
2437 	struct mpage_da_data mpd;
2438 	struct inode *inode = mapping->host;
2439 	int no_nrwrite_index_update;
2440 	int pages_written = 0;
2441 	long pages_skipped;
2442 	int range_cyclic, cycled = 1, io_done = 0;
2443 	int needed_blocks, ret = 0, nr_to_writebump = 0;
2444 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2445 
2446 	trace_mark(ext4_da_writepages,
2447 		   "dev %s ino %lu nr_t_write %ld "
2448 		   "pages_skipped %ld range_start %llu "
2449 		   "range_end %llu nonblocking %d "
2450 		   "for_kupdate %d for_reclaim %d "
2451 		   "for_writepages %d range_cyclic %d",
2452 		   inode->i_sb->s_id, inode->i_ino,
2453 		   wbc->nr_to_write, wbc->pages_skipped,
2454 		   (unsigned long long) wbc->range_start,
2455 		   (unsigned long long) wbc->range_end,
2456 		   wbc->nonblocking, wbc->for_kupdate,
2457 		   wbc->for_reclaim, wbc->for_writepages,
2458 		   wbc->range_cyclic);
2459 
2460 	/*
2461 	 * No pages to write? This is mainly a kludge to avoid starting
2462 	 * a transaction for special inodes like journal inode on last iput()
2463 	 * because that could violate lock ordering on umount
2464 	 */
2465 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2466 		return 0;
2467 
2468 	/*
2469 	 * If the filesystem has aborted, it is read-only, so return
2470 	 * right away instead of dumping stack traces later on that
2471 	 * will obscure the real source of the problem.  We test
2472 	 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2473 	 * the latter could be true if the filesystem is mounted
2474 	 * read-only, and in that case, ext4_da_writepages should
2475 	 * *never* be called, so if that ever happens, we would want
2476 	 * the stack trace.
2477 	 */
2478 	if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2479 		return -EROFS;
2480 
2481 	/*
2482 	 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2483 	 * This make sure small files blocks are allocated in
2484 	 * single attempt. This ensure that small files
2485 	 * get less fragmented.
2486 	 */
2487 	if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2488 		nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2489 		wbc->nr_to_write = sbi->s_mb_stream_request;
2490 	}
2491 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2492 		range_whole = 1;
2493 
2494 	range_cyclic = wbc->range_cyclic;
2495 	if (wbc->range_cyclic) {
2496 		index = mapping->writeback_index;
2497 		if (index)
2498 			cycled = 0;
2499 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2500 		wbc->range_end  = LLONG_MAX;
2501 		wbc->range_cyclic = 0;
2502 	} else
2503 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2504 
2505 	mpd.wbc = wbc;
2506 	mpd.inode = mapping->host;
2507 
2508 	/*
2509 	 * we don't want write_cache_pages to update
2510 	 * nr_to_write and writeback_index
2511 	 */
2512 	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2513 	wbc->no_nrwrite_index_update = 1;
2514 	pages_skipped = wbc->pages_skipped;
2515 
2516 retry:
2517 	while (!ret && wbc->nr_to_write > 0) {
2518 
2519 		/*
2520 		 * we  insert one extent at a time. So we need
2521 		 * credit needed for single extent allocation.
2522 		 * journalled mode is currently not supported
2523 		 * by delalloc
2524 		 */
2525 		BUG_ON(ext4_should_journal_data(inode));
2526 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2527 
2528 		/* start a new transaction*/
2529 		handle = ext4_journal_start(inode, needed_blocks);
2530 		if (IS_ERR(handle)) {
2531 			ret = PTR_ERR(handle);
2532 			printk(KERN_CRIT "%s: jbd2_start: "
2533 			       "%ld pages, ino %lu; err %d\n", __func__,
2534 				wbc->nr_to_write, inode->i_ino, ret);
2535 			dump_stack();
2536 			goto out_writepages;
2537 		}
2538 		mpd.get_block = ext4_da_get_block_write;
2539 		ret = mpage_da_writepages(mapping, wbc, &mpd);
2540 
2541 		ext4_journal_stop(handle);
2542 
2543 		if (mpd.retval == -ENOSPC) {
2544 			/* commit the transaction which would
2545 			 * free blocks released in the transaction
2546 			 * and try again
2547 			 */
2548 			jbd2_journal_force_commit_nested(sbi->s_journal);
2549 			wbc->pages_skipped = pages_skipped;
2550 			ret = 0;
2551 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2552 			/*
2553 			 * got one extent now try with
2554 			 * rest of the pages
2555 			 */
2556 			pages_written += mpd.pages_written;
2557 			wbc->pages_skipped = pages_skipped;
2558 			ret = 0;
2559 			io_done = 1;
2560 		} else if (wbc->nr_to_write)
2561 			/*
2562 			 * There is no more writeout needed
2563 			 * or we requested for a noblocking writeout
2564 			 * and we found the device congested
2565 			 */
2566 			break;
2567 	}
2568 	if (!io_done && !cycled) {
2569 		cycled = 1;
2570 		index = 0;
2571 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2572 		wbc->range_end  = mapping->writeback_index - 1;
2573 		goto retry;
2574 	}
2575 	if (pages_skipped != wbc->pages_skipped)
2576 		printk(KERN_EMERG "This should not happen leaving %s "
2577 				"with nr_to_write = %ld ret = %d\n",
2578 				__func__, wbc->nr_to_write, ret);
2579 
2580 	/* Update index */
2581 	index += pages_written;
2582 	wbc->range_cyclic = range_cyclic;
2583 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2584 		/*
2585 		 * set the writeback_index so that range_cyclic
2586 		 * mode will write it back later
2587 		 */
2588 		mapping->writeback_index = index;
2589 
2590 out_writepages:
2591 	if (!no_nrwrite_index_update)
2592 		wbc->no_nrwrite_index_update = 0;
2593 	wbc->nr_to_write -= nr_to_writebump;
2594 	trace_mark(ext4_da_writepage_result,
2595 		   "dev %s ino %lu ret %d pages_written %d "
2596 		   "pages_skipped %ld congestion %d "
2597 		   "more_io %d no_nrwrite_index_update %d",
2598 		   inode->i_sb->s_id, inode->i_ino, ret,
2599 		   pages_written, wbc->pages_skipped,
2600 		   wbc->encountered_congestion, wbc->more_io,
2601 		   wbc->no_nrwrite_index_update);
2602 	return ret;
2603 }
2604 
2605 #define FALL_BACK_TO_NONDELALLOC 1
2606 static int ext4_nonda_switch(struct super_block *sb)
2607 {
2608 	s64 free_blocks, dirty_blocks;
2609 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2610 
2611 	/*
2612 	 * switch to non delalloc mode if we are running low
2613 	 * on free block. The free block accounting via percpu
2614 	 * counters can get slightly wrong with percpu_counter_batch getting
2615 	 * accumulated on each CPU without updating global counters
2616 	 * Delalloc need an accurate free block accounting. So switch
2617 	 * to non delalloc when we are near to error range.
2618 	 */
2619 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2620 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2621 	if (2 * free_blocks < 3 * dirty_blocks ||
2622 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2623 		/*
2624 		 * free block count is less that 150% of dirty blocks
2625 		 * or free blocks is less that watermark
2626 		 */
2627 		return 1;
2628 	}
2629 	return 0;
2630 }
2631 
2632 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2633 				loff_t pos, unsigned len, unsigned flags,
2634 				struct page **pagep, void **fsdata)
2635 {
2636 	int ret, retries = 0;
2637 	struct page *page;
2638 	pgoff_t index;
2639 	unsigned from, to;
2640 	struct inode *inode = mapping->host;
2641 	handle_t *handle;
2642 
2643 	index = pos >> PAGE_CACHE_SHIFT;
2644 	from = pos & (PAGE_CACHE_SIZE - 1);
2645 	to = from + len;
2646 
2647 	if (ext4_nonda_switch(inode->i_sb)) {
2648 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2649 		return ext4_write_begin(file, mapping, pos,
2650 					len, flags, pagep, fsdata);
2651 	}
2652 	*fsdata = (void *)0;
2653 
2654 	trace_mark(ext4_da_write_begin,
2655 		   "dev %s ino %lu pos %llu len %u flags %u",
2656 		   inode->i_sb->s_id, inode->i_ino,
2657 		   (unsigned long long) pos, len, flags);
2658 retry:
2659 	/*
2660 	 * With delayed allocation, we don't log the i_disksize update
2661 	 * if there is delayed block allocation. But we still need
2662 	 * to journalling the i_disksize update if writes to the end
2663 	 * of file which has an already mapped buffer.
2664 	 */
2665 	handle = ext4_journal_start(inode, 1);
2666 	if (IS_ERR(handle)) {
2667 		ret = PTR_ERR(handle);
2668 		goto out;
2669 	}
2670 
2671 	page = grab_cache_page_write_begin(mapping, index, flags);
2672 	if (!page) {
2673 		ext4_journal_stop(handle);
2674 		ret = -ENOMEM;
2675 		goto out;
2676 	}
2677 	*pagep = page;
2678 
2679 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2680 							ext4_da_get_block_prep);
2681 	if (ret < 0) {
2682 		unlock_page(page);
2683 		ext4_journal_stop(handle);
2684 		page_cache_release(page);
2685 		/*
2686 		 * block_write_begin may have instantiated a few blocks
2687 		 * outside i_size.  Trim these off again. Don't need
2688 		 * i_size_read because we hold i_mutex.
2689 		 */
2690 		if (pos + len > inode->i_size)
2691 			vmtruncate(inode, inode->i_size);
2692 	}
2693 
2694 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2695 		goto retry;
2696 out:
2697 	return ret;
2698 }
2699 
2700 /*
2701  * Check if we should update i_disksize
2702  * when write to the end of file but not require block allocation
2703  */
2704 static int ext4_da_should_update_i_disksize(struct page *page,
2705 					 unsigned long offset)
2706 {
2707 	struct buffer_head *bh;
2708 	struct inode *inode = page->mapping->host;
2709 	unsigned int idx;
2710 	int i;
2711 
2712 	bh = page_buffers(page);
2713 	idx = offset >> inode->i_blkbits;
2714 
2715 	for (i = 0; i < idx; i++)
2716 		bh = bh->b_this_page;
2717 
2718 	if (!buffer_mapped(bh) || (buffer_delay(bh)))
2719 		return 0;
2720 	return 1;
2721 }
2722 
2723 static int ext4_da_write_end(struct file *file,
2724 				struct address_space *mapping,
2725 				loff_t pos, unsigned len, unsigned copied,
2726 				struct page *page, void *fsdata)
2727 {
2728 	struct inode *inode = mapping->host;
2729 	int ret = 0, ret2;
2730 	handle_t *handle = ext4_journal_current_handle();
2731 	loff_t new_i_size;
2732 	unsigned long start, end;
2733 	int write_mode = (int)(unsigned long)fsdata;
2734 
2735 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2736 		if (ext4_should_order_data(inode)) {
2737 			return ext4_ordered_write_end(file, mapping, pos,
2738 					len, copied, page, fsdata);
2739 		} else if (ext4_should_writeback_data(inode)) {
2740 			return ext4_writeback_write_end(file, mapping, pos,
2741 					len, copied, page, fsdata);
2742 		} else {
2743 			BUG();
2744 		}
2745 	}
2746 
2747 	trace_mark(ext4_da_write_end,
2748 		   "dev %s ino %lu pos %llu len %u copied %u",
2749 		   inode->i_sb->s_id, inode->i_ino,
2750 		   (unsigned long long) pos, len, copied);
2751 	start = pos & (PAGE_CACHE_SIZE - 1);
2752 	end = start + copied - 1;
2753 
2754 	/*
2755 	 * generic_write_end() will run mark_inode_dirty() if i_size
2756 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2757 	 * into that.
2758 	 */
2759 
2760 	new_i_size = pos + copied;
2761 	if (new_i_size > EXT4_I(inode)->i_disksize) {
2762 		if (ext4_da_should_update_i_disksize(page, end)) {
2763 			down_write(&EXT4_I(inode)->i_data_sem);
2764 			if (new_i_size > EXT4_I(inode)->i_disksize) {
2765 				/*
2766 				 * Updating i_disksize when extending file
2767 				 * without needing block allocation
2768 				 */
2769 				if (ext4_should_order_data(inode))
2770 					ret = ext4_jbd2_file_inode(handle,
2771 								   inode);
2772 
2773 				EXT4_I(inode)->i_disksize = new_i_size;
2774 			}
2775 			up_write(&EXT4_I(inode)->i_data_sem);
2776 			/* We need to mark inode dirty even if
2777 			 * new_i_size is less that inode->i_size
2778 			 * bu greater than i_disksize.(hint delalloc)
2779 			 */
2780 			ext4_mark_inode_dirty(handle, inode);
2781 		}
2782 	}
2783 	ret2 = generic_write_end(file, mapping, pos, len, copied,
2784 							page, fsdata);
2785 	copied = ret2;
2786 	if (ret2 < 0)
2787 		ret = ret2;
2788 	ret2 = ext4_journal_stop(handle);
2789 	if (!ret)
2790 		ret = ret2;
2791 
2792 	return ret ? ret : copied;
2793 }
2794 
2795 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2796 {
2797 	/*
2798 	 * Drop reserved blocks
2799 	 */
2800 	BUG_ON(!PageLocked(page));
2801 	if (!page_has_buffers(page))
2802 		goto out;
2803 
2804 	ext4_da_page_release_reservation(page, offset);
2805 
2806 out:
2807 	ext4_invalidatepage(page, offset);
2808 
2809 	return;
2810 }
2811 
2812 
2813 /*
2814  * bmap() is special.  It gets used by applications such as lilo and by
2815  * the swapper to find the on-disk block of a specific piece of data.
2816  *
2817  * Naturally, this is dangerous if the block concerned is still in the
2818  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2819  * filesystem and enables swap, then they may get a nasty shock when the
2820  * data getting swapped to that swapfile suddenly gets overwritten by
2821  * the original zero's written out previously to the journal and
2822  * awaiting writeback in the kernel's buffer cache.
2823  *
2824  * So, if we see any bmap calls here on a modified, data-journaled file,
2825  * take extra steps to flush any blocks which might be in the cache.
2826  */
2827 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2828 {
2829 	struct inode *inode = mapping->host;
2830 	journal_t *journal;
2831 	int err;
2832 
2833 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2834 			test_opt(inode->i_sb, DELALLOC)) {
2835 		/*
2836 		 * With delalloc we want to sync the file
2837 		 * so that we can make sure we allocate
2838 		 * blocks for file
2839 		 */
2840 		filemap_write_and_wait(mapping);
2841 	}
2842 
2843 	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2844 		/*
2845 		 * This is a REALLY heavyweight approach, but the use of
2846 		 * bmap on dirty files is expected to be extremely rare:
2847 		 * only if we run lilo or swapon on a freshly made file
2848 		 * do we expect this to happen.
2849 		 *
2850 		 * (bmap requires CAP_SYS_RAWIO so this does not
2851 		 * represent an unprivileged user DOS attack --- we'd be
2852 		 * in trouble if mortal users could trigger this path at
2853 		 * will.)
2854 		 *
2855 		 * NB. EXT4_STATE_JDATA is not set on files other than
2856 		 * regular files.  If somebody wants to bmap a directory
2857 		 * or symlink and gets confused because the buffer
2858 		 * hasn't yet been flushed to disk, they deserve
2859 		 * everything they get.
2860 		 */
2861 
2862 		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2863 		journal = EXT4_JOURNAL(inode);
2864 		jbd2_journal_lock_updates(journal);
2865 		err = jbd2_journal_flush(journal);
2866 		jbd2_journal_unlock_updates(journal);
2867 
2868 		if (err)
2869 			return 0;
2870 	}
2871 
2872 	return generic_block_bmap(mapping, block, ext4_get_block);
2873 }
2874 
2875 static int bget_one(handle_t *handle, struct buffer_head *bh)
2876 {
2877 	get_bh(bh);
2878 	return 0;
2879 }
2880 
2881 static int bput_one(handle_t *handle, struct buffer_head *bh)
2882 {
2883 	put_bh(bh);
2884 	return 0;
2885 }
2886 
2887 /*
2888  * Note that we don't need to start a transaction unless we're journaling data
2889  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2890  * need to file the inode to the transaction's list in ordered mode because if
2891  * we are writing back data added by write(), the inode is already there and if
2892  * we are writing back data modified via mmap(), noone guarantees in which
2893  * transaction the data will hit the disk. In case we are journaling data, we
2894  * cannot start transaction directly because transaction start ranks above page
2895  * lock so we have to do some magic.
2896  *
2897  * In all journaling modes block_write_full_page() will start the I/O.
2898  *
2899  * Problem:
2900  *
2901  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2902  *		ext4_writepage()
2903  *
2904  * Similar for:
2905  *
2906  *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2907  *
2908  * Same applies to ext4_get_block().  We will deadlock on various things like
2909  * lock_journal and i_data_sem
2910  *
2911  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2912  * allocations fail.
2913  *
2914  * 16May01: If we're reentered then journal_current_handle() will be
2915  *	    non-zero. We simply *return*.
2916  *
2917  * 1 July 2001: @@@ FIXME:
2918  *   In journalled data mode, a data buffer may be metadata against the
2919  *   current transaction.  But the same file is part of a shared mapping
2920  *   and someone does a writepage() on it.
2921  *
2922  *   We will move the buffer onto the async_data list, but *after* it has
2923  *   been dirtied. So there's a small window where we have dirty data on
2924  *   BJ_Metadata.
2925  *
2926  *   Note that this only applies to the last partial page in the file.  The
2927  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2928  *   broken code anyway: it's wrong for msync()).
2929  *
2930  *   It's a rare case: affects the final partial page, for journalled data
2931  *   where the file is subject to bith write() and writepage() in the same
2932  *   transction.  To fix it we'll need a custom block_write_full_page().
2933  *   We'll probably need that anyway for journalling writepage() output.
2934  *
2935  * We don't honour synchronous mounts for writepage().  That would be
2936  * disastrous.  Any write() or metadata operation will sync the fs for
2937  * us.
2938  *
2939  */
2940 static int __ext4_normal_writepage(struct page *page,
2941 				struct writeback_control *wbc)
2942 {
2943 	struct inode *inode = page->mapping->host;
2944 
2945 	if (test_opt(inode->i_sb, NOBH))
2946 		return nobh_writepage(page,
2947 					ext4_normal_get_block_write, wbc);
2948 	else
2949 		return block_write_full_page(page,
2950 						ext4_normal_get_block_write,
2951 						wbc);
2952 }
2953 
2954 static int ext4_normal_writepage(struct page *page,
2955 				struct writeback_control *wbc)
2956 {
2957 	struct inode *inode = page->mapping->host;
2958 	loff_t size = i_size_read(inode);
2959 	loff_t len;
2960 
2961 	trace_mark(ext4_normal_writepage,
2962 		   "dev %s ino %lu page_index %lu",
2963 		   inode->i_sb->s_id, inode->i_ino, page->index);
2964 	J_ASSERT(PageLocked(page));
2965 	if (page->index == size >> PAGE_CACHE_SHIFT)
2966 		len = size & ~PAGE_CACHE_MASK;
2967 	else
2968 		len = PAGE_CACHE_SIZE;
2969 
2970 	if (page_has_buffers(page)) {
2971 		/* if page has buffers it should all be mapped
2972 		 * and allocated. If there are not buffers attached
2973 		 * to the page we know the page is dirty but it lost
2974 		 * buffers. That means that at some moment in time
2975 		 * after write_begin() / write_end() has been called
2976 		 * all buffers have been clean and thus they must have been
2977 		 * written at least once. So they are all mapped and we can
2978 		 * happily proceed with mapping them and writing the page.
2979 		 */
2980 		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2981 					ext4_bh_unmapped_or_delay));
2982 	}
2983 
2984 	if (!ext4_journal_current_handle())
2985 		return __ext4_normal_writepage(page, wbc);
2986 
2987 	redirty_page_for_writepage(wbc, page);
2988 	unlock_page(page);
2989 	return 0;
2990 }
2991 
2992 static int __ext4_journalled_writepage(struct page *page,
2993 				struct writeback_control *wbc)
2994 {
2995 	struct address_space *mapping = page->mapping;
2996 	struct inode *inode = mapping->host;
2997 	struct buffer_head *page_bufs;
2998 	handle_t *handle = NULL;
2999 	int ret = 0;
3000 	int err;
3001 
3002 	ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3003 					ext4_normal_get_block_write);
3004 	if (ret != 0)
3005 		goto out_unlock;
3006 
3007 	page_bufs = page_buffers(page);
3008 	walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3009 								bget_one);
3010 	/* As soon as we unlock the page, it can go away, but we have
3011 	 * references to buffers so we are safe */
3012 	unlock_page(page);
3013 
3014 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3015 	if (IS_ERR(handle)) {
3016 		ret = PTR_ERR(handle);
3017 		goto out;
3018 	}
3019 
3020 	ret = walk_page_buffers(handle, page_bufs, 0,
3021 			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3022 
3023 	err = walk_page_buffers(handle, page_bufs, 0,
3024 				PAGE_CACHE_SIZE, NULL, write_end_fn);
3025 	if (ret == 0)
3026 		ret = err;
3027 	err = ext4_journal_stop(handle);
3028 	if (!ret)
3029 		ret = err;
3030 
3031 	walk_page_buffers(handle, page_bufs, 0,
3032 				PAGE_CACHE_SIZE, NULL, bput_one);
3033 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3034 	goto out;
3035 
3036 out_unlock:
3037 	unlock_page(page);
3038 out:
3039 	return ret;
3040 }
3041 
3042 static int ext4_journalled_writepage(struct page *page,
3043 				struct writeback_control *wbc)
3044 {
3045 	struct inode *inode = page->mapping->host;
3046 	loff_t size = i_size_read(inode);
3047 	loff_t len;
3048 
3049 	trace_mark(ext4_journalled_writepage,
3050 		   "dev %s ino %lu page_index %lu",
3051 		   inode->i_sb->s_id, inode->i_ino, page->index);
3052 	J_ASSERT(PageLocked(page));
3053 	if (page->index == size >> PAGE_CACHE_SHIFT)
3054 		len = size & ~PAGE_CACHE_MASK;
3055 	else
3056 		len = PAGE_CACHE_SIZE;
3057 
3058 	if (page_has_buffers(page)) {
3059 		/* if page has buffers it should all be mapped
3060 		 * and allocated. If there are not buffers attached
3061 		 * to the page we know the page is dirty but it lost
3062 		 * buffers. That means that at some moment in time
3063 		 * after write_begin() / write_end() has been called
3064 		 * all buffers have been clean and thus they must have been
3065 		 * written at least once. So they are all mapped and we can
3066 		 * happily proceed with mapping them and writing the page.
3067 		 */
3068 		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3069 					ext4_bh_unmapped_or_delay));
3070 	}
3071 
3072 	if (ext4_journal_current_handle())
3073 		goto no_write;
3074 
3075 	if (PageChecked(page)) {
3076 		/*
3077 		 * It's mmapped pagecache.  Add buffers and journal it.  There
3078 		 * doesn't seem much point in redirtying the page here.
3079 		 */
3080 		ClearPageChecked(page);
3081 		return __ext4_journalled_writepage(page, wbc);
3082 	} else {
3083 		/*
3084 		 * It may be a page full of checkpoint-mode buffers.  We don't
3085 		 * really know unless we go poke around in the buffer_heads.
3086 		 * But block_write_full_page will do the right thing.
3087 		 */
3088 		return block_write_full_page(page,
3089 						ext4_normal_get_block_write,
3090 						wbc);
3091 	}
3092 no_write:
3093 	redirty_page_for_writepage(wbc, page);
3094 	unlock_page(page);
3095 	return 0;
3096 }
3097 
3098 static int ext4_readpage(struct file *file, struct page *page)
3099 {
3100 	return mpage_readpage(page, ext4_get_block);
3101 }
3102 
3103 static int
3104 ext4_readpages(struct file *file, struct address_space *mapping,
3105 		struct list_head *pages, unsigned nr_pages)
3106 {
3107 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3108 }
3109 
3110 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3111 {
3112 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3113 
3114 	/*
3115 	 * If it's a full truncate we just forget about the pending dirtying
3116 	 */
3117 	if (offset == 0)
3118 		ClearPageChecked(page);
3119 
3120 	if (journal)
3121 		jbd2_journal_invalidatepage(journal, page, offset);
3122 	else
3123 		block_invalidatepage(page, offset);
3124 }
3125 
3126 static int ext4_releasepage(struct page *page, gfp_t wait)
3127 {
3128 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3129 
3130 	WARN_ON(PageChecked(page));
3131 	if (!page_has_buffers(page))
3132 		return 0;
3133 	if (journal)
3134 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3135 	else
3136 		return try_to_free_buffers(page);
3137 }
3138 
3139 /*
3140  * If the O_DIRECT write will extend the file then add this inode to the
3141  * orphan list.  So recovery will truncate it back to the original size
3142  * if the machine crashes during the write.
3143  *
3144  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3145  * crashes then stale disk data _may_ be exposed inside the file. But current
3146  * VFS code falls back into buffered path in that case so we are safe.
3147  */
3148 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3149 			const struct iovec *iov, loff_t offset,
3150 			unsigned long nr_segs)
3151 {
3152 	struct file *file = iocb->ki_filp;
3153 	struct inode *inode = file->f_mapping->host;
3154 	struct ext4_inode_info *ei = EXT4_I(inode);
3155 	handle_t *handle;
3156 	ssize_t ret;
3157 	int orphan = 0;
3158 	size_t count = iov_length(iov, nr_segs);
3159 
3160 	if (rw == WRITE) {
3161 		loff_t final_size = offset + count;
3162 
3163 		if (final_size > inode->i_size) {
3164 			/* Credits for sb + inode write */
3165 			handle = ext4_journal_start(inode, 2);
3166 			if (IS_ERR(handle)) {
3167 				ret = PTR_ERR(handle);
3168 				goto out;
3169 			}
3170 			ret = ext4_orphan_add(handle, inode);
3171 			if (ret) {
3172 				ext4_journal_stop(handle);
3173 				goto out;
3174 			}
3175 			orphan = 1;
3176 			ei->i_disksize = inode->i_size;
3177 			ext4_journal_stop(handle);
3178 		}
3179 	}
3180 
3181 	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3182 				 offset, nr_segs,
3183 				 ext4_get_block, NULL);
3184 
3185 	if (orphan) {
3186 		int err;
3187 
3188 		/* Credits for sb + inode write */
3189 		handle = ext4_journal_start(inode, 2);
3190 		if (IS_ERR(handle)) {
3191 			/* This is really bad luck. We've written the data
3192 			 * but cannot extend i_size. Bail out and pretend
3193 			 * the write failed... */
3194 			ret = PTR_ERR(handle);
3195 			goto out;
3196 		}
3197 		if (inode->i_nlink)
3198 			ext4_orphan_del(handle, inode);
3199 		if (ret > 0) {
3200 			loff_t end = offset + ret;
3201 			if (end > inode->i_size) {
3202 				ei->i_disksize = end;
3203 				i_size_write(inode, end);
3204 				/*
3205 				 * We're going to return a positive `ret'
3206 				 * here due to non-zero-length I/O, so there's
3207 				 * no way of reporting error returns from
3208 				 * ext4_mark_inode_dirty() to userspace.  So
3209 				 * ignore it.
3210 				 */
3211 				ext4_mark_inode_dirty(handle, inode);
3212 			}
3213 		}
3214 		err = ext4_journal_stop(handle);
3215 		if (ret == 0)
3216 			ret = err;
3217 	}
3218 out:
3219 	return ret;
3220 }
3221 
3222 /*
3223  * Pages can be marked dirty completely asynchronously from ext4's journalling
3224  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3225  * much here because ->set_page_dirty is called under VFS locks.  The page is
3226  * not necessarily locked.
3227  *
3228  * We cannot just dirty the page and leave attached buffers clean, because the
3229  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3230  * or jbddirty because all the journalling code will explode.
3231  *
3232  * So what we do is to mark the page "pending dirty" and next time writepage
3233  * is called, propagate that into the buffers appropriately.
3234  */
3235 static int ext4_journalled_set_page_dirty(struct page *page)
3236 {
3237 	SetPageChecked(page);
3238 	return __set_page_dirty_nobuffers(page);
3239 }
3240 
3241 static const struct address_space_operations ext4_ordered_aops = {
3242 	.readpage		= ext4_readpage,
3243 	.readpages		= ext4_readpages,
3244 	.writepage		= ext4_normal_writepage,
3245 	.sync_page		= block_sync_page,
3246 	.write_begin		= ext4_write_begin,
3247 	.write_end		= ext4_ordered_write_end,
3248 	.bmap			= ext4_bmap,
3249 	.invalidatepage		= ext4_invalidatepage,
3250 	.releasepage		= ext4_releasepage,
3251 	.direct_IO		= ext4_direct_IO,
3252 	.migratepage		= buffer_migrate_page,
3253 	.is_partially_uptodate  = block_is_partially_uptodate,
3254 };
3255 
3256 static const struct address_space_operations ext4_writeback_aops = {
3257 	.readpage		= ext4_readpage,
3258 	.readpages		= ext4_readpages,
3259 	.writepage		= ext4_normal_writepage,
3260 	.sync_page		= block_sync_page,
3261 	.write_begin		= ext4_write_begin,
3262 	.write_end		= ext4_writeback_write_end,
3263 	.bmap			= ext4_bmap,
3264 	.invalidatepage		= ext4_invalidatepage,
3265 	.releasepage		= ext4_releasepage,
3266 	.direct_IO		= ext4_direct_IO,
3267 	.migratepage		= buffer_migrate_page,
3268 	.is_partially_uptodate  = block_is_partially_uptodate,
3269 };
3270 
3271 static const struct address_space_operations ext4_journalled_aops = {
3272 	.readpage		= ext4_readpage,
3273 	.readpages		= ext4_readpages,
3274 	.writepage		= ext4_journalled_writepage,
3275 	.sync_page		= block_sync_page,
3276 	.write_begin		= ext4_write_begin,
3277 	.write_end		= ext4_journalled_write_end,
3278 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3279 	.bmap			= ext4_bmap,
3280 	.invalidatepage		= ext4_invalidatepage,
3281 	.releasepage		= ext4_releasepage,
3282 	.is_partially_uptodate  = block_is_partially_uptodate,
3283 };
3284 
3285 static const struct address_space_operations ext4_da_aops = {
3286 	.readpage		= ext4_readpage,
3287 	.readpages		= ext4_readpages,
3288 	.writepage		= ext4_da_writepage,
3289 	.writepages		= ext4_da_writepages,
3290 	.sync_page		= block_sync_page,
3291 	.write_begin		= ext4_da_write_begin,
3292 	.write_end		= ext4_da_write_end,
3293 	.bmap			= ext4_bmap,
3294 	.invalidatepage		= ext4_da_invalidatepage,
3295 	.releasepage		= ext4_releasepage,
3296 	.direct_IO		= ext4_direct_IO,
3297 	.migratepage		= buffer_migrate_page,
3298 	.is_partially_uptodate  = block_is_partially_uptodate,
3299 };
3300 
3301 void ext4_set_aops(struct inode *inode)
3302 {
3303 	if (ext4_should_order_data(inode) &&
3304 		test_opt(inode->i_sb, DELALLOC))
3305 		inode->i_mapping->a_ops = &ext4_da_aops;
3306 	else if (ext4_should_order_data(inode))
3307 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3308 	else if (ext4_should_writeback_data(inode) &&
3309 		 test_opt(inode->i_sb, DELALLOC))
3310 		inode->i_mapping->a_ops = &ext4_da_aops;
3311 	else if (ext4_should_writeback_data(inode))
3312 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3313 	else
3314 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3315 }
3316 
3317 /*
3318  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3319  * up to the end of the block which corresponds to `from'.
3320  * This required during truncate. We need to physically zero the tail end
3321  * of that block so it doesn't yield old data if the file is later grown.
3322  */
3323 int ext4_block_truncate_page(handle_t *handle,
3324 		struct address_space *mapping, loff_t from)
3325 {
3326 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3327 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3328 	unsigned blocksize, length, pos;
3329 	ext4_lblk_t iblock;
3330 	struct inode *inode = mapping->host;
3331 	struct buffer_head *bh;
3332 	struct page *page;
3333 	int err = 0;
3334 
3335 	page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3336 	if (!page)
3337 		return -EINVAL;
3338 
3339 	blocksize = inode->i_sb->s_blocksize;
3340 	length = blocksize - (offset & (blocksize - 1));
3341 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3342 
3343 	/*
3344 	 * For "nobh" option,  we can only work if we don't need to
3345 	 * read-in the page - otherwise we create buffers to do the IO.
3346 	 */
3347 	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3348 	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3349 		zero_user(page, offset, length);
3350 		set_page_dirty(page);
3351 		goto unlock;
3352 	}
3353 
3354 	if (!page_has_buffers(page))
3355 		create_empty_buffers(page, blocksize, 0);
3356 
3357 	/* Find the buffer that contains "offset" */
3358 	bh = page_buffers(page);
3359 	pos = blocksize;
3360 	while (offset >= pos) {
3361 		bh = bh->b_this_page;
3362 		iblock++;
3363 		pos += blocksize;
3364 	}
3365 
3366 	err = 0;
3367 	if (buffer_freed(bh)) {
3368 		BUFFER_TRACE(bh, "freed: skip");
3369 		goto unlock;
3370 	}
3371 
3372 	if (!buffer_mapped(bh)) {
3373 		BUFFER_TRACE(bh, "unmapped");
3374 		ext4_get_block(inode, iblock, bh, 0);
3375 		/* unmapped? It's a hole - nothing to do */
3376 		if (!buffer_mapped(bh)) {
3377 			BUFFER_TRACE(bh, "still unmapped");
3378 			goto unlock;
3379 		}
3380 	}
3381 
3382 	/* Ok, it's mapped. Make sure it's up-to-date */
3383 	if (PageUptodate(page))
3384 		set_buffer_uptodate(bh);
3385 
3386 	if (!buffer_uptodate(bh)) {
3387 		err = -EIO;
3388 		ll_rw_block(READ, 1, &bh);
3389 		wait_on_buffer(bh);
3390 		/* Uhhuh. Read error. Complain and punt. */
3391 		if (!buffer_uptodate(bh))
3392 			goto unlock;
3393 	}
3394 
3395 	if (ext4_should_journal_data(inode)) {
3396 		BUFFER_TRACE(bh, "get write access");
3397 		err = ext4_journal_get_write_access(handle, bh);
3398 		if (err)
3399 			goto unlock;
3400 	}
3401 
3402 	zero_user(page, offset, length);
3403 
3404 	BUFFER_TRACE(bh, "zeroed end of block");
3405 
3406 	err = 0;
3407 	if (ext4_should_journal_data(inode)) {
3408 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3409 	} else {
3410 		if (ext4_should_order_data(inode))
3411 			err = ext4_jbd2_file_inode(handle, inode);
3412 		mark_buffer_dirty(bh);
3413 	}
3414 
3415 unlock:
3416 	unlock_page(page);
3417 	page_cache_release(page);
3418 	return err;
3419 }
3420 
3421 /*
3422  * Probably it should be a library function... search for first non-zero word
3423  * or memcmp with zero_page, whatever is better for particular architecture.
3424  * Linus?
3425  */
3426 static inline int all_zeroes(__le32 *p, __le32 *q)
3427 {
3428 	while (p < q)
3429 		if (*p++)
3430 			return 0;
3431 	return 1;
3432 }
3433 
3434 /**
3435  *	ext4_find_shared - find the indirect blocks for partial truncation.
3436  *	@inode:	  inode in question
3437  *	@depth:	  depth of the affected branch
3438  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3439  *	@chain:	  place to store the pointers to partial indirect blocks
3440  *	@top:	  place to the (detached) top of branch
3441  *
3442  *	This is a helper function used by ext4_truncate().
3443  *
3444  *	When we do truncate() we may have to clean the ends of several
3445  *	indirect blocks but leave the blocks themselves alive. Block is
3446  *	partially truncated if some data below the new i_size is refered
3447  *	from it (and it is on the path to the first completely truncated
3448  *	data block, indeed).  We have to free the top of that path along
3449  *	with everything to the right of the path. Since no allocation
3450  *	past the truncation point is possible until ext4_truncate()
3451  *	finishes, we may safely do the latter, but top of branch may
3452  *	require special attention - pageout below the truncation point
3453  *	might try to populate it.
3454  *
3455  *	We atomically detach the top of branch from the tree, store the
3456  *	block number of its root in *@top, pointers to buffer_heads of
3457  *	partially truncated blocks - in @chain[].bh and pointers to
3458  *	their last elements that should not be removed - in
3459  *	@chain[].p. Return value is the pointer to last filled element
3460  *	of @chain.
3461  *
3462  *	The work left to caller to do the actual freeing of subtrees:
3463  *		a) free the subtree starting from *@top
3464  *		b) free the subtrees whose roots are stored in
3465  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
3466  *		c) free the subtrees growing from the inode past the @chain[0].
3467  *			(no partially truncated stuff there).  */
3468 
3469 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3470 			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3471 {
3472 	Indirect *partial, *p;
3473 	int k, err;
3474 
3475 	*top = 0;
3476 	/* Make k index the deepest non-null offest + 1 */
3477 	for (k = depth; k > 1 && !offsets[k-1]; k--)
3478 		;
3479 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3480 	/* Writer: pointers */
3481 	if (!partial)
3482 		partial = chain + k-1;
3483 	/*
3484 	 * If the branch acquired continuation since we've looked at it -
3485 	 * fine, it should all survive and (new) top doesn't belong to us.
3486 	 */
3487 	if (!partial->key && *partial->p)
3488 		/* Writer: end */
3489 		goto no_top;
3490 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3491 		;
3492 	/*
3493 	 * OK, we've found the last block that must survive. The rest of our
3494 	 * branch should be detached before unlocking. However, if that rest
3495 	 * of branch is all ours and does not grow immediately from the inode
3496 	 * it's easier to cheat and just decrement partial->p.
3497 	 */
3498 	if (p == chain + k - 1 && p > chain) {
3499 		p->p--;
3500 	} else {
3501 		*top = *p->p;
3502 		/* Nope, don't do this in ext4.  Must leave the tree intact */
3503 #if 0
3504 		*p->p = 0;
3505 #endif
3506 	}
3507 	/* Writer: end */
3508 
3509 	while (partial > p) {
3510 		brelse(partial->bh);
3511 		partial--;
3512 	}
3513 no_top:
3514 	return partial;
3515 }
3516 
3517 /*
3518  * Zero a number of block pointers in either an inode or an indirect block.
3519  * If we restart the transaction we must again get write access to the
3520  * indirect block for further modification.
3521  *
3522  * We release `count' blocks on disk, but (last - first) may be greater
3523  * than `count' because there can be holes in there.
3524  */
3525 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3526 		struct buffer_head *bh, ext4_fsblk_t block_to_free,
3527 		unsigned long count, __le32 *first, __le32 *last)
3528 {
3529 	__le32 *p;
3530 	if (try_to_extend_transaction(handle, inode)) {
3531 		if (bh) {
3532 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3533 			ext4_handle_dirty_metadata(handle, inode, bh);
3534 		}
3535 		ext4_mark_inode_dirty(handle, inode);
3536 		ext4_journal_test_restart(handle, inode);
3537 		if (bh) {
3538 			BUFFER_TRACE(bh, "retaking write access");
3539 			ext4_journal_get_write_access(handle, bh);
3540 		}
3541 	}
3542 
3543 	/*
3544 	 * Any buffers which are on the journal will be in memory. We find
3545 	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3546 	 * on them.  We've already detached each block from the file, so
3547 	 * bforget() in jbd2_journal_forget() should be safe.
3548 	 *
3549 	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3550 	 */
3551 	for (p = first; p < last; p++) {
3552 		u32 nr = le32_to_cpu(*p);
3553 		if (nr) {
3554 			struct buffer_head *tbh;
3555 
3556 			*p = 0;
3557 			tbh = sb_find_get_block(inode->i_sb, nr);
3558 			ext4_forget(handle, 0, inode, tbh, nr);
3559 		}
3560 	}
3561 
3562 	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3563 }
3564 
3565 /**
3566  * ext4_free_data - free a list of data blocks
3567  * @handle:	handle for this transaction
3568  * @inode:	inode we are dealing with
3569  * @this_bh:	indirect buffer_head which contains *@first and *@last
3570  * @first:	array of block numbers
3571  * @last:	points immediately past the end of array
3572  *
3573  * We are freeing all blocks refered from that array (numbers are stored as
3574  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3575  *
3576  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3577  * blocks are contiguous then releasing them at one time will only affect one
3578  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3579  * actually use a lot of journal space.
3580  *
3581  * @this_bh will be %NULL if @first and @last point into the inode's direct
3582  * block pointers.
3583  */
3584 static void ext4_free_data(handle_t *handle, struct inode *inode,
3585 			   struct buffer_head *this_bh,
3586 			   __le32 *first, __le32 *last)
3587 {
3588 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3589 	unsigned long count = 0;	    /* Number of blocks in the run */
3590 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
3591 					       corresponding to
3592 					       block_to_free */
3593 	ext4_fsblk_t nr;		    /* Current block # */
3594 	__le32 *p;			    /* Pointer into inode/ind
3595 					       for current block */
3596 	int err;
3597 
3598 	if (this_bh) {				/* For indirect block */
3599 		BUFFER_TRACE(this_bh, "get_write_access");
3600 		err = ext4_journal_get_write_access(handle, this_bh);
3601 		/* Important: if we can't update the indirect pointers
3602 		 * to the blocks, we can't free them. */
3603 		if (err)
3604 			return;
3605 	}
3606 
3607 	for (p = first; p < last; p++) {
3608 		nr = le32_to_cpu(*p);
3609 		if (nr) {
3610 			/* accumulate blocks to free if they're contiguous */
3611 			if (count == 0) {
3612 				block_to_free = nr;
3613 				block_to_free_p = p;
3614 				count = 1;
3615 			} else if (nr == block_to_free + count) {
3616 				count++;
3617 			} else {
3618 				ext4_clear_blocks(handle, inode, this_bh,
3619 						  block_to_free,
3620 						  count, block_to_free_p, p);
3621 				block_to_free = nr;
3622 				block_to_free_p = p;
3623 				count = 1;
3624 			}
3625 		}
3626 	}
3627 
3628 	if (count > 0)
3629 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3630 				  count, block_to_free_p, p);
3631 
3632 	if (this_bh) {
3633 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3634 
3635 		/*
3636 		 * The buffer head should have an attached journal head at this
3637 		 * point. However, if the data is corrupted and an indirect
3638 		 * block pointed to itself, it would have been detached when
3639 		 * the block was cleared. Check for this instead of OOPSing.
3640 		 */
3641 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3642 			ext4_handle_dirty_metadata(handle, inode, this_bh);
3643 		else
3644 			ext4_error(inode->i_sb, __func__,
3645 				   "circular indirect block detected, "
3646 				   "inode=%lu, block=%llu",
3647 				   inode->i_ino,
3648 				   (unsigned long long) this_bh->b_blocknr);
3649 	}
3650 }
3651 
3652 /**
3653  *	ext4_free_branches - free an array of branches
3654  *	@handle: JBD handle for this transaction
3655  *	@inode:	inode we are dealing with
3656  *	@parent_bh: the buffer_head which contains *@first and *@last
3657  *	@first:	array of block numbers
3658  *	@last:	pointer immediately past the end of array
3659  *	@depth:	depth of the branches to free
3660  *
3661  *	We are freeing all blocks refered from these branches (numbers are
3662  *	stored as little-endian 32-bit) and updating @inode->i_blocks
3663  *	appropriately.
3664  */
3665 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3666 			       struct buffer_head *parent_bh,
3667 			       __le32 *first, __le32 *last, int depth)
3668 {
3669 	ext4_fsblk_t nr;
3670 	__le32 *p;
3671 
3672 	if (ext4_handle_is_aborted(handle))
3673 		return;
3674 
3675 	if (depth--) {
3676 		struct buffer_head *bh;
3677 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3678 		p = last;
3679 		while (--p >= first) {
3680 			nr = le32_to_cpu(*p);
3681 			if (!nr)
3682 				continue;		/* A hole */
3683 
3684 			/* Go read the buffer for the next level down */
3685 			bh = sb_bread(inode->i_sb, nr);
3686 
3687 			/*
3688 			 * A read failure? Report error and clear slot
3689 			 * (should be rare).
3690 			 */
3691 			if (!bh) {
3692 				ext4_error(inode->i_sb, "ext4_free_branches",
3693 					   "Read failure, inode=%lu, block=%llu",
3694 					   inode->i_ino, nr);
3695 				continue;
3696 			}
3697 
3698 			/* This zaps the entire block.  Bottom up. */
3699 			BUFFER_TRACE(bh, "free child branches");
3700 			ext4_free_branches(handle, inode, bh,
3701 					(__le32 *) bh->b_data,
3702 					(__le32 *) bh->b_data + addr_per_block,
3703 					depth);
3704 
3705 			/*
3706 			 * We've probably journalled the indirect block several
3707 			 * times during the truncate.  But it's no longer
3708 			 * needed and we now drop it from the transaction via
3709 			 * jbd2_journal_revoke().
3710 			 *
3711 			 * That's easy if it's exclusively part of this
3712 			 * transaction.  But if it's part of the committing
3713 			 * transaction then jbd2_journal_forget() will simply
3714 			 * brelse() it.  That means that if the underlying
3715 			 * block is reallocated in ext4_get_block(),
3716 			 * unmap_underlying_metadata() will find this block
3717 			 * and will try to get rid of it.  damn, damn.
3718 			 *
3719 			 * If this block has already been committed to the
3720 			 * journal, a revoke record will be written.  And
3721 			 * revoke records must be emitted *before* clearing
3722 			 * this block's bit in the bitmaps.
3723 			 */
3724 			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3725 
3726 			/*
3727 			 * Everything below this this pointer has been
3728 			 * released.  Now let this top-of-subtree go.
3729 			 *
3730 			 * We want the freeing of this indirect block to be
3731 			 * atomic in the journal with the updating of the
3732 			 * bitmap block which owns it.  So make some room in
3733 			 * the journal.
3734 			 *
3735 			 * We zero the parent pointer *after* freeing its
3736 			 * pointee in the bitmaps, so if extend_transaction()
3737 			 * for some reason fails to put the bitmap changes and
3738 			 * the release into the same transaction, recovery
3739 			 * will merely complain about releasing a free block,
3740 			 * rather than leaking blocks.
3741 			 */
3742 			if (ext4_handle_is_aborted(handle))
3743 				return;
3744 			if (try_to_extend_transaction(handle, inode)) {
3745 				ext4_mark_inode_dirty(handle, inode);
3746 				ext4_journal_test_restart(handle, inode);
3747 			}
3748 
3749 			ext4_free_blocks(handle, inode, nr, 1, 1);
3750 
3751 			if (parent_bh) {
3752 				/*
3753 				 * The block which we have just freed is
3754 				 * pointed to by an indirect block: journal it
3755 				 */
3756 				BUFFER_TRACE(parent_bh, "get_write_access");
3757 				if (!ext4_journal_get_write_access(handle,
3758 								   parent_bh)){
3759 					*p = 0;
3760 					BUFFER_TRACE(parent_bh,
3761 					"call ext4_handle_dirty_metadata");
3762 					ext4_handle_dirty_metadata(handle,
3763 								   inode,
3764 								   parent_bh);
3765 				}
3766 			}
3767 		}
3768 	} else {
3769 		/* We have reached the bottom of the tree. */
3770 		BUFFER_TRACE(parent_bh, "free data blocks");
3771 		ext4_free_data(handle, inode, parent_bh, first, last);
3772 	}
3773 }
3774 
3775 int ext4_can_truncate(struct inode *inode)
3776 {
3777 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3778 		return 0;
3779 	if (S_ISREG(inode->i_mode))
3780 		return 1;
3781 	if (S_ISDIR(inode->i_mode))
3782 		return 1;
3783 	if (S_ISLNK(inode->i_mode))
3784 		return !ext4_inode_is_fast_symlink(inode);
3785 	return 0;
3786 }
3787 
3788 /*
3789  * ext4_truncate()
3790  *
3791  * We block out ext4_get_block() block instantiations across the entire
3792  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3793  * simultaneously on behalf of the same inode.
3794  *
3795  * As we work through the truncate and commmit bits of it to the journal there
3796  * is one core, guiding principle: the file's tree must always be consistent on
3797  * disk.  We must be able to restart the truncate after a crash.
3798  *
3799  * The file's tree may be transiently inconsistent in memory (although it
3800  * probably isn't), but whenever we close off and commit a journal transaction,
3801  * the contents of (the filesystem + the journal) must be consistent and
3802  * restartable.  It's pretty simple, really: bottom up, right to left (although
3803  * left-to-right works OK too).
3804  *
3805  * Note that at recovery time, journal replay occurs *before* the restart of
3806  * truncate against the orphan inode list.
3807  *
3808  * The committed inode has the new, desired i_size (which is the same as
3809  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3810  * that this inode's truncate did not complete and it will again call
3811  * ext4_truncate() to have another go.  So there will be instantiated blocks
3812  * to the right of the truncation point in a crashed ext4 filesystem.  But
3813  * that's fine - as long as they are linked from the inode, the post-crash
3814  * ext4_truncate() run will find them and release them.
3815  */
3816 void ext4_truncate(struct inode *inode)
3817 {
3818 	handle_t *handle;
3819 	struct ext4_inode_info *ei = EXT4_I(inode);
3820 	__le32 *i_data = ei->i_data;
3821 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3822 	struct address_space *mapping = inode->i_mapping;
3823 	ext4_lblk_t offsets[4];
3824 	Indirect chain[4];
3825 	Indirect *partial;
3826 	__le32 nr = 0;
3827 	int n;
3828 	ext4_lblk_t last_block;
3829 	unsigned blocksize = inode->i_sb->s_blocksize;
3830 
3831 	if (!ext4_can_truncate(inode))
3832 		return;
3833 
3834 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3835 		ext4_ext_truncate(inode);
3836 		return;
3837 	}
3838 
3839 	handle = start_transaction(inode);
3840 	if (IS_ERR(handle))
3841 		return;		/* AKPM: return what? */
3842 
3843 	last_block = (inode->i_size + blocksize-1)
3844 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3845 
3846 	if (inode->i_size & (blocksize - 1))
3847 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3848 			goto out_stop;
3849 
3850 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
3851 	if (n == 0)
3852 		goto out_stop;	/* error */
3853 
3854 	/*
3855 	 * OK.  This truncate is going to happen.  We add the inode to the
3856 	 * orphan list, so that if this truncate spans multiple transactions,
3857 	 * and we crash, we will resume the truncate when the filesystem
3858 	 * recovers.  It also marks the inode dirty, to catch the new size.
3859 	 *
3860 	 * Implication: the file must always be in a sane, consistent
3861 	 * truncatable state while each transaction commits.
3862 	 */
3863 	if (ext4_orphan_add(handle, inode))
3864 		goto out_stop;
3865 
3866 	/*
3867 	 * From here we block out all ext4_get_block() callers who want to
3868 	 * modify the block allocation tree.
3869 	 */
3870 	down_write(&ei->i_data_sem);
3871 
3872 	ext4_discard_preallocations(inode);
3873 
3874 	/*
3875 	 * The orphan list entry will now protect us from any crash which
3876 	 * occurs before the truncate completes, so it is now safe to propagate
3877 	 * the new, shorter inode size (held for now in i_size) into the
3878 	 * on-disk inode. We do this via i_disksize, which is the value which
3879 	 * ext4 *really* writes onto the disk inode.
3880 	 */
3881 	ei->i_disksize = inode->i_size;
3882 
3883 	if (n == 1) {		/* direct blocks */
3884 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3885 			       i_data + EXT4_NDIR_BLOCKS);
3886 		goto do_indirects;
3887 	}
3888 
3889 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3890 	/* Kill the top of shared branch (not detached) */
3891 	if (nr) {
3892 		if (partial == chain) {
3893 			/* Shared branch grows from the inode */
3894 			ext4_free_branches(handle, inode, NULL,
3895 					   &nr, &nr+1, (chain+n-1) - partial);
3896 			*partial->p = 0;
3897 			/*
3898 			 * We mark the inode dirty prior to restart,
3899 			 * and prior to stop.  No need for it here.
3900 			 */
3901 		} else {
3902 			/* Shared branch grows from an indirect block */
3903 			BUFFER_TRACE(partial->bh, "get_write_access");
3904 			ext4_free_branches(handle, inode, partial->bh,
3905 					partial->p,
3906 					partial->p+1, (chain+n-1) - partial);
3907 		}
3908 	}
3909 	/* Clear the ends of indirect blocks on the shared branch */
3910 	while (partial > chain) {
3911 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3912 				   (__le32*)partial->bh->b_data+addr_per_block,
3913 				   (chain+n-1) - partial);
3914 		BUFFER_TRACE(partial->bh, "call brelse");
3915 		brelse (partial->bh);
3916 		partial--;
3917 	}
3918 do_indirects:
3919 	/* Kill the remaining (whole) subtrees */
3920 	switch (offsets[0]) {
3921 	default:
3922 		nr = i_data[EXT4_IND_BLOCK];
3923 		if (nr) {
3924 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3925 			i_data[EXT4_IND_BLOCK] = 0;
3926 		}
3927 	case EXT4_IND_BLOCK:
3928 		nr = i_data[EXT4_DIND_BLOCK];
3929 		if (nr) {
3930 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3931 			i_data[EXT4_DIND_BLOCK] = 0;
3932 		}
3933 	case EXT4_DIND_BLOCK:
3934 		nr = i_data[EXT4_TIND_BLOCK];
3935 		if (nr) {
3936 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3937 			i_data[EXT4_TIND_BLOCK] = 0;
3938 		}
3939 	case EXT4_TIND_BLOCK:
3940 		;
3941 	}
3942 
3943 	up_write(&ei->i_data_sem);
3944 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3945 	ext4_mark_inode_dirty(handle, inode);
3946 
3947 	/*
3948 	 * In a multi-transaction truncate, we only make the final transaction
3949 	 * synchronous
3950 	 */
3951 	if (IS_SYNC(inode))
3952 		ext4_handle_sync(handle);
3953 out_stop:
3954 	/*
3955 	 * If this was a simple ftruncate(), and the file will remain alive
3956 	 * then we need to clear up the orphan record which we created above.
3957 	 * However, if this was a real unlink then we were called by
3958 	 * ext4_delete_inode(), and we allow that function to clean up the
3959 	 * orphan info for us.
3960 	 */
3961 	if (inode->i_nlink)
3962 		ext4_orphan_del(handle, inode);
3963 
3964 	ext4_journal_stop(handle);
3965 }
3966 
3967 /*
3968  * ext4_get_inode_loc returns with an extra refcount against the inode's
3969  * underlying buffer_head on success. If 'in_mem' is true, we have all
3970  * data in memory that is needed to recreate the on-disk version of this
3971  * inode.
3972  */
3973 static int __ext4_get_inode_loc(struct inode *inode,
3974 				struct ext4_iloc *iloc, int in_mem)
3975 {
3976 	struct ext4_group_desc	*gdp;
3977 	struct buffer_head	*bh;
3978 	struct super_block	*sb = inode->i_sb;
3979 	ext4_fsblk_t		block;
3980 	int			inodes_per_block, inode_offset;
3981 
3982 	iloc->bh = NULL;
3983 	if (!ext4_valid_inum(sb, inode->i_ino))
3984 		return -EIO;
3985 
3986 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3987 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3988 	if (!gdp)
3989 		return -EIO;
3990 
3991 	/*
3992 	 * Figure out the offset within the block group inode table
3993 	 */
3994 	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
3995 	inode_offset = ((inode->i_ino - 1) %
3996 			EXT4_INODES_PER_GROUP(sb));
3997 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3998 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3999 
4000 	bh = sb_getblk(sb, block);
4001 	if (!bh) {
4002 		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4003 			   "inode block - inode=%lu, block=%llu",
4004 			   inode->i_ino, block);
4005 		return -EIO;
4006 	}
4007 	if (!buffer_uptodate(bh)) {
4008 		lock_buffer(bh);
4009 
4010 		/*
4011 		 * If the buffer has the write error flag, we have failed
4012 		 * to write out another inode in the same block.  In this
4013 		 * case, we don't have to read the block because we may
4014 		 * read the old inode data successfully.
4015 		 */
4016 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4017 			set_buffer_uptodate(bh);
4018 
4019 		if (buffer_uptodate(bh)) {
4020 			/* someone brought it uptodate while we waited */
4021 			unlock_buffer(bh);
4022 			goto has_buffer;
4023 		}
4024 
4025 		/*
4026 		 * If we have all information of the inode in memory and this
4027 		 * is the only valid inode in the block, we need not read the
4028 		 * block.
4029 		 */
4030 		if (in_mem) {
4031 			struct buffer_head *bitmap_bh;
4032 			int i, start;
4033 
4034 			start = inode_offset & ~(inodes_per_block - 1);
4035 
4036 			/* Is the inode bitmap in cache? */
4037 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4038 			if (!bitmap_bh)
4039 				goto make_io;
4040 
4041 			/*
4042 			 * If the inode bitmap isn't in cache then the
4043 			 * optimisation may end up performing two reads instead
4044 			 * of one, so skip it.
4045 			 */
4046 			if (!buffer_uptodate(bitmap_bh)) {
4047 				brelse(bitmap_bh);
4048 				goto make_io;
4049 			}
4050 			for (i = start; i < start + inodes_per_block; i++) {
4051 				if (i == inode_offset)
4052 					continue;
4053 				if (ext4_test_bit(i, bitmap_bh->b_data))
4054 					break;
4055 			}
4056 			brelse(bitmap_bh);
4057 			if (i == start + inodes_per_block) {
4058 				/* all other inodes are free, so skip I/O */
4059 				memset(bh->b_data, 0, bh->b_size);
4060 				set_buffer_uptodate(bh);
4061 				unlock_buffer(bh);
4062 				goto has_buffer;
4063 			}
4064 		}
4065 
4066 make_io:
4067 		/*
4068 		 * If we need to do any I/O, try to pre-readahead extra
4069 		 * blocks from the inode table.
4070 		 */
4071 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4072 			ext4_fsblk_t b, end, table;
4073 			unsigned num;
4074 
4075 			table = ext4_inode_table(sb, gdp);
4076 			/* Make sure s_inode_readahead_blks is a power of 2 */
4077 			while (EXT4_SB(sb)->s_inode_readahead_blks &
4078 			       (EXT4_SB(sb)->s_inode_readahead_blks-1))
4079 				EXT4_SB(sb)->s_inode_readahead_blks =
4080 				   (EXT4_SB(sb)->s_inode_readahead_blks &
4081 				    (EXT4_SB(sb)->s_inode_readahead_blks-1));
4082 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4083 			if (table > b)
4084 				b = table;
4085 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4086 			num = EXT4_INODES_PER_GROUP(sb);
4087 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4088 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4089 				num -= ext4_itable_unused_count(sb, gdp);
4090 			table += num / inodes_per_block;
4091 			if (end > table)
4092 				end = table;
4093 			while (b <= end)
4094 				sb_breadahead(sb, b++);
4095 		}
4096 
4097 		/*
4098 		 * There are other valid inodes in the buffer, this inode
4099 		 * has in-inode xattrs, or we don't have this inode in memory.
4100 		 * Read the block from disk.
4101 		 */
4102 		get_bh(bh);
4103 		bh->b_end_io = end_buffer_read_sync;
4104 		submit_bh(READ_META, bh);
4105 		wait_on_buffer(bh);
4106 		if (!buffer_uptodate(bh)) {
4107 			ext4_error(sb, __func__,
4108 				   "unable to read inode block - inode=%lu, "
4109 				   "block=%llu", inode->i_ino, block);
4110 			brelse(bh);
4111 			return -EIO;
4112 		}
4113 	}
4114 has_buffer:
4115 	iloc->bh = bh;
4116 	return 0;
4117 }
4118 
4119 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4120 {
4121 	/* We have all inode data except xattrs in memory here. */
4122 	return __ext4_get_inode_loc(inode, iloc,
4123 		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4124 }
4125 
4126 void ext4_set_inode_flags(struct inode *inode)
4127 {
4128 	unsigned int flags = EXT4_I(inode)->i_flags;
4129 
4130 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4131 	if (flags & EXT4_SYNC_FL)
4132 		inode->i_flags |= S_SYNC;
4133 	if (flags & EXT4_APPEND_FL)
4134 		inode->i_flags |= S_APPEND;
4135 	if (flags & EXT4_IMMUTABLE_FL)
4136 		inode->i_flags |= S_IMMUTABLE;
4137 	if (flags & EXT4_NOATIME_FL)
4138 		inode->i_flags |= S_NOATIME;
4139 	if (flags & EXT4_DIRSYNC_FL)
4140 		inode->i_flags |= S_DIRSYNC;
4141 }
4142 
4143 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4144 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4145 {
4146 	unsigned int flags = ei->vfs_inode.i_flags;
4147 
4148 	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4149 			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4150 	if (flags & S_SYNC)
4151 		ei->i_flags |= EXT4_SYNC_FL;
4152 	if (flags & S_APPEND)
4153 		ei->i_flags |= EXT4_APPEND_FL;
4154 	if (flags & S_IMMUTABLE)
4155 		ei->i_flags |= EXT4_IMMUTABLE_FL;
4156 	if (flags & S_NOATIME)
4157 		ei->i_flags |= EXT4_NOATIME_FL;
4158 	if (flags & S_DIRSYNC)
4159 		ei->i_flags |= EXT4_DIRSYNC_FL;
4160 }
4161 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4162 					struct ext4_inode_info *ei)
4163 {
4164 	blkcnt_t i_blocks ;
4165 	struct inode *inode = &(ei->vfs_inode);
4166 	struct super_block *sb = inode->i_sb;
4167 
4168 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4169 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4170 		/* we are using combined 48 bit field */
4171 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4172 					le32_to_cpu(raw_inode->i_blocks_lo);
4173 		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4174 			/* i_blocks represent file system block size */
4175 			return i_blocks  << (inode->i_blkbits - 9);
4176 		} else {
4177 			return i_blocks;
4178 		}
4179 	} else {
4180 		return le32_to_cpu(raw_inode->i_blocks_lo);
4181 	}
4182 }
4183 
4184 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4185 {
4186 	struct ext4_iloc iloc;
4187 	struct ext4_inode *raw_inode;
4188 	struct ext4_inode_info *ei;
4189 	struct buffer_head *bh;
4190 	struct inode *inode;
4191 	long ret;
4192 	int block;
4193 
4194 	inode = iget_locked(sb, ino);
4195 	if (!inode)
4196 		return ERR_PTR(-ENOMEM);
4197 	if (!(inode->i_state & I_NEW))
4198 		return inode;
4199 
4200 	ei = EXT4_I(inode);
4201 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4202 	ei->i_acl = EXT4_ACL_NOT_CACHED;
4203 	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4204 #endif
4205 
4206 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4207 	if (ret < 0)
4208 		goto bad_inode;
4209 	bh = iloc.bh;
4210 	raw_inode = ext4_raw_inode(&iloc);
4211 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4212 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4213 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4214 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4215 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4216 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4217 	}
4218 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4219 
4220 	ei->i_state = 0;
4221 	ei->i_dir_start_lookup = 0;
4222 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4223 	/* We now have enough fields to check if the inode was active or not.
4224 	 * This is needed because nfsd might try to access dead inodes
4225 	 * the test is that same one that e2fsck uses
4226 	 * NeilBrown 1999oct15
4227 	 */
4228 	if (inode->i_nlink == 0) {
4229 		if (inode->i_mode == 0 ||
4230 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4231 			/* this inode is deleted */
4232 			brelse(bh);
4233 			ret = -ESTALE;
4234 			goto bad_inode;
4235 		}
4236 		/* The only unlinked inodes we let through here have
4237 		 * valid i_mode and are being read by the orphan
4238 		 * recovery code: that's fine, we're about to complete
4239 		 * the process of deleting those. */
4240 	}
4241 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4242 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4243 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4244 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4245 	    cpu_to_le32(EXT4_OS_HURD)) {
4246 		ei->i_file_acl |=
4247 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4248 	}
4249 	inode->i_size = ext4_isize(raw_inode);
4250 	ei->i_disksize = inode->i_size;
4251 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4252 	ei->i_block_group = iloc.block_group;
4253 	/*
4254 	 * NOTE! The in-memory inode i_data array is in little-endian order
4255 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4256 	 */
4257 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4258 		ei->i_data[block] = raw_inode->i_block[block];
4259 	INIT_LIST_HEAD(&ei->i_orphan);
4260 
4261 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4262 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4263 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4264 		    EXT4_INODE_SIZE(inode->i_sb)) {
4265 			brelse(bh);
4266 			ret = -EIO;
4267 			goto bad_inode;
4268 		}
4269 		if (ei->i_extra_isize == 0) {
4270 			/* The extra space is currently unused. Use it. */
4271 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4272 					    EXT4_GOOD_OLD_INODE_SIZE;
4273 		} else {
4274 			__le32 *magic = (void *)raw_inode +
4275 					EXT4_GOOD_OLD_INODE_SIZE +
4276 					ei->i_extra_isize;
4277 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4278 				 ei->i_state |= EXT4_STATE_XATTR;
4279 		}
4280 	} else
4281 		ei->i_extra_isize = 0;
4282 
4283 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4284 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4285 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4286 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4287 
4288 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4289 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4290 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4291 			inode->i_version |=
4292 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4293 	}
4294 
4295 	if (S_ISREG(inode->i_mode)) {
4296 		inode->i_op = &ext4_file_inode_operations;
4297 		inode->i_fop = &ext4_file_operations;
4298 		ext4_set_aops(inode);
4299 	} else if (S_ISDIR(inode->i_mode)) {
4300 		inode->i_op = &ext4_dir_inode_operations;
4301 		inode->i_fop = &ext4_dir_operations;
4302 	} else if (S_ISLNK(inode->i_mode)) {
4303 		if (ext4_inode_is_fast_symlink(inode)) {
4304 			inode->i_op = &ext4_fast_symlink_inode_operations;
4305 			nd_terminate_link(ei->i_data, inode->i_size,
4306 				sizeof(ei->i_data) - 1);
4307 		} else {
4308 			inode->i_op = &ext4_symlink_inode_operations;
4309 			ext4_set_aops(inode);
4310 		}
4311 	} else {
4312 		inode->i_op = &ext4_special_inode_operations;
4313 		if (raw_inode->i_block[0])
4314 			init_special_inode(inode, inode->i_mode,
4315 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4316 		else
4317 			init_special_inode(inode, inode->i_mode,
4318 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4319 	}
4320 	brelse(iloc.bh);
4321 	ext4_set_inode_flags(inode);
4322 	unlock_new_inode(inode);
4323 	return inode;
4324 
4325 bad_inode:
4326 	iget_failed(inode);
4327 	return ERR_PTR(ret);
4328 }
4329 
4330 static int ext4_inode_blocks_set(handle_t *handle,
4331 				struct ext4_inode *raw_inode,
4332 				struct ext4_inode_info *ei)
4333 {
4334 	struct inode *inode = &(ei->vfs_inode);
4335 	u64 i_blocks = inode->i_blocks;
4336 	struct super_block *sb = inode->i_sb;
4337 
4338 	if (i_blocks <= ~0U) {
4339 		/*
4340 		 * i_blocks can be represnted in a 32 bit variable
4341 		 * as multiple of 512 bytes
4342 		 */
4343 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4344 		raw_inode->i_blocks_high = 0;
4345 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4346 		return 0;
4347 	}
4348 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4349 		return -EFBIG;
4350 
4351 	if (i_blocks <= 0xffffffffffffULL) {
4352 		/*
4353 		 * i_blocks can be represented in a 48 bit variable
4354 		 * as multiple of 512 bytes
4355 		 */
4356 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4357 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4358 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4359 	} else {
4360 		ei->i_flags |= EXT4_HUGE_FILE_FL;
4361 		/* i_block is stored in file system block size */
4362 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4363 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4364 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4365 	}
4366 	return 0;
4367 }
4368 
4369 /*
4370  * Post the struct inode info into an on-disk inode location in the
4371  * buffer-cache.  This gobbles the caller's reference to the
4372  * buffer_head in the inode location struct.
4373  *
4374  * The caller must have write access to iloc->bh.
4375  */
4376 static int ext4_do_update_inode(handle_t *handle,
4377 				struct inode *inode,
4378 				struct ext4_iloc *iloc)
4379 {
4380 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4381 	struct ext4_inode_info *ei = EXT4_I(inode);
4382 	struct buffer_head *bh = iloc->bh;
4383 	int err = 0, rc, block;
4384 
4385 	/* For fields not not tracking in the in-memory inode,
4386 	 * initialise them to zero for new inodes. */
4387 	if (ei->i_state & EXT4_STATE_NEW)
4388 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4389 
4390 	ext4_get_inode_flags(ei);
4391 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4392 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4393 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4394 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4395 /*
4396  * Fix up interoperability with old kernels. Otherwise, old inodes get
4397  * re-used with the upper 16 bits of the uid/gid intact
4398  */
4399 		if (!ei->i_dtime) {
4400 			raw_inode->i_uid_high =
4401 				cpu_to_le16(high_16_bits(inode->i_uid));
4402 			raw_inode->i_gid_high =
4403 				cpu_to_le16(high_16_bits(inode->i_gid));
4404 		} else {
4405 			raw_inode->i_uid_high = 0;
4406 			raw_inode->i_gid_high = 0;
4407 		}
4408 	} else {
4409 		raw_inode->i_uid_low =
4410 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
4411 		raw_inode->i_gid_low =
4412 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
4413 		raw_inode->i_uid_high = 0;
4414 		raw_inode->i_gid_high = 0;
4415 	}
4416 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4417 
4418 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4419 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4420 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4421 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4422 
4423 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4424 		goto out_brelse;
4425 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4426 	/* clear the migrate flag in the raw_inode */
4427 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4428 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4429 	    cpu_to_le32(EXT4_OS_HURD))
4430 		raw_inode->i_file_acl_high =
4431 			cpu_to_le16(ei->i_file_acl >> 32);
4432 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4433 	ext4_isize_set(raw_inode, ei->i_disksize);
4434 	if (ei->i_disksize > 0x7fffffffULL) {
4435 		struct super_block *sb = inode->i_sb;
4436 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4437 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4438 				EXT4_SB(sb)->s_es->s_rev_level ==
4439 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4440 			/* If this is the first large file
4441 			 * created, add a flag to the superblock.
4442 			 */
4443 			err = ext4_journal_get_write_access(handle,
4444 					EXT4_SB(sb)->s_sbh);
4445 			if (err)
4446 				goto out_brelse;
4447 			ext4_update_dynamic_rev(sb);
4448 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4449 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4450 			sb->s_dirt = 1;
4451 			ext4_handle_sync(handle);
4452 			err = ext4_handle_dirty_metadata(handle, inode,
4453 					EXT4_SB(sb)->s_sbh);
4454 		}
4455 	}
4456 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4457 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4458 		if (old_valid_dev(inode->i_rdev)) {
4459 			raw_inode->i_block[0] =
4460 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4461 			raw_inode->i_block[1] = 0;
4462 		} else {
4463 			raw_inode->i_block[0] = 0;
4464 			raw_inode->i_block[1] =
4465 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4466 			raw_inode->i_block[2] = 0;
4467 		}
4468 	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
4469 		raw_inode->i_block[block] = ei->i_data[block];
4470 
4471 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4472 	if (ei->i_extra_isize) {
4473 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4474 			raw_inode->i_version_hi =
4475 			cpu_to_le32(inode->i_version >> 32);
4476 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4477 	}
4478 
4479 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4480 	rc = ext4_handle_dirty_metadata(handle, inode, bh);
4481 	if (!err)
4482 		err = rc;
4483 	ei->i_state &= ~EXT4_STATE_NEW;
4484 
4485 out_brelse:
4486 	brelse(bh);
4487 	ext4_std_error(inode->i_sb, err);
4488 	return err;
4489 }
4490 
4491 /*
4492  * ext4_write_inode()
4493  *
4494  * We are called from a few places:
4495  *
4496  * - Within generic_file_write() for O_SYNC files.
4497  *   Here, there will be no transaction running. We wait for any running
4498  *   trasnaction to commit.
4499  *
4500  * - Within sys_sync(), kupdate and such.
4501  *   We wait on commit, if tol to.
4502  *
4503  * - Within prune_icache() (PF_MEMALLOC == true)
4504  *   Here we simply return.  We can't afford to block kswapd on the
4505  *   journal commit.
4506  *
4507  * In all cases it is actually safe for us to return without doing anything,
4508  * because the inode has been copied into a raw inode buffer in
4509  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4510  * knfsd.
4511  *
4512  * Note that we are absolutely dependent upon all inode dirtiers doing the
4513  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4514  * which we are interested.
4515  *
4516  * It would be a bug for them to not do this.  The code:
4517  *
4518  *	mark_inode_dirty(inode)
4519  *	stuff();
4520  *	inode->i_size = expr;
4521  *
4522  * is in error because a kswapd-driven write_inode() could occur while
4523  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4524  * will no longer be on the superblock's dirty inode list.
4525  */
4526 int ext4_write_inode(struct inode *inode, int wait)
4527 {
4528 	if (current->flags & PF_MEMALLOC)
4529 		return 0;
4530 
4531 	if (ext4_journal_current_handle()) {
4532 		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4533 		dump_stack();
4534 		return -EIO;
4535 	}
4536 
4537 	if (!wait)
4538 		return 0;
4539 
4540 	return ext4_force_commit(inode->i_sb);
4541 }
4542 
4543 int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4544 {
4545 	int err = 0;
4546 
4547 	mark_buffer_dirty(bh);
4548 	if (inode && inode_needs_sync(inode)) {
4549 		sync_dirty_buffer(bh);
4550 		if (buffer_req(bh) && !buffer_uptodate(bh)) {
4551 			ext4_error(inode->i_sb, __func__,
4552 				   "IO error syncing inode, "
4553 				   "inode=%lu, block=%llu",
4554 				   inode->i_ino,
4555 				   (unsigned long long)bh->b_blocknr);
4556 			err = -EIO;
4557 		}
4558 	}
4559 	return err;
4560 }
4561 
4562 /*
4563  * ext4_setattr()
4564  *
4565  * Called from notify_change.
4566  *
4567  * We want to trap VFS attempts to truncate the file as soon as
4568  * possible.  In particular, we want to make sure that when the VFS
4569  * shrinks i_size, we put the inode on the orphan list and modify
4570  * i_disksize immediately, so that during the subsequent flushing of
4571  * dirty pages and freeing of disk blocks, we can guarantee that any
4572  * commit will leave the blocks being flushed in an unused state on
4573  * disk.  (On recovery, the inode will get truncated and the blocks will
4574  * be freed, so we have a strong guarantee that no future commit will
4575  * leave these blocks visible to the user.)
4576  *
4577  * Another thing we have to assure is that if we are in ordered mode
4578  * and inode is still attached to the committing transaction, we must
4579  * we start writeout of all the dirty pages which are being truncated.
4580  * This way we are sure that all the data written in the previous
4581  * transaction are already on disk (truncate waits for pages under
4582  * writeback).
4583  *
4584  * Called with inode->i_mutex down.
4585  */
4586 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4587 {
4588 	struct inode *inode = dentry->d_inode;
4589 	int error, rc = 0;
4590 	const unsigned int ia_valid = attr->ia_valid;
4591 
4592 	error = inode_change_ok(inode, attr);
4593 	if (error)
4594 		return error;
4595 
4596 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4597 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4598 		handle_t *handle;
4599 
4600 		/* (user+group)*(old+new) structure, inode write (sb,
4601 		 * inode block, ? - but truncate inode update has it) */
4602 		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4603 					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4604 		if (IS_ERR(handle)) {
4605 			error = PTR_ERR(handle);
4606 			goto err_out;
4607 		}
4608 		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4609 		if (error) {
4610 			ext4_journal_stop(handle);
4611 			return error;
4612 		}
4613 		/* Update corresponding info in inode so that everything is in
4614 		 * one transaction */
4615 		if (attr->ia_valid & ATTR_UID)
4616 			inode->i_uid = attr->ia_uid;
4617 		if (attr->ia_valid & ATTR_GID)
4618 			inode->i_gid = attr->ia_gid;
4619 		error = ext4_mark_inode_dirty(handle, inode);
4620 		ext4_journal_stop(handle);
4621 	}
4622 
4623 	if (attr->ia_valid & ATTR_SIZE) {
4624 		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4625 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4626 
4627 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4628 				error = -EFBIG;
4629 				goto err_out;
4630 			}
4631 		}
4632 	}
4633 
4634 	if (S_ISREG(inode->i_mode) &&
4635 	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4636 		handle_t *handle;
4637 
4638 		handle = ext4_journal_start(inode, 3);
4639 		if (IS_ERR(handle)) {
4640 			error = PTR_ERR(handle);
4641 			goto err_out;
4642 		}
4643 
4644 		error = ext4_orphan_add(handle, inode);
4645 		EXT4_I(inode)->i_disksize = attr->ia_size;
4646 		rc = ext4_mark_inode_dirty(handle, inode);
4647 		if (!error)
4648 			error = rc;
4649 		ext4_journal_stop(handle);
4650 
4651 		if (ext4_should_order_data(inode)) {
4652 			error = ext4_begin_ordered_truncate(inode,
4653 							    attr->ia_size);
4654 			if (error) {
4655 				/* Do as much error cleanup as possible */
4656 				handle = ext4_journal_start(inode, 3);
4657 				if (IS_ERR(handle)) {
4658 					ext4_orphan_del(NULL, inode);
4659 					goto err_out;
4660 				}
4661 				ext4_orphan_del(handle, inode);
4662 				ext4_journal_stop(handle);
4663 				goto err_out;
4664 			}
4665 		}
4666 	}
4667 
4668 	rc = inode_setattr(inode, attr);
4669 
4670 	/* If inode_setattr's call to ext4_truncate failed to get a
4671 	 * transaction handle at all, we need to clean up the in-core
4672 	 * orphan list manually. */
4673 	if (inode->i_nlink)
4674 		ext4_orphan_del(NULL, inode);
4675 
4676 	if (!rc && (ia_valid & ATTR_MODE))
4677 		rc = ext4_acl_chmod(inode);
4678 
4679 err_out:
4680 	ext4_std_error(inode->i_sb, error);
4681 	if (!error)
4682 		error = rc;
4683 	return error;
4684 }
4685 
4686 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4687 		 struct kstat *stat)
4688 {
4689 	struct inode *inode;
4690 	unsigned long delalloc_blocks;
4691 
4692 	inode = dentry->d_inode;
4693 	generic_fillattr(inode, stat);
4694 
4695 	/*
4696 	 * We can't update i_blocks if the block allocation is delayed
4697 	 * otherwise in the case of system crash before the real block
4698 	 * allocation is done, we will have i_blocks inconsistent with
4699 	 * on-disk file blocks.
4700 	 * We always keep i_blocks updated together with real
4701 	 * allocation. But to not confuse with user, stat
4702 	 * will return the blocks that include the delayed allocation
4703 	 * blocks for this file.
4704 	 */
4705 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4706 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4707 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4708 
4709 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4710 	return 0;
4711 }
4712 
4713 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4714 				      int chunk)
4715 {
4716 	int indirects;
4717 
4718 	/* if nrblocks are contiguous */
4719 	if (chunk) {
4720 		/*
4721 		 * With N contiguous data blocks, it need at most
4722 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4723 		 * 2 dindirect blocks
4724 		 * 1 tindirect block
4725 		 */
4726 		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4727 		return indirects + 3;
4728 	}
4729 	/*
4730 	 * if nrblocks are not contiguous, worse case, each block touch
4731 	 * a indirect block, and each indirect block touch a double indirect
4732 	 * block, plus a triple indirect block
4733 	 */
4734 	indirects = nrblocks * 2 + 1;
4735 	return indirects;
4736 }
4737 
4738 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4739 {
4740 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4741 		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4742 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4743 }
4744 
4745 /*
4746  * Account for index blocks, block groups bitmaps and block group
4747  * descriptor blocks if modify datablocks and index blocks
4748  * worse case, the indexs blocks spread over different block groups
4749  *
4750  * If datablocks are discontiguous, they are possible to spread over
4751  * different block groups too. If they are contiugous, with flexbg,
4752  * they could still across block group boundary.
4753  *
4754  * Also account for superblock, inode, quota and xattr blocks
4755  */
4756 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4757 {
4758 	int groups, gdpblocks;
4759 	int idxblocks;
4760 	int ret = 0;
4761 
4762 	/*
4763 	 * How many index blocks need to touch to modify nrblocks?
4764 	 * The "Chunk" flag indicating whether the nrblocks is
4765 	 * physically contiguous on disk
4766 	 *
4767 	 * For Direct IO and fallocate, they calls get_block to allocate
4768 	 * one single extent at a time, so they could set the "Chunk" flag
4769 	 */
4770 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4771 
4772 	ret = idxblocks;
4773 
4774 	/*
4775 	 * Now let's see how many group bitmaps and group descriptors need
4776 	 * to account
4777 	 */
4778 	groups = idxblocks;
4779 	if (chunk)
4780 		groups += 1;
4781 	else
4782 		groups += nrblocks;
4783 
4784 	gdpblocks = groups;
4785 	if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4786 		groups = EXT4_SB(inode->i_sb)->s_groups_count;
4787 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4788 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4789 
4790 	/* bitmaps and block group descriptor blocks */
4791 	ret += groups + gdpblocks;
4792 
4793 	/* Blocks for super block, inode, quota and xattr blocks */
4794 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4795 
4796 	return ret;
4797 }
4798 
4799 /*
4800  * Calulate the total number of credits to reserve to fit
4801  * the modification of a single pages into a single transaction,
4802  * which may include multiple chunks of block allocations.
4803  *
4804  * This could be called via ext4_write_begin()
4805  *
4806  * We need to consider the worse case, when
4807  * one new block per extent.
4808  */
4809 int ext4_writepage_trans_blocks(struct inode *inode)
4810 {
4811 	int bpp = ext4_journal_blocks_per_page(inode);
4812 	int ret;
4813 
4814 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4815 
4816 	/* Account for data blocks for journalled mode */
4817 	if (ext4_should_journal_data(inode))
4818 		ret += bpp;
4819 	return ret;
4820 }
4821 
4822 /*
4823  * Calculate the journal credits for a chunk of data modification.
4824  *
4825  * This is called from DIO, fallocate or whoever calling
4826  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4827  *
4828  * journal buffers for data blocks are not included here, as DIO
4829  * and fallocate do no need to journal data buffers.
4830  */
4831 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4832 {
4833 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4834 }
4835 
4836 /*
4837  * The caller must have previously called ext4_reserve_inode_write().
4838  * Give this, we know that the caller already has write access to iloc->bh.
4839  */
4840 int ext4_mark_iloc_dirty(handle_t *handle,
4841 		struct inode *inode, struct ext4_iloc *iloc)
4842 {
4843 	int err = 0;
4844 
4845 	if (test_opt(inode->i_sb, I_VERSION))
4846 		inode_inc_iversion(inode);
4847 
4848 	/* the do_update_inode consumes one bh->b_count */
4849 	get_bh(iloc->bh);
4850 
4851 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4852 	err = ext4_do_update_inode(handle, inode, iloc);
4853 	put_bh(iloc->bh);
4854 	return err;
4855 }
4856 
4857 /*
4858  * On success, We end up with an outstanding reference count against
4859  * iloc->bh.  This _must_ be cleaned up later.
4860  */
4861 
4862 int
4863 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4864 			 struct ext4_iloc *iloc)
4865 {
4866 	int err;
4867 
4868 	err = ext4_get_inode_loc(inode, iloc);
4869 	if (!err) {
4870 		BUFFER_TRACE(iloc->bh, "get_write_access");
4871 		err = ext4_journal_get_write_access(handle, iloc->bh);
4872 		if (err) {
4873 			brelse(iloc->bh);
4874 			iloc->bh = NULL;
4875 		}
4876 	}
4877 	ext4_std_error(inode->i_sb, err);
4878 	return err;
4879 }
4880 
4881 /*
4882  * Expand an inode by new_extra_isize bytes.
4883  * Returns 0 on success or negative error number on failure.
4884  */
4885 static int ext4_expand_extra_isize(struct inode *inode,
4886 				   unsigned int new_extra_isize,
4887 				   struct ext4_iloc iloc,
4888 				   handle_t *handle)
4889 {
4890 	struct ext4_inode *raw_inode;
4891 	struct ext4_xattr_ibody_header *header;
4892 	struct ext4_xattr_entry *entry;
4893 
4894 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4895 		return 0;
4896 
4897 	raw_inode = ext4_raw_inode(&iloc);
4898 
4899 	header = IHDR(inode, raw_inode);
4900 	entry = IFIRST(header);
4901 
4902 	/* No extended attributes present */
4903 	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4904 		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4905 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4906 			new_extra_isize);
4907 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4908 		return 0;
4909 	}
4910 
4911 	/* try to expand with EAs present */
4912 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4913 					  raw_inode, handle);
4914 }
4915 
4916 /*
4917  * What we do here is to mark the in-core inode as clean with respect to inode
4918  * dirtiness (it may still be data-dirty).
4919  * This means that the in-core inode may be reaped by prune_icache
4920  * without having to perform any I/O.  This is a very good thing,
4921  * because *any* task may call prune_icache - even ones which
4922  * have a transaction open against a different journal.
4923  *
4924  * Is this cheating?  Not really.  Sure, we haven't written the
4925  * inode out, but prune_icache isn't a user-visible syncing function.
4926  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4927  * we start and wait on commits.
4928  *
4929  * Is this efficient/effective?  Well, we're being nice to the system
4930  * by cleaning up our inodes proactively so they can be reaped
4931  * without I/O.  But we are potentially leaving up to five seconds'
4932  * worth of inodes floating about which prune_icache wants us to
4933  * write out.  One way to fix that would be to get prune_icache()
4934  * to do a write_super() to free up some memory.  It has the desired
4935  * effect.
4936  */
4937 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4938 {
4939 	struct ext4_iloc iloc;
4940 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4941 	static unsigned int mnt_count;
4942 	int err, ret;
4943 
4944 	might_sleep();
4945 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4946 	if (ext4_handle_valid(handle) &&
4947 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4948 	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4949 		/*
4950 		 * We need extra buffer credits since we may write into EA block
4951 		 * with this same handle. If journal_extend fails, then it will
4952 		 * only result in a minor loss of functionality for that inode.
4953 		 * If this is felt to be critical, then e2fsck should be run to
4954 		 * force a large enough s_min_extra_isize.
4955 		 */
4956 		if ((jbd2_journal_extend(handle,
4957 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4958 			ret = ext4_expand_extra_isize(inode,
4959 						      sbi->s_want_extra_isize,
4960 						      iloc, handle);
4961 			if (ret) {
4962 				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4963 				if (mnt_count !=
4964 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4965 					ext4_warning(inode->i_sb, __func__,
4966 					"Unable to expand inode %lu. Delete"
4967 					" some EAs or run e2fsck.",
4968 					inode->i_ino);
4969 					mnt_count =
4970 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4971 				}
4972 			}
4973 		}
4974 	}
4975 	if (!err)
4976 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4977 	return err;
4978 }
4979 
4980 /*
4981  * ext4_dirty_inode() is called from __mark_inode_dirty()
4982  *
4983  * We're really interested in the case where a file is being extended.
4984  * i_size has been changed by generic_commit_write() and we thus need
4985  * to include the updated inode in the current transaction.
4986  *
4987  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4988  * are allocated to the file.
4989  *
4990  * If the inode is marked synchronous, we don't honour that here - doing
4991  * so would cause a commit on atime updates, which we don't bother doing.
4992  * We handle synchronous inodes at the highest possible level.
4993  */
4994 void ext4_dirty_inode(struct inode *inode)
4995 {
4996 	handle_t *current_handle = ext4_journal_current_handle();
4997 	handle_t *handle;
4998 
4999 	if (!ext4_handle_valid(current_handle)) {
5000 		ext4_mark_inode_dirty(current_handle, inode);
5001 		return;
5002 	}
5003 
5004 	handle = ext4_journal_start(inode, 2);
5005 	if (IS_ERR(handle))
5006 		goto out;
5007 	if (current_handle &&
5008 		current_handle->h_transaction != handle->h_transaction) {
5009 		/* This task has a transaction open against a different fs */
5010 		printk(KERN_EMERG "%s: transactions do not match!\n",
5011 		       __func__);
5012 	} else {
5013 		jbd_debug(5, "marking dirty.  outer handle=%p\n",
5014 				current_handle);
5015 		ext4_mark_inode_dirty(handle, inode);
5016 	}
5017 	ext4_journal_stop(handle);
5018 out:
5019 	return;
5020 }
5021 
5022 #if 0
5023 /*
5024  * Bind an inode's backing buffer_head into this transaction, to prevent
5025  * it from being flushed to disk early.  Unlike
5026  * ext4_reserve_inode_write, this leaves behind no bh reference and
5027  * returns no iloc structure, so the caller needs to repeat the iloc
5028  * lookup to mark the inode dirty later.
5029  */
5030 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5031 {
5032 	struct ext4_iloc iloc;
5033 
5034 	int err = 0;
5035 	if (handle) {
5036 		err = ext4_get_inode_loc(inode, &iloc);
5037 		if (!err) {
5038 			BUFFER_TRACE(iloc.bh, "get_write_access");
5039 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5040 			if (!err)
5041 				err = ext4_handle_dirty_metadata(handle,
5042 								 inode,
5043 								 iloc.bh);
5044 			brelse(iloc.bh);
5045 		}
5046 	}
5047 	ext4_std_error(inode->i_sb, err);
5048 	return err;
5049 }
5050 #endif
5051 
5052 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5053 {
5054 	journal_t *journal;
5055 	handle_t *handle;
5056 	int err;
5057 
5058 	/*
5059 	 * We have to be very careful here: changing a data block's
5060 	 * journaling status dynamically is dangerous.  If we write a
5061 	 * data block to the journal, change the status and then delete
5062 	 * that block, we risk forgetting to revoke the old log record
5063 	 * from the journal and so a subsequent replay can corrupt data.
5064 	 * So, first we make sure that the journal is empty and that
5065 	 * nobody is changing anything.
5066 	 */
5067 
5068 	journal = EXT4_JOURNAL(inode);
5069 	if (!journal)
5070 		return 0;
5071 	if (is_journal_aborted(journal))
5072 		return -EROFS;
5073 
5074 	jbd2_journal_lock_updates(journal);
5075 	jbd2_journal_flush(journal);
5076 
5077 	/*
5078 	 * OK, there are no updates running now, and all cached data is
5079 	 * synced to disk.  We are now in a completely consistent state
5080 	 * which doesn't have anything in the journal, and we know that
5081 	 * no filesystem updates are running, so it is safe to modify
5082 	 * the inode's in-core data-journaling state flag now.
5083 	 */
5084 
5085 	if (val)
5086 		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5087 	else
5088 		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5089 	ext4_set_aops(inode);
5090 
5091 	jbd2_journal_unlock_updates(journal);
5092 
5093 	/* Finally we can mark the inode as dirty. */
5094 
5095 	handle = ext4_journal_start(inode, 1);
5096 	if (IS_ERR(handle))
5097 		return PTR_ERR(handle);
5098 
5099 	err = ext4_mark_inode_dirty(handle, inode);
5100 	ext4_handle_sync(handle);
5101 	ext4_journal_stop(handle);
5102 	ext4_std_error(inode->i_sb, err);
5103 
5104 	return err;
5105 }
5106 
5107 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5108 {
5109 	return !buffer_mapped(bh);
5110 }
5111 
5112 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
5113 {
5114 	loff_t size;
5115 	unsigned long len;
5116 	int ret = -EINVAL;
5117 	void *fsdata;
5118 	struct file *file = vma->vm_file;
5119 	struct inode *inode = file->f_path.dentry->d_inode;
5120 	struct address_space *mapping = inode->i_mapping;
5121 
5122 	/*
5123 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5124 	 * get i_mutex because we are already holding mmap_sem.
5125 	 */
5126 	down_read(&inode->i_alloc_sem);
5127 	size = i_size_read(inode);
5128 	if (page->mapping != mapping || size <= page_offset(page)
5129 	    || !PageUptodate(page)) {
5130 		/* page got truncated from under us? */
5131 		goto out_unlock;
5132 	}
5133 	ret = 0;
5134 	if (PageMappedToDisk(page))
5135 		goto out_unlock;
5136 
5137 	if (page->index == size >> PAGE_CACHE_SHIFT)
5138 		len = size & ~PAGE_CACHE_MASK;
5139 	else
5140 		len = PAGE_CACHE_SIZE;
5141 
5142 	if (page_has_buffers(page)) {
5143 		/* return if we have all the buffers mapped */
5144 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5145 				       ext4_bh_unmapped))
5146 			goto out_unlock;
5147 	}
5148 	/*
5149 	 * OK, we need to fill the hole... Do write_begin write_end
5150 	 * to do block allocation/reservation.We are not holding
5151 	 * inode.i__mutex here. That allow * parallel write_begin,
5152 	 * write_end call. lock_page prevent this from happening
5153 	 * on the same page though
5154 	 */
5155 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5156 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5157 	if (ret < 0)
5158 		goto out_unlock;
5159 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5160 			len, len, page, fsdata);
5161 	if (ret < 0)
5162 		goto out_unlock;
5163 	ret = 0;
5164 out_unlock:
5165 	up_read(&inode->i_alloc_sem);
5166 	return ret;
5167 }
5168