xref: /openbmc/linux/fs/ext4/inode.c (revision 1f7d1e77419050831a905353683807fa69a26625)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/printk.h>
43 #include <linux/slab.h>
44 #include <linux/ratelimit.h>
45 
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "ext4_extents.h"
50 
51 #include <trace/events/ext4.h>
52 
53 #define MPAGE_DA_EXTENT_TAIL 0x01
54 
55 static inline int ext4_begin_ordered_truncate(struct inode *inode,
56 					      loff_t new_size)
57 {
58 	trace_ext4_begin_ordered_truncate(inode, new_size);
59 	/*
60 	 * If jinode is zero, then we never opened the file for
61 	 * writing, so there's no need to call
62 	 * jbd2_journal_begin_ordered_truncate() since there's no
63 	 * outstanding writes we need to flush.
64 	 */
65 	if (!EXT4_I(inode)->jinode)
66 		return 0;
67 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
68 						   EXT4_I(inode)->jinode,
69 						   new_size);
70 }
71 
72 static void ext4_invalidatepage(struct page *page, unsigned long offset);
73 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
74 				   struct buffer_head *bh_result, int create);
75 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
76 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
77 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
78 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
79 
80 /*
81  * Test whether an inode is a fast symlink.
82  */
83 static int ext4_inode_is_fast_symlink(struct inode *inode)
84 {
85 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
86 		(inode->i_sb->s_blocksize >> 9) : 0;
87 
88 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
89 }
90 
91 /*
92  * Work out how many blocks we need to proceed with the next chunk of a
93  * truncate transaction.
94  */
95 static unsigned long blocks_for_truncate(struct inode *inode)
96 {
97 	ext4_lblk_t needed;
98 
99 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
100 
101 	/* Give ourselves just enough room to cope with inodes in which
102 	 * i_blocks is corrupt: we've seen disk corruptions in the past
103 	 * which resulted in random data in an inode which looked enough
104 	 * like a regular file for ext4 to try to delete it.  Things
105 	 * will go a bit crazy if that happens, but at least we should
106 	 * try not to panic the whole kernel. */
107 	if (needed < 2)
108 		needed = 2;
109 
110 	/* But we need to bound the transaction so we don't overflow the
111 	 * journal. */
112 	if (needed > EXT4_MAX_TRANS_DATA)
113 		needed = EXT4_MAX_TRANS_DATA;
114 
115 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
116 }
117 
118 /*
119  * Truncate transactions can be complex and absolutely huge.  So we need to
120  * be able to restart the transaction at a conventient checkpoint to make
121  * sure we don't overflow the journal.
122  *
123  * start_transaction gets us a new handle for a truncate transaction,
124  * and extend_transaction tries to extend the existing one a bit.  If
125  * extend fails, we need to propagate the failure up and restart the
126  * transaction in the top-level truncate loop. --sct
127  */
128 static handle_t *start_transaction(struct inode *inode)
129 {
130 	handle_t *result;
131 
132 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
133 	if (!IS_ERR(result))
134 		return result;
135 
136 	ext4_std_error(inode->i_sb, PTR_ERR(result));
137 	return result;
138 }
139 
140 /*
141  * Try to extend this transaction for the purposes of truncation.
142  *
143  * Returns 0 if we managed to create more room.  If we can't create more
144  * room, and the transaction must be restarted we return 1.
145  */
146 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
147 {
148 	if (!ext4_handle_valid(handle))
149 		return 0;
150 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
151 		return 0;
152 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
153 		return 0;
154 	return 1;
155 }
156 
157 /*
158  * Restart the transaction associated with *handle.  This does a commit,
159  * so before we call here everything must be consistently dirtied against
160  * this transaction.
161  */
162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163 				 int nblocks)
164 {
165 	int ret;
166 
167 	/*
168 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
169 	 * moment, get_block can be called only for blocks inside i_size since
170 	 * page cache has been already dropped and writes are blocked by
171 	 * i_mutex. So we can safely drop the i_data_sem here.
172 	 */
173 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
174 	jbd_debug(2, "restarting handle %p\n", handle);
175 	up_write(&EXT4_I(inode)->i_data_sem);
176 	ret = ext4_journal_restart(handle, nblocks);
177 	down_write(&EXT4_I(inode)->i_data_sem);
178 	ext4_discard_preallocations(inode);
179 
180 	return ret;
181 }
182 
183 /*
184  * Called at the last iput() if i_nlink is zero.
185  */
186 void ext4_evict_inode(struct inode *inode)
187 {
188 	handle_t *handle;
189 	int err;
190 
191 	trace_ext4_evict_inode(inode);
192 	if (inode->i_nlink) {
193 		truncate_inode_pages(&inode->i_data, 0);
194 		goto no_delete;
195 	}
196 
197 	if (!is_bad_inode(inode))
198 		dquot_initialize(inode);
199 
200 	if (ext4_should_order_data(inode))
201 		ext4_begin_ordered_truncate(inode, 0);
202 	truncate_inode_pages(&inode->i_data, 0);
203 
204 	if (is_bad_inode(inode))
205 		goto no_delete;
206 
207 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
208 	if (IS_ERR(handle)) {
209 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
210 		/*
211 		 * If we're going to skip the normal cleanup, we still need to
212 		 * make sure that the in-core orphan linked list is properly
213 		 * cleaned up.
214 		 */
215 		ext4_orphan_del(NULL, inode);
216 		goto no_delete;
217 	}
218 
219 	if (IS_SYNC(inode))
220 		ext4_handle_sync(handle);
221 	inode->i_size = 0;
222 	err = ext4_mark_inode_dirty(handle, inode);
223 	if (err) {
224 		ext4_warning(inode->i_sb,
225 			     "couldn't mark inode dirty (err %d)", err);
226 		goto stop_handle;
227 	}
228 	if (inode->i_blocks)
229 		ext4_truncate(inode);
230 
231 	/*
232 	 * ext4_ext_truncate() doesn't reserve any slop when it
233 	 * restarts journal transactions; therefore there may not be
234 	 * enough credits left in the handle to remove the inode from
235 	 * the orphan list and set the dtime field.
236 	 */
237 	if (!ext4_handle_has_enough_credits(handle, 3)) {
238 		err = ext4_journal_extend(handle, 3);
239 		if (err > 0)
240 			err = ext4_journal_restart(handle, 3);
241 		if (err != 0) {
242 			ext4_warning(inode->i_sb,
243 				     "couldn't extend journal (err %d)", err);
244 		stop_handle:
245 			ext4_journal_stop(handle);
246 			ext4_orphan_del(NULL, inode);
247 			goto no_delete;
248 		}
249 	}
250 
251 	/*
252 	 * Kill off the orphan record which ext4_truncate created.
253 	 * AKPM: I think this can be inside the above `if'.
254 	 * Note that ext4_orphan_del() has to be able to cope with the
255 	 * deletion of a non-existent orphan - this is because we don't
256 	 * know if ext4_truncate() actually created an orphan record.
257 	 * (Well, we could do this if we need to, but heck - it works)
258 	 */
259 	ext4_orphan_del(handle, inode);
260 	EXT4_I(inode)->i_dtime	= get_seconds();
261 
262 	/*
263 	 * One subtle ordering requirement: if anything has gone wrong
264 	 * (transaction abort, IO errors, whatever), then we can still
265 	 * do these next steps (the fs will already have been marked as
266 	 * having errors), but we can't free the inode if the mark_dirty
267 	 * fails.
268 	 */
269 	if (ext4_mark_inode_dirty(handle, inode))
270 		/* If that failed, just do the required in-core inode clear. */
271 		ext4_clear_inode(inode);
272 	else
273 		ext4_free_inode(handle, inode);
274 	ext4_journal_stop(handle);
275 	return;
276 no_delete:
277 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
278 }
279 
280 typedef struct {
281 	__le32	*p;
282 	__le32	key;
283 	struct buffer_head *bh;
284 } Indirect;
285 
286 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
287 {
288 	p->key = *(p->p = v);
289 	p->bh = bh;
290 }
291 
292 /**
293  *	ext4_block_to_path - parse the block number into array of offsets
294  *	@inode: inode in question (we are only interested in its superblock)
295  *	@i_block: block number to be parsed
296  *	@offsets: array to store the offsets in
297  *	@boundary: set this non-zero if the referred-to block is likely to be
298  *	       followed (on disk) by an indirect block.
299  *
300  *	To store the locations of file's data ext4 uses a data structure common
301  *	for UNIX filesystems - tree of pointers anchored in the inode, with
302  *	data blocks at leaves and indirect blocks in intermediate nodes.
303  *	This function translates the block number into path in that tree -
304  *	return value is the path length and @offsets[n] is the offset of
305  *	pointer to (n+1)th node in the nth one. If @block is out of range
306  *	(negative or too large) warning is printed and zero returned.
307  *
308  *	Note: function doesn't find node addresses, so no IO is needed. All
309  *	we need to know is the capacity of indirect blocks (taken from the
310  *	inode->i_sb).
311  */
312 
313 /*
314  * Portability note: the last comparison (check that we fit into triple
315  * indirect block) is spelled differently, because otherwise on an
316  * architecture with 32-bit longs and 8Kb pages we might get into trouble
317  * if our filesystem had 8Kb blocks. We might use long long, but that would
318  * kill us on x86. Oh, well, at least the sign propagation does not matter -
319  * i_block would have to be negative in the very beginning, so we would not
320  * get there at all.
321  */
322 
323 static int ext4_block_to_path(struct inode *inode,
324 			      ext4_lblk_t i_block,
325 			      ext4_lblk_t offsets[4], int *boundary)
326 {
327 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
328 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
329 	const long direct_blocks = EXT4_NDIR_BLOCKS,
330 		indirect_blocks = ptrs,
331 		double_blocks = (1 << (ptrs_bits * 2));
332 	int n = 0;
333 	int final = 0;
334 
335 	if (i_block < direct_blocks) {
336 		offsets[n++] = i_block;
337 		final = direct_blocks;
338 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
339 		offsets[n++] = EXT4_IND_BLOCK;
340 		offsets[n++] = i_block;
341 		final = ptrs;
342 	} else if ((i_block -= indirect_blocks) < double_blocks) {
343 		offsets[n++] = EXT4_DIND_BLOCK;
344 		offsets[n++] = i_block >> ptrs_bits;
345 		offsets[n++] = i_block & (ptrs - 1);
346 		final = ptrs;
347 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
348 		offsets[n++] = EXT4_TIND_BLOCK;
349 		offsets[n++] = i_block >> (ptrs_bits * 2);
350 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
351 		offsets[n++] = i_block & (ptrs - 1);
352 		final = ptrs;
353 	} else {
354 		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
355 			     i_block + direct_blocks +
356 			     indirect_blocks + double_blocks, inode->i_ino);
357 	}
358 	if (boundary)
359 		*boundary = final - 1 - (i_block & (ptrs - 1));
360 	return n;
361 }
362 
363 /**
364  *	ext4_get_branch - read the chain of indirect blocks leading to data
365  *	@inode: inode in question
366  *	@depth: depth of the chain (1 - direct pointer, etc.)
367  *	@offsets: offsets of pointers in inode/indirect blocks
368  *	@chain: place to store the result
369  *	@err: here we store the error value
370  *
371  *	Function fills the array of triples <key, p, bh> and returns %NULL
372  *	if everything went OK or the pointer to the last filled triple
373  *	(incomplete one) otherwise. Upon the return chain[i].key contains
374  *	the number of (i+1)-th block in the chain (as it is stored in memory,
375  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
376  *	number (it points into struct inode for i==0 and into the bh->b_data
377  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378  *	block for i>0 and NULL for i==0. In other words, it holds the block
379  *	numbers of the chain, addresses they were taken from (and where we can
380  *	verify that chain did not change) and buffer_heads hosting these
381  *	numbers.
382  *
383  *	Function stops when it stumbles upon zero pointer (absent block)
384  *		(pointer to last triple returned, *@err == 0)
385  *	or when it gets an IO error reading an indirect block
386  *		(ditto, *@err == -EIO)
387  *	or when it reads all @depth-1 indirect blocks successfully and finds
388  *	the whole chain, all way to the data (returns %NULL, *err == 0).
389  *
390  *      Need to be called with
391  *      down_read(&EXT4_I(inode)->i_data_sem)
392  */
393 static Indirect *ext4_get_branch(struct inode *inode, int depth,
394 				 ext4_lblk_t  *offsets,
395 				 Indirect chain[4], int *err)
396 {
397 	struct super_block *sb = inode->i_sb;
398 	Indirect *p = chain;
399 	struct buffer_head *bh;
400 
401 	*err = 0;
402 	/* i_data is not going away, no lock needed */
403 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
404 	if (!p->key)
405 		goto no_block;
406 	while (--depth) {
407 		bh = sb_getblk(sb, le32_to_cpu(p->key));
408 		if (unlikely(!bh))
409 			goto failure;
410 
411 		if (!bh_uptodate_or_lock(bh)) {
412 			if (bh_submit_read(bh) < 0) {
413 				put_bh(bh);
414 				goto failure;
415 			}
416 			/* validate block references */
417 			if (ext4_check_indirect_blockref(inode, bh)) {
418 				put_bh(bh);
419 				goto failure;
420 			}
421 		}
422 
423 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
424 		/* Reader: end */
425 		if (!p->key)
426 			goto no_block;
427 	}
428 	return NULL;
429 
430 failure:
431 	*err = -EIO;
432 no_block:
433 	return p;
434 }
435 
436 /**
437  *	ext4_find_near - find a place for allocation with sufficient locality
438  *	@inode: owner
439  *	@ind: descriptor of indirect block.
440  *
441  *	This function returns the preferred place for block allocation.
442  *	It is used when heuristic for sequential allocation fails.
443  *	Rules are:
444  *	  + if there is a block to the left of our position - allocate near it.
445  *	  + if pointer will live in indirect block - allocate near that block.
446  *	  + if pointer will live in inode - allocate in the same
447  *	    cylinder group.
448  *
449  * In the latter case we colour the starting block by the callers PID to
450  * prevent it from clashing with concurrent allocations for a different inode
451  * in the same block group.   The PID is used here so that functionally related
452  * files will be close-by on-disk.
453  *
454  *	Caller must make sure that @ind is valid and will stay that way.
455  */
456 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
457 {
458 	struct ext4_inode_info *ei = EXT4_I(inode);
459 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
460 	__le32 *p;
461 	ext4_fsblk_t bg_start;
462 	ext4_fsblk_t last_block;
463 	ext4_grpblk_t colour;
464 	ext4_group_t block_group;
465 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
466 
467 	/* Try to find previous block */
468 	for (p = ind->p - 1; p >= start; p--) {
469 		if (*p)
470 			return le32_to_cpu(*p);
471 	}
472 
473 	/* No such thing, so let's try location of indirect block */
474 	if (ind->bh)
475 		return ind->bh->b_blocknr;
476 
477 	/*
478 	 * It is going to be referred to from the inode itself? OK, just put it
479 	 * into the same cylinder group then.
480 	 */
481 	block_group = ei->i_block_group;
482 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
483 		block_group &= ~(flex_size-1);
484 		if (S_ISREG(inode->i_mode))
485 			block_group++;
486 	}
487 	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
488 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
489 
490 	/*
491 	 * If we are doing delayed allocation, we don't need take
492 	 * colour into account.
493 	 */
494 	if (test_opt(inode->i_sb, DELALLOC))
495 		return bg_start;
496 
497 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
498 		colour = (current->pid % 16) *
499 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
500 	else
501 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
502 	return bg_start + colour;
503 }
504 
505 /**
506  *	ext4_find_goal - find a preferred place for allocation.
507  *	@inode: owner
508  *	@block:  block we want
509  *	@partial: pointer to the last triple within a chain
510  *
511  *	Normally this function find the preferred place for block allocation,
512  *	returns it.
513  *	Because this is only used for non-extent files, we limit the block nr
514  *	to 32 bits.
515  */
516 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
517 				   Indirect *partial)
518 {
519 	ext4_fsblk_t goal;
520 
521 	/*
522 	 * XXX need to get goal block from mballoc's data structures
523 	 */
524 
525 	goal = ext4_find_near(inode, partial);
526 	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
527 	return goal;
528 }
529 
530 /**
531  *	ext4_blks_to_allocate - Look up the block map and count the number
532  *	of direct blocks need to be allocated for the given branch.
533  *
534  *	@branch: chain of indirect blocks
535  *	@k: number of blocks need for indirect blocks
536  *	@blks: number of data blocks to be mapped.
537  *	@blocks_to_boundary:  the offset in the indirect block
538  *
539  *	return the total number of blocks to be allocate, including the
540  *	direct and indirect blocks.
541  */
542 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
543 				 int blocks_to_boundary)
544 {
545 	unsigned int count = 0;
546 
547 	/*
548 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
549 	 * then it's clear blocks on that path have not allocated
550 	 */
551 	if (k > 0) {
552 		/* right now we don't handle cross boundary allocation */
553 		if (blks < blocks_to_boundary + 1)
554 			count += blks;
555 		else
556 			count += blocks_to_boundary + 1;
557 		return count;
558 	}
559 
560 	count++;
561 	while (count < blks && count <= blocks_to_boundary &&
562 		le32_to_cpu(*(branch[0].p + count)) == 0) {
563 		count++;
564 	}
565 	return count;
566 }
567 
568 /**
569  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
570  *	@handle: handle for this transaction
571  *	@inode: inode which needs allocated blocks
572  *	@iblock: the logical block to start allocated at
573  *	@goal: preferred physical block of allocation
574  *	@indirect_blks: the number of blocks need to allocate for indirect
575  *			blocks
576  *	@blks: number of desired blocks
577  *	@new_blocks: on return it will store the new block numbers for
578  *	the indirect blocks(if needed) and the first direct block,
579  *	@err: on return it will store the error code
580  *
581  *	This function will return the number of blocks allocated as
582  *	requested by the passed-in parameters.
583  */
584 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
585 			     ext4_lblk_t iblock, ext4_fsblk_t goal,
586 			     int indirect_blks, int blks,
587 			     ext4_fsblk_t new_blocks[4], int *err)
588 {
589 	struct ext4_allocation_request ar;
590 	int target, i;
591 	unsigned long count = 0, blk_allocated = 0;
592 	int index = 0;
593 	ext4_fsblk_t current_block = 0;
594 	int ret = 0;
595 
596 	/*
597 	 * Here we try to allocate the requested multiple blocks at once,
598 	 * on a best-effort basis.
599 	 * To build a branch, we should allocate blocks for
600 	 * the indirect blocks(if not allocated yet), and at least
601 	 * the first direct block of this branch.  That's the
602 	 * minimum number of blocks need to allocate(required)
603 	 */
604 	/* first we try to allocate the indirect blocks */
605 	target = indirect_blks;
606 	while (target > 0) {
607 		count = target;
608 		/* allocating blocks for indirect blocks and direct blocks */
609 		current_block = ext4_new_meta_blocks(handle, inode, goal,
610 						     0, &count, err);
611 		if (*err)
612 			goto failed_out;
613 
614 		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
615 			EXT4_ERROR_INODE(inode,
616 					 "current_block %llu + count %lu > %d!",
617 					 current_block, count,
618 					 EXT4_MAX_BLOCK_FILE_PHYS);
619 			*err = -EIO;
620 			goto failed_out;
621 		}
622 
623 		target -= count;
624 		/* allocate blocks for indirect blocks */
625 		while (index < indirect_blks && count) {
626 			new_blocks[index++] = current_block++;
627 			count--;
628 		}
629 		if (count > 0) {
630 			/*
631 			 * save the new block number
632 			 * for the first direct block
633 			 */
634 			new_blocks[index] = current_block;
635 			printk(KERN_INFO "%s returned more blocks than "
636 						"requested\n", __func__);
637 			WARN_ON(1);
638 			break;
639 		}
640 	}
641 
642 	target = blks - count ;
643 	blk_allocated = count;
644 	if (!target)
645 		goto allocated;
646 	/* Now allocate data blocks */
647 	memset(&ar, 0, sizeof(ar));
648 	ar.inode = inode;
649 	ar.goal = goal;
650 	ar.len = target;
651 	ar.logical = iblock;
652 	if (S_ISREG(inode->i_mode))
653 		/* enable in-core preallocation only for regular files */
654 		ar.flags = EXT4_MB_HINT_DATA;
655 
656 	current_block = ext4_mb_new_blocks(handle, &ar, err);
657 	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
658 		EXT4_ERROR_INODE(inode,
659 				 "current_block %llu + ar.len %d > %d!",
660 				 current_block, ar.len,
661 				 EXT4_MAX_BLOCK_FILE_PHYS);
662 		*err = -EIO;
663 		goto failed_out;
664 	}
665 
666 	if (*err && (target == blks)) {
667 		/*
668 		 * if the allocation failed and we didn't allocate
669 		 * any blocks before
670 		 */
671 		goto failed_out;
672 	}
673 	if (!*err) {
674 		if (target == blks) {
675 			/*
676 			 * save the new block number
677 			 * for the first direct block
678 			 */
679 			new_blocks[index] = current_block;
680 		}
681 		blk_allocated += ar.len;
682 	}
683 allocated:
684 	/* total number of blocks allocated for direct blocks */
685 	ret = blk_allocated;
686 	*err = 0;
687 	return ret;
688 failed_out:
689 	for (i = 0; i < index; i++)
690 		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
691 	return ret;
692 }
693 
694 /**
695  *	ext4_alloc_branch - allocate and set up a chain of blocks.
696  *	@handle: handle for this transaction
697  *	@inode: owner
698  *	@indirect_blks: number of allocated indirect blocks
699  *	@blks: number of allocated direct blocks
700  *	@goal: preferred place for allocation
701  *	@offsets: offsets (in the blocks) to store the pointers to next.
702  *	@branch: place to store the chain in.
703  *
704  *	This function allocates blocks, zeroes out all but the last one,
705  *	links them into chain and (if we are synchronous) writes them to disk.
706  *	In other words, it prepares a branch that can be spliced onto the
707  *	inode. It stores the information about that chain in the branch[], in
708  *	the same format as ext4_get_branch() would do. We are calling it after
709  *	we had read the existing part of chain and partial points to the last
710  *	triple of that (one with zero ->key). Upon the exit we have the same
711  *	picture as after the successful ext4_get_block(), except that in one
712  *	place chain is disconnected - *branch->p is still zero (we did not
713  *	set the last link), but branch->key contains the number that should
714  *	be placed into *branch->p to fill that gap.
715  *
716  *	If allocation fails we free all blocks we've allocated (and forget
717  *	their buffer_heads) and return the error value the from failed
718  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
719  *	as described above and return 0.
720  */
721 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
722 			     ext4_lblk_t iblock, int indirect_blks,
723 			     int *blks, ext4_fsblk_t goal,
724 			     ext4_lblk_t *offsets, Indirect *branch)
725 {
726 	int blocksize = inode->i_sb->s_blocksize;
727 	int i, n = 0;
728 	int err = 0;
729 	struct buffer_head *bh;
730 	int num;
731 	ext4_fsblk_t new_blocks[4];
732 	ext4_fsblk_t current_block;
733 
734 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
735 				*blks, new_blocks, &err);
736 	if (err)
737 		return err;
738 
739 	branch[0].key = cpu_to_le32(new_blocks[0]);
740 	/*
741 	 * metadata blocks and data blocks are allocated.
742 	 */
743 	for (n = 1; n <= indirect_blks;  n++) {
744 		/*
745 		 * Get buffer_head for parent block, zero it out
746 		 * and set the pointer to new one, then send
747 		 * parent to disk.
748 		 */
749 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
750 		if (unlikely(!bh)) {
751 			err = -EIO;
752 			goto failed;
753 		}
754 
755 		branch[n].bh = bh;
756 		lock_buffer(bh);
757 		BUFFER_TRACE(bh, "call get_create_access");
758 		err = ext4_journal_get_create_access(handle, bh);
759 		if (err) {
760 			/* Don't brelse(bh) here; it's done in
761 			 * ext4_journal_forget() below */
762 			unlock_buffer(bh);
763 			goto failed;
764 		}
765 
766 		memset(bh->b_data, 0, blocksize);
767 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
768 		branch[n].key = cpu_to_le32(new_blocks[n]);
769 		*branch[n].p = branch[n].key;
770 		if (n == indirect_blks) {
771 			current_block = new_blocks[n];
772 			/*
773 			 * End of chain, update the last new metablock of
774 			 * the chain to point to the new allocated
775 			 * data blocks numbers
776 			 */
777 			for (i = 1; i < num; i++)
778 				*(branch[n].p + i) = cpu_to_le32(++current_block);
779 		}
780 		BUFFER_TRACE(bh, "marking uptodate");
781 		set_buffer_uptodate(bh);
782 		unlock_buffer(bh);
783 
784 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
785 		err = ext4_handle_dirty_metadata(handle, inode, bh);
786 		if (err)
787 			goto failed;
788 	}
789 	*blks = num;
790 	return err;
791 failed:
792 	/* Allocation failed, free what we already allocated */
793 	ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
794 	for (i = 1; i <= n ; i++) {
795 		/*
796 		 * branch[i].bh is newly allocated, so there is no
797 		 * need to revoke the block, which is why we don't
798 		 * need to set EXT4_FREE_BLOCKS_METADATA.
799 		 */
800 		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
801 				 EXT4_FREE_BLOCKS_FORGET);
802 	}
803 	for (i = n+1; i < indirect_blks; i++)
804 		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
805 
806 	ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
807 
808 	return err;
809 }
810 
811 /**
812  * ext4_splice_branch - splice the allocated branch onto inode.
813  * @handle: handle for this transaction
814  * @inode: owner
815  * @block: (logical) number of block we are adding
816  * @chain: chain of indirect blocks (with a missing link - see
817  *	ext4_alloc_branch)
818  * @where: location of missing link
819  * @num:   number of indirect blocks we are adding
820  * @blks:  number of direct blocks we are adding
821  *
822  * This function fills the missing link and does all housekeeping needed in
823  * inode (->i_blocks, etc.). In case of success we end up with the full
824  * chain to new block and return 0.
825  */
826 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
827 			      ext4_lblk_t block, Indirect *where, int num,
828 			      int blks)
829 {
830 	int i;
831 	int err = 0;
832 	ext4_fsblk_t current_block;
833 
834 	/*
835 	 * If we're splicing into a [td]indirect block (as opposed to the
836 	 * inode) then we need to get write access to the [td]indirect block
837 	 * before the splice.
838 	 */
839 	if (where->bh) {
840 		BUFFER_TRACE(where->bh, "get_write_access");
841 		err = ext4_journal_get_write_access(handle, where->bh);
842 		if (err)
843 			goto err_out;
844 	}
845 	/* That's it */
846 
847 	*where->p = where->key;
848 
849 	/*
850 	 * Update the host buffer_head or inode to point to more just allocated
851 	 * direct blocks blocks
852 	 */
853 	if (num == 0 && blks > 1) {
854 		current_block = le32_to_cpu(where->key) + 1;
855 		for (i = 1; i < blks; i++)
856 			*(where->p + i) = cpu_to_le32(current_block++);
857 	}
858 
859 	/* We are done with atomic stuff, now do the rest of housekeeping */
860 	/* had we spliced it onto indirect block? */
861 	if (where->bh) {
862 		/*
863 		 * If we spliced it onto an indirect block, we haven't
864 		 * altered the inode.  Note however that if it is being spliced
865 		 * onto an indirect block at the very end of the file (the
866 		 * file is growing) then we *will* alter the inode to reflect
867 		 * the new i_size.  But that is not done here - it is done in
868 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
869 		 */
870 		jbd_debug(5, "splicing indirect only\n");
871 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
872 		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
873 		if (err)
874 			goto err_out;
875 	} else {
876 		/*
877 		 * OK, we spliced it into the inode itself on a direct block.
878 		 */
879 		ext4_mark_inode_dirty(handle, inode);
880 		jbd_debug(5, "splicing direct\n");
881 	}
882 	return err;
883 
884 err_out:
885 	for (i = 1; i <= num; i++) {
886 		/*
887 		 * branch[i].bh is newly allocated, so there is no
888 		 * need to revoke the block, which is why we don't
889 		 * need to set EXT4_FREE_BLOCKS_METADATA.
890 		 */
891 		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
892 				 EXT4_FREE_BLOCKS_FORGET);
893 	}
894 	ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
895 			 blks, 0);
896 
897 	return err;
898 }
899 
900 /*
901  * The ext4_ind_map_blocks() function handles non-extents inodes
902  * (i.e., using the traditional indirect/double-indirect i_blocks
903  * scheme) for ext4_map_blocks().
904  *
905  * Allocation strategy is simple: if we have to allocate something, we will
906  * have to go the whole way to leaf. So let's do it before attaching anything
907  * to tree, set linkage between the newborn blocks, write them if sync is
908  * required, recheck the path, free and repeat if check fails, otherwise
909  * set the last missing link (that will protect us from any truncate-generated
910  * removals - all blocks on the path are immune now) and possibly force the
911  * write on the parent block.
912  * That has a nice additional property: no special recovery from the failed
913  * allocations is needed - we simply release blocks and do not touch anything
914  * reachable from inode.
915  *
916  * `handle' can be NULL if create == 0.
917  *
918  * return > 0, # of blocks mapped or allocated.
919  * return = 0, if plain lookup failed.
920  * return < 0, error case.
921  *
922  * The ext4_ind_get_blocks() function should be called with
923  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
924  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
925  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
926  * blocks.
927  */
928 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
929 			       struct ext4_map_blocks *map,
930 			       int flags)
931 {
932 	int err = -EIO;
933 	ext4_lblk_t offsets[4];
934 	Indirect chain[4];
935 	Indirect *partial;
936 	ext4_fsblk_t goal;
937 	int indirect_blks;
938 	int blocks_to_boundary = 0;
939 	int depth;
940 	int count = 0;
941 	ext4_fsblk_t first_block = 0;
942 
943 	trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
944 	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
945 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
946 	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
947 				   &blocks_to_boundary);
948 
949 	if (depth == 0)
950 		goto out;
951 
952 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
953 
954 	/* Simplest case - block found, no allocation needed */
955 	if (!partial) {
956 		first_block = le32_to_cpu(chain[depth - 1].key);
957 		count++;
958 		/*map more blocks*/
959 		while (count < map->m_len && count <= blocks_to_boundary) {
960 			ext4_fsblk_t blk;
961 
962 			blk = le32_to_cpu(*(chain[depth-1].p + count));
963 
964 			if (blk == first_block + count)
965 				count++;
966 			else
967 				break;
968 		}
969 		goto got_it;
970 	}
971 
972 	/* Next simple case - plain lookup or failed read of indirect block */
973 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
974 		goto cleanup;
975 
976 	/*
977 	 * Okay, we need to do block allocation.
978 	*/
979 	goal = ext4_find_goal(inode, map->m_lblk, partial);
980 
981 	/* the number of blocks need to allocate for [d,t]indirect blocks */
982 	indirect_blks = (chain + depth) - partial - 1;
983 
984 	/*
985 	 * Next look up the indirect map to count the totoal number of
986 	 * direct blocks to allocate for this branch.
987 	 */
988 	count = ext4_blks_to_allocate(partial, indirect_blks,
989 				      map->m_len, blocks_to_boundary);
990 	/*
991 	 * Block out ext4_truncate while we alter the tree
992 	 */
993 	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
994 				&count, goal,
995 				offsets + (partial - chain), partial);
996 
997 	/*
998 	 * The ext4_splice_branch call will free and forget any buffers
999 	 * on the new chain if there is a failure, but that risks using
1000 	 * up transaction credits, especially for bitmaps where the
1001 	 * credits cannot be returned.  Can we handle this somehow?  We
1002 	 * may need to return -EAGAIN upwards in the worst case.  --sct
1003 	 */
1004 	if (!err)
1005 		err = ext4_splice_branch(handle, inode, map->m_lblk,
1006 					 partial, indirect_blks, count);
1007 	if (err)
1008 		goto cleanup;
1009 
1010 	map->m_flags |= EXT4_MAP_NEW;
1011 
1012 	ext4_update_inode_fsync_trans(handle, inode, 1);
1013 got_it:
1014 	map->m_flags |= EXT4_MAP_MAPPED;
1015 	map->m_pblk = le32_to_cpu(chain[depth-1].key);
1016 	map->m_len = count;
1017 	if (count > blocks_to_boundary)
1018 		map->m_flags |= EXT4_MAP_BOUNDARY;
1019 	err = count;
1020 	/* Clean up and exit */
1021 	partial = chain + depth - 1;	/* the whole chain */
1022 cleanup:
1023 	while (partial > chain) {
1024 		BUFFER_TRACE(partial->bh, "call brelse");
1025 		brelse(partial->bh);
1026 		partial--;
1027 	}
1028 out:
1029 	trace_ext4_ind_map_blocks_exit(inode, map->m_lblk,
1030 				map->m_pblk, map->m_len, err);
1031 	return err;
1032 }
1033 
1034 #ifdef CONFIG_QUOTA
1035 qsize_t *ext4_get_reserved_space(struct inode *inode)
1036 {
1037 	return &EXT4_I(inode)->i_reserved_quota;
1038 }
1039 #endif
1040 
1041 /*
1042  * Calculate the number of metadata blocks need to reserve
1043  * to allocate a new block at @lblocks for non extent file based file
1044  */
1045 static int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
1046 {
1047 	struct ext4_inode_info *ei = EXT4_I(inode);
1048 	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1049 	int blk_bits;
1050 
1051 	if (lblock < EXT4_NDIR_BLOCKS)
1052 		return 0;
1053 
1054 	lblock -= EXT4_NDIR_BLOCKS;
1055 
1056 	if (ei->i_da_metadata_calc_len &&
1057 	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1058 		ei->i_da_metadata_calc_len++;
1059 		return 0;
1060 	}
1061 	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1062 	ei->i_da_metadata_calc_len = 1;
1063 	blk_bits = order_base_2(lblock);
1064 	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1065 }
1066 
1067 /*
1068  * Calculate the number of metadata blocks need to reserve
1069  * to allocate a block located at @lblock
1070  */
1071 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
1072 {
1073 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1074 		return ext4_ext_calc_metadata_amount(inode, lblock);
1075 
1076 	return ext4_ind_calc_metadata_amount(inode, lblock);
1077 }
1078 
1079 /*
1080  * Called with i_data_sem down, which is important since we can call
1081  * ext4_discard_preallocations() from here.
1082  */
1083 void ext4_da_update_reserve_space(struct inode *inode,
1084 					int used, int quota_claim)
1085 {
1086 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1087 	struct ext4_inode_info *ei = EXT4_I(inode);
1088 
1089 	spin_lock(&ei->i_block_reservation_lock);
1090 	trace_ext4_da_update_reserve_space(inode, used);
1091 	if (unlikely(used > ei->i_reserved_data_blocks)) {
1092 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1093 			 "with only %d reserved data blocks\n",
1094 			 __func__, inode->i_ino, used,
1095 			 ei->i_reserved_data_blocks);
1096 		WARN_ON(1);
1097 		used = ei->i_reserved_data_blocks;
1098 	}
1099 
1100 	/* Update per-inode reservations */
1101 	ei->i_reserved_data_blocks -= used;
1102 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1103 	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1104 			   used + ei->i_allocated_meta_blocks);
1105 	ei->i_allocated_meta_blocks = 0;
1106 
1107 	if (ei->i_reserved_data_blocks == 0) {
1108 		/*
1109 		 * We can release all of the reserved metadata blocks
1110 		 * only when we have written all of the delayed
1111 		 * allocation blocks.
1112 		 */
1113 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1114 				   ei->i_reserved_meta_blocks);
1115 		ei->i_reserved_meta_blocks = 0;
1116 		ei->i_da_metadata_calc_len = 0;
1117 	}
1118 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1119 
1120 	/* Update quota subsystem for data blocks */
1121 	if (quota_claim)
1122 		dquot_claim_block(inode, used);
1123 	else {
1124 		/*
1125 		 * We did fallocate with an offset that is already delayed
1126 		 * allocated. So on delayed allocated writeback we should
1127 		 * not re-claim the quota for fallocated blocks.
1128 		 */
1129 		dquot_release_reservation_block(inode, used);
1130 	}
1131 
1132 	/*
1133 	 * If we have done all the pending block allocations and if
1134 	 * there aren't any writers on the inode, we can discard the
1135 	 * inode's preallocations.
1136 	 */
1137 	if ((ei->i_reserved_data_blocks == 0) &&
1138 	    (atomic_read(&inode->i_writecount) == 0))
1139 		ext4_discard_preallocations(inode);
1140 }
1141 
1142 static int __check_block_validity(struct inode *inode, const char *func,
1143 				unsigned int line,
1144 				struct ext4_map_blocks *map)
1145 {
1146 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1147 				   map->m_len)) {
1148 		ext4_error_inode(inode, func, line, map->m_pblk,
1149 				 "lblock %lu mapped to illegal pblock "
1150 				 "(length %d)", (unsigned long) map->m_lblk,
1151 				 map->m_len);
1152 		return -EIO;
1153 	}
1154 	return 0;
1155 }
1156 
1157 #define check_block_validity(inode, map)	\
1158 	__check_block_validity((inode), __func__, __LINE__, (map))
1159 
1160 /*
1161  * Return the number of contiguous dirty pages in a given inode
1162  * starting at page frame idx.
1163  */
1164 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1165 				    unsigned int max_pages)
1166 {
1167 	struct address_space *mapping = inode->i_mapping;
1168 	pgoff_t	index;
1169 	struct pagevec pvec;
1170 	pgoff_t num = 0;
1171 	int i, nr_pages, done = 0;
1172 
1173 	if (max_pages == 0)
1174 		return 0;
1175 	pagevec_init(&pvec, 0);
1176 	while (!done) {
1177 		index = idx;
1178 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1179 					      PAGECACHE_TAG_DIRTY,
1180 					      (pgoff_t)PAGEVEC_SIZE);
1181 		if (nr_pages == 0)
1182 			break;
1183 		for (i = 0; i < nr_pages; i++) {
1184 			struct page *page = pvec.pages[i];
1185 			struct buffer_head *bh, *head;
1186 
1187 			lock_page(page);
1188 			if (unlikely(page->mapping != mapping) ||
1189 			    !PageDirty(page) ||
1190 			    PageWriteback(page) ||
1191 			    page->index != idx) {
1192 				done = 1;
1193 				unlock_page(page);
1194 				break;
1195 			}
1196 			if (page_has_buffers(page)) {
1197 				bh = head = page_buffers(page);
1198 				do {
1199 					if (!buffer_delay(bh) &&
1200 					    !buffer_unwritten(bh))
1201 						done = 1;
1202 					bh = bh->b_this_page;
1203 				} while (!done && (bh != head));
1204 			}
1205 			unlock_page(page);
1206 			if (done)
1207 				break;
1208 			idx++;
1209 			num++;
1210 			if (num >= max_pages) {
1211 				done = 1;
1212 				break;
1213 			}
1214 		}
1215 		pagevec_release(&pvec);
1216 	}
1217 	return num;
1218 }
1219 
1220 /*
1221  * The ext4_map_blocks() function tries to look up the requested blocks,
1222  * and returns if the blocks are already mapped.
1223  *
1224  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1225  * and store the allocated blocks in the result buffer head and mark it
1226  * mapped.
1227  *
1228  * If file type is extents based, it will call ext4_ext_map_blocks(),
1229  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1230  * based files
1231  *
1232  * On success, it returns the number of blocks being mapped or allocate.
1233  * if create==0 and the blocks are pre-allocated and uninitialized block,
1234  * the result buffer head is unmapped. If the create ==1, it will make sure
1235  * the buffer head is mapped.
1236  *
1237  * It returns 0 if plain look up failed (blocks have not been allocated), in
1238  * that casem, buffer head is unmapped
1239  *
1240  * It returns the error in case of allocation failure.
1241  */
1242 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1243 		    struct ext4_map_blocks *map, int flags)
1244 {
1245 	int retval;
1246 
1247 	map->m_flags = 0;
1248 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1249 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
1250 		  (unsigned long) map->m_lblk);
1251 	/*
1252 	 * Try to see if we can get the block without requesting a new
1253 	 * file system block.
1254 	 */
1255 	down_read((&EXT4_I(inode)->i_data_sem));
1256 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1257 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
1258 	} else {
1259 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
1260 	}
1261 	up_read((&EXT4_I(inode)->i_data_sem));
1262 
1263 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1264 		int ret = check_block_validity(inode, map);
1265 		if (ret != 0)
1266 			return ret;
1267 	}
1268 
1269 	/* If it is only a block(s) look up */
1270 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1271 		return retval;
1272 
1273 	/*
1274 	 * Returns if the blocks have already allocated
1275 	 *
1276 	 * Note that if blocks have been preallocated
1277 	 * ext4_ext_get_block() returns th create = 0
1278 	 * with buffer head unmapped.
1279 	 */
1280 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1281 		return retval;
1282 
1283 	/*
1284 	 * When we call get_blocks without the create flag, the
1285 	 * BH_Unwritten flag could have gotten set if the blocks
1286 	 * requested were part of a uninitialized extent.  We need to
1287 	 * clear this flag now that we are committed to convert all or
1288 	 * part of the uninitialized extent to be an initialized
1289 	 * extent.  This is because we need to avoid the combination
1290 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
1291 	 * set on the buffer_head.
1292 	 */
1293 	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1294 
1295 	/*
1296 	 * New blocks allocate and/or writing to uninitialized extent
1297 	 * will possibly result in updating i_data, so we take
1298 	 * the write lock of i_data_sem, and call get_blocks()
1299 	 * with create == 1 flag.
1300 	 */
1301 	down_write((&EXT4_I(inode)->i_data_sem));
1302 
1303 	/*
1304 	 * if the caller is from delayed allocation writeout path
1305 	 * we have already reserved fs blocks for allocation
1306 	 * let the underlying get_block() function know to
1307 	 * avoid double accounting
1308 	 */
1309 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1310 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1311 	/*
1312 	 * We need to check for EXT4 here because migrate
1313 	 * could have changed the inode type in between
1314 	 */
1315 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1316 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
1317 	} else {
1318 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
1319 
1320 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1321 			/*
1322 			 * We allocated new blocks which will result in
1323 			 * i_data's format changing.  Force the migrate
1324 			 * to fail by clearing migrate flags
1325 			 */
1326 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1327 		}
1328 
1329 		/*
1330 		 * Update reserved blocks/metadata blocks after successful
1331 		 * block allocation which had been deferred till now. We don't
1332 		 * support fallocate for non extent files. So we can update
1333 		 * reserve space here.
1334 		 */
1335 		if ((retval > 0) &&
1336 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1337 			ext4_da_update_reserve_space(inode, retval, 1);
1338 	}
1339 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1340 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1341 
1342 	up_write((&EXT4_I(inode)->i_data_sem));
1343 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1344 		int ret = check_block_validity(inode, map);
1345 		if (ret != 0)
1346 			return ret;
1347 	}
1348 	return retval;
1349 }
1350 
1351 /* Maximum number of blocks we map for direct IO at once. */
1352 #define DIO_MAX_BLOCKS 4096
1353 
1354 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1355 			   struct buffer_head *bh, int flags)
1356 {
1357 	handle_t *handle = ext4_journal_current_handle();
1358 	struct ext4_map_blocks map;
1359 	int ret = 0, started = 0;
1360 	int dio_credits;
1361 
1362 	map.m_lblk = iblock;
1363 	map.m_len = bh->b_size >> inode->i_blkbits;
1364 
1365 	if (flags && !handle) {
1366 		/* Direct IO write... */
1367 		if (map.m_len > DIO_MAX_BLOCKS)
1368 			map.m_len = DIO_MAX_BLOCKS;
1369 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1370 		handle = ext4_journal_start(inode, dio_credits);
1371 		if (IS_ERR(handle)) {
1372 			ret = PTR_ERR(handle);
1373 			return ret;
1374 		}
1375 		started = 1;
1376 	}
1377 
1378 	ret = ext4_map_blocks(handle, inode, &map, flags);
1379 	if (ret > 0) {
1380 		map_bh(bh, inode->i_sb, map.m_pblk);
1381 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1382 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1383 		ret = 0;
1384 	}
1385 	if (started)
1386 		ext4_journal_stop(handle);
1387 	return ret;
1388 }
1389 
1390 int ext4_get_block(struct inode *inode, sector_t iblock,
1391 		   struct buffer_head *bh, int create)
1392 {
1393 	return _ext4_get_block(inode, iblock, bh,
1394 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
1395 }
1396 
1397 /*
1398  * `handle' can be NULL if create is zero
1399  */
1400 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1401 				ext4_lblk_t block, int create, int *errp)
1402 {
1403 	struct ext4_map_blocks map;
1404 	struct buffer_head *bh;
1405 	int fatal = 0, err;
1406 
1407 	J_ASSERT(handle != NULL || create == 0);
1408 
1409 	map.m_lblk = block;
1410 	map.m_len = 1;
1411 	err = ext4_map_blocks(handle, inode, &map,
1412 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1413 
1414 	if (err < 0)
1415 		*errp = err;
1416 	if (err <= 0)
1417 		return NULL;
1418 	*errp = 0;
1419 
1420 	bh = sb_getblk(inode->i_sb, map.m_pblk);
1421 	if (!bh) {
1422 		*errp = -EIO;
1423 		return NULL;
1424 	}
1425 	if (map.m_flags & EXT4_MAP_NEW) {
1426 		J_ASSERT(create != 0);
1427 		J_ASSERT(handle != NULL);
1428 
1429 		/*
1430 		 * Now that we do not always journal data, we should
1431 		 * keep in mind whether this should always journal the
1432 		 * new buffer as metadata.  For now, regular file
1433 		 * writes use ext4_get_block instead, so it's not a
1434 		 * problem.
1435 		 */
1436 		lock_buffer(bh);
1437 		BUFFER_TRACE(bh, "call get_create_access");
1438 		fatal = ext4_journal_get_create_access(handle, bh);
1439 		if (!fatal && !buffer_uptodate(bh)) {
1440 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1441 			set_buffer_uptodate(bh);
1442 		}
1443 		unlock_buffer(bh);
1444 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1445 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1446 		if (!fatal)
1447 			fatal = err;
1448 	} else {
1449 		BUFFER_TRACE(bh, "not a new buffer");
1450 	}
1451 	if (fatal) {
1452 		*errp = fatal;
1453 		brelse(bh);
1454 		bh = NULL;
1455 	}
1456 	return bh;
1457 }
1458 
1459 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1460 			       ext4_lblk_t block, int create, int *err)
1461 {
1462 	struct buffer_head *bh;
1463 
1464 	bh = ext4_getblk(handle, inode, block, create, err);
1465 	if (!bh)
1466 		return bh;
1467 	if (buffer_uptodate(bh))
1468 		return bh;
1469 	ll_rw_block(READ_META, 1, &bh);
1470 	wait_on_buffer(bh);
1471 	if (buffer_uptodate(bh))
1472 		return bh;
1473 	put_bh(bh);
1474 	*err = -EIO;
1475 	return NULL;
1476 }
1477 
1478 static int walk_page_buffers(handle_t *handle,
1479 			     struct buffer_head *head,
1480 			     unsigned from,
1481 			     unsigned to,
1482 			     int *partial,
1483 			     int (*fn)(handle_t *handle,
1484 				       struct buffer_head *bh))
1485 {
1486 	struct buffer_head *bh;
1487 	unsigned block_start, block_end;
1488 	unsigned blocksize = head->b_size;
1489 	int err, ret = 0;
1490 	struct buffer_head *next;
1491 
1492 	for (bh = head, block_start = 0;
1493 	     ret == 0 && (bh != head || !block_start);
1494 	     block_start = block_end, bh = next) {
1495 		next = bh->b_this_page;
1496 		block_end = block_start + blocksize;
1497 		if (block_end <= from || block_start >= to) {
1498 			if (partial && !buffer_uptodate(bh))
1499 				*partial = 1;
1500 			continue;
1501 		}
1502 		err = (*fn)(handle, bh);
1503 		if (!ret)
1504 			ret = err;
1505 	}
1506 	return ret;
1507 }
1508 
1509 /*
1510  * To preserve ordering, it is essential that the hole instantiation and
1511  * the data write be encapsulated in a single transaction.  We cannot
1512  * close off a transaction and start a new one between the ext4_get_block()
1513  * and the commit_write().  So doing the jbd2_journal_start at the start of
1514  * prepare_write() is the right place.
1515  *
1516  * Also, this function can nest inside ext4_writepage() ->
1517  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1518  * has generated enough buffer credits to do the whole page.  So we won't
1519  * block on the journal in that case, which is good, because the caller may
1520  * be PF_MEMALLOC.
1521  *
1522  * By accident, ext4 can be reentered when a transaction is open via
1523  * quota file writes.  If we were to commit the transaction while thus
1524  * reentered, there can be a deadlock - we would be holding a quota
1525  * lock, and the commit would never complete if another thread had a
1526  * transaction open and was blocking on the quota lock - a ranking
1527  * violation.
1528  *
1529  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1530  * will _not_ run commit under these circumstances because handle->h_ref
1531  * is elevated.  We'll still have enough credits for the tiny quotafile
1532  * write.
1533  */
1534 static int do_journal_get_write_access(handle_t *handle,
1535 				       struct buffer_head *bh)
1536 {
1537 	int dirty = buffer_dirty(bh);
1538 	int ret;
1539 
1540 	if (!buffer_mapped(bh) || buffer_freed(bh))
1541 		return 0;
1542 	/*
1543 	 * __block_write_begin() could have dirtied some buffers. Clean
1544 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1545 	 * otherwise about fs integrity issues. Setting of the dirty bit
1546 	 * by __block_write_begin() isn't a real problem here as we clear
1547 	 * the bit before releasing a page lock and thus writeback cannot
1548 	 * ever write the buffer.
1549 	 */
1550 	if (dirty)
1551 		clear_buffer_dirty(bh);
1552 	ret = ext4_journal_get_write_access(handle, bh);
1553 	if (!ret && dirty)
1554 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1555 	return ret;
1556 }
1557 
1558 /*
1559  * Truncate blocks that were not used by write. We have to truncate the
1560  * pagecache as well so that corresponding buffers get properly unmapped.
1561  */
1562 static void ext4_truncate_failed_write(struct inode *inode)
1563 {
1564 	truncate_inode_pages(inode->i_mapping, inode->i_size);
1565 	ext4_truncate(inode);
1566 }
1567 
1568 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1569 		   struct buffer_head *bh_result, int create);
1570 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1571 			    loff_t pos, unsigned len, unsigned flags,
1572 			    struct page **pagep, void **fsdata)
1573 {
1574 	struct inode *inode = mapping->host;
1575 	int ret, needed_blocks;
1576 	handle_t *handle;
1577 	int retries = 0;
1578 	struct page *page;
1579 	pgoff_t index;
1580 	unsigned from, to;
1581 
1582 	trace_ext4_write_begin(inode, pos, len, flags);
1583 	/*
1584 	 * Reserve one block more for addition to orphan list in case
1585 	 * we allocate blocks but write fails for some reason
1586 	 */
1587 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1588 	index = pos >> PAGE_CACHE_SHIFT;
1589 	from = pos & (PAGE_CACHE_SIZE - 1);
1590 	to = from + len;
1591 
1592 retry:
1593 	handle = ext4_journal_start(inode, needed_blocks);
1594 	if (IS_ERR(handle)) {
1595 		ret = PTR_ERR(handle);
1596 		goto out;
1597 	}
1598 
1599 	/* We cannot recurse into the filesystem as the transaction is already
1600 	 * started */
1601 	flags |= AOP_FLAG_NOFS;
1602 
1603 	page = grab_cache_page_write_begin(mapping, index, flags);
1604 	if (!page) {
1605 		ext4_journal_stop(handle);
1606 		ret = -ENOMEM;
1607 		goto out;
1608 	}
1609 	*pagep = page;
1610 
1611 	if (ext4_should_dioread_nolock(inode))
1612 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1613 	else
1614 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1615 
1616 	if (!ret && ext4_should_journal_data(inode)) {
1617 		ret = walk_page_buffers(handle, page_buffers(page),
1618 				from, to, NULL, do_journal_get_write_access);
1619 	}
1620 
1621 	if (ret) {
1622 		unlock_page(page);
1623 		page_cache_release(page);
1624 		/*
1625 		 * __block_write_begin may have instantiated a few blocks
1626 		 * outside i_size.  Trim these off again. Don't need
1627 		 * i_size_read because we hold i_mutex.
1628 		 *
1629 		 * Add inode to orphan list in case we crash before
1630 		 * truncate finishes
1631 		 */
1632 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1633 			ext4_orphan_add(handle, inode);
1634 
1635 		ext4_journal_stop(handle);
1636 		if (pos + len > inode->i_size) {
1637 			ext4_truncate_failed_write(inode);
1638 			/*
1639 			 * If truncate failed early the inode might
1640 			 * still be on the orphan list; we need to
1641 			 * make sure the inode is removed from the
1642 			 * orphan list in that case.
1643 			 */
1644 			if (inode->i_nlink)
1645 				ext4_orphan_del(NULL, inode);
1646 		}
1647 	}
1648 
1649 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1650 		goto retry;
1651 out:
1652 	return ret;
1653 }
1654 
1655 /* For write_end() in data=journal mode */
1656 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1657 {
1658 	if (!buffer_mapped(bh) || buffer_freed(bh))
1659 		return 0;
1660 	set_buffer_uptodate(bh);
1661 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1662 }
1663 
1664 static int ext4_generic_write_end(struct file *file,
1665 				  struct address_space *mapping,
1666 				  loff_t pos, unsigned len, unsigned copied,
1667 				  struct page *page, void *fsdata)
1668 {
1669 	int i_size_changed = 0;
1670 	struct inode *inode = mapping->host;
1671 	handle_t *handle = ext4_journal_current_handle();
1672 
1673 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1674 
1675 	/*
1676 	 * No need to use i_size_read() here, the i_size
1677 	 * cannot change under us because we hold i_mutex.
1678 	 *
1679 	 * But it's important to update i_size while still holding page lock:
1680 	 * page writeout could otherwise come in and zero beyond i_size.
1681 	 */
1682 	if (pos + copied > inode->i_size) {
1683 		i_size_write(inode, pos + copied);
1684 		i_size_changed = 1;
1685 	}
1686 
1687 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
1688 		/* We need to mark inode dirty even if
1689 		 * new_i_size is less that inode->i_size
1690 		 * bu greater than i_disksize.(hint delalloc)
1691 		 */
1692 		ext4_update_i_disksize(inode, (pos + copied));
1693 		i_size_changed = 1;
1694 	}
1695 	unlock_page(page);
1696 	page_cache_release(page);
1697 
1698 	/*
1699 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1700 	 * makes the holding time of page lock longer. Second, it forces lock
1701 	 * ordering of page lock and transaction start for journaling
1702 	 * filesystems.
1703 	 */
1704 	if (i_size_changed)
1705 		ext4_mark_inode_dirty(handle, inode);
1706 
1707 	return copied;
1708 }
1709 
1710 /*
1711  * We need to pick up the new inode size which generic_commit_write gave us
1712  * `file' can be NULL - eg, when called from page_symlink().
1713  *
1714  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1715  * buffers are managed internally.
1716  */
1717 static int ext4_ordered_write_end(struct file *file,
1718 				  struct address_space *mapping,
1719 				  loff_t pos, unsigned len, unsigned copied,
1720 				  struct page *page, void *fsdata)
1721 {
1722 	handle_t *handle = ext4_journal_current_handle();
1723 	struct inode *inode = mapping->host;
1724 	int ret = 0, ret2;
1725 
1726 	trace_ext4_ordered_write_end(inode, pos, len, copied);
1727 	ret = ext4_jbd2_file_inode(handle, inode);
1728 
1729 	if (ret == 0) {
1730 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1731 							page, fsdata);
1732 		copied = ret2;
1733 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1734 			/* if we have allocated more blocks and copied
1735 			 * less. We will have blocks allocated outside
1736 			 * inode->i_size. So truncate them
1737 			 */
1738 			ext4_orphan_add(handle, inode);
1739 		if (ret2 < 0)
1740 			ret = ret2;
1741 	}
1742 	ret2 = ext4_journal_stop(handle);
1743 	if (!ret)
1744 		ret = ret2;
1745 
1746 	if (pos + len > inode->i_size) {
1747 		ext4_truncate_failed_write(inode);
1748 		/*
1749 		 * If truncate failed early the inode might still be
1750 		 * on the orphan list; we need to make sure the inode
1751 		 * is removed from the orphan list in that case.
1752 		 */
1753 		if (inode->i_nlink)
1754 			ext4_orphan_del(NULL, inode);
1755 	}
1756 
1757 
1758 	return ret ? ret : copied;
1759 }
1760 
1761 static int ext4_writeback_write_end(struct file *file,
1762 				    struct address_space *mapping,
1763 				    loff_t pos, unsigned len, unsigned copied,
1764 				    struct page *page, void *fsdata)
1765 {
1766 	handle_t *handle = ext4_journal_current_handle();
1767 	struct inode *inode = mapping->host;
1768 	int ret = 0, ret2;
1769 
1770 	trace_ext4_writeback_write_end(inode, pos, len, copied);
1771 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1772 							page, fsdata);
1773 	copied = ret2;
1774 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1775 		/* if we have allocated more blocks and copied
1776 		 * less. We will have blocks allocated outside
1777 		 * inode->i_size. So truncate them
1778 		 */
1779 		ext4_orphan_add(handle, inode);
1780 
1781 	if (ret2 < 0)
1782 		ret = ret2;
1783 
1784 	ret2 = ext4_journal_stop(handle);
1785 	if (!ret)
1786 		ret = ret2;
1787 
1788 	if (pos + len > inode->i_size) {
1789 		ext4_truncate_failed_write(inode);
1790 		/*
1791 		 * If truncate failed early the inode might still be
1792 		 * on the orphan list; we need to make sure the inode
1793 		 * is removed from the orphan list in that case.
1794 		 */
1795 		if (inode->i_nlink)
1796 			ext4_orphan_del(NULL, inode);
1797 	}
1798 
1799 	return ret ? ret : copied;
1800 }
1801 
1802 static int ext4_journalled_write_end(struct file *file,
1803 				     struct address_space *mapping,
1804 				     loff_t pos, unsigned len, unsigned copied,
1805 				     struct page *page, void *fsdata)
1806 {
1807 	handle_t *handle = ext4_journal_current_handle();
1808 	struct inode *inode = mapping->host;
1809 	int ret = 0, ret2;
1810 	int partial = 0;
1811 	unsigned from, to;
1812 	loff_t new_i_size;
1813 
1814 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1815 	from = pos & (PAGE_CACHE_SIZE - 1);
1816 	to = from + len;
1817 
1818 	if (copied < len) {
1819 		if (!PageUptodate(page))
1820 			copied = 0;
1821 		page_zero_new_buffers(page, from+copied, to);
1822 	}
1823 
1824 	ret = walk_page_buffers(handle, page_buffers(page), from,
1825 				to, &partial, write_end_fn);
1826 	if (!partial)
1827 		SetPageUptodate(page);
1828 	new_i_size = pos + copied;
1829 	if (new_i_size > inode->i_size)
1830 		i_size_write(inode, pos+copied);
1831 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1832 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1833 		ext4_update_i_disksize(inode, new_i_size);
1834 		ret2 = ext4_mark_inode_dirty(handle, inode);
1835 		if (!ret)
1836 			ret = ret2;
1837 	}
1838 
1839 	unlock_page(page);
1840 	page_cache_release(page);
1841 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1842 		/* if we have allocated more blocks and copied
1843 		 * less. We will have blocks allocated outside
1844 		 * inode->i_size. So truncate them
1845 		 */
1846 		ext4_orphan_add(handle, inode);
1847 
1848 	ret2 = ext4_journal_stop(handle);
1849 	if (!ret)
1850 		ret = ret2;
1851 	if (pos + len > inode->i_size) {
1852 		ext4_truncate_failed_write(inode);
1853 		/*
1854 		 * If truncate failed early the inode might still be
1855 		 * on the orphan list; we need to make sure the inode
1856 		 * is removed from the orphan list in that case.
1857 		 */
1858 		if (inode->i_nlink)
1859 			ext4_orphan_del(NULL, inode);
1860 	}
1861 
1862 	return ret ? ret : copied;
1863 }
1864 
1865 /*
1866  * Reserve a single block located at lblock
1867  */
1868 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1869 {
1870 	int retries = 0;
1871 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1872 	struct ext4_inode_info *ei = EXT4_I(inode);
1873 	unsigned long md_needed;
1874 	int ret;
1875 
1876 	/*
1877 	 * recalculate the amount of metadata blocks to reserve
1878 	 * in order to allocate nrblocks
1879 	 * worse case is one extent per block
1880 	 */
1881 repeat:
1882 	spin_lock(&ei->i_block_reservation_lock);
1883 	md_needed = ext4_calc_metadata_amount(inode, lblock);
1884 	trace_ext4_da_reserve_space(inode, md_needed);
1885 	spin_unlock(&ei->i_block_reservation_lock);
1886 
1887 	/*
1888 	 * We will charge metadata quota at writeout time; this saves
1889 	 * us from metadata over-estimation, though we may go over by
1890 	 * a small amount in the end.  Here we just reserve for data.
1891 	 */
1892 	ret = dquot_reserve_block(inode, 1);
1893 	if (ret)
1894 		return ret;
1895 	/*
1896 	 * We do still charge estimated metadata to the sb though;
1897 	 * we cannot afford to run out of free blocks.
1898 	 */
1899 	if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1900 		dquot_release_reservation_block(inode, 1);
1901 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1902 			yield();
1903 			goto repeat;
1904 		}
1905 		return -ENOSPC;
1906 	}
1907 	spin_lock(&ei->i_block_reservation_lock);
1908 	ei->i_reserved_data_blocks++;
1909 	ei->i_reserved_meta_blocks += md_needed;
1910 	spin_unlock(&ei->i_block_reservation_lock);
1911 
1912 	return 0;       /* success */
1913 }
1914 
1915 static void ext4_da_release_space(struct inode *inode, int to_free)
1916 {
1917 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1918 	struct ext4_inode_info *ei = EXT4_I(inode);
1919 
1920 	if (!to_free)
1921 		return;		/* Nothing to release, exit */
1922 
1923 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1924 
1925 	trace_ext4_da_release_space(inode, to_free);
1926 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1927 		/*
1928 		 * if there aren't enough reserved blocks, then the
1929 		 * counter is messed up somewhere.  Since this
1930 		 * function is called from invalidate page, it's
1931 		 * harmless to return without any action.
1932 		 */
1933 		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1934 			 "ino %lu, to_free %d with only %d reserved "
1935 			 "data blocks\n", inode->i_ino, to_free,
1936 			 ei->i_reserved_data_blocks);
1937 		WARN_ON(1);
1938 		to_free = ei->i_reserved_data_blocks;
1939 	}
1940 	ei->i_reserved_data_blocks -= to_free;
1941 
1942 	if (ei->i_reserved_data_blocks == 0) {
1943 		/*
1944 		 * We can release all of the reserved metadata blocks
1945 		 * only when we have written all of the delayed
1946 		 * allocation blocks.
1947 		 */
1948 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1949 				   ei->i_reserved_meta_blocks);
1950 		ei->i_reserved_meta_blocks = 0;
1951 		ei->i_da_metadata_calc_len = 0;
1952 	}
1953 
1954 	/* update fs dirty data blocks counter */
1955 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1956 
1957 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1958 
1959 	dquot_release_reservation_block(inode, to_free);
1960 }
1961 
1962 static void ext4_da_page_release_reservation(struct page *page,
1963 					     unsigned long offset)
1964 {
1965 	int to_release = 0;
1966 	struct buffer_head *head, *bh;
1967 	unsigned int curr_off = 0;
1968 
1969 	head = page_buffers(page);
1970 	bh = head;
1971 	do {
1972 		unsigned int next_off = curr_off + bh->b_size;
1973 
1974 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1975 			to_release++;
1976 			clear_buffer_delay(bh);
1977 		}
1978 		curr_off = next_off;
1979 	} while ((bh = bh->b_this_page) != head);
1980 	ext4_da_release_space(page->mapping->host, to_release);
1981 }
1982 
1983 /*
1984  * Delayed allocation stuff
1985  */
1986 
1987 /*
1988  * mpage_da_submit_io - walks through extent of pages and try to write
1989  * them with writepage() call back
1990  *
1991  * @mpd->inode: inode
1992  * @mpd->first_page: first page of the extent
1993  * @mpd->next_page: page after the last page of the extent
1994  *
1995  * By the time mpage_da_submit_io() is called we expect all blocks
1996  * to be allocated. this may be wrong if allocation failed.
1997  *
1998  * As pages are already locked by write_cache_pages(), we can't use it
1999  */
2000 static int mpage_da_submit_io(struct mpage_da_data *mpd,
2001 			      struct ext4_map_blocks *map)
2002 {
2003 	struct pagevec pvec;
2004 	unsigned long index, end;
2005 	int ret = 0, err, nr_pages, i;
2006 	struct inode *inode = mpd->inode;
2007 	struct address_space *mapping = inode->i_mapping;
2008 	loff_t size = i_size_read(inode);
2009 	unsigned int len, block_start;
2010 	struct buffer_head *bh, *page_bufs = NULL;
2011 	int journal_data = ext4_should_journal_data(inode);
2012 	sector_t pblock = 0, cur_logical = 0;
2013 	struct ext4_io_submit io_submit;
2014 
2015 	BUG_ON(mpd->next_page <= mpd->first_page);
2016 	memset(&io_submit, 0, sizeof(io_submit));
2017 	/*
2018 	 * We need to start from the first_page to the next_page - 1
2019 	 * to make sure we also write the mapped dirty buffer_heads.
2020 	 * If we look at mpd->b_blocknr we would only be looking
2021 	 * at the currently mapped buffer_heads.
2022 	 */
2023 	index = mpd->first_page;
2024 	end = mpd->next_page - 1;
2025 
2026 	pagevec_init(&pvec, 0);
2027 	while (index <= end) {
2028 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2029 		if (nr_pages == 0)
2030 			break;
2031 		for (i = 0; i < nr_pages; i++) {
2032 			int commit_write = 0, skip_page = 0;
2033 			struct page *page = pvec.pages[i];
2034 
2035 			index = page->index;
2036 			if (index > end)
2037 				break;
2038 
2039 			if (index == size >> PAGE_CACHE_SHIFT)
2040 				len = size & ~PAGE_CACHE_MASK;
2041 			else
2042 				len = PAGE_CACHE_SIZE;
2043 			if (map) {
2044 				cur_logical = index << (PAGE_CACHE_SHIFT -
2045 							inode->i_blkbits);
2046 				pblock = map->m_pblk + (cur_logical -
2047 							map->m_lblk);
2048 			}
2049 			index++;
2050 
2051 			BUG_ON(!PageLocked(page));
2052 			BUG_ON(PageWriteback(page));
2053 
2054 			/*
2055 			 * If the page does not have buffers (for
2056 			 * whatever reason), try to create them using
2057 			 * __block_write_begin.  If this fails,
2058 			 * skip the page and move on.
2059 			 */
2060 			if (!page_has_buffers(page)) {
2061 				if (__block_write_begin(page, 0, len,
2062 						noalloc_get_block_write)) {
2063 				skip_page:
2064 					unlock_page(page);
2065 					continue;
2066 				}
2067 				commit_write = 1;
2068 			}
2069 
2070 			bh = page_bufs = page_buffers(page);
2071 			block_start = 0;
2072 			do {
2073 				if (!bh)
2074 					goto skip_page;
2075 				if (map && (cur_logical >= map->m_lblk) &&
2076 				    (cur_logical <= (map->m_lblk +
2077 						     (map->m_len - 1)))) {
2078 					if (buffer_delay(bh)) {
2079 						clear_buffer_delay(bh);
2080 						bh->b_blocknr = pblock;
2081 					}
2082 					if (buffer_unwritten(bh) ||
2083 					    buffer_mapped(bh))
2084 						BUG_ON(bh->b_blocknr != pblock);
2085 					if (map->m_flags & EXT4_MAP_UNINIT)
2086 						set_buffer_uninit(bh);
2087 					clear_buffer_unwritten(bh);
2088 				}
2089 
2090 				/* skip page if block allocation undone */
2091 				if (buffer_delay(bh) || buffer_unwritten(bh))
2092 					skip_page = 1;
2093 				bh = bh->b_this_page;
2094 				block_start += bh->b_size;
2095 				cur_logical++;
2096 				pblock++;
2097 			} while (bh != page_bufs);
2098 
2099 			if (skip_page)
2100 				goto skip_page;
2101 
2102 			if (commit_write)
2103 				/* mark the buffer_heads as dirty & uptodate */
2104 				block_commit_write(page, 0, len);
2105 
2106 			clear_page_dirty_for_io(page);
2107 			/*
2108 			 * Delalloc doesn't support data journalling,
2109 			 * but eventually maybe we'll lift this
2110 			 * restriction.
2111 			 */
2112 			if (unlikely(journal_data && PageChecked(page)))
2113 				err = __ext4_journalled_writepage(page, len);
2114 			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2115 				err = ext4_bio_write_page(&io_submit, page,
2116 							  len, mpd->wbc);
2117 			else
2118 				err = block_write_full_page(page,
2119 					noalloc_get_block_write, mpd->wbc);
2120 
2121 			if (!err)
2122 				mpd->pages_written++;
2123 			/*
2124 			 * In error case, we have to continue because
2125 			 * remaining pages are still locked
2126 			 */
2127 			if (ret == 0)
2128 				ret = err;
2129 		}
2130 		pagevec_release(&pvec);
2131 	}
2132 	ext4_io_submit(&io_submit);
2133 	return ret;
2134 }
2135 
2136 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
2137 {
2138 	int nr_pages, i;
2139 	pgoff_t index, end;
2140 	struct pagevec pvec;
2141 	struct inode *inode = mpd->inode;
2142 	struct address_space *mapping = inode->i_mapping;
2143 
2144 	index = mpd->first_page;
2145 	end   = mpd->next_page - 1;
2146 	while (index <= end) {
2147 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2148 		if (nr_pages == 0)
2149 			break;
2150 		for (i = 0; i < nr_pages; i++) {
2151 			struct page *page = pvec.pages[i];
2152 			if (page->index > end)
2153 				break;
2154 			BUG_ON(!PageLocked(page));
2155 			BUG_ON(PageWriteback(page));
2156 			block_invalidatepage(page, 0);
2157 			ClearPageUptodate(page);
2158 			unlock_page(page);
2159 		}
2160 		index = pvec.pages[nr_pages - 1]->index + 1;
2161 		pagevec_release(&pvec);
2162 	}
2163 	return;
2164 }
2165 
2166 static void ext4_print_free_blocks(struct inode *inode)
2167 {
2168 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2169 	printk(KERN_CRIT "Total free blocks count %lld\n",
2170 	       ext4_count_free_blocks(inode->i_sb));
2171 	printk(KERN_CRIT "Free/Dirty block details\n");
2172 	printk(KERN_CRIT "free_blocks=%lld\n",
2173 	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2174 	printk(KERN_CRIT "dirty_blocks=%lld\n",
2175 	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2176 	printk(KERN_CRIT "Block reservation details\n");
2177 	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2178 	       EXT4_I(inode)->i_reserved_data_blocks);
2179 	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2180 	       EXT4_I(inode)->i_reserved_meta_blocks);
2181 	return;
2182 }
2183 
2184 /*
2185  * mpage_da_map_and_submit - go through given space, map them
2186  *       if necessary, and then submit them for I/O
2187  *
2188  * @mpd - bh describing space
2189  *
2190  * The function skips space we know is already mapped to disk blocks.
2191  *
2192  */
2193 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2194 {
2195 	int err, blks, get_blocks_flags;
2196 	struct ext4_map_blocks map, *mapp = NULL;
2197 	sector_t next = mpd->b_blocknr;
2198 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2199 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2200 	handle_t *handle = NULL;
2201 
2202 	/*
2203 	 * If the blocks are mapped already, or we couldn't accumulate
2204 	 * any blocks, then proceed immediately to the submission stage.
2205 	 */
2206 	if ((mpd->b_size == 0) ||
2207 	    ((mpd->b_state  & (1 << BH_Mapped)) &&
2208 	     !(mpd->b_state & (1 << BH_Delay)) &&
2209 	     !(mpd->b_state & (1 << BH_Unwritten))))
2210 		goto submit_io;
2211 
2212 	handle = ext4_journal_current_handle();
2213 	BUG_ON(!handle);
2214 
2215 	/*
2216 	 * Call ext4_map_blocks() to allocate any delayed allocation
2217 	 * blocks, or to convert an uninitialized extent to be
2218 	 * initialized (in the case where we have written into
2219 	 * one or more preallocated blocks).
2220 	 *
2221 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2222 	 * indicate that we are on the delayed allocation path.  This
2223 	 * affects functions in many different parts of the allocation
2224 	 * call path.  This flag exists primarily because we don't
2225 	 * want to change *many* call functions, so ext4_map_blocks()
2226 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2227 	 * inode's allocation semaphore is taken.
2228 	 *
2229 	 * If the blocks in questions were delalloc blocks, set
2230 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2231 	 * variables are updated after the blocks have been allocated.
2232 	 */
2233 	map.m_lblk = next;
2234 	map.m_len = max_blocks;
2235 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2236 	if (ext4_should_dioread_nolock(mpd->inode))
2237 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2238 	if (mpd->b_state & (1 << BH_Delay))
2239 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2240 
2241 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2242 	if (blks < 0) {
2243 		struct super_block *sb = mpd->inode->i_sb;
2244 
2245 		err = blks;
2246 		/*
2247 		 * If get block returns EAGAIN or ENOSPC and there
2248 		 * appears to be free blocks we will just let
2249 		 * mpage_da_submit_io() unlock all of the pages.
2250 		 */
2251 		if (err == -EAGAIN)
2252 			goto submit_io;
2253 
2254 		if (err == -ENOSPC &&
2255 		    ext4_count_free_blocks(sb)) {
2256 			mpd->retval = err;
2257 			goto submit_io;
2258 		}
2259 
2260 		/*
2261 		 * get block failure will cause us to loop in
2262 		 * writepages, because a_ops->writepage won't be able
2263 		 * to make progress. The page will be redirtied by
2264 		 * writepage and writepages will again try to write
2265 		 * the same.
2266 		 */
2267 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2268 			ext4_msg(sb, KERN_CRIT,
2269 				 "delayed block allocation failed for inode %lu "
2270 				 "at logical offset %llu with max blocks %zd "
2271 				 "with error %d", mpd->inode->i_ino,
2272 				 (unsigned long long) next,
2273 				 mpd->b_size >> mpd->inode->i_blkbits, err);
2274 			ext4_msg(sb, KERN_CRIT,
2275 				"This should not happen!! Data will be lost\n");
2276 			if (err == -ENOSPC)
2277 				ext4_print_free_blocks(mpd->inode);
2278 		}
2279 		/* invalidate all the pages */
2280 		ext4_da_block_invalidatepages(mpd);
2281 
2282 		/* Mark this page range as having been completed */
2283 		mpd->io_done = 1;
2284 		return;
2285 	}
2286 	BUG_ON(blks == 0);
2287 
2288 	mapp = &map;
2289 	if (map.m_flags & EXT4_MAP_NEW) {
2290 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2291 		int i;
2292 
2293 		for (i = 0; i < map.m_len; i++)
2294 			unmap_underlying_metadata(bdev, map.m_pblk + i);
2295 	}
2296 
2297 	if (ext4_should_order_data(mpd->inode)) {
2298 		err = ext4_jbd2_file_inode(handle, mpd->inode);
2299 		if (err)
2300 			/* This only happens if the journal is aborted */
2301 			return;
2302 	}
2303 
2304 	/*
2305 	 * Update on-disk size along with block allocation.
2306 	 */
2307 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2308 	if (disksize > i_size_read(mpd->inode))
2309 		disksize = i_size_read(mpd->inode);
2310 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2311 		ext4_update_i_disksize(mpd->inode, disksize);
2312 		err = ext4_mark_inode_dirty(handle, mpd->inode);
2313 		if (err)
2314 			ext4_error(mpd->inode->i_sb,
2315 				   "Failed to mark inode %lu dirty",
2316 				   mpd->inode->i_ino);
2317 	}
2318 
2319 submit_io:
2320 	mpage_da_submit_io(mpd, mapp);
2321 	mpd->io_done = 1;
2322 }
2323 
2324 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2325 		(1 << BH_Delay) | (1 << BH_Unwritten))
2326 
2327 /*
2328  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2329  *
2330  * @mpd->lbh - extent of blocks
2331  * @logical - logical number of the block in the file
2332  * @bh - bh of the block (used to access block's state)
2333  *
2334  * the function is used to collect contig. blocks in same state
2335  */
2336 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2337 				   sector_t logical, size_t b_size,
2338 				   unsigned long b_state)
2339 {
2340 	sector_t next;
2341 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2342 
2343 	/*
2344 	 * XXX Don't go larger than mballoc is willing to allocate
2345 	 * This is a stopgap solution.  We eventually need to fold
2346 	 * mpage_da_submit_io() into this function and then call
2347 	 * ext4_map_blocks() multiple times in a loop
2348 	 */
2349 	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2350 		goto flush_it;
2351 
2352 	/* check if thereserved journal credits might overflow */
2353 	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2354 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2355 			/*
2356 			 * With non-extent format we are limited by the journal
2357 			 * credit available.  Total credit needed to insert
2358 			 * nrblocks contiguous blocks is dependent on the
2359 			 * nrblocks.  So limit nrblocks.
2360 			 */
2361 			goto flush_it;
2362 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2363 				EXT4_MAX_TRANS_DATA) {
2364 			/*
2365 			 * Adding the new buffer_head would make it cross the
2366 			 * allowed limit for which we have journal credit
2367 			 * reserved. So limit the new bh->b_size
2368 			 */
2369 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2370 						mpd->inode->i_blkbits;
2371 			/* we will do mpage_da_submit_io in the next loop */
2372 		}
2373 	}
2374 	/*
2375 	 * First block in the extent
2376 	 */
2377 	if (mpd->b_size == 0) {
2378 		mpd->b_blocknr = logical;
2379 		mpd->b_size = b_size;
2380 		mpd->b_state = b_state & BH_FLAGS;
2381 		return;
2382 	}
2383 
2384 	next = mpd->b_blocknr + nrblocks;
2385 	/*
2386 	 * Can we merge the block to our big extent?
2387 	 */
2388 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2389 		mpd->b_size += b_size;
2390 		return;
2391 	}
2392 
2393 flush_it:
2394 	/*
2395 	 * We couldn't merge the block to our extent, so we
2396 	 * need to flush current  extent and start new one
2397 	 */
2398 	mpage_da_map_and_submit(mpd);
2399 	return;
2400 }
2401 
2402 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2403 {
2404 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2405 }
2406 
2407 /*
2408  * This is a special get_blocks_t callback which is used by
2409  * ext4_da_write_begin().  It will either return mapped block or
2410  * reserve space for a single block.
2411  *
2412  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2413  * We also have b_blocknr = -1 and b_bdev initialized properly
2414  *
2415  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2416  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2417  * initialized properly.
2418  */
2419 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2420 				  struct buffer_head *bh, int create)
2421 {
2422 	struct ext4_map_blocks map;
2423 	int ret = 0;
2424 	sector_t invalid_block = ~((sector_t) 0xffff);
2425 
2426 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2427 		invalid_block = ~0;
2428 
2429 	BUG_ON(create == 0);
2430 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2431 
2432 	map.m_lblk = iblock;
2433 	map.m_len = 1;
2434 
2435 	/*
2436 	 * first, we need to know whether the block is allocated already
2437 	 * preallocated blocks are unmapped but should treated
2438 	 * the same as allocated blocks.
2439 	 */
2440 	ret = ext4_map_blocks(NULL, inode, &map, 0);
2441 	if (ret < 0)
2442 		return ret;
2443 	if (ret == 0) {
2444 		if (buffer_delay(bh))
2445 			return 0; /* Not sure this could or should happen */
2446 		/*
2447 		 * XXX: __block_write_begin() unmaps passed block, is it OK?
2448 		 */
2449 		ret = ext4_da_reserve_space(inode, iblock);
2450 		if (ret)
2451 			/* not enough space to reserve */
2452 			return ret;
2453 
2454 		map_bh(bh, inode->i_sb, invalid_block);
2455 		set_buffer_new(bh);
2456 		set_buffer_delay(bh);
2457 		return 0;
2458 	}
2459 
2460 	map_bh(bh, inode->i_sb, map.m_pblk);
2461 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2462 
2463 	if (buffer_unwritten(bh)) {
2464 		/* A delayed write to unwritten bh should be marked
2465 		 * new and mapped.  Mapped ensures that we don't do
2466 		 * get_block multiple times when we write to the same
2467 		 * offset and new ensures that we do proper zero out
2468 		 * for partial write.
2469 		 */
2470 		set_buffer_new(bh);
2471 		set_buffer_mapped(bh);
2472 	}
2473 	return 0;
2474 }
2475 
2476 /*
2477  * This function is used as a standard get_block_t calback function
2478  * when there is no desire to allocate any blocks.  It is used as a
2479  * callback function for block_write_begin() and block_write_full_page().
2480  * These functions should only try to map a single block at a time.
2481  *
2482  * Since this function doesn't do block allocations even if the caller
2483  * requests it by passing in create=1, it is critically important that
2484  * any caller checks to make sure that any buffer heads are returned
2485  * by this function are either all already mapped or marked for
2486  * delayed allocation before calling  block_write_full_page().  Otherwise,
2487  * b_blocknr could be left unitialized, and the page write functions will
2488  * be taken by surprise.
2489  */
2490 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2491 				   struct buffer_head *bh_result, int create)
2492 {
2493 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2494 	return _ext4_get_block(inode, iblock, bh_result, 0);
2495 }
2496 
2497 static int bget_one(handle_t *handle, struct buffer_head *bh)
2498 {
2499 	get_bh(bh);
2500 	return 0;
2501 }
2502 
2503 static int bput_one(handle_t *handle, struct buffer_head *bh)
2504 {
2505 	put_bh(bh);
2506 	return 0;
2507 }
2508 
2509 static int __ext4_journalled_writepage(struct page *page,
2510 				       unsigned int len)
2511 {
2512 	struct address_space *mapping = page->mapping;
2513 	struct inode *inode = mapping->host;
2514 	struct buffer_head *page_bufs;
2515 	handle_t *handle = NULL;
2516 	int ret = 0;
2517 	int err;
2518 
2519 	ClearPageChecked(page);
2520 	page_bufs = page_buffers(page);
2521 	BUG_ON(!page_bufs);
2522 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2523 	/* As soon as we unlock the page, it can go away, but we have
2524 	 * references to buffers so we are safe */
2525 	unlock_page(page);
2526 
2527 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2528 	if (IS_ERR(handle)) {
2529 		ret = PTR_ERR(handle);
2530 		goto out;
2531 	}
2532 
2533 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2534 				do_journal_get_write_access);
2535 
2536 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2537 				write_end_fn);
2538 	if (ret == 0)
2539 		ret = err;
2540 	err = ext4_journal_stop(handle);
2541 	if (!ret)
2542 		ret = err;
2543 
2544 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2545 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2546 out:
2547 	return ret;
2548 }
2549 
2550 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2551 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2552 
2553 /*
2554  * Note that we don't need to start a transaction unless we're journaling data
2555  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2556  * need to file the inode to the transaction's list in ordered mode because if
2557  * we are writing back data added by write(), the inode is already there and if
2558  * we are writing back data modified via mmap(), no one guarantees in which
2559  * transaction the data will hit the disk. In case we are journaling data, we
2560  * cannot start transaction directly because transaction start ranks above page
2561  * lock so we have to do some magic.
2562  *
2563  * This function can get called via...
2564  *   - ext4_da_writepages after taking page lock (have journal handle)
2565  *   - journal_submit_inode_data_buffers (no journal handle)
2566  *   - shrink_page_list via pdflush (no journal handle)
2567  *   - grab_page_cache when doing write_begin (have journal handle)
2568  *
2569  * We don't do any block allocation in this function. If we have page with
2570  * multiple blocks we need to write those buffer_heads that are mapped. This
2571  * is important for mmaped based write. So if we do with blocksize 1K
2572  * truncate(f, 1024);
2573  * a = mmap(f, 0, 4096);
2574  * a[0] = 'a';
2575  * truncate(f, 4096);
2576  * we have in the page first buffer_head mapped via page_mkwrite call back
2577  * but other bufer_heads would be unmapped but dirty(dirty done via the
2578  * do_wp_page). So writepage should write the first block. If we modify
2579  * the mmap area beyond 1024 we will again get a page_fault and the
2580  * page_mkwrite callback will do the block allocation and mark the
2581  * buffer_heads mapped.
2582  *
2583  * We redirty the page if we have any buffer_heads that is either delay or
2584  * unwritten in the page.
2585  *
2586  * We can get recursively called as show below.
2587  *
2588  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2589  *		ext4_writepage()
2590  *
2591  * But since we don't do any block allocation we should not deadlock.
2592  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2593  */
2594 static int ext4_writepage(struct page *page,
2595 			  struct writeback_control *wbc)
2596 {
2597 	int ret = 0, commit_write = 0;
2598 	loff_t size;
2599 	unsigned int len;
2600 	struct buffer_head *page_bufs = NULL;
2601 	struct inode *inode = page->mapping->host;
2602 
2603 	trace_ext4_writepage(page);
2604 	size = i_size_read(inode);
2605 	if (page->index == size >> PAGE_CACHE_SHIFT)
2606 		len = size & ~PAGE_CACHE_MASK;
2607 	else
2608 		len = PAGE_CACHE_SIZE;
2609 
2610 	/*
2611 	 * If the page does not have buffers (for whatever reason),
2612 	 * try to create them using __block_write_begin.  If this
2613 	 * fails, redirty the page and move on.
2614 	 */
2615 	if (!page_has_buffers(page)) {
2616 		if (__block_write_begin(page, 0, len,
2617 					noalloc_get_block_write)) {
2618 		redirty_page:
2619 			redirty_page_for_writepage(wbc, page);
2620 			unlock_page(page);
2621 			return 0;
2622 		}
2623 		commit_write = 1;
2624 	}
2625 	page_bufs = page_buffers(page);
2626 	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2627 			      ext4_bh_delay_or_unwritten)) {
2628 		/*
2629 		 * We don't want to do block allocation, so redirty
2630 		 * the page and return.  We may reach here when we do
2631 		 * a journal commit via journal_submit_inode_data_buffers.
2632 		 * We can also reach here via shrink_page_list
2633 		 */
2634 		goto redirty_page;
2635 	}
2636 	if (commit_write)
2637 		/* now mark the buffer_heads as dirty and uptodate */
2638 		block_commit_write(page, 0, len);
2639 
2640 	if (PageChecked(page) && ext4_should_journal_data(inode))
2641 		/*
2642 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2643 		 * doesn't seem much point in redirtying the page here.
2644 		 */
2645 		return __ext4_journalled_writepage(page, len);
2646 
2647 	if (buffer_uninit(page_bufs)) {
2648 		ext4_set_bh_endio(page_bufs, inode);
2649 		ret = block_write_full_page_endio(page, noalloc_get_block_write,
2650 					    wbc, ext4_end_io_buffer_write);
2651 	} else
2652 		ret = block_write_full_page(page, noalloc_get_block_write,
2653 					    wbc);
2654 
2655 	return ret;
2656 }
2657 
2658 /*
2659  * This is called via ext4_da_writepages() to
2660  * calculate the total number of credits to reserve to fit
2661  * a single extent allocation into a single transaction,
2662  * ext4_da_writpeages() will loop calling this before
2663  * the block allocation.
2664  */
2665 
2666 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2667 {
2668 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2669 
2670 	/*
2671 	 * With non-extent format the journal credit needed to
2672 	 * insert nrblocks contiguous block is dependent on
2673 	 * number of contiguous block. So we will limit
2674 	 * number of contiguous block to a sane value
2675 	 */
2676 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2677 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2678 		max_blocks = EXT4_MAX_TRANS_DATA;
2679 
2680 	return ext4_chunk_trans_blocks(inode, max_blocks);
2681 }
2682 
2683 /*
2684  * write_cache_pages_da - walk the list of dirty pages of the given
2685  * address space and accumulate pages that need writing, and call
2686  * mpage_da_map_and_submit to map a single contiguous memory region
2687  * and then write them.
2688  */
2689 static int write_cache_pages_da(struct address_space *mapping,
2690 				struct writeback_control *wbc,
2691 				struct mpage_da_data *mpd,
2692 				pgoff_t *done_index)
2693 {
2694 	struct buffer_head	*bh, *head;
2695 	struct inode		*inode = mapping->host;
2696 	struct pagevec		pvec;
2697 	unsigned int		nr_pages;
2698 	sector_t		logical;
2699 	pgoff_t			index, end;
2700 	long			nr_to_write = wbc->nr_to_write;
2701 	int			i, tag, ret = 0;
2702 
2703 	memset(mpd, 0, sizeof(struct mpage_da_data));
2704 	mpd->wbc = wbc;
2705 	mpd->inode = inode;
2706 	pagevec_init(&pvec, 0);
2707 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2708 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2709 
2710 	if (wbc->sync_mode == WB_SYNC_ALL)
2711 		tag = PAGECACHE_TAG_TOWRITE;
2712 	else
2713 		tag = PAGECACHE_TAG_DIRTY;
2714 
2715 	*done_index = index;
2716 	while (index <= end) {
2717 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2718 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2719 		if (nr_pages == 0)
2720 			return 0;
2721 
2722 		for (i = 0; i < nr_pages; i++) {
2723 			struct page *page = pvec.pages[i];
2724 
2725 			/*
2726 			 * At this point, the page may be truncated or
2727 			 * invalidated (changing page->mapping to NULL), or
2728 			 * even swizzled back from swapper_space to tmpfs file
2729 			 * mapping. However, page->index will not change
2730 			 * because we have a reference on the page.
2731 			 */
2732 			if (page->index > end)
2733 				goto out;
2734 
2735 			*done_index = page->index + 1;
2736 
2737 			/*
2738 			 * If we can't merge this page, and we have
2739 			 * accumulated an contiguous region, write it
2740 			 */
2741 			if ((mpd->next_page != page->index) &&
2742 			    (mpd->next_page != mpd->first_page)) {
2743 				mpage_da_map_and_submit(mpd);
2744 				goto ret_extent_tail;
2745 			}
2746 
2747 			lock_page(page);
2748 
2749 			/*
2750 			 * If the page is no longer dirty, or its
2751 			 * mapping no longer corresponds to inode we
2752 			 * are writing (which means it has been
2753 			 * truncated or invalidated), or the page is
2754 			 * already under writeback and we are not
2755 			 * doing a data integrity writeback, skip the page
2756 			 */
2757 			if (!PageDirty(page) ||
2758 			    (PageWriteback(page) &&
2759 			     (wbc->sync_mode == WB_SYNC_NONE)) ||
2760 			    unlikely(page->mapping != mapping)) {
2761 				unlock_page(page);
2762 				continue;
2763 			}
2764 
2765 			wait_on_page_writeback(page);
2766 			BUG_ON(PageWriteback(page));
2767 
2768 			if (mpd->next_page != page->index)
2769 				mpd->first_page = page->index;
2770 			mpd->next_page = page->index + 1;
2771 			logical = (sector_t) page->index <<
2772 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2773 
2774 			if (!page_has_buffers(page)) {
2775 				mpage_add_bh_to_extent(mpd, logical,
2776 						       PAGE_CACHE_SIZE,
2777 						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2778 				if (mpd->io_done)
2779 					goto ret_extent_tail;
2780 			} else {
2781 				/*
2782 				 * Page with regular buffer heads,
2783 				 * just add all dirty ones
2784 				 */
2785 				head = page_buffers(page);
2786 				bh = head;
2787 				do {
2788 					BUG_ON(buffer_locked(bh));
2789 					/*
2790 					 * We need to try to allocate
2791 					 * unmapped blocks in the same page.
2792 					 * Otherwise we won't make progress
2793 					 * with the page in ext4_writepage
2794 					 */
2795 					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2796 						mpage_add_bh_to_extent(mpd, logical,
2797 								       bh->b_size,
2798 								       bh->b_state);
2799 						if (mpd->io_done)
2800 							goto ret_extent_tail;
2801 					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2802 						/*
2803 						 * mapped dirty buffer. We need
2804 						 * to update the b_state
2805 						 * because we look at b_state
2806 						 * in mpage_da_map_blocks.  We
2807 						 * don't update b_size because
2808 						 * if we find an unmapped
2809 						 * buffer_head later we need to
2810 						 * use the b_state flag of that
2811 						 * buffer_head.
2812 						 */
2813 						if (mpd->b_size == 0)
2814 							mpd->b_state = bh->b_state & BH_FLAGS;
2815 					}
2816 					logical++;
2817 				} while ((bh = bh->b_this_page) != head);
2818 			}
2819 
2820 			if (nr_to_write > 0) {
2821 				nr_to_write--;
2822 				if (nr_to_write == 0 &&
2823 				    wbc->sync_mode == WB_SYNC_NONE)
2824 					/*
2825 					 * We stop writing back only if we are
2826 					 * not doing integrity sync. In case of
2827 					 * integrity sync we have to keep going
2828 					 * because someone may be concurrently
2829 					 * dirtying pages, and we might have
2830 					 * synced a lot of newly appeared dirty
2831 					 * pages, but have not synced all of the
2832 					 * old dirty pages.
2833 					 */
2834 					goto out;
2835 			}
2836 		}
2837 		pagevec_release(&pvec);
2838 		cond_resched();
2839 	}
2840 	return 0;
2841 ret_extent_tail:
2842 	ret = MPAGE_DA_EXTENT_TAIL;
2843 out:
2844 	pagevec_release(&pvec);
2845 	cond_resched();
2846 	return ret;
2847 }
2848 
2849 
2850 static int ext4_da_writepages(struct address_space *mapping,
2851 			      struct writeback_control *wbc)
2852 {
2853 	pgoff_t	index;
2854 	int range_whole = 0;
2855 	handle_t *handle = NULL;
2856 	struct mpage_da_data mpd;
2857 	struct inode *inode = mapping->host;
2858 	int pages_written = 0;
2859 	unsigned int max_pages;
2860 	int range_cyclic, cycled = 1, io_done = 0;
2861 	int needed_blocks, ret = 0;
2862 	long desired_nr_to_write, nr_to_writebump = 0;
2863 	loff_t range_start = wbc->range_start;
2864 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2865 	pgoff_t done_index = 0;
2866 	pgoff_t end;
2867 
2868 	trace_ext4_da_writepages(inode, wbc);
2869 
2870 	/*
2871 	 * No pages to write? This is mainly a kludge to avoid starting
2872 	 * a transaction for special inodes like journal inode on last iput()
2873 	 * because that could violate lock ordering on umount
2874 	 */
2875 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2876 		return 0;
2877 
2878 	/*
2879 	 * If the filesystem has aborted, it is read-only, so return
2880 	 * right away instead of dumping stack traces later on that
2881 	 * will obscure the real source of the problem.  We test
2882 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2883 	 * the latter could be true if the filesystem is mounted
2884 	 * read-only, and in that case, ext4_da_writepages should
2885 	 * *never* be called, so if that ever happens, we would want
2886 	 * the stack trace.
2887 	 */
2888 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2889 		return -EROFS;
2890 
2891 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2892 		range_whole = 1;
2893 
2894 	range_cyclic = wbc->range_cyclic;
2895 	if (wbc->range_cyclic) {
2896 		index = mapping->writeback_index;
2897 		if (index)
2898 			cycled = 0;
2899 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2900 		wbc->range_end  = LLONG_MAX;
2901 		wbc->range_cyclic = 0;
2902 		end = -1;
2903 	} else {
2904 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2905 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2906 	}
2907 
2908 	/*
2909 	 * This works around two forms of stupidity.  The first is in
2910 	 * the writeback code, which caps the maximum number of pages
2911 	 * written to be 1024 pages.  This is wrong on multiple
2912 	 * levels; different architectues have a different page size,
2913 	 * which changes the maximum amount of data which gets
2914 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2915 	 * forces this value to be 16 megabytes by multiplying
2916 	 * nr_to_write parameter by four, and then relies on its
2917 	 * allocator to allocate larger extents to make them
2918 	 * contiguous.  Unfortunately this brings us to the second
2919 	 * stupidity, which is that ext4's mballoc code only allocates
2920 	 * at most 2048 blocks.  So we force contiguous writes up to
2921 	 * the number of dirty blocks in the inode, or
2922 	 * sbi->max_writeback_mb_bump whichever is smaller.
2923 	 */
2924 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2925 	if (!range_cyclic && range_whole) {
2926 		if (wbc->nr_to_write == LONG_MAX)
2927 			desired_nr_to_write = wbc->nr_to_write;
2928 		else
2929 			desired_nr_to_write = wbc->nr_to_write * 8;
2930 	} else
2931 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2932 							   max_pages);
2933 	if (desired_nr_to_write > max_pages)
2934 		desired_nr_to_write = max_pages;
2935 
2936 	if (wbc->nr_to_write < desired_nr_to_write) {
2937 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2938 		wbc->nr_to_write = desired_nr_to_write;
2939 	}
2940 
2941 retry:
2942 	if (wbc->sync_mode == WB_SYNC_ALL)
2943 		tag_pages_for_writeback(mapping, index, end);
2944 
2945 	while (!ret && wbc->nr_to_write > 0) {
2946 
2947 		/*
2948 		 * we  insert one extent at a time. So we need
2949 		 * credit needed for single extent allocation.
2950 		 * journalled mode is currently not supported
2951 		 * by delalloc
2952 		 */
2953 		BUG_ON(ext4_should_journal_data(inode));
2954 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2955 
2956 		/* start a new transaction*/
2957 		handle = ext4_journal_start(inode, needed_blocks);
2958 		if (IS_ERR(handle)) {
2959 			ret = PTR_ERR(handle);
2960 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2961 			       "%ld pages, ino %lu; err %d", __func__,
2962 				wbc->nr_to_write, inode->i_ino, ret);
2963 			goto out_writepages;
2964 		}
2965 
2966 		/*
2967 		 * Now call write_cache_pages_da() to find the next
2968 		 * contiguous region of logical blocks that need
2969 		 * blocks to be allocated by ext4 and submit them.
2970 		 */
2971 		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2972 		/*
2973 		 * If we have a contiguous extent of pages and we
2974 		 * haven't done the I/O yet, map the blocks and submit
2975 		 * them for I/O.
2976 		 */
2977 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2978 			mpage_da_map_and_submit(&mpd);
2979 			ret = MPAGE_DA_EXTENT_TAIL;
2980 		}
2981 		trace_ext4_da_write_pages(inode, &mpd);
2982 		wbc->nr_to_write -= mpd.pages_written;
2983 
2984 		ext4_journal_stop(handle);
2985 
2986 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2987 			/* commit the transaction which would
2988 			 * free blocks released in the transaction
2989 			 * and try again
2990 			 */
2991 			jbd2_journal_force_commit_nested(sbi->s_journal);
2992 			ret = 0;
2993 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2994 			/*
2995 			 * got one extent now try with
2996 			 * rest of the pages
2997 			 */
2998 			pages_written += mpd.pages_written;
2999 			ret = 0;
3000 			io_done = 1;
3001 		} else if (wbc->nr_to_write)
3002 			/*
3003 			 * There is no more writeout needed
3004 			 * or we requested for a noblocking writeout
3005 			 * and we found the device congested
3006 			 */
3007 			break;
3008 	}
3009 	if (!io_done && !cycled) {
3010 		cycled = 1;
3011 		index = 0;
3012 		wbc->range_start = index << PAGE_CACHE_SHIFT;
3013 		wbc->range_end  = mapping->writeback_index - 1;
3014 		goto retry;
3015 	}
3016 
3017 	/* Update index */
3018 	wbc->range_cyclic = range_cyclic;
3019 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3020 		/*
3021 		 * set the writeback_index so that range_cyclic
3022 		 * mode will write it back later
3023 		 */
3024 		mapping->writeback_index = done_index;
3025 
3026 out_writepages:
3027 	wbc->nr_to_write -= nr_to_writebump;
3028 	wbc->range_start = range_start;
3029 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3030 	return ret;
3031 }
3032 
3033 #define FALL_BACK_TO_NONDELALLOC 1
3034 static int ext4_nonda_switch(struct super_block *sb)
3035 {
3036 	s64 free_blocks, dirty_blocks;
3037 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3038 
3039 	/*
3040 	 * switch to non delalloc mode if we are running low
3041 	 * on free block. The free block accounting via percpu
3042 	 * counters can get slightly wrong with percpu_counter_batch getting
3043 	 * accumulated on each CPU without updating global counters
3044 	 * Delalloc need an accurate free block accounting. So switch
3045 	 * to non delalloc when we are near to error range.
3046 	 */
3047 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3048 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3049 	if (2 * free_blocks < 3 * dirty_blocks ||
3050 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3051 		/*
3052 		 * free block count is less than 150% of dirty blocks
3053 		 * or free blocks is less than watermark
3054 		 */
3055 		return 1;
3056 	}
3057 	/*
3058 	 * Even if we don't switch but are nearing capacity,
3059 	 * start pushing delalloc when 1/2 of free blocks are dirty.
3060 	 */
3061 	if (free_blocks < 2 * dirty_blocks)
3062 		writeback_inodes_sb_if_idle(sb);
3063 
3064 	return 0;
3065 }
3066 
3067 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3068 			       loff_t pos, unsigned len, unsigned flags,
3069 			       struct page **pagep, void **fsdata)
3070 {
3071 	int ret, retries = 0;
3072 	struct page *page;
3073 	pgoff_t index;
3074 	struct inode *inode = mapping->host;
3075 	handle_t *handle;
3076 
3077 	index = pos >> PAGE_CACHE_SHIFT;
3078 
3079 	if (ext4_nonda_switch(inode->i_sb)) {
3080 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3081 		return ext4_write_begin(file, mapping, pos,
3082 					len, flags, pagep, fsdata);
3083 	}
3084 	*fsdata = (void *)0;
3085 	trace_ext4_da_write_begin(inode, pos, len, flags);
3086 retry:
3087 	/*
3088 	 * With delayed allocation, we don't log the i_disksize update
3089 	 * if there is delayed block allocation. But we still need
3090 	 * to journalling the i_disksize update if writes to the end
3091 	 * of file which has an already mapped buffer.
3092 	 */
3093 	handle = ext4_journal_start(inode, 1);
3094 	if (IS_ERR(handle)) {
3095 		ret = PTR_ERR(handle);
3096 		goto out;
3097 	}
3098 	/* We cannot recurse into the filesystem as the transaction is already
3099 	 * started */
3100 	flags |= AOP_FLAG_NOFS;
3101 
3102 	page = grab_cache_page_write_begin(mapping, index, flags);
3103 	if (!page) {
3104 		ext4_journal_stop(handle);
3105 		ret = -ENOMEM;
3106 		goto out;
3107 	}
3108 	*pagep = page;
3109 
3110 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3111 	if (ret < 0) {
3112 		unlock_page(page);
3113 		ext4_journal_stop(handle);
3114 		page_cache_release(page);
3115 		/*
3116 		 * block_write_begin may have instantiated a few blocks
3117 		 * outside i_size.  Trim these off again. Don't need
3118 		 * i_size_read because we hold i_mutex.
3119 		 */
3120 		if (pos + len > inode->i_size)
3121 			ext4_truncate_failed_write(inode);
3122 	}
3123 
3124 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3125 		goto retry;
3126 out:
3127 	return ret;
3128 }
3129 
3130 /*
3131  * Check if we should update i_disksize
3132  * when write to the end of file but not require block allocation
3133  */
3134 static int ext4_da_should_update_i_disksize(struct page *page,
3135 					    unsigned long offset)
3136 {
3137 	struct buffer_head *bh;
3138 	struct inode *inode = page->mapping->host;
3139 	unsigned int idx;
3140 	int i;
3141 
3142 	bh = page_buffers(page);
3143 	idx = offset >> inode->i_blkbits;
3144 
3145 	for (i = 0; i < idx; i++)
3146 		bh = bh->b_this_page;
3147 
3148 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3149 		return 0;
3150 	return 1;
3151 }
3152 
3153 static int ext4_da_write_end(struct file *file,
3154 			     struct address_space *mapping,
3155 			     loff_t pos, unsigned len, unsigned copied,
3156 			     struct page *page, void *fsdata)
3157 {
3158 	struct inode *inode = mapping->host;
3159 	int ret = 0, ret2;
3160 	handle_t *handle = ext4_journal_current_handle();
3161 	loff_t new_i_size;
3162 	unsigned long start, end;
3163 	int write_mode = (int)(unsigned long)fsdata;
3164 
3165 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3166 		if (ext4_should_order_data(inode)) {
3167 			return ext4_ordered_write_end(file, mapping, pos,
3168 					len, copied, page, fsdata);
3169 		} else if (ext4_should_writeback_data(inode)) {
3170 			return ext4_writeback_write_end(file, mapping, pos,
3171 					len, copied, page, fsdata);
3172 		} else {
3173 			BUG();
3174 		}
3175 	}
3176 
3177 	trace_ext4_da_write_end(inode, pos, len, copied);
3178 	start = pos & (PAGE_CACHE_SIZE - 1);
3179 	end = start + copied - 1;
3180 
3181 	/*
3182 	 * generic_write_end() will run mark_inode_dirty() if i_size
3183 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3184 	 * into that.
3185 	 */
3186 
3187 	new_i_size = pos + copied;
3188 	if (new_i_size > EXT4_I(inode)->i_disksize) {
3189 		if (ext4_da_should_update_i_disksize(page, end)) {
3190 			down_write(&EXT4_I(inode)->i_data_sem);
3191 			if (new_i_size > EXT4_I(inode)->i_disksize) {
3192 				/*
3193 				 * Updating i_disksize when extending file
3194 				 * without needing block allocation
3195 				 */
3196 				if (ext4_should_order_data(inode))
3197 					ret = ext4_jbd2_file_inode(handle,
3198 								   inode);
3199 
3200 				EXT4_I(inode)->i_disksize = new_i_size;
3201 			}
3202 			up_write(&EXT4_I(inode)->i_data_sem);
3203 			/* We need to mark inode dirty even if
3204 			 * new_i_size is less that inode->i_size
3205 			 * bu greater than i_disksize.(hint delalloc)
3206 			 */
3207 			ext4_mark_inode_dirty(handle, inode);
3208 		}
3209 	}
3210 	ret2 = generic_write_end(file, mapping, pos, len, copied,
3211 							page, fsdata);
3212 	copied = ret2;
3213 	if (ret2 < 0)
3214 		ret = ret2;
3215 	ret2 = ext4_journal_stop(handle);
3216 	if (!ret)
3217 		ret = ret2;
3218 
3219 	return ret ? ret : copied;
3220 }
3221 
3222 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3223 {
3224 	/*
3225 	 * Drop reserved blocks
3226 	 */
3227 	BUG_ON(!PageLocked(page));
3228 	if (!page_has_buffers(page))
3229 		goto out;
3230 
3231 	ext4_da_page_release_reservation(page, offset);
3232 
3233 out:
3234 	ext4_invalidatepage(page, offset);
3235 
3236 	return;
3237 }
3238 
3239 /*
3240  * Force all delayed allocation blocks to be allocated for a given inode.
3241  */
3242 int ext4_alloc_da_blocks(struct inode *inode)
3243 {
3244 	trace_ext4_alloc_da_blocks(inode);
3245 
3246 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
3247 	    !EXT4_I(inode)->i_reserved_meta_blocks)
3248 		return 0;
3249 
3250 	/*
3251 	 * We do something simple for now.  The filemap_flush() will
3252 	 * also start triggering a write of the data blocks, which is
3253 	 * not strictly speaking necessary (and for users of
3254 	 * laptop_mode, not even desirable).  However, to do otherwise
3255 	 * would require replicating code paths in:
3256 	 *
3257 	 * ext4_da_writepages() ->
3258 	 *    write_cache_pages() ---> (via passed in callback function)
3259 	 *        __mpage_da_writepage() -->
3260 	 *           mpage_add_bh_to_extent()
3261 	 *           mpage_da_map_blocks()
3262 	 *
3263 	 * The problem is that write_cache_pages(), located in
3264 	 * mm/page-writeback.c, marks pages clean in preparation for
3265 	 * doing I/O, which is not desirable if we're not planning on
3266 	 * doing I/O at all.
3267 	 *
3268 	 * We could call write_cache_pages(), and then redirty all of
3269 	 * the pages by calling redirty_page_for_writepage() but that
3270 	 * would be ugly in the extreme.  So instead we would need to
3271 	 * replicate parts of the code in the above functions,
3272 	 * simplifying them because we wouldn't actually intend to
3273 	 * write out the pages, but rather only collect contiguous
3274 	 * logical block extents, call the multi-block allocator, and
3275 	 * then update the buffer heads with the block allocations.
3276 	 *
3277 	 * For now, though, we'll cheat by calling filemap_flush(),
3278 	 * which will map the blocks, and start the I/O, but not
3279 	 * actually wait for the I/O to complete.
3280 	 */
3281 	return filemap_flush(inode->i_mapping);
3282 }
3283 
3284 /*
3285  * bmap() is special.  It gets used by applications such as lilo and by
3286  * the swapper to find the on-disk block of a specific piece of data.
3287  *
3288  * Naturally, this is dangerous if the block concerned is still in the
3289  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3290  * filesystem and enables swap, then they may get a nasty shock when the
3291  * data getting swapped to that swapfile suddenly gets overwritten by
3292  * the original zero's written out previously to the journal and
3293  * awaiting writeback in the kernel's buffer cache.
3294  *
3295  * So, if we see any bmap calls here on a modified, data-journaled file,
3296  * take extra steps to flush any blocks which might be in the cache.
3297  */
3298 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3299 {
3300 	struct inode *inode = mapping->host;
3301 	journal_t *journal;
3302 	int err;
3303 
3304 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3305 			test_opt(inode->i_sb, DELALLOC)) {
3306 		/*
3307 		 * With delalloc we want to sync the file
3308 		 * so that we can make sure we allocate
3309 		 * blocks for file
3310 		 */
3311 		filemap_write_and_wait(mapping);
3312 	}
3313 
3314 	if (EXT4_JOURNAL(inode) &&
3315 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3316 		/*
3317 		 * This is a REALLY heavyweight approach, but the use of
3318 		 * bmap on dirty files is expected to be extremely rare:
3319 		 * only if we run lilo or swapon on a freshly made file
3320 		 * do we expect this to happen.
3321 		 *
3322 		 * (bmap requires CAP_SYS_RAWIO so this does not
3323 		 * represent an unprivileged user DOS attack --- we'd be
3324 		 * in trouble if mortal users could trigger this path at
3325 		 * will.)
3326 		 *
3327 		 * NB. EXT4_STATE_JDATA is not set on files other than
3328 		 * regular files.  If somebody wants to bmap a directory
3329 		 * or symlink and gets confused because the buffer
3330 		 * hasn't yet been flushed to disk, they deserve
3331 		 * everything they get.
3332 		 */
3333 
3334 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3335 		journal = EXT4_JOURNAL(inode);
3336 		jbd2_journal_lock_updates(journal);
3337 		err = jbd2_journal_flush(journal);
3338 		jbd2_journal_unlock_updates(journal);
3339 
3340 		if (err)
3341 			return 0;
3342 	}
3343 
3344 	return generic_block_bmap(mapping, block, ext4_get_block);
3345 }
3346 
3347 static int ext4_readpage(struct file *file, struct page *page)
3348 {
3349 	trace_ext4_readpage(page);
3350 	return mpage_readpage(page, ext4_get_block);
3351 }
3352 
3353 static int
3354 ext4_readpages(struct file *file, struct address_space *mapping,
3355 		struct list_head *pages, unsigned nr_pages)
3356 {
3357 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3358 }
3359 
3360 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3361 {
3362 	struct buffer_head *head, *bh;
3363 	unsigned int curr_off = 0;
3364 
3365 	if (!page_has_buffers(page))
3366 		return;
3367 	head = bh = page_buffers(page);
3368 	do {
3369 		if (offset <= curr_off && test_clear_buffer_uninit(bh)
3370 					&& bh->b_private) {
3371 			ext4_free_io_end(bh->b_private);
3372 			bh->b_private = NULL;
3373 			bh->b_end_io = NULL;
3374 		}
3375 		curr_off = curr_off + bh->b_size;
3376 		bh = bh->b_this_page;
3377 	} while (bh != head);
3378 }
3379 
3380 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3381 {
3382 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3383 
3384 	trace_ext4_invalidatepage(page, offset);
3385 
3386 	/*
3387 	 * free any io_end structure allocated for buffers to be discarded
3388 	 */
3389 	if (ext4_should_dioread_nolock(page->mapping->host))
3390 		ext4_invalidatepage_free_endio(page, offset);
3391 	/*
3392 	 * If it's a full truncate we just forget about the pending dirtying
3393 	 */
3394 	if (offset == 0)
3395 		ClearPageChecked(page);
3396 
3397 	if (journal)
3398 		jbd2_journal_invalidatepage(journal, page, offset);
3399 	else
3400 		block_invalidatepage(page, offset);
3401 }
3402 
3403 static int ext4_releasepage(struct page *page, gfp_t wait)
3404 {
3405 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3406 
3407 	trace_ext4_releasepage(page);
3408 
3409 	WARN_ON(PageChecked(page));
3410 	if (!page_has_buffers(page))
3411 		return 0;
3412 	if (journal)
3413 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3414 	else
3415 		return try_to_free_buffers(page);
3416 }
3417 
3418 /*
3419  * O_DIRECT for ext3 (or indirect map) based files
3420  *
3421  * If the O_DIRECT write will extend the file then add this inode to the
3422  * orphan list.  So recovery will truncate it back to the original size
3423  * if the machine crashes during the write.
3424  *
3425  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3426  * crashes then stale disk data _may_ be exposed inside the file. But current
3427  * VFS code falls back into buffered path in that case so we are safe.
3428  */
3429 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3430 			      const struct iovec *iov, loff_t offset,
3431 			      unsigned long nr_segs)
3432 {
3433 	struct file *file = iocb->ki_filp;
3434 	struct inode *inode = file->f_mapping->host;
3435 	struct ext4_inode_info *ei = EXT4_I(inode);
3436 	handle_t *handle;
3437 	ssize_t ret;
3438 	int orphan = 0;
3439 	size_t count = iov_length(iov, nr_segs);
3440 	int retries = 0;
3441 
3442 	if (rw == WRITE) {
3443 		loff_t final_size = offset + count;
3444 
3445 		if (final_size > inode->i_size) {
3446 			/* Credits for sb + inode write */
3447 			handle = ext4_journal_start(inode, 2);
3448 			if (IS_ERR(handle)) {
3449 				ret = PTR_ERR(handle);
3450 				goto out;
3451 			}
3452 			ret = ext4_orphan_add(handle, inode);
3453 			if (ret) {
3454 				ext4_journal_stop(handle);
3455 				goto out;
3456 			}
3457 			orphan = 1;
3458 			ei->i_disksize = inode->i_size;
3459 			ext4_journal_stop(handle);
3460 		}
3461 	}
3462 
3463 retry:
3464 	if (rw == READ && ext4_should_dioread_nolock(inode))
3465 		ret = __blockdev_direct_IO(rw, iocb, inode,
3466 				 inode->i_sb->s_bdev, iov,
3467 				 offset, nr_segs,
3468 				 ext4_get_block, NULL, NULL, 0);
3469 	else {
3470 		ret = blockdev_direct_IO(rw, iocb, inode,
3471 				 inode->i_sb->s_bdev, iov,
3472 				 offset, nr_segs,
3473 				 ext4_get_block, NULL);
3474 
3475 		if (unlikely((rw & WRITE) && ret < 0)) {
3476 			loff_t isize = i_size_read(inode);
3477 			loff_t end = offset + iov_length(iov, nr_segs);
3478 
3479 			if (end > isize)
3480 				ext4_truncate_failed_write(inode);
3481 		}
3482 	}
3483 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3484 		goto retry;
3485 
3486 	if (orphan) {
3487 		int err;
3488 
3489 		/* Credits for sb + inode write */
3490 		handle = ext4_journal_start(inode, 2);
3491 		if (IS_ERR(handle)) {
3492 			/* This is really bad luck. We've written the data
3493 			 * but cannot extend i_size. Bail out and pretend
3494 			 * the write failed... */
3495 			ret = PTR_ERR(handle);
3496 			if (inode->i_nlink)
3497 				ext4_orphan_del(NULL, inode);
3498 
3499 			goto out;
3500 		}
3501 		if (inode->i_nlink)
3502 			ext4_orphan_del(handle, inode);
3503 		if (ret > 0) {
3504 			loff_t end = offset + ret;
3505 			if (end > inode->i_size) {
3506 				ei->i_disksize = end;
3507 				i_size_write(inode, end);
3508 				/*
3509 				 * We're going to return a positive `ret'
3510 				 * here due to non-zero-length I/O, so there's
3511 				 * no way of reporting error returns from
3512 				 * ext4_mark_inode_dirty() to userspace.  So
3513 				 * ignore it.
3514 				 */
3515 				ext4_mark_inode_dirty(handle, inode);
3516 			}
3517 		}
3518 		err = ext4_journal_stop(handle);
3519 		if (ret == 0)
3520 			ret = err;
3521 	}
3522 out:
3523 	return ret;
3524 }
3525 
3526 /*
3527  * ext4_get_block used when preparing for a DIO write or buffer write.
3528  * We allocate an uinitialized extent if blocks haven't been allocated.
3529  * The extent will be converted to initialized after the IO is complete.
3530  */
3531 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3532 		   struct buffer_head *bh_result, int create)
3533 {
3534 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3535 		   inode->i_ino, create);
3536 	return _ext4_get_block(inode, iblock, bh_result,
3537 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3538 }
3539 
3540 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3541 			    ssize_t size, void *private, int ret,
3542 			    bool is_async)
3543 {
3544         ext4_io_end_t *io_end = iocb->private;
3545 	struct workqueue_struct *wq;
3546 	unsigned long flags;
3547 	struct ext4_inode_info *ei;
3548 
3549 	/* if not async direct IO or dio with 0 bytes write, just return */
3550 	if (!io_end || !size)
3551 		goto out;
3552 
3553 	ext_debug("ext4_end_io_dio(): io_end 0x%p"
3554 		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3555  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3556 		  size);
3557 
3558 	/* if not aio dio with unwritten extents, just free io and return */
3559 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3560 		ext4_free_io_end(io_end);
3561 		iocb->private = NULL;
3562 out:
3563 		if (is_async)
3564 			aio_complete(iocb, ret, 0);
3565 		return;
3566 	}
3567 
3568 	io_end->offset = offset;
3569 	io_end->size = size;
3570 	if (is_async) {
3571 		io_end->iocb = iocb;
3572 		io_end->result = ret;
3573 	}
3574 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3575 
3576 	/* Add the io_end to per-inode completed aio dio list*/
3577 	ei = EXT4_I(io_end->inode);
3578 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3579 	list_add_tail(&io_end->list, &ei->i_completed_io_list);
3580 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3581 
3582 	/* queue the work to convert unwritten extents to written */
3583 	queue_work(wq, &io_end->work);
3584 	iocb->private = NULL;
3585 }
3586 
3587 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3588 {
3589 	ext4_io_end_t *io_end = bh->b_private;
3590 	struct workqueue_struct *wq;
3591 	struct inode *inode;
3592 	unsigned long flags;
3593 
3594 	if (!test_clear_buffer_uninit(bh) || !io_end)
3595 		goto out;
3596 
3597 	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3598 		printk("sb umounted, discard end_io request for inode %lu\n",
3599 			io_end->inode->i_ino);
3600 		ext4_free_io_end(io_end);
3601 		goto out;
3602 	}
3603 
3604 	io_end->flag = EXT4_IO_END_UNWRITTEN;
3605 	inode = io_end->inode;
3606 
3607 	/* Add the io_end to per-inode completed io list*/
3608 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3609 	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3610 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3611 
3612 	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3613 	/* queue the work to convert unwritten extents to written */
3614 	queue_work(wq, &io_end->work);
3615 out:
3616 	bh->b_private = NULL;
3617 	bh->b_end_io = NULL;
3618 	clear_buffer_uninit(bh);
3619 	end_buffer_async_write(bh, uptodate);
3620 }
3621 
3622 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3623 {
3624 	ext4_io_end_t *io_end;
3625 	struct page *page = bh->b_page;
3626 	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3627 	size_t size = bh->b_size;
3628 
3629 retry:
3630 	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3631 	if (!io_end) {
3632 		pr_warn_ratelimited("%s: allocation fail\n", __func__);
3633 		schedule();
3634 		goto retry;
3635 	}
3636 	io_end->offset = offset;
3637 	io_end->size = size;
3638 	/*
3639 	 * We need to hold a reference to the page to make sure it
3640 	 * doesn't get evicted before ext4_end_io_work() has a chance
3641 	 * to convert the extent from written to unwritten.
3642 	 */
3643 	io_end->page = page;
3644 	get_page(io_end->page);
3645 
3646 	bh->b_private = io_end;
3647 	bh->b_end_io = ext4_end_io_buffer_write;
3648 	return 0;
3649 }
3650 
3651 /*
3652  * For ext4 extent files, ext4 will do direct-io write to holes,
3653  * preallocated extents, and those write extend the file, no need to
3654  * fall back to buffered IO.
3655  *
3656  * For holes, we fallocate those blocks, mark them as uninitialized
3657  * If those blocks were preallocated, we mark sure they are splited, but
3658  * still keep the range to write as uninitialized.
3659  *
3660  * The unwrritten extents will be converted to written when DIO is completed.
3661  * For async direct IO, since the IO may still pending when return, we
3662  * set up an end_io call back function, which will do the conversion
3663  * when async direct IO completed.
3664  *
3665  * If the O_DIRECT write will extend the file then add this inode to the
3666  * orphan list.  So recovery will truncate it back to the original size
3667  * if the machine crashes during the write.
3668  *
3669  */
3670 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3671 			      const struct iovec *iov, loff_t offset,
3672 			      unsigned long nr_segs)
3673 {
3674 	struct file *file = iocb->ki_filp;
3675 	struct inode *inode = file->f_mapping->host;
3676 	ssize_t ret;
3677 	size_t count = iov_length(iov, nr_segs);
3678 
3679 	loff_t final_size = offset + count;
3680 	if (rw == WRITE && final_size <= inode->i_size) {
3681 		/*
3682  		 * We could direct write to holes and fallocate.
3683 		 *
3684  		 * Allocated blocks to fill the hole are marked as uninitialized
3685  		 * to prevent parallel buffered read to expose the stale data
3686  		 * before DIO complete the data IO.
3687 		 *
3688  		 * As to previously fallocated extents, ext4 get_block
3689  		 * will just simply mark the buffer mapped but still
3690  		 * keep the extents uninitialized.
3691  		 *
3692 		 * for non AIO case, we will convert those unwritten extents
3693 		 * to written after return back from blockdev_direct_IO.
3694 		 *
3695 		 * for async DIO, the conversion needs to be defered when
3696 		 * the IO is completed. The ext4 end_io callback function
3697 		 * will be called to take care of the conversion work.
3698 		 * Here for async case, we allocate an io_end structure to
3699 		 * hook to the iocb.
3700  		 */
3701 		iocb->private = NULL;
3702 		EXT4_I(inode)->cur_aio_dio = NULL;
3703 		if (!is_sync_kiocb(iocb)) {
3704 			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3705 			if (!iocb->private)
3706 				return -ENOMEM;
3707 			/*
3708 			 * we save the io structure for current async
3709 			 * direct IO, so that later ext4_map_blocks()
3710 			 * could flag the io structure whether there
3711 			 * is a unwritten extents needs to be converted
3712 			 * when IO is completed.
3713 			 */
3714 			EXT4_I(inode)->cur_aio_dio = iocb->private;
3715 		}
3716 
3717 		ret = blockdev_direct_IO(rw, iocb, inode,
3718 					 inode->i_sb->s_bdev, iov,
3719 					 offset, nr_segs,
3720 					 ext4_get_block_write,
3721 					 ext4_end_io_dio);
3722 		if (iocb->private)
3723 			EXT4_I(inode)->cur_aio_dio = NULL;
3724 		/*
3725 		 * The io_end structure takes a reference to the inode,
3726 		 * that structure needs to be destroyed and the
3727 		 * reference to the inode need to be dropped, when IO is
3728 		 * complete, even with 0 byte write, or failed.
3729 		 *
3730 		 * In the successful AIO DIO case, the io_end structure will be
3731 		 * desctroyed and the reference to the inode will be dropped
3732 		 * after the end_io call back function is called.
3733 		 *
3734 		 * In the case there is 0 byte write, or error case, since
3735 		 * VFS direct IO won't invoke the end_io call back function,
3736 		 * we need to free the end_io structure here.
3737 		 */
3738 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3739 			ext4_free_io_end(iocb->private);
3740 			iocb->private = NULL;
3741 		} else if (ret > 0 && ext4_test_inode_state(inode,
3742 						EXT4_STATE_DIO_UNWRITTEN)) {
3743 			int err;
3744 			/*
3745 			 * for non AIO case, since the IO is already
3746 			 * completed, we could do the conversion right here
3747 			 */
3748 			err = ext4_convert_unwritten_extents(inode,
3749 							     offset, ret);
3750 			if (err < 0)
3751 				ret = err;
3752 			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3753 		}
3754 		return ret;
3755 	}
3756 
3757 	/* for write the the end of file case, we fall back to old way */
3758 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3759 }
3760 
3761 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3762 			      const struct iovec *iov, loff_t offset,
3763 			      unsigned long nr_segs)
3764 {
3765 	struct file *file = iocb->ki_filp;
3766 	struct inode *inode = file->f_mapping->host;
3767 	ssize_t ret;
3768 
3769 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3770 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3771 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3772 	else
3773 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3774 	trace_ext4_direct_IO_exit(inode, offset,
3775 				iov_length(iov, nr_segs), rw, ret);
3776 	return ret;
3777 }
3778 
3779 /*
3780  * Pages can be marked dirty completely asynchronously from ext4's journalling
3781  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3782  * much here because ->set_page_dirty is called under VFS locks.  The page is
3783  * not necessarily locked.
3784  *
3785  * We cannot just dirty the page and leave attached buffers clean, because the
3786  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3787  * or jbddirty because all the journalling code will explode.
3788  *
3789  * So what we do is to mark the page "pending dirty" and next time writepage
3790  * is called, propagate that into the buffers appropriately.
3791  */
3792 static int ext4_journalled_set_page_dirty(struct page *page)
3793 {
3794 	SetPageChecked(page);
3795 	return __set_page_dirty_nobuffers(page);
3796 }
3797 
3798 static const struct address_space_operations ext4_ordered_aops = {
3799 	.readpage		= ext4_readpage,
3800 	.readpages		= ext4_readpages,
3801 	.writepage		= ext4_writepage,
3802 	.write_begin		= ext4_write_begin,
3803 	.write_end		= ext4_ordered_write_end,
3804 	.bmap			= ext4_bmap,
3805 	.invalidatepage		= ext4_invalidatepage,
3806 	.releasepage		= ext4_releasepage,
3807 	.direct_IO		= ext4_direct_IO,
3808 	.migratepage		= buffer_migrate_page,
3809 	.is_partially_uptodate  = block_is_partially_uptodate,
3810 	.error_remove_page	= generic_error_remove_page,
3811 };
3812 
3813 static const struct address_space_operations ext4_writeback_aops = {
3814 	.readpage		= ext4_readpage,
3815 	.readpages		= ext4_readpages,
3816 	.writepage		= ext4_writepage,
3817 	.write_begin		= ext4_write_begin,
3818 	.write_end		= ext4_writeback_write_end,
3819 	.bmap			= ext4_bmap,
3820 	.invalidatepage		= ext4_invalidatepage,
3821 	.releasepage		= ext4_releasepage,
3822 	.direct_IO		= ext4_direct_IO,
3823 	.migratepage		= buffer_migrate_page,
3824 	.is_partially_uptodate  = block_is_partially_uptodate,
3825 	.error_remove_page	= generic_error_remove_page,
3826 };
3827 
3828 static const struct address_space_operations ext4_journalled_aops = {
3829 	.readpage		= ext4_readpage,
3830 	.readpages		= ext4_readpages,
3831 	.writepage		= ext4_writepage,
3832 	.write_begin		= ext4_write_begin,
3833 	.write_end		= ext4_journalled_write_end,
3834 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3835 	.bmap			= ext4_bmap,
3836 	.invalidatepage		= ext4_invalidatepage,
3837 	.releasepage		= ext4_releasepage,
3838 	.is_partially_uptodate  = block_is_partially_uptodate,
3839 	.error_remove_page	= generic_error_remove_page,
3840 };
3841 
3842 static const struct address_space_operations ext4_da_aops = {
3843 	.readpage		= ext4_readpage,
3844 	.readpages		= ext4_readpages,
3845 	.writepage		= ext4_writepage,
3846 	.writepages		= ext4_da_writepages,
3847 	.write_begin		= ext4_da_write_begin,
3848 	.write_end		= ext4_da_write_end,
3849 	.bmap			= ext4_bmap,
3850 	.invalidatepage		= ext4_da_invalidatepage,
3851 	.releasepage		= ext4_releasepage,
3852 	.direct_IO		= ext4_direct_IO,
3853 	.migratepage		= buffer_migrate_page,
3854 	.is_partially_uptodate  = block_is_partially_uptodate,
3855 	.error_remove_page	= generic_error_remove_page,
3856 };
3857 
3858 void ext4_set_aops(struct inode *inode)
3859 {
3860 	if (ext4_should_order_data(inode) &&
3861 		test_opt(inode->i_sb, DELALLOC))
3862 		inode->i_mapping->a_ops = &ext4_da_aops;
3863 	else if (ext4_should_order_data(inode))
3864 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3865 	else if (ext4_should_writeback_data(inode) &&
3866 		 test_opt(inode->i_sb, DELALLOC))
3867 		inode->i_mapping->a_ops = &ext4_da_aops;
3868 	else if (ext4_should_writeback_data(inode))
3869 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3870 	else
3871 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3872 }
3873 
3874 /*
3875  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3876  * up to the end of the block which corresponds to `from'.
3877  * This required during truncate. We need to physically zero the tail end
3878  * of that block so it doesn't yield old data if the file is later grown.
3879  */
3880 int ext4_block_truncate_page(handle_t *handle,
3881 		struct address_space *mapping, loff_t from)
3882 {
3883 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3884 	unsigned length;
3885 	unsigned blocksize;
3886 	struct inode *inode = mapping->host;
3887 
3888 	blocksize = inode->i_sb->s_blocksize;
3889 	length = blocksize - (offset & (blocksize - 1));
3890 
3891 	return ext4_block_zero_page_range(handle, mapping, from, length);
3892 }
3893 
3894 /*
3895  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3896  * starting from file offset 'from'.  The range to be zero'd must
3897  * be contained with in one block.  If the specified range exceeds
3898  * the end of the block it will be shortened to end of the block
3899  * that cooresponds to 'from'
3900  */
3901 int ext4_block_zero_page_range(handle_t *handle,
3902 		struct address_space *mapping, loff_t from, loff_t length)
3903 {
3904 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3905 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3906 	unsigned blocksize, max, pos;
3907 	ext4_lblk_t iblock;
3908 	struct inode *inode = mapping->host;
3909 	struct buffer_head *bh;
3910 	struct page *page;
3911 	int err = 0;
3912 
3913 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3914 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3915 	if (!page)
3916 		return -EINVAL;
3917 
3918 	blocksize = inode->i_sb->s_blocksize;
3919 	max = blocksize - (offset & (blocksize - 1));
3920 
3921 	/*
3922 	 * correct length if it does not fall between
3923 	 * 'from' and the end of the block
3924 	 */
3925 	if (length > max || length < 0)
3926 		length = max;
3927 
3928 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3929 
3930 	if (!page_has_buffers(page))
3931 		create_empty_buffers(page, blocksize, 0);
3932 
3933 	/* Find the buffer that contains "offset" */
3934 	bh = page_buffers(page);
3935 	pos = blocksize;
3936 	while (offset >= pos) {
3937 		bh = bh->b_this_page;
3938 		iblock++;
3939 		pos += blocksize;
3940 	}
3941 
3942 	err = 0;
3943 	if (buffer_freed(bh)) {
3944 		BUFFER_TRACE(bh, "freed: skip");
3945 		goto unlock;
3946 	}
3947 
3948 	if (!buffer_mapped(bh)) {
3949 		BUFFER_TRACE(bh, "unmapped");
3950 		ext4_get_block(inode, iblock, bh, 0);
3951 		/* unmapped? It's a hole - nothing to do */
3952 		if (!buffer_mapped(bh)) {
3953 			BUFFER_TRACE(bh, "still unmapped");
3954 			goto unlock;
3955 		}
3956 	}
3957 
3958 	/* Ok, it's mapped. Make sure it's up-to-date */
3959 	if (PageUptodate(page))
3960 		set_buffer_uptodate(bh);
3961 
3962 	if (!buffer_uptodate(bh)) {
3963 		err = -EIO;
3964 		ll_rw_block(READ, 1, &bh);
3965 		wait_on_buffer(bh);
3966 		/* Uhhuh. Read error. Complain and punt. */
3967 		if (!buffer_uptodate(bh))
3968 			goto unlock;
3969 	}
3970 
3971 	if (ext4_should_journal_data(inode)) {
3972 		BUFFER_TRACE(bh, "get write access");
3973 		err = ext4_journal_get_write_access(handle, bh);
3974 		if (err)
3975 			goto unlock;
3976 	}
3977 
3978 	zero_user(page, offset, length);
3979 
3980 	BUFFER_TRACE(bh, "zeroed end of block");
3981 
3982 	err = 0;
3983 	if (ext4_should_journal_data(inode)) {
3984 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3985 	} else {
3986 		if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
3987 			err = ext4_jbd2_file_inode(handle, inode);
3988 		mark_buffer_dirty(bh);
3989 	}
3990 
3991 unlock:
3992 	unlock_page(page);
3993 	page_cache_release(page);
3994 	return err;
3995 }
3996 
3997 /*
3998  * Probably it should be a library function... search for first non-zero word
3999  * or memcmp with zero_page, whatever is better for particular architecture.
4000  * Linus?
4001  */
4002 static inline int all_zeroes(__le32 *p, __le32 *q)
4003 {
4004 	while (p < q)
4005 		if (*p++)
4006 			return 0;
4007 	return 1;
4008 }
4009 
4010 /**
4011  *	ext4_find_shared - find the indirect blocks for partial truncation.
4012  *	@inode:	  inode in question
4013  *	@depth:	  depth of the affected branch
4014  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4015  *	@chain:	  place to store the pointers to partial indirect blocks
4016  *	@top:	  place to the (detached) top of branch
4017  *
4018  *	This is a helper function used by ext4_truncate().
4019  *
4020  *	When we do truncate() we may have to clean the ends of several
4021  *	indirect blocks but leave the blocks themselves alive. Block is
4022  *	partially truncated if some data below the new i_size is referred
4023  *	from it (and it is on the path to the first completely truncated
4024  *	data block, indeed).  We have to free the top of that path along
4025  *	with everything to the right of the path. Since no allocation
4026  *	past the truncation point is possible until ext4_truncate()
4027  *	finishes, we may safely do the latter, but top of branch may
4028  *	require special attention - pageout below the truncation point
4029  *	might try to populate it.
4030  *
4031  *	We atomically detach the top of branch from the tree, store the
4032  *	block number of its root in *@top, pointers to buffer_heads of
4033  *	partially truncated blocks - in @chain[].bh and pointers to
4034  *	their last elements that should not be removed - in
4035  *	@chain[].p. Return value is the pointer to last filled element
4036  *	of @chain.
4037  *
4038  *	The work left to caller to do the actual freeing of subtrees:
4039  *		a) free the subtree starting from *@top
4040  *		b) free the subtrees whose roots are stored in
4041  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
4042  *		c) free the subtrees growing from the inode past the @chain[0].
4043  *			(no partially truncated stuff there).  */
4044 
4045 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4046 				  ext4_lblk_t offsets[4], Indirect chain[4],
4047 				  __le32 *top)
4048 {
4049 	Indirect *partial, *p;
4050 	int k, err;
4051 
4052 	*top = 0;
4053 	/* Make k index the deepest non-null offset + 1 */
4054 	for (k = depth; k > 1 && !offsets[k-1]; k--)
4055 		;
4056 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4057 	/* Writer: pointers */
4058 	if (!partial)
4059 		partial = chain + k-1;
4060 	/*
4061 	 * If the branch acquired continuation since we've looked at it -
4062 	 * fine, it should all survive and (new) top doesn't belong to us.
4063 	 */
4064 	if (!partial->key && *partial->p)
4065 		/* Writer: end */
4066 		goto no_top;
4067 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4068 		;
4069 	/*
4070 	 * OK, we've found the last block that must survive. The rest of our
4071 	 * branch should be detached before unlocking. However, if that rest
4072 	 * of branch is all ours and does not grow immediately from the inode
4073 	 * it's easier to cheat and just decrement partial->p.
4074 	 */
4075 	if (p == chain + k - 1 && p > chain) {
4076 		p->p--;
4077 	} else {
4078 		*top = *p->p;
4079 		/* Nope, don't do this in ext4.  Must leave the tree intact */
4080 #if 0
4081 		*p->p = 0;
4082 #endif
4083 	}
4084 	/* Writer: end */
4085 
4086 	while (partial > p) {
4087 		brelse(partial->bh);
4088 		partial--;
4089 	}
4090 no_top:
4091 	return partial;
4092 }
4093 
4094 /*
4095  * Zero a number of block pointers in either an inode or an indirect block.
4096  * If we restart the transaction we must again get write access to the
4097  * indirect block for further modification.
4098  *
4099  * We release `count' blocks on disk, but (last - first) may be greater
4100  * than `count' because there can be holes in there.
4101  *
4102  * Return 0 on success, 1 on invalid block range
4103  * and < 0 on fatal error.
4104  */
4105 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4106 			     struct buffer_head *bh,
4107 			     ext4_fsblk_t block_to_free,
4108 			     unsigned long count, __le32 *first,
4109 			     __le32 *last)
4110 {
4111 	__le32 *p;
4112 	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4113 	int	err;
4114 
4115 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4116 		flags |= EXT4_FREE_BLOCKS_METADATA;
4117 
4118 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4119 				   count)) {
4120 		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4121 				 "blocks %llu len %lu",
4122 				 (unsigned long long) block_to_free, count);
4123 		return 1;
4124 	}
4125 
4126 	if (try_to_extend_transaction(handle, inode)) {
4127 		if (bh) {
4128 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4129 			err = ext4_handle_dirty_metadata(handle, inode, bh);
4130 			if (unlikely(err))
4131 				goto out_err;
4132 		}
4133 		err = ext4_mark_inode_dirty(handle, inode);
4134 		if (unlikely(err))
4135 			goto out_err;
4136 		err = ext4_truncate_restart_trans(handle, inode,
4137 						  blocks_for_truncate(inode));
4138 		if (unlikely(err))
4139 			goto out_err;
4140 		if (bh) {
4141 			BUFFER_TRACE(bh, "retaking write access");
4142 			err = ext4_journal_get_write_access(handle, bh);
4143 			if (unlikely(err))
4144 				goto out_err;
4145 		}
4146 	}
4147 
4148 	for (p = first; p < last; p++)
4149 		*p = 0;
4150 
4151 	ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
4152 	return 0;
4153 out_err:
4154 	ext4_std_error(inode->i_sb, err);
4155 	return err;
4156 }
4157 
4158 /**
4159  * ext4_free_data - free a list of data blocks
4160  * @handle:	handle for this transaction
4161  * @inode:	inode we are dealing with
4162  * @this_bh:	indirect buffer_head which contains *@first and *@last
4163  * @first:	array of block numbers
4164  * @last:	points immediately past the end of array
4165  *
4166  * We are freeing all blocks referred from that array (numbers are stored as
4167  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4168  *
4169  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4170  * blocks are contiguous then releasing them at one time will only affect one
4171  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4172  * actually use a lot of journal space.
4173  *
4174  * @this_bh will be %NULL if @first and @last point into the inode's direct
4175  * block pointers.
4176  */
4177 static void ext4_free_data(handle_t *handle, struct inode *inode,
4178 			   struct buffer_head *this_bh,
4179 			   __le32 *first, __le32 *last)
4180 {
4181 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4182 	unsigned long count = 0;	    /* Number of blocks in the run */
4183 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
4184 					       corresponding to
4185 					       block_to_free */
4186 	ext4_fsblk_t nr;		    /* Current block # */
4187 	__le32 *p;			    /* Pointer into inode/ind
4188 					       for current block */
4189 	int err = 0;
4190 
4191 	if (this_bh) {				/* For indirect block */
4192 		BUFFER_TRACE(this_bh, "get_write_access");
4193 		err = ext4_journal_get_write_access(handle, this_bh);
4194 		/* Important: if we can't update the indirect pointers
4195 		 * to the blocks, we can't free them. */
4196 		if (err)
4197 			return;
4198 	}
4199 
4200 	for (p = first; p < last; p++) {
4201 		nr = le32_to_cpu(*p);
4202 		if (nr) {
4203 			/* accumulate blocks to free if they're contiguous */
4204 			if (count == 0) {
4205 				block_to_free = nr;
4206 				block_to_free_p = p;
4207 				count = 1;
4208 			} else if (nr == block_to_free + count) {
4209 				count++;
4210 			} else {
4211 				err = ext4_clear_blocks(handle, inode, this_bh,
4212 						        block_to_free, count,
4213 						        block_to_free_p, p);
4214 				if (err)
4215 					break;
4216 				block_to_free = nr;
4217 				block_to_free_p = p;
4218 				count = 1;
4219 			}
4220 		}
4221 	}
4222 
4223 	if (!err && count > 0)
4224 		err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4225 					count, block_to_free_p, p);
4226 	if (err < 0)
4227 		/* fatal error */
4228 		return;
4229 
4230 	if (this_bh) {
4231 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4232 
4233 		/*
4234 		 * The buffer head should have an attached journal head at this
4235 		 * point. However, if the data is corrupted and an indirect
4236 		 * block pointed to itself, it would have been detached when
4237 		 * the block was cleared. Check for this instead of OOPSing.
4238 		 */
4239 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4240 			ext4_handle_dirty_metadata(handle, inode, this_bh);
4241 		else
4242 			EXT4_ERROR_INODE(inode,
4243 					 "circular indirect block detected at "
4244 					 "block %llu",
4245 				(unsigned long long) this_bh->b_blocknr);
4246 	}
4247 }
4248 
4249 /**
4250  *	ext4_free_branches - free an array of branches
4251  *	@handle: JBD handle for this transaction
4252  *	@inode:	inode we are dealing with
4253  *	@parent_bh: the buffer_head which contains *@first and *@last
4254  *	@first:	array of block numbers
4255  *	@last:	pointer immediately past the end of array
4256  *	@depth:	depth of the branches to free
4257  *
4258  *	We are freeing all blocks referred from these branches (numbers are
4259  *	stored as little-endian 32-bit) and updating @inode->i_blocks
4260  *	appropriately.
4261  */
4262 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4263 			       struct buffer_head *parent_bh,
4264 			       __le32 *first, __le32 *last, int depth)
4265 {
4266 	ext4_fsblk_t nr;
4267 	__le32 *p;
4268 
4269 	if (ext4_handle_is_aborted(handle))
4270 		return;
4271 
4272 	if (depth--) {
4273 		struct buffer_head *bh;
4274 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4275 		p = last;
4276 		while (--p >= first) {
4277 			nr = le32_to_cpu(*p);
4278 			if (!nr)
4279 				continue;		/* A hole */
4280 
4281 			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4282 						   nr, 1)) {
4283 				EXT4_ERROR_INODE(inode,
4284 						 "invalid indirect mapped "
4285 						 "block %lu (level %d)",
4286 						 (unsigned long) nr, depth);
4287 				break;
4288 			}
4289 
4290 			/* Go read the buffer for the next level down */
4291 			bh = sb_bread(inode->i_sb, nr);
4292 
4293 			/*
4294 			 * A read failure? Report error and clear slot
4295 			 * (should be rare).
4296 			 */
4297 			if (!bh) {
4298 				EXT4_ERROR_INODE_BLOCK(inode, nr,
4299 						       "Read failure");
4300 				continue;
4301 			}
4302 
4303 			/* This zaps the entire block.  Bottom up. */
4304 			BUFFER_TRACE(bh, "free child branches");
4305 			ext4_free_branches(handle, inode, bh,
4306 					(__le32 *) bh->b_data,
4307 					(__le32 *) bh->b_data + addr_per_block,
4308 					depth);
4309 			brelse(bh);
4310 
4311 			/*
4312 			 * Everything below this this pointer has been
4313 			 * released.  Now let this top-of-subtree go.
4314 			 *
4315 			 * We want the freeing of this indirect block to be
4316 			 * atomic in the journal with the updating of the
4317 			 * bitmap block which owns it.  So make some room in
4318 			 * the journal.
4319 			 *
4320 			 * We zero the parent pointer *after* freeing its
4321 			 * pointee in the bitmaps, so if extend_transaction()
4322 			 * for some reason fails to put the bitmap changes and
4323 			 * the release into the same transaction, recovery
4324 			 * will merely complain about releasing a free block,
4325 			 * rather than leaking blocks.
4326 			 */
4327 			if (ext4_handle_is_aborted(handle))
4328 				return;
4329 			if (try_to_extend_transaction(handle, inode)) {
4330 				ext4_mark_inode_dirty(handle, inode);
4331 				ext4_truncate_restart_trans(handle, inode,
4332 					    blocks_for_truncate(inode));
4333 			}
4334 
4335 			/*
4336 			 * The forget flag here is critical because if
4337 			 * we are journaling (and not doing data
4338 			 * journaling), we have to make sure a revoke
4339 			 * record is written to prevent the journal
4340 			 * replay from overwriting the (former)
4341 			 * indirect block if it gets reallocated as a
4342 			 * data block.  This must happen in the same
4343 			 * transaction where the data blocks are
4344 			 * actually freed.
4345 			 */
4346 			ext4_free_blocks(handle, inode, NULL, nr, 1,
4347 					 EXT4_FREE_BLOCKS_METADATA|
4348 					 EXT4_FREE_BLOCKS_FORGET);
4349 
4350 			if (parent_bh) {
4351 				/*
4352 				 * The block which we have just freed is
4353 				 * pointed to by an indirect block: journal it
4354 				 */
4355 				BUFFER_TRACE(parent_bh, "get_write_access");
4356 				if (!ext4_journal_get_write_access(handle,
4357 								   parent_bh)){
4358 					*p = 0;
4359 					BUFFER_TRACE(parent_bh,
4360 					"call ext4_handle_dirty_metadata");
4361 					ext4_handle_dirty_metadata(handle,
4362 								   inode,
4363 								   parent_bh);
4364 				}
4365 			}
4366 		}
4367 	} else {
4368 		/* We have reached the bottom of the tree. */
4369 		BUFFER_TRACE(parent_bh, "free data blocks");
4370 		ext4_free_data(handle, inode, parent_bh, first, last);
4371 	}
4372 }
4373 
4374 int ext4_can_truncate(struct inode *inode)
4375 {
4376 	if (S_ISREG(inode->i_mode))
4377 		return 1;
4378 	if (S_ISDIR(inode->i_mode))
4379 		return 1;
4380 	if (S_ISLNK(inode->i_mode))
4381 		return !ext4_inode_is_fast_symlink(inode);
4382 	return 0;
4383 }
4384 
4385 /*
4386  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
4387  * associated with the given offset and length
4388  *
4389  * @inode:  File inode
4390  * @offset: The offset where the hole will begin
4391  * @len:    The length of the hole
4392  *
4393  * Returns: 0 on sucess or negative on failure
4394  */
4395 
4396 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4397 {
4398 	struct inode *inode = file->f_path.dentry->d_inode;
4399 	if (!S_ISREG(inode->i_mode))
4400 		return -ENOTSUPP;
4401 
4402 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4403 		/* TODO: Add support for non extent hole punching */
4404 		return -ENOTSUPP;
4405 	}
4406 
4407 	return ext4_ext_punch_hole(file, offset, length);
4408 }
4409 
4410 /*
4411  * ext4_truncate()
4412  *
4413  * We block out ext4_get_block() block instantiations across the entire
4414  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4415  * simultaneously on behalf of the same inode.
4416  *
4417  * As we work through the truncate and commmit bits of it to the journal there
4418  * is one core, guiding principle: the file's tree must always be consistent on
4419  * disk.  We must be able to restart the truncate after a crash.
4420  *
4421  * The file's tree may be transiently inconsistent in memory (although it
4422  * probably isn't), but whenever we close off and commit a journal transaction,
4423  * the contents of (the filesystem + the journal) must be consistent and
4424  * restartable.  It's pretty simple, really: bottom up, right to left (although
4425  * left-to-right works OK too).
4426  *
4427  * Note that at recovery time, journal replay occurs *before* the restart of
4428  * truncate against the orphan inode list.
4429  *
4430  * The committed inode has the new, desired i_size (which is the same as
4431  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4432  * that this inode's truncate did not complete and it will again call
4433  * ext4_truncate() to have another go.  So there will be instantiated blocks
4434  * to the right of the truncation point in a crashed ext4 filesystem.  But
4435  * that's fine - as long as they are linked from the inode, the post-crash
4436  * ext4_truncate() run will find them and release them.
4437  */
4438 void ext4_truncate(struct inode *inode)
4439 {
4440 	trace_ext4_truncate_enter(inode);
4441 
4442 	if (!ext4_can_truncate(inode))
4443 		return;
4444 
4445 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4446 
4447 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4448 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4449 
4450 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4451 		ext4_ext_truncate(inode);
4452 	else
4453 		ext4_ind_truncate(inode);
4454 
4455 	trace_ext4_truncate_exit(inode);
4456 }
4457 
4458 void ext4_ind_truncate(struct inode *inode)
4459 {
4460 	handle_t *handle;
4461 	struct ext4_inode_info *ei = EXT4_I(inode);
4462 	__le32 *i_data = ei->i_data;
4463 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4464 	struct address_space *mapping = inode->i_mapping;
4465 	ext4_lblk_t offsets[4];
4466 	Indirect chain[4];
4467 	Indirect *partial;
4468 	__le32 nr = 0;
4469 	int n = 0;
4470 	ext4_lblk_t last_block, max_block;
4471 	unsigned blocksize = inode->i_sb->s_blocksize;
4472 
4473 	handle = start_transaction(inode);
4474 	if (IS_ERR(handle))
4475 		return;		/* AKPM: return what? */
4476 
4477 	last_block = (inode->i_size + blocksize-1)
4478 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4479 	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
4480 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4481 
4482 	if (inode->i_size & (blocksize - 1))
4483 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4484 			goto out_stop;
4485 
4486 	if (last_block != max_block) {
4487 		n = ext4_block_to_path(inode, last_block, offsets, NULL);
4488 		if (n == 0)
4489 			goto out_stop;	/* error */
4490 	}
4491 
4492 	/*
4493 	 * OK.  This truncate is going to happen.  We add the inode to the
4494 	 * orphan list, so that if this truncate spans multiple transactions,
4495 	 * and we crash, we will resume the truncate when the filesystem
4496 	 * recovers.  It also marks the inode dirty, to catch the new size.
4497 	 *
4498 	 * Implication: the file must always be in a sane, consistent
4499 	 * truncatable state while each transaction commits.
4500 	 */
4501 	if (ext4_orphan_add(handle, inode))
4502 		goto out_stop;
4503 
4504 	/*
4505 	 * From here we block out all ext4_get_block() callers who want to
4506 	 * modify the block allocation tree.
4507 	 */
4508 	down_write(&ei->i_data_sem);
4509 
4510 	ext4_discard_preallocations(inode);
4511 
4512 	/*
4513 	 * The orphan list entry will now protect us from any crash which
4514 	 * occurs before the truncate completes, so it is now safe to propagate
4515 	 * the new, shorter inode size (held for now in i_size) into the
4516 	 * on-disk inode. We do this via i_disksize, which is the value which
4517 	 * ext4 *really* writes onto the disk inode.
4518 	 */
4519 	ei->i_disksize = inode->i_size;
4520 
4521 	if (last_block == max_block) {
4522 		/*
4523 		 * It is unnecessary to free any data blocks if last_block is
4524 		 * equal to the indirect block limit.
4525 		 */
4526 		goto out_unlock;
4527 	} else if (n == 1) {		/* direct blocks */
4528 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4529 			       i_data + EXT4_NDIR_BLOCKS);
4530 		goto do_indirects;
4531 	}
4532 
4533 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4534 	/* Kill the top of shared branch (not detached) */
4535 	if (nr) {
4536 		if (partial == chain) {
4537 			/* Shared branch grows from the inode */
4538 			ext4_free_branches(handle, inode, NULL,
4539 					   &nr, &nr+1, (chain+n-1) - partial);
4540 			*partial->p = 0;
4541 			/*
4542 			 * We mark the inode dirty prior to restart,
4543 			 * and prior to stop.  No need for it here.
4544 			 */
4545 		} else {
4546 			/* Shared branch grows from an indirect block */
4547 			BUFFER_TRACE(partial->bh, "get_write_access");
4548 			ext4_free_branches(handle, inode, partial->bh,
4549 					partial->p,
4550 					partial->p+1, (chain+n-1) - partial);
4551 		}
4552 	}
4553 	/* Clear the ends of indirect blocks on the shared branch */
4554 	while (partial > chain) {
4555 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4556 				   (__le32*)partial->bh->b_data+addr_per_block,
4557 				   (chain+n-1) - partial);
4558 		BUFFER_TRACE(partial->bh, "call brelse");
4559 		brelse(partial->bh);
4560 		partial--;
4561 	}
4562 do_indirects:
4563 	/* Kill the remaining (whole) subtrees */
4564 	switch (offsets[0]) {
4565 	default:
4566 		nr = i_data[EXT4_IND_BLOCK];
4567 		if (nr) {
4568 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4569 			i_data[EXT4_IND_BLOCK] = 0;
4570 		}
4571 	case EXT4_IND_BLOCK:
4572 		nr = i_data[EXT4_DIND_BLOCK];
4573 		if (nr) {
4574 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4575 			i_data[EXT4_DIND_BLOCK] = 0;
4576 		}
4577 	case EXT4_DIND_BLOCK:
4578 		nr = i_data[EXT4_TIND_BLOCK];
4579 		if (nr) {
4580 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4581 			i_data[EXT4_TIND_BLOCK] = 0;
4582 		}
4583 	case EXT4_TIND_BLOCK:
4584 		;
4585 	}
4586 
4587 out_unlock:
4588 	up_write(&ei->i_data_sem);
4589 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4590 	ext4_mark_inode_dirty(handle, inode);
4591 
4592 	/*
4593 	 * In a multi-transaction truncate, we only make the final transaction
4594 	 * synchronous
4595 	 */
4596 	if (IS_SYNC(inode))
4597 		ext4_handle_sync(handle);
4598 out_stop:
4599 	/*
4600 	 * If this was a simple ftruncate(), and the file will remain alive
4601 	 * then we need to clear up the orphan record which we created above.
4602 	 * However, if this was a real unlink then we were called by
4603 	 * ext4_delete_inode(), and we allow that function to clean up the
4604 	 * orphan info for us.
4605 	 */
4606 	if (inode->i_nlink)
4607 		ext4_orphan_del(handle, inode);
4608 
4609 	ext4_journal_stop(handle);
4610 	trace_ext4_truncate_exit(inode);
4611 }
4612 
4613 /*
4614  * ext4_get_inode_loc returns with an extra refcount against the inode's
4615  * underlying buffer_head on success. If 'in_mem' is true, we have all
4616  * data in memory that is needed to recreate the on-disk version of this
4617  * inode.
4618  */
4619 static int __ext4_get_inode_loc(struct inode *inode,
4620 				struct ext4_iloc *iloc, int in_mem)
4621 {
4622 	struct ext4_group_desc	*gdp;
4623 	struct buffer_head	*bh;
4624 	struct super_block	*sb = inode->i_sb;
4625 	ext4_fsblk_t		block;
4626 	int			inodes_per_block, inode_offset;
4627 
4628 	iloc->bh = NULL;
4629 	if (!ext4_valid_inum(sb, inode->i_ino))
4630 		return -EIO;
4631 
4632 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4633 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4634 	if (!gdp)
4635 		return -EIO;
4636 
4637 	/*
4638 	 * Figure out the offset within the block group inode table
4639 	 */
4640 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4641 	inode_offset = ((inode->i_ino - 1) %
4642 			EXT4_INODES_PER_GROUP(sb));
4643 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4644 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4645 
4646 	bh = sb_getblk(sb, block);
4647 	if (!bh) {
4648 		EXT4_ERROR_INODE_BLOCK(inode, block,
4649 				       "unable to read itable block");
4650 		return -EIO;
4651 	}
4652 	if (!buffer_uptodate(bh)) {
4653 		lock_buffer(bh);
4654 
4655 		/*
4656 		 * If the buffer has the write error flag, we have failed
4657 		 * to write out another inode in the same block.  In this
4658 		 * case, we don't have to read the block because we may
4659 		 * read the old inode data successfully.
4660 		 */
4661 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4662 			set_buffer_uptodate(bh);
4663 
4664 		if (buffer_uptodate(bh)) {
4665 			/* someone brought it uptodate while we waited */
4666 			unlock_buffer(bh);
4667 			goto has_buffer;
4668 		}
4669 
4670 		/*
4671 		 * If we have all information of the inode in memory and this
4672 		 * is the only valid inode in the block, we need not read the
4673 		 * block.
4674 		 */
4675 		if (in_mem) {
4676 			struct buffer_head *bitmap_bh;
4677 			int i, start;
4678 
4679 			start = inode_offset & ~(inodes_per_block - 1);
4680 
4681 			/* Is the inode bitmap in cache? */
4682 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4683 			if (!bitmap_bh)
4684 				goto make_io;
4685 
4686 			/*
4687 			 * If the inode bitmap isn't in cache then the
4688 			 * optimisation may end up performing two reads instead
4689 			 * of one, so skip it.
4690 			 */
4691 			if (!buffer_uptodate(bitmap_bh)) {
4692 				brelse(bitmap_bh);
4693 				goto make_io;
4694 			}
4695 			for (i = start; i < start + inodes_per_block; i++) {
4696 				if (i == inode_offset)
4697 					continue;
4698 				if (ext4_test_bit(i, bitmap_bh->b_data))
4699 					break;
4700 			}
4701 			brelse(bitmap_bh);
4702 			if (i == start + inodes_per_block) {
4703 				/* all other inodes are free, so skip I/O */
4704 				memset(bh->b_data, 0, bh->b_size);
4705 				set_buffer_uptodate(bh);
4706 				unlock_buffer(bh);
4707 				goto has_buffer;
4708 			}
4709 		}
4710 
4711 make_io:
4712 		/*
4713 		 * If we need to do any I/O, try to pre-readahead extra
4714 		 * blocks from the inode table.
4715 		 */
4716 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4717 			ext4_fsblk_t b, end, table;
4718 			unsigned num;
4719 
4720 			table = ext4_inode_table(sb, gdp);
4721 			/* s_inode_readahead_blks is always a power of 2 */
4722 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4723 			if (table > b)
4724 				b = table;
4725 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4726 			num = EXT4_INODES_PER_GROUP(sb);
4727 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4728 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4729 				num -= ext4_itable_unused_count(sb, gdp);
4730 			table += num / inodes_per_block;
4731 			if (end > table)
4732 				end = table;
4733 			while (b <= end)
4734 				sb_breadahead(sb, b++);
4735 		}
4736 
4737 		/*
4738 		 * There are other valid inodes in the buffer, this inode
4739 		 * has in-inode xattrs, or we don't have this inode in memory.
4740 		 * Read the block from disk.
4741 		 */
4742 		trace_ext4_load_inode(inode);
4743 		get_bh(bh);
4744 		bh->b_end_io = end_buffer_read_sync;
4745 		submit_bh(READ_META, bh);
4746 		wait_on_buffer(bh);
4747 		if (!buffer_uptodate(bh)) {
4748 			EXT4_ERROR_INODE_BLOCK(inode, block,
4749 					       "unable to read itable block");
4750 			brelse(bh);
4751 			return -EIO;
4752 		}
4753 	}
4754 has_buffer:
4755 	iloc->bh = bh;
4756 	return 0;
4757 }
4758 
4759 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4760 {
4761 	/* We have all inode data except xattrs in memory here. */
4762 	return __ext4_get_inode_loc(inode, iloc,
4763 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4764 }
4765 
4766 void ext4_set_inode_flags(struct inode *inode)
4767 {
4768 	unsigned int flags = EXT4_I(inode)->i_flags;
4769 
4770 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4771 	if (flags & EXT4_SYNC_FL)
4772 		inode->i_flags |= S_SYNC;
4773 	if (flags & EXT4_APPEND_FL)
4774 		inode->i_flags |= S_APPEND;
4775 	if (flags & EXT4_IMMUTABLE_FL)
4776 		inode->i_flags |= S_IMMUTABLE;
4777 	if (flags & EXT4_NOATIME_FL)
4778 		inode->i_flags |= S_NOATIME;
4779 	if (flags & EXT4_DIRSYNC_FL)
4780 		inode->i_flags |= S_DIRSYNC;
4781 }
4782 
4783 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4784 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4785 {
4786 	unsigned int vfs_fl;
4787 	unsigned long old_fl, new_fl;
4788 
4789 	do {
4790 		vfs_fl = ei->vfs_inode.i_flags;
4791 		old_fl = ei->i_flags;
4792 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4793 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4794 				EXT4_DIRSYNC_FL);
4795 		if (vfs_fl & S_SYNC)
4796 			new_fl |= EXT4_SYNC_FL;
4797 		if (vfs_fl & S_APPEND)
4798 			new_fl |= EXT4_APPEND_FL;
4799 		if (vfs_fl & S_IMMUTABLE)
4800 			new_fl |= EXT4_IMMUTABLE_FL;
4801 		if (vfs_fl & S_NOATIME)
4802 			new_fl |= EXT4_NOATIME_FL;
4803 		if (vfs_fl & S_DIRSYNC)
4804 			new_fl |= EXT4_DIRSYNC_FL;
4805 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4806 }
4807 
4808 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4809 				  struct ext4_inode_info *ei)
4810 {
4811 	blkcnt_t i_blocks ;
4812 	struct inode *inode = &(ei->vfs_inode);
4813 	struct super_block *sb = inode->i_sb;
4814 
4815 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4816 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4817 		/* we are using combined 48 bit field */
4818 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4819 					le32_to_cpu(raw_inode->i_blocks_lo);
4820 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4821 			/* i_blocks represent file system block size */
4822 			return i_blocks  << (inode->i_blkbits - 9);
4823 		} else {
4824 			return i_blocks;
4825 		}
4826 	} else {
4827 		return le32_to_cpu(raw_inode->i_blocks_lo);
4828 	}
4829 }
4830 
4831 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4832 {
4833 	struct ext4_iloc iloc;
4834 	struct ext4_inode *raw_inode;
4835 	struct ext4_inode_info *ei;
4836 	struct inode *inode;
4837 	journal_t *journal = EXT4_SB(sb)->s_journal;
4838 	long ret;
4839 	int block;
4840 
4841 	inode = iget_locked(sb, ino);
4842 	if (!inode)
4843 		return ERR_PTR(-ENOMEM);
4844 	if (!(inode->i_state & I_NEW))
4845 		return inode;
4846 
4847 	ei = EXT4_I(inode);
4848 	iloc.bh = NULL;
4849 
4850 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4851 	if (ret < 0)
4852 		goto bad_inode;
4853 	raw_inode = ext4_raw_inode(&iloc);
4854 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4855 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4856 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4857 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4858 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4859 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4860 	}
4861 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4862 
4863 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4864 	ei->i_dir_start_lookup = 0;
4865 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4866 	/* We now have enough fields to check if the inode was active or not.
4867 	 * This is needed because nfsd might try to access dead inodes
4868 	 * the test is that same one that e2fsck uses
4869 	 * NeilBrown 1999oct15
4870 	 */
4871 	if (inode->i_nlink == 0) {
4872 		if (inode->i_mode == 0 ||
4873 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4874 			/* this inode is deleted */
4875 			ret = -ESTALE;
4876 			goto bad_inode;
4877 		}
4878 		/* The only unlinked inodes we let through here have
4879 		 * valid i_mode and are being read by the orphan
4880 		 * recovery code: that's fine, we're about to complete
4881 		 * the process of deleting those. */
4882 	}
4883 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4884 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4885 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4886 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4887 		ei->i_file_acl |=
4888 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4889 	inode->i_size = ext4_isize(raw_inode);
4890 	ei->i_disksize = inode->i_size;
4891 #ifdef CONFIG_QUOTA
4892 	ei->i_reserved_quota = 0;
4893 #endif
4894 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4895 	ei->i_block_group = iloc.block_group;
4896 	ei->i_last_alloc_group = ~0;
4897 	/*
4898 	 * NOTE! The in-memory inode i_data array is in little-endian order
4899 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4900 	 */
4901 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4902 		ei->i_data[block] = raw_inode->i_block[block];
4903 	INIT_LIST_HEAD(&ei->i_orphan);
4904 
4905 	/*
4906 	 * Set transaction id's of transactions that have to be committed
4907 	 * to finish f[data]sync. We set them to currently running transaction
4908 	 * as we cannot be sure that the inode or some of its metadata isn't
4909 	 * part of the transaction - the inode could have been reclaimed and
4910 	 * now it is reread from disk.
4911 	 */
4912 	if (journal) {
4913 		transaction_t *transaction;
4914 		tid_t tid;
4915 
4916 		read_lock(&journal->j_state_lock);
4917 		if (journal->j_running_transaction)
4918 			transaction = journal->j_running_transaction;
4919 		else
4920 			transaction = journal->j_committing_transaction;
4921 		if (transaction)
4922 			tid = transaction->t_tid;
4923 		else
4924 			tid = journal->j_commit_sequence;
4925 		read_unlock(&journal->j_state_lock);
4926 		ei->i_sync_tid = tid;
4927 		ei->i_datasync_tid = tid;
4928 	}
4929 
4930 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4931 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4932 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4933 		    EXT4_INODE_SIZE(inode->i_sb)) {
4934 			ret = -EIO;
4935 			goto bad_inode;
4936 		}
4937 		if (ei->i_extra_isize == 0) {
4938 			/* The extra space is currently unused. Use it. */
4939 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4940 					    EXT4_GOOD_OLD_INODE_SIZE;
4941 		} else {
4942 			__le32 *magic = (void *)raw_inode +
4943 					EXT4_GOOD_OLD_INODE_SIZE +
4944 					ei->i_extra_isize;
4945 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4946 				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4947 		}
4948 	} else
4949 		ei->i_extra_isize = 0;
4950 
4951 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4952 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4953 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4954 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4955 
4956 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4957 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4958 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4959 			inode->i_version |=
4960 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4961 	}
4962 
4963 	ret = 0;
4964 	if (ei->i_file_acl &&
4965 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4966 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4967 				 ei->i_file_acl);
4968 		ret = -EIO;
4969 		goto bad_inode;
4970 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4971 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4972 		    (S_ISLNK(inode->i_mode) &&
4973 		     !ext4_inode_is_fast_symlink(inode)))
4974 			/* Validate extent which is part of inode */
4975 			ret = ext4_ext_check_inode(inode);
4976 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4977 		   (S_ISLNK(inode->i_mode) &&
4978 		    !ext4_inode_is_fast_symlink(inode))) {
4979 		/* Validate block references which are part of inode */
4980 		ret = ext4_ind_check_inode(inode);
4981 	}
4982 	if (ret)
4983 		goto bad_inode;
4984 
4985 	if (S_ISREG(inode->i_mode)) {
4986 		inode->i_op = &ext4_file_inode_operations;
4987 		inode->i_fop = &ext4_file_operations;
4988 		ext4_set_aops(inode);
4989 	} else if (S_ISDIR(inode->i_mode)) {
4990 		inode->i_op = &ext4_dir_inode_operations;
4991 		inode->i_fop = &ext4_dir_operations;
4992 	} else if (S_ISLNK(inode->i_mode)) {
4993 		if (ext4_inode_is_fast_symlink(inode)) {
4994 			inode->i_op = &ext4_fast_symlink_inode_operations;
4995 			nd_terminate_link(ei->i_data, inode->i_size,
4996 				sizeof(ei->i_data) - 1);
4997 		} else {
4998 			inode->i_op = &ext4_symlink_inode_operations;
4999 			ext4_set_aops(inode);
5000 		}
5001 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5002 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5003 		inode->i_op = &ext4_special_inode_operations;
5004 		if (raw_inode->i_block[0])
5005 			init_special_inode(inode, inode->i_mode,
5006 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5007 		else
5008 			init_special_inode(inode, inode->i_mode,
5009 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5010 	} else {
5011 		ret = -EIO;
5012 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5013 		goto bad_inode;
5014 	}
5015 	brelse(iloc.bh);
5016 	ext4_set_inode_flags(inode);
5017 	unlock_new_inode(inode);
5018 	return inode;
5019 
5020 bad_inode:
5021 	brelse(iloc.bh);
5022 	iget_failed(inode);
5023 	return ERR_PTR(ret);
5024 }
5025 
5026 static int ext4_inode_blocks_set(handle_t *handle,
5027 				struct ext4_inode *raw_inode,
5028 				struct ext4_inode_info *ei)
5029 {
5030 	struct inode *inode = &(ei->vfs_inode);
5031 	u64 i_blocks = inode->i_blocks;
5032 	struct super_block *sb = inode->i_sb;
5033 
5034 	if (i_blocks <= ~0U) {
5035 		/*
5036 		 * i_blocks can be represnted in a 32 bit variable
5037 		 * as multiple of 512 bytes
5038 		 */
5039 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5040 		raw_inode->i_blocks_high = 0;
5041 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5042 		return 0;
5043 	}
5044 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5045 		return -EFBIG;
5046 
5047 	if (i_blocks <= 0xffffffffffffULL) {
5048 		/*
5049 		 * i_blocks can be represented in a 48 bit variable
5050 		 * as multiple of 512 bytes
5051 		 */
5052 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5053 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5054 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5055 	} else {
5056 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5057 		/* i_block is stored in file system block size */
5058 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
5059 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5060 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5061 	}
5062 	return 0;
5063 }
5064 
5065 /*
5066  * Post the struct inode info into an on-disk inode location in the
5067  * buffer-cache.  This gobbles the caller's reference to the
5068  * buffer_head in the inode location struct.
5069  *
5070  * The caller must have write access to iloc->bh.
5071  */
5072 static int ext4_do_update_inode(handle_t *handle,
5073 				struct inode *inode,
5074 				struct ext4_iloc *iloc)
5075 {
5076 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5077 	struct ext4_inode_info *ei = EXT4_I(inode);
5078 	struct buffer_head *bh = iloc->bh;
5079 	int err = 0, rc, block;
5080 
5081 	/* For fields not not tracking in the in-memory inode,
5082 	 * initialise them to zero for new inodes. */
5083 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5084 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5085 
5086 	ext4_get_inode_flags(ei);
5087 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5088 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5089 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5090 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5091 /*
5092  * Fix up interoperability with old kernels. Otherwise, old inodes get
5093  * re-used with the upper 16 bits of the uid/gid intact
5094  */
5095 		if (!ei->i_dtime) {
5096 			raw_inode->i_uid_high =
5097 				cpu_to_le16(high_16_bits(inode->i_uid));
5098 			raw_inode->i_gid_high =
5099 				cpu_to_le16(high_16_bits(inode->i_gid));
5100 		} else {
5101 			raw_inode->i_uid_high = 0;
5102 			raw_inode->i_gid_high = 0;
5103 		}
5104 	} else {
5105 		raw_inode->i_uid_low =
5106 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
5107 		raw_inode->i_gid_low =
5108 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
5109 		raw_inode->i_uid_high = 0;
5110 		raw_inode->i_gid_high = 0;
5111 	}
5112 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5113 
5114 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5115 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5116 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5117 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5118 
5119 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
5120 		goto out_brelse;
5121 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5122 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5123 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5124 	    cpu_to_le32(EXT4_OS_HURD))
5125 		raw_inode->i_file_acl_high =
5126 			cpu_to_le16(ei->i_file_acl >> 32);
5127 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5128 	ext4_isize_set(raw_inode, ei->i_disksize);
5129 	if (ei->i_disksize > 0x7fffffffULL) {
5130 		struct super_block *sb = inode->i_sb;
5131 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5132 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5133 				EXT4_SB(sb)->s_es->s_rev_level ==
5134 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5135 			/* If this is the first large file
5136 			 * created, add a flag to the superblock.
5137 			 */
5138 			err = ext4_journal_get_write_access(handle,
5139 					EXT4_SB(sb)->s_sbh);
5140 			if (err)
5141 				goto out_brelse;
5142 			ext4_update_dynamic_rev(sb);
5143 			EXT4_SET_RO_COMPAT_FEATURE(sb,
5144 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5145 			sb->s_dirt = 1;
5146 			ext4_handle_sync(handle);
5147 			err = ext4_handle_dirty_metadata(handle, NULL,
5148 					EXT4_SB(sb)->s_sbh);
5149 		}
5150 	}
5151 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5152 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5153 		if (old_valid_dev(inode->i_rdev)) {
5154 			raw_inode->i_block[0] =
5155 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5156 			raw_inode->i_block[1] = 0;
5157 		} else {
5158 			raw_inode->i_block[0] = 0;
5159 			raw_inode->i_block[1] =
5160 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5161 			raw_inode->i_block[2] = 0;
5162 		}
5163 	} else
5164 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5165 			raw_inode->i_block[block] = ei->i_data[block];
5166 
5167 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5168 	if (ei->i_extra_isize) {
5169 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5170 			raw_inode->i_version_hi =
5171 			cpu_to_le32(inode->i_version >> 32);
5172 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5173 	}
5174 
5175 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5176 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5177 	if (!err)
5178 		err = rc;
5179 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5180 
5181 	ext4_update_inode_fsync_trans(handle, inode, 0);
5182 out_brelse:
5183 	brelse(bh);
5184 	ext4_std_error(inode->i_sb, err);
5185 	return err;
5186 }
5187 
5188 /*
5189  * ext4_write_inode()
5190  *
5191  * We are called from a few places:
5192  *
5193  * - Within generic_file_write() for O_SYNC files.
5194  *   Here, there will be no transaction running. We wait for any running
5195  *   trasnaction to commit.
5196  *
5197  * - Within sys_sync(), kupdate and such.
5198  *   We wait on commit, if tol to.
5199  *
5200  * - Within prune_icache() (PF_MEMALLOC == true)
5201  *   Here we simply return.  We can't afford to block kswapd on the
5202  *   journal commit.
5203  *
5204  * In all cases it is actually safe for us to return without doing anything,
5205  * because the inode has been copied into a raw inode buffer in
5206  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5207  * knfsd.
5208  *
5209  * Note that we are absolutely dependent upon all inode dirtiers doing the
5210  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5211  * which we are interested.
5212  *
5213  * It would be a bug for them to not do this.  The code:
5214  *
5215  *	mark_inode_dirty(inode)
5216  *	stuff();
5217  *	inode->i_size = expr;
5218  *
5219  * is in error because a kswapd-driven write_inode() could occur while
5220  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5221  * will no longer be on the superblock's dirty inode list.
5222  */
5223 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5224 {
5225 	int err;
5226 
5227 	if (current->flags & PF_MEMALLOC)
5228 		return 0;
5229 
5230 	if (EXT4_SB(inode->i_sb)->s_journal) {
5231 		if (ext4_journal_current_handle()) {
5232 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5233 			dump_stack();
5234 			return -EIO;
5235 		}
5236 
5237 		if (wbc->sync_mode != WB_SYNC_ALL)
5238 			return 0;
5239 
5240 		err = ext4_force_commit(inode->i_sb);
5241 	} else {
5242 		struct ext4_iloc iloc;
5243 
5244 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5245 		if (err)
5246 			return err;
5247 		if (wbc->sync_mode == WB_SYNC_ALL)
5248 			sync_dirty_buffer(iloc.bh);
5249 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5250 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5251 					 "IO error syncing inode");
5252 			err = -EIO;
5253 		}
5254 		brelse(iloc.bh);
5255 	}
5256 	return err;
5257 }
5258 
5259 /*
5260  * ext4_setattr()
5261  *
5262  * Called from notify_change.
5263  *
5264  * We want to trap VFS attempts to truncate the file as soon as
5265  * possible.  In particular, we want to make sure that when the VFS
5266  * shrinks i_size, we put the inode on the orphan list and modify
5267  * i_disksize immediately, so that during the subsequent flushing of
5268  * dirty pages and freeing of disk blocks, we can guarantee that any
5269  * commit will leave the blocks being flushed in an unused state on
5270  * disk.  (On recovery, the inode will get truncated and the blocks will
5271  * be freed, so we have a strong guarantee that no future commit will
5272  * leave these blocks visible to the user.)
5273  *
5274  * Another thing we have to assure is that if we are in ordered mode
5275  * and inode is still attached to the committing transaction, we must
5276  * we start writeout of all the dirty pages which are being truncated.
5277  * This way we are sure that all the data written in the previous
5278  * transaction are already on disk (truncate waits for pages under
5279  * writeback).
5280  *
5281  * Called with inode->i_mutex down.
5282  */
5283 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5284 {
5285 	struct inode *inode = dentry->d_inode;
5286 	int error, rc = 0;
5287 	int orphan = 0;
5288 	const unsigned int ia_valid = attr->ia_valid;
5289 
5290 	error = inode_change_ok(inode, attr);
5291 	if (error)
5292 		return error;
5293 
5294 	if (is_quota_modification(inode, attr))
5295 		dquot_initialize(inode);
5296 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5297 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5298 		handle_t *handle;
5299 
5300 		/* (user+group)*(old+new) structure, inode write (sb,
5301 		 * inode block, ? - but truncate inode update has it) */
5302 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5303 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5304 		if (IS_ERR(handle)) {
5305 			error = PTR_ERR(handle);
5306 			goto err_out;
5307 		}
5308 		error = dquot_transfer(inode, attr);
5309 		if (error) {
5310 			ext4_journal_stop(handle);
5311 			return error;
5312 		}
5313 		/* Update corresponding info in inode so that everything is in
5314 		 * one transaction */
5315 		if (attr->ia_valid & ATTR_UID)
5316 			inode->i_uid = attr->ia_uid;
5317 		if (attr->ia_valid & ATTR_GID)
5318 			inode->i_gid = attr->ia_gid;
5319 		error = ext4_mark_inode_dirty(handle, inode);
5320 		ext4_journal_stop(handle);
5321 	}
5322 
5323 	if (attr->ia_valid & ATTR_SIZE) {
5324 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5325 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5326 
5327 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5328 				return -EFBIG;
5329 		}
5330 	}
5331 
5332 	if (S_ISREG(inode->i_mode) &&
5333 	    attr->ia_valid & ATTR_SIZE &&
5334 	    (attr->ia_size < inode->i_size)) {
5335 		handle_t *handle;
5336 
5337 		handle = ext4_journal_start(inode, 3);
5338 		if (IS_ERR(handle)) {
5339 			error = PTR_ERR(handle);
5340 			goto err_out;
5341 		}
5342 		if (ext4_handle_valid(handle)) {
5343 			error = ext4_orphan_add(handle, inode);
5344 			orphan = 1;
5345 		}
5346 		EXT4_I(inode)->i_disksize = attr->ia_size;
5347 		rc = ext4_mark_inode_dirty(handle, inode);
5348 		if (!error)
5349 			error = rc;
5350 		ext4_journal_stop(handle);
5351 
5352 		if (ext4_should_order_data(inode)) {
5353 			error = ext4_begin_ordered_truncate(inode,
5354 							    attr->ia_size);
5355 			if (error) {
5356 				/* Do as much error cleanup as possible */
5357 				handle = ext4_journal_start(inode, 3);
5358 				if (IS_ERR(handle)) {
5359 					ext4_orphan_del(NULL, inode);
5360 					goto err_out;
5361 				}
5362 				ext4_orphan_del(handle, inode);
5363 				orphan = 0;
5364 				ext4_journal_stop(handle);
5365 				goto err_out;
5366 			}
5367 		}
5368 	}
5369 
5370 	if (attr->ia_valid & ATTR_SIZE) {
5371 		if (attr->ia_size != i_size_read(inode)) {
5372 			truncate_setsize(inode, attr->ia_size);
5373 			ext4_truncate(inode);
5374 		} else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
5375 			ext4_truncate(inode);
5376 	}
5377 
5378 	if (!rc) {
5379 		setattr_copy(inode, attr);
5380 		mark_inode_dirty(inode);
5381 	}
5382 
5383 	/*
5384 	 * If the call to ext4_truncate failed to get a transaction handle at
5385 	 * all, we need to clean up the in-core orphan list manually.
5386 	 */
5387 	if (orphan && inode->i_nlink)
5388 		ext4_orphan_del(NULL, inode);
5389 
5390 	if (!rc && (ia_valid & ATTR_MODE))
5391 		rc = ext4_acl_chmod(inode);
5392 
5393 err_out:
5394 	ext4_std_error(inode->i_sb, error);
5395 	if (!error)
5396 		error = rc;
5397 	return error;
5398 }
5399 
5400 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5401 		 struct kstat *stat)
5402 {
5403 	struct inode *inode;
5404 	unsigned long delalloc_blocks;
5405 
5406 	inode = dentry->d_inode;
5407 	generic_fillattr(inode, stat);
5408 
5409 	/*
5410 	 * We can't update i_blocks if the block allocation is delayed
5411 	 * otherwise in the case of system crash before the real block
5412 	 * allocation is done, we will have i_blocks inconsistent with
5413 	 * on-disk file blocks.
5414 	 * We always keep i_blocks updated together with real
5415 	 * allocation. But to not confuse with user, stat
5416 	 * will return the blocks that include the delayed allocation
5417 	 * blocks for this file.
5418 	 */
5419 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5420 
5421 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5422 	return 0;
5423 }
5424 
5425 static int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5426 {
5427 	int indirects;
5428 
5429 	/* if nrblocks are contiguous */
5430 	if (chunk) {
5431 		/*
5432 		 * With N contiguous data blocks, we need at most
5433 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
5434 		 * 2 dindirect blocks, and 1 tindirect block
5435 		 */
5436 		return DIV_ROUND_UP(nrblocks,
5437 				    EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
5438 	}
5439 	/*
5440 	 * if nrblocks are not contiguous, worse case, each block touch
5441 	 * a indirect block, and each indirect block touch a double indirect
5442 	 * block, plus a triple indirect block
5443 	 */
5444 	indirects = nrblocks * 2 + 1;
5445 	return indirects;
5446 }
5447 
5448 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5449 {
5450 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5451 		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
5452 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5453 }
5454 
5455 /*
5456  * Account for index blocks, block groups bitmaps and block group
5457  * descriptor blocks if modify datablocks and index blocks
5458  * worse case, the indexs blocks spread over different block groups
5459  *
5460  * If datablocks are discontiguous, they are possible to spread over
5461  * different block groups too. If they are contiuguous, with flexbg,
5462  * they could still across block group boundary.
5463  *
5464  * Also account for superblock, inode, quota and xattr blocks
5465  */
5466 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5467 {
5468 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5469 	int gdpblocks;
5470 	int idxblocks;
5471 	int ret = 0;
5472 
5473 	/*
5474 	 * How many index blocks need to touch to modify nrblocks?
5475 	 * The "Chunk" flag indicating whether the nrblocks is
5476 	 * physically contiguous on disk
5477 	 *
5478 	 * For Direct IO and fallocate, they calls get_block to allocate
5479 	 * one single extent at a time, so they could set the "Chunk" flag
5480 	 */
5481 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5482 
5483 	ret = idxblocks;
5484 
5485 	/*
5486 	 * Now let's see how many group bitmaps and group descriptors need
5487 	 * to account
5488 	 */
5489 	groups = idxblocks;
5490 	if (chunk)
5491 		groups += 1;
5492 	else
5493 		groups += nrblocks;
5494 
5495 	gdpblocks = groups;
5496 	if (groups > ngroups)
5497 		groups = ngroups;
5498 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5499 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5500 
5501 	/* bitmaps and block group descriptor blocks */
5502 	ret += groups + gdpblocks;
5503 
5504 	/* Blocks for super block, inode, quota and xattr blocks */
5505 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5506 
5507 	return ret;
5508 }
5509 
5510 /*
5511  * Calculate the total number of credits to reserve to fit
5512  * the modification of a single pages into a single transaction,
5513  * which may include multiple chunks of block allocations.
5514  *
5515  * This could be called via ext4_write_begin()
5516  *
5517  * We need to consider the worse case, when
5518  * one new block per extent.
5519  */
5520 int ext4_writepage_trans_blocks(struct inode *inode)
5521 {
5522 	int bpp = ext4_journal_blocks_per_page(inode);
5523 	int ret;
5524 
5525 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
5526 
5527 	/* Account for data blocks for journalled mode */
5528 	if (ext4_should_journal_data(inode))
5529 		ret += bpp;
5530 	return ret;
5531 }
5532 
5533 /*
5534  * Calculate the journal credits for a chunk of data modification.
5535  *
5536  * This is called from DIO, fallocate or whoever calling
5537  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5538  *
5539  * journal buffers for data blocks are not included here, as DIO
5540  * and fallocate do no need to journal data buffers.
5541  */
5542 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5543 {
5544 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5545 }
5546 
5547 /*
5548  * The caller must have previously called ext4_reserve_inode_write().
5549  * Give this, we know that the caller already has write access to iloc->bh.
5550  */
5551 int ext4_mark_iloc_dirty(handle_t *handle,
5552 			 struct inode *inode, struct ext4_iloc *iloc)
5553 {
5554 	int err = 0;
5555 
5556 	if (test_opt(inode->i_sb, I_VERSION))
5557 		inode_inc_iversion(inode);
5558 
5559 	/* the do_update_inode consumes one bh->b_count */
5560 	get_bh(iloc->bh);
5561 
5562 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5563 	err = ext4_do_update_inode(handle, inode, iloc);
5564 	put_bh(iloc->bh);
5565 	return err;
5566 }
5567 
5568 /*
5569  * On success, We end up with an outstanding reference count against
5570  * iloc->bh.  This _must_ be cleaned up later.
5571  */
5572 
5573 int
5574 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5575 			 struct ext4_iloc *iloc)
5576 {
5577 	int err;
5578 
5579 	err = ext4_get_inode_loc(inode, iloc);
5580 	if (!err) {
5581 		BUFFER_TRACE(iloc->bh, "get_write_access");
5582 		err = ext4_journal_get_write_access(handle, iloc->bh);
5583 		if (err) {
5584 			brelse(iloc->bh);
5585 			iloc->bh = NULL;
5586 		}
5587 	}
5588 	ext4_std_error(inode->i_sb, err);
5589 	return err;
5590 }
5591 
5592 /*
5593  * Expand an inode by new_extra_isize bytes.
5594  * Returns 0 on success or negative error number on failure.
5595  */
5596 static int ext4_expand_extra_isize(struct inode *inode,
5597 				   unsigned int new_extra_isize,
5598 				   struct ext4_iloc iloc,
5599 				   handle_t *handle)
5600 {
5601 	struct ext4_inode *raw_inode;
5602 	struct ext4_xattr_ibody_header *header;
5603 
5604 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5605 		return 0;
5606 
5607 	raw_inode = ext4_raw_inode(&iloc);
5608 
5609 	header = IHDR(inode, raw_inode);
5610 
5611 	/* No extended attributes present */
5612 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5613 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5614 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5615 			new_extra_isize);
5616 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5617 		return 0;
5618 	}
5619 
5620 	/* try to expand with EAs present */
5621 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5622 					  raw_inode, handle);
5623 }
5624 
5625 /*
5626  * What we do here is to mark the in-core inode as clean with respect to inode
5627  * dirtiness (it may still be data-dirty).
5628  * This means that the in-core inode may be reaped by prune_icache
5629  * without having to perform any I/O.  This is a very good thing,
5630  * because *any* task may call prune_icache - even ones which
5631  * have a transaction open against a different journal.
5632  *
5633  * Is this cheating?  Not really.  Sure, we haven't written the
5634  * inode out, but prune_icache isn't a user-visible syncing function.
5635  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5636  * we start and wait on commits.
5637  *
5638  * Is this efficient/effective?  Well, we're being nice to the system
5639  * by cleaning up our inodes proactively so they can be reaped
5640  * without I/O.  But we are potentially leaving up to five seconds'
5641  * worth of inodes floating about which prune_icache wants us to
5642  * write out.  One way to fix that would be to get prune_icache()
5643  * to do a write_super() to free up some memory.  It has the desired
5644  * effect.
5645  */
5646 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5647 {
5648 	struct ext4_iloc iloc;
5649 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5650 	static unsigned int mnt_count;
5651 	int err, ret;
5652 
5653 	might_sleep();
5654 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5655 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5656 	if (ext4_handle_valid(handle) &&
5657 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5658 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5659 		/*
5660 		 * We need extra buffer credits since we may write into EA block
5661 		 * with this same handle. If journal_extend fails, then it will
5662 		 * only result in a minor loss of functionality for that inode.
5663 		 * If this is felt to be critical, then e2fsck should be run to
5664 		 * force a large enough s_min_extra_isize.
5665 		 */
5666 		if ((jbd2_journal_extend(handle,
5667 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5668 			ret = ext4_expand_extra_isize(inode,
5669 						      sbi->s_want_extra_isize,
5670 						      iloc, handle);
5671 			if (ret) {
5672 				ext4_set_inode_state(inode,
5673 						     EXT4_STATE_NO_EXPAND);
5674 				if (mnt_count !=
5675 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5676 					ext4_warning(inode->i_sb,
5677 					"Unable to expand inode %lu. Delete"
5678 					" some EAs or run e2fsck.",
5679 					inode->i_ino);
5680 					mnt_count =
5681 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5682 				}
5683 			}
5684 		}
5685 	}
5686 	if (!err)
5687 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5688 	return err;
5689 }
5690 
5691 /*
5692  * ext4_dirty_inode() is called from __mark_inode_dirty()
5693  *
5694  * We're really interested in the case where a file is being extended.
5695  * i_size has been changed by generic_commit_write() and we thus need
5696  * to include the updated inode in the current transaction.
5697  *
5698  * Also, dquot_alloc_block() will always dirty the inode when blocks
5699  * are allocated to the file.
5700  *
5701  * If the inode is marked synchronous, we don't honour that here - doing
5702  * so would cause a commit on atime updates, which we don't bother doing.
5703  * We handle synchronous inodes at the highest possible level.
5704  */
5705 void ext4_dirty_inode(struct inode *inode, int flags)
5706 {
5707 	handle_t *handle;
5708 
5709 	handle = ext4_journal_start(inode, 2);
5710 	if (IS_ERR(handle))
5711 		goto out;
5712 
5713 	ext4_mark_inode_dirty(handle, inode);
5714 
5715 	ext4_journal_stop(handle);
5716 out:
5717 	return;
5718 }
5719 
5720 #if 0
5721 /*
5722  * Bind an inode's backing buffer_head into this transaction, to prevent
5723  * it from being flushed to disk early.  Unlike
5724  * ext4_reserve_inode_write, this leaves behind no bh reference and
5725  * returns no iloc structure, so the caller needs to repeat the iloc
5726  * lookup to mark the inode dirty later.
5727  */
5728 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5729 {
5730 	struct ext4_iloc iloc;
5731 
5732 	int err = 0;
5733 	if (handle) {
5734 		err = ext4_get_inode_loc(inode, &iloc);
5735 		if (!err) {
5736 			BUFFER_TRACE(iloc.bh, "get_write_access");
5737 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5738 			if (!err)
5739 				err = ext4_handle_dirty_metadata(handle,
5740 								 NULL,
5741 								 iloc.bh);
5742 			brelse(iloc.bh);
5743 		}
5744 	}
5745 	ext4_std_error(inode->i_sb, err);
5746 	return err;
5747 }
5748 #endif
5749 
5750 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5751 {
5752 	journal_t *journal;
5753 	handle_t *handle;
5754 	int err;
5755 
5756 	/*
5757 	 * We have to be very careful here: changing a data block's
5758 	 * journaling status dynamically is dangerous.  If we write a
5759 	 * data block to the journal, change the status and then delete
5760 	 * that block, we risk forgetting to revoke the old log record
5761 	 * from the journal and so a subsequent replay can corrupt data.
5762 	 * So, first we make sure that the journal is empty and that
5763 	 * nobody is changing anything.
5764 	 */
5765 
5766 	journal = EXT4_JOURNAL(inode);
5767 	if (!journal)
5768 		return 0;
5769 	if (is_journal_aborted(journal))
5770 		return -EROFS;
5771 
5772 	jbd2_journal_lock_updates(journal);
5773 	jbd2_journal_flush(journal);
5774 
5775 	/*
5776 	 * OK, there are no updates running now, and all cached data is
5777 	 * synced to disk.  We are now in a completely consistent state
5778 	 * which doesn't have anything in the journal, and we know that
5779 	 * no filesystem updates are running, so it is safe to modify
5780 	 * the inode's in-core data-journaling state flag now.
5781 	 */
5782 
5783 	if (val)
5784 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5785 	else
5786 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5787 	ext4_set_aops(inode);
5788 
5789 	jbd2_journal_unlock_updates(journal);
5790 
5791 	/* Finally we can mark the inode as dirty. */
5792 
5793 	handle = ext4_journal_start(inode, 1);
5794 	if (IS_ERR(handle))
5795 		return PTR_ERR(handle);
5796 
5797 	err = ext4_mark_inode_dirty(handle, inode);
5798 	ext4_handle_sync(handle);
5799 	ext4_journal_stop(handle);
5800 	ext4_std_error(inode->i_sb, err);
5801 
5802 	return err;
5803 }
5804 
5805 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5806 {
5807 	return !buffer_mapped(bh);
5808 }
5809 
5810 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5811 {
5812 	struct page *page = vmf->page;
5813 	loff_t size;
5814 	unsigned long len;
5815 	int ret = -EINVAL;
5816 	void *fsdata;
5817 	struct file *file = vma->vm_file;
5818 	struct inode *inode = file->f_path.dentry->d_inode;
5819 	struct address_space *mapping = inode->i_mapping;
5820 
5821 	/*
5822 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5823 	 * get i_mutex because we are already holding mmap_sem.
5824 	 */
5825 	down_read(&inode->i_alloc_sem);
5826 	size = i_size_read(inode);
5827 	if (page->mapping != mapping || size <= page_offset(page)
5828 	    || !PageUptodate(page)) {
5829 		/* page got truncated from under us? */
5830 		goto out_unlock;
5831 	}
5832 	ret = 0;
5833 
5834 	lock_page(page);
5835 	wait_on_page_writeback(page);
5836 	if (PageMappedToDisk(page)) {
5837 		up_read(&inode->i_alloc_sem);
5838 		return VM_FAULT_LOCKED;
5839 	}
5840 
5841 	if (page->index == size >> PAGE_CACHE_SHIFT)
5842 		len = size & ~PAGE_CACHE_MASK;
5843 	else
5844 		len = PAGE_CACHE_SIZE;
5845 
5846 	/*
5847 	 * return if we have all the buffers mapped. This avoid
5848 	 * the need to call write_begin/write_end which does a
5849 	 * journal_start/journal_stop which can block and take
5850 	 * long time
5851 	 */
5852 	if (page_has_buffers(page)) {
5853 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5854 					ext4_bh_unmapped)) {
5855 			up_read(&inode->i_alloc_sem);
5856 			return VM_FAULT_LOCKED;
5857 		}
5858 	}
5859 	unlock_page(page);
5860 	/*
5861 	 * OK, we need to fill the hole... Do write_begin write_end
5862 	 * to do block allocation/reservation.We are not holding
5863 	 * inode.i__mutex here. That allow * parallel write_begin,
5864 	 * write_end call. lock_page prevent this from happening
5865 	 * on the same page though
5866 	 */
5867 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5868 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5869 	if (ret < 0)
5870 		goto out_unlock;
5871 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5872 			len, len, page, fsdata);
5873 	if (ret < 0)
5874 		goto out_unlock;
5875 	ret = 0;
5876 
5877 	/*
5878 	 * write_begin/end might have created a dirty page and someone
5879 	 * could wander in and start the IO.  Make sure that hasn't
5880 	 * happened.
5881 	 */
5882 	lock_page(page);
5883 	wait_on_page_writeback(page);
5884 	up_read(&inode->i_alloc_sem);
5885 	return VM_FAULT_LOCKED;
5886 out_unlock:
5887 	if (ret)
5888 		ret = VM_FAULT_SIGBUS;
5889 	up_read(&inode->i_alloc_sem);
5890 	return ret;
5891 }
5892