xref: /openbmc/linux/fs/ext4/inode.c (revision 1bce63d1a2a2c8929442b79acd4eab2e3db10a0b)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/module.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 					      loff_t new_size)
53 {
54 	trace_ext4_begin_ordered_truncate(inode, new_size);
55 	/*
56 	 * If jinode is zero, then we never opened the file for
57 	 * writing, so there's no need to call
58 	 * jbd2_journal_begin_ordered_truncate() since there's no
59 	 * outstanding writes we need to flush.
60 	 */
61 	if (!EXT4_I(inode)->jinode)
62 		return 0;
63 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
64 						   EXT4_I(inode)->jinode,
65 						   new_size);
66 }
67 
68 static void ext4_invalidatepage(struct page *page, unsigned long offset);
69 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
70 				   struct buffer_head *bh_result, int create);
71 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
72 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
73 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
74 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
75 
76 /*
77  * Test whether an inode is a fast symlink.
78  */
79 static int ext4_inode_is_fast_symlink(struct inode *inode)
80 {
81 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
82 		(inode->i_sb->s_blocksize >> 9) : 0;
83 
84 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
85 }
86 
87 /*
88  * Restart the transaction associated with *handle.  This does a commit,
89  * so before we call here everything must be consistently dirtied against
90  * this transaction.
91  */
92 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
93 				 int nblocks)
94 {
95 	int ret;
96 
97 	/*
98 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
99 	 * moment, get_block can be called only for blocks inside i_size since
100 	 * page cache has been already dropped and writes are blocked by
101 	 * i_mutex. So we can safely drop the i_data_sem here.
102 	 */
103 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
104 	jbd_debug(2, "restarting handle %p\n", handle);
105 	up_write(&EXT4_I(inode)->i_data_sem);
106 	ret = ext4_journal_restart(handle, nblocks);
107 	down_write(&EXT4_I(inode)->i_data_sem);
108 	ext4_discard_preallocations(inode);
109 
110 	return ret;
111 }
112 
113 /*
114  * Called at the last iput() if i_nlink is zero.
115  */
116 void ext4_evict_inode(struct inode *inode)
117 {
118 	handle_t *handle;
119 	int err;
120 
121 	trace_ext4_evict_inode(inode);
122 
123 	ext4_ioend_wait(inode);
124 
125 	if (inode->i_nlink) {
126 		/*
127 		 * When journalling data dirty buffers are tracked only in the
128 		 * journal. So although mm thinks everything is clean and
129 		 * ready for reaping the inode might still have some pages to
130 		 * write in the running transaction or waiting to be
131 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
132 		 * (via truncate_inode_pages()) to discard these buffers can
133 		 * cause data loss. Also even if we did not discard these
134 		 * buffers, we would have no way to find them after the inode
135 		 * is reaped and thus user could see stale data if he tries to
136 		 * read them before the transaction is checkpointed. So be
137 		 * careful and force everything to disk here... We use
138 		 * ei->i_datasync_tid to store the newest transaction
139 		 * containing inode's data.
140 		 *
141 		 * Note that directories do not have this problem because they
142 		 * don't use page cache.
143 		 */
144 		if (ext4_should_journal_data(inode) &&
145 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
146 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
147 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
148 
149 			jbd2_log_start_commit(journal, commit_tid);
150 			jbd2_log_wait_commit(journal, commit_tid);
151 			filemap_write_and_wait(&inode->i_data);
152 		}
153 		truncate_inode_pages(&inode->i_data, 0);
154 		goto no_delete;
155 	}
156 
157 	if (!is_bad_inode(inode))
158 		dquot_initialize(inode);
159 
160 	if (ext4_should_order_data(inode))
161 		ext4_begin_ordered_truncate(inode, 0);
162 	truncate_inode_pages(&inode->i_data, 0);
163 
164 	if (is_bad_inode(inode))
165 		goto no_delete;
166 
167 	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
168 	if (IS_ERR(handle)) {
169 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
170 		/*
171 		 * If we're going to skip the normal cleanup, we still need to
172 		 * make sure that the in-core orphan linked list is properly
173 		 * cleaned up.
174 		 */
175 		ext4_orphan_del(NULL, inode);
176 		goto no_delete;
177 	}
178 
179 	if (IS_SYNC(inode))
180 		ext4_handle_sync(handle);
181 	inode->i_size = 0;
182 	err = ext4_mark_inode_dirty(handle, inode);
183 	if (err) {
184 		ext4_warning(inode->i_sb,
185 			     "couldn't mark inode dirty (err %d)", err);
186 		goto stop_handle;
187 	}
188 	if (inode->i_blocks)
189 		ext4_truncate(inode);
190 
191 	/*
192 	 * ext4_ext_truncate() doesn't reserve any slop when it
193 	 * restarts journal transactions; therefore there may not be
194 	 * enough credits left in the handle to remove the inode from
195 	 * the orphan list and set the dtime field.
196 	 */
197 	if (!ext4_handle_has_enough_credits(handle, 3)) {
198 		err = ext4_journal_extend(handle, 3);
199 		if (err > 0)
200 			err = ext4_journal_restart(handle, 3);
201 		if (err != 0) {
202 			ext4_warning(inode->i_sb,
203 				     "couldn't extend journal (err %d)", err);
204 		stop_handle:
205 			ext4_journal_stop(handle);
206 			ext4_orphan_del(NULL, inode);
207 			goto no_delete;
208 		}
209 	}
210 
211 	/*
212 	 * Kill off the orphan record which ext4_truncate created.
213 	 * AKPM: I think this can be inside the above `if'.
214 	 * Note that ext4_orphan_del() has to be able to cope with the
215 	 * deletion of a non-existent orphan - this is because we don't
216 	 * know if ext4_truncate() actually created an orphan record.
217 	 * (Well, we could do this if we need to, but heck - it works)
218 	 */
219 	ext4_orphan_del(handle, inode);
220 	EXT4_I(inode)->i_dtime	= get_seconds();
221 
222 	/*
223 	 * One subtle ordering requirement: if anything has gone wrong
224 	 * (transaction abort, IO errors, whatever), then we can still
225 	 * do these next steps (the fs will already have been marked as
226 	 * having errors), but we can't free the inode if the mark_dirty
227 	 * fails.
228 	 */
229 	if (ext4_mark_inode_dirty(handle, inode))
230 		/* If that failed, just do the required in-core inode clear. */
231 		ext4_clear_inode(inode);
232 	else
233 		ext4_free_inode(handle, inode);
234 	ext4_journal_stop(handle);
235 	return;
236 no_delete:
237 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
238 }
239 
240 #ifdef CONFIG_QUOTA
241 qsize_t *ext4_get_reserved_space(struct inode *inode)
242 {
243 	return &EXT4_I(inode)->i_reserved_quota;
244 }
245 #endif
246 
247 /*
248  * Calculate the number of metadata blocks need to reserve
249  * to allocate a block located at @lblock
250  */
251 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
252 {
253 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
254 		return ext4_ext_calc_metadata_amount(inode, lblock);
255 
256 	return ext4_ind_calc_metadata_amount(inode, lblock);
257 }
258 
259 /*
260  * Called with i_data_sem down, which is important since we can call
261  * ext4_discard_preallocations() from here.
262  */
263 void ext4_da_update_reserve_space(struct inode *inode,
264 					int used, int quota_claim)
265 {
266 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
267 	struct ext4_inode_info *ei = EXT4_I(inode);
268 
269 	spin_lock(&ei->i_block_reservation_lock);
270 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
271 	if (unlikely(used > ei->i_reserved_data_blocks)) {
272 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
273 			 "with only %d reserved data blocks\n",
274 			 __func__, inode->i_ino, used,
275 			 ei->i_reserved_data_blocks);
276 		WARN_ON(1);
277 		used = ei->i_reserved_data_blocks;
278 	}
279 
280 	/* Update per-inode reservations */
281 	ei->i_reserved_data_blocks -= used;
282 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
283 	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
284 			   used + ei->i_allocated_meta_blocks);
285 	ei->i_allocated_meta_blocks = 0;
286 
287 	if (ei->i_reserved_data_blocks == 0) {
288 		/*
289 		 * We can release all of the reserved metadata blocks
290 		 * only when we have written all of the delayed
291 		 * allocation blocks.
292 		 */
293 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
294 				   ei->i_reserved_meta_blocks);
295 		ei->i_reserved_meta_blocks = 0;
296 		ei->i_da_metadata_calc_len = 0;
297 	}
298 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
299 
300 	/* Update quota subsystem for data blocks */
301 	if (quota_claim)
302 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
303 	else {
304 		/*
305 		 * We did fallocate with an offset that is already delayed
306 		 * allocated. So on delayed allocated writeback we should
307 		 * not re-claim the quota for fallocated blocks.
308 		 */
309 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
310 	}
311 
312 	/*
313 	 * If we have done all the pending block allocations and if
314 	 * there aren't any writers on the inode, we can discard the
315 	 * inode's preallocations.
316 	 */
317 	if ((ei->i_reserved_data_blocks == 0) &&
318 	    (atomic_read(&inode->i_writecount) == 0))
319 		ext4_discard_preallocations(inode);
320 }
321 
322 static int __check_block_validity(struct inode *inode, const char *func,
323 				unsigned int line,
324 				struct ext4_map_blocks *map)
325 {
326 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
327 				   map->m_len)) {
328 		ext4_error_inode(inode, func, line, map->m_pblk,
329 				 "lblock %lu mapped to illegal pblock "
330 				 "(length %d)", (unsigned long) map->m_lblk,
331 				 map->m_len);
332 		return -EIO;
333 	}
334 	return 0;
335 }
336 
337 #define check_block_validity(inode, map)	\
338 	__check_block_validity((inode), __func__, __LINE__, (map))
339 
340 /*
341  * Return the number of contiguous dirty pages in a given inode
342  * starting at page frame idx.
343  */
344 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
345 				    unsigned int max_pages)
346 {
347 	struct address_space *mapping = inode->i_mapping;
348 	pgoff_t	index;
349 	struct pagevec pvec;
350 	pgoff_t num = 0;
351 	int i, nr_pages, done = 0;
352 
353 	if (max_pages == 0)
354 		return 0;
355 	pagevec_init(&pvec, 0);
356 	while (!done) {
357 		index = idx;
358 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
359 					      PAGECACHE_TAG_DIRTY,
360 					      (pgoff_t)PAGEVEC_SIZE);
361 		if (nr_pages == 0)
362 			break;
363 		for (i = 0; i < nr_pages; i++) {
364 			struct page *page = pvec.pages[i];
365 			struct buffer_head *bh, *head;
366 
367 			lock_page(page);
368 			if (unlikely(page->mapping != mapping) ||
369 			    !PageDirty(page) ||
370 			    PageWriteback(page) ||
371 			    page->index != idx) {
372 				done = 1;
373 				unlock_page(page);
374 				break;
375 			}
376 			if (page_has_buffers(page)) {
377 				bh = head = page_buffers(page);
378 				do {
379 					if (!buffer_delay(bh) &&
380 					    !buffer_unwritten(bh))
381 						done = 1;
382 					bh = bh->b_this_page;
383 				} while (!done && (bh != head));
384 			}
385 			unlock_page(page);
386 			if (done)
387 				break;
388 			idx++;
389 			num++;
390 			if (num >= max_pages) {
391 				done = 1;
392 				break;
393 			}
394 		}
395 		pagevec_release(&pvec);
396 	}
397 	return num;
398 }
399 
400 /*
401  * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
402  */
403 static void set_buffers_da_mapped(struct inode *inode,
404 				   struct ext4_map_blocks *map)
405 {
406 	struct address_space *mapping = inode->i_mapping;
407 	struct pagevec pvec;
408 	int i, nr_pages;
409 	pgoff_t index, end;
410 
411 	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
412 	end = (map->m_lblk + map->m_len - 1) >>
413 		(PAGE_CACHE_SHIFT - inode->i_blkbits);
414 
415 	pagevec_init(&pvec, 0);
416 	while (index <= end) {
417 		nr_pages = pagevec_lookup(&pvec, mapping, index,
418 					  min(end - index + 1,
419 					      (pgoff_t)PAGEVEC_SIZE));
420 		if (nr_pages == 0)
421 			break;
422 		for (i = 0; i < nr_pages; i++) {
423 			struct page *page = pvec.pages[i];
424 			struct buffer_head *bh, *head;
425 
426 			if (unlikely(page->mapping != mapping) ||
427 			    !PageDirty(page))
428 				break;
429 
430 			if (page_has_buffers(page)) {
431 				bh = head = page_buffers(page);
432 				do {
433 					set_buffer_da_mapped(bh);
434 					bh = bh->b_this_page;
435 				} while (bh != head);
436 			}
437 			index++;
438 		}
439 		pagevec_release(&pvec);
440 	}
441 }
442 
443 /*
444  * The ext4_map_blocks() function tries to look up the requested blocks,
445  * and returns if the blocks are already mapped.
446  *
447  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
448  * and store the allocated blocks in the result buffer head and mark it
449  * mapped.
450  *
451  * If file type is extents based, it will call ext4_ext_map_blocks(),
452  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
453  * based files
454  *
455  * On success, it returns the number of blocks being mapped or allocate.
456  * if create==0 and the blocks are pre-allocated and uninitialized block,
457  * the result buffer head is unmapped. If the create ==1, it will make sure
458  * the buffer head is mapped.
459  *
460  * It returns 0 if plain look up failed (blocks have not been allocated), in
461  * that case, buffer head is unmapped
462  *
463  * It returns the error in case of allocation failure.
464  */
465 int ext4_map_blocks(handle_t *handle, struct inode *inode,
466 		    struct ext4_map_blocks *map, int flags)
467 {
468 	int retval;
469 
470 	map->m_flags = 0;
471 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
473 		  (unsigned long) map->m_lblk);
474 	/*
475 	 * Try to see if we can get the block without requesting a new
476 	 * file system block.
477 	 */
478 	down_read((&EXT4_I(inode)->i_data_sem));
479 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
480 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
481 	} else {
482 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
483 	}
484 	up_read((&EXT4_I(inode)->i_data_sem));
485 
486 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
487 		int ret = check_block_validity(inode, map);
488 		if (ret != 0)
489 			return ret;
490 	}
491 
492 	/* If it is only a block(s) look up */
493 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
494 		return retval;
495 
496 	/*
497 	 * Returns if the blocks have already allocated
498 	 *
499 	 * Note that if blocks have been preallocated
500 	 * ext4_ext_get_block() returns the create = 0
501 	 * with buffer head unmapped.
502 	 */
503 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
504 		return retval;
505 
506 	/*
507 	 * When we call get_blocks without the create flag, the
508 	 * BH_Unwritten flag could have gotten set if the blocks
509 	 * requested were part of a uninitialized extent.  We need to
510 	 * clear this flag now that we are committed to convert all or
511 	 * part of the uninitialized extent to be an initialized
512 	 * extent.  This is because we need to avoid the combination
513 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
514 	 * set on the buffer_head.
515 	 */
516 	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
517 
518 	/*
519 	 * New blocks allocate and/or writing to uninitialized extent
520 	 * will possibly result in updating i_data, so we take
521 	 * the write lock of i_data_sem, and call get_blocks()
522 	 * with create == 1 flag.
523 	 */
524 	down_write((&EXT4_I(inode)->i_data_sem));
525 
526 	/*
527 	 * if the caller is from delayed allocation writeout path
528 	 * we have already reserved fs blocks for allocation
529 	 * let the underlying get_block() function know to
530 	 * avoid double accounting
531 	 */
532 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
533 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
534 	/*
535 	 * We need to check for EXT4 here because migrate
536 	 * could have changed the inode type in between
537 	 */
538 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
539 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
540 	} else {
541 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
542 
543 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
544 			/*
545 			 * We allocated new blocks which will result in
546 			 * i_data's format changing.  Force the migrate
547 			 * to fail by clearing migrate flags
548 			 */
549 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
550 		}
551 
552 		/*
553 		 * Update reserved blocks/metadata blocks after successful
554 		 * block allocation which had been deferred till now. We don't
555 		 * support fallocate for non extent files. So we can update
556 		 * reserve space here.
557 		 */
558 		if ((retval > 0) &&
559 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
560 			ext4_da_update_reserve_space(inode, retval, 1);
561 	}
562 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
563 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
564 
565 		/* If we have successfully mapped the delayed allocated blocks,
566 		 * set the BH_Da_Mapped bit on them. Its important to do this
567 		 * under the protection of i_data_sem.
568 		 */
569 		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
570 			set_buffers_da_mapped(inode, map);
571 	}
572 
573 	up_write((&EXT4_I(inode)->i_data_sem));
574 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
575 		int ret = check_block_validity(inode, map);
576 		if (ret != 0)
577 			return ret;
578 	}
579 	return retval;
580 }
581 
582 /* Maximum number of blocks we map for direct IO at once. */
583 #define DIO_MAX_BLOCKS 4096
584 
585 static int _ext4_get_block(struct inode *inode, sector_t iblock,
586 			   struct buffer_head *bh, int flags)
587 {
588 	handle_t *handle = ext4_journal_current_handle();
589 	struct ext4_map_blocks map;
590 	int ret = 0, started = 0;
591 	int dio_credits;
592 
593 	map.m_lblk = iblock;
594 	map.m_len = bh->b_size >> inode->i_blkbits;
595 
596 	if (flags && !handle) {
597 		/* Direct IO write... */
598 		if (map.m_len > DIO_MAX_BLOCKS)
599 			map.m_len = DIO_MAX_BLOCKS;
600 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
601 		handle = ext4_journal_start(inode, dio_credits);
602 		if (IS_ERR(handle)) {
603 			ret = PTR_ERR(handle);
604 			return ret;
605 		}
606 		started = 1;
607 	}
608 
609 	ret = ext4_map_blocks(handle, inode, &map, flags);
610 	if (ret > 0) {
611 		map_bh(bh, inode->i_sb, map.m_pblk);
612 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
613 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
614 		ret = 0;
615 	}
616 	if (started)
617 		ext4_journal_stop(handle);
618 	return ret;
619 }
620 
621 int ext4_get_block(struct inode *inode, sector_t iblock,
622 		   struct buffer_head *bh, int create)
623 {
624 	return _ext4_get_block(inode, iblock, bh,
625 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
626 }
627 
628 /*
629  * `handle' can be NULL if create is zero
630  */
631 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
632 				ext4_lblk_t block, int create, int *errp)
633 {
634 	struct ext4_map_blocks map;
635 	struct buffer_head *bh;
636 	int fatal = 0, err;
637 
638 	J_ASSERT(handle != NULL || create == 0);
639 
640 	map.m_lblk = block;
641 	map.m_len = 1;
642 	err = ext4_map_blocks(handle, inode, &map,
643 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
644 
645 	if (err < 0)
646 		*errp = err;
647 	if (err <= 0)
648 		return NULL;
649 	*errp = 0;
650 
651 	bh = sb_getblk(inode->i_sb, map.m_pblk);
652 	if (!bh) {
653 		*errp = -EIO;
654 		return NULL;
655 	}
656 	if (map.m_flags & EXT4_MAP_NEW) {
657 		J_ASSERT(create != 0);
658 		J_ASSERT(handle != NULL);
659 
660 		/*
661 		 * Now that we do not always journal data, we should
662 		 * keep in mind whether this should always journal the
663 		 * new buffer as metadata.  For now, regular file
664 		 * writes use ext4_get_block instead, so it's not a
665 		 * problem.
666 		 */
667 		lock_buffer(bh);
668 		BUFFER_TRACE(bh, "call get_create_access");
669 		fatal = ext4_journal_get_create_access(handle, bh);
670 		if (!fatal && !buffer_uptodate(bh)) {
671 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
672 			set_buffer_uptodate(bh);
673 		}
674 		unlock_buffer(bh);
675 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
676 		err = ext4_handle_dirty_metadata(handle, inode, bh);
677 		if (!fatal)
678 			fatal = err;
679 	} else {
680 		BUFFER_TRACE(bh, "not a new buffer");
681 	}
682 	if (fatal) {
683 		*errp = fatal;
684 		brelse(bh);
685 		bh = NULL;
686 	}
687 	return bh;
688 }
689 
690 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
691 			       ext4_lblk_t block, int create, int *err)
692 {
693 	struct buffer_head *bh;
694 
695 	bh = ext4_getblk(handle, inode, block, create, err);
696 	if (!bh)
697 		return bh;
698 	if (buffer_uptodate(bh))
699 		return bh;
700 	ll_rw_block(READ_META, 1, &bh);
701 	wait_on_buffer(bh);
702 	if (buffer_uptodate(bh))
703 		return bh;
704 	put_bh(bh);
705 	*err = -EIO;
706 	return NULL;
707 }
708 
709 static int walk_page_buffers(handle_t *handle,
710 			     struct buffer_head *head,
711 			     unsigned from,
712 			     unsigned to,
713 			     int *partial,
714 			     int (*fn)(handle_t *handle,
715 				       struct buffer_head *bh))
716 {
717 	struct buffer_head *bh;
718 	unsigned block_start, block_end;
719 	unsigned blocksize = head->b_size;
720 	int err, ret = 0;
721 	struct buffer_head *next;
722 
723 	for (bh = head, block_start = 0;
724 	     ret == 0 && (bh != head || !block_start);
725 	     block_start = block_end, bh = next) {
726 		next = bh->b_this_page;
727 		block_end = block_start + blocksize;
728 		if (block_end <= from || block_start >= to) {
729 			if (partial && !buffer_uptodate(bh))
730 				*partial = 1;
731 			continue;
732 		}
733 		err = (*fn)(handle, bh);
734 		if (!ret)
735 			ret = err;
736 	}
737 	return ret;
738 }
739 
740 /*
741  * To preserve ordering, it is essential that the hole instantiation and
742  * the data write be encapsulated in a single transaction.  We cannot
743  * close off a transaction and start a new one between the ext4_get_block()
744  * and the commit_write().  So doing the jbd2_journal_start at the start of
745  * prepare_write() is the right place.
746  *
747  * Also, this function can nest inside ext4_writepage() ->
748  * block_write_full_page(). In that case, we *know* that ext4_writepage()
749  * has generated enough buffer credits to do the whole page.  So we won't
750  * block on the journal in that case, which is good, because the caller may
751  * be PF_MEMALLOC.
752  *
753  * By accident, ext4 can be reentered when a transaction is open via
754  * quota file writes.  If we were to commit the transaction while thus
755  * reentered, there can be a deadlock - we would be holding a quota
756  * lock, and the commit would never complete if another thread had a
757  * transaction open and was blocking on the quota lock - a ranking
758  * violation.
759  *
760  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
761  * will _not_ run commit under these circumstances because handle->h_ref
762  * is elevated.  We'll still have enough credits for the tiny quotafile
763  * write.
764  */
765 static int do_journal_get_write_access(handle_t *handle,
766 				       struct buffer_head *bh)
767 {
768 	int dirty = buffer_dirty(bh);
769 	int ret;
770 
771 	if (!buffer_mapped(bh) || buffer_freed(bh))
772 		return 0;
773 	/*
774 	 * __block_write_begin() could have dirtied some buffers. Clean
775 	 * the dirty bit as jbd2_journal_get_write_access() could complain
776 	 * otherwise about fs integrity issues. Setting of the dirty bit
777 	 * by __block_write_begin() isn't a real problem here as we clear
778 	 * the bit before releasing a page lock and thus writeback cannot
779 	 * ever write the buffer.
780 	 */
781 	if (dirty)
782 		clear_buffer_dirty(bh);
783 	ret = ext4_journal_get_write_access(handle, bh);
784 	if (!ret && dirty)
785 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
786 	return ret;
787 }
788 
789 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
790 		   struct buffer_head *bh_result, int create);
791 static int ext4_write_begin(struct file *file, struct address_space *mapping,
792 			    loff_t pos, unsigned len, unsigned flags,
793 			    struct page **pagep, void **fsdata)
794 {
795 	struct inode *inode = mapping->host;
796 	int ret, needed_blocks;
797 	handle_t *handle;
798 	int retries = 0;
799 	struct page *page;
800 	pgoff_t index;
801 	unsigned from, to;
802 
803 	trace_ext4_write_begin(inode, pos, len, flags);
804 	/*
805 	 * Reserve one block more for addition to orphan list in case
806 	 * we allocate blocks but write fails for some reason
807 	 */
808 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
809 	index = pos >> PAGE_CACHE_SHIFT;
810 	from = pos & (PAGE_CACHE_SIZE - 1);
811 	to = from + len;
812 
813 retry:
814 	handle = ext4_journal_start(inode, needed_blocks);
815 	if (IS_ERR(handle)) {
816 		ret = PTR_ERR(handle);
817 		goto out;
818 	}
819 
820 	/* We cannot recurse into the filesystem as the transaction is already
821 	 * started */
822 	flags |= AOP_FLAG_NOFS;
823 
824 	page = grab_cache_page_write_begin(mapping, index, flags);
825 	if (!page) {
826 		ext4_journal_stop(handle);
827 		ret = -ENOMEM;
828 		goto out;
829 	}
830 	*pagep = page;
831 
832 	if (ext4_should_dioread_nolock(inode))
833 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
834 	else
835 		ret = __block_write_begin(page, pos, len, ext4_get_block);
836 
837 	if (!ret && ext4_should_journal_data(inode)) {
838 		ret = walk_page_buffers(handle, page_buffers(page),
839 				from, to, NULL, do_journal_get_write_access);
840 	}
841 
842 	if (ret) {
843 		unlock_page(page);
844 		page_cache_release(page);
845 		/*
846 		 * __block_write_begin may have instantiated a few blocks
847 		 * outside i_size.  Trim these off again. Don't need
848 		 * i_size_read because we hold i_mutex.
849 		 *
850 		 * Add inode to orphan list in case we crash before
851 		 * truncate finishes
852 		 */
853 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
854 			ext4_orphan_add(handle, inode);
855 
856 		ext4_journal_stop(handle);
857 		if (pos + len > inode->i_size) {
858 			ext4_truncate_failed_write(inode);
859 			/*
860 			 * If truncate failed early the inode might
861 			 * still be on the orphan list; we need to
862 			 * make sure the inode is removed from the
863 			 * orphan list in that case.
864 			 */
865 			if (inode->i_nlink)
866 				ext4_orphan_del(NULL, inode);
867 		}
868 	}
869 
870 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
871 		goto retry;
872 out:
873 	return ret;
874 }
875 
876 /* For write_end() in data=journal mode */
877 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
878 {
879 	if (!buffer_mapped(bh) || buffer_freed(bh))
880 		return 0;
881 	set_buffer_uptodate(bh);
882 	return ext4_handle_dirty_metadata(handle, NULL, bh);
883 }
884 
885 static int ext4_generic_write_end(struct file *file,
886 				  struct address_space *mapping,
887 				  loff_t pos, unsigned len, unsigned copied,
888 				  struct page *page, void *fsdata)
889 {
890 	int i_size_changed = 0;
891 	struct inode *inode = mapping->host;
892 	handle_t *handle = ext4_journal_current_handle();
893 
894 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
895 
896 	/*
897 	 * No need to use i_size_read() here, the i_size
898 	 * cannot change under us because we hold i_mutex.
899 	 *
900 	 * But it's important to update i_size while still holding page lock:
901 	 * page writeout could otherwise come in and zero beyond i_size.
902 	 */
903 	if (pos + copied > inode->i_size) {
904 		i_size_write(inode, pos + copied);
905 		i_size_changed = 1;
906 	}
907 
908 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
909 		/* We need to mark inode dirty even if
910 		 * new_i_size is less that inode->i_size
911 		 * bu greater than i_disksize.(hint delalloc)
912 		 */
913 		ext4_update_i_disksize(inode, (pos + copied));
914 		i_size_changed = 1;
915 	}
916 	unlock_page(page);
917 	page_cache_release(page);
918 
919 	/*
920 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
921 	 * makes the holding time of page lock longer. Second, it forces lock
922 	 * ordering of page lock and transaction start for journaling
923 	 * filesystems.
924 	 */
925 	if (i_size_changed)
926 		ext4_mark_inode_dirty(handle, inode);
927 
928 	return copied;
929 }
930 
931 /*
932  * We need to pick up the new inode size which generic_commit_write gave us
933  * `file' can be NULL - eg, when called from page_symlink().
934  *
935  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
936  * buffers are managed internally.
937  */
938 static int ext4_ordered_write_end(struct file *file,
939 				  struct address_space *mapping,
940 				  loff_t pos, unsigned len, unsigned copied,
941 				  struct page *page, void *fsdata)
942 {
943 	handle_t *handle = ext4_journal_current_handle();
944 	struct inode *inode = mapping->host;
945 	int ret = 0, ret2;
946 
947 	trace_ext4_ordered_write_end(inode, pos, len, copied);
948 	ret = ext4_jbd2_file_inode(handle, inode);
949 
950 	if (ret == 0) {
951 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
952 							page, fsdata);
953 		copied = ret2;
954 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
955 			/* if we have allocated more blocks and copied
956 			 * less. We will have blocks allocated outside
957 			 * inode->i_size. So truncate them
958 			 */
959 			ext4_orphan_add(handle, inode);
960 		if (ret2 < 0)
961 			ret = ret2;
962 	}
963 	ret2 = ext4_journal_stop(handle);
964 	if (!ret)
965 		ret = ret2;
966 
967 	if (pos + len > inode->i_size) {
968 		ext4_truncate_failed_write(inode);
969 		/*
970 		 * If truncate failed early the inode might still be
971 		 * on the orphan list; we need to make sure the inode
972 		 * is removed from the orphan list in that case.
973 		 */
974 		if (inode->i_nlink)
975 			ext4_orphan_del(NULL, inode);
976 	}
977 
978 
979 	return ret ? ret : copied;
980 }
981 
982 static int ext4_writeback_write_end(struct file *file,
983 				    struct address_space *mapping,
984 				    loff_t pos, unsigned len, unsigned copied,
985 				    struct page *page, void *fsdata)
986 {
987 	handle_t *handle = ext4_journal_current_handle();
988 	struct inode *inode = mapping->host;
989 	int ret = 0, ret2;
990 
991 	trace_ext4_writeback_write_end(inode, pos, len, copied);
992 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
993 							page, fsdata);
994 	copied = ret2;
995 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
996 		/* if we have allocated more blocks and copied
997 		 * less. We will have blocks allocated outside
998 		 * inode->i_size. So truncate them
999 		 */
1000 		ext4_orphan_add(handle, inode);
1001 
1002 	if (ret2 < 0)
1003 		ret = ret2;
1004 
1005 	ret2 = ext4_journal_stop(handle);
1006 	if (!ret)
1007 		ret = ret2;
1008 
1009 	if (pos + len > inode->i_size) {
1010 		ext4_truncate_failed_write(inode);
1011 		/*
1012 		 * If truncate failed early the inode might still be
1013 		 * on the orphan list; we need to make sure the inode
1014 		 * is removed from the orphan list in that case.
1015 		 */
1016 		if (inode->i_nlink)
1017 			ext4_orphan_del(NULL, inode);
1018 	}
1019 
1020 	return ret ? ret : copied;
1021 }
1022 
1023 static int ext4_journalled_write_end(struct file *file,
1024 				     struct address_space *mapping,
1025 				     loff_t pos, unsigned len, unsigned copied,
1026 				     struct page *page, void *fsdata)
1027 {
1028 	handle_t *handle = ext4_journal_current_handle();
1029 	struct inode *inode = mapping->host;
1030 	int ret = 0, ret2;
1031 	int partial = 0;
1032 	unsigned from, to;
1033 	loff_t new_i_size;
1034 
1035 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1036 	from = pos & (PAGE_CACHE_SIZE - 1);
1037 	to = from + len;
1038 
1039 	BUG_ON(!ext4_handle_valid(handle));
1040 
1041 	if (copied < len) {
1042 		if (!PageUptodate(page))
1043 			copied = 0;
1044 		page_zero_new_buffers(page, from+copied, to);
1045 	}
1046 
1047 	ret = walk_page_buffers(handle, page_buffers(page), from,
1048 				to, &partial, write_end_fn);
1049 	if (!partial)
1050 		SetPageUptodate(page);
1051 	new_i_size = pos + copied;
1052 	if (new_i_size > inode->i_size)
1053 		i_size_write(inode, pos+copied);
1054 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1055 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1056 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1057 		ext4_update_i_disksize(inode, new_i_size);
1058 		ret2 = ext4_mark_inode_dirty(handle, inode);
1059 		if (!ret)
1060 			ret = ret2;
1061 	}
1062 
1063 	unlock_page(page);
1064 	page_cache_release(page);
1065 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1066 		/* if we have allocated more blocks and copied
1067 		 * less. We will have blocks allocated outside
1068 		 * inode->i_size. So truncate them
1069 		 */
1070 		ext4_orphan_add(handle, inode);
1071 
1072 	ret2 = ext4_journal_stop(handle);
1073 	if (!ret)
1074 		ret = ret2;
1075 	if (pos + len > inode->i_size) {
1076 		ext4_truncate_failed_write(inode);
1077 		/*
1078 		 * If truncate failed early the inode might still be
1079 		 * on the orphan list; we need to make sure the inode
1080 		 * is removed from the orphan list in that case.
1081 		 */
1082 		if (inode->i_nlink)
1083 			ext4_orphan_del(NULL, inode);
1084 	}
1085 
1086 	return ret ? ret : copied;
1087 }
1088 
1089 /*
1090  * Reserve a single cluster located at lblock
1091  */
1092 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1093 {
1094 	int retries = 0;
1095 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1096 	struct ext4_inode_info *ei = EXT4_I(inode);
1097 	unsigned int md_needed;
1098 	int ret;
1099 
1100 	/*
1101 	 * recalculate the amount of metadata blocks to reserve
1102 	 * in order to allocate nrblocks
1103 	 * worse case is one extent per block
1104 	 */
1105 repeat:
1106 	spin_lock(&ei->i_block_reservation_lock);
1107 	md_needed = EXT4_NUM_B2C(sbi,
1108 				 ext4_calc_metadata_amount(inode, lblock));
1109 	trace_ext4_da_reserve_space(inode, md_needed);
1110 	spin_unlock(&ei->i_block_reservation_lock);
1111 
1112 	/*
1113 	 * We will charge metadata quota at writeout time; this saves
1114 	 * us from metadata over-estimation, though we may go over by
1115 	 * a small amount in the end.  Here we just reserve for data.
1116 	 */
1117 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1118 	if (ret)
1119 		return ret;
1120 	/*
1121 	 * We do still charge estimated metadata to the sb though;
1122 	 * we cannot afford to run out of free blocks.
1123 	 */
1124 	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1125 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1126 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1127 			yield();
1128 			goto repeat;
1129 		}
1130 		return -ENOSPC;
1131 	}
1132 	spin_lock(&ei->i_block_reservation_lock);
1133 	ei->i_reserved_data_blocks++;
1134 	ei->i_reserved_meta_blocks += md_needed;
1135 	spin_unlock(&ei->i_block_reservation_lock);
1136 
1137 	return 0;       /* success */
1138 }
1139 
1140 static void ext4_da_release_space(struct inode *inode, int to_free)
1141 {
1142 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1143 	struct ext4_inode_info *ei = EXT4_I(inode);
1144 
1145 	if (!to_free)
1146 		return;		/* Nothing to release, exit */
1147 
1148 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1149 
1150 	trace_ext4_da_release_space(inode, to_free);
1151 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1152 		/*
1153 		 * if there aren't enough reserved blocks, then the
1154 		 * counter is messed up somewhere.  Since this
1155 		 * function is called from invalidate page, it's
1156 		 * harmless to return without any action.
1157 		 */
1158 		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1159 			 "ino %lu, to_free %d with only %d reserved "
1160 			 "data blocks\n", inode->i_ino, to_free,
1161 			 ei->i_reserved_data_blocks);
1162 		WARN_ON(1);
1163 		to_free = ei->i_reserved_data_blocks;
1164 	}
1165 	ei->i_reserved_data_blocks -= to_free;
1166 
1167 	if (ei->i_reserved_data_blocks == 0) {
1168 		/*
1169 		 * We can release all of the reserved metadata blocks
1170 		 * only when we have written all of the delayed
1171 		 * allocation blocks.
1172 		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1173 		 * i_reserved_data_blocks, etc. refer to number of clusters.
1174 		 */
1175 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1176 				   ei->i_reserved_meta_blocks);
1177 		ei->i_reserved_meta_blocks = 0;
1178 		ei->i_da_metadata_calc_len = 0;
1179 	}
1180 
1181 	/* update fs dirty data blocks counter */
1182 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1183 
1184 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1185 
1186 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1187 }
1188 
1189 static void ext4_da_page_release_reservation(struct page *page,
1190 					     unsigned long offset)
1191 {
1192 	int to_release = 0;
1193 	struct buffer_head *head, *bh;
1194 	unsigned int curr_off = 0;
1195 	struct inode *inode = page->mapping->host;
1196 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1197 	int num_clusters;
1198 
1199 	head = page_buffers(page);
1200 	bh = head;
1201 	do {
1202 		unsigned int next_off = curr_off + bh->b_size;
1203 
1204 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1205 			to_release++;
1206 			clear_buffer_delay(bh);
1207 			clear_buffer_da_mapped(bh);
1208 		}
1209 		curr_off = next_off;
1210 	} while ((bh = bh->b_this_page) != head);
1211 
1212 	/* If we have released all the blocks belonging to a cluster, then we
1213 	 * need to release the reserved space for that cluster. */
1214 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1215 	while (num_clusters > 0) {
1216 		ext4_fsblk_t lblk;
1217 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1218 			((num_clusters - 1) << sbi->s_cluster_bits);
1219 		if (sbi->s_cluster_ratio == 1 ||
1220 		    !ext4_find_delalloc_cluster(inode, lblk, 1))
1221 			ext4_da_release_space(inode, 1);
1222 
1223 		num_clusters--;
1224 	}
1225 }
1226 
1227 /*
1228  * Delayed allocation stuff
1229  */
1230 
1231 /*
1232  * mpage_da_submit_io - walks through extent of pages and try to write
1233  * them with writepage() call back
1234  *
1235  * @mpd->inode: inode
1236  * @mpd->first_page: first page of the extent
1237  * @mpd->next_page: page after the last page of the extent
1238  *
1239  * By the time mpage_da_submit_io() is called we expect all blocks
1240  * to be allocated. this may be wrong if allocation failed.
1241  *
1242  * As pages are already locked by write_cache_pages(), we can't use it
1243  */
1244 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1245 			      struct ext4_map_blocks *map)
1246 {
1247 	struct pagevec pvec;
1248 	unsigned long index, end;
1249 	int ret = 0, err, nr_pages, i;
1250 	struct inode *inode = mpd->inode;
1251 	struct address_space *mapping = inode->i_mapping;
1252 	loff_t size = i_size_read(inode);
1253 	unsigned int len, block_start;
1254 	struct buffer_head *bh, *page_bufs = NULL;
1255 	int journal_data = ext4_should_journal_data(inode);
1256 	sector_t pblock = 0, cur_logical = 0;
1257 	struct ext4_io_submit io_submit;
1258 
1259 	BUG_ON(mpd->next_page <= mpd->first_page);
1260 	memset(&io_submit, 0, sizeof(io_submit));
1261 	/*
1262 	 * We need to start from the first_page to the next_page - 1
1263 	 * to make sure we also write the mapped dirty buffer_heads.
1264 	 * If we look at mpd->b_blocknr we would only be looking
1265 	 * at the currently mapped buffer_heads.
1266 	 */
1267 	index = mpd->first_page;
1268 	end = mpd->next_page - 1;
1269 
1270 	pagevec_init(&pvec, 0);
1271 	while (index <= end) {
1272 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1273 		if (nr_pages == 0)
1274 			break;
1275 		for (i = 0; i < nr_pages; i++) {
1276 			int commit_write = 0, skip_page = 0;
1277 			struct page *page = pvec.pages[i];
1278 
1279 			index = page->index;
1280 			if (index > end)
1281 				break;
1282 
1283 			if (index == size >> PAGE_CACHE_SHIFT)
1284 				len = size & ~PAGE_CACHE_MASK;
1285 			else
1286 				len = PAGE_CACHE_SIZE;
1287 			if (map) {
1288 				cur_logical = index << (PAGE_CACHE_SHIFT -
1289 							inode->i_blkbits);
1290 				pblock = map->m_pblk + (cur_logical -
1291 							map->m_lblk);
1292 			}
1293 			index++;
1294 
1295 			BUG_ON(!PageLocked(page));
1296 			BUG_ON(PageWriteback(page));
1297 
1298 			/*
1299 			 * If the page does not have buffers (for
1300 			 * whatever reason), try to create them using
1301 			 * __block_write_begin.  If this fails,
1302 			 * skip the page and move on.
1303 			 */
1304 			if (!page_has_buffers(page)) {
1305 				if (__block_write_begin(page, 0, len,
1306 						noalloc_get_block_write)) {
1307 				skip_page:
1308 					unlock_page(page);
1309 					continue;
1310 				}
1311 				commit_write = 1;
1312 			}
1313 
1314 			bh = page_bufs = page_buffers(page);
1315 			block_start = 0;
1316 			do {
1317 				if (!bh)
1318 					goto skip_page;
1319 				if (map && (cur_logical >= map->m_lblk) &&
1320 				    (cur_logical <= (map->m_lblk +
1321 						     (map->m_len - 1)))) {
1322 					if (buffer_delay(bh)) {
1323 						clear_buffer_delay(bh);
1324 						bh->b_blocknr = pblock;
1325 					}
1326 					if (buffer_da_mapped(bh))
1327 						clear_buffer_da_mapped(bh);
1328 					if (buffer_unwritten(bh) ||
1329 					    buffer_mapped(bh))
1330 						BUG_ON(bh->b_blocknr != pblock);
1331 					if (map->m_flags & EXT4_MAP_UNINIT)
1332 						set_buffer_uninit(bh);
1333 					clear_buffer_unwritten(bh);
1334 				}
1335 
1336 				/* skip page if block allocation undone */
1337 				if (buffer_delay(bh) || buffer_unwritten(bh))
1338 					skip_page = 1;
1339 				bh = bh->b_this_page;
1340 				block_start += bh->b_size;
1341 				cur_logical++;
1342 				pblock++;
1343 			} while (bh != page_bufs);
1344 
1345 			if (skip_page)
1346 				goto skip_page;
1347 
1348 			if (commit_write)
1349 				/* mark the buffer_heads as dirty & uptodate */
1350 				block_commit_write(page, 0, len);
1351 
1352 			clear_page_dirty_for_io(page);
1353 			/*
1354 			 * Delalloc doesn't support data journalling,
1355 			 * but eventually maybe we'll lift this
1356 			 * restriction.
1357 			 */
1358 			if (unlikely(journal_data && PageChecked(page)))
1359 				err = __ext4_journalled_writepage(page, len);
1360 			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1361 				err = ext4_bio_write_page(&io_submit, page,
1362 							  len, mpd->wbc);
1363 			else if (buffer_uninit(page_bufs)) {
1364 				ext4_set_bh_endio(page_bufs, inode);
1365 				err = block_write_full_page_endio(page,
1366 					noalloc_get_block_write,
1367 					mpd->wbc, ext4_end_io_buffer_write);
1368 			} else
1369 				err = block_write_full_page(page,
1370 					noalloc_get_block_write, mpd->wbc);
1371 
1372 			if (!err)
1373 				mpd->pages_written++;
1374 			/*
1375 			 * In error case, we have to continue because
1376 			 * remaining pages are still locked
1377 			 */
1378 			if (ret == 0)
1379 				ret = err;
1380 		}
1381 		pagevec_release(&pvec);
1382 	}
1383 	ext4_io_submit(&io_submit);
1384 	return ret;
1385 }
1386 
1387 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1388 {
1389 	int nr_pages, i;
1390 	pgoff_t index, end;
1391 	struct pagevec pvec;
1392 	struct inode *inode = mpd->inode;
1393 	struct address_space *mapping = inode->i_mapping;
1394 
1395 	index = mpd->first_page;
1396 	end   = mpd->next_page - 1;
1397 	while (index <= end) {
1398 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1399 		if (nr_pages == 0)
1400 			break;
1401 		for (i = 0; i < nr_pages; i++) {
1402 			struct page *page = pvec.pages[i];
1403 			if (page->index > end)
1404 				break;
1405 			BUG_ON(!PageLocked(page));
1406 			BUG_ON(PageWriteback(page));
1407 			block_invalidatepage(page, 0);
1408 			ClearPageUptodate(page);
1409 			unlock_page(page);
1410 		}
1411 		index = pvec.pages[nr_pages - 1]->index + 1;
1412 		pagevec_release(&pvec);
1413 	}
1414 	return;
1415 }
1416 
1417 static void ext4_print_free_blocks(struct inode *inode)
1418 {
1419 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1420 	printk(KERN_CRIT "Total free blocks count %lld\n",
1421 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1422 			ext4_count_free_clusters(inode->i_sb)));
1423 	printk(KERN_CRIT "Free/Dirty block details\n");
1424 	printk(KERN_CRIT "free_blocks=%lld\n",
1425 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1426 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1427 	printk(KERN_CRIT "dirty_blocks=%lld\n",
1428 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1429 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1430 	printk(KERN_CRIT "Block reservation details\n");
1431 	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1432 	       EXT4_I(inode)->i_reserved_data_blocks);
1433 	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1434 	       EXT4_I(inode)->i_reserved_meta_blocks);
1435 	return;
1436 }
1437 
1438 /*
1439  * mpage_da_map_and_submit - go through given space, map them
1440  *       if necessary, and then submit them for I/O
1441  *
1442  * @mpd - bh describing space
1443  *
1444  * The function skips space we know is already mapped to disk blocks.
1445  *
1446  */
1447 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1448 {
1449 	int err, blks, get_blocks_flags;
1450 	struct ext4_map_blocks map, *mapp = NULL;
1451 	sector_t next = mpd->b_blocknr;
1452 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1453 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1454 	handle_t *handle = NULL;
1455 
1456 	/*
1457 	 * If the blocks are mapped already, or we couldn't accumulate
1458 	 * any blocks, then proceed immediately to the submission stage.
1459 	 */
1460 	if ((mpd->b_size == 0) ||
1461 	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1462 	     !(mpd->b_state & (1 << BH_Delay)) &&
1463 	     !(mpd->b_state & (1 << BH_Unwritten))))
1464 		goto submit_io;
1465 
1466 	handle = ext4_journal_current_handle();
1467 	BUG_ON(!handle);
1468 
1469 	/*
1470 	 * Call ext4_map_blocks() to allocate any delayed allocation
1471 	 * blocks, or to convert an uninitialized extent to be
1472 	 * initialized (in the case where we have written into
1473 	 * one or more preallocated blocks).
1474 	 *
1475 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1476 	 * indicate that we are on the delayed allocation path.  This
1477 	 * affects functions in many different parts of the allocation
1478 	 * call path.  This flag exists primarily because we don't
1479 	 * want to change *many* call functions, so ext4_map_blocks()
1480 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1481 	 * inode's allocation semaphore is taken.
1482 	 *
1483 	 * If the blocks in questions were delalloc blocks, set
1484 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1485 	 * variables are updated after the blocks have been allocated.
1486 	 */
1487 	map.m_lblk = next;
1488 	map.m_len = max_blocks;
1489 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1490 	if (ext4_should_dioread_nolock(mpd->inode))
1491 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1492 	if (mpd->b_state & (1 << BH_Delay))
1493 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1494 
1495 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1496 	if (blks < 0) {
1497 		struct super_block *sb = mpd->inode->i_sb;
1498 
1499 		err = blks;
1500 		/*
1501 		 * If get block returns EAGAIN or ENOSPC and there
1502 		 * appears to be free blocks we will just let
1503 		 * mpage_da_submit_io() unlock all of the pages.
1504 		 */
1505 		if (err == -EAGAIN)
1506 			goto submit_io;
1507 
1508 		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1509 			mpd->retval = err;
1510 			goto submit_io;
1511 		}
1512 
1513 		/*
1514 		 * get block failure will cause us to loop in
1515 		 * writepages, because a_ops->writepage won't be able
1516 		 * to make progress. The page will be redirtied by
1517 		 * writepage and writepages will again try to write
1518 		 * the same.
1519 		 */
1520 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1521 			ext4_msg(sb, KERN_CRIT,
1522 				 "delayed block allocation failed for inode %lu "
1523 				 "at logical offset %llu with max blocks %zd "
1524 				 "with error %d", mpd->inode->i_ino,
1525 				 (unsigned long long) next,
1526 				 mpd->b_size >> mpd->inode->i_blkbits, err);
1527 			ext4_msg(sb, KERN_CRIT,
1528 				"This should not happen!! Data will be lost\n");
1529 			if (err == -ENOSPC)
1530 				ext4_print_free_blocks(mpd->inode);
1531 		}
1532 		/* invalidate all the pages */
1533 		ext4_da_block_invalidatepages(mpd);
1534 
1535 		/* Mark this page range as having been completed */
1536 		mpd->io_done = 1;
1537 		return;
1538 	}
1539 	BUG_ON(blks == 0);
1540 
1541 	mapp = &map;
1542 	if (map.m_flags & EXT4_MAP_NEW) {
1543 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1544 		int i;
1545 
1546 		for (i = 0; i < map.m_len; i++)
1547 			unmap_underlying_metadata(bdev, map.m_pblk + i);
1548 
1549 		if (ext4_should_order_data(mpd->inode)) {
1550 			err = ext4_jbd2_file_inode(handle, mpd->inode);
1551 			if (err)
1552 				/* Only if the journal is aborted */
1553 				return;
1554 		}
1555 	}
1556 
1557 	/*
1558 	 * Update on-disk size along with block allocation.
1559 	 */
1560 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1561 	if (disksize > i_size_read(mpd->inode))
1562 		disksize = i_size_read(mpd->inode);
1563 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1564 		ext4_update_i_disksize(mpd->inode, disksize);
1565 		err = ext4_mark_inode_dirty(handle, mpd->inode);
1566 		if (err)
1567 			ext4_error(mpd->inode->i_sb,
1568 				   "Failed to mark inode %lu dirty",
1569 				   mpd->inode->i_ino);
1570 	}
1571 
1572 submit_io:
1573 	mpage_da_submit_io(mpd, mapp);
1574 	mpd->io_done = 1;
1575 }
1576 
1577 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1578 		(1 << BH_Delay) | (1 << BH_Unwritten))
1579 
1580 /*
1581  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1582  *
1583  * @mpd->lbh - extent of blocks
1584  * @logical - logical number of the block in the file
1585  * @bh - bh of the block (used to access block's state)
1586  *
1587  * the function is used to collect contig. blocks in same state
1588  */
1589 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1590 				   sector_t logical, size_t b_size,
1591 				   unsigned long b_state)
1592 {
1593 	sector_t next;
1594 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1595 
1596 	/*
1597 	 * XXX Don't go larger than mballoc is willing to allocate
1598 	 * This is a stopgap solution.  We eventually need to fold
1599 	 * mpage_da_submit_io() into this function and then call
1600 	 * ext4_map_blocks() multiple times in a loop
1601 	 */
1602 	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1603 		goto flush_it;
1604 
1605 	/* check if thereserved journal credits might overflow */
1606 	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1607 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1608 			/*
1609 			 * With non-extent format we are limited by the journal
1610 			 * credit available.  Total credit needed to insert
1611 			 * nrblocks contiguous blocks is dependent on the
1612 			 * nrblocks.  So limit nrblocks.
1613 			 */
1614 			goto flush_it;
1615 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1616 				EXT4_MAX_TRANS_DATA) {
1617 			/*
1618 			 * Adding the new buffer_head would make it cross the
1619 			 * allowed limit for which we have journal credit
1620 			 * reserved. So limit the new bh->b_size
1621 			 */
1622 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1623 						mpd->inode->i_blkbits;
1624 			/* we will do mpage_da_submit_io in the next loop */
1625 		}
1626 	}
1627 	/*
1628 	 * First block in the extent
1629 	 */
1630 	if (mpd->b_size == 0) {
1631 		mpd->b_blocknr = logical;
1632 		mpd->b_size = b_size;
1633 		mpd->b_state = b_state & BH_FLAGS;
1634 		return;
1635 	}
1636 
1637 	next = mpd->b_blocknr + nrblocks;
1638 	/*
1639 	 * Can we merge the block to our big extent?
1640 	 */
1641 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1642 		mpd->b_size += b_size;
1643 		return;
1644 	}
1645 
1646 flush_it:
1647 	/*
1648 	 * We couldn't merge the block to our extent, so we
1649 	 * need to flush current  extent and start new one
1650 	 */
1651 	mpage_da_map_and_submit(mpd);
1652 	return;
1653 }
1654 
1655 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1656 {
1657 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1658 }
1659 
1660 /*
1661  * This function is grabs code from the very beginning of
1662  * ext4_map_blocks, but assumes that the caller is from delayed write
1663  * time. This function looks up the requested blocks and sets the
1664  * buffer delay bit under the protection of i_data_sem.
1665  */
1666 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1667 			      struct ext4_map_blocks *map,
1668 			      struct buffer_head *bh)
1669 {
1670 	int retval;
1671 	sector_t invalid_block = ~((sector_t) 0xffff);
1672 
1673 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1674 		invalid_block = ~0;
1675 
1676 	map->m_flags = 0;
1677 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1678 		  "logical block %lu\n", inode->i_ino, map->m_len,
1679 		  (unsigned long) map->m_lblk);
1680 	/*
1681 	 * Try to see if we can get the block without requesting a new
1682 	 * file system block.
1683 	 */
1684 	down_read((&EXT4_I(inode)->i_data_sem));
1685 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1686 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1687 	else
1688 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1689 
1690 	if (retval == 0) {
1691 		/*
1692 		 * XXX: __block_prepare_write() unmaps passed block,
1693 		 * is it OK?
1694 		 */
1695 		/* If the block was allocated from previously allocated cluster,
1696 		 * then we dont need to reserve it again. */
1697 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1698 			retval = ext4_da_reserve_space(inode, iblock);
1699 			if (retval)
1700 				/* not enough space to reserve */
1701 				goto out_unlock;
1702 		}
1703 
1704 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1705 		 * and it should not appear on the bh->b_state.
1706 		 */
1707 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1708 
1709 		map_bh(bh, inode->i_sb, invalid_block);
1710 		set_buffer_new(bh);
1711 		set_buffer_delay(bh);
1712 	}
1713 
1714 out_unlock:
1715 	up_read((&EXT4_I(inode)->i_data_sem));
1716 
1717 	return retval;
1718 }
1719 
1720 /*
1721  * This is a special get_blocks_t callback which is used by
1722  * ext4_da_write_begin().  It will either return mapped block or
1723  * reserve space for a single block.
1724  *
1725  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1726  * We also have b_blocknr = -1 and b_bdev initialized properly
1727  *
1728  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1729  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1730  * initialized properly.
1731  */
1732 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1733 				  struct buffer_head *bh, int create)
1734 {
1735 	struct ext4_map_blocks map;
1736 	int ret = 0;
1737 
1738 	BUG_ON(create == 0);
1739 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1740 
1741 	map.m_lblk = iblock;
1742 	map.m_len = 1;
1743 
1744 	/*
1745 	 * first, we need to know whether the block is allocated already
1746 	 * preallocated blocks are unmapped but should treated
1747 	 * the same as allocated blocks.
1748 	 */
1749 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1750 	if (ret <= 0)
1751 		return ret;
1752 
1753 	map_bh(bh, inode->i_sb, map.m_pblk);
1754 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1755 
1756 	if (buffer_unwritten(bh)) {
1757 		/* A delayed write to unwritten bh should be marked
1758 		 * new and mapped.  Mapped ensures that we don't do
1759 		 * get_block multiple times when we write to the same
1760 		 * offset and new ensures that we do proper zero out
1761 		 * for partial write.
1762 		 */
1763 		set_buffer_new(bh);
1764 		set_buffer_mapped(bh);
1765 	}
1766 	return 0;
1767 }
1768 
1769 /*
1770  * This function is used as a standard get_block_t calback function
1771  * when there is no desire to allocate any blocks.  It is used as a
1772  * callback function for block_write_begin() and block_write_full_page().
1773  * These functions should only try to map a single block at a time.
1774  *
1775  * Since this function doesn't do block allocations even if the caller
1776  * requests it by passing in create=1, it is critically important that
1777  * any caller checks to make sure that any buffer heads are returned
1778  * by this function are either all already mapped or marked for
1779  * delayed allocation before calling  block_write_full_page().  Otherwise,
1780  * b_blocknr could be left unitialized, and the page write functions will
1781  * be taken by surprise.
1782  */
1783 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1784 				   struct buffer_head *bh_result, int create)
1785 {
1786 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1787 	return _ext4_get_block(inode, iblock, bh_result, 0);
1788 }
1789 
1790 static int bget_one(handle_t *handle, struct buffer_head *bh)
1791 {
1792 	get_bh(bh);
1793 	return 0;
1794 }
1795 
1796 static int bput_one(handle_t *handle, struct buffer_head *bh)
1797 {
1798 	put_bh(bh);
1799 	return 0;
1800 }
1801 
1802 static int __ext4_journalled_writepage(struct page *page,
1803 				       unsigned int len)
1804 {
1805 	struct address_space *mapping = page->mapping;
1806 	struct inode *inode = mapping->host;
1807 	struct buffer_head *page_bufs;
1808 	handle_t *handle = NULL;
1809 	int ret = 0;
1810 	int err;
1811 
1812 	ClearPageChecked(page);
1813 	page_bufs = page_buffers(page);
1814 	BUG_ON(!page_bufs);
1815 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1816 	/* As soon as we unlock the page, it can go away, but we have
1817 	 * references to buffers so we are safe */
1818 	unlock_page(page);
1819 
1820 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1821 	if (IS_ERR(handle)) {
1822 		ret = PTR_ERR(handle);
1823 		goto out;
1824 	}
1825 
1826 	BUG_ON(!ext4_handle_valid(handle));
1827 
1828 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1829 				do_journal_get_write_access);
1830 
1831 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1832 				write_end_fn);
1833 	if (ret == 0)
1834 		ret = err;
1835 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1836 	err = ext4_journal_stop(handle);
1837 	if (!ret)
1838 		ret = err;
1839 
1840 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1841 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1842 out:
1843 	return ret;
1844 }
1845 
1846 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1847 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1848 
1849 /*
1850  * Note that we don't need to start a transaction unless we're journaling data
1851  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1852  * need to file the inode to the transaction's list in ordered mode because if
1853  * we are writing back data added by write(), the inode is already there and if
1854  * we are writing back data modified via mmap(), no one guarantees in which
1855  * transaction the data will hit the disk. In case we are journaling data, we
1856  * cannot start transaction directly because transaction start ranks above page
1857  * lock so we have to do some magic.
1858  *
1859  * This function can get called via...
1860  *   - ext4_da_writepages after taking page lock (have journal handle)
1861  *   - journal_submit_inode_data_buffers (no journal handle)
1862  *   - shrink_page_list via pdflush (no journal handle)
1863  *   - grab_page_cache when doing write_begin (have journal handle)
1864  *
1865  * We don't do any block allocation in this function. If we have page with
1866  * multiple blocks we need to write those buffer_heads that are mapped. This
1867  * is important for mmaped based write. So if we do with blocksize 1K
1868  * truncate(f, 1024);
1869  * a = mmap(f, 0, 4096);
1870  * a[0] = 'a';
1871  * truncate(f, 4096);
1872  * we have in the page first buffer_head mapped via page_mkwrite call back
1873  * but other bufer_heads would be unmapped but dirty(dirty done via the
1874  * do_wp_page). So writepage should write the first block. If we modify
1875  * the mmap area beyond 1024 we will again get a page_fault and the
1876  * page_mkwrite callback will do the block allocation and mark the
1877  * buffer_heads mapped.
1878  *
1879  * We redirty the page if we have any buffer_heads that is either delay or
1880  * unwritten in the page.
1881  *
1882  * We can get recursively called as show below.
1883  *
1884  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1885  *		ext4_writepage()
1886  *
1887  * But since we don't do any block allocation we should not deadlock.
1888  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1889  */
1890 static int ext4_writepage(struct page *page,
1891 			  struct writeback_control *wbc)
1892 {
1893 	int ret = 0, commit_write = 0;
1894 	loff_t size;
1895 	unsigned int len;
1896 	struct buffer_head *page_bufs = NULL;
1897 	struct inode *inode = page->mapping->host;
1898 
1899 	trace_ext4_writepage(page);
1900 	size = i_size_read(inode);
1901 	if (page->index == size >> PAGE_CACHE_SHIFT)
1902 		len = size & ~PAGE_CACHE_MASK;
1903 	else
1904 		len = PAGE_CACHE_SIZE;
1905 
1906 	/*
1907 	 * If the page does not have buffers (for whatever reason),
1908 	 * try to create them using __block_write_begin.  If this
1909 	 * fails, redirty the page and move on.
1910 	 */
1911 	if (!page_has_buffers(page)) {
1912 		if (__block_write_begin(page, 0, len,
1913 					noalloc_get_block_write)) {
1914 		redirty_page:
1915 			redirty_page_for_writepage(wbc, page);
1916 			unlock_page(page);
1917 			return 0;
1918 		}
1919 		commit_write = 1;
1920 	}
1921 	page_bufs = page_buffers(page);
1922 	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1923 			      ext4_bh_delay_or_unwritten)) {
1924 		/*
1925 		 * We don't want to do block allocation, so redirty
1926 		 * the page and return.  We may reach here when we do
1927 		 * a journal commit via journal_submit_inode_data_buffers.
1928 		 * We can also reach here via shrink_page_list
1929 		 */
1930 		goto redirty_page;
1931 	}
1932 	if (commit_write)
1933 		/* now mark the buffer_heads as dirty and uptodate */
1934 		block_commit_write(page, 0, len);
1935 
1936 	if (PageChecked(page) && ext4_should_journal_data(inode))
1937 		/*
1938 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1939 		 * doesn't seem much point in redirtying the page here.
1940 		 */
1941 		return __ext4_journalled_writepage(page, len);
1942 
1943 	if (buffer_uninit(page_bufs)) {
1944 		ext4_set_bh_endio(page_bufs, inode);
1945 		ret = block_write_full_page_endio(page, noalloc_get_block_write,
1946 					    wbc, ext4_end_io_buffer_write);
1947 	} else
1948 		ret = block_write_full_page(page, noalloc_get_block_write,
1949 					    wbc);
1950 
1951 	return ret;
1952 }
1953 
1954 /*
1955  * This is called via ext4_da_writepages() to
1956  * calculate the total number of credits to reserve to fit
1957  * a single extent allocation into a single transaction,
1958  * ext4_da_writpeages() will loop calling this before
1959  * the block allocation.
1960  */
1961 
1962 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1963 {
1964 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1965 
1966 	/*
1967 	 * With non-extent format the journal credit needed to
1968 	 * insert nrblocks contiguous block is dependent on
1969 	 * number of contiguous block. So we will limit
1970 	 * number of contiguous block to a sane value
1971 	 */
1972 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1973 	    (max_blocks > EXT4_MAX_TRANS_DATA))
1974 		max_blocks = EXT4_MAX_TRANS_DATA;
1975 
1976 	return ext4_chunk_trans_blocks(inode, max_blocks);
1977 }
1978 
1979 /*
1980  * write_cache_pages_da - walk the list of dirty pages of the given
1981  * address space and accumulate pages that need writing, and call
1982  * mpage_da_map_and_submit to map a single contiguous memory region
1983  * and then write them.
1984  */
1985 static int write_cache_pages_da(struct address_space *mapping,
1986 				struct writeback_control *wbc,
1987 				struct mpage_da_data *mpd,
1988 				pgoff_t *done_index)
1989 {
1990 	struct buffer_head	*bh, *head;
1991 	struct inode		*inode = mapping->host;
1992 	struct pagevec		pvec;
1993 	unsigned int		nr_pages;
1994 	sector_t		logical;
1995 	pgoff_t			index, end;
1996 	long			nr_to_write = wbc->nr_to_write;
1997 	int			i, tag, ret = 0;
1998 
1999 	memset(mpd, 0, sizeof(struct mpage_da_data));
2000 	mpd->wbc = wbc;
2001 	mpd->inode = inode;
2002 	pagevec_init(&pvec, 0);
2003 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2004 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2005 
2006 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2007 		tag = PAGECACHE_TAG_TOWRITE;
2008 	else
2009 		tag = PAGECACHE_TAG_DIRTY;
2010 
2011 	*done_index = index;
2012 	while (index <= end) {
2013 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2014 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2015 		if (nr_pages == 0)
2016 			return 0;
2017 
2018 		for (i = 0; i < nr_pages; i++) {
2019 			struct page *page = pvec.pages[i];
2020 
2021 			/*
2022 			 * At this point, the page may be truncated or
2023 			 * invalidated (changing page->mapping to NULL), or
2024 			 * even swizzled back from swapper_space to tmpfs file
2025 			 * mapping. However, page->index will not change
2026 			 * because we have a reference on the page.
2027 			 */
2028 			if (page->index > end)
2029 				goto out;
2030 
2031 			*done_index = page->index + 1;
2032 
2033 			/*
2034 			 * If we can't merge this page, and we have
2035 			 * accumulated an contiguous region, write it
2036 			 */
2037 			if ((mpd->next_page != page->index) &&
2038 			    (mpd->next_page != mpd->first_page)) {
2039 				mpage_da_map_and_submit(mpd);
2040 				goto ret_extent_tail;
2041 			}
2042 
2043 			lock_page(page);
2044 
2045 			/*
2046 			 * If the page is no longer dirty, or its
2047 			 * mapping no longer corresponds to inode we
2048 			 * are writing (which means it has been
2049 			 * truncated or invalidated), or the page is
2050 			 * already under writeback and we are not
2051 			 * doing a data integrity writeback, skip the page
2052 			 */
2053 			if (!PageDirty(page) ||
2054 			    (PageWriteback(page) &&
2055 			     (wbc->sync_mode == WB_SYNC_NONE)) ||
2056 			    unlikely(page->mapping != mapping)) {
2057 				unlock_page(page);
2058 				continue;
2059 			}
2060 
2061 			wait_on_page_writeback(page);
2062 			BUG_ON(PageWriteback(page));
2063 
2064 			if (mpd->next_page != page->index)
2065 				mpd->first_page = page->index;
2066 			mpd->next_page = page->index + 1;
2067 			logical = (sector_t) page->index <<
2068 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2069 
2070 			if (!page_has_buffers(page)) {
2071 				mpage_add_bh_to_extent(mpd, logical,
2072 						       PAGE_CACHE_SIZE,
2073 						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2074 				if (mpd->io_done)
2075 					goto ret_extent_tail;
2076 			} else {
2077 				/*
2078 				 * Page with regular buffer heads,
2079 				 * just add all dirty ones
2080 				 */
2081 				head = page_buffers(page);
2082 				bh = head;
2083 				do {
2084 					BUG_ON(buffer_locked(bh));
2085 					/*
2086 					 * We need to try to allocate
2087 					 * unmapped blocks in the same page.
2088 					 * Otherwise we won't make progress
2089 					 * with the page in ext4_writepage
2090 					 */
2091 					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2092 						mpage_add_bh_to_extent(mpd, logical,
2093 								       bh->b_size,
2094 								       bh->b_state);
2095 						if (mpd->io_done)
2096 							goto ret_extent_tail;
2097 					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2098 						/*
2099 						 * mapped dirty buffer. We need
2100 						 * to update the b_state
2101 						 * because we look at b_state
2102 						 * in mpage_da_map_blocks.  We
2103 						 * don't update b_size because
2104 						 * if we find an unmapped
2105 						 * buffer_head later we need to
2106 						 * use the b_state flag of that
2107 						 * buffer_head.
2108 						 */
2109 						if (mpd->b_size == 0)
2110 							mpd->b_state = bh->b_state & BH_FLAGS;
2111 					}
2112 					logical++;
2113 				} while ((bh = bh->b_this_page) != head);
2114 			}
2115 
2116 			if (nr_to_write > 0) {
2117 				nr_to_write--;
2118 				if (nr_to_write == 0 &&
2119 				    wbc->sync_mode == WB_SYNC_NONE)
2120 					/*
2121 					 * We stop writing back only if we are
2122 					 * not doing integrity sync. In case of
2123 					 * integrity sync we have to keep going
2124 					 * because someone may be concurrently
2125 					 * dirtying pages, and we might have
2126 					 * synced a lot of newly appeared dirty
2127 					 * pages, but have not synced all of the
2128 					 * old dirty pages.
2129 					 */
2130 					goto out;
2131 			}
2132 		}
2133 		pagevec_release(&pvec);
2134 		cond_resched();
2135 	}
2136 	return 0;
2137 ret_extent_tail:
2138 	ret = MPAGE_DA_EXTENT_TAIL;
2139 out:
2140 	pagevec_release(&pvec);
2141 	cond_resched();
2142 	return ret;
2143 }
2144 
2145 
2146 static int ext4_da_writepages(struct address_space *mapping,
2147 			      struct writeback_control *wbc)
2148 {
2149 	pgoff_t	index;
2150 	int range_whole = 0;
2151 	handle_t *handle = NULL;
2152 	struct mpage_da_data mpd;
2153 	struct inode *inode = mapping->host;
2154 	int pages_written = 0;
2155 	unsigned int max_pages;
2156 	int range_cyclic, cycled = 1, io_done = 0;
2157 	int needed_blocks, ret = 0;
2158 	long desired_nr_to_write, nr_to_writebump = 0;
2159 	loff_t range_start = wbc->range_start;
2160 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2161 	pgoff_t done_index = 0;
2162 	pgoff_t end;
2163 	struct blk_plug plug;
2164 
2165 	trace_ext4_da_writepages(inode, wbc);
2166 
2167 	/*
2168 	 * No pages to write? This is mainly a kludge to avoid starting
2169 	 * a transaction for special inodes like journal inode on last iput()
2170 	 * because that could violate lock ordering on umount
2171 	 */
2172 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2173 		return 0;
2174 
2175 	/*
2176 	 * If the filesystem has aborted, it is read-only, so return
2177 	 * right away instead of dumping stack traces later on that
2178 	 * will obscure the real source of the problem.  We test
2179 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2180 	 * the latter could be true if the filesystem is mounted
2181 	 * read-only, and in that case, ext4_da_writepages should
2182 	 * *never* be called, so if that ever happens, we would want
2183 	 * the stack trace.
2184 	 */
2185 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2186 		return -EROFS;
2187 
2188 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2189 		range_whole = 1;
2190 
2191 	range_cyclic = wbc->range_cyclic;
2192 	if (wbc->range_cyclic) {
2193 		index = mapping->writeback_index;
2194 		if (index)
2195 			cycled = 0;
2196 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2197 		wbc->range_end  = LLONG_MAX;
2198 		wbc->range_cyclic = 0;
2199 		end = -1;
2200 	} else {
2201 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2202 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2203 	}
2204 
2205 	/*
2206 	 * This works around two forms of stupidity.  The first is in
2207 	 * the writeback code, which caps the maximum number of pages
2208 	 * written to be 1024 pages.  This is wrong on multiple
2209 	 * levels; different architectues have a different page size,
2210 	 * which changes the maximum amount of data which gets
2211 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2212 	 * forces this value to be 16 megabytes by multiplying
2213 	 * nr_to_write parameter by four, and then relies on its
2214 	 * allocator to allocate larger extents to make them
2215 	 * contiguous.  Unfortunately this brings us to the second
2216 	 * stupidity, which is that ext4's mballoc code only allocates
2217 	 * at most 2048 blocks.  So we force contiguous writes up to
2218 	 * the number of dirty blocks in the inode, or
2219 	 * sbi->max_writeback_mb_bump whichever is smaller.
2220 	 */
2221 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2222 	if (!range_cyclic && range_whole) {
2223 		if (wbc->nr_to_write == LONG_MAX)
2224 			desired_nr_to_write = wbc->nr_to_write;
2225 		else
2226 			desired_nr_to_write = wbc->nr_to_write * 8;
2227 	} else
2228 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2229 							   max_pages);
2230 	if (desired_nr_to_write > max_pages)
2231 		desired_nr_to_write = max_pages;
2232 
2233 	if (wbc->nr_to_write < desired_nr_to_write) {
2234 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2235 		wbc->nr_to_write = desired_nr_to_write;
2236 	}
2237 
2238 retry:
2239 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2240 		tag_pages_for_writeback(mapping, index, end);
2241 
2242 	blk_start_plug(&plug);
2243 	while (!ret && wbc->nr_to_write > 0) {
2244 
2245 		/*
2246 		 * we  insert one extent at a time. So we need
2247 		 * credit needed for single extent allocation.
2248 		 * journalled mode is currently not supported
2249 		 * by delalloc
2250 		 */
2251 		BUG_ON(ext4_should_journal_data(inode));
2252 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2253 
2254 		/* start a new transaction*/
2255 		handle = ext4_journal_start(inode, needed_blocks);
2256 		if (IS_ERR(handle)) {
2257 			ret = PTR_ERR(handle);
2258 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2259 			       "%ld pages, ino %lu; err %d", __func__,
2260 				wbc->nr_to_write, inode->i_ino, ret);
2261 			goto out_writepages;
2262 		}
2263 
2264 		/*
2265 		 * Now call write_cache_pages_da() to find the next
2266 		 * contiguous region of logical blocks that need
2267 		 * blocks to be allocated by ext4 and submit them.
2268 		 */
2269 		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2270 		/*
2271 		 * If we have a contiguous extent of pages and we
2272 		 * haven't done the I/O yet, map the blocks and submit
2273 		 * them for I/O.
2274 		 */
2275 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2276 			mpage_da_map_and_submit(&mpd);
2277 			ret = MPAGE_DA_EXTENT_TAIL;
2278 		}
2279 		trace_ext4_da_write_pages(inode, &mpd);
2280 		wbc->nr_to_write -= mpd.pages_written;
2281 
2282 		ext4_journal_stop(handle);
2283 
2284 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2285 			/* commit the transaction which would
2286 			 * free blocks released in the transaction
2287 			 * and try again
2288 			 */
2289 			jbd2_journal_force_commit_nested(sbi->s_journal);
2290 			ret = 0;
2291 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2292 			/*
2293 			 * got one extent now try with
2294 			 * rest of the pages
2295 			 */
2296 			pages_written += mpd.pages_written;
2297 			ret = 0;
2298 			io_done = 1;
2299 		} else if (wbc->nr_to_write)
2300 			/*
2301 			 * There is no more writeout needed
2302 			 * or we requested for a noblocking writeout
2303 			 * and we found the device congested
2304 			 */
2305 			break;
2306 	}
2307 	blk_finish_plug(&plug);
2308 	if (!io_done && !cycled) {
2309 		cycled = 1;
2310 		index = 0;
2311 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2312 		wbc->range_end  = mapping->writeback_index - 1;
2313 		goto retry;
2314 	}
2315 
2316 	/* Update index */
2317 	wbc->range_cyclic = range_cyclic;
2318 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2319 		/*
2320 		 * set the writeback_index so that range_cyclic
2321 		 * mode will write it back later
2322 		 */
2323 		mapping->writeback_index = done_index;
2324 
2325 out_writepages:
2326 	wbc->nr_to_write -= nr_to_writebump;
2327 	wbc->range_start = range_start;
2328 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2329 	return ret;
2330 }
2331 
2332 #define FALL_BACK_TO_NONDELALLOC 1
2333 static int ext4_nonda_switch(struct super_block *sb)
2334 {
2335 	s64 free_blocks, dirty_blocks;
2336 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2337 
2338 	/*
2339 	 * switch to non delalloc mode if we are running low
2340 	 * on free block. The free block accounting via percpu
2341 	 * counters can get slightly wrong with percpu_counter_batch getting
2342 	 * accumulated on each CPU without updating global counters
2343 	 * Delalloc need an accurate free block accounting. So switch
2344 	 * to non delalloc when we are near to error range.
2345 	 */
2346 	free_blocks  = EXT4_C2B(sbi,
2347 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2348 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2349 	if (2 * free_blocks < 3 * dirty_blocks ||
2350 		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2351 		/*
2352 		 * free block count is less than 150% of dirty blocks
2353 		 * or free blocks is less than watermark
2354 		 */
2355 		return 1;
2356 	}
2357 	/*
2358 	 * Even if we don't switch but are nearing capacity,
2359 	 * start pushing delalloc when 1/2 of free blocks are dirty.
2360 	 */
2361 	if (free_blocks < 2 * dirty_blocks)
2362 		writeback_inodes_sb_if_idle(sb);
2363 
2364 	return 0;
2365 }
2366 
2367 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2368 			       loff_t pos, unsigned len, unsigned flags,
2369 			       struct page **pagep, void **fsdata)
2370 {
2371 	int ret, retries = 0;
2372 	struct page *page;
2373 	pgoff_t index;
2374 	struct inode *inode = mapping->host;
2375 	handle_t *handle;
2376 	loff_t page_len;
2377 
2378 	index = pos >> PAGE_CACHE_SHIFT;
2379 
2380 	if (ext4_nonda_switch(inode->i_sb)) {
2381 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2382 		return ext4_write_begin(file, mapping, pos,
2383 					len, flags, pagep, fsdata);
2384 	}
2385 	*fsdata = (void *)0;
2386 	trace_ext4_da_write_begin(inode, pos, len, flags);
2387 retry:
2388 	/*
2389 	 * With delayed allocation, we don't log the i_disksize update
2390 	 * if there is delayed block allocation. But we still need
2391 	 * to journalling the i_disksize update if writes to the end
2392 	 * of file which has an already mapped buffer.
2393 	 */
2394 	handle = ext4_journal_start(inode, 1);
2395 	if (IS_ERR(handle)) {
2396 		ret = PTR_ERR(handle);
2397 		goto out;
2398 	}
2399 	/* We cannot recurse into the filesystem as the transaction is already
2400 	 * started */
2401 	flags |= AOP_FLAG_NOFS;
2402 
2403 	page = grab_cache_page_write_begin(mapping, index, flags);
2404 	if (!page) {
2405 		ext4_journal_stop(handle);
2406 		ret = -ENOMEM;
2407 		goto out;
2408 	}
2409 	*pagep = page;
2410 
2411 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2412 	if (ret < 0) {
2413 		unlock_page(page);
2414 		ext4_journal_stop(handle);
2415 		page_cache_release(page);
2416 		/*
2417 		 * block_write_begin may have instantiated a few blocks
2418 		 * outside i_size.  Trim these off again. Don't need
2419 		 * i_size_read because we hold i_mutex.
2420 		 */
2421 		if (pos + len > inode->i_size)
2422 			ext4_truncate_failed_write(inode);
2423 	} else {
2424 		page_len = pos & (PAGE_CACHE_SIZE - 1);
2425 		if (page_len > 0) {
2426 			ret = ext4_discard_partial_page_buffers_no_lock(handle,
2427 				inode, page, pos - page_len, page_len,
2428 				EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2429 		}
2430 	}
2431 
2432 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2433 		goto retry;
2434 out:
2435 	return ret;
2436 }
2437 
2438 /*
2439  * Check if we should update i_disksize
2440  * when write to the end of file but not require block allocation
2441  */
2442 static int ext4_da_should_update_i_disksize(struct page *page,
2443 					    unsigned long offset)
2444 {
2445 	struct buffer_head *bh;
2446 	struct inode *inode = page->mapping->host;
2447 	unsigned int idx;
2448 	int i;
2449 
2450 	bh = page_buffers(page);
2451 	idx = offset >> inode->i_blkbits;
2452 
2453 	for (i = 0; i < idx; i++)
2454 		bh = bh->b_this_page;
2455 
2456 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2457 		return 0;
2458 	return 1;
2459 }
2460 
2461 static int ext4_da_write_end(struct file *file,
2462 			     struct address_space *mapping,
2463 			     loff_t pos, unsigned len, unsigned copied,
2464 			     struct page *page, void *fsdata)
2465 {
2466 	struct inode *inode = mapping->host;
2467 	int ret = 0, ret2;
2468 	handle_t *handle = ext4_journal_current_handle();
2469 	loff_t new_i_size;
2470 	unsigned long start, end;
2471 	int write_mode = (int)(unsigned long)fsdata;
2472 	loff_t page_len;
2473 
2474 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2475 		if (ext4_should_order_data(inode)) {
2476 			return ext4_ordered_write_end(file, mapping, pos,
2477 					len, copied, page, fsdata);
2478 		} else if (ext4_should_writeback_data(inode)) {
2479 			return ext4_writeback_write_end(file, mapping, pos,
2480 					len, copied, page, fsdata);
2481 		} else {
2482 			BUG();
2483 		}
2484 	}
2485 
2486 	trace_ext4_da_write_end(inode, pos, len, copied);
2487 	start = pos & (PAGE_CACHE_SIZE - 1);
2488 	end = start + copied - 1;
2489 
2490 	/*
2491 	 * generic_write_end() will run mark_inode_dirty() if i_size
2492 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2493 	 * into that.
2494 	 */
2495 
2496 	new_i_size = pos + copied;
2497 	if (new_i_size > EXT4_I(inode)->i_disksize) {
2498 		if (ext4_da_should_update_i_disksize(page, end)) {
2499 			down_write(&EXT4_I(inode)->i_data_sem);
2500 			if (new_i_size > EXT4_I(inode)->i_disksize) {
2501 				/*
2502 				 * Updating i_disksize when extending file
2503 				 * without needing block allocation
2504 				 */
2505 				if (ext4_should_order_data(inode))
2506 					ret = ext4_jbd2_file_inode(handle,
2507 								   inode);
2508 
2509 				EXT4_I(inode)->i_disksize = new_i_size;
2510 			}
2511 			up_write(&EXT4_I(inode)->i_data_sem);
2512 			/* We need to mark inode dirty even if
2513 			 * new_i_size is less that inode->i_size
2514 			 * bu greater than i_disksize.(hint delalloc)
2515 			 */
2516 			ext4_mark_inode_dirty(handle, inode);
2517 		}
2518 	}
2519 	ret2 = generic_write_end(file, mapping, pos, len, copied,
2520 							page, fsdata);
2521 
2522 	page_len = PAGE_CACHE_SIZE -
2523 			((pos + copied - 1) & (PAGE_CACHE_SIZE - 1));
2524 
2525 	if (page_len > 0) {
2526 		ret = ext4_discard_partial_page_buffers_no_lock(handle,
2527 			inode, page, pos + copied - 1, page_len,
2528 			EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2529 	}
2530 
2531 	copied = ret2;
2532 	if (ret2 < 0)
2533 		ret = ret2;
2534 	ret2 = ext4_journal_stop(handle);
2535 	if (!ret)
2536 		ret = ret2;
2537 
2538 	return ret ? ret : copied;
2539 }
2540 
2541 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2542 {
2543 	/*
2544 	 * Drop reserved blocks
2545 	 */
2546 	BUG_ON(!PageLocked(page));
2547 	if (!page_has_buffers(page))
2548 		goto out;
2549 
2550 	ext4_da_page_release_reservation(page, offset);
2551 
2552 out:
2553 	ext4_invalidatepage(page, offset);
2554 
2555 	return;
2556 }
2557 
2558 /*
2559  * Force all delayed allocation blocks to be allocated for a given inode.
2560  */
2561 int ext4_alloc_da_blocks(struct inode *inode)
2562 {
2563 	trace_ext4_alloc_da_blocks(inode);
2564 
2565 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2566 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2567 		return 0;
2568 
2569 	/*
2570 	 * We do something simple for now.  The filemap_flush() will
2571 	 * also start triggering a write of the data blocks, which is
2572 	 * not strictly speaking necessary (and for users of
2573 	 * laptop_mode, not even desirable).  However, to do otherwise
2574 	 * would require replicating code paths in:
2575 	 *
2576 	 * ext4_da_writepages() ->
2577 	 *    write_cache_pages() ---> (via passed in callback function)
2578 	 *        __mpage_da_writepage() -->
2579 	 *           mpage_add_bh_to_extent()
2580 	 *           mpage_da_map_blocks()
2581 	 *
2582 	 * The problem is that write_cache_pages(), located in
2583 	 * mm/page-writeback.c, marks pages clean in preparation for
2584 	 * doing I/O, which is not desirable if we're not planning on
2585 	 * doing I/O at all.
2586 	 *
2587 	 * We could call write_cache_pages(), and then redirty all of
2588 	 * the pages by calling redirty_page_for_writepage() but that
2589 	 * would be ugly in the extreme.  So instead we would need to
2590 	 * replicate parts of the code in the above functions,
2591 	 * simplifying them because we wouldn't actually intend to
2592 	 * write out the pages, but rather only collect contiguous
2593 	 * logical block extents, call the multi-block allocator, and
2594 	 * then update the buffer heads with the block allocations.
2595 	 *
2596 	 * For now, though, we'll cheat by calling filemap_flush(),
2597 	 * which will map the blocks, and start the I/O, but not
2598 	 * actually wait for the I/O to complete.
2599 	 */
2600 	return filemap_flush(inode->i_mapping);
2601 }
2602 
2603 /*
2604  * bmap() is special.  It gets used by applications such as lilo and by
2605  * the swapper to find the on-disk block of a specific piece of data.
2606  *
2607  * Naturally, this is dangerous if the block concerned is still in the
2608  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2609  * filesystem and enables swap, then they may get a nasty shock when the
2610  * data getting swapped to that swapfile suddenly gets overwritten by
2611  * the original zero's written out previously to the journal and
2612  * awaiting writeback in the kernel's buffer cache.
2613  *
2614  * So, if we see any bmap calls here on a modified, data-journaled file,
2615  * take extra steps to flush any blocks which might be in the cache.
2616  */
2617 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2618 {
2619 	struct inode *inode = mapping->host;
2620 	journal_t *journal;
2621 	int err;
2622 
2623 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2624 			test_opt(inode->i_sb, DELALLOC)) {
2625 		/*
2626 		 * With delalloc we want to sync the file
2627 		 * so that we can make sure we allocate
2628 		 * blocks for file
2629 		 */
2630 		filemap_write_and_wait(mapping);
2631 	}
2632 
2633 	if (EXT4_JOURNAL(inode) &&
2634 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2635 		/*
2636 		 * This is a REALLY heavyweight approach, but the use of
2637 		 * bmap on dirty files is expected to be extremely rare:
2638 		 * only if we run lilo or swapon on a freshly made file
2639 		 * do we expect this to happen.
2640 		 *
2641 		 * (bmap requires CAP_SYS_RAWIO so this does not
2642 		 * represent an unprivileged user DOS attack --- we'd be
2643 		 * in trouble if mortal users could trigger this path at
2644 		 * will.)
2645 		 *
2646 		 * NB. EXT4_STATE_JDATA is not set on files other than
2647 		 * regular files.  If somebody wants to bmap a directory
2648 		 * or symlink and gets confused because the buffer
2649 		 * hasn't yet been flushed to disk, they deserve
2650 		 * everything they get.
2651 		 */
2652 
2653 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2654 		journal = EXT4_JOURNAL(inode);
2655 		jbd2_journal_lock_updates(journal);
2656 		err = jbd2_journal_flush(journal);
2657 		jbd2_journal_unlock_updates(journal);
2658 
2659 		if (err)
2660 			return 0;
2661 	}
2662 
2663 	return generic_block_bmap(mapping, block, ext4_get_block);
2664 }
2665 
2666 static int ext4_readpage(struct file *file, struct page *page)
2667 {
2668 	trace_ext4_readpage(page);
2669 	return mpage_readpage(page, ext4_get_block);
2670 }
2671 
2672 static int
2673 ext4_readpages(struct file *file, struct address_space *mapping,
2674 		struct list_head *pages, unsigned nr_pages)
2675 {
2676 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2677 }
2678 
2679 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2680 {
2681 	struct buffer_head *head, *bh;
2682 	unsigned int curr_off = 0;
2683 
2684 	if (!page_has_buffers(page))
2685 		return;
2686 	head = bh = page_buffers(page);
2687 	do {
2688 		if (offset <= curr_off && test_clear_buffer_uninit(bh)
2689 					&& bh->b_private) {
2690 			ext4_free_io_end(bh->b_private);
2691 			bh->b_private = NULL;
2692 			bh->b_end_io = NULL;
2693 		}
2694 		curr_off = curr_off + bh->b_size;
2695 		bh = bh->b_this_page;
2696 	} while (bh != head);
2697 }
2698 
2699 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2700 {
2701 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2702 
2703 	trace_ext4_invalidatepage(page, offset);
2704 
2705 	/*
2706 	 * free any io_end structure allocated for buffers to be discarded
2707 	 */
2708 	if (ext4_should_dioread_nolock(page->mapping->host))
2709 		ext4_invalidatepage_free_endio(page, offset);
2710 	/*
2711 	 * If it's a full truncate we just forget about the pending dirtying
2712 	 */
2713 	if (offset == 0)
2714 		ClearPageChecked(page);
2715 
2716 	if (journal)
2717 		jbd2_journal_invalidatepage(journal, page, offset);
2718 	else
2719 		block_invalidatepage(page, offset);
2720 }
2721 
2722 static int ext4_releasepage(struct page *page, gfp_t wait)
2723 {
2724 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2725 
2726 	trace_ext4_releasepage(page);
2727 
2728 	WARN_ON(PageChecked(page));
2729 	if (!page_has_buffers(page))
2730 		return 0;
2731 	if (journal)
2732 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2733 	else
2734 		return try_to_free_buffers(page);
2735 }
2736 
2737 /*
2738  * ext4_get_block used when preparing for a DIO write or buffer write.
2739  * We allocate an uinitialized extent if blocks haven't been allocated.
2740  * The extent will be converted to initialized after the IO is complete.
2741  */
2742 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2743 		   struct buffer_head *bh_result, int create)
2744 {
2745 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2746 		   inode->i_ino, create);
2747 	return _ext4_get_block(inode, iblock, bh_result,
2748 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2749 }
2750 
2751 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2752 			    ssize_t size, void *private, int ret,
2753 			    bool is_async)
2754 {
2755 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2756         ext4_io_end_t *io_end = iocb->private;
2757 	struct workqueue_struct *wq;
2758 	unsigned long flags;
2759 	struct ext4_inode_info *ei;
2760 
2761 	/* if not async direct IO or dio with 0 bytes write, just return */
2762 	if (!io_end || !size)
2763 		goto out;
2764 
2765 	ext_debug("ext4_end_io_dio(): io_end 0x%p"
2766 		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2767  		  iocb->private, io_end->inode->i_ino, iocb, offset,
2768 		  size);
2769 
2770 	/* if not aio dio with unwritten extents, just free io and return */
2771 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2772 		ext4_free_io_end(io_end);
2773 		iocb->private = NULL;
2774 out:
2775 		if (is_async)
2776 			aio_complete(iocb, ret, 0);
2777 		inode_dio_done(inode);
2778 		return;
2779 	}
2780 
2781 	io_end->offset = offset;
2782 	io_end->size = size;
2783 	if (is_async) {
2784 		io_end->iocb = iocb;
2785 		io_end->result = ret;
2786 	}
2787 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2788 
2789 	/* Add the io_end to per-inode completed aio dio list*/
2790 	ei = EXT4_I(io_end->inode);
2791 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2792 	list_add_tail(&io_end->list, &ei->i_completed_io_list);
2793 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2794 
2795 	/* queue the work to convert unwritten extents to written */
2796 	queue_work(wq, &io_end->work);
2797 	iocb->private = NULL;
2798 
2799 	/* XXX: probably should move into the real I/O completion handler */
2800 	inode_dio_done(inode);
2801 }
2802 
2803 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2804 {
2805 	ext4_io_end_t *io_end = bh->b_private;
2806 	struct workqueue_struct *wq;
2807 	struct inode *inode;
2808 	unsigned long flags;
2809 
2810 	if (!test_clear_buffer_uninit(bh) || !io_end)
2811 		goto out;
2812 
2813 	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2814 		printk("sb umounted, discard end_io request for inode %lu\n",
2815 			io_end->inode->i_ino);
2816 		ext4_free_io_end(io_end);
2817 		goto out;
2818 	}
2819 
2820 	/*
2821 	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2822 	 * but being more careful is always safe for the future change.
2823 	 */
2824 	inode = io_end->inode;
2825 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2826 		io_end->flag |= EXT4_IO_END_UNWRITTEN;
2827 		atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
2828 	}
2829 
2830 	/* Add the io_end to per-inode completed io list*/
2831 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2832 	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2833 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2834 
2835 	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2836 	/* queue the work to convert unwritten extents to written */
2837 	queue_work(wq, &io_end->work);
2838 out:
2839 	bh->b_private = NULL;
2840 	bh->b_end_io = NULL;
2841 	clear_buffer_uninit(bh);
2842 	end_buffer_async_write(bh, uptodate);
2843 }
2844 
2845 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2846 {
2847 	ext4_io_end_t *io_end;
2848 	struct page *page = bh->b_page;
2849 	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2850 	size_t size = bh->b_size;
2851 
2852 retry:
2853 	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2854 	if (!io_end) {
2855 		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2856 		schedule();
2857 		goto retry;
2858 	}
2859 	io_end->offset = offset;
2860 	io_end->size = size;
2861 	/*
2862 	 * We need to hold a reference to the page to make sure it
2863 	 * doesn't get evicted before ext4_end_io_work() has a chance
2864 	 * to convert the extent from written to unwritten.
2865 	 */
2866 	io_end->page = page;
2867 	get_page(io_end->page);
2868 
2869 	bh->b_private = io_end;
2870 	bh->b_end_io = ext4_end_io_buffer_write;
2871 	return 0;
2872 }
2873 
2874 /*
2875  * For ext4 extent files, ext4 will do direct-io write to holes,
2876  * preallocated extents, and those write extend the file, no need to
2877  * fall back to buffered IO.
2878  *
2879  * For holes, we fallocate those blocks, mark them as uninitialized
2880  * If those blocks were preallocated, we mark sure they are splited, but
2881  * still keep the range to write as uninitialized.
2882  *
2883  * The unwrritten extents will be converted to written when DIO is completed.
2884  * For async direct IO, since the IO may still pending when return, we
2885  * set up an end_io call back function, which will do the conversion
2886  * when async direct IO completed.
2887  *
2888  * If the O_DIRECT write will extend the file then add this inode to the
2889  * orphan list.  So recovery will truncate it back to the original size
2890  * if the machine crashes during the write.
2891  *
2892  */
2893 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2894 			      const struct iovec *iov, loff_t offset,
2895 			      unsigned long nr_segs)
2896 {
2897 	struct file *file = iocb->ki_filp;
2898 	struct inode *inode = file->f_mapping->host;
2899 	ssize_t ret;
2900 	size_t count = iov_length(iov, nr_segs);
2901 
2902 	loff_t final_size = offset + count;
2903 	if (rw == WRITE && final_size <= inode->i_size) {
2904 		/*
2905  		 * We could direct write to holes and fallocate.
2906 		 *
2907  		 * Allocated blocks to fill the hole are marked as uninitialized
2908  		 * to prevent parallel buffered read to expose the stale data
2909  		 * before DIO complete the data IO.
2910 		 *
2911  		 * As to previously fallocated extents, ext4 get_block
2912  		 * will just simply mark the buffer mapped but still
2913  		 * keep the extents uninitialized.
2914  		 *
2915 		 * for non AIO case, we will convert those unwritten extents
2916 		 * to written after return back from blockdev_direct_IO.
2917 		 *
2918 		 * for async DIO, the conversion needs to be defered when
2919 		 * the IO is completed. The ext4 end_io callback function
2920 		 * will be called to take care of the conversion work.
2921 		 * Here for async case, we allocate an io_end structure to
2922 		 * hook to the iocb.
2923  		 */
2924 		iocb->private = NULL;
2925 		EXT4_I(inode)->cur_aio_dio = NULL;
2926 		if (!is_sync_kiocb(iocb)) {
2927 			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2928 			if (!iocb->private)
2929 				return -ENOMEM;
2930 			/*
2931 			 * we save the io structure for current async
2932 			 * direct IO, so that later ext4_map_blocks()
2933 			 * could flag the io structure whether there
2934 			 * is a unwritten extents needs to be converted
2935 			 * when IO is completed.
2936 			 */
2937 			EXT4_I(inode)->cur_aio_dio = iocb->private;
2938 		}
2939 
2940 		ret = __blockdev_direct_IO(rw, iocb, inode,
2941 					 inode->i_sb->s_bdev, iov,
2942 					 offset, nr_segs,
2943 					 ext4_get_block_write,
2944 					 ext4_end_io_dio,
2945 					 NULL,
2946 					 DIO_LOCKING | DIO_SKIP_HOLES);
2947 		if (iocb->private)
2948 			EXT4_I(inode)->cur_aio_dio = NULL;
2949 		/*
2950 		 * The io_end structure takes a reference to the inode,
2951 		 * that structure needs to be destroyed and the
2952 		 * reference to the inode need to be dropped, when IO is
2953 		 * complete, even with 0 byte write, or failed.
2954 		 *
2955 		 * In the successful AIO DIO case, the io_end structure will be
2956 		 * desctroyed and the reference to the inode will be dropped
2957 		 * after the end_io call back function is called.
2958 		 *
2959 		 * In the case there is 0 byte write, or error case, since
2960 		 * VFS direct IO won't invoke the end_io call back function,
2961 		 * we need to free the end_io structure here.
2962 		 */
2963 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2964 			ext4_free_io_end(iocb->private);
2965 			iocb->private = NULL;
2966 		} else if (ret > 0 && ext4_test_inode_state(inode,
2967 						EXT4_STATE_DIO_UNWRITTEN)) {
2968 			int err;
2969 			/*
2970 			 * for non AIO case, since the IO is already
2971 			 * completed, we could do the conversion right here
2972 			 */
2973 			err = ext4_convert_unwritten_extents(inode,
2974 							     offset, ret);
2975 			if (err < 0)
2976 				ret = err;
2977 			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2978 		}
2979 		return ret;
2980 	}
2981 
2982 	/* for write the the end of file case, we fall back to old way */
2983 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2984 }
2985 
2986 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2987 			      const struct iovec *iov, loff_t offset,
2988 			      unsigned long nr_segs)
2989 {
2990 	struct file *file = iocb->ki_filp;
2991 	struct inode *inode = file->f_mapping->host;
2992 	ssize_t ret;
2993 
2994 	/*
2995 	 * If we are doing data journalling we don't support O_DIRECT
2996 	 */
2997 	if (ext4_should_journal_data(inode))
2998 		return 0;
2999 
3000 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3001 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3002 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3003 	else
3004 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3005 	trace_ext4_direct_IO_exit(inode, offset,
3006 				iov_length(iov, nr_segs), rw, ret);
3007 	return ret;
3008 }
3009 
3010 /*
3011  * Pages can be marked dirty completely asynchronously from ext4's journalling
3012  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3013  * much here because ->set_page_dirty is called under VFS locks.  The page is
3014  * not necessarily locked.
3015  *
3016  * We cannot just dirty the page and leave attached buffers clean, because the
3017  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3018  * or jbddirty because all the journalling code will explode.
3019  *
3020  * So what we do is to mark the page "pending dirty" and next time writepage
3021  * is called, propagate that into the buffers appropriately.
3022  */
3023 static int ext4_journalled_set_page_dirty(struct page *page)
3024 {
3025 	SetPageChecked(page);
3026 	return __set_page_dirty_nobuffers(page);
3027 }
3028 
3029 static const struct address_space_operations ext4_ordered_aops = {
3030 	.readpage		= ext4_readpage,
3031 	.readpages		= ext4_readpages,
3032 	.writepage		= ext4_writepage,
3033 	.write_begin		= ext4_write_begin,
3034 	.write_end		= ext4_ordered_write_end,
3035 	.bmap			= ext4_bmap,
3036 	.invalidatepage		= ext4_invalidatepage,
3037 	.releasepage		= ext4_releasepage,
3038 	.direct_IO		= ext4_direct_IO,
3039 	.migratepage		= buffer_migrate_page,
3040 	.is_partially_uptodate  = block_is_partially_uptodate,
3041 	.error_remove_page	= generic_error_remove_page,
3042 };
3043 
3044 static const struct address_space_operations ext4_writeback_aops = {
3045 	.readpage		= ext4_readpage,
3046 	.readpages		= ext4_readpages,
3047 	.writepage		= ext4_writepage,
3048 	.write_begin		= ext4_write_begin,
3049 	.write_end		= ext4_writeback_write_end,
3050 	.bmap			= ext4_bmap,
3051 	.invalidatepage		= ext4_invalidatepage,
3052 	.releasepage		= ext4_releasepage,
3053 	.direct_IO		= ext4_direct_IO,
3054 	.migratepage		= buffer_migrate_page,
3055 	.is_partially_uptodate  = block_is_partially_uptodate,
3056 	.error_remove_page	= generic_error_remove_page,
3057 };
3058 
3059 static const struct address_space_operations ext4_journalled_aops = {
3060 	.readpage		= ext4_readpage,
3061 	.readpages		= ext4_readpages,
3062 	.writepage		= ext4_writepage,
3063 	.write_begin		= ext4_write_begin,
3064 	.write_end		= ext4_journalled_write_end,
3065 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3066 	.bmap			= ext4_bmap,
3067 	.invalidatepage		= ext4_invalidatepage,
3068 	.releasepage		= ext4_releasepage,
3069 	.direct_IO		= ext4_direct_IO,
3070 	.is_partially_uptodate  = block_is_partially_uptodate,
3071 	.error_remove_page	= generic_error_remove_page,
3072 };
3073 
3074 static const struct address_space_operations ext4_da_aops = {
3075 	.readpage		= ext4_readpage,
3076 	.readpages		= ext4_readpages,
3077 	.writepage		= ext4_writepage,
3078 	.writepages		= ext4_da_writepages,
3079 	.write_begin		= ext4_da_write_begin,
3080 	.write_end		= ext4_da_write_end,
3081 	.bmap			= ext4_bmap,
3082 	.invalidatepage		= ext4_da_invalidatepage,
3083 	.releasepage		= ext4_releasepage,
3084 	.direct_IO		= ext4_direct_IO,
3085 	.migratepage		= buffer_migrate_page,
3086 	.is_partially_uptodate  = block_is_partially_uptodate,
3087 	.error_remove_page	= generic_error_remove_page,
3088 };
3089 
3090 void ext4_set_aops(struct inode *inode)
3091 {
3092 	if (ext4_should_order_data(inode) &&
3093 		test_opt(inode->i_sb, DELALLOC))
3094 		inode->i_mapping->a_ops = &ext4_da_aops;
3095 	else if (ext4_should_order_data(inode))
3096 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3097 	else if (ext4_should_writeback_data(inode) &&
3098 		 test_opt(inode->i_sb, DELALLOC))
3099 		inode->i_mapping->a_ops = &ext4_da_aops;
3100 	else if (ext4_should_writeback_data(inode))
3101 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3102 	else
3103 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3104 }
3105 
3106 
3107 /*
3108  * ext4_discard_partial_page_buffers()
3109  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3110  * This function finds and locks the page containing the offset
3111  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3112  * Calling functions that already have the page locked should call
3113  * ext4_discard_partial_page_buffers_no_lock directly.
3114  */
3115 int ext4_discard_partial_page_buffers(handle_t *handle,
3116 		struct address_space *mapping, loff_t from,
3117 		loff_t length, int flags)
3118 {
3119 	struct inode *inode = mapping->host;
3120 	struct page *page;
3121 	int err = 0;
3122 
3123 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3124 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3125 	if (!page)
3126 		return -EINVAL;
3127 
3128 	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3129 		from, length, flags);
3130 
3131 	unlock_page(page);
3132 	page_cache_release(page);
3133 	return err;
3134 }
3135 
3136 /*
3137  * ext4_discard_partial_page_buffers_no_lock()
3138  * Zeros a page range of length 'length' starting from offset 'from'.
3139  * Buffer heads that correspond to the block aligned regions of the
3140  * zeroed range will be unmapped.  Unblock aligned regions
3141  * will have the corresponding buffer head mapped if needed so that
3142  * that region of the page can be updated with the partial zero out.
3143  *
3144  * This function assumes that the page has already been  locked.  The
3145  * The range to be discarded must be contained with in the given page.
3146  * If the specified range exceeds the end of the page it will be shortened
3147  * to the end of the page that corresponds to 'from'.  This function is
3148  * appropriate for updating a page and it buffer heads to be unmapped and
3149  * zeroed for blocks that have been either released, or are going to be
3150  * released.
3151  *
3152  * handle: The journal handle
3153  * inode:  The files inode
3154  * page:   A locked page that contains the offset "from"
3155  * from:   The starting byte offset (from the begining of the file)
3156  *         to begin discarding
3157  * len:    The length of bytes to discard
3158  * flags:  Optional flags that may be used:
3159  *
3160  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3161  *         Only zero the regions of the page whose buffer heads
3162  *         have already been unmapped.  This flag is appropriate
3163  *         for updateing the contents of a page whose blocks may
3164  *         have already been released, and we only want to zero
3165  *         out the regions that correspond to those released blocks.
3166  *
3167  * Returns zero on sucess or negative on failure.
3168  */
3169 int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3170 		struct inode *inode, struct page *page, loff_t from,
3171 		loff_t length, int flags)
3172 {
3173 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3174 	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3175 	unsigned int blocksize, max, pos;
3176 	unsigned int end_of_block, range_to_discard;
3177 	ext4_lblk_t iblock;
3178 	struct buffer_head *bh;
3179 	int err = 0;
3180 
3181 	blocksize = inode->i_sb->s_blocksize;
3182 	max = PAGE_CACHE_SIZE - offset;
3183 
3184 	if (index != page->index)
3185 		return -EINVAL;
3186 
3187 	/*
3188 	 * correct length if it does not fall between
3189 	 * 'from' and the end of the page
3190 	 */
3191 	if (length > max || length < 0)
3192 		length = max;
3193 
3194 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3195 
3196 	if (!page_has_buffers(page)) {
3197 		/*
3198 		 * If the range to be discarded covers a partial block
3199 		 * we need to get the page buffers.  This is because
3200 		 * partial blocks cannot be released and the page needs
3201 		 * to be updated with the contents of the block before
3202 		 * we write the zeros on top of it.
3203 		 */
3204 		if (!(from & (blocksize - 1)) ||
3205 		    !((from + length) & (blocksize - 1))) {
3206 			create_empty_buffers(page, blocksize, 0);
3207 		} else {
3208 			/*
3209 			 * If there are no partial blocks,
3210 			 * there is nothing to update,
3211 			 * so we can return now
3212 			 */
3213 			return 0;
3214 		}
3215 	}
3216 
3217 	/* Find the buffer that contains "offset" */
3218 	bh = page_buffers(page);
3219 	pos = blocksize;
3220 	while (offset >= pos) {
3221 		bh = bh->b_this_page;
3222 		iblock++;
3223 		pos += blocksize;
3224 	}
3225 
3226 	pos = offset;
3227 	while (pos < offset + length) {
3228 		err = 0;
3229 
3230 		/* The length of space left to zero and unmap */
3231 		range_to_discard = offset + length - pos;
3232 
3233 		/* The length of space until the end of the block */
3234 		end_of_block = blocksize - (pos & (blocksize-1));
3235 
3236 		/*
3237 		 * Do not unmap or zero past end of block
3238 		 * for this buffer head
3239 		 */
3240 		if (range_to_discard > end_of_block)
3241 			range_to_discard = end_of_block;
3242 
3243 
3244 		/*
3245 		 * Skip this buffer head if we are only zeroing unampped
3246 		 * regions of the page
3247 		 */
3248 		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3249 			buffer_mapped(bh))
3250 				goto next;
3251 
3252 		/* If the range is block aligned, unmap */
3253 		if (range_to_discard == blocksize) {
3254 			clear_buffer_dirty(bh);
3255 			bh->b_bdev = NULL;
3256 			clear_buffer_mapped(bh);
3257 			clear_buffer_req(bh);
3258 			clear_buffer_new(bh);
3259 			clear_buffer_delay(bh);
3260 			clear_buffer_unwritten(bh);
3261 			clear_buffer_uptodate(bh);
3262 			zero_user(page, pos, range_to_discard);
3263 			BUFFER_TRACE(bh, "Buffer discarded");
3264 			goto next;
3265 		}
3266 
3267 		/*
3268 		 * If this block is not completely contained in the range
3269 		 * to be discarded, then it is not going to be released. Because
3270 		 * we need to keep this block, we need to make sure this part
3271 		 * of the page is uptodate before we modify it by writeing
3272 		 * partial zeros on it.
3273 		 */
3274 		if (!buffer_mapped(bh)) {
3275 			/*
3276 			 * Buffer head must be mapped before we can read
3277 			 * from the block
3278 			 */
3279 			BUFFER_TRACE(bh, "unmapped");
3280 			ext4_get_block(inode, iblock, bh, 0);
3281 			/* unmapped? It's a hole - nothing to do */
3282 			if (!buffer_mapped(bh)) {
3283 				BUFFER_TRACE(bh, "still unmapped");
3284 				goto next;
3285 			}
3286 		}
3287 
3288 		/* Ok, it's mapped. Make sure it's up-to-date */
3289 		if (PageUptodate(page))
3290 			set_buffer_uptodate(bh);
3291 
3292 		if (!buffer_uptodate(bh)) {
3293 			err = -EIO;
3294 			ll_rw_block(READ, 1, &bh);
3295 			wait_on_buffer(bh);
3296 			/* Uhhuh. Read error. Complain and punt.*/
3297 			if (!buffer_uptodate(bh))
3298 				goto next;
3299 		}
3300 
3301 		if (ext4_should_journal_data(inode)) {
3302 			BUFFER_TRACE(bh, "get write access");
3303 			err = ext4_journal_get_write_access(handle, bh);
3304 			if (err)
3305 				goto next;
3306 		}
3307 
3308 		zero_user(page, pos, range_to_discard);
3309 
3310 		err = 0;
3311 		if (ext4_should_journal_data(inode)) {
3312 			err = ext4_handle_dirty_metadata(handle, inode, bh);
3313 		} else
3314 			mark_buffer_dirty(bh);
3315 
3316 		BUFFER_TRACE(bh, "Partial buffer zeroed");
3317 next:
3318 		bh = bh->b_this_page;
3319 		iblock++;
3320 		pos += range_to_discard;
3321 	}
3322 
3323 	return err;
3324 }
3325 
3326 /*
3327  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3328  * up to the end of the block which corresponds to `from'.
3329  * This required during truncate. We need to physically zero the tail end
3330  * of that block so it doesn't yield old data if the file is later grown.
3331  */
3332 int ext4_block_truncate_page(handle_t *handle,
3333 		struct address_space *mapping, loff_t from)
3334 {
3335 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3336 	unsigned length;
3337 	unsigned blocksize;
3338 	struct inode *inode = mapping->host;
3339 
3340 	blocksize = inode->i_sb->s_blocksize;
3341 	length = blocksize - (offset & (blocksize - 1));
3342 
3343 	return ext4_block_zero_page_range(handle, mapping, from, length);
3344 }
3345 
3346 /*
3347  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3348  * starting from file offset 'from'.  The range to be zero'd must
3349  * be contained with in one block.  If the specified range exceeds
3350  * the end of the block it will be shortened to end of the block
3351  * that cooresponds to 'from'
3352  */
3353 int ext4_block_zero_page_range(handle_t *handle,
3354 		struct address_space *mapping, loff_t from, loff_t length)
3355 {
3356 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3357 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3358 	unsigned blocksize, max, pos;
3359 	ext4_lblk_t iblock;
3360 	struct inode *inode = mapping->host;
3361 	struct buffer_head *bh;
3362 	struct page *page;
3363 	int err = 0;
3364 
3365 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3366 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3367 	if (!page)
3368 		return -EINVAL;
3369 
3370 	blocksize = inode->i_sb->s_blocksize;
3371 	max = blocksize - (offset & (blocksize - 1));
3372 
3373 	/*
3374 	 * correct length if it does not fall between
3375 	 * 'from' and the end of the block
3376 	 */
3377 	if (length > max || length < 0)
3378 		length = max;
3379 
3380 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3381 
3382 	if (!page_has_buffers(page))
3383 		create_empty_buffers(page, blocksize, 0);
3384 
3385 	/* Find the buffer that contains "offset" */
3386 	bh = page_buffers(page);
3387 	pos = blocksize;
3388 	while (offset >= pos) {
3389 		bh = bh->b_this_page;
3390 		iblock++;
3391 		pos += blocksize;
3392 	}
3393 
3394 	err = 0;
3395 	if (buffer_freed(bh)) {
3396 		BUFFER_TRACE(bh, "freed: skip");
3397 		goto unlock;
3398 	}
3399 
3400 	if (!buffer_mapped(bh)) {
3401 		BUFFER_TRACE(bh, "unmapped");
3402 		ext4_get_block(inode, iblock, bh, 0);
3403 		/* unmapped? It's a hole - nothing to do */
3404 		if (!buffer_mapped(bh)) {
3405 			BUFFER_TRACE(bh, "still unmapped");
3406 			goto unlock;
3407 		}
3408 	}
3409 
3410 	/* Ok, it's mapped. Make sure it's up-to-date */
3411 	if (PageUptodate(page))
3412 		set_buffer_uptodate(bh);
3413 
3414 	if (!buffer_uptodate(bh)) {
3415 		err = -EIO;
3416 		ll_rw_block(READ, 1, &bh);
3417 		wait_on_buffer(bh);
3418 		/* Uhhuh. Read error. Complain and punt. */
3419 		if (!buffer_uptodate(bh))
3420 			goto unlock;
3421 	}
3422 
3423 	if (ext4_should_journal_data(inode)) {
3424 		BUFFER_TRACE(bh, "get write access");
3425 		err = ext4_journal_get_write_access(handle, bh);
3426 		if (err)
3427 			goto unlock;
3428 	}
3429 
3430 	zero_user(page, offset, length);
3431 
3432 	BUFFER_TRACE(bh, "zeroed end of block");
3433 
3434 	err = 0;
3435 	if (ext4_should_journal_data(inode)) {
3436 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3437 	} else
3438 		mark_buffer_dirty(bh);
3439 
3440 unlock:
3441 	unlock_page(page);
3442 	page_cache_release(page);
3443 	return err;
3444 }
3445 
3446 int ext4_can_truncate(struct inode *inode)
3447 {
3448 	if (S_ISREG(inode->i_mode))
3449 		return 1;
3450 	if (S_ISDIR(inode->i_mode))
3451 		return 1;
3452 	if (S_ISLNK(inode->i_mode))
3453 		return !ext4_inode_is_fast_symlink(inode);
3454 	return 0;
3455 }
3456 
3457 /*
3458  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3459  * associated with the given offset and length
3460  *
3461  * @inode:  File inode
3462  * @offset: The offset where the hole will begin
3463  * @len:    The length of the hole
3464  *
3465  * Returns: 0 on sucess or negative on failure
3466  */
3467 
3468 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3469 {
3470 	struct inode *inode = file->f_path.dentry->d_inode;
3471 	if (!S_ISREG(inode->i_mode))
3472 		return -ENOTSUPP;
3473 
3474 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3475 		/* TODO: Add support for non extent hole punching */
3476 		return -ENOTSUPP;
3477 	}
3478 
3479 	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3480 		/* TODO: Add support for bigalloc file systems */
3481 		return -ENOTSUPP;
3482 	}
3483 
3484 	return ext4_ext_punch_hole(file, offset, length);
3485 }
3486 
3487 /*
3488  * ext4_truncate()
3489  *
3490  * We block out ext4_get_block() block instantiations across the entire
3491  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3492  * simultaneously on behalf of the same inode.
3493  *
3494  * As we work through the truncate and commmit bits of it to the journal there
3495  * is one core, guiding principle: the file's tree must always be consistent on
3496  * disk.  We must be able to restart the truncate after a crash.
3497  *
3498  * The file's tree may be transiently inconsistent in memory (although it
3499  * probably isn't), but whenever we close off and commit a journal transaction,
3500  * the contents of (the filesystem + the journal) must be consistent and
3501  * restartable.  It's pretty simple, really: bottom up, right to left (although
3502  * left-to-right works OK too).
3503  *
3504  * Note that at recovery time, journal replay occurs *before* the restart of
3505  * truncate against the orphan inode list.
3506  *
3507  * The committed inode has the new, desired i_size (which is the same as
3508  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3509  * that this inode's truncate did not complete and it will again call
3510  * ext4_truncate() to have another go.  So there will be instantiated blocks
3511  * to the right of the truncation point in a crashed ext4 filesystem.  But
3512  * that's fine - as long as they are linked from the inode, the post-crash
3513  * ext4_truncate() run will find them and release them.
3514  */
3515 void ext4_truncate(struct inode *inode)
3516 {
3517 	trace_ext4_truncate_enter(inode);
3518 
3519 	if (!ext4_can_truncate(inode))
3520 		return;
3521 
3522 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3523 
3524 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3525 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3526 
3527 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3528 		ext4_ext_truncate(inode);
3529 	else
3530 		ext4_ind_truncate(inode);
3531 
3532 	trace_ext4_truncate_exit(inode);
3533 }
3534 
3535 /*
3536  * ext4_get_inode_loc returns with an extra refcount against the inode's
3537  * underlying buffer_head on success. If 'in_mem' is true, we have all
3538  * data in memory that is needed to recreate the on-disk version of this
3539  * inode.
3540  */
3541 static int __ext4_get_inode_loc(struct inode *inode,
3542 				struct ext4_iloc *iloc, int in_mem)
3543 {
3544 	struct ext4_group_desc	*gdp;
3545 	struct buffer_head	*bh;
3546 	struct super_block	*sb = inode->i_sb;
3547 	ext4_fsblk_t		block;
3548 	int			inodes_per_block, inode_offset;
3549 
3550 	iloc->bh = NULL;
3551 	if (!ext4_valid_inum(sb, inode->i_ino))
3552 		return -EIO;
3553 
3554 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3555 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3556 	if (!gdp)
3557 		return -EIO;
3558 
3559 	/*
3560 	 * Figure out the offset within the block group inode table
3561 	 */
3562 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3563 	inode_offset = ((inode->i_ino - 1) %
3564 			EXT4_INODES_PER_GROUP(sb));
3565 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3566 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3567 
3568 	bh = sb_getblk(sb, block);
3569 	if (!bh) {
3570 		EXT4_ERROR_INODE_BLOCK(inode, block,
3571 				       "unable to read itable block");
3572 		return -EIO;
3573 	}
3574 	if (!buffer_uptodate(bh)) {
3575 		lock_buffer(bh);
3576 
3577 		/*
3578 		 * If the buffer has the write error flag, we have failed
3579 		 * to write out another inode in the same block.  In this
3580 		 * case, we don't have to read the block because we may
3581 		 * read the old inode data successfully.
3582 		 */
3583 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3584 			set_buffer_uptodate(bh);
3585 
3586 		if (buffer_uptodate(bh)) {
3587 			/* someone brought it uptodate while we waited */
3588 			unlock_buffer(bh);
3589 			goto has_buffer;
3590 		}
3591 
3592 		/*
3593 		 * If we have all information of the inode in memory and this
3594 		 * is the only valid inode in the block, we need not read the
3595 		 * block.
3596 		 */
3597 		if (in_mem) {
3598 			struct buffer_head *bitmap_bh;
3599 			int i, start;
3600 
3601 			start = inode_offset & ~(inodes_per_block - 1);
3602 
3603 			/* Is the inode bitmap in cache? */
3604 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3605 			if (!bitmap_bh)
3606 				goto make_io;
3607 
3608 			/*
3609 			 * If the inode bitmap isn't in cache then the
3610 			 * optimisation may end up performing two reads instead
3611 			 * of one, so skip it.
3612 			 */
3613 			if (!buffer_uptodate(bitmap_bh)) {
3614 				brelse(bitmap_bh);
3615 				goto make_io;
3616 			}
3617 			for (i = start; i < start + inodes_per_block; i++) {
3618 				if (i == inode_offset)
3619 					continue;
3620 				if (ext4_test_bit(i, bitmap_bh->b_data))
3621 					break;
3622 			}
3623 			brelse(bitmap_bh);
3624 			if (i == start + inodes_per_block) {
3625 				/* all other inodes are free, so skip I/O */
3626 				memset(bh->b_data, 0, bh->b_size);
3627 				set_buffer_uptodate(bh);
3628 				unlock_buffer(bh);
3629 				goto has_buffer;
3630 			}
3631 		}
3632 
3633 make_io:
3634 		/*
3635 		 * If we need to do any I/O, try to pre-readahead extra
3636 		 * blocks from the inode table.
3637 		 */
3638 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3639 			ext4_fsblk_t b, end, table;
3640 			unsigned num;
3641 
3642 			table = ext4_inode_table(sb, gdp);
3643 			/* s_inode_readahead_blks is always a power of 2 */
3644 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3645 			if (table > b)
3646 				b = table;
3647 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3648 			num = EXT4_INODES_PER_GROUP(sb);
3649 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3650 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3651 				num -= ext4_itable_unused_count(sb, gdp);
3652 			table += num / inodes_per_block;
3653 			if (end > table)
3654 				end = table;
3655 			while (b <= end)
3656 				sb_breadahead(sb, b++);
3657 		}
3658 
3659 		/*
3660 		 * There are other valid inodes in the buffer, this inode
3661 		 * has in-inode xattrs, or we don't have this inode in memory.
3662 		 * Read the block from disk.
3663 		 */
3664 		trace_ext4_load_inode(inode);
3665 		get_bh(bh);
3666 		bh->b_end_io = end_buffer_read_sync;
3667 		submit_bh(READ_META, bh);
3668 		wait_on_buffer(bh);
3669 		if (!buffer_uptodate(bh)) {
3670 			EXT4_ERROR_INODE_BLOCK(inode, block,
3671 					       "unable to read itable block");
3672 			brelse(bh);
3673 			return -EIO;
3674 		}
3675 	}
3676 has_buffer:
3677 	iloc->bh = bh;
3678 	return 0;
3679 }
3680 
3681 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3682 {
3683 	/* We have all inode data except xattrs in memory here. */
3684 	return __ext4_get_inode_loc(inode, iloc,
3685 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3686 }
3687 
3688 void ext4_set_inode_flags(struct inode *inode)
3689 {
3690 	unsigned int flags = EXT4_I(inode)->i_flags;
3691 
3692 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3693 	if (flags & EXT4_SYNC_FL)
3694 		inode->i_flags |= S_SYNC;
3695 	if (flags & EXT4_APPEND_FL)
3696 		inode->i_flags |= S_APPEND;
3697 	if (flags & EXT4_IMMUTABLE_FL)
3698 		inode->i_flags |= S_IMMUTABLE;
3699 	if (flags & EXT4_NOATIME_FL)
3700 		inode->i_flags |= S_NOATIME;
3701 	if (flags & EXT4_DIRSYNC_FL)
3702 		inode->i_flags |= S_DIRSYNC;
3703 }
3704 
3705 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3706 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3707 {
3708 	unsigned int vfs_fl;
3709 	unsigned long old_fl, new_fl;
3710 
3711 	do {
3712 		vfs_fl = ei->vfs_inode.i_flags;
3713 		old_fl = ei->i_flags;
3714 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3715 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3716 				EXT4_DIRSYNC_FL);
3717 		if (vfs_fl & S_SYNC)
3718 			new_fl |= EXT4_SYNC_FL;
3719 		if (vfs_fl & S_APPEND)
3720 			new_fl |= EXT4_APPEND_FL;
3721 		if (vfs_fl & S_IMMUTABLE)
3722 			new_fl |= EXT4_IMMUTABLE_FL;
3723 		if (vfs_fl & S_NOATIME)
3724 			new_fl |= EXT4_NOATIME_FL;
3725 		if (vfs_fl & S_DIRSYNC)
3726 			new_fl |= EXT4_DIRSYNC_FL;
3727 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3728 }
3729 
3730 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3731 				  struct ext4_inode_info *ei)
3732 {
3733 	blkcnt_t i_blocks ;
3734 	struct inode *inode = &(ei->vfs_inode);
3735 	struct super_block *sb = inode->i_sb;
3736 
3737 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3738 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3739 		/* we are using combined 48 bit field */
3740 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3741 					le32_to_cpu(raw_inode->i_blocks_lo);
3742 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3743 			/* i_blocks represent file system block size */
3744 			return i_blocks  << (inode->i_blkbits - 9);
3745 		} else {
3746 			return i_blocks;
3747 		}
3748 	} else {
3749 		return le32_to_cpu(raw_inode->i_blocks_lo);
3750 	}
3751 }
3752 
3753 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3754 {
3755 	struct ext4_iloc iloc;
3756 	struct ext4_inode *raw_inode;
3757 	struct ext4_inode_info *ei;
3758 	struct inode *inode;
3759 	journal_t *journal = EXT4_SB(sb)->s_journal;
3760 	long ret;
3761 	int block;
3762 
3763 	inode = iget_locked(sb, ino);
3764 	if (!inode)
3765 		return ERR_PTR(-ENOMEM);
3766 	if (!(inode->i_state & I_NEW))
3767 		return inode;
3768 
3769 	ei = EXT4_I(inode);
3770 	iloc.bh = NULL;
3771 
3772 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3773 	if (ret < 0)
3774 		goto bad_inode;
3775 	raw_inode = ext4_raw_inode(&iloc);
3776 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3777 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3778 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3779 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3780 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3781 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3782 	}
3783 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3784 
3785 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3786 	ei->i_dir_start_lookup = 0;
3787 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3788 	/* We now have enough fields to check if the inode was active or not.
3789 	 * This is needed because nfsd might try to access dead inodes
3790 	 * the test is that same one that e2fsck uses
3791 	 * NeilBrown 1999oct15
3792 	 */
3793 	if (inode->i_nlink == 0) {
3794 		if (inode->i_mode == 0 ||
3795 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3796 			/* this inode is deleted */
3797 			ret = -ESTALE;
3798 			goto bad_inode;
3799 		}
3800 		/* The only unlinked inodes we let through here have
3801 		 * valid i_mode and are being read by the orphan
3802 		 * recovery code: that's fine, we're about to complete
3803 		 * the process of deleting those. */
3804 	}
3805 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3806 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3807 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3808 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3809 		ei->i_file_acl |=
3810 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3811 	inode->i_size = ext4_isize(raw_inode);
3812 	ei->i_disksize = inode->i_size;
3813 #ifdef CONFIG_QUOTA
3814 	ei->i_reserved_quota = 0;
3815 #endif
3816 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3817 	ei->i_block_group = iloc.block_group;
3818 	ei->i_last_alloc_group = ~0;
3819 	/*
3820 	 * NOTE! The in-memory inode i_data array is in little-endian order
3821 	 * even on big-endian machines: we do NOT byteswap the block numbers!
3822 	 */
3823 	for (block = 0; block < EXT4_N_BLOCKS; block++)
3824 		ei->i_data[block] = raw_inode->i_block[block];
3825 	INIT_LIST_HEAD(&ei->i_orphan);
3826 
3827 	/*
3828 	 * Set transaction id's of transactions that have to be committed
3829 	 * to finish f[data]sync. We set them to currently running transaction
3830 	 * as we cannot be sure that the inode or some of its metadata isn't
3831 	 * part of the transaction - the inode could have been reclaimed and
3832 	 * now it is reread from disk.
3833 	 */
3834 	if (journal) {
3835 		transaction_t *transaction;
3836 		tid_t tid;
3837 
3838 		read_lock(&journal->j_state_lock);
3839 		if (journal->j_running_transaction)
3840 			transaction = journal->j_running_transaction;
3841 		else
3842 			transaction = journal->j_committing_transaction;
3843 		if (transaction)
3844 			tid = transaction->t_tid;
3845 		else
3846 			tid = journal->j_commit_sequence;
3847 		read_unlock(&journal->j_state_lock);
3848 		ei->i_sync_tid = tid;
3849 		ei->i_datasync_tid = tid;
3850 	}
3851 
3852 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3853 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3854 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3855 		    EXT4_INODE_SIZE(inode->i_sb)) {
3856 			ret = -EIO;
3857 			goto bad_inode;
3858 		}
3859 		if (ei->i_extra_isize == 0) {
3860 			/* The extra space is currently unused. Use it. */
3861 			ei->i_extra_isize = sizeof(struct ext4_inode) -
3862 					    EXT4_GOOD_OLD_INODE_SIZE;
3863 		} else {
3864 			__le32 *magic = (void *)raw_inode +
3865 					EXT4_GOOD_OLD_INODE_SIZE +
3866 					ei->i_extra_isize;
3867 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3868 				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3869 		}
3870 	} else
3871 		ei->i_extra_isize = 0;
3872 
3873 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3874 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3875 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3876 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3877 
3878 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3879 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3880 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3881 			inode->i_version |=
3882 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3883 	}
3884 
3885 	ret = 0;
3886 	if (ei->i_file_acl &&
3887 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3888 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3889 				 ei->i_file_acl);
3890 		ret = -EIO;
3891 		goto bad_inode;
3892 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3893 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3894 		    (S_ISLNK(inode->i_mode) &&
3895 		     !ext4_inode_is_fast_symlink(inode)))
3896 			/* Validate extent which is part of inode */
3897 			ret = ext4_ext_check_inode(inode);
3898 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3899 		   (S_ISLNK(inode->i_mode) &&
3900 		    !ext4_inode_is_fast_symlink(inode))) {
3901 		/* Validate block references which are part of inode */
3902 		ret = ext4_ind_check_inode(inode);
3903 	}
3904 	if (ret)
3905 		goto bad_inode;
3906 
3907 	if (S_ISREG(inode->i_mode)) {
3908 		inode->i_op = &ext4_file_inode_operations;
3909 		inode->i_fop = &ext4_file_operations;
3910 		ext4_set_aops(inode);
3911 	} else if (S_ISDIR(inode->i_mode)) {
3912 		inode->i_op = &ext4_dir_inode_operations;
3913 		inode->i_fop = &ext4_dir_operations;
3914 	} else if (S_ISLNK(inode->i_mode)) {
3915 		if (ext4_inode_is_fast_symlink(inode)) {
3916 			inode->i_op = &ext4_fast_symlink_inode_operations;
3917 			nd_terminate_link(ei->i_data, inode->i_size,
3918 				sizeof(ei->i_data) - 1);
3919 		} else {
3920 			inode->i_op = &ext4_symlink_inode_operations;
3921 			ext4_set_aops(inode);
3922 		}
3923 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3924 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3925 		inode->i_op = &ext4_special_inode_operations;
3926 		if (raw_inode->i_block[0])
3927 			init_special_inode(inode, inode->i_mode,
3928 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3929 		else
3930 			init_special_inode(inode, inode->i_mode,
3931 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3932 	} else {
3933 		ret = -EIO;
3934 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3935 		goto bad_inode;
3936 	}
3937 	brelse(iloc.bh);
3938 	ext4_set_inode_flags(inode);
3939 	unlock_new_inode(inode);
3940 	return inode;
3941 
3942 bad_inode:
3943 	brelse(iloc.bh);
3944 	iget_failed(inode);
3945 	return ERR_PTR(ret);
3946 }
3947 
3948 static int ext4_inode_blocks_set(handle_t *handle,
3949 				struct ext4_inode *raw_inode,
3950 				struct ext4_inode_info *ei)
3951 {
3952 	struct inode *inode = &(ei->vfs_inode);
3953 	u64 i_blocks = inode->i_blocks;
3954 	struct super_block *sb = inode->i_sb;
3955 
3956 	if (i_blocks <= ~0U) {
3957 		/*
3958 		 * i_blocks can be represnted in a 32 bit variable
3959 		 * as multiple of 512 bytes
3960 		 */
3961 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3962 		raw_inode->i_blocks_high = 0;
3963 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3964 		return 0;
3965 	}
3966 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3967 		return -EFBIG;
3968 
3969 	if (i_blocks <= 0xffffffffffffULL) {
3970 		/*
3971 		 * i_blocks can be represented in a 48 bit variable
3972 		 * as multiple of 512 bytes
3973 		 */
3974 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3975 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3976 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3977 	} else {
3978 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3979 		/* i_block is stored in file system block size */
3980 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
3981 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3982 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3983 	}
3984 	return 0;
3985 }
3986 
3987 /*
3988  * Post the struct inode info into an on-disk inode location in the
3989  * buffer-cache.  This gobbles the caller's reference to the
3990  * buffer_head in the inode location struct.
3991  *
3992  * The caller must have write access to iloc->bh.
3993  */
3994 static int ext4_do_update_inode(handle_t *handle,
3995 				struct inode *inode,
3996 				struct ext4_iloc *iloc)
3997 {
3998 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3999 	struct ext4_inode_info *ei = EXT4_I(inode);
4000 	struct buffer_head *bh = iloc->bh;
4001 	int err = 0, rc, block;
4002 
4003 	/* For fields not not tracking in the in-memory inode,
4004 	 * initialise them to zero for new inodes. */
4005 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4006 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4007 
4008 	ext4_get_inode_flags(ei);
4009 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4010 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4011 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4012 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4013 /*
4014  * Fix up interoperability with old kernels. Otherwise, old inodes get
4015  * re-used with the upper 16 bits of the uid/gid intact
4016  */
4017 		if (!ei->i_dtime) {
4018 			raw_inode->i_uid_high =
4019 				cpu_to_le16(high_16_bits(inode->i_uid));
4020 			raw_inode->i_gid_high =
4021 				cpu_to_le16(high_16_bits(inode->i_gid));
4022 		} else {
4023 			raw_inode->i_uid_high = 0;
4024 			raw_inode->i_gid_high = 0;
4025 		}
4026 	} else {
4027 		raw_inode->i_uid_low =
4028 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
4029 		raw_inode->i_gid_low =
4030 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
4031 		raw_inode->i_uid_high = 0;
4032 		raw_inode->i_gid_high = 0;
4033 	}
4034 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4035 
4036 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4037 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4038 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4039 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4040 
4041 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4042 		goto out_brelse;
4043 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4044 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4045 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4046 	    cpu_to_le32(EXT4_OS_HURD))
4047 		raw_inode->i_file_acl_high =
4048 			cpu_to_le16(ei->i_file_acl >> 32);
4049 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4050 	ext4_isize_set(raw_inode, ei->i_disksize);
4051 	if (ei->i_disksize > 0x7fffffffULL) {
4052 		struct super_block *sb = inode->i_sb;
4053 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4054 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4055 				EXT4_SB(sb)->s_es->s_rev_level ==
4056 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4057 			/* If this is the first large file
4058 			 * created, add a flag to the superblock.
4059 			 */
4060 			err = ext4_journal_get_write_access(handle,
4061 					EXT4_SB(sb)->s_sbh);
4062 			if (err)
4063 				goto out_brelse;
4064 			ext4_update_dynamic_rev(sb);
4065 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4066 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4067 			sb->s_dirt = 1;
4068 			ext4_handle_sync(handle);
4069 			err = ext4_handle_dirty_metadata(handle, NULL,
4070 					EXT4_SB(sb)->s_sbh);
4071 		}
4072 	}
4073 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4074 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4075 		if (old_valid_dev(inode->i_rdev)) {
4076 			raw_inode->i_block[0] =
4077 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4078 			raw_inode->i_block[1] = 0;
4079 		} else {
4080 			raw_inode->i_block[0] = 0;
4081 			raw_inode->i_block[1] =
4082 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4083 			raw_inode->i_block[2] = 0;
4084 		}
4085 	} else
4086 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4087 			raw_inode->i_block[block] = ei->i_data[block];
4088 
4089 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4090 	if (ei->i_extra_isize) {
4091 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4092 			raw_inode->i_version_hi =
4093 			cpu_to_le32(inode->i_version >> 32);
4094 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4095 	}
4096 
4097 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4098 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4099 	if (!err)
4100 		err = rc;
4101 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4102 
4103 	ext4_update_inode_fsync_trans(handle, inode, 0);
4104 out_brelse:
4105 	brelse(bh);
4106 	ext4_std_error(inode->i_sb, err);
4107 	return err;
4108 }
4109 
4110 /*
4111  * ext4_write_inode()
4112  *
4113  * We are called from a few places:
4114  *
4115  * - Within generic_file_write() for O_SYNC files.
4116  *   Here, there will be no transaction running. We wait for any running
4117  *   trasnaction to commit.
4118  *
4119  * - Within sys_sync(), kupdate and such.
4120  *   We wait on commit, if tol to.
4121  *
4122  * - Within prune_icache() (PF_MEMALLOC == true)
4123  *   Here we simply return.  We can't afford to block kswapd on the
4124  *   journal commit.
4125  *
4126  * In all cases it is actually safe for us to return without doing anything,
4127  * because the inode has been copied into a raw inode buffer in
4128  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4129  * knfsd.
4130  *
4131  * Note that we are absolutely dependent upon all inode dirtiers doing the
4132  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4133  * which we are interested.
4134  *
4135  * It would be a bug for them to not do this.  The code:
4136  *
4137  *	mark_inode_dirty(inode)
4138  *	stuff();
4139  *	inode->i_size = expr;
4140  *
4141  * is in error because a kswapd-driven write_inode() could occur while
4142  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4143  * will no longer be on the superblock's dirty inode list.
4144  */
4145 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4146 {
4147 	int err;
4148 
4149 	if (current->flags & PF_MEMALLOC)
4150 		return 0;
4151 
4152 	if (EXT4_SB(inode->i_sb)->s_journal) {
4153 		if (ext4_journal_current_handle()) {
4154 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4155 			dump_stack();
4156 			return -EIO;
4157 		}
4158 
4159 		if (wbc->sync_mode != WB_SYNC_ALL)
4160 			return 0;
4161 
4162 		err = ext4_force_commit(inode->i_sb);
4163 	} else {
4164 		struct ext4_iloc iloc;
4165 
4166 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4167 		if (err)
4168 			return err;
4169 		if (wbc->sync_mode == WB_SYNC_ALL)
4170 			sync_dirty_buffer(iloc.bh);
4171 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4172 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4173 					 "IO error syncing inode");
4174 			err = -EIO;
4175 		}
4176 		brelse(iloc.bh);
4177 	}
4178 	return err;
4179 }
4180 
4181 /*
4182  * ext4_setattr()
4183  *
4184  * Called from notify_change.
4185  *
4186  * We want to trap VFS attempts to truncate the file as soon as
4187  * possible.  In particular, we want to make sure that when the VFS
4188  * shrinks i_size, we put the inode on the orphan list and modify
4189  * i_disksize immediately, so that during the subsequent flushing of
4190  * dirty pages and freeing of disk blocks, we can guarantee that any
4191  * commit will leave the blocks being flushed in an unused state on
4192  * disk.  (On recovery, the inode will get truncated and the blocks will
4193  * be freed, so we have a strong guarantee that no future commit will
4194  * leave these blocks visible to the user.)
4195  *
4196  * Another thing we have to assure is that if we are in ordered mode
4197  * and inode is still attached to the committing transaction, we must
4198  * we start writeout of all the dirty pages which are being truncated.
4199  * This way we are sure that all the data written in the previous
4200  * transaction are already on disk (truncate waits for pages under
4201  * writeback).
4202  *
4203  * Called with inode->i_mutex down.
4204  */
4205 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4206 {
4207 	struct inode *inode = dentry->d_inode;
4208 	int error, rc = 0;
4209 	int orphan = 0;
4210 	const unsigned int ia_valid = attr->ia_valid;
4211 
4212 	error = inode_change_ok(inode, attr);
4213 	if (error)
4214 		return error;
4215 
4216 	if (is_quota_modification(inode, attr))
4217 		dquot_initialize(inode);
4218 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4219 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4220 		handle_t *handle;
4221 
4222 		/* (user+group)*(old+new) structure, inode write (sb,
4223 		 * inode block, ? - but truncate inode update has it) */
4224 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4225 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4226 		if (IS_ERR(handle)) {
4227 			error = PTR_ERR(handle);
4228 			goto err_out;
4229 		}
4230 		error = dquot_transfer(inode, attr);
4231 		if (error) {
4232 			ext4_journal_stop(handle);
4233 			return error;
4234 		}
4235 		/* Update corresponding info in inode so that everything is in
4236 		 * one transaction */
4237 		if (attr->ia_valid & ATTR_UID)
4238 			inode->i_uid = attr->ia_uid;
4239 		if (attr->ia_valid & ATTR_GID)
4240 			inode->i_gid = attr->ia_gid;
4241 		error = ext4_mark_inode_dirty(handle, inode);
4242 		ext4_journal_stop(handle);
4243 	}
4244 
4245 	if (attr->ia_valid & ATTR_SIZE) {
4246 		inode_dio_wait(inode);
4247 
4248 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4249 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4250 
4251 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4252 				return -EFBIG;
4253 		}
4254 	}
4255 
4256 	if (S_ISREG(inode->i_mode) &&
4257 	    attr->ia_valid & ATTR_SIZE &&
4258 	    (attr->ia_size < inode->i_size)) {
4259 		handle_t *handle;
4260 
4261 		handle = ext4_journal_start(inode, 3);
4262 		if (IS_ERR(handle)) {
4263 			error = PTR_ERR(handle);
4264 			goto err_out;
4265 		}
4266 		if (ext4_handle_valid(handle)) {
4267 			error = ext4_orphan_add(handle, inode);
4268 			orphan = 1;
4269 		}
4270 		EXT4_I(inode)->i_disksize = attr->ia_size;
4271 		rc = ext4_mark_inode_dirty(handle, inode);
4272 		if (!error)
4273 			error = rc;
4274 		ext4_journal_stop(handle);
4275 
4276 		if (ext4_should_order_data(inode)) {
4277 			error = ext4_begin_ordered_truncate(inode,
4278 							    attr->ia_size);
4279 			if (error) {
4280 				/* Do as much error cleanup as possible */
4281 				handle = ext4_journal_start(inode, 3);
4282 				if (IS_ERR(handle)) {
4283 					ext4_orphan_del(NULL, inode);
4284 					goto err_out;
4285 				}
4286 				ext4_orphan_del(handle, inode);
4287 				orphan = 0;
4288 				ext4_journal_stop(handle);
4289 				goto err_out;
4290 			}
4291 		}
4292 	}
4293 
4294 	if (attr->ia_valid & ATTR_SIZE) {
4295 		if (attr->ia_size != i_size_read(inode)) {
4296 			truncate_setsize(inode, attr->ia_size);
4297 			ext4_truncate(inode);
4298 		} else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
4299 			ext4_truncate(inode);
4300 	}
4301 
4302 	if (!rc) {
4303 		setattr_copy(inode, attr);
4304 		mark_inode_dirty(inode);
4305 	}
4306 
4307 	/*
4308 	 * If the call to ext4_truncate failed to get a transaction handle at
4309 	 * all, we need to clean up the in-core orphan list manually.
4310 	 */
4311 	if (orphan && inode->i_nlink)
4312 		ext4_orphan_del(NULL, inode);
4313 
4314 	if (!rc && (ia_valid & ATTR_MODE))
4315 		rc = ext4_acl_chmod(inode);
4316 
4317 err_out:
4318 	ext4_std_error(inode->i_sb, error);
4319 	if (!error)
4320 		error = rc;
4321 	return error;
4322 }
4323 
4324 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4325 		 struct kstat *stat)
4326 {
4327 	struct inode *inode;
4328 	unsigned long delalloc_blocks;
4329 
4330 	inode = dentry->d_inode;
4331 	generic_fillattr(inode, stat);
4332 
4333 	/*
4334 	 * We can't update i_blocks if the block allocation is delayed
4335 	 * otherwise in the case of system crash before the real block
4336 	 * allocation is done, we will have i_blocks inconsistent with
4337 	 * on-disk file blocks.
4338 	 * We always keep i_blocks updated together with real
4339 	 * allocation. But to not confuse with user, stat
4340 	 * will return the blocks that include the delayed allocation
4341 	 * blocks for this file.
4342 	 */
4343 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4344 
4345 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4346 	return 0;
4347 }
4348 
4349 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4350 {
4351 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4352 		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4353 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4354 }
4355 
4356 /*
4357  * Account for index blocks, block groups bitmaps and block group
4358  * descriptor blocks if modify datablocks and index blocks
4359  * worse case, the indexs blocks spread over different block groups
4360  *
4361  * If datablocks are discontiguous, they are possible to spread over
4362  * different block groups too. If they are contiuguous, with flexbg,
4363  * they could still across block group boundary.
4364  *
4365  * Also account for superblock, inode, quota and xattr blocks
4366  */
4367 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4368 {
4369 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4370 	int gdpblocks;
4371 	int idxblocks;
4372 	int ret = 0;
4373 
4374 	/*
4375 	 * How many index blocks need to touch to modify nrblocks?
4376 	 * The "Chunk" flag indicating whether the nrblocks is
4377 	 * physically contiguous on disk
4378 	 *
4379 	 * For Direct IO and fallocate, they calls get_block to allocate
4380 	 * one single extent at a time, so they could set the "Chunk" flag
4381 	 */
4382 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4383 
4384 	ret = idxblocks;
4385 
4386 	/*
4387 	 * Now let's see how many group bitmaps and group descriptors need
4388 	 * to account
4389 	 */
4390 	groups = idxblocks;
4391 	if (chunk)
4392 		groups += 1;
4393 	else
4394 		groups += nrblocks;
4395 
4396 	gdpblocks = groups;
4397 	if (groups > ngroups)
4398 		groups = ngroups;
4399 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4400 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4401 
4402 	/* bitmaps and block group descriptor blocks */
4403 	ret += groups + gdpblocks;
4404 
4405 	/* Blocks for super block, inode, quota and xattr blocks */
4406 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4407 
4408 	return ret;
4409 }
4410 
4411 /*
4412  * Calculate the total number of credits to reserve to fit
4413  * the modification of a single pages into a single transaction,
4414  * which may include multiple chunks of block allocations.
4415  *
4416  * This could be called via ext4_write_begin()
4417  *
4418  * We need to consider the worse case, when
4419  * one new block per extent.
4420  */
4421 int ext4_writepage_trans_blocks(struct inode *inode)
4422 {
4423 	int bpp = ext4_journal_blocks_per_page(inode);
4424 	int ret;
4425 
4426 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4427 
4428 	/* Account for data blocks for journalled mode */
4429 	if (ext4_should_journal_data(inode))
4430 		ret += bpp;
4431 	return ret;
4432 }
4433 
4434 /*
4435  * Calculate the journal credits for a chunk of data modification.
4436  *
4437  * This is called from DIO, fallocate or whoever calling
4438  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4439  *
4440  * journal buffers for data blocks are not included here, as DIO
4441  * and fallocate do no need to journal data buffers.
4442  */
4443 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4444 {
4445 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4446 }
4447 
4448 /*
4449  * The caller must have previously called ext4_reserve_inode_write().
4450  * Give this, we know that the caller already has write access to iloc->bh.
4451  */
4452 int ext4_mark_iloc_dirty(handle_t *handle,
4453 			 struct inode *inode, struct ext4_iloc *iloc)
4454 {
4455 	int err = 0;
4456 
4457 	if (test_opt(inode->i_sb, I_VERSION))
4458 		inode_inc_iversion(inode);
4459 
4460 	/* the do_update_inode consumes one bh->b_count */
4461 	get_bh(iloc->bh);
4462 
4463 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4464 	err = ext4_do_update_inode(handle, inode, iloc);
4465 	put_bh(iloc->bh);
4466 	return err;
4467 }
4468 
4469 /*
4470  * On success, We end up with an outstanding reference count against
4471  * iloc->bh.  This _must_ be cleaned up later.
4472  */
4473 
4474 int
4475 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4476 			 struct ext4_iloc *iloc)
4477 {
4478 	int err;
4479 
4480 	err = ext4_get_inode_loc(inode, iloc);
4481 	if (!err) {
4482 		BUFFER_TRACE(iloc->bh, "get_write_access");
4483 		err = ext4_journal_get_write_access(handle, iloc->bh);
4484 		if (err) {
4485 			brelse(iloc->bh);
4486 			iloc->bh = NULL;
4487 		}
4488 	}
4489 	ext4_std_error(inode->i_sb, err);
4490 	return err;
4491 }
4492 
4493 /*
4494  * Expand an inode by new_extra_isize bytes.
4495  * Returns 0 on success or negative error number on failure.
4496  */
4497 static int ext4_expand_extra_isize(struct inode *inode,
4498 				   unsigned int new_extra_isize,
4499 				   struct ext4_iloc iloc,
4500 				   handle_t *handle)
4501 {
4502 	struct ext4_inode *raw_inode;
4503 	struct ext4_xattr_ibody_header *header;
4504 
4505 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4506 		return 0;
4507 
4508 	raw_inode = ext4_raw_inode(&iloc);
4509 
4510 	header = IHDR(inode, raw_inode);
4511 
4512 	/* No extended attributes present */
4513 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4514 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4515 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4516 			new_extra_isize);
4517 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4518 		return 0;
4519 	}
4520 
4521 	/* try to expand with EAs present */
4522 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4523 					  raw_inode, handle);
4524 }
4525 
4526 /*
4527  * What we do here is to mark the in-core inode as clean with respect to inode
4528  * dirtiness (it may still be data-dirty).
4529  * This means that the in-core inode may be reaped by prune_icache
4530  * without having to perform any I/O.  This is a very good thing,
4531  * because *any* task may call prune_icache - even ones which
4532  * have a transaction open against a different journal.
4533  *
4534  * Is this cheating?  Not really.  Sure, we haven't written the
4535  * inode out, but prune_icache isn't a user-visible syncing function.
4536  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4537  * we start and wait on commits.
4538  *
4539  * Is this efficient/effective?  Well, we're being nice to the system
4540  * by cleaning up our inodes proactively so they can be reaped
4541  * without I/O.  But we are potentially leaving up to five seconds'
4542  * worth of inodes floating about which prune_icache wants us to
4543  * write out.  One way to fix that would be to get prune_icache()
4544  * to do a write_super() to free up some memory.  It has the desired
4545  * effect.
4546  */
4547 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4548 {
4549 	struct ext4_iloc iloc;
4550 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4551 	static unsigned int mnt_count;
4552 	int err, ret;
4553 
4554 	might_sleep();
4555 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4556 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4557 	if (ext4_handle_valid(handle) &&
4558 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4559 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4560 		/*
4561 		 * We need extra buffer credits since we may write into EA block
4562 		 * with this same handle. If journal_extend fails, then it will
4563 		 * only result in a minor loss of functionality for that inode.
4564 		 * If this is felt to be critical, then e2fsck should be run to
4565 		 * force a large enough s_min_extra_isize.
4566 		 */
4567 		if ((jbd2_journal_extend(handle,
4568 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4569 			ret = ext4_expand_extra_isize(inode,
4570 						      sbi->s_want_extra_isize,
4571 						      iloc, handle);
4572 			if (ret) {
4573 				ext4_set_inode_state(inode,
4574 						     EXT4_STATE_NO_EXPAND);
4575 				if (mnt_count !=
4576 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4577 					ext4_warning(inode->i_sb,
4578 					"Unable to expand inode %lu. Delete"
4579 					" some EAs or run e2fsck.",
4580 					inode->i_ino);
4581 					mnt_count =
4582 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4583 				}
4584 			}
4585 		}
4586 	}
4587 	if (!err)
4588 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4589 	return err;
4590 }
4591 
4592 /*
4593  * ext4_dirty_inode() is called from __mark_inode_dirty()
4594  *
4595  * We're really interested in the case where a file is being extended.
4596  * i_size has been changed by generic_commit_write() and we thus need
4597  * to include the updated inode in the current transaction.
4598  *
4599  * Also, dquot_alloc_block() will always dirty the inode when blocks
4600  * are allocated to the file.
4601  *
4602  * If the inode is marked synchronous, we don't honour that here - doing
4603  * so would cause a commit on atime updates, which we don't bother doing.
4604  * We handle synchronous inodes at the highest possible level.
4605  */
4606 void ext4_dirty_inode(struct inode *inode, int flags)
4607 {
4608 	handle_t *handle;
4609 
4610 	handle = ext4_journal_start(inode, 2);
4611 	if (IS_ERR(handle))
4612 		goto out;
4613 
4614 	ext4_mark_inode_dirty(handle, inode);
4615 
4616 	ext4_journal_stop(handle);
4617 out:
4618 	return;
4619 }
4620 
4621 #if 0
4622 /*
4623  * Bind an inode's backing buffer_head into this transaction, to prevent
4624  * it from being flushed to disk early.  Unlike
4625  * ext4_reserve_inode_write, this leaves behind no bh reference and
4626  * returns no iloc structure, so the caller needs to repeat the iloc
4627  * lookup to mark the inode dirty later.
4628  */
4629 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4630 {
4631 	struct ext4_iloc iloc;
4632 
4633 	int err = 0;
4634 	if (handle) {
4635 		err = ext4_get_inode_loc(inode, &iloc);
4636 		if (!err) {
4637 			BUFFER_TRACE(iloc.bh, "get_write_access");
4638 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4639 			if (!err)
4640 				err = ext4_handle_dirty_metadata(handle,
4641 								 NULL,
4642 								 iloc.bh);
4643 			brelse(iloc.bh);
4644 		}
4645 	}
4646 	ext4_std_error(inode->i_sb, err);
4647 	return err;
4648 }
4649 #endif
4650 
4651 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4652 {
4653 	journal_t *journal;
4654 	handle_t *handle;
4655 	int err;
4656 
4657 	/*
4658 	 * We have to be very careful here: changing a data block's
4659 	 * journaling status dynamically is dangerous.  If we write a
4660 	 * data block to the journal, change the status and then delete
4661 	 * that block, we risk forgetting to revoke the old log record
4662 	 * from the journal and so a subsequent replay can corrupt data.
4663 	 * So, first we make sure that the journal is empty and that
4664 	 * nobody is changing anything.
4665 	 */
4666 
4667 	journal = EXT4_JOURNAL(inode);
4668 	if (!journal)
4669 		return 0;
4670 	if (is_journal_aborted(journal))
4671 		return -EROFS;
4672 
4673 	jbd2_journal_lock_updates(journal);
4674 	jbd2_journal_flush(journal);
4675 
4676 	/*
4677 	 * OK, there are no updates running now, and all cached data is
4678 	 * synced to disk.  We are now in a completely consistent state
4679 	 * which doesn't have anything in the journal, and we know that
4680 	 * no filesystem updates are running, so it is safe to modify
4681 	 * the inode's in-core data-journaling state flag now.
4682 	 */
4683 
4684 	if (val)
4685 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4686 	else
4687 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4688 	ext4_set_aops(inode);
4689 
4690 	jbd2_journal_unlock_updates(journal);
4691 
4692 	/* Finally we can mark the inode as dirty. */
4693 
4694 	handle = ext4_journal_start(inode, 1);
4695 	if (IS_ERR(handle))
4696 		return PTR_ERR(handle);
4697 
4698 	err = ext4_mark_inode_dirty(handle, inode);
4699 	ext4_handle_sync(handle);
4700 	ext4_journal_stop(handle);
4701 	ext4_std_error(inode->i_sb, err);
4702 
4703 	return err;
4704 }
4705 
4706 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4707 {
4708 	return !buffer_mapped(bh);
4709 }
4710 
4711 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4712 {
4713 	struct page *page = vmf->page;
4714 	loff_t size;
4715 	unsigned long len;
4716 	int ret;
4717 	struct file *file = vma->vm_file;
4718 	struct inode *inode = file->f_path.dentry->d_inode;
4719 	struct address_space *mapping = inode->i_mapping;
4720 	handle_t *handle;
4721 	get_block_t *get_block;
4722 	int retries = 0;
4723 
4724 	/*
4725 	 * This check is racy but catches the common case. We rely on
4726 	 * __block_page_mkwrite() to do a reliable check.
4727 	 */
4728 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4729 	/* Delalloc case is easy... */
4730 	if (test_opt(inode->i_sb, DELALLOC) &&
4731 	    !ext4_should_journal_data(inode) &&
4732 	    !ext4_nonda_switch(inode->i_sb)) {
4733 		do {
4734 			ret = __block_page_mkwrite(vma, vmf,
4735 						   ext4_da_get_block_prep);
4736 		} while (ret == -ENOSPC &&
4737 		       ext4_should_retry_alloc(inode->i_sb, &retries));
4738 		goto out_ret;
4739 	}
4740 
4741 	lock_page(page);
4742 	size = i_size_read(inode);
4743 	/* Page got truncated from under us? */
4744 	if (page->mapping != mapping || page_offset(page) > size) {
4745 		unlock_page(page);
4746 		ret = VM_FAULT_NOPAGE;
4747 		goto out;
4748 	}
4749 
4750 	if (page->index == size >> PAGE_CACHE_SHIFT)
4751 		len = size & ~PAGE_CACHE_MASK;
4752 	else
4753 		len = PAGE_CACHE_SIZE;
4754 	/*
4755 	 * Return if we have all the buffers mapped. This avoids the need to do
4756 	 * journal_start/journal_stop which can block and take a long time
4757 	 */
4758 	if (page_has_buffers(page)) {
4759 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4760 					ext4_bh_unmapped)) {
4761 			/* Wait so that we don't change page under IO */
4762 			wait_on_page_writeback(page);
4763 			ret = VM_FAULT_LOCKED;
4764 			goto out;
4765 		}
4766 	}
4767 	unlock_page(page);
4768 	/* OK, we need to fill the hole... */
4769 	if (ext4_should_dioread_nolock(inode))
4770 		get_block = ext4_get_block_write;
4771 	else
4772 		get_block = ext4_get_block;
4773 retry_alloc:
4774 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4775 	if (IS_ERR(handle)) {
4776 		ret = VM_FAULT_SIGBUS;
4777 		goto out;
4778 	}
4779 	ret = __block_page_mkwrite(vma, vmf, get_block);
4780 	if (!ret && ext4_should_journal_data(inode)) {
4781 		if (walk_page_buffers(handle, page_buffers(page), 0,
4782 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4783 			unlock_page(page);
4784 			ret = VM_FAULT_SIGBUS;
4785 			goto out;
4786 		}
4787 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4788 	}
4789 	ext4_journal_stop(handle);
4790 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4791 		goto retry_alloc;
4792 out_ret:
4793 	ret = block_page_mkwrite_return(ret);
4794 out:
4795 	return ret;
4796 }
4797