1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/module.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/jbd2.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "truncate.h" 46 47 #include <trace/events/ext4.h> 48 49 #define MPAGE_DA_EXTENT_TAIL 0x01 50 51 static inline int ext4_begin_ordered_truncate(struct inode *inode, 52 loff_t new_size) 53 { 54 trace_ext4_begin_ordered_truncate(inode, new_size); 55 /* 56 * If jinode is zero, then we never opened the file for 57 * writing, so there's no need to call 58 * jbd2_journal_begin_ordered_truncate() since there's no 59 * outstanding writes we need to flush. 60 */ 61 if (!EXT4_I(inode)->jinode) 62 return 0; 63 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 64 EXT4_I(inode)->jinode, 65 new_size); 66 } 67 68 static void ext4_invalidatepage(struct page *page, unsigned long offset); 69 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 70 struct buffer_head *bh_result, int create); 71 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 72 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 73 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 74 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 75 76 /* 77 * Test whether an inode is a fast symlink. 78 */ 79 static int ext4_inode_is_fast_symlink(struct inode *inode) 80 { 81 int ea_blocks = EXT4_I(inode)->i_file_acl ? 82 (inode->i_sb->s_blocksize >> 9) : 0; 83 84 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 85 } 86 87 /* 88 * Restart the transaction associated with *handle. This does a commit, 89 * so before we call here everything must be consistently dirtied against 90 * this transaction. 91 */ 92 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 93 int nblocks) 94 { 95 int ret; 96 97 /* 98 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 99 * moment, get_block can be called only for blocks inside i_size since 100 * page cache has been already dropped and writes are blocked by 101 * i_mutex. So we can safely drop the i_data_sem here. 102 */ 103 BUG_ON(EXT4_JOURNAL(inode) == NULL); 104 jbd_debug(2, "restarting handle %p\n", handle); 105 up_write(&EXT4_I(inode)->i_data_sem); 106 ret = ext4_journal_restart(handle, nblocks); 107 down_write(&EXT4_I(inode)->i_data_sem); 108 ext4_discard_preallocations(inode); 109 110 return ret; 111 } 112 113 /* 114 * Called at the last iput() if i_nlink is zero. 115 */ 116 void ext4_evict_inode(struct inode *inode) 117 { 118 handle_t *handle; 119 int err; 120 121 trace_ext4_evict_inode(inode); 122 123 ext4_ioend_wait(inode); 124 125 if (inode->i_nlink) { 126 /* 127 * When journalling data dirty buffers are tracked only in the 128 * journal. So although mm thinks everything is clean and 129 * ready for reaping the inode might still have some pages to 130 * write in the running transaction or waiting to be 131 * checkpointed. Thus calling jbd2_journal_invalidatepage() 132 * (via truncate_inode_pages()) to discard these buffers can 133 * cause data loss. Also even if we did not discard these 134 * buffers, we would have no way to find them after the inode 135 * is reaped and thus user could see stale data if he tries to 136 * read them before the transaction is checkpointed. So be 137 * careful and force everything to disk here... We use 138 * ei->i_datasync_tid to store the newest transaction 139 * containing inode's data. 140 * 141 * Note that directories do not have this problem because they 142 * don't use page cache. 143 */ 144 if (ext4_should_journal_data(inode) && 145 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) { 146 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 147 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 148 149 jbd2_log_start_commit(journal, commit_tid); 150 jbd2_log_wait_commit(journal, commit_tid); 151 filemap_write_and_wait(&inode->i_data); 152 } 153 truncate_inode_pages(&inode->i_data, 0); 154 goto no_delete; 155 } 156 157 if (!is_bad_inode(inode)) 158 dquot_initialize(inode); 159 160 if (ext4_should_order_data(inode)) 161 ext4_begin_ordered_truncate(inode, 0); 162 truncate_inode_pages(&inode->i_data, 0); 163 164 if (is_bad_inode(inode)) 165 goto no_delete; 166 167 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3); 168 if (IS_ERR(handle)) { 169 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 170 /* 171 * If we're going to skip the normal cleanup, we still need to 172 * make sure that the in-core orphan linked list is properly 173 * cleaned up. 174 */ 175 ext4_orphan_del(NULL, inode); 176 goto no_delete; 177 } 178 179 if (IS_SYNC(inode)) 180 ext4_handle_sync(handle); 181 inode->i_size = 0; 182 err = ext4_mark_inode_dirty(handle, inode); 183 if (err) { 184 ext4_warning(inode->i_sb, 185 "couldn't mark inode dirty (err %d)", err); 186 goto stop_handle; 187 } 188 if (inode->i_blocks) 189 ext4_truncate(inode); 190 191 /* 192 * ext4_ext_truncate() doesn't reserve any slop when it 193 * restarts journal transactions; therefore there may not be 194 * enough credits left in the handle to remove the inode from 195 * the orphan list and set the dtime field. 196 */ 197 if (!ext4_handle_has_enough_credits(handle, 3)) { 198 err = ext4_journal_extend(handle, 3); 199 if (err > 0) 200 err = ext4_journal_restart(handle, 3); 201 if (err != 0) { 202 ext4_warning(inode->i_sb, 203 "couldn't extend journal (err %d)", err); 204 stop_handle: 205 ext4_journal_stop(handle); 206 ext4_orphan_del(NULL, inode); 207 goto no_delete; 208 } 209 } 210 211 /* 212 * Kill off the orphan record which ext4_truncate created. 213 * AKPM: I think this can be inside the above `if'. 214 * Note that ext4_orphan_del() has to be able to cope with the 215 * deletion of a non-existent orphan - this is because we don't 216 * know if ext4_truncate() actually created an orphan record. 217 * (Well, we could do this if we need to, but heck - it works) 218 */ 219 ext4_orphan_del(handle, inode); 220 EXT4_I(inode)->i_dtime = get_seconds(); 221 222 /* 223 * One subtle ordering requirement: if anything has gone wrong 224 * (transaction abort, IO errors, whatever), then we can still 225 * do these next steps (the fs will already have been marked as 226 * having errors), but we can't free the inode if the mark_dirty 227 * fails. 228 */ 229 if (ext4_mark_inode_dirty(handle, inode)) 230 /* If that failed, just do the required in-core inode clear. */ 231 ext4_clear_inode(inode); 232 else 233 ext4_free_inode(handle, inode); 234 ext4_journal_stop(handle); 235 return; 236 no_delete: 237 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 238 } 239 240 #ifdef CONFIG_QUOTA 241 qsize_t *ext4_get_reserved_space(struct inode *inode) 242 { 243 return &EXT4_I(inode)->i_reserved_quota; 244 } 245 #endif 246 247 /* 248 * Calculate the number of metadata blocks need to reserve 249 * to allocate a block located at @lblock 250 */ 251 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 252 { 253 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 254 return ext4_ext_calc_metadata_amount(inode, lblock); 255 256 return ext4_ind_calc_metadata_amount(inode, lblock); 257 } 258 259 /* 260 * Called with i_data_sem down, which is important since we can call 261 * ext4_discard_preallocations() from here. 262 */ 263 void ext4_da_update_reserve_space(struct inode *inode, 264 int used, int quota_claim) 265 { 266 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 267 struct ext4_inode_info *ei = EXT4_I(inode); 268 269 spin_lock(&ei->i_block_reservation_lock); 270 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 271 if (unlikely(used > ei->i_reserved_data_blocks)) { 272 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d " 273 "with only %d reserved data blocks\n", 274 __func__, inode->i_ino, used, 275 ei->i_reserved_data_blocks); 276 WARN_ON(1); 277 used = ei->i_reserved_data_blocks; 278 } 279 280 /* Update per-inode reservations */ 281 ei->i_reserved_data_blocks -= used; 282 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 283 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 284 used + ei->i_allocated_meta_blocks); 285 ei->i_allocated_meta_blocks = 0; 286 287 if (ei->i_reserved_data_blocks == 0) { 288 /* 289 * We can release all of the reserved metadata blocks 290 * only when we have written all of the delayed 291 * allocation blocks. 292 */ 293 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 294 ei->i_reserved_meta_blocks); 295 ei->i_reserved_meta_blocks = 0; 296 ei->i_da_metadata_calc_len = 0; 297 } 298 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 299 300 /* Update quota subsystem for data blocks */ 301 if (quota_claim) 302 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 303 else { 304 /* 305 * We did fallocate with an offset that is already delayed 306 * allocated. So on delayed allocated writeback we should 307 * not re-claim the quota for fallocated blocks. 308 */ 309 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 310 } 311 312 /* 313 * If we have done all the pending block allocations and if 314 * there aren't any writers on the inode, we can discard the 315 * inode's preallocations. 316 */ 317 if ((ei->i_reserved_data_blocks == 0) && 318 (atomic_read(&inode->i_writecount) == 0)) 319 ext4_discard_preallocations(inode); 320 } 321 322 static int __check_block_validity(struct inode *inode, const char *func, 323 unsigned int line, 324 struct ext4_map_blocks *map) 325 { 326 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 327 map->m_len)) { 328 ext4_error_inode(inode, func, line, map->m_pblk, 329 "lblock %lu mapped to illegal pblock " 330 "(length %d)", (unsigned long) map->m_lblk, 331 map->m_len); 332 return -EIO; 333 } 334 return 0; 335 } 336 337 #define check_block_validity(inode, map) \ 338 __check_block_validity((inode), __func__, __LINE__, (map)) 339 340 /* 341 * Return the number of contiguous dirty pages in a given inode 342 * starting at page frame idx. 343 */ 344 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 345 unsigned int max_pages) 346 { 347 struct address_space *mapping = inode->i_mapping; 348 pgoff_t index; 349 struct pagevec pvec; 350 pgoff_t num = 0; 351 int i, nr_pages, done = 0; 352 353 if (max_pages == 0) 354 return 0; 355 pagevec_init(&pvec, 0); 356 while (!done) { 357 index = idx; 358 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 359 PAGECACHE_TAG_DIRTY, 360 (pgoff_t)PAGEVEC_SIZE); 361 if (nr_pages == 0) 362 break; 363 for (i = 0; i < nr_pages; i++) { 364 struct page *page = pvec.pages[i]; 365 struct buffer_head *bh, *head; 366 367 lock_page(page); 368 if (unlikely(page->mapping != mapping) || 369 !PageDirty(page) || 370 PageWriteback(page) || 371 page->index != idx) { 372 done = 1; 373 unlock_page(page); 374 break; 375 } 376 if (page_has_buffers(page)) { 377 bh = head = page_buffers(page); 378 do { 379 if (!buffer_delay(bh) && 380 !buffer_unwritten(bh)) 381 done = 1; 382 bh = bh->b_this_page; 383 } while (!done && (bh != head)); 384 } 385 unlock_page(page); 386 if (done) 387 break; 388 idx++; 389 num++; 390 if (num >= max_pages) { 391 done = 1; 392 break; 393 } 394 } 395 pagevec_release(&pvec); 396 } 397 return num; 398 } 399 400 /* 401 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map. 402 */ 403 static void set_buffers_da_mapped(struct inode *inode, 404 struct ext4_map_blocks *map) 405 { 406 struct address_space *mapping = inode->i_mapping; 407 struct pagevec pvec; 408 int i, nr_pages; 409 pgoff_t index, end; 410 411 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 412 end = (map->m_lblk + map->m_len - 1) >> 413 (PAGE_CACHE_SHIFT - inode->i_blkbits); 414 415 pagevec_init(&pvec, 0); 416 while (index <= end) { 417 nr_pages = pagevec_lookup(&pvec, mapping, index, 418 min(end - index + 1, 419 (pgoff_t)PAGEVEC_SIZE)); 420 if (nr_pages == 0) 421 break; 422 for (i = 0; i < nr_pages; i++) { 423 struct page *page = pvec.pages[i]; 424 struct buffer_head *bh, *head; 425 426 if (unlikely(page->mapping != mapping) || 427 !PageDirty(page)) 428 break; 429 430 if (page_has_buffers(page)) { 431 bh = head = page_buffers(page); 432 do { 433 set_buffer_da_mapped(bh); 434 bh = bh->b_this_page; 435 } while (bh != head); 436 } 437 index++; 438 } 439 pagevec_release(&pvec); 440 } 441 } 442 443 /* 444 * The ext4_map_blocks() function tries to look up the requested blocks, 445 * and returns if the blocks are already mapped. 446 * 447 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 448 * and store the allocated blocks in the result buffer head and mark it 449 * mapped. 450 * 451 * If file type is extents based, it will call ext4_ext_map_blocks(), 452 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 453 * based files 454 * 455 * On success, it returns the number of blocks being mapped or allocate. 456 * if create==0 and the blocks are pre-allocated and uninitialized block, 457 * the result buffer head is unmapped. If the create ==1, it will make sure 458 * the buffer head is mapped. 459 * 460 * It returns 0 if plain look up failed (blocks have not been allocated), in 461 * that case, buffer head is unmapped 462 * 463 * It returns the error in case of allocation failure. 464 */ 465 int ext4_map_blocks(handle_t *handle, struct inode *inode, 466 struct ext4_map_blocks *map, int flags) 467 { 468 int retval; 469 470 map->m_flags = 0; 471 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 472 "logical block %lu\n", inode->i_ino, flags, map->m_len, 473 (unsigned long) map->m_lblk); 474 /* 475 * Try to see if we can get the block without requesting a new 476 * file system block. 477 */ 478 down_read((&EXT4_I(inode)->i_data_sem)); 479 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 480 retval = ext4_ext_map_blocks(handle, inode, map, 0); 481 } else { 482 retval = ext4_ind_map_blocks(handle, inode, map, 0); 483 } 484 up_read((&EXT4_I(inode)->i_data_sem)); 485 486 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 487 int ret = check_block_validity(inode, map); 488 if (ret != 0) 489 return ret; 490 } 491 492 /* If it is only a block(s) look up */ 493 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 494 return retval; 495 496 /* 497 * Returns if the blocks have already allocated 498 * 499 * Note that if blocks have been preallocated 500 * ext4_ext_get_block() returns the create = 0 501 * with buffer head unmapped. 502 */ 503 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 504 return retval; 505 506 /* 507 * When we call get_blocks without the create flag, the 508 * BH_Unwritten flag could have gotten set if the blocks 509 * requested were part of a uninitialized extent. We need to 510 * clear this flag now that we are committed to convert all or 511 * part of the uninitialized extent to be an initialized 512 * extent. This is because we need to avoid the combination 513 * of BH_Unwritten and BH_Mapped flags being simultaneously 514 * set on the buffer_head. 515 */ 516 map->m_flags &= ~EXT4_MAP_UNWRITTEN; 517 518 /* 519 * New blocks allocate and/or writing to uninitialized extent 520 * will possibly result in updating i_data, so we take 521 * the write lock of i_data_sem, and call get_blocks() 522 * with create == 1 flag. 523 */ 524 down_write((&EXT4_I(inode)->i_data_sem)); 525 526 /* 527 * if the caller is from delayed allocation writeout path 528 * we have already reserved fs blocks for allocation 529 * let the underlying get_block() function know to 530 * avoid double accounting 531 */ 532 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 533 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 534 /* 535 * We need to check for EXT4 here because migrate 536 * could have changed the inode type in between 537 */ 538 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 539 retval = ext4_ext_map_blocks(handle, inode, map, flags); 540 } else { 541 retval = ext4_ind_map_blocks(handle, inode, map, flags); 542 543 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 544 /* 545 * We allocated new blocks which will result in 546 * i_data's format changing. Force the migrate 547 * to fail by clearing migrate flags 548 */ 549 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 550 } 551 552 /* 553 * Update reserved blocks/metadata blocks after successful 554 * block allocation which had been deferred till now. We don't 555 * support fallocate for non extent files. So we can update 556 * reserve space here. 557 */ 558 if ((retval > 0) && 559 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 560 ext4_da_update_reserve_space(inode, retval, 1); 561 } 562 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 563 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 564 565 /* If we have successfully mapped the delayed allocated blocks, 566 * set the BH_Da_Mapped bit on them. Its important to do this 567 * under the protection of i_data_sem. 568 */ 569 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 570 set_buffers_da_mapped(inode, map); 571 } 572 573 up_write((&EXT4_I(inode)->i_data_sem)); 574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 575 int ret = check_block_validity(inode, map); 576 if (ret != 0) 577 return ret; 578 } 579 return retval; 580 } 581 582 /* Maximum number of blocks we map for direct IO at once. */ 583 #define DIO_MAX_BLOCKS 4096 584 585 static int _ext4_get_block(struct inode *inode, sector_t iblock, 586 struct buffer_head *bh, int flags) 587 { 588 handle_t *handle = ext4_journal_current_handle(); 589 struct ext4_map_blocks map; 590 int ret = 0, started = 0; 591 int dio_credits; 592 593 map.m_lblk = iblock; 594 map.m_len = bh->b_size >> inode->i_blkbits; 595 596 if (flags && !handle) { 597 /* Direct IO write... */ 598 if (map.m_len > DIO_MAX_BLOCKS) 599 map.m_len = DIO_MAX_BLOCKS; 600 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 601 handle = ext4_journal_start(inode, dio_credits); 602 if (IS_ERR(handle)) { 603 ret = PTR_ERR(handle); 604 return ret; 605 } 606 started = 1; 607 } 608 609 ret = ext4_map_blocks(handle, inode, &map, flags); 610 if (ret > 0) { 611 map_bh(bh, inode->i_sb, map.m_pblk); 612 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 613 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 614 ret = 0; 615 } 616 if (started) 617 ext4_journal_stop(handle); 618 return ret; 619 } 620 621 int ext4_get_block(struct inode *inode, sector_t iblock, 622 struct buffer_head *bh, int create) 623 { 624 return _ext4_get_block(inode, iblock, bh, 625 create ? EXT4_GET_BLOCKS_CREATE : 0); 626 } 627 628 /* 629 * `handle' can be NULL if create is zero 630 */ 631 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 632 ext4_lblk_t block, int create, int *errp) 633 { 634 struct ext4_map_blocks map; 635 struct buffer_head *bh; 636 int fatal = 0, err; 637 638 J_ASSERT(handle != NULL || create == 0); 639 640 map.m_lblk = block; 641 map.m_len = 1; 642 err = ext4_map_blocks(handle, inode, &map, 643 create ? EXT4_GET_BLOCKS_CREATE : 0); 644 645 if (err < 0) 646 *errp = err; 647 if (err <= 0) 648 return NULL; 649 *errp = 0; 650 651 bh = sb_getblk(inode->i_sb, map.m_pblk); 652 if (!bh) { 653 *errp = -EIO; 654 return NULL; 655 } 656 if (map.m_flags & EXT4_MAP_NEW) { 657 J_ASSERT(create != 0); 658 J_ASSERT(handle != NULL); 659 660 /* 661 * Now that we do not always journal data, we should 662 * keep in mind whether this should always journal the 663 * new buffer as metadata. For now, regular file 664 * writes use ext4_get_block instead, so it's not a 665 * problem. 666 */ 667 lock_buffer(bh); 668 BUFFER_TRACE(bh, "call get_create_access"); 669 fatal = ext4_journal_get_create_access(handle, bh); 670 if (!fatal && !buffer_uptodate(bh)) { 671 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 672 set_buffer_uptodate(bh); 673 } 674 unlock_buffer(bh); 675 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 676 err = ext4_handle_dirty_metadata(handle, inode, bh); 677 if (!fatal) 678 fatal = err; 679 } else { 680 BUFFER_TRACE(bh, "not a new buffer"); 681 } 682 if (fatal) { 683 *errp = fatal; 684 brelse(bh); 685 bh = NULL; 686 } 687 return bh; 688 } 689 690 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 691 ext4_lblk_t block, int create, int *err) 692 { 693 struct buffer_head *bh; 694 695 bh = ext4_getblk(handle, inode, block, create, err); 696 if (!bh) 697 return bh; 698 if (buffer_uptodate(bh)) 699 return bh; 700 ll_rw_block(READ_META, 1, &bh); 701 wait_on_buffer(bh); 702 if (buffer_uptodate(bh)) 703 return bh; 704 put_bh(bh); 705 *err = -EIO; 706 return NULL; 707 } 708 709 static int walk_page_buffers(handle_t *handle, 710 struct buffer_head *head, 711 unsigned from, 712 unsigned to, 713 int *partial, 714 int (*fn)(handle_t *handle, 715 struct buffer_head *bh)) 716 { 717 struct buffer_head *bh; 718 unsigned block_start, block_end; 719 unsigned blocksize = head->b_size; 720 int err, ret = 0; 721 struct buffer_head *next; 722 723 for (bh = head, block_start = 0; 724 ret == 0 && (bh != head || !block_start); 725 block_start = block_end, bh = next) { 726 next = bh->b_this_page; 727 block_end = block_start + blocksize; 728 if (block_end <= from || block_start >= to) { 729 if (partial && !buffer_uptodate(bh)) 730 *partial = 1; 731 continue; 732 } 733 err = (*fn)(handle, bh); 734 if (!ret) 735 ret = err; 736 } 737 return ret; 738 } 739 740 /* 741 * To preserve ordering, it is essential that the hole instantiation and 742 * the data write be encapsulated in a single transaction. We cannot 743 * close off a transaction and start a new one between the ext4_get_block() 744 * and the commit_write(). So doing the jbd2_journal_start at the start of 745 * prepare_write() is the right place. 746 * 747 * Also, this function can nest inside ext4_writepage() -> 748 * block_write_full_page(). In that case, we *know* that ext4_writepage() 749 * has generated enough buffer credits to do the whole page. So we won't 750 * block on the journal in that case, which is good, because the caller may 751 * be PF_MEMALLOC. 752 * 753 * By accident, ext4 can be reentered when a transaction is open via 754 * quota file writes. If we were to commit the transaction while thus 755 * reentered, there can be a deadlock - we would be holding a quota 756 * lock, and the commit would never complete if another thread had a 757 * transaction open and was blocking on the quota lock - a ranking 758 * violation. 759 * 760 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 761 * will _not_ run commit under these circumstances because handle->h_ref 762 * is elevated. We'll still have enough credits for the tiny quotafile 763 * write. 764 */ 765 static int do_journal_get_write_access(handle_t *handle, 766 struct buffer_head *bh) 767 { 768 int dirty = buffer_dirty(bh); 769 int ret; 770 771 if (!buffer_mapped(bh) || buffer_freed(bh)) 772 return 0; 773 /* 774 * __block_write_begin() could have dirtied some buffers. Clean 775 * the dirty bit as jbd2_journal_get_write_access() could complain 776 * otherwise about fs integrity issues. Setting of the dirty bit 777 * by __block_write_begin() isn't a real problem here as we clear 778 * the bit before releasing a page lock and thus writeback cannot 779 * ever write the buffer. 780 */ 781 if (dirty) 782 clear_buffer_dirty(bh); 783 ret = ext4_journal_get_write_access(handle, bh); 784 if (!ret && dirty) 785 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 786 return ret; 787 } 788 789 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 790 struct buffer_head *bh_result, int create); 791 static int ext4_write_begin(struct file *file, struct address_space *mapping, 792 loff_t pos, unsigned len, unsigned flags, 793 struct page **pagep, void **fsdata) 794 { 795 struct inode *inode = mapping->host; 796 int ret, needed_blocks; 797 handle_t *handle; 798 int retries = 0; 799 struct page *page; 800 pgoff_t index; 801 unsigned from, to; 802 803 trace_ext4_write_begin(inode, pos, len, flags); 804 /* 805 * Reserve one block more for addition to orphan list in case 806 * we allocate blocks but write fails for some reason 807 */ 808 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 809 index = pos >> PAGE_CACHE_SHIFT; 810 from = pos & (PAGE_CACHE_SIZE - 1); 811 to = from + len; 812 813 retry: 814 handle = ext4_journal_start(inode, needed_blocks); 815 if (IS_ERR(handle)) { 816 ret = PTR_ERR(handle); 817 goto out; 818 } 819 820 /* We cannot recurse into the filesystem as the transaction is already 821 * started */ 822 flags |= AOP_FLAG_NOFS; 823 824 page = grab_cache_page_write_begin(mapping, index, flags); 825 if (!page) { 826 ext4_journal_stop(handle); 827 ret = -ENOMEM; 828 goto out; 829 } 830 *pagep = page; 831 832 if (ext4_should_dioread_nolock(inode)) 833 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 834 else 835 ret = __block_write_begin(page, pos, len, ext4_get_block); 836 837 if (!ret && ext4_should_journal_data(inode)) { 838 ret = walk_page_buffers(handle, page_buffers(page), 839 from, to, NULL, do_journal_get_write_access); 840 } 841 842 if (ret) { 843 unlock_page(page); 844 page_cache_release(page); 845 /* 846 * __block_write_begin may have instantiated a few blocks 847 * outside i_size. Trim these off again. Don't need 848 * i_size_read because we hold i_mutex. 849 * 850 * Add inode to orphan list in case we crash before 851 * truncate finishes 852 */ 853 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 854 ext4_orphan_add(handle, inode); 855 856 ext4_journal_stop(handle); 857 if (pos + len > inode->i_size) { 858 ext4_truncate_failed_write(inode); 859 /* 860 * If truncate failed early the inode might 861 * still be on the orphan list; we need to 862 * make sure the inode is removed from the 863 * orphan list in that case. 864 */ 865 if (inode->i_nlink) 866 ext4_orphan_del(NULL, inode); 867 } 868 } 869 870 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 871 goto retry; 872 out: 873 return ret; 874 } 875 876 /* For write_end() in data=journal mode */ 877 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 878 { 879 if (!buffer_mapped(bh) || buffer_freed(bh)) 880 return 0; 881 set_buffer_uptodate(bh); 882 return ext4_handle_dirty_metadata(handle, NULL, bh); 883 } 884 885 static int ext4_generic_write_end(struct file *file, 886 struct address_space *mapping, 887 loff_t pos, unsigned len, unsigned copied, 888 struct page *page, void *fsdata) 889 { 890 int i_size_changed = 0; 891 struct inode *inode = mapping->host; 892 handle_t *handle = ext4_journal_current_handle(); 893 894 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 895 896 /* 897 * No need to use i_size_read() here, the i_size 898 * cannot change under us because we hold i_mutex. 899 * 900 * But it's important to update i_size while still holding page lock: 901 * page writeout could otherwise come in and zero beyond i_size. 902 */ 903 if (pos + copied > inode->i_size) { 904 i_size_write(inode, pos + copied); 905 i_size_changed = 1; 906 } 907 908 if (pos + copied > EXT4_I(inode)->i_disksize) { 909 /* We need to mark inode dirty even if 910 * new_i_size is less that inode->i_size 911 * bu greater than i_disksize.(hint delalloc) 912 */ 913 ext4_update_i_disksize(inode, (pos + copied)); 914 i_size_changed = 1; 915 } 916 unlock_page(page); 917 page_cache_release(page); 918 919 /* 920 * Don't mark the inode dirty under page lock. First, it unnecessarily 921 * makes the holding time of page lock longer. Second, it forces lock 922 * ordering of page lock and transaction start for journaling 923 * filesystems. 924 */ 925 if (i_size_changed) 926 ext4_mark_inode_dirty(handle, inode); 927 928 return copied; 929 } 930 931 /* 932 * We need to pick up the new inode size which generic_commit_write gave us 933 * `file' can be NULL - eg, when called from page_symlink(). 934 * 935 * ext4 never places buffers on inode->i_mapping->private_list. metadata 936 * buffers are managed internally. 937 */ 938 static int ext4_ordered_write_end(struct file *file, 939 struct address_space *mapping, 940 loff_t pos, unsigned len, unsigned copied, 941 struct page *page, void *fsdata) 942 { 943 handle_t *handle = ext4_journal_current_handle(); 944 struct inode *inode = mapping->host; 945 int ret = 0, ret2; 946 947 trace_ext4_ordered_write_end(inode, pos, len, copied); 948 ret = ext4_jbd2_file_inode(handle, inode); 949 950 if (ret == 0) { 951 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 952 page, fsdata); 953 copied = ret2; 954 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 955 /* if we have allocated more blocks and copied 956 * less. We will have blocks allocated outside 957 * inode->i_size. So truncate them 958 */ 959 ext4_orphan_add(handle, inode); 960 if (ret2 < 0) 961 ret = ret2; 962 } 963 ret2 = ext4_journal_stop(handle); 964 if (!ret) 965 ret = ret2; 966 967 if (pos + len > inode->i_size) { 968 ext4_truncate_failed_write(inode); 969 /* 970 * If truncate failed early the inode might still be 971 * on the orphan list; we need to make sure the inode 972 * is removed from the orphan list in that case. 973 */ 974 if (inode->i_nlink) 975 ext4_orphan_del(NULL, inode); 976 } 977 978 979 return ret ? ret : copied; 980 } 981 982 static int ext4_writeback_write_end(struct file *file, 983 struct address_space *mapping, 984 loff_t pos, unsigned len, unsigned copied, 985 struct page *page, void *fsdata) 986 { 987 handle_t *handle = ext4_journal_current_handle(); 988 struct inode *inode = mapping->host; 989 int ret = 0, ret2; 990 991 trace_ext4_writeback_write_end(inode, pos, len, copied); 992 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 993 page, fsdata); 994 copied = ret2; 995 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 996 /* if we have allocated more blocks and copied 997 * less. We will have blocks allocated outside 998 * inode->i_size. So truncate them 999 */ 1000 ext4_orphan_add(handle, inode); 1001 1002 if (ret2 < 0) 1003 ret = ret2; 1004 1005 ret2 = ext4_journal_stop(handle); 1006 if (!ret) 1007 ret = ret2; 1008 1009 if (pos + len > inode->i_size) { 1010 ext4_truncate_failed_write(inode); 1011 /* 1012 * If truncate failed early the inode might still be 1013 * on the orphan list; we need to make sure the inode 1014 * is removed from the orphan list in that case. 1015 */ 1016 if (inode->i_nlink) 1017 ext4_orphan_del(NULL, inode); 1018 } 1019 1020 return ret ? ret : copied; 1021 } 1022 1023 static int ext4_journalled_write_end(struct file *file, 1024 struct address_space *mapping, 1025 loff_t pos, unsigned len, unsigned copied, 1026 struct page *page, void *fsdata) 1027 { 1028 handle_t *handle = ext4_journal_current_handle(); 1029 struct inode *inode = mapping->host; 1030 int ret = 0, ret2; 1031 int partial = 0; 1032 unsigned from, to; 1033 loff_t new_i_size; 1034 1035 trace_ext4_journalled_write_end(inode, pos, len, copied); 1036 from = pos & (PAGE_CACHE_SIZE - 1); 1037 to = from + len; 1038 1039 BUG_ON(!ext4_handle_valid(handle)); 1040 1041 if (copied < len) { 1042 if (!PageUptodate(page)) 1043 copied = 0; 1044 page_zero_new_buffers(page, from+copied, to); 1045 } 1046 1047 ret = walk_page_buffers(handle, page_buffers(page), from, 1048 to, &partial, write_end_fn); 1049 if (!partial) 1050 SetPageUptodate(page); 1051 new_i_size = pos + copied; 1052 if (new_i_size > inode->i_size) 1053 i_size_write(inode, pos+copied); 1054 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1055 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1056 if (new_i_size > EXT4_I(inode)->i_disksize) { 1057 ext4_update_i_disksize(inode, new_i_size); 1058 ret2 = ext4_mark_inode_dirty(handle, inode); 1059 if (!ret) 1060 ret = ret2; 1061 } 1062 1063 unlock_page(page); 1064 page_cache_release(page); 1065 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1066 /* if we have allocated more blocks and copied 1067 * less. We will have blocks allocated outside 1068 * inode->i_size. So truncate them 1069 */ 1070 ext4_orphan_add(handle, inode); 1071 1072 ret2 = ext4_journal_stop(handle); 1073 if (!ret) 1074 ret = ret2; 1075 if (pos + len > inode->i_size) { 1076 ext4_truncate_failed_write(inode); 1077 /* 1078 * If truncate failed early the inode might still be 1079 * on the orphan list; we need to make sure the inode 1080 * is removed from the orphan list in that case. 1081 */ 1082 if (inode->i_nlink) 1083 ext4_orphan_del(NULL, inode); 1084 } 1085 1086 return ret ? ret : copied; 1087 } 1088 1089 /* 1090 * Reserve a single cluster located at lblock 1091 */ 1092 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1093 { 1094 int retries = 0; 1095 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1096 struct ext4_inode_info *ei = EXT4_I(inode); 1097 unsigned int md_needed; 1098 int ret; 1099 1100 /* 1101 * recalculate the amount of metadata blocks to reserve 1102 * in order to allocate nrblocks 1103 * worse case is one extent per block 1104 */ 1105 repeat: 1106 spin_lock(&ei->i_block_reservation_lock); 1107 md_needed = EXT4_NUM_B2C(sbi, 1108 ext4_calc_metadata_amount(inode, lblock)); 1109 trace_ext4_da_reserve_space(inode, md_needed); 1110 spin_unlock(&ei->i_block_reservation_lock); 1111 1112 /* 1113 * We will charge metadata quota at writeout time; this saves 1114 * us from metadata over-estimation, though we may go over by 1115 * a small amount in the end. Here we just reserve for data. 1116 */ 1117 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1118 if (ret) 1119 return ret; 1120 /* 1121 * We do still charge estimated metadata to the sb though; 1122 * we cannot afford to run out of free blocks. 1123 */ 1124 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1125 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1126 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1127 yield(); 1128 goto repeat; 1129 } 1130 return -ENOSPC; 1131 } 1132 spin_lock(&ei->i_block_reservation_lock); 1133 ei->i_reserved_data_blocks++; 1134 ei->i_reserved_meta_blocks += md_needed; 1135 spin_unlock(&ei->i_block_reservation_lock); 1136 1137 return 0; /* success */ 1138 } 1139 1140 static void ext4_da_release_space(struct inode *inode, int to_free) 1141 { 1142 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1143 struct ext4_inode_info *ei = EXT4_I(inode); 1144 1145 if (!to_free) 1146 return; /* Nothing to release, exit */ 1147 1148 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1149 1150 trace_ext4_da_release_space(inode, to_free); 1151 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1152 /* 1153 * if there aren't enough reserved blocks, then the 1154 * counter is messed up somewhere. Since this 1155 * function is called from invalidate page, it's 1156 * harmless to return without any action. 1157 */ 1158 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: " 1159 "ino %lu, to_free %d with only %d reserved " 1160 "data blocks\n", inode->i_ino, to_free, 1161 ei->i_reserved_data_blocks); 1162 WARN_ON(1); 1163 to_free = ei->i_reserved_data_blocks; 1164 } 1165 ei->i_reserved_data_blocks -= to_free; 1166 1167 if (ei->i_reserved_data_blocks == 0) { 1168 /* 1169 * We can release all of the reserved metadata blocks 1170 * only when we have written all of the delayed 1171 * allocation blocks. 1172 * Note that in case of bigalloc, i_reserved_meta_blocks, 1173 * i_reserved_data_blocks, etc. refer to number of clusters. 1174 */ 1175 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1176 ei->i_reserved_meta_blocks); 1177 ei->i_reserved_meta_blocks = 0; 1178 ei->i_da_metadata_calc_len = 0; 1179 } 1180 1181 /* update fs dirty data blocks counter */ 1182 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1183 1184 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1185 1186 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1187 } 1188 1189 static void ext4_da_page_release_reservation(struct page *page, 1190 unsigned long offset) 1191 { 1192 int to_release = 0; 1193 struct buffer_head *head, *bh; 1194 unsigned int curr_off = 0; 1195 struct inode *inode = page->mapping->host; 1196 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1197 int num_clusters; 1198 1199 head = page_buffers(page); 1200 bh = head; 1201 do { 1202 unsigned int next_off = curr_off + bh->b_size; 1203 1204 if ((offset <= curr_off) && (buffer_delay(bh))) { 1205 to_release++; 1206 clear_buffer_delay(bh); 1207 clear_buffer_da_mapped(bh); 1208 } 1209 curr_off = next_off; 1210 } while ((bh = bh->b_this_page) != head); 1211 1212 /* If we have released all the blocks belonging to a cluster, then we 1213 * need to release the reserved space for that cluster. */ 1214 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1215 while (num_clusters > 0) { 1216 ext4_fsblk_t lblk; 1217 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1218 ((num_clusters - 1) << sbi->s_cluster_bits); 1219 if (sbi->s_cluster_ratio == 1 || 1220 !ext4_find_delalloc_cluster(inode, lblk, 1)) 1221 ext4_da_release_space(inode, 1); 1222 1223 num_clusters--; 1224 } 1225 } 1226 1227 /* 1228 * Delayed allocation stuff 1229 */ 1230 1231 /* 1232 * mpage_da_submit_io - walks through extent of pages and try to write 1233 * them with writepage() call back 1234 * 1235 * @mpd->inode: inode 1236 * @mpd->first_page: first page of the extent 1237 * @mpd->next_page: page after the last page of the extent 1238 * 1239 * By the time mpage_da_submit_io() is called we expect all blocks 1240 * to be allocated. this may be wrong if allocation failed. 1241 * 1242 * As pages are already locked by write_cache_pages(), we can't use it 1243 */ 1244 static int mpage_da_submit_io(struct mpage_da_data *mpd, 1245 struct ext4_map_blocks *map) 1246 { 1247 struct pagevec pvec; 1248 unsigned long index, end; 1249 int ret = 0, err, nr_pages, i; 1250 struct inode *inode = mpd->inode; 1251 struct address_space *mapping = inode->i_mapping; 1252 loff_t size = i_size_read(inode); 1253 unsigned int len, block_start; 1254 struct buffer_head *bh, *page_bufs = NULL; 1255 int journal_data = ext4_should_journal_data(inode); 1256 sector_t pblock = 0, cur_logical = 0; 1257 struct ext4_io_submit io_submit; 1258 1259 BUG_ON(mpd->next_page <= mpd->first_page); 1260 memset(&io_submit, 0, sizeof(io_submit)); 1261 /* 1262 * We need to start from the first_page to the next_page - 1 1263 * to make sure we also write the mapped dirty buffer_heads. 1264 * If we look at mpd->b_blocknr we would only be looking 1265 * at the currently mapped buffer_heads. 1266 */ 1267 index = mpd->first_page; 1268 end = mpd->next_page - 1; 1269 1270 pagevec_init(&pvec, 0); 1271 while (index <= end) { 1272 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1273 if (nr_pages == 0) 1274 break; 1275 for (i = 0; i < nr_pages; i++) { 1276 int commit_write = 0, skip_page = 0; 1277 struct page *page = pvec.pages[i]; 1278 1279 index = page->index; 1280 if (index > end) 1281 break; 1282 1283 if (index == size >> PAGE_CACHE_SHIFT) 1284 len = size & ~PAGE_CACHE_MASK; 1285 else 1286 len = PAGE_CACHE_SIZE; 1287 if (map) { 1288 cur_logical = index << (PAGE_CACHE_SHIFT - 1289 inode->i_blkbits); 1290 pblock = map->m_pblk + (cur_logical - 1291 map->m_lblk); 1292 } 1293 index++; 1294 1295 BUG_ON(!PageLocked(page)); 1296 BUG_ON(PageWriteback(page)); 1297 1298 /* 1299 * If the page does not have buffers (for 1300 * whatever reason), try to create them using 1301 * __block_write_begin. If this fails, 1302 * skip the page and move on. 1303 */ 1304 if (!page_has_buffers(page)) { 1305 if (__block_write_begin(page, 0, len, 1306 noalloc_get_block_write)) { 1307 skip_page: 1308 unlock_page(page); 1309 continue; 1310 } 1311 commit_write = 1; 1312 } 1313 1314 bh = page_bufs = page_buffers(page); 1315 block_start = 0; 1316 do { 1317 if (!bh) 1318 goto skip_page; 1319 if (map && (cur_logical >= map->m_lblk) && 1320 (cur_logical <= (map->m_lblk + 1321 (map->m_len - 1)))) { 1322 if (buffer_delay(bh)) { 1323 clear_buffer_delay(bh); 1324 bh->b_blocknr = pblock; 1325 } 1326 if (buffer_da_mapped(bh)) 1327 clear_buffer_da_mapped(bh); 1328 if (buffer_unwritten(bh) || 1329 buffer_mapped(bh)) 1330 BUG_ON(bh->b_blocknr != pblock); 1331 if (map->m_flags & EXT4_MAP_UNINIT) 1332 set_buffer_uninit(bh); 1333 clear_buffer_unwritten(bh); 1334 } 1335 1336 /* skip page if block allocation undone */ 1337 if (buffer_delay(bh) || buffer_unwritten(bh)) 1338 skip_page = 1; 1339 bh = bh->b_this_page; 1340 block_start += bh->b_size; 1341 cur_logical++; 1342 pblock++; 1343 } while (bh != page_bufs); 1344 1345 if (skip_page) 1346 goto skip_page; 1347 1348 if (commit_write) 1349 /* mark the buffer_heads as dirty & uptodate */ 1350 block_commit_write(page, 0, len); 1351 1352 clear_page_dirty_for_io(page); 1353 /* 1354 * Delalloc doesn't support data journalling, 1355 * but eventually maybe we'll lift this 1356 * restriction. 1357 */ 1358 if (unlikely(journal_data && PageChecked(page))) 1359 err = __ext4_journalled_writepage(page, len); 1360 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT)) 1361 err = ext4_bio_write_page(&io_submit, page, 1362 len, mpd->wbc); 1363 else if (buffer_uninit(page_bufs)) { 1364 ext4_set_bh_endio(page_bufs, inode); 1365 err = block_write_full_page_endio(page, 1366 noalloc_get_block_write, 1367 mpd->wbc, ext4_end_io_buffer_write); 1368 } else 1369 err = block_write_full_page(page, 1370 noalloc_get_block_write, mpd->wbc); 1371 1372 if (!err) 1373 mpd->pages_written++; 1374 /* 1375 * In error case, we have to continue because 1376 * remaining pages are still locked 1377 */ 1378 if (ret == 0) 1379 ret = err; 1380 } 1381 pagevec_release(&pvec); 1382 } 1383 ext4_io_submit(&io_submit); 1384 return ret; 1385 } 1386 1387 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd) 1388 { 1389 int nr_pages, i; 1390 pgoff_t index, end; 1391 struct pagevec pvec; 1392 struct inode *inode = mpd->inode; 1393 struct address_space *mapping = inode->i_mapping; 1394 1395 index = mpd->first_page; 1396 end = mpd->next_page - 1; 1397 while (index <= end) { 1398 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1399 if (nr_pages == 0) 1400 break; 1401 for (i = 0; i < nr_pages; i++) { 1402 struct page *page = pvec.pages[i]; 1403 if (page->index > end) 1404 break; 1405 BUG_ON(!PageLocked(page)); 1406 BUG_ON(PageWriteback(page)); 1407 block_invalidatepage(page, 0); 1408 ClearPageUptodate(page); 1409 unlock_page(page); 1410 } 1411 index = pvec.pages[nr_pages - 1]->index + 1; 1412 pagevec_release(&pvec); 1413 } 1414 return; 1415 } 1416 1417 static void ext4_print_free_blocks(struct inode *inode) 1418 { 1419 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1420 printk(KERN_CRIT "Total free blocks count %lld\n", 1421 EXT4_C2B(EXT4_SB(inode->i_sb), 1422 ext4_count_free_clusters(inode->i_sb))); 1423 printk(KERN_CRIT "Free/Dirty block details\n"); 1424 printk(KERN_CRIT "free_blocks=%lld\n", 1425 (long long) EXT4_C2B(EXT4_SB(inode->i_sb), 1426 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1427 printk(KERN_CRIT "dirty_blocks=%lld\n", 1428 (long long) EXT4_C2B(EXT4_SB(inode->i_sb), 1429 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1430 printk(KERN_CRIT "Block reservation details\n"); 1431 printk(KERN_CRIT "i_reserved_data_blocks=%u\n", 1432 EXT4_I(inode)->i_reserved_data_blocks); 1433 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n", 1434 EXT4_I(inode)->i_reserved_meta_blocks); 1435 return; 1436 } 1437 1438 /* 1439 * mpage_da_map_and_submit - go through given space, map them 1440 * if necessary, and then submit them for I/O 1441 * 1442 * @mpd - bh describing space 1443 * 1444 * The function skips space we know is already mapped to disk blocks. 1445 * 1446 */ 1447 static void mpage_da_map_and_submit(struct mpage_da_data *mpd) 1448 { 1449 int err, blks, get_blocks_flags; 1450 struct ext4_map_blocks map, *mapp = NULL; 1451 sector_t next = mpd->b_blocknr; 1452 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 1453 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 1454 handle_t *handle = NULL; 1455 1456 /* 1457 * If the blocks are mapped already, or we couldn't accumulate 1458 * any blocks, then proceed immediately to the submission stage. 1459 */ 1460 if ((mpd->b_size == 0) || 1461 ((mpd->b_state & (1 << BH_Mapped)) && 1462 !(mpd->b_state & (1 << BH_Delay)) && 1463 !(mpd->b_state & (1 << BH_Unwritten)))) 1464 goto submit_io; 1465 1466 handle = ext4_journal_current_handle(); 1467 BUG_ON(!handle); 1468 1469 /* 1470 * Call ext4_map_blocks() to allocate any delayed allocation 1471 * blocks, or to convert an uninitialized extent to be 1472 * initialized (in the case where we have written into 1473 * one or more preallocated blocks). 1474 * 1475 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 1476 * indicate that we are on the delayed allocation path. This 1477 * affects functions in many different parts of the allocation 1478 * call path. This flag exists primarily because we don't 1479 * want to change *many* call functions, so ext4_map_blocks() 1480 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the 1481 * inode's allocation semaphore is taken. 1482 * 1483 * If the blocks in questions were delalloc blocks, set 1484 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 1485 * variables are updated after the blocks have been allocated. 1486 */ 1487 map.m_lblk = next; 1488 map.m_len = max_blocks; 1489 get_blocks_flags = EXT4_GET_BLOCKS_CREATE; 1490 if (ext4_should_dioread_nolock(mpd->inode)) 1491 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 1492 if (mpd->b_state & (1 << BH_Delay)) 1493 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 1494 1495 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 1496 if (blks < 0) { 1497 struct super_block *sb = mpd->inode->i_sb; 1498 1499 err = blks; 1500 /* 1501 * If get block returns EAGAIN or ENOSPC and there 1502 * appears to be free blocks we will just let 1503 * mpage_da_submit_io() unlock all of the pages. 1504 */ 1505 if (err == -EAGAIN) 1506 goto submit_io; 1507 1508 if (err == -ENOSPC && ext4_count_free_clusters(sb)) { 1509 mpd->retval = err; 1510 goto submit_io; 1511 } 1512 1513 /* 1514 * get block failure will cause us to loop in 1515 * writepages, because a_ops->writepage won't be able 1516 * to make progress. The page will be redirtied by 1517 * writepage and writepages will again try to write 1518 * the same. 1519 */ 1520 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 1521 ext4_msg(sb, KERN_CRIT, 1522 "delayed block allocation failed for inode %lu " 1523 "at logical offset %llu with max blocks %zd " 1524 "with error %d", mpd->inode->i_ino, 1525 (unsigned long long) next, 1526 mpd->b_size >> mpd->inode->i_blkbits, err); 1527 ext4_msg(sb, KERN_CRIT, 1528 "This should not happen!! Data will be lost\n"); 1529 if (err == -ENOSPC) 1530 ext4_print_free_blocks(mpd->inode); 1531 } 1532 /* invalidate all the pages */ 1533 ext4_da_block_invalidatepages(mpd); 1534 1535 /* Mark this page range as having been completed */ 1536 mpd->io_done = 1; 1537 return; 1538 } 1539 BUG_ON(blks == 0); 1540 1541 mapp = ↦ 1542 if (map.m_flags & EXT4_MAP_NEW) { 1543 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 1544 int i; 1545 1546 for (i = 0; i < map.m_len; i++) 1547 unmap_underlying_metadata(bdev, map.m_pblk + i); 1548 1549 if (ext4_should_order_data(mpd->inode)) { 1550 err = ext4_jbd2_file_inode(handle, mpd->inode); 1551 if (err) 1552 /* Only if the journal is aborted */ 1553 return; 1554 } 1555 } 1556 1557 /* 1558 * Update on-disk size along with block allocation. 1559 */ 1560 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 1561 if (disksize > i_size_read(mpd->inode)) 1562 disksize = i_size_read(mpd->inode); 1563 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 1564 ext4_update_i_disksize(mpd->inode, disksize); 1565 err = ext4_mark_inode_dirty(handle, mpd->inode); 1566 if (err) 1567 ext4_error(mpd->inode->i_sb, 1568 "Failed to mark inode %lu dirty", 1569 mpd->inode->i_ino); 1570 } 1571 1572 submit_io: 1573 mpage_da_submit_io(mpd, mapp); 1574 mpd->io_done = 1; 1575 } 1576 1577 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1578 (1 << BH_Delay) | (1 << BH_Unwritten)) 1579 1580 /* 1581 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1582 * 1583 * @mpd->lbh - extent of blocks 1584 * @logical - logical number of the block in the file 1585 * @bh - bh of the block (used to access block's state) 1586 * 1587 * the function is used to collect contig. blocks in same state 1588 */ 1589 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 1590 sector_t logical, size_t b_size, 1591 unsigned long b_state) 1592 { 1593 sector_t next; 1594 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 1595 1596 /* 1597 * XXX Don't go larger than mballoc is willing to allocate 1598 * This is a stopgap solution. We eventually need to fold 1599 * mpage_da_submit_io() into this function and then call 1600 * ext4_map_blocks() multiple times in a loop 1601 */ 1602 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize) 1603 goto flush_it; 1604 1605 /* check if thereserved journal credits might overflow */ 1606 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) { 1607 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1608 /* 1609 * With non-extent format we are limited by the journal 1610 * credit available. Total credit needed to insert 1611 * nrblocks contiguous blocks is dependent on the 1612 * nrblocks. So limit nrblocks. 1613 */ 1614 goto flush_it; 1615 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 1616 EXT4_MAX_TRANS_DATA) { 1617 /* 1618 * Adding the new buffer_head would make it cross the 1619 * allowed limit for which we have journal credit 1620 * reserved. So limit the new bh->b_size 1621 */ 1622 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 1623 mpd->inode->i_blkbits; 1624 /* we will do mpage_da_submit_io in the next loop */ 1625 } 1626 } 1627 /* 1628 * First block in the extent 1629 */ 1630 if (mpd->b_size == 0) { 1631 mpd->b_blocknr = logical; 1632 mpd->b_size = b_size; 1633 mpd->b_state = b_state & BH_FLAGS; 1634 return; 1635 } 1636 1637 next = mpd->b_blocknr + nrblocks; 1638 /* 1639 * Can we merge the block to our big extent? 1640 */ 1641 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 1642 mpd->b_size += b_size; 1643 return; 1644 } 1645 1646 flush_it: 1647 /* 1648 * We couldn't merge the block to our extent, so we 1649 * need to flush current extent and start new one 1650 */ 1651 mpage_da_map_and_submit(mpd); 1652 return; 1653 } 1654 1655 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1656 { 1657 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1658 } 1659 1660 /* 1661 * This function is grabs code from the very beginning of 1662 * ext4_map_blocks, but assumes that the caller is from delayed write 1663 * time. This function looks up the requested blocks and sets the 1664 * buffer delay bit under the protection of i_data_sem. 1665 */ 1666 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1667 struct ext4_map_blocks *map, 1668 struct buffer_head *bh) 1669 { 1670 int retval; 1671 sector_t invalid_block = ~((sector_t) 0xffff); 1672 1673 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1674 invalid_block = ~0; 1675 1676 map->m_flags = 0; 1677 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1678 "logical block %lu\n", inode->i_ino, map->m_len, 1679 (unsigned long) map->m_lblk); 1680 /* 1681 * Try to see if we can get the block without requesting a new 1682 * file system block. 1683 */ 1684 down_read((&EXT4_I(inode)->i_data_sem)); 1685 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1686 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1687 else 1688 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1689 1690 if (retval == 0) { 1691 /* 1692 * XXX: __block_prepare_write() unmaps passed block, 1693 * is it OK? 1694 */ 1695 /* If the block was allocated from previously allocated cluster, 1696 * then we dont need to reserve it again. */ 1697 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1698 retval = ext4_da_reserve_space(inode, iblock); 1699 if (retval) 1700 /* not enough space to reserve */ 1701 goto out_unlock; 1702 } 1703 1704 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1705 * and it should not appear on the bh->b_state. 1706 */ 1707 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1708 1709 map_bh(bh, inode->i_sb, invalid_block); 1710 set_buffer_new(bh); 1711 set_buffer_delay(bh); 1712 } 1713 1714 out_unlock: 1715 up_read((&EXT4_I(inode)->i_data_sem)); 1716 1717 return retval; 1718 } 1719 1720 /* 1721 * This is a special get_blocks_t callback which is used by 1722 * ext4_da_write_begin(). It will either return mapped block or 1723 * reserve space for a single block. 1724 * 1725 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1726 * We also have b_blocknr = -1 and b_bdev initialized properly 1727 * 1728 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1729 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1730 * initialized properly. 1731 */ 1732 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1733 struct buffer_head *bh, int create) 1734 { 1735 struct ext4_map_blocks map; 1736 int ret = 0; 1737 1738 BUG_ON(create == 0); 1739 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1740 1741 map.m_lblk = iblock; 1742 map.m_len = 1; 1743 1744 /* 1745 * first, we need to know whether the block is allocated already 1746 * preallocated blocks are unmapped but should treated 1747 * the same as allocated blocks. 1748 */ 1749 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1750 if (ret <= 0) 1751 return ret; 1752 1753 map_bh(bh, inode->i_sb, map.m_pblk); 1754 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1755 1756 if (buffer_unwritten(bh)) { 1757 /* A delayed write to unwritten bh should be marked 1758 * new and mapped. Mapped ensures that we don't do 1759 * get_block multiple times when we write to the same 1760 * offset and new ensures that we do proper zero out 1761 * for partial write. 1762 */ 1763 set_buffer_new(bh); 1764 set_buffer_mapped(bh); 1765 } 1766 return 0; 1767 } 1768 1769 /* 1770 * This function is used as a standard get_block_t calback function 1771 * when there is no desire to allocate any blocks. It is used as a 1772 * callback function for block_write_begin() and block_write_full_page(). 1773 * These functions should only try to map a single block at a time. 1774 * 1775 * Since this function doesn't do block allocations even if the caller 1776 * requests it by passing in create=1, it is critically important that 1777 * any caller checks to make sure that any buffer heads are returned 1778 * by this function are either all already mapped or marked for 1779 * delayed allocation before calling block_write_full_page(). Otherwise, 1780 * b_blocknr could be left unitialized, and the page write functions will 1781 * be taken by surprise. 1782 */ 1783 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 1784 struct buffer_head *bh_result, int create) 1785 { 1786 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 1787 return _ext4_get_block(inode, iblock, bh_result, 0); 1788 } 1789 1790 static int bget_one(handle_t *handle, struct buffer_head *bh) 1791 { 1792 get_bh(bh); 1793 return 0; 1794 } 1795 1796 static int bput_one(handle_t *handle, struct buffer_head *bh) 1797 { 1798 put_bh(bh); 1799 return 0; 1800 } 1801 1802 static int __ext4_journalled_writepage(struct page *page, 1803 unsigned int len) 1804 { 1805 struct address_space *mapping = page->mapping; 1806 struct inode *inode = mapping->host; 1807 struct buffer_head *page_bufs; 1808 handle_t *handle = NULL; 1809 int ret = 0; 1810 int err; 1811 1812 ClearPageChecked(page); 1813 page_bufs = page_buffers(page); 1814 BUG_ON(!page_bufs); 1815 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 1816 /* As soon as we unlock the page, it can go away, but we have 1817 * references to buffers so we are safe */ 1818 unlock_page(page); 1819 1820 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1821 if (IS_ERR(handle)) { 1822 ret = PTR_ERR(handle); 1823 goto out; 1824 } 1825 1826 BUG_ON(!ext4_handle_valid(handle)); 1827 1828 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1829 do_journal_get_write_access); 1830 1831 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1832 write_end_fn); 1833 if (ret == 0) 1834 ret = err; 1835 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1836 err = ext4_journal_stop(handle); 1837 if (!ret) 1838 ret = err; 1839 1840 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 1841 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1842 out: 1843 return ret; 1844 } 1845 1846 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 1847 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 1848 1849 /* 1850 * Note that we don't need to start a transaction unless we're journaling data 1851 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1852 * need to file the inode to the transaction's list in ordered mode because if 1853 * we are writing back data added by write(), the inode is already there and if 1854 * we are writing back data modified via mmap(), no one guarantees in which 1855 * transaction the data will hit the disk. In case we are journaling data, we 1856 * cannot start transaction directly because transaction start ranks above page 1857 * lock so we have to do some magic. 1858 * 1859 * This function can get called via... 1860 * - ext4_da_writepages after taking page lock (have journal handle) 1861 * - journal_submit_inode_data_buffers (no journal handle) 1862 * - shrink_page_list via pdflush (no journal handle) 1863 * - grab_page_cache when doing write_begin (have journal handle) 1864 * 1865 * We don't do any block allocation in this function. If we have page with 1866 * multiple blocks we need to write those buffer_heads that are mapped. This 1867 * is important for mmaped based write. So if we do with blocksize 1K 1868 * truncate(f, 1024); 1869 * a = mmap(f, 0, 4096); 1870 * a[0] = 'a'; 1871 * truncate(f, 4096); 1872 * we have in the page first buffer_head mapped via page_mkwrite call back 1873 * but other bufer_heads would be unmapped but dirty(dirty done via the 1874 * do_wp_page). So writepage should write the first block. If we modify 1875 * the mmap area beyond 1024 we will again get a page_fault and the 1876 * page_mkwrite callback will do the block allocation and mark the 1877 * buffer_heads mapped. 1878 * 1879 * We redirty the page if we have any buffer_heads that is either delay or 1880 * unwritten in the page. 1881 * 1882 * We can get recursively called as show below. 1883 * 1884 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1885 * ext4_writepage() 1886 * 1887 * But since we don't do any block allocation we should not deadlock. 1888 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1889 */ 1890 static int ext4_writepage(struct page *page, 1891 struct writeback_control *wbc) 1892 { 1893 int ret = 0, commit_write = 0; 1894 loff_t size; 1895 unsigned int len; 1896 struct buffer_head *page_bufs = NULL; 1897 struct inode *inode = page->mapping->host; 1898 1899 trace_ext4_writepage(page); 1900 size = i_size_read(inode); 1901 if (page->index == size >> PAGE_CACHE_SHIFT) 1902 len = size & ~PAGE_CACHE_MASK; 1903 else 1904 len = PAGE_CACHE_SIZE; 1905 1906 /* 1907 * If the page does not have buffers (for whatever reason), 1908 * try to create them using __block_write_begin. If this 1909 * fails, redirty the page and move on. 1910 */ 1911 if (!page_has_buffers(page)) { 1912 if (__block_write_begin(page, 0, len, 1913 noalloc_get_block_write)) { 1914 redirty_page: 1915 redirty_page_for_writepage(wbc, page); 1916 unlock_page(page); 1917 return 0; 1918 } 1919 commit_write = 1; 1920 } 1921 page_bufs = page_buffers(page); 1922 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1923 ext4_bh_delay_or_unwritten)) { 1924 /* 1925 * We don't want to do block allocation, so redirty 1926 * the page and return. We may reach here when we do 1927 * a journal commit via journal_submit_inode_data_buffers. 1928 * We can also reach here via shrink_page_list 1929 */ 1930 goto redirty_page; 1931 } 1932 if (commit_write) 1933 /* now mark the buffer_heads as dirty and uptodate */ 1934 block_commit_write(page, 0, len); 1935 1936 if (PageChecked(page) && ext4_should_journal_data(inode)) 1937 /* 1938 * It's mmapped pagecache. Add buffers and journal it. There 1939 * doesn't seem much point in redirtying the page here. 1940 */ 1941 return __ext4_journalled_writepage(page, len); 1942 1943 if (buffer_uninit(page_bufs)) { 1944 ext4_set_bh_endio(page_bufs, inode); 1945 ret = block_write_full_page_endio(page, noalloc_get_block_write, 1946 wbc, ext4_end_io_buffer_write); 1947 } else 1948 ret = block_write_full_page(page, noalloc_get_block_write, 1949 wbc); 1950 1951 return ret; 1952 } 1953 1954 /* 1955 * This is called via ext4_da_writepages() to 1956 * calculate the total number of credits to reserve to fit 1957 * a single extent allocation into a single transaction, 1958 * ext4_da_writpeages() will loop calling this before 1959 * the block allocation. 1960 */ 1961 1962 static int ext4_da_writepages_trans_blocks(struct inode *inode) 1963 { 1964 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 1965 1966 /* 1967 * With non-extent format the journal credit needed to 1968 * insert nrblocks contiguous block is dependent on 1969 * number of contiguous block. So we will limit 1970 * number of contiguous block to a sane value 1971 */ 1972 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 1973 (max_blocks > EXT4_MAX_TRANS_DATA)) 1974 max_blocks = EXT4_MAX_TRANS_DATA; 1975 1976 return ext4_chunk_trans_blocks(inode, max_blocks); 1977 } 1978 1979 /* 1980 * write_cache_pages_da - walk the list of dirty pages of the given 1981 * address space and accumulate pages that need writing, and call 1982 * mpage_da_map_and_submit to map a single contiguous memory region 1983 * and then write them. 1984 */ 1985 static int write_cache_pages_da(struct address_space *mapping, 1986 struct writeback_control *wbc, 1987 struct mpage_da_data *mpd, 1988 pgoff_t *done_index) 1989 { 1990 struct buffer_head *bh, *head; 1991 struct inode *inode = mapping->host; 1992 struct pagevec pvec; 1993 unsigned int nr_pages; 1994 sector_t logical; 1995 pgoff_t index, end; 1996 long nr_to_write = wbc->nr_to_write; 1997 int i, tag, ret = 0; 1998 1999 memset(mpd, 0, sizeof(struct mpage_da_data)); 2000 mpd->wbc = wbc; 2001 mpd->inode = inode; 2002 pagevec_init(&pvec, 0); 2003 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2004 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2005 2006 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2007 tag = PAGECACHE_TAG_TOWRITE; 2008 else 2009 tag = PAGECACHE_TAG_DIRTY; 2010 2011 *done_index = index; 2012 while (index <= end) { 2013 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2014 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2015 if (nr_pages == 0) 2016 return 0; 2017 2018 for (i = 0; i < nr_pages; i++) { 2019 struct page *page = pvec.pages[i]; 2020 2021 /* 2022 * At this point, the page may be truncated or 2023 * invalidated (changing page->mapping to NULL), or 2024 * even swizzled back from swapper_space to tmpfs file 2025 * mapping. However, page->index will not change 2026 * because we have a reference on the page. 2027 */ 2028 if (page->index > end) 2029 goto out; 2030 2031 *done_index = page->index + 1; 2032 2033 /* 2034 * If we can't merge this page, and we have 2035 * accumulated an contiguous region, write it 2036 */ 2037 if ((mpd->next_page != page->index) && 2038 (mpd->next_page != mpd->first_page)) { 2039 mpage_da_map_and_submit(mpd); 2040 goto ret_extent_tail; 2041 } 2042 2043 lock_page(page); 2044 2045 /* 2046 * If the page is no longer dirty, or its 2047 * mapping no longer corresponds to inode we 2048 * are writing (which means it has been 2049 * truncated or invalidated), or the page is 2050 * already under writeback and we are not 2051 * doing a data integrity writeback, skip the page 2052 */ 2053 if (!PageDirty(page) || 2054 (PageWriteback(page) && 2055 (wbc->sync_mode == WB_SYNC_NONE)) || 2056 unlikely(page->mapping != mapping)) { 2057 unlock_page(page); 2058 continue; 2059 } 2060 2061 wait_on_page_writeback(page); 2062 BUG_ON(PageWriteback(page)); 2063 2064 if (mpd->next_page != page->index) 2065 mpd->first_page = page->index; 2066 mpd->next_page = page->index + 1; 2067 logical = (sector_t) page->index << 2068 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2069 2070 if (!page_has_buffers(page)) { 2071 mpage_add_bh_to_extent(mpd, logical, 2072 PAGE_CACHE_SIZE, 2073 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2074 if (mpd->io_done) 2075 goto ret_extent_tail; 2076 } else { 2077 /* 2078 * Page with regular buffer heads, 2079 * just add all dirty ones 2080 */ 2081 head = page_buffers(page); 2082 bh = head; 2083 do { 2084 BUG_ON(buffer_locked(bh)); 2085 /* 2086 * We need to try to allocate 2087 * unmapped blocks in the same page. 2088 * Otherwise we won't make progress 2089 * with the page in ext4_writepage 2090 */ 2091 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2092 mpage_add_bh_to_extent(mpd, logical, 2093 bh->b_size, 2094 bh->b_state); 2095 if (mpd->io_done) 2096 goto ret_extent_tail; 2097 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 2098 /* 2099 * mapped dirty buffer. We need 2100 * to update the b_state 2101 * because we look at b_state 2102 * in mpage_da_map_blocks. We 2103 * don't update b_size because 2104 * if we find an unmapped 2105 * buffer_head later we need to 2106 * use the b_state flag of that 2107 * buffer_head. 2108 */ 2109 if (mpd->b_size == 0) 2110 mpd->b_state = bh->b_state & BH_FLAGS; 2111 } 2112 logical++; 2113 } while ((bh = bh->b_this_page) != head); 2114 } 2115 2116 if (nr_to_write > 0) { 2117 nr_to_write--; 2118 if (nr_to_write == 0 && 2119 wbc->sync_mode == WB_SYNC_NONE) 2120 /* 2121 * We stop writing back only if we are 2122 * not doing integrity sync. In case of 2123 * integrity sync we have to keep going 2124 * because someone may be concurrently 2125 * dirtying pages, and we might have 2126 * synced a lot of newly appeared dirty 2127 * pages, but have not synced all of the 2128 * old dirty pages. 2129 */ 2130 goto out; 2131 } 2132 } 2133 pagevec_release(&pvec); 2134 cond_resched(); 2135 } 2136 return 0; 2137 ret_extent_tail: 2138 ret = MPAGE_DA_EXTENT_TAIL; 2139 out: 2140 pagevec_release(&pvec); 2141 cond_resched(); 2142 return ret; 2143 } 2144 2145 2146 static int ext4_da_writepages(struct address_space *mapping, 2147 struct writeback_control *wbc) 2148 { 2149 pgoff_t index; 2150 int range_whole = 0; 2151 handle_t *handle = NULL; 2152 struct mpage_da_data mpd; 2153 struct inode *inode = mapping->host; 2154 int pages_written = 0; 2155 unsigned int max_pages; 2156 int range_cyclic, cycled = 1, io_done = 0; 2157 int needed_blocks, ret = 0; 2158 long desired_nr_to_write, nr_to_writebump = 0; 2159 loff_t range_start = wbc->range_start; 2160 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2161 pgoff_t done_index = 0; 2162 pgoff_t end; 2163 struct blk_plug plug; 2164 2165 trace_ext4_da_writepages(inode, wbc); 2166 2167 /* 2168 * No pages to write? This is mainly a kludge to avoid starting 2169 * a transaction for special inodes like journal inode on last iput() 2170 * because that could violate lock ordering on umount 2171 */ 2172 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2173 return 0; 2174 2175 /* 2176 * If the filesystem has aborted, it is read-only, so return 2177 * right away instead of dumping stack traces later on that 2178 * will obscure the real source of the problem. We test 2179 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2180 * the latter could be true if the filesystem is mounted 2181 * read-only, and in that case, ext4_da_writepages should 2182 * *never* be called, so if that ever happens, we would want 2183 * the stack trace. 2184 */ 2185 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2186 return -EROFS; 2187 2188 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2189 range_whole = 1; 2190 2191 range_cyclic = wbc->range_cyclic; 2192 if (wbc->range_cyclic) { 2193 index = mapping->writeback_index; 2194 if (index) 2195 cycled = 0; 2196 wbc->range_start = index << PAGE_CACHE_SHIFT; 2197 wbc->range_end = LLONG_MAX; 2198 wbc->range_cyclic = 0; 2199 end = -1; 2200 } else { 2201 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2202 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2203 } 2204 2205 /* 2206 * This works around two forms of stupidity. The first is in 2207 * the writeback code, which caps the maximum number of pages 2208 * written to be 1024 pages. This is wrong on multiple 2209 * levels; different architectues have a different page size, 2210 * which changes the maximum amount of data which gets 2211 * written. Secondly, 4 megabytes is way too small. XFS 2212 * forces this value to be 16 megabytes by multiplying 2213 * nr_to_write parameter by four, and then relies on its 2214 * allocator to allocate larger extents to make them 2215 * contiguous. Unfortunately this brings us to the second 2216 * stupidity, which is that ext4's mballoc code only allocates 2217 * at most 2048 blocks. So we force contiguous writes up to 2218 * the number of dirty blocks in the inode, or 2219 * sbi->max_writeback_mb_bump whichever is smaller. 2220 */ 2221 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2222 if (!range_cyclic && range_whole) { 2223 if (wbc->nr_to_write == LONG_MAX) 2224 desired_nr_to_write = wbc->nr_to_write; 2225 else 2226 desired_nr_to_write = wbc->nr_to_write * 8; 2227 } else 2228 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2229 max_pages); 2230 if (desired_nr_to_write > max_pages) 2231 desired_nr_to_write = max_pages; 2232 2233 if (wbc->nr_to_write < desired_nr_to_write) { 2234 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2235 wbc->nr_to_write = desired_nr_to_write; 2236 } 2237 2238 retry: 2239 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2240 tag_pages_for_writeback(mapping, index, end); 2241 2242 blk_start_plug(&plug); 2243 while (!ret && wbc->nr_to_write > 0) { 2244 2245 /* 2246 * we insert one extent at a time. So we need 2247 * credit needed for single extent allocation. 2248 * journalled mode is currently not supported 2249 * by delalloc 2250 */ 2251 BUG_ON(ext4_should_journal_data(inode)); 2252 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2253 2254 /* start a new transaction*/ 2255 handle = ext4_journal_start(inode, needed_blocks); 2256 if (IS_ERR(handle)) { 2257 ret = PTR_ERR(handle); 2258 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2259 "%ld pages, ino %lu; err %d", __func__, 2260 wbc->nr_to_write, inode->i_ino, ret); 2261 goto out_writepages; 2262 } 2263 2264 /* 2265 * Now call write_cache_pages_da() to find the next 2266 * contiguous region of logical blocks that need 2267 * blocks to be allocated by ext4 and submit them. 2268 */ 2269 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index); 2270 /* 2271 * If we have a contiguous extent of pages and we 2272 * haven't done the I/O yet, map the blocks and submit 2273 * them for I/O. 2274 */ 2275 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2276 mpage_da_map_and_submit(&mpd); 2277 ret = MPAGE_DA_EXTENT_TAIL; 2278 } 2279 trace_ext4_da_write_pages(inode, &mpd); 2280 wbc->nr_to_write -= mpd.pages_written; 2281 2282 ext4_journal_stop(handle); 2283 2284 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2285 /* commit the transaction which would 2286 * free blocks released in the transaction 2287 * and try again 2288 */ 2289 jbd2_journal_force_commit_nested(sbi->s_journal); 2290 ret = 0; 2291 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2292 /* 2293 * got one extent now try with 2294 * rest of the pages 2295 */ 2296 pages_written += mpd.pages_written; 2297 ret = 0; 2298 io_done = 1; 2299 } else if (wbc->nr_to_write) 2300 /* 2301 * There is no more writeout needed 2302 * or we requested for a noblocking writeout 2303 * and we found the device congested 2304 */ 2305 break; 2306 } 2307 blk_finish_plug(&plug); 2308 if (!io_done && !cycled) { 2309 cycled = 1; 2310 index = 0; 2311 wbc->range_start = index << PAGE_CACHE_SHIFT; 2312 wbc->range_end = mapping->writeback_index - 1; 2313 goto retry; 2314 } 2315 2316 /* Update index */ 2317 wbc->range_cyclic = range_cyclic; 2318 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2319 /* 2320 * set the writeback_index so that range_cyclic 2321 * mode will write it back later 2322 */ 2323 mapping->writeback_index = done_index; 2324 2325 out_writepages: 2326 wbc->nr_to_write -= nr_to_writebump; 2327 wbc->range_start = range_start; 2328 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 2329 return ret; 2330 } 2331 2332 #define FALL_BACK_TO_NONDELALLOC 1 2333 static int ext4_nonda_switch(struct super_block *sb) 2334 { 2335 s64 free_blocks, dirty_blocks; 2336 struct ext4_sb_info *sbi = EXT4_SB(sb); 2337 2338 /* 2339 * switch to non delalloc mode if we are running low 2340 * on free block. The free block accounting via percpu 2341 * counters can get slightly wrong with percpu_counter_batch getting 2342 * accumulated on each CPU without updating global counters 2343 * Delalloc need an accurate free block accounting. So switch 2344 * to non delalloc when we are near to error range. 2345 */ 2346 free_blocks = EXT4_C2B(sbi, 2347 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 2348 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2349 if (2 * free_blocks < 3 * dirty_blocks || 2350 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) { 2351 /* 2352 * free block count is less than 150% of dirty blocks 2353 * or free blocks is less than watermark 2354 */ 2355 return 1; 2356 } 2357 /* 2358 * Even if we don't switch but are nearing capacity, 2359 * start pushing delalloc when 1/2 of free blocks are dirty. 2360 */ 2361 if (free_blocks < 2 * dirty_blocks) 2362 writeback_inodes_sb_if_idle(sb); 2363 2364 return 0; 2365 } 2366 2367 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2368 loff_t pos, unsigned len, unsigned flags, 2369 struct page **pagep, void **fsdata) 2370 { 2371 int ret, retries = 0; 2372 struct page *page; 2373 pgoff_t index; 2374 struct inode *inode = mapping->host; 2375 handle_t *handle; 2376 loff_t page_len; 2377 2378 index = pos >> PAGE_CACHE_SHIFT; 2379 2380 if (ext4_nonda_switch(inode->i_sb)) { 2381 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2382 return ext4_write_begin(file, mapping, pos, 2383 len, flags, pagep, fsdata); 2384 } 2385 *fsdata = (void *)0; 2386 trace_ext4_da_write_begin(inode, pos, len, flags); 2387 retry: 2388 /* 2389 * With delayed allocation, we don't log the i_disksize update 2390 * if there is delayed block allocation. But we still need 2391 * to journalling the i_disksize update if writes to the end 2392 * of file which has an already mapped buffer. 2393 */ 2394 handle = ext4_journal_start(inode, 1); 2395 if (IS_ERR(handle)) { 2396 ret = PTR_ERR(handle); 2397 goto out; 2398 } 2399 /* We cannot recurse into the filesystem as the transaction is already 2400 * started */ 2401 flags |= AOP_FLAG_NOFS; 2402 2403 page = grab_cache_page_write_begin(mapping, index, flags); 2404 if (!page) { 2405 ext4_journal_stop(handle); 2406 ret = -ENOMEM; 2407 goto out; 2408 } 2409 *pagep = page; 2410 2411 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2412 if (ret < 0) { 2413 unlock_page(page); 2414 ext4_journal_stop(handle); 2415 page_cache_release(page); 2416 /* 2417 * block_write_begin may have instantiated a few blocks 2418 * outside i_size. Trim these off again. Don't need 2419 * i_size_read because we hold i_mutex. 2420 */ 2421 if (pos + len > inode->i_size) 2422 ext4_truncate_failed_write(inode); 2423 } else { 2424 page_len = pos & (PAGE_CACHE_SIZE - 1); 2425 if (page_len > 0) { 2426 ret = ext4_discard_partial_page_buffers_no_lock(handle, 2427 inode, page, pos - page_len, page_len, 2428 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED); 2429 } 2430 } 2431 2432 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 2433 goto retry; 2434 out: 2435 return ret; 2436 } 2437 2438 /* 2439 * Check if we should update i_disksize 2440 * when write to the end of file but not require block allocation 2441 */ 2442 static int ext4_da_should_update_i_disksize(struct page *page, 2443 unsigned long offset) 2444 { 2445 struct buffer_head *bh; 2446 struct inode *inode = page->mapping->host; 2447 unsigned int idx; 2448 int i; 2449 2450 bh = page_buffers(page); 2451 idx = offset >> inode->i_blkbits; 2452 2453 for (i = 0; i < idx; i++) 2454 bh = bh->b_this_page; 2455 2456 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2457 return 0; 2458 return 1; 2459 } 2460 2461 static int ext4_da_write_end(struct file *file, 2462 struct address_space *mapping, 2463 loff_t pos, unsigned len, unsigned copied, 2464 struct page *page, void *fsdata) 2465 { 2466 struct inode *inode = mapping->host; 2467 int ret = 0, ret2; 2468 handle_t *handle = ext4_journal_current_handle(); 2469 loff_t new_i_size; 2470 unsigned long start, end; 2471 int write_mode = (int)(unsigned long)fsdata; 2472 loff_t page_len; 2473 2474 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 2475 if (ext4_should_order_data(inode)) { 2476 return ext4_ordered_write_end(file, mapping, pos, 2477 len, copied, page, fsdata); 2478 } else if (ext4_should_writeback_data(inode)) { 2479 return ext4_writeback_write_end(file, mapping, pos, 2480 len, copied, page, fsdata); 2481 } else { 2482 BUG(); 2483 } 2484 } 2485 2486 trace_ext4_da_write_end(inode, pos, len, copied); 2487 start = pos & (PAGE_CACHE_SIZE - 1); 2488 end = start + copied - 1; 2489 2490 /* 2491 * generic_write_end() will run mark_inode_dirty() if i_size 2492 * changes. So let's piggyback the i_disksize mark_inode_dirty 2493 * into that. 2494 */ 2495 2496 new_i_size = pos + copied; 2497 if (new_i_size > EXT4_I(inode)->i_disksize) { 2498 if (ext4_da_should_update_i_disksize(page, end)) { 2499 down_write(&EXT4_I(inode)->i_data_sem); 2500 if (new_i_size > EXT4_I(inode)->i_disksize) { 2501 /* 2502 * Updating i_disksize when extending file 2503 * without needing block allocation 2504 */ 2505 if (ext4_should_order_data(inode)) 2506 ret = ext4_jbd2_file_inode(handle, 2507 inode); 2508 2509 EXT4_I(inode)->i_disksize = new_i_size; 2510 } 2511 up_write(&EXT4_I(inode)->i_data_sem); 2512 /* We need to mark inode dirty even if 2513 * new_i_size is less that inode->i_size 2514 * bu greater than i_disksize.(hint delalloc) 2515 */ 2516 ext4_mark_inode_dirty(handle, inode); 2517 } 2518 } 2519 ret2 = generic_write_end(file, mapping, pos, len, copied, 2520 page, fsdata); 2521 2522 page_len = PAGE_CACHE_SIZE - 2523 ((pos + copied - 1) & (PAGE_CACHE_SIZE - 1)); 2524 2525 if (page_len > 0) { 2526 ret = ext4_discard_partial_page_buffers_no_lock(handle, 2527 inode, page, pos + copied - 1, page_len, 2528 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED); 2529 } 2530 2531 copied = ret2; 2532 if (ret2 < 0) 2533 ret = ret2; 2534 ret2 = ext4_journal_stop(handle); 2535 if (!ret) 2536 ret = ret2; 2537 2538 return ret ? ret : copied; 2539 } 2540 2541 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2542 { 2543 /* 2544 * Drop reserved blocks 2545 */ 2546 BUG_ON(!PageLocked(page)); 2547 if (!page_has_buffers(page)) 2548 goto out; 2549 2550 ext4_da_page_release_reservation(page, offset); 2551 2552 out: 2553 ext4_invalidatepage(page, offset); 2554 2555 return; 2556 } 2557 2558 /* 2559 * Force all delayed allocation blocks to be allocated for a given inode. 2560 */ 2561 int ext4_alloc_da_blocks(struct inode *inode) 2562 { 2563 trace_ext4_alloc_da_blocks(inode); 2564 2565 if (!EXT4_I(inode)->i_reserved_data_blocks && 2566 !EXT4_I(inode)->i_reserved_meta_blocks) 2567 return 0; 2568 2569 /* 2570 * We do something simple for now. The filemap_flush() will 2571 * also start triggering a write of the data blocks, which is 2572 * not strictly speaking necessary (and for users of 2573 * laptop_mode, not even desirable). However, to do otherwise 2574 * would require replicating code paths in: 2575 * 2576 * ext4_da_writepages() -> 2577 * write_cache_pages() ---> (via passed in callback function) 2578 * __mpage_da_writepage() --> 2579 * mpage_add_bh_to_extent() 2580 * mpage_da_map_blocks() 2581 * 2582 * The problem is that write_cache_pages(), located in 2583 * mm/page-writeback.c, marks pages clean in preparation for 2584 * doing I/O, which is not desirable if we're not planning on 2585 * doing I/O at all. 2586 * 2587 * We could call write_cache_pages(), and then redirty all of 2588 * the pages by calling redirty_page_for_writepage() but that 2589 * would be ugly in the extreme. So instead we would need to 2590 * replicate parts of the code in the above functions, 2591 * simplifying them because we wouldn't actually intend to 2592 * write out the pages, but rather only collect contiguous 2593 * logical block extents, call the multi-block allocator, and 2594 * then update the buffer heads with the block allocations. 2595 * 2596 * For now, though, we'll cheat by calling filemap_flush(), 2597 * which will map the blocks, and start the I/O, but not 2598 * actually wait for the I/O to complete. 2599 */ 2600 return filemap_flush(inode->i_mapping); 2601 } 2602 2603 /* 2604 * bmap() is special. It gets used by applications such as lilo and by 2605 * the swapper to find the on-disk block of a specific piece of data. 2606 * 2607 * Naturally, this is dangerous if the block concerned is still in the 2608 * journal. If somebody makes a swapfile on an ext4 data-journaling 2609 * filesystem and enables swap, then they may get a nasty shock when the 2610 * data getting swapped to that swapfile suddenly gets overwritten by 2611 * the original zero's written out previously to the journal and 2612 * awaiting writeback in the kernel's buffer cache. 2613 * 2614 * So, if we see any bmap calls here on a modified, data-journaled file, 2615 * take extra steps to flush any blocks which might be in the cache. 2616 */ 2617 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2618 { 2619 struct inode *inode = mapping->host; 2620 journal_t *journal; 2621 int err; 2622 2623 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2624 test_opt(inode->i_sb, DELALLOC)) { 2625 /* 2626 * With delalloc we want to sync the file 2627 * so that we can make sure we allocate 2628 * blocks for file 2629 */ 2630 filemap_write_and_wait(mapping); 2631 } 2632 2633 if (EXT4_JOURNAL(inode) && 2634 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2635 /* 2636 * This is a REALLY heavyweight approach, but the use of 2637 * bmap on dirty files is expected to be extremely rare: 2638 * only if we run lilo or swapon on a freshly made file 2639 * do we expect this to happen. 2640 * 2641 * (bmap requires CAP_SYS_RAWIO so this does not 2642 * represent an unprivileged user DOS attack --- we'd be 2643 * in trouble if mortal users could trigger this path at 2644 * will.) 2645 * 2646 * NB. EXT4_STATE_JDATA is not set on files other than 2647 * regular files. If somebody wants to bmap a directory 2648 * or symlink and gets confused because the buffer 2649 * hasn't yet been flushed to disk, they deserve 2650 * everything they get. 2651 */ 2652 2653 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2654 journal = EXT4_JOURNAL(inode); 2655 jbd2_journal_lock_updates(journal); 2656 err = jbd2_journal_flush(journal); 2657 jbd2_journal_unlock_updates(journal); 2658 2659 if (err) 2660 return 0; 2661 } 2662 2663 return generic_block_bmap(mapping, block, ext4_get_block); 2664 } 2665 2666 static int ext4_readpage(struct file *file, struct page *page) 2667 { 2668 trace_ext4_readpage(page); 2669 return mpage_readpage(page, ext4_get_block); 2670 } 2671 2672 static int 2673 ext4_readpages(struct file *file, struct address_space *mapping, 2674 struct list_head *pages, unsigned nr_pages) 2675 { 2676 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2677 } 2678 2679 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset) 2680 { 2681 struct buffer_head *head, *bh; 2682 unsigned int curr_off = 0; 2683 2684 if (!page_has_buffers(page)) 2685 return; 2686 head = bh = page_buffers(page); 2687 do { 2688 if (offset <= curr_off && test_clear_buffer_uninit(bh) 2689 && bh->b_private) { 2690 ext4_free_io_end(bh->b_private); 2691 bh->b_private = NULL; 2692 bh->b_end_io = NULL; 2693 } 2694 curr_off = curr_off + bh->b_size; 2695 bh = bh->b_this_page; 2696 } while (bh != head); 2697 } 2698 2699 static void ext4_invalidatepage(struct page *page, unsigned long offset) 2700 { 2701 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2702 2703 trace_ext4_invalidatepage(page, offset); 2704 2705 /* 2706 * free any io_end structure allocated for buffers to be discarded 2707 */ 2708 if (ext4_should_dioread_nolock(page->mapping->host)) 2709 ext4_invalidatepage_free_endio(page, offset); 2710 /* 2711 * If it's a full truncate we just forget about the pending dirtying 2712 */ 2713 if (offset == 0) 2714 ClearPageChecked(page); 2715 2716 if (journal) 2717 jbd2_journal_invalidatepage(journal, page, offset); 2718 else 2719 block_invalidatepage(page, offset); 2720 } 2721 2722 static int ext4_releasepage(struct page *page, gfp_t wait) 2723 { 2724 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2725 2726 trace_ext4_releasepage(page); 2727 2728 WARN_ON(PageChecked(page)); 2729 if (!page_has_buffers(page)) 2730 return 0; 2731 if (journal) 2732 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2733 else 2734 return try_to_free_buffers(page); 2735 } 2736 2737 /* 2738 * ext4_get_block used when preparing for a DIO write or buffer write. 2739 * We allocate an uinitialized extent if blocks haven't been allocated. 2740 * The extent will be converted to initialized after the IO is complete. 2741 */ 2742 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 2743 struct buffer_head *bh_result, int create) 2744 { 2745 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 2746 inode->i_ino, create); 2747 return _ext4_get_block(inode, iblock, bh_result, 2748 EXT4_GET_BLOCKS_IO_CREATE_EXT); 2749 } 2750 2751 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 2752 ssize_t size, void *private, int ret, 2753 bool is_async) 2754 { 2755 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; 2756 ext4_io_end_t *io_end = iocb->private; 2757 struct workqueue_struct *wq; 2758 unsigned long flags; 2759 struct ext4_inode_info *ei; 2760 2761 /* if not async direct IO or dio with 0 bytes write, just return */ 2762 if (!io_end || !size) 2763 goto out; 2764 2765 ext_debug("ext4_end_io_dio(): io_end 0x%p" 2766 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n", 2767 iocb->private, io_end->inode->i_ino, iocb, offset, 2768 size); 2769 2770 /* if not aio dio with unwritten extents, just free io and return */ 2771 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { 2772 ext4_free_io_end(io_end); 2773 iocb->private = NULL; 2774 out: 2775 if (is_async) 2776 aio_complete(iocb, ret, 0); 2777 inode_dio_done(inode); 2778 return; 2779 } 2780 2781 io_end->offset = offset; 2782 io_end->size = size; 2783 if (is_async) { 2784 io_end->iocb = iocb; 2785 io_end->result = ret; 2786 } 2787 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 2788 2789 /* Add the io_end to per-inode completed aio dio list*/ 2790 ei = EXT4_I(io_end->inode); 2791 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 2792 list_add_tail(&io_end->list, &ei->i_completed_io_list); 2793 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 2794 2795 /* queue the work to convert unwritten extents to written */ 2796 queue_work(wq, &io_end->work); 2797 iocb->private = NULL; 2798 2799 /* XXX: probably should move into the real I/O completion handler */ 2800 inode_dio_done(inode); 2801 } 2802 2803 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate) 2804 { 2805 ext4_io_end_t *io_end = bh->b_private; 2806 struct workqueue_struct *wq; 2807 struct inode *inode; 2808 unsigned long flags; 2809 2810 if (!test_clear_buffer_uninit(bh) || !io_end) 2811 goto out; 2812 2813 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) { 2814 printk("sb umounted, discard end_io request for inode %lu\n", 2815 io_end->inode->i_ino); 2816 ext4_free_io_end(io_end); 2817 goto out; 2818 } 2819 2820 /* 2821 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now, 2822 * but being more careful is always safe for the future change. 2823 */ 2824 inode = io_end->inode; 2825 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { 2826 io_end->flag |= EXT4_IO_END_UNWRITTEN; 2827 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten); 2828 } 2829 2830 /* Add the io_end to per-inode completed io list*/ 2831 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); 2832 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list); 2833 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); 2834 2835 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq; 2836 /* queue the work to convert unwritten extents to written */ 2837 queue_work(wq, &io_end->work); 2838 out: 2839 bh->b_private = NULL; 2840 bh->b_end_io = NULL; 2841 clear_buffer_uninit(bh); 2842 end_buffer_async_write(bh, uptodate); 2843 } 2844 2845 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode) 2846 { 2847 ext4_io_end_t *io_end; 2848 struct page *page = bh->b_page; 2849 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT; 2850 size_t size = bh->b_size; 2851 2852 retry: 2853 io_end = ext4_init_io_end(inode, GFP_ATOMIC); 2854 if (!io_end) { 2855 pr_warn_ratelimited("%s: allocation fail\n", __func__); 2856 schedule(); 2857 goto retry; 2858 } 2859 io_end->offset = offset; 2860 io_end->size = size; 2861 /* 2862 * We need to hold a reference to the page to make sure it 2863 * doesn't get evicted before ext4_end_io_work() has a chance 2864 * to convert the extent from written to unwritten. 2865 */ 2866 io_end->page = page; 2867 get_page(io_end->page); 2868 2869 bh->b_private = io_end; 2870 bh->b_end_io = ext4_end_io_buffer_write; 2871 return 0; 2872 } 2873 2874 /* 2875 * For ext4 extent files, ext4 will do direct-io write to holes, 2876 * preallocated extents, and those write extend the file, no need to 2877 * fall back to buffered IO. 2878 * 2879 * For holes, we fallocate those blocks, mark them as uninitialized 2880 * If those blocks were preallocated, we mark sure they are splited, but 2881 * still keep the range to write as uninitialized. 2882 * 2883 * The unwrritten extents will be converted to written when DIO is completed. 2884 * For async direct IO, since the IO may still pending when return, we 2885 * set up an end_io call back function, which will do the conversion 2886 * when async direct IO completed. 2887 * 2888 * If the O_DIRECT write will extend the file then add this inode to the 2889 * orphan list. So recovery will truncate it back to the original size 2890 * if the machine crashes during the write. 2891 * 2892 */ 2893 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 2894 const struct iovec *iov, loff_t offset, 2895 unsigned long nr_segs) 2896 { 2897 struct file *file = iocb->ki_filp; 2898 struct inode *inode = file->f_mapping->host; 2899 ssize_t ret; 2900 size_t count = iov_length(iov, nr_segs); 2901 2902 loff_t final_size = offset + count; 2903 if (rw == WRITE && final_size <= inode->i_size) { 2904 /* 2905 * We could direct write to holes and fallocate. 2906 * 2907 * Allocated blocks to fill the hole are marked as uninitialized 2908 * to prevent parallel buffered read to expose the stale data 2909 * before DIO complete the data IO. 2910 * 2911 * As to previously fallocated extents, ext4 get_block 2912 * will just simply mark the buffer mapped but still 2913 * keep the extents uninitialized. 2914 * 2915 * for non AIO case, we will convert those unwritten extents 2916 * to written after return back from blockdev_direct_IO. 2917 * 2918 * for async DIO, the conversion needs to be defered when 2919 * the IO is completed. The ext4 end_io callback function 2920 * will be called to take care of the conversion work. 2921 * Here for async case, we allocate an io_end structure to 2922 * hook to the iocb. 2923 */ 2924 iocb->private = NULL; 2925 EXT4_I(inode)->cur_aio_dio = NULL; 2926 if (!is_sync_kiocb(iocb)) { 2927 iocb->private = ext4_init_io_end(inode, GFP_NOFS); 2928 if (!iocb->private) 2929 return -ENOMEM; 2930 /* 2931 * we save the io structure for current async 2932 * direct IO, so that later ext4_map_blocks() 2933 * could flag the io structure whether there 2934 * is a unwritten extents needs to be converted 2935 * when IO is completed. 2936 */ 2937 EXT4_I(inode)->cur_aio_dio = iocb->private; 2938 } 2939 2940 ret = __blockdev_direct_IO(rw, iocb, inode, 2941 inode->i_sb->s_bdev, iov, 2942 offset, nr_segs, 2943 ext4_get_block_write, 2944 ext4_end_io_dio, 2945 NULL, 2946 DIO_LOCKING | DIO_SKIP_HOLES); 2947 if (iocb->private) 2948 EXT4_I(inode)->cur_aio_dio = NULL; 2949 /* 2950 * The io_end structure takes a reference to the inode, 2951 * that structure needs to be destroyed and the 2952 * reference to the inode need to be dropped, when IO is 2953 * complete, even with 0 byte write, or failed. 2954 * 2955 * In the successful AIO DIO case, the io_end structure will be 2956 * desctroyed and the reference to the inode will be dropped 2957 * after the end_io call back function is called. 2958 * 2959 * In the case there is 0 byte write, or error case, since 2960 * VFS direct IO won't invoke the end_io call back function, 2961 * we need to free the end_io structure here. 2962 */ 2963 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 2964 ext4_free_io_end(iocb->private); 2965 iocb->private = NULL; 2966 } else if (ret > 0 && ext4_test_inode_state(inode, 2967 EXT4_STATE_DIO_UNWRITTEN)) { 2968 int err; 2969 /* 2970 * for non AIO case, since the IO is already 2971 * completed, we could do the conversion right here 2972 */ 2973 err = ext4_convert_unwritten_extents(inode, 2974 offset, ret); 2975 if (err < 0) 2976 ret = err; 2977 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 2978 } 2979 return ret; 2980 } 2981 2982 /* for write the the end of file case, we fall back to old way */ 2983 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 2984 } 2985 2986 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 2987 const struct iovec *iov, loff_t offset, 2988 unsigned long nr_segs) 2989 { 2990 struct file *file = iocb->ki_filp; 2991 struct inode *inode = file->f_mapping->host; 2992 ssize_t ret; 2993 2994 /* 2995 * If we are doing data journalling we don't support O_DIRECT 2996 */ 2997 if (ext4_should_journal_data(inode)) 2998 return 0; 2999 3000 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 3001 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3002 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3003 else 3004 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3005 trace_ext4_direct_IO_exit(inode, offset, 3006 iov_length(iov, nr_segs), rw, ret); 3007 return ret; 3008 } 3009 3010 /* 3011 * Pages can be marked dirty completely asynchronously from ext4's journalling 3012 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3013 * much here because ->set_page_dirty is called under VFS locks. The page is 3014 * not necessarily locked. 3015 * 3016 * We cannot just dirty the page and leave attached buffers clean, because the 3017 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3018 * or jbddirty because all the journalling code will explode. 3019 * 3020 * So what we do is to mark the page "pending dirty" and next time writepage 3021 * is called, propagate that into the buffers appropriately. 3022 */ 3023 static int ext4_journalled_set_page_dirty(struct page *page) 3024 { 3025 SetPageChecked(page); 3026 return __set_page_dirty_nobuffers(page); 3027 } 3028 3029 static const struct address_space_operations ext4_ordered_aops = { 3030 .readpage = ext4_readpage, 3031 .readpages = ext4_readpages, 3032 .writepage = ext4_writepage, 3033 .write_begin = ext4_write_begin, 3034 .write_end = ext4_ordered_write_end, 3035 .bmap = ext4_bmap, 3036 .invalidatepage = ext4_invalidatepage, 3037 .releasepage = ext4_releasepage, 3038 .direct_IO = ext4_direct_IO, 3039 .migratepage = buffer_migrate_page, 3040 .is_partially_uptodate = block_is_partially_uptodate, 3041 .error_remove_page = generic_error_remove_page, 3042 }; 3043 3044 static const struct address_space_operations ext4_writeback_aops = { 3045 .readpage = ext4_readpage, 3046 .readpages = ext4_readpages, 3047 .writepage = ext4_writepage, 3048 .write_begin = ext4_write_begin, 3049 .write_end = ext4_writeback_write_end, 3050 .bmap = ext4_bmap, 3051 .invalidatepage = ext4_invalidatepage, 3052 .releasepage = ext4_releasepage, 3053 .direct_IO = ext4_direct_IO, 3054 .migratepage = buffer_migrate_page, 3055 .is_partially_uptodate = block_is_partially_uptodate, 3056 .error_remove_page = generic_error_remove_page, 3057 }; 3058 3059 static const struct address_space_operations ext4_journalled_aops = { 3060 .readpage = ext4_readpage, 3061 .readpages = ext4_readpages, 3062 .writepage = ext4_writepage, 3063 .write_begin = ext4_write_begin, 3064 .write_end = ext4_journalled_write_end, 3065 .set_page_dirty = ext4_journalled_set_page_dirty, 3066 .bmap = ext4_bmap, 3067 .invalidatepage = ext4_invalidatepage, 3068 .releasepage = ext4_releasepage, 3069 .direct_IO = ext4_direct_IO, 3070 .is_partially_uptodate = block_is_partially_uptodate, 3071 .error_remove_page = generic_error_remove_page, 3072 }; 3073 3074 static const struct address_space_operations ext4_da_aops = { 3075 .readpage = ext4_readpage, 3076 .readpages = ext4_readpages, 3077 .writepage = ext4_writepage, 3078 .writepages = ext4_da_writepages, 3079 .write_begin = ext4_da_write_begin, 3080 .write_end = ext4_da_write_end, 3081 .bmap = ext4_bmap, 3082 .invalidatepage = ext4_da_invalidatepage, 3083 .releasepage = ext4_releasepage, 3084 .direct_IO = ext4_direct_IO, 3085 .migratepage = buffer_migrate_page, 3086 .is_partially_uptodate = block_is_partially_uptodate, 3087 .error_remove_page = generic_error_remove_page, 3088 }; 3089 3090 void ext4_set_aops(struct inode *inode) 3091 { 3092 if (ext4_should_order_data(inode) && 3093 test_opt(inode->i_sb, DELALLOC)) 3094 inode->i_mapping->a_ops = &ext4_da_aops; 3095 else if (ext4_should_order_data(inode)) 3096 inode->i_mapping->a_ops = &ext4_ordered_aops; 3097 else if (ext4_should_writeback_data(inode) && 3098 test_opt(inode->i_sb, DELALLOC)) 3099 inode->i_mapping->a_ops = &ext4_da_aops; 3100 else if (ext4_should_writeback_data(inode)) 3101 inode->i_mapping->a_ops = &ext4_writeback_aops; 3102 else 3103 inode->i_mapping->a_ops = &ext4_journalled_aops; 3104 } 3105 3106 3107 /* 3108 * ext4_discard_partial_page_buffers() 3109 * Wrapper function for ext4_discard_partial_page_buffers_no_lock. 3110 * This function finds and locks the page containing the offset 3111 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock. 3112 * Calling functions that already have the page locked should call 3113 * ext4_discard_partial_page_buffers_no_lock directly. 3114 */ 3115 int ext4_discard_partial_page_buffers(handle_t *handle, 3116 struct address_space *mapping, loff_t from, 3117 loff_t length, int flags) 3118 { 3119 struct inode *inode = mapping->host; 3120 struct page *page; 3121 int err = 0; 3122 3123 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3124 mapping_gfp_mask(mapping) & ~__GFP_FS); 3125 if (!page) 3126 return -EINVAL; 3127 3128 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page, 3129 from, length, flags); 3130 3131 unlock_page(page); 3132 page_cache_release(page); 3133 return err; 3134 } 3135 3136 /* 3137 * ext4_discard_partial_page_buffers_no_lock() 3138 * Zeros a page range of length 'length' starting from offset 'from'. 3139 * Buffer heads that correspond to the block aligned regions of the 3140 * zeroed range will be unmapped. Unblock aligned regions 3141 * will have the corresponding buffer head mapped if needed so that 3142 * that region of the page can be updated with the partial zero out. 3143 * 3144 * This function assumes that the page has already been locked. The 3145 * The range to be discarded must be contained with in the given page. 3146 * If the specified range exceeds the end of the page it will be shortened 3147 * to the end of the page that corresponds to 'from'. This function is 3148 * appropriate for updating a page and it buffer heads to be unmapped and 3149 * zeroed for blocks that have been either released, or are going to be 3150 * released. 3151 * 3152 * handle: The journal handle 3153 * inode: The files inode 3154 * page: A locked page that contains the offset "from" 3155 * from: The starting byte offset (from the begining of the file) 3156 * to begin discarding 3157 * len: The length of bytes to discard 3158 * flags: Optional flags that may be used: 3159 * 3160 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED 3161 * Only zero the regions of the page whose buffer heads 3162 * have already been unmapped. This flag is appropriate 3163 * for updateing the contents of a page whose blocks may 3164 * have already been released, and we only want to zero 3165 * out the regions that correspond to those released blocks. 3166 * 3167 * Returns zero on sucess or negative on failure. 3168 */ 3169 int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 3170 struct inode *inode, struct page *page, loff_t from, 3171 loff_t length, int flags) 3172 { 3173 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3174 unsigned int offset = from & (PAGE_CACHE_SIZE-1); 3175 unsigned int blocksize, max, pos; 3176 unsigned int end_of_block, range_to_discard; 3177 ext4_lblk_t iblock; 3178 struct buffer_head *bh; 3179 int err = 0; 3180 3181 blocksize = inode->i_sb->s_blocksize; 3182 max = PAGE_CACHE_SIZE - offset; 3183 3184 if (index != page->index) 3185 return -EINVAL; 3186 3187 /* 3188 * correct length if it does not fall between 3189 * 'from' and the end of the page 3190 */ 3191 if (length > max || length < 0) 3192 length = max; 3193 3194 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3195 3196 if (!page_has_buffers(page)) { 3197 /* 3198 * If the range to be discarded covers a partial block 3199 * we need to get the page buffers. This is because 3200 * partial blocks cannot be released and the page needs 3201 * to be updated with the contents of the block before 3202 * we write the zeros on top of it. 3203 */ 3204 if (!(from & (blocksize - 1)) || 3205 !((from + length) & (blocksize - 1))) { 3206 create_empty_buffers(page, blocksize, 0); 3207 } else { 3208 /* 3209 * If there are no partial blocks, 3210 * there is nothing to update, 3211 * so we can return now 3212 */ 3213 return 0; 3214 } 3215 } 3216 3217 /* Find the buffer that contains "offset" */ 3218 bh = page_buffers(page); 3219 pos = blocksize; 3220 while (offset >= pos) { 3221 bh = bh->b_this_page; 3222 iblock++; 3223 pos += blocksize; 3224 } 3225 3226 pos = offset; 3227 while (pos < offset + length) { 3228 err = 0; 3229 3230 /* The length of space left to zero and unmap */ 3231 range_to_discard = offset + length - pos; 3232 3233 /* The length of space until the end of the block */ 3234 end_of_block = blocksize - (pos & (blocksize-1)); 3235 3236 /* 3237 * Do not unmap or zero past end of block 3238 * for this buffer head 3239 */ 3240 if (range_to_discard > end_of_block) 3241 range_to_discard = end_of_block; 3242 3243 3244 /* 3245 * Skip this buffer head if we are only zeroing unampped 3246 * regions of the page 3247 */ 3248 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED && 3249 buffer_mapped(bh)) 3250 goto next; 3251 3252 /* If the range is block aligned, unmap */ 3253 if (range_to_discard == blocksize) { 3254 clear_buffer_dirty(bh); 3255 bh->b_bdev = NULL; 3256 clear_buffer_mapped(bh); 3257 clear_buffer_req(bh); 3258 clear_buffer_new(bh); 3259 clear_buffer_delay(bh); 3260 clear_buffer_unwritten(bh); 3261 clear_buffer_uptodate(bh); 3262 zero_user(page, pos, range_to_discard); 3263 BUFFER_TRACE(bh, "Buffer discarded"); 3264 goto next; 3265 } 3266 3267 /* 3268 * If this block is not completely contained in the range 3269 * to be discarded, then it is not going to be released. Because 3270 * we need to keep this block, we need to make sure this part 3271 * of the page is uptodate before we modify it by writeing 3272 * partial zeros on it. 3273 */ 3274 if (!buffer_mapped(bh)) { 3275 /* 3276 * Buffer head must be mapped before we can read 3277 * from the block 3278 */ 3279 BUFFER_TRACE(bh, "unmapped"); 3280 ext4_get_block(inode, iblock, bh, 0); 3281 /* unmapped? It's a hole - nothing to do */ 3282 if (!buffer_mapped(bh)) { 3283 BUFFER_TRACE(bh, "still unmapped"); 3284 goto next; 3285 } 3286 } 3287 3288 /* Ok, it's mapped. Make sure it's up-to-date */ 3289 if (PageUptodate(page)) 3290 set_buffer_uptodate(bh); 3291 3292 if (!buffer_uptodate(bh)) { 3293 err = -EIO; 3294 ll_rw_block(READ, 1, &bh); 3295 wait_on_buffer(bh); 3296 /* Uhhuh. Read error. Complain and punt.*/ 3297 if (!buffer_uptodate(bh)) 3298 goto next; 3299 } 3300 3301 if (ext4_should_journal_data(inode)) { 3302 BUFFER_TRACE(bh, "get write access"); 3303 err = ext4_journal_get_write_access(handle, bh); 3304 if (err) 3305 goto next; 3306 } 3307 3308 zero_user(page, pos, range_to_discard); 3309 3310 err = 0; 3311 if (ext4_should_journal_data(inode)) { 3312 err = ext4_handle_dirty_metadata(handle, inode, bh); 3313 } else 3314 mark_buffer_dirty(bh); 3315 3316 BUFFER_TRACE(bh, "Partial buffer zeroed"); 3317 next: 3318 bh = bh->b_this_page; 3319 iblock++; 3320 pos += range_to_discard; 3321 } 3322 3323 return err; 3324 } 3325 3326 /* 3327 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3328 * up to the end of the block which corresponds to `from'. 3329 * This required during truncate. We need to physically zero the tail end 3330 * of that block so it doesn't yield old data if the file is later grown. 3331 */ 3332 int ext4_block_truncate_page(handle_t *handle, 3333 struct address_space *mapping, loff_t from) 3334 { 3335 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3336 unsigned length; 3337 unsigned blocksize; 3338 struct inode *inode = mapping->host; 3339 3340 blocksize = inode->i_sb->s_blocksize; 3341 length = blocksize - (offset & (blocksize - 1)); 3342 3343 return ext4_block_zero_page_range(handle, mapping, from, length); 3344 } 3345 3346 /* 3347 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3348 * starting from file offset 'from'. The range to be zero'd must 3349 * be contained with in one block. If the specified range exceeds 3350 * the end of the block it will be shortened to end of the block 3351 * that cooresponds to 'from' 3352 */ 3353 int ext4_block_zero_page_range(handle_t *handle, 3354 struct address_space *mapping, loff_t from, loff_t length) 3355 { 3356 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3357 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3358 unsigned blocksize, max, pos; 3359 ext4_lblk_t iblock; 3360 struct inode *inode = mapping->host; 3361 struct buffer_head *bh; 3362 struct page *page; 3363 int err = 0; 3364 3365 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3366 mapping_gfp_mask(mapping) & ~__GFP_FS); 3367 if (!page) 3368 return -EINVAL; 3369 3370 blocksize = inode->i_sb->s_blocksize; 3371 max = blocksize - (offset & (blocksize - 1)); 3372 3373 /* 3374 * correct length if it does not fall between 3375 * 'from' and the end of the block 3376 */ 3377 if (length > max || length < 0) 3378 length = max; 3379 3380 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3381 3382 if (!page_has_buffers(page)) 3383 create_empty_buffers(page, blocksize, 0); 3384 3385 /* Find the buffer that contains "offset" */ 3386 bh = page_buffers(page); 3387 pos = blocksize; 3388 while (offset >= pos) { 3389 bh = bh->b_this_page; 3390 iblock++; 3391 pos += blocksize; 3392 } 3393 3394 err = 0; 3395 if (buffer_freed(bh)) { 3396 BUFFER_TRACE(bh, "freed: skip"); 3397 goto unlock; 3398 } 3399 3400 if (!buffer_mapped(bh)) { 3401 BUFFER_TRACE(bh, "unmapped"); 3402 ext4_get_block(inode, iblock, bh, 0); 3403 /* unmapped? It's a hole - nothing to do */ 3404 if (!buffer_mapped(bh)) { 3405 BUFFER_TRACE(bh, "still unmapped"); 3406 goto unlock; 3407 } 3408 } 3409 3410 /* Ok, it's mapped. Make sure it's up-to-date */ 3411 if (PageUptodate(page)) 3412 set_buffer_uptodate(bh); 3413 3414 if (!buffer_uptodate(bh)) { 3415 err = -EIO; 3416 ll_rw_block(READ, 1, &bh); 3417 wait_on_buffer(bh); 3418 /* Uhhuh. Read error. Complain and punt. */ 3419 if (!buffer_uptodate(bh)) 3420 goto unlock; 3421 } 3422 3423 if (ext4_should_journal_data(inode)) { 3424 BUFFER_TRACE(bh, "get write access"); 3425 err = ext4_journal_get_write_access(handle, bh); 3426 if (err) 3427 goto unlock; 3428 } 3429 3430 zero_user(page, offset, length); 3431 3432 BUFFER_TRACE(bh, "zeroed end of block"); 3433 3434 err = 0; 3435 if (ext4_should_journal_data(inode)) { 3436 err = ext4_handle_dirty_metadata(handle, inode, bh); 3437 } else 3438 mark_buffer_dirty(bh); 3439 3440 unlock: 3441 unlock_page(page); 3442 page_cache_release(page); 3443 return err; 3444 } 3445 3446 int ext4_can_truncate(struct inode *inode) 3447 { 3448 if (S_ISREG(inode->i_mode)) 3449 return 1; 3450 if (S_ISDIR(inode->i_mode)) 3451 return 1; 3452 if (S_ISLNK(inode->i_mode)) 3453 return !ext4_inode_is_fast_symlink(inode); 3454 return 0; 3455 } 3456 3457 /* 3458 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3459 * associated with the given offset and length 3460 * 3461 * @inode: File inode 3462 * @offset: The offset where the hole will begin 3463 * @len: The length of the hole 3464 * 3465 * Returns: 0 on sucess or negative on failure 3466 */ 3467 3468 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3469 { 3470 struct inode *inode = file->f_path.dentry->d_inode; 3471 if (!S_ISREG(inode->i_mode)) 3472 return -ENOTSUPP; 3473 3474 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3475 /* TODO: Add support for non extent hole punching */ 3476 return -ENOTSUPP; 3477 } 3478 3479 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) { 3480 /* TODO: Add support for bigalloc file systems */ 3481 return -ENOTSUPP; 3482 } 3483 3484 return ext4_ext_punch_hole(file, offset, length); 3485 } 3486 3487 /* 3488 * ext4_truncate() 3489 * 3490 * We block out ext4_get_block() block instantiations across the entire 3491 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3492 * simultaneously on behalf of the same inode. 3493 * 3494 * As we work through the truncate and commmit bits of it to the journal there 3495 * is one core, guiding principle: the file's tree must always be consistent on 3496 * disk. We must be able to restart the truncate after a crash. 3497 * 3498 * The file's tree may be transiently inconsistent in memory (although it 3499 * probably isn't), but whenever we close off and commit a journal transaction, 3500 * the contents of (the filesystem + the journal) must be consistent and 3501 * restartable. It's pretty simple, really: bottom up, right to left (although 3502 * left-to-right works OK too). 3503 * 3504 * Note that at recovery time, journal replay occurs *before* the restart of 3505 * truncate against the orphan inode list. 3506 * 3507 * The committed inode has the new, desired i_size (which is the same as 3508 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3509 * that this inode's truncate did not complete and it will again call 3510 * ext4_truncate() to have another go. So there will be instantiated blocks 3511 * to the right of the truncation point in a crashed ext4 filesystem. But 3512 * that's fine - as long as they are linked from the inode, the post-crash 3513 * ext4_truncate() run will find them and release them. 3514 */ 3515 void ext4_truncate(struct inode *inode) 3516 { 3517 trace_ext4_truncate_enter(inode); 3518 3519 if (!ext4_can_truncate(inode)) 3520 return; 3521 3522 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3523 3524 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3525 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3526 3527 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3528 ext4_ext_truncate(inode); 3529 else 3530 ext4_ind_truncate(inode); 3531 3532 trace_ext4_truncate_exit(inode); 3533 } 3534 3535 /* 3536 * ext4_get_inode_loc returns with an extra refcount against the inode's 3537 * underlying buffer_head on success. If 'in_mem' is true, we have all 3538 * data in memory that is needed to recreate the on-disk version of this 3539 * inode. 3540 */ 3541 static int __ext4_get_inode_loc(struct inode *inode, 3542 struct ext4_iloc *iloc, int in_mem) 3543 { 3544 struct ext4_group_desc *gdp; 3545 struct buffer_head *bh; 3546 struct super_block *sb = inode->i_sb; 3547 ext4_fsblk_t block; 3548 int inodes_per_block, inode_offset; 3549 3550 iloc->bh = NULL; 3551 if (!ext4_valid_inum(sb, inode->i_ino)) 3552 return -EIO; 3553 3554 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3555 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3556 if (!gdp) 3557 return -EIO; 3558 3559 /* 3560 * Figure out the offset within the block group inode table 3561 */ 3562 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3563 inode_offset = ((inode->i_ino - 1) % 3564 EXT4_INODES_PER_GROUP(sb)); 3565 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3566 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3567 3568 bh = sb_getblk(sb, block); 3569 if (!bh) { 3570 EXT4_ERROR_INODE_BLOCK(inode, block, 3571 "unable to read itable block"); 3572 return -EIO; 3573 } 3574 if (!buffer_uptodate(bh)) { 3575 lock_buffer(bh); 3576 3577 /* 3578 * If the buffer has the write error flag, we have failed 3579 * to write out another inode in the same block. In this 3580 * case, we don't have to read the block because we may 3581 * read the old inode data successfully. 3582 */ 3583 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3584 set_buffer_uptodate(bh); 3585 3586 if (buffer_uptodate(bh)) { 3587 /* someone brought it uptodate while we waited */ 3588 unlock_buffer(bh); 3589 goto has_buffer; 3590 } 3591 3592 /* 3593 * If we have all information of the inode in memory and this 3594 * is the only valid inode in the block, we need not read the 3595 * block. 3596 */ 3597 if (in_mem) { 3598 struct buffer_head *bitmap_bh; 3599 int i, start; 3600 3601 start = inode_offset & ~(inodes_per_block - 1); 3602 3603 /* Is the inode bitmap in cache? */ 3604 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3605 if (!bitmap_bh) 3606 goto make_io; 3607 3608 /* 3609 * If the inode bitmap isn't in cache then the 3610 * optimisation may end up performing two reads instead 3611 * of one, so skip it. 3612 */ 3613 if (!buffer_uptodate(bitmap_bh)) { 3614 brelse(bitmap_bh); 3615 goto make_io; 3616 } 3617 for (i = start; i < start + inodes_per_block; i++) { 3618 if (i == inode_offset) 3619 continue; 3620 if (ext4_test_bit(i, bitmap_bh->b_data)) 3621 break; 3622 } 3623 brelse(bitmap_bh); 3624 if (i == start + inodes_per_block) { 3625 /* all other inodes are free, so skip I/O */ 3626 memset(bh->b_data, 0, bh->b_size); 3627 set_buffer_uptodate(bh); 3628 unlock_buffer(bh); 3629 goto has_buffer; 3630 } 3631 } 3632 3633 make_io: 3634 /* 3635 * If we need to do any I/O, try to pre-readahead extra 3636 * blocks from the inode table. 3637 */ 3638 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3639 ext4_fsblk_t b, end, table; 3640 unsigned num; 3641 3642 table = ext4_inode_table(sb, gdp); 3643 /* s_inode_readahead_blks is always a power of 2 */ 3644 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 3645 if (table > b) 3646 b = table; 3647 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 3648 num = EXT4_INODES_PER_GROUP(sb); 3649 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3650 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3651 num -= ext4_itable_unused_count(sb, gdp); 3652 table += num / inodes_per_block; 3653 if (end > table) 3654 end = table; 3655 while (b <= end) 3656 sb_breadahead(sb, b++); 3657 } 3658 3659 /* 3660 * There are other valid inodes in the buffer, this inode 3661 * has in-inode xattrs, or we don't have this inode in memory. 3662 * Read the block from disk. 3663 */ 3664 trace_ext4_load_inode(inode); 3665 get_bh(bh); 3666 bh->b_end_io = end_buffer_read_sync; 3667 submit_bh(READ_META, bh); 3668 wait_on_buffer(bh); 3669 if (!buffer_uptodate(bh)) { 3670 EXT4_ERROR_INODE_BLOCK(inode, block, 3671 "unable to read itable block"); 3672 brelse(bh); 3673 return -EIO; 3674 } 3675 } 3676 has_buffer: 3677 iloc->bh = bh; 3678 return 0; 3679 } 3680 3681 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3682 { 3683 /* We have all inode data except xattrs in memory here. */ 3684 return __ext4_get_inode_loc(inode, iloc, 3685 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3686 } 3687 3688 void ext4_set_inode_flags(struct inode *inode) 3689 { 3690 unsigned int flags = EXT4_I(inode)->i_flags; 3691 3692 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3693 if (flags & EXT4_SYNC_FL) 3694 inode->i_flags |= S_SYNC; 3695 if (flags & EXT4_APPEND_FL) 3696 inode->i_flags |= S_APPEND; 3697 if (flags & EXT4_IMMUTABLE_FL) 3698 inode->i_flags |= S_IMMUTABLE; 3699 if (flags & EXT4_NOATIME_FL) 3700 inode->i_flags |= S_NOATIME; 3701 if (flags & EXT4_DIRSYNC_FL) 3702 inode->i_flags |= S_DIRSYNC; 3703 } 3704 3705 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3706 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3707 { 3708 unsigned int vfs_fl; 3709 unsigned long old_fl, new_fl; 3710 3711 do { 3712 vfs_fl = ei->vfs_inode.i_flags; 3713 old_fl = ei->i_flags; 3714 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3715 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3716 EXT4_DIRSYNC_FL); 3717 if (vfs_fl & S_SYNC) 3718 new_fl |= EXT4_SYNC_FL; 3719 if (vfs_fl & S_APPEND) 3720 new_fl |= EXT4_APPEND_FL; 3721 if (vfs_fl & S_IMMUTABLE) 3722 new_fl |= EXT4_IMMUTABLE_FL; 3723 if (vfs_fl & S_NOATIME) 3724 new_fl |= EXT4_NOATIME_FL; 3725 if (vfs_fl & S_DIRSYNC) 3726 new_fl |= EXT4_DIRSYNC_FL; 3727 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3728 } 3729 3730 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3731 struct ext4_inode_info *ei) 3732 { 3733 blkcnt_t i_blocks ; 3734 struct inode *inode = &(ei->vfs_inode); 3735 struct super_block *sb = inode->i_sb; 3736 3737 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3738 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3739 /* we are using combined 48 bit field */ 3740 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3741 le32_to_cpu(raw_inode->i_blocks_lo); 3742 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3743 /* i_blocks represent file system block size */ 3744 return i_blocks << (inode->i_blkbits - 9); 3745 } else { 3746 return i_blocks; 3747 } 3748 } else { 3749 return le32_to_cpu(raw_inode->i_blocks_lo); 3750 } 3751 } 3752 3753 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3754 { 3755 struct ext4_iloc iloc; 3756 struct ext4_inode *raw_inode; 3757 struct ext4_inode_info *ei; 3758 struct inode *inode; 3759 journal_t *journal = EXT4_SB(sb)->s_journal; 3760 long ret; 3761 int block; 3762 3763 inode = iget_locked(sb, ino); 3764 if (!inode) 3765 return ERR_PTR(-ENOMEM); 3766 if (!(inode->i_state & I_NEW)) 3767 return inode; 3768 3769 ei = EXT4_I(inode); 3770 iloc.bh = NULL; 3771 3772 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3773 if (ret < 0) 3774 goto bad_inode; 3775 raw_inode = ext4_raw_inode(&iloc); 3776 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 3777 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 3778 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 3779 if (!(test_opt(inode->i_sb, NO_UID32))) { 3780 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 3781 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 3782 } 3783 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 3784 3785 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 3786 ei->i_dir_start_lookup = 0; 3787 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 3788 /* We now have enough fields to check if the inode was active or not. 3789 * This is needed because nfsd might try to access dead inodes 3790 * the test is that same one that e2fsck uses 3791 * NeilBrown 1999oct15 3792 */ 3793 if (inode->i_nlink == 0) { 3794 if (inode->i_mode == 0 || 3795 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 3796 /* this inode is deleted */ 3797 ret = -ESTALE; 3798 goto bad_inode; 3799 } 3800 /* The only unlinked inodes we let through here have 3801 * valid i_mode and are being read by the orphan 3802 * recovery code: that's fine, we're about to complete 3803 * the process of deleting those. */ 3804 } 3805 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 3806 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 3807 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 3808 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 3809 ei->i_file_acl |= 3810 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 3811 inode->i_size = ext4_isize(raw_inode); 3812 ei->i_disksize = inode->i_size; 3813 #ifdef CONFIG_QUOTA 3814 ei->i_reserved_quota = 0; 3815 #endif 3816 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 3817 ei->i_block_group = iloc.block_group; 3818 ei->i_last_alloc_group = ~0; 3819 /* 3820 * NOTE! The in-memory inode i_data array is in little-endian order 3821 * even on big-endian machines: we do NOT byteswap the block numbers! 3822 */ 3823 for (block = 0; block < EXT4_N_BLOCKS; block++) 3824 ei->i_data[block] = raw_inode->i_block[block]; 3825 INIT_LIST_HEAD(&ei->i_orphan); 3826 3827 /* 3828 * Set transaction id's of transactions that have to be committed 3829 * to finish f[data]sync. We set them to currently running transaction 3830 * as we cannot be sure that the inode or some of its metadata isn't 3831 * part of the transaction - the inode could have been reclaimed and 3832 * now it is reread from disk. 3833 */ 3834 if (journal) { 3835 transaction_t *transaction; 3836 tid_t tid; 3837 3838 read_lock(&journal->j_state_lock); 3839 if (journal->j_running_transaction) 3840 transaction = journal->j_running_transaction; 3841 else 3842 transaction = journal->j_committing_transaction; 3843 if (transaction) 3844 tid = transaction->t_tid; 3845 else 3846 tid = journal->j_commit_sequence; 3847 read_unlock(&journal->j_state_lock); 3848 ei->i_sync_tid = tid; 3849 ei->i_datasync_tid = tid; 3850 } 3851 3852 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3853 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3854 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3855 EXT4_INODE_SIZE(inode->i_sb)) { 3856 ret = -EIO; 3857 goto bad_inode; 3858 } 3859 if (ei->i_extra_isize == 0) { 3860 /* The extra space is currently unused. Use it. */ 3861 ei->i_extra_isize = sizeof(struct ext4_inode) - 3862 EXT4_GOOD_OLD_INODE_SIZE; 3863 } else { 3864 __le32 *magic = (void *)raw_inode + 3865 EXT4_GOOD_OLD_INODE_SIZE + 3866 ei->i_extra_isize; 3867 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 3868 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3869 } 3870 } else 3871 ei->i_extra_isize = 0; 3872 3873 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 3874 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 3875 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 3876 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 3877 3878 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 3879 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3880 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 3881 inode->i_version |= 3882 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 3883 } 3884 3885 ret = 0; 3886 if (ei->i_file_acl && 3887 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 3888 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 3889 ei->i_file_acl); 3890 ret = -EIO; 3891 goto bad_inode; 3892 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3893 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3894 (S_ISLNK(inode->i_mode) && 3895 !ext4_inode_is_fast_symlink(inode))) 3896 /* Validate extent which is part of inode */ 3897 ret = ext4_ext_check_inode(inode); 3898 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3899 (S_ISLNK(inode->i_mode) && 3900 !ext4_inode_is_fast_symlink(inode))) { 3901 /* Validate block references which are part of inode */ 3902 ret = ext4_ind_check_inode(inode); 3903 } 3904 if (ret) 3905 goto bad_inode; 3906 3907 if (S_ISREG(inode->i_mode)) { 3908 inode->i_op = &ext4_file_inode_operations; 3909 inode->i_fop = &ext4_file_operations; 3910 ext4_set_aops(inode); 3911 } else if (S_ISDIR(inode->i_mode)) { 3912 inode->i_op = &ext4_dir_inode_operations; 3913 inode->i_fop = &ext4_dir_operations; 3914 } else if (S_ISLNK(inode->i_mode)) { 3915 if (ext4_inode_is_fast_symlink(inode)) { 3916 inode->i_op = &ext4_fast_symlink_inode_operations; 3917 nd_terminate_link(ei->i_data, inode->i_size, 3918 sizeof(ei->i_data) - 1); 3919 } else { 3920 inode->i_op = &ext4_symlink_inode_operations; 3921 ext4_set_aops(inode); 3922 } 3923 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 3924 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 3925 inode->i_op = &ext4_special_inode_operations; 3926 if (raw_inode->i_block[0]) 3927 init_special_inode(inode, inode->i_mode, 3928 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 3929 else 3930 init_special_inode(inode, inode->i_mode, 3931 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 3932 } else { 3933 ret = -EIO; 3934 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 3935 goto bad_inode; 3936 } 3937 brelse(iloc.bh); 3938 ext4_set_inode_flags(inode); 3939 unlock_new_inode(inode); 3940 return inode; 3941 3942 bad_inode: 3943 brelse(iloc.bh); 3944 iget_failed(inode); 3945 return ERR_PTR(ret); 3946 } 3947 3948 static int ext4_inode_blocks_set(handle_t *handle, 3949 struct ext4_inode *raw_inode, 3950 struct ext4_inode_info *ei) 3951 { 3952 struct inode *inode = &(ei->vfs_inode); 3953 u64 i_blocks = inode->i_blocks; 3954 struct super_block *sb = inode->i_sb; 3955 3956 if (i_blocks <= ~0U) { 3957 /* 3958 * i_blocks can be represnted in a 32 bit variable 3959 * as multiple of 512 bytes 3960 */ 3961 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3962 raw_inode->i_blocks_high = 0; 3963 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3964 return 0; 3965 } 3966 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 3967 return -EFBIG; 3968 3969 if (i_blocks <= 0xffffffffffffULL) { 3970 /* 3971 * i_blocks can be represented in a 48 bit variable 3972 * as multiple of 512 bytes 3973 */ 3974 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3975 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 3976 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3977 } else { 3978 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3979 /* i_block is stored in file system block size */ 3980 i_blocks = i_blocks >> (inode->i_blkbits - 9); 3981 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3982 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 3983 } 3984 return 0; 3985 } 3986 3987 /* 3988 * Post the struct inode info into an on-disk inode location in the 3989 * buffer-cache. This gobbles the caller's reference to the 3990 * buffer_head in the inode location struct. 3991 * 3992 * The caller must have write access to iloc->bh. 3993 */ 3994 static int ext4_do_update_inode(handle_t *handle, 3995 struct inode *inode, 3996 struct ext4_iloc *iloc) 3997 { 3998 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 3999 struct ext4_inode_info *ei = EXT4_I(inode); 4000 struct buffer_head *bh = iloc->bh; 4001 int err = 0, rc, block; 4002 4003 /* For fields not not tracking in the in-memory inode, 4004 * initialise them to zero for new inodes. */ 4005 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4006 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4007 4008 ext4_get_inode_flags(ei); 4009 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4010 if (!(test_opt(inode->i_sb, NO_UID32))) { 4011 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 4012 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 4013 /* 4014 * Fix up interoperability with old kernels. Otherwise, old inodes get 4015 * re-used with the upper 16 bits of the uid/gid intact 4016 */ 4017 if (!ei->i_dtime) { 4018 raw_inode->i_uid_high = 4019 cpu_to_le16(high_16_bits(inode->i_uid)); 4020 raw_inode->i_gid_high = 4021 cpu_to_le16(high_16_bits(inode->i_gid)); 4022 } else { 4023 raw_inode->i_uid_high = 0; 4024 raw_inode->i_gid_high = 0; 4025 } 4026 } else { 4027 raw_inode->i_uid_low = 4028 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 4029 raw_inode->i_gid_low = 4030 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 4031 raw_inode->i_uid_high = 0; 4032 raw_inode->i_gid_high = 0; 4033 } 4034 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4035 4036 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4037 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4038 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4039 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4040 4041 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4042 goto out_brelse; 4043 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4044 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4045 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4046 cpu_to_le32(EXT4_OS_HURD)) 4047 raw_inode->i_file_acl_high = 4048 cpu_to_le16(ei->i_file_acl >> 32); 4049 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4050 ext4_isize_set(raw_inode, ei->i_disksize); 4051 if (ei->i_disksize > 0x7fffffffULL) { 4052 struct super_block *sb = inode->i_sb; 4053 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4054 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4055 EXT4_SB(sb)->s_es->s_rev_level == 4056 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4057 /* If this is the first large file 4058 * created, add a flag to the superblock. 4059 */ 4060 err = ext4_journal_get_write_access(handle, 4061 EXT4_SB(sb)->s_sbh); 4062 if (err) 4063 goto out_brelse; 4064 ext4_update_dynamic_rev(sb); 4065 EXT4_SET_RO_COMPAT_FEATURE(sb, 4066 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4067 sb->s_dirt = 1; 4068 ext4_handle_sync(handle); 4069 err = ext4_handle_dirty_metadata(handle, NULL, 4070 EXT4_SB(sb)->s_sbh); 4071 } 4072 } 4073 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4074 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4075 if (old_valid_dev(inode->i_rdev)) { 4076 raw_inode->i_block[0] = 4077 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4078 raw_inode->i_block[1] = 0; 4079 } else { 4080 raw_inode->i_block[0] = 0; 4081 raw_inode->i_block[1] = 4082 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4083 raw_inode->i_block[2] = 0; 4084 } 4085 } else 4086 for (block = 0; block < EXT4_N_BLOCKS; block++) 4087 raw_inode->i_block[block] = ei->i_data[block]; 4088 4089 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4090 if (ei->i_extra_isize) { 4091 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4092 raw_inode->i_version_hi = 4093 cpu_to_le32(inode->i_version >> 32); 4094 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4095 } 4096 4097 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4098 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4099 if (!err) 4100 err = rc; 4101 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4102 4103 ext4_update_inode_fsync_trans(handle, inode, 0); 4104 out_brelse: 4105 brelse(bh); 4106 ext4_std_error(inode->i_sb, err); 4107 return err; 4108 } 4109 4110 /* 4111 * ext4_write_inode() 4112 * 4113 * We are called from a few places: 4114 * 4115 * - Within generic_file_write() for O_SYNC files. 4116 * Here, there will be no transaction running. We wait for any running 4117 * trasnaction to commit. 4118 * 4119 * - Within sys_sync(), kupdate and such. 4120 * We wait on commit, if tol to. 4121 * 4122 * - Within prune_icache() (PF_MEMALLOC == true) 4123 * Here we simply return. We can't afford to block kswapd on the 4124 * journal commit. 4125 * 4126 * In all cases it is actually safe for us to return without doing anything, 4127 * because the inode has been copied into a raw inode buffer in 4128 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4129 * knfsd. 4130 * 4131 * Note that we are absolutely dependent upon all inode dirtiers doing the 4132 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4133 * which we are interested. 4134 * 4135 * It would be a bug for them to not do this. The code: 4136 * 4137 * mark_inode_dirty(inode) 4138 * stuff(); 4139 * inode->i_size = expr; 4140 * 4141 * is in error because a kswapd-driven write_inode() could occur while 4142 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4143 * will no longer be on the superblock's dirty inode list. 4144 */ 4145 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4146 { 4147 int err; 4148 4149 if (current->flags & PF_MEMALLOC) 4150 return 0; 4151 4152 if (EXT4_SB(inode->i_sb)->s_journal) { 4153 if (ext4_journal_current_handle()) { 4154 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4155 dump_stack(); 4156 return -EIO; 4157 } 4158 4159 if (wbc->sync_mode != WB_SYNC_ALL) 4160 return 0; 4161 4162 err = ext4_force_commit(inode->i_sb); 4163 } else { 4164 struct ext4_iloc iloc; 4165 4166 err = __ext4_get_inode_loc(inode, &iloc, 0); 4167 if (err) 4168 return err; 4169 if (wbc->sync_mode == WB_SYNC_ALL) 4170 sync_dirty_buffer(iloc.bh); 4171 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4172 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4173 "IO error syncing inode"); 4174 err = -EIO; 4175 } 4176 brelse(iloc.bh); 4177 } 4178 return err; 4179 } 4180 4181 /* 4182 * ext4_setattr() 4183 * 4184 * Called from notify_change. 4185 * 4186 * We want to trap VFS attempts to truncate the file as soon as 4187 * possible. In particular, we want to make sure that when the VFS 4188 * shrinks i_size, we put the inode on the orphan list and modify 4189 * i_disksize immediately, so that during the subsequent flushing of 4190 * dirty pages and freeing of disk blocks, we can guarantee that any 4191 * commit will leave the blocks being flushed in an unused state on 4192 * disk. (On recovery, the inode will get truncated and the blocks will 4193 * be freed, so we have a strong guarantee that no future commit will 4194 * leave these blocks visible to the user.) 4195 * 4196 * Another thing we have to assure is that if we are in ordered mode 4197 * and inode is still attached to the committing transaction, we must 4198 * we start writeout of all the dirty pages which are being truncated. 4199 * This way we are sure that all the data written in the previous 4200 * transaction are already on disk (truncate waits for pages under 4201 * writeback). 4202 * 4203 * Called with inode->i_mutex down. 4204 */ 4205 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4206 { 4207 struct inode *inode = dentry->d_inode; 4208 int error, rc = 0; 4209 int orphan = 0; 4210 const unsigned int ia_valid = attr->ia_valid; 4211 4212 error = inode_change_ok(inode, attr); 4213 if (error) 4214 return error; 4215 4216 if (is_quota_modification(inode, attr)) 4217 dquot_initialize(inode); 4218 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 4219 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 4220 handle_t *handle; 4221 4222 /* (user+group)*(old+new) structure, inode write (sb, 4223 * inode block, ? - but truncate inode update has it) */ 4224 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 4225 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3); 4226 if (IS_ERR(handle)) { 4227 error = PTR_ERR(handle); 4228 goto err_out; 4229 } 4230 error = dquot_transfer(inode, attr); 4231 if (error) { 4232 ext4_journal_stop(handle); 4233 return error; 4234 } 4235 /* Update corresponding info in inode so that everything is in 4236 * one transaction */ 4237 if (attr->ia_valid & ATTR_UID) 4238 inode->i_uid = attr->ia_uid; 4239 if (attr->ia_valid & ATTR_GID) 4240 inode->i_gid = attr->ia_gid; 4241 error = ext4_mark_inode_dirty(handle, inode); 4242 ext4_journal_stop(handle); 4243 } 4244 4245 if (attr->ia_valid & ATTR_SIZE) { 4246 inode_dio_wait(inode); 4247 4248 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4249 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4250 4251 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4252 return -EFBIG; 4253 } 4254 } 4255 4256 if (S_ISREG(inode->i_mode) && 4257 attr->ia_valid & ATTR_SIZE && 4258 (attr->ia_size < inode->i_size)) { 4259 handle_t *handle; 4260 4261 handle = ext4_journal_start(inode, 3); 4262 if (IS_ERR(handle)) { 4263 error = PTR_ERR(handle); 4264 goto err_out; 4265 } 4266 if (ext4_handle_valid(handle)) { 4267 error = ext4_orphan_add(handle, inode); 4268 orphan = 1; 4269 } 4270 EXT4_I(inode)->i_disksize = attr->ia_size; 4271 rc = ext4_mark_inode_dirty(handle, inode); 4272 if (!error) 4273 error = rc; 4274 ext4_journal_stop(handle); 4275 4276 if (ext4_should_order_data(inode)) { 4277 error = ext4_begin_ordered_truncate(inode, 4278 attr->ia_size); 4279 if (error) { 4280 /* Do as much error cleanup as possible */ 4281 handle = ext4_journal_start(inode, 3); 4282 if (IS_ERR(handle)) { 4283 ext4_orphan_del(NULL, inode); 4284 goto err_out; 4285 } 4286 ext4_orphan_del(handle, inode); 4287 orphan = 0; 4288 ext4_journal_stop(handle); 4289 goto err_out; 4290 } 4291 } 4292 } 4293 4294 if (attr->ia_valid & ATTR_SIZE) { 4295 if (attr->ia_size != i_size_read(inode)) { 4296 truncate_setsize(inode, attr->ia_size); 4297 ext4_truncate(inode); 4298 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 4299 ext4_truncate(inode); 4300 } 4301 4302 if (!rc) { 4303 setattr_copy(inode, attr); 4304 mark_inode_dirty(inode); 4305 } 4306 4307 /* 4308 * If the call to ext4_truncate failed to get a transaction handle at 4309 * all, we need to clean up the in-core orphan list manually. 4310 */ 4311 if (orphan && inode->i_nlink) 4312 ext4_orphan_del(NULL, inode); 4313 4314 if (!rc && (ia_valid & ATTR_MODE)) 4315 rc = ext4_acl_chmod(inode); 4316 4317 err_out: 4318 ext4_std_error(inode->i_sb, error); 4319 if (!error) 4320 error = rc; 4321 return error; 4322 } 4323 4324 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4325 struct kstat *stat) 4326 { 4327 struct inode *inode; 4328 unsigned long delalloc_blocks; 4329 4330 inode = dentry->d_inode; 4331 generic_fillattr(inode, stat); 4332 4333 /* 4334 * We can't update i_blocks if the block allocation is delayed 4335 * otherwise in the case of system crash before the real block 4336 * allocation is done, we will have i_blocks inconsistent with 4337 * on-disk file blocks. 4338 * We always keep i_blocks updated together with real 4339 * allocation. But to not confuse with user, stat 4340 * will return the blocks that include the delayed allocation 4341 * blocks for this file. 4342 */ 4343 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 4344 4345 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4346 return 0; 4347 } 4348 4349 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4350 { 4351 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4352 return ext4_ind_trans_blocks(inode, nrblocks, chunk); 4353 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 4354 } 4355 4356 /* 4357 * Account for index blocks, block groups bitmaps and block group 4358 * descriptor blocks if modify datablocks and index blocks 4359 * worse case, the indexs blocks spread over different block groups 4360 * 4361 * If datablocks are discontiguous, they are possible to spread over 4362 * different block groups too. If they are contiuguous, with flexbg, 4363 * they could still across block group boundary. 4364 * 4365 * Also account for superblock, inode, quota and xattr blocks 4366 */ 4367 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4368 { 4369 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4370 int gdpblocks; 4371 int idxblocks; 4372 int ret = 0; 4373 4374 /* 4375 * How many index blocks need to touch to modify nrblocks? 4376 * The "Chunk" flag indicating whether the nrblocks is 4377 * physically contiguous on disk 4378 * 4379 * For Direct IO and fallocate, they calls get_block to allocate 4380 * one single extent at a time, so they could set the "Chunk" flag 4381 */ 4382 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4383 4384 ret = idxblocks; 4385 4386 /* 4387 * Now let's see how many group bitmaps and group descriptors need 4388 * to account 4389 */ 4390 groups = idxblocks; 4391 if (chunk) 4392 groups += 1; 4393 else 4394 groups += nrblocks; 4395 4396 gdpblocks = groups; 4397 if (groups > ngroups) 4398 groups = ngroups; 4399 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4400 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4401 4402 /* bitmaps and block group descriptor blocks */ 4403 ret += groups + gdpblocks; 4404 4405 /* Blocks for super block, inode, quota and xattr blocks */ 4406 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4407 4408 return ret; 4409 } 4410 4411 /* 4412 * Calculate the total number of credits to reserve to fit 4413 * the modification of a single pages into a single transaction, 4414 * which may include multiple chunks of block allocations. 4415 * 4416 * This could be called via ext4_write_begin() 4417 * 4418 * We need to consider the worse case, when 4419 * one new block per extent. 4420 */ 4421 int ext4_writepage_trans_blocks(struct inode *inode) 4422 { 4423 int bpp = ext4_journal_blocks_per_page(inode); 4424 int ret; 4425 4426 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4427 4428 /* Account for data blocks for journalled mode */ 4429 if (ext4_should_journal_data(inode)) 4430 ret += bpp; 4431 return ret; 4432 } 4433 4434 /* 4435 * Calculate the journal credits for a chunk of data modification. 4436 * 4437 * This is called from DIO, fallocate or whoever calling 4438 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4439 * 4440 * journal buffers for data blocks are not included here, as DIO 4441 * and fallocate do no need to journal data buffers. 4442 */ 4443 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4444 { 4445 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4446 } 4447 4448 /* 4449 * The caller must have previously called ext4_reserve_inode_write(). 4450 * Give this, we know that the caller already has write access to iloc->bh. 4451 */ 4452 int ext4_mark_iloc_dirty(handle_t *handle, 4453 struct inode *inode, struct ext4_iloc *iloc) 4454 { 4455 int err = 0; 4456 4457 if (test_opt(inode->i_sb, I_VERSION)) 4458 inode_inc_iversion(inode); 4459 4460 /* the do_update_inode consumes one bh->b_count */ 4461 get_bh(iloc->bh); 4462 4463 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4464 err = ext4_do_update_inode(handle, inode, iloc); 4465 put_bh(iloc->bh); 4466 return err; 4467 } 4468 4469 /* 4470 * On success, We end up with an outstanding reference count against 4471 * iloc->bh. This _must_ be cleaned up later. 4472 */ 4473 4474 int 4475 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4476 struct ext4_iloc *iloc) 4477 { 4478 int err; 4479 4480 err = ext4_get_inode_loc(inode, iloc); 4481 if (!err) { 4482 BUFFER_TRACE(iloc->bh, "get_write_access"); 4483 err = ext4_journal_get_write_access(handle, iloc->bh); 4484 if (err) { 4485 brelse(iloc->bh); 4486 iloc->bh = NULL; 4487 } 4488 } 4489 ext4_std_error(inode->i_sb, err); 4490 return err; 4491 } 4492 4493 /* 4494 * Expand an inode by new_extra_isize bytes. 4495 * Returns 0 on success or negative error number on failure. 4496 */ 4497 static int ext4_expand_extra_isize(struct inode *inode, 4498 unsigned int new_extra_isize, 4499 struct ext4_iloc iloc, 4500 handle_t *handle) 4501 { 4502 struct ext4_inode *raw_inode; 4503 struct ext4_xattr_ibody_header *header; 4504 4505 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4506 return 0; 4507 4508 raw_inode = ext4_raw_inode(&iloc); 4509 4510 header = IHDR(inode, raw_inode); 4511 4512 /* No extended attributes present */ 4513 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4514 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4515 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4516 new_extra_isize); 4517 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4518 return 0; 4519 } 4520 4521 /* try to expand with EAs present */ 4522 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4523 raw_inode, handle); 4524 } 4525 4526 /* 4527 * What we do here is to mark the in-core inode as clean with respect to inode 4528 * dirtiness (it may still be data-dirty). 4529 * This means that the in-core inode may be reaped by prune_icache 4530 * without having to perform any I/O. This is a very good thing, 4531 * because *any* task may call prune_icache - even ones which 4532 * have a transaction open against a different journal. 4533 * 4534 * Is this cheating? Not really. Sure, we haven't written the 4535 * inode out, but prune_icache isn't a user-visible syncing function. 4536 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4537 * we start and wait on commits. 4538 * 4539 * Is this efficient/effective? Well, we're being nice to the system 4540 * by cleaning up our inodes proactively so they can be reaped 4541 * without I/O. But we are potentially leaving up to five seconds' 4542 * worth of inodes floating about which prune_icache wants us to 4543 * write out. One way to fix that would be to get prune_icache() 4544 * to do a write_super() to free up some memory. It has the desired 4545 * effect. 4546 */ 4547 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4548 { 4549 struct ext4_iloc iloc; 4550 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4551 static unsigned int mnt_count; 4552 int err, ret; 4553 4554 might_sleep(); 4555 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4556 err = ext4_reserve_inode_write(handle, inode, &iloc); 4557 if (ext4_handle_valid(handle) && 4558 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4559 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4560 /* 4561 * We need extra buffer credits since we may write into EA block 4562 * with this same handle. If journal_extend fails, then it will 4563 * only result in a minor loss of functionality for that inode. 4564 * If this is felt to be critical, then e2fsck should be run to 4565 * force a large enough s_min_extra_isize. 4566 */ 4567 if ((jbd2_journal_extend(handle, 4568 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4569 ret = ext4_expand_extra_isize(inode, 4570 sbi->s_want_extra_isize, 4571 iloc, handle); 4572 if (ret) { 4573 ext4_set_inode_state(inode, 4574 EXT4_STATE_NO_EXPAND); 4575 if (mnt_count != 4576 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4577 ext4_warning(inode->i_sb, 4578 "Unable to expand inode %lu. Delete" 4579 " some EAs or run e2fsck.", 4580 inode->i_ino); 4581 mnt_count = 4582 le16_to_cpu(sbi->s_es->s_mnt_count); 4583 } 4584 } 4585 } 4586 } 4587 if (!err) 4588 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4589 return err; 4590 } 4591 4592 /* 4593 * ext4_dirty_inode() is called from __mark_inode_dirty() 4594 * 4595 * We're really interested in the case where a file is being extended. 4596 * i_size has been changed by generic_commit_write() and we thus need 4597 * to include the updated inode in the current transaction. 4598 * 4599 * Also, dquot_alloc_block() will always dirty the inode when blocks 4600 * are allocated to the file. 4601 * 4602 * If the inode is marked synchronous, we don't honour that here - doing 4603 * so would cause a commit on atime updates, which we don't bother doing. 4604 * We handle synchronous inodes at the highest possible level. 4605 */ 4606 void ext4_dirty_inode(struct inode *inode, int flags) 4607 { 4608 handle_t *handle; 4609 4610 handle = ext4_journal_start(inode, 2); 4611 if (IS_ERR(handle)) 4612 goto out; 4613 4614 ext4_mark_inode_dirty(handle, inode); 4615 4616 ext4_journal_stop(handle); 4617 out: 4618 return; 4619 } 4620 4621 #if 0 4622 /* 4623 * Bind an inode's backing buffer_head into this transaction, to prevent 4624 * it from being flushed to disk early. Unlike 4625 * ext4_reserve_inode_write, this leaves behind no bh reference and 4626 * returns no iloc structure, so the caller needs to repeat the iloc 4627 * lookup to mark the inode dirty later. 4628 */ 4629 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4630 { 4631 struct ext4_iloc iloc; 4632 4633 int err = 0; 4634 if (handle) { 4635 err = ext4_get_inode_loc(inode, &iloc); 4636 if (!err) { 4637 BUFFER_TRACE(iloc.bh, "get_write_access"); 4638 err = jbd2_journal_get_write_access(handle, iloc.bh); 4639 if (!err) 4640 err = ext4_handle_dirty_metadata(handle, 4641 NULL, 4642 iloc.bh); 4643 brelse(iloc.bh); 4644 } 4645 } 4646 ext4_std_error(inode->i_sb, err); 4647 return err; 4648 } 4649 #endif 4650 4651 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4652 { 4653 journal_t *journal; 4654 handle_t *handle; 4655 int err; 4656 4657 /* 4658 * We have to be very careful here: changing a data block's 4659 * journaling status dynamically is dangerous. If we write a 4660 * data block to the journal, change the status and then delete 4661 * that block, we risk forgetting to revoke the old log record 4662 * from the journal and so a subsequent replay can corrupt data. 4663 * So, first we make sure that the journal is empty and that 4664 * nobody is changing anything. 4665 */ 4666 4667 journal = EXT4_JOURNAL(inode); 4668 if (!journal) 4669 return 0; 4670 if (is_journal_aborted(journal)) 4671 return -EROFS; 4672 4673 jbd2_journal_lock_updates(journal); 4674 jbd2_journal_flush(journal); 4675 4676 /* 4677 * OK, there are no updates running now, and all cached data is 4678 * synced to disk. We are now in a completely consistent state 4679 * which doesn't have anything in the journal, and we know that 4680 * no filesystem updates are running, so it is safe to modify 4681 * the inode's in-core data-journaling state flag now. 4682 */ 4683 4684 if (val) 4685 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4686 else 4687 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4688 ext4_set_aops(inode); 4689 4690 jbd2_journal_unlock_updates(journal); 4691 4692 /* Finally we can mark the inode as dirty. */ 4693 4694 handle = ext4_journal_start(inode, 1); 4695 if (IS_ERR(handle)) 4696 return PTR_ERR(handle); 4697 4698 err = ext4_mark_inode_dirty(handle, inode); 4699 ext4_handle_sync(handle); 4700 ext4_journal_stop(handle); 4701 ext4_std_error(inode->i_sb, err); 4702 4703 return err; 4704 } 4705 4706 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4707 { 4708 return !buffer_mapped(bh); 4709 } 4710 4711 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 4712 { 4713 struct page *page = vmf->page; 4714 loff_t size; 4715 unsigned long len; 4716 int ret; 4717 struct file *file = vma->vm_file; 4718 struct inode *inode = file->f_path.dentry->d_inode; 4719 struct address_space *mapping = inode->i_mapping; 4720 handle_t *handle; 4721 get_block_t *get_block; 4722 int retries = 0; 4723 4724 /* 4725 * This check is racy but catches the common case. We rely on 4726 * __block_page_mkwrite() to do a reliable check. 4727 */ 4728 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 4729 /* Delalloc case is easy... */ 4730 if (test_opt(inode->i_sb, DELALLOC) && 4731 !ext4_should_journal_data(inode) && 4732 !ext4_nonda_switch(inode->i_sb)) { 4733 do { 4734 ret = __block_page_mkwrite(vma, vmf, 4735 ext4_da_get_block_prep); 4736 } while (ret == -ENOSPC && 4737 ext4_should_retry_alloc(inode->i_sb, &retries)); 4738 goto out_ret; 4739 } 4740 4741 lock_page(page); 4742 size = i_size_read(inode); 4743 /* Page got truncated from under us? */ 4744 if (page->mapping != mapping || page_offset(page) > size) { 4745 unlock_page(page); 4746 ret = VM_FAULT_NOPAGE; 4747 goto out; 4748 } 4749 4750 if (page->index == size >> PAGE_CACHE_SHIFT) 4751 len = size & ~PAGE_CACHE_MASK; 4752 else 4753 len = PAGE_CACHE_SIZE; 4754 /* 4755 * Return if we have all the buffers mapped. This avoids the need to do 4756 * journal_start/journal_stop which can block and take a long time 4757 */ 4758 if (page_has_buffers(page)) { 4759 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 4760 ext4_bh_unmapped)) { 4761 /* Wait so that we don't change page under IO */ 4762 wait_on_page_writeback(page); 4763 ret = VM_FAULT_LOCKED; 4764 goto out; 4765 } 4766 } 4767 unlock_page(page); 4768 /* OK, we need to fill the hole... */ 4769 if (ext4_should_dioread_nolock(inode)) 4770 get_block = ext4_get_block_write; 4771 else 4772 get_block = ext4_get_block; 4773 retry_alloc: 4774 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 4775 if (IS_ERR(handle)) { 4776 ret = VM_FAULT_SIGBUS; 4777 goto out; 4778 } 4779 ret = __block_page_mkwrite(vma, vmf, get_block); 4780 if (!ret && ext4_should_journal_data(inode)) { 4781 if (walk_page_buffers(handle, page_buffers(page), 0, 4782 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 4783 unlock_page(page); 4784 ret = VM_FAULT_SIGBUS; 4785 goto out; 4786 } 4787 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 4788 } 4789 ext4_journal_stop(handle); 4790 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 4791 goto retry_alloc; 4792 out_ret: 4793 ret = block_page_mkwrite_return(ret); 4794 out: 4795 return ret; 4796 } 4797