xref: /openbmc/linux/fs/ext4/inode.c (revision 188c299e2a26cc33747187f87c9e044dfd85a782)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49 
50 #include <trace/events/ext4.h>
51 
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 			      struct ext4_inode_info *ei)
54 {
55 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 	__u32 csum;
57 	__u16 dummy_csum = 0;
58 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 	unsigned int csum_size = sizeof(dummy_csum);
60 
61 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 	offset += csum_size;
64 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
66 
67 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 		offset = offsetof(struct ext4_inode, i_checksum_hi);
69 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 				   EXT4_GOOD_OLD_INODE_SIZE,
71 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
72 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 					   csum_size);
75 			offset += csum_size;
76 		}
77 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
79 	}
80 
81 	return csum;
82 }
83 
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 				  struct ext4_inode_info *ei)
86 {
87 	__u32 provided, calculated;
88 
89 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 	    cpu_to_le32(EXT4_OS_LINUX) ||
91 	    !ext4_has_metadata_csum(inode->i_sb))
92 		return 1;
93 
94 	provided = le16_to_cpu(raw->i_checksum_lo);
95 	calculated = ext4_inode_csum(inode, raw, ei);
96 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 	else
100 		calculated &= 0xFFFF;
101 
102 	return provided == calculated;
103 }
104 
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 			 struct ext4_inode_info *ei)
107 {
108 	__u32 csum;
109 
110 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 	    cpu_to_le32(EXT4_OS_LINUX) ||
112 	    !ext4_has_metadata_csum(inode->i_sb))
113 		return;
114 
115 	csum = ext4_inode_csum(inode, raw, ei);
116 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121 
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 					      loff_t new_size)
124 {
125 	trace_ext4_begin_ordered_truncate(inode, new_size);
126 	/*
127 	 * If jinode is zero, then we never opened the file for
128 	 * writing, so there's no need to call
129 	 * jbd2_journal_begin_ordered_truncate() since there's no
130 	 * outstanding writes we need to flush.
131 	 */
132 	if (!EXT4_I(inode)->jinode)
133 		return 0;
134 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 						   EXT4_I(inode)->jinode,
136 						   new_size);
137 }
138 
139 static void ext4_invalidatepage(struct page *page, unsigned int offset,
140 				unsigned int length);
141 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154 
155 		if (ext4_has_inline_data(inode))
156 			return 0;
157 
158 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 	}
160 	return S_ISLNK(inode->i_mode) && inode->i_size &&
161 	       (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163 
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
167 void ext4_evict_inode(struct inode *inode)
168 {
169 	handle_t *handle;
170 	int err;
171 	/*
172 	 * Credits for final inode cleanup and freeing:
173 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
175 	 */
176 	int extra_credits = 6;
177 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
178 	bool freeze_protected = false;
179 
180 	trace_ext4_evict_inode(inode);
181 
182 	if (inode->i_nlink) {
183 		/*
184 		 * When journalling data dirty buffers are tracked only in the
185 		 * journal. So although mm thinks everything is clean and
186 		 * ready for reaping the inode might still have some pages to
187 		 * write in the running transaction or waiting to be
188 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
189 		 * (via truncate_inode_pages()) to discard these buffers can
190 		 * cause data loss. Also even if we did not discard these
191 		 * buffers, we would have no way to find them after the inode
192 		 * is reaped and thus user could see stale data if he tries to
193 		 * read them before the transaction is checkpointed. So be
194 		 * careful and force everything to disk here... We use
195 		 * ei->i_datasync_tid to store the newest transaction
196 		 * containing inode's data.
197 		 *
198 		 * Note that directories do not have this problem because they
199 		 * don't use page cache.
200 		 */
201 		if (inode->i_ino != EXT4_JOURNAL_INO &&
202 		    ext4_should_journal_data(inode) &&
203 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
204 		    inode->i_data.nrpages) {
205 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
206 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
207 
208 			jbd2_complete_transaction(journal, commit_tid);
209 			filemap_write_and_wait(&inode->i_data);
210 		}
211 		truncate_inode_pages_final(&inode->i_data);
212 
213 		goto no_delete;
214 	}
215 
216 	if (is_bad_inode(inode))
217 		goto no_delete;
218 	dquot_initialize(inode);
219 
220 	if (ext4_should_order_data(inode))
221 		ext4_begin_ordered_truncate(inode, 0);
222 	truncate_inode_pages_final(&inode->i_data);
223 
224 	/*
225 	 * For inodes with journalled data, transaction commit could have
226 	 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
227 	 * flag but we still need to remove the inode from the writeback lists.
228 	 */
229 	if (!list_empty_careful(&inode->i_io_list)) {
230 		WARN_ON_ONCE(!ext4_should_journal_data(inode));
231 		inode_io_list_del(inode);
232 	}
233 
234 	/*
235 	 * Protect us against freezing - iput() caller didn't have to have any
236 	 * protection against it. When we are in a running transaction though,
237 	 * we are already protected against freezing and we cannot grab further
238 	 * protection due to lock ordering constraints.
239 	 */
240 	if (!ext4_journal_current_handle()) {
241 		sb_start_intwrite(inode->i_sb);
242 		freeze_protected = true;
243 	}
244 
245 	if (!IS_NOQUOTA(inode))
246 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
247 
248 	/*
249 	 * Block bitmap, group descriptor, and inode are accounted in both
250 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
251 	 */
252 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
253 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
254 	if (IS_ERR(handle)) {
255 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
256 		/*
257 		 * If we're going to skip the normal cleanup, we still need to
258 		 * make sure that the in-core orphan linked list is properly
259 		 * cleaned up.
260 		 */
261 		ext4_orphan_del(NULL, inode);
262 		if (freeze_protected)
263 			sb_end_intwrite(inode->i_sb);
264 		goto no_delete;
265 	}
266 
267 	if (IS_SYNC(inode))
268 		ext4_handle_sync(handle);
269 
270 	/*
271 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
272 	 * special handling of symlinks here because i_size is used to
273 	 * determine whether ext4_inode_info->i_data contains symlink data or
274 	 * block mappings. Setting i_size to 0 will remove its fast symlink
275 	 * status. Erase i_data so that it becomes a valid empty block map.
276 	 */
277 	if (ext4_inode_is_fast_symlink(inode))
278 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
279 	inode->i_size = 0;
280 	err = ext4_mark_inode_dirty(handle, inode);
281 	if (err) {
282 		ext4_warning(inode->i_sb,
283 			     "couldn't mark inode dirty (err %d)", err);
284 		goto stop_handle;
285 	}
286 	if (inode->i_blocks) {
287 		err = ext4_truncate(inode);
288 		if (err) {
289 			ext4_error_err(inode->i_sb, -err,
290 				       "couldn't truncate inode %lu (err %d)",
291 				       inode->i_ino, err);
292 			goto stop_handle;
293 		}
294 	}
295 
296 	/* Remove xattr references. */
297 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
298 				      extra_credits);
299 	if (err) {
300 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
301 stop_handle:
302 		ext4_journal_stop(handle);
303 		ext4_orphan_del(NULL, inode);
304 		if (freeze_protected)
305 			sb_end_intwrite(inode->i_sb);
306 		ext4_xattr_inode_array_free(ea_inode_array);
307 		goto no_delete;
308 	}
309 
310 	/*
311 	 * Kill off the orphan record which ext4_truncate created.
312 	 * AKPM: I think this can be inside the above `if'.
313 	 * Note that ext4_orphan_del() has to be able to cope with the
314 	 * deletion of a non-existent orphan - this is because we don't
315 	 * know if ext4_truncate() actually created an orphan record.
316 	 * (Well, we could do this if we need to, but heck - it works)
317 	 */
318 	ext4_orphan_del(handle, inode);
319 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
320 
321 	/*
322 	 * One subtle ordering requirement: if anything has gone wrong
323 	 * (transaction abort, IO errors, whatever), then we can still
324 	 * do these next steps (the fs will already have been marked as
325 	 * having errors), but we can't free the inode if the mark_dirty
326 	 * fails.
327 	 */
328 	if (ext4_mark_inode_dirty(handle, inode))
329 		/* If that failed, just do the required in-core inode clear. */
330 		ext4_clear_inode(inode);
331 	else
332 		ext4_free_inode(handle, inode);
333 	ext4_journal_stop(handle);
334 	if (freeze_protected)
335 		sb_end_intwrite(inode->i_sb);
336 	ext4_xattr_inode_array_free(ea_inode_array);
337 	return;
338 no_delete:
339 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
340 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
341 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
342 }
343 
344 #ifdef CONFIG_QUOTA
345 qsize_t *ext4_get_reserved_space(struct inode *inode)
346 {
347 	return &EXT4_I(inode)->i_reserved_quota;
348 }
349 #endif
350 
351 /*
352  * Called with i_data_sem down, which is important since we can call
353  * ext4_discard_preallocations() from here.
354  */
355 void ext4_da_update_reserve_space(struct inode *inode,
356 					int used, int quota_claim)
357 {
358 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
359 	struct ext4_inode_info *ei = EXT4_I(inode);
360 
361 	spin_lock(&ei->i_block_reservation_lock);
362 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
363 	if (unlikely(used > ei->i_reserved_data_blocks)) {
364 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
365 			 "with only %d reserved data blocks",
366 			 __func__, inode->i_ino, used,
367 			 ei->i_reserved_data_blocks);
368 		WARN_ON(1);
369 		used = ei->i_reserved_data_blocks;
370 	}
371 
372 	/* Update per-inode reservations */
373 	ei->i_reserved_data_blocks -= used;
374 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
375 
376 	spin_unlock(&ei->i_block_reservation_lock);
377 
378 	/* Update quota subsystem for data blocks */
379 	if (quota_claim)
380 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
381 	else {
382 		/*
383 		 * We did fallocate with an offset that is already delayed
384 		 * allocated. So on delayed allocated writeback we should
385 		 * not re-claim the quota for fallocated blocks.
386 		 */
387 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
388 	}
389 
390 	/*
391 	 * If we have done all the pending block allocations and if
392 	 * there aren't any writers on the inode, we can discard the
393 	 * inode's preallocations.
394 	 */
395 	if ((ei->i_reserved_data_blocks == 0) &&
396 	    !inode_is_open_for_write(inode))
397 		ext4_discard_preallocations(inode, 0);
398 }
399 
400 static int __check_block_validity(struct inode *inode, const char *func,
401 				unsigned int line,
402 				struct ext4_map_blocks *map)
403 {
404 	if (ext4_has_feature_journal(inode->i_sb) &&
405 	    (inode->i_ino ==
406 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
407 		return 0;
408 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
409 		ext4_error_inode(inode, func, line, map->m_pblk,
410 				 "lblock %lu mapped to illegal pblock %llu "
411 				 "(length %d)", (unsigned long) map->m_lblk,
412 				 map->m_pblk, map->m_len);
413 		return -EFSCORRUPTED;
414 	}
415 	return 0;
416 }
417 
418 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
419 		       ext4_lblk_t len)
420 {
421 	int ret;
422 
423 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
424 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
425 
426 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
427 	if (ret > 0)
428 		ret = 0;
429 
430 	return ret;
431 }
432 
433 #define check_block_validity(inode, map)	\
434 	__check_block_validity((inode), __func__, __LINE__, (map))
435 
436 #ifdef ES_AGGRESSIVE_TEST
437 static void ext4_map_blocks_es_recheck(handle_t *handle,
438 				       struct inode *inode,
439 				       struct ext4_map_blocks *es_map,
440 				       struct ext4_map_blocks *map,
441 				       int flags)
442 {
443 	int retval;
444 
445 	map->m_flags = 0;
446 	/*
447 	 * There is a race window that the result is not the same.
448 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
449 	 * is that we lookup a block mapping in extent status tree with
450 	 * out taking i_data_sem.  So at the time the unwritten extent
451 	 * could be converted.
452 	 */
453 	down_read(&EXT4_I(inode)->i_data_sem);
454 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
455 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
456 	} else {
457 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
458 	}
459 	up_read((&EXT4_I(inode)->i_data_sem));
460 
461 	/*
462 	 * We don't check m_len because extent will be collpased in status
463 	 * tree.  So the m_len might not equal.
464 	 */
465 	if (es_map->m_lblk != map->m_lblk ||
466 	    es_map->m_flags != map->m_flags ||
467 	    es_map->m_pblk != map->m_pblk) {
468 		printk("ES cache assertion failed for inode: %lu "
469 		       "es_cached ex [%d/%d/%llu/%x] != "
470 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
472 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 		       map->m_len, map->m_pblk, map->m_flags,
474 		       retval, flags);
475 	}
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478 
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocated.  if
492  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
493  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
494  *
495  * It returns 0 if plain look up failed (blocks have not been allocated), in
496  * that case, @map is returned as unmapped but we still do fill map->m_len to
497  * indicate the length of a hole starting at map->m_lblk.
498  *
499  * It returns the error in case of allocation failure.
500  */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 		    struct ext4_map_blocks *map, int flags)
503 {
504 	struct extent_status es;
505 	int retval;
506 	int ret = 0;
507 #ifdef ES_AGGRESSIVE_TEST
508 	struct ext4_map_blocks orig_map;
509 
510 	memcpy(&orig_map, map, sizeof(*map));
511 #endif
512 
513 	map->m_flags = 0;
514 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
515 		  flags, map->m_len, (unsigned long) map->m_lblk);
516 
517 	/*
518 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
519 	 */
520 	if (unlikely(map->m_len > INT_MAX))
521 		map->m_len = INT_MAX;
522 
523 	/* We can handle the block number less than EXT_MAX_BLOCKS */
524 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
525 		return -EFSCORRUPTED;
526 
527 	/* Lookup extent status tree firstly */
528 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
529 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
530 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
531 			map->m_pblk = ext4_es_pblock(&es) +
532 					map->m_lblk - es.es_lblk;
533 			map->m_flags |= ext4_es_is_written(&es) ?
534 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
535 			retval = es.es_len - (map->m_lblk - es.es_lblk);
536 			if (retval > map->m_len)
537 				retval = map->m_len;
538 			map->m_len = retval;
539 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
540 			map->m_pblk = 0;
541 			retval = es.es_len - (map->m_lblk - es.es_lblk);
542 			if (retval > map->m_len)
543 				retval = map->m_len;
544 			map->m_len = retval;
545 			retval = 0;
546 		} else {
547 			BUG();
548 		}
549 #ifdef ES_AGGRESSIVE_TEST
550 		ext4_map_blocks_es_recheck(handle, inode, map,
551 					   &orig_map, flags);
552 #endif
553 		goto found;
554 	}
555 
556 	/*
557 	 * Try to see if we can get the block without requesting a new
558 	 * file system block.
559 	 */
560 	down_read(&EXT4_I(inode)->i_data_sem);
561 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
562 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
563 	} else {
564 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
565 	}
566 	if (retval > 0) {
567 		unsigned int status;
568 
569 		if (unlikely(retval != map->m_len)) {
570 			ext4_warning(inode->i_sb,
571 				     "ES len assertion failed for inode "
572 				     "%lu: retval %d != map->m_len %d",
573 				     inode->i_ino, retval, map->m_len);
574 			WARN_ON(1);
575 		}
576 
577 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
578 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
579 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
580 		    !(status & EXTENT_STATUS_WRITTEN) &&
581 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
582 				       map->m_lblk + map->m_len - 1))
583 			status |= EXTENT_STATUS_DELAYED;
584 		ret = ext4_es_insert_extent(inode, map->m_lblk,
585 					    map->m_len, map->m_pblk, status);
586 		if (ret < 0)
587 			retval = ret;
588 	}
589 	up_read((&EXT4_I(inode)->i_data_sem));
590 
591 found:
592 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
593 		ret = check_block_validity(inode, map);
594 		if (ret != 0)
595 			return ret;
596 	}
597 
598 	/* If it is only a block(s) look up */
599 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
600 		return retval;
601 
602 	/*
603 	 * Returns if the blocks have already allocated
604 	 *
605 	 * Note that if blocks have been preallocated
606 	 * ext4_ext_get_block() returns the create = 0
607 	 * with buffer head unmapped.
608 	 */
609 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
610 		/*
611 		 * If we need to convert extent to unwritten
612 		 * we continue and do the actual work in
613 		 * ext4_ext_map_blocks()
614 		 */
615 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
616 			return retval;
617 
618 	/*
619 	 * Here we clear m_flags because after allocating an new extent,
620 	 * it will be set again.
621 	 */
622 	map->m_flags &= ~EXT4_MAP_FLAGS;
623 
624 	/*
625 	 * New blocks allocate and/or writing to unwritten extent
626 	 * will possibly result in updating i_data, so we take
627 	 * the write lock of i_data_sem, and call get_block()
628 	 * with create == 1 flag.
629 	 */
630 	down_write(&EXT4_I(inode)->i_data_sem);
631 
632 	/*
633 	 * We need to check for EXT4 here because migrate
634 	 * could have changed the inode type in between
635 	 */
636 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
637 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
638 	} else {
639 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
640 
641 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
642 			/*
643 			 * We allocated new blocks which will result in
644 			 * i_data's format changing.  Force the migrate
645 			 * to fail by clearing migrate flags
646 			 */
647 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
648 		}
649 
650 		/*
651 		 * Update reserved blocks/metadata blocks after successful
652 		 * block allocation which had been deferred till now. We don't
653 		 * support fallocate for non extent files. So we can update
654 		 * reserve space here.
655 		 */
656 		if ((retval > 0) &&
657 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
658 			ext4_da_update_reserve_space(inode, retval, 1);
659 	}
660 
661 	if (retval > 0) {
662 		unsigned int status;
663 
664 		if (unlikely(retval != map->m_len)) {
665 			ext4_warning(inode->i_sb,
666 				     "ES len assertion failed for inode "
667 				     "%lu: retval %d != map->m_len %d",
668 				     inode->i_ino, retval, map->m_len);
669 			WARN_ON(1);
670 		}
671 
672 		/*
673 		 * We have to zeroout blocks before inserting them into extent
674 		 * status tree. Otherwise someone could look them up there and
675 		 * use them before they are really zeroed. We also have to
676 		 * unmap metadata before zeroing as otherwise writeback can
677 		 * overwrite zeros with stale data from block device.
678 		 */
679 		if (flags & EXT4_GET_BLOCKS_ZERO &&
680 		    map->m_flags & EXT4_MAP_MAPPED &&
681 		    map->m_flags & EXT4_MAP_NEW) {
682 			ret = ext4_issue_zeroout(inode, map->m_lblk,
683 						 map->m_pblk, map->m_len);
684 			if (ret) {
685 				retval = ret;
686 				goto out_sem;
687 			}
688 		}
689 
690 		/*
691 		 * If the extent has been zeroed out, we don't need to update
692 		 * extent status tree.
693 		 */
694 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
695 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
696 			if (ext4_es_is_written(&es))
697 				goto out_sem;
698 		}
699 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
700 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
701 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
702 		    !(status & EXTENT_STATUS_WRITTEN) &&
703 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
704 				       map->m_lblk + map->m_len - 1))
705 			status |= EXTENT_STATUS_DELAYED;
706 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
707 					    map->m_pblk, status);
708 		if (ret < 0) {
709 			retval = ret;
710 			goto out_sem;
711 		}
712 	}
713 
714 out_sem:
715 	up_write((&EXT4_I(inode)->i_data_sem));
716 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
717 		ret = check_block_validity(inode, map);
718 		if (ret != 0)
719 			return ret;
720 
721 		/*
722 		 * Inodes with freshly allocated blocks where contents will be
723 		 * visible after transaction commit must be on transaction's
724 		 * ordered data list.
725 		 */
726 		if (map->m_flags & EXT4_MAP_NEW &&
727 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
728 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
729 		    !ext4_is_quota_file(inode) &&
730 		    ext4_should_order_data(inode)) {
731 			loff_t start_byte =
732 				(loff_t)map->m_lblk << inode->i_blkbits;
733 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
734 
735 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
736 				ret = ext4_jbd2_inode_add_wait(handle, inode,
737 						start_byte, length);
738 			else
739 				ret = ext4_jbd2_inode_add_write(handle, inode,
740 						start_byte, length);
741 			if (ret)
742 				return ret;
743 		}
744 		ext4_fc_track_range(handle, inode, map->m_lblk,
745 			    map->m_lblk + map->m_len - 1);
746 	}
747 
748 	if (retval < 0)
749 		ext_debug(inode, "failed with err %d\n", retval);
750 	return retval;
751 }
752 
753 /*
754  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
755  * we have to be careful as someone else may be manipulating b_state as well.
756  */
757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
758 {
759 	unsigned long old_state;
760 	unsigned long new_state;
761 
762 	flags &= EXT4_MAP_FLAGS;
763 
764 	/* Dummy buffer_head? Set non-atomically. */
765 	if (!bh->b_page) {
766 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
767 		return;
768 	}
769 	/*
770 	 * Someone else may be modifying b_state. Be careful! This is ugly but
771 	 * once we get rid of using bh as a container for mapping information
772 	 * to pass to / from get_block functions, this can go away.
773 	 */
774 	do {
775 		old_state = READ_ONCE(bh->b_state);
776 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
777 	} while (unlikely(
778 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
779 }
780 
781 static int _ext4_get_block(struct inode *inode, sector_t iblock,
782 			   struct buffer_head *bh, int flags)
783 {
784 	struct ext4_map_blocks map;
785 	int ret = 0;
786 
787 	if (ext4_has_inline_data(inode))
788 		return -ERANGE;
789 
790 	map.m_lblk = iblock;
791 	map.m_len = bh->b_size >> inode->i_blkbits;
792 
793 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
794 			      flags);
795 	if (ret > 0) {
796 		map_bh(bh, inode->i_sb, map.m_pblk);
797 		ext4_update_bh_state(bh, map.m_flags);
798 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
799 		ret = 0;
800 	} else if (ret == 0) {
801 		/* hole case, need to fill in bh->b_size */
802 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
803 	}
804 	return ret;
805 }
806 
807 int ext4_get_block(struct inode *inode, sector_t iblock,
808 		   struct buffer_head *bh, int create)
809 {
810 	return _ext4_get_block(inode, iblock, bh,
811 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
812 }
813 
814 /*
815  * Get block function used when preparing for buffered write if we require
816  * creating an unwritten extent if blocks haven't been allocated.  The extent
817  * will be converted to written after the IO is complete.
818  */
819 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
820 			     struct buffer_head *bh_result, int create)
821 {
822 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
823 		   inode->i_ino, create);
824 	return _ext4_get_block(inode, iblock, bh_result,
825 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
826 }
827 
828 /* Maximum number of blocks we map for direct IO at once. */
829 #define DIO_MAX_BLOCKS 4096
830 
831 /*
832  * `handle' can be NULL if create is zero
833  */
834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
835 				ext4_lblk_t block, int map_flags)
836 {
837 	struct ext4_map_blocks map;
838 	struct buffer_head *bh;
839 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
840 	int err;
841 
842 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
843 		    || handle != NULL || create == 0);
844 
845 	map.m_lblk = block;
846 	map.m_len = 1;
847 	err = ext4_map_blocks(handle, inode, &map, map_flags);
848 
849 	if (err == 0)
850 		return create ? ERR_PTR(-ENOSPC) : NULL;
851 	if (err < 0)
852 		return ERR_PTR(err);
853 
854 	bh = sb_getblk(inode->i_sb, map.m_pblk);
855 	if (unlikely(!bh))
856 		return ERR_PTR(-ENOMEM);
857 	if (map.m_flags & EXT4_MAP_NEW) {
858 		ASSERT(create != 0);
859 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
860 			    || (handle != NULL));
861 
862 		/*
863 		 * Now that we do not always journal data, we should
864 		 * keep in mind whether this should always journal the
865 		 * new buffer as metadata.  For now, regular file
866 		 * writes use ext4_get_block instead, so it's not a
867 		 * problem.
868 		 */
869 		lock_buffer(bh);
870 		BUFFER_TRACE(bh, "call get_create_access");
871 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
872 						     EXT4_JTR_NONE);
873 		if (unlikely(err)) {
874 			unlock_buffer(bh);
875 			goto errout;
876 		}
877 		if (!buffer_uptodate(bh)) {
878 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
879 			set_buffer_uptodate(bh);
880 		}
881 		unlock_buffer(bh);
882 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
883 		err = ext4_handle_dirty_metadata(handle, inode, bh);
884 		if (unlikely(err))
885 			goto errout;
886 	} else
887 		BUFFER_TRACE(bh, "not a new buffer");
888 	return bh;
889 errout:
890 	brelse(bh);
891 	return ERR_PTR(err);
892 }
893 
894 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
895 			       ext4_lblk_t block, int map_flags)
896 {
897 	struct buffer_head *bh;
898 	int ret;
899 
900 	bh = ext4_getblk(handle, inode, block, map_flags);
901 	if (IS_ERR(bh))
902 		return bh;
903 	if (!bh || ext4_buffer_uptodate(bh))
904 		return bh;
905 
906 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
907 	if (ret) {
908 		put_bh(bh);
909 		return ERR_PTR(ret);
910 	}
911 	return bh;
912 }
913 
914 /* Read a contiguous batch of blocks. */
915 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
916 		     bool wait, struct buffer_head **bhs)
917 {
918 	int i, err;
919 
920 	for (i = 0; i < bh_count; i++) {
921 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
922 		if (IS_ERR(bhs[i])) {
923 			err = PTR_ERR(bhs[i]);
924 			bh_count = i;
925 			goto out_brelse;
926 		}
927 	}
928 
929 	for (i = 0; i < bh_count; i++)
930 		/* Note that NULL bhs[i] is valid because of holes. */
931 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
932 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
933 
934 	if (!wait)
935 		return 0;
936 
937 	for (i = 0; i < bh_count; i++)
938 		if (bhs[i])
939 			wait_on_buffer(bhs[i]);
940 
941 	for (i = 0; i < bh_count; i++) {
942 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
943 			err = -EIO;
944 			goto out_brelse;
945 		}
946 	}
947 	return 0;
948 
949 out_brelse:
950 	for (i = 0; i < bh_count; i++) {
951 		brelse(bhs[i]);
952 		bhs[i] = NULL;
953 	}
954 	return err;
955 }
956 
957 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
958 			   struct buffer_head *head,
959 			   unsigned from,
960 			   unsigned to,
961 			   int *partial,
962 			   int (*fn)(handle_t *handle, struct inode *inode,
963 				     struct buffer_head *bh))
964 {
965 	struct buffer_head *bh;
966 	unsigned block_start, block_end;
967 	unsigned blocksize = head->b_size;
968 	int err, ret = 0;
969 	struct buffer_head *next;
970 
971 	for (bh = head, block_start = 0;
972 	     ret == 0 && (bh != head || !block_start);
973 	     block_start = block_end, bh = next) {
974 		next = bh->b_this_page;
975 		block_end = block_start + blocksize;
976 		if (block_end <= from || block_start >= to) {
977 			if (partial && !buffer_uptodate(bh))
978 				*partial = 1;
979 			continue;
980 		}
981 		err = (*fn)(handle, inode, bh);
982 		if (!ret)
983 			ret = err;
984 	}
985 	return ret;
986 }
987 
988 /*
989  * To preserve ordering, it is essential that the hole instantiation and
990  * the data write be encapsulated in a single transaction.  We cannot
991  * close off a transaction and start a new one between the ext4_get_block()
992  * and the commit_write().  So doing the jbd2_journal_start at the start of
993  * prepare_write() is the right place.
994  *
995  * Also, this function can nest inside ext4_writepage().  In that case, we
996  * *know* that ext4_writepage() has generated enough buffer credits to do the
997  * whole page.  So we won't block on the journal in that case, which is good,
998  * because the caller may be PF_MEMALLOC.
999  *
1000  * By accident, ext4 can be reentered when a transaction is open via
1001  * quota file writes.  If we were to commit the transaction while thus
1002  * reentered, there can be a deadlock - we would be holding a quota
1003  * lock, and the commit would never complete if another thread had a
1004  * transaction open and was blocking on the quota lock - a ranking
1005  * violation.
1006  *
1007  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1008  * will _not_ run commit under these circumstances because handle->h_ref
1009  * is elevated.  We'll still have enough credits for the tiny quotafile
1010  * write.
1011  */
1012 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1013 				struct buffer_head *bh)
1014 {
1015 	int dirty = buffer_dirty(bh);
1016 	int ret;
1017 
1018 	if (!buffer_mapped(bh) || buffer_freed(bh))
1019 		return 0;
1020 	/*
1021 	 * __block_write_begin() could have dirtied some buffers. Clean
1022 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1023 	 * otherwise about fs integrity issues. Setting of the dirty bit
1024 	 * by __block_write_begin() isn't a real problem here as we clear
1025 	 * the bit before releasing a page lock and thus writeback cannot
1026 	 * ever write the buffer.
1027 	 */
1028 	if (dirty)
1029 		clear_buffer_dirty(bh);
1030 	BUFFER_TRACE(bh, "get write access");
1031 	ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1032 					    EXT4_JTR_NONE);
1033 	if (!ret && dirty)
1034 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1035 	return ret;
1036 }
1037 
1038 #ifdef CONFIG_FS_ENCRYPTION
1039 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1040 				  get_block_t *get_block)
1041 {
1042 	unsigned from = pos & (PAGE_SIZE - 1);
1043 	unsigned to = from + len;
1044 	struct inode *inode = page->mapping->host;
1045 	unsigned block_start, block_end;
1046 	sector_t block;
1047 	int err = 0;
1048 	unsigned blocksize = inode->i_sb->s_blocksize;
1049 	unsigned bbits;
1050 	struct buffer_head *bh, *head, *wait[2];
1051 	int nr_wait = 0;
1052 	int i;
1053 
1054 	BUG_ON(!PageLocked(page));
1055 	BUG_ON(from > PAGE_SIZE);
1056 	BUG_ON(to > PAGE_SIZE);
1057 	BUG_ON(from > to);
1058 
1059 	if (!page_has_buffers(page))
1060 		create_empty_buffers(page, blocksize, 0);
1061 	head = page_buffers(page);
1062 	bbits = ilog2(blocksize);
1063 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1064 
1065 	for (bh = head, block_start = 0; bh != head || !block_start;
1066 	    block++, block_start = block_end, bh = bh->b_this_page) {
1067 		block_end = block_start + blocksize;
1068 		if (block_end <= from || block_start >= to) {
1069 			if (PageUptodate(page)) {
1070 				set_buffer_uptodate(bh);
1071 			}
1072 			continue;
1073 		}
1074 		if (buffer_new(bh))
1075 			clear_buffer_new(bh);
1076 		if (!buffer_mapped(bh)) {
1077 			WARN_ON(bh->b_size != blocksize);
1078 			err = get_block(inode, block, bh, 1);
1079 			if (err)
1080 				break;
1081 			if (buffer_new(bh)) {
1082 				if (PageUptodate(page)) {
1083 					clear_buffer_new(bh);
1084 					set_buffer_uptodate(bh);
1085 					mark_buffer_dirty(bh);
1086 					continue;
1087 				}
1088 				if (block_end > to || block_start < from)
1089 					zero_user_segments(page, to, block_end,
1090 							   block_start, from);
1091 				continue;
1092 			}
1093 		}
1094 		if (PageUptodate(page)) {
1095 			set_buffer_uptodate(bh);
1096 			continue;
1097 		}
1098 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1099 		    !buffer_unwritten(bh) &&
1100 		    (block_start < from || block_end > to)) {
1101 			ext4_read_bh_lock(bh, 0, false);
1102 			wait[nr_wait++] = bh;
1103 		}
1104 	}
1105 	/*
1106 	 * If we issued read requests, let them complete.
1107 	 */
1108 	for (i = 0; i < nr_wait; i++) {
1109 		wait_on_buffer(wait[i]);
1110 		if (!buffer_uptodate(wait[i]))
1111 			err = -EIO;
1112 	}
1113 	if (unlikely(err)) {
1114 		page_zero_new_buffers(page, from, to);
1115 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1116 		for (i = 0; i < nr_wait; i++) {
1117 			int err2;
1118 
1119 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1120 								bh_offset(wait[i]));
1121 			if (err2) {
1122 				clear_buffer_uptodate(wait[i]);
1123 				err = err2;
1124 			}
1125 		}
1126 	}
1127 
1128 	return err;
1129 }
1130 #endif
1131 
1132 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1133 			    loff_t pos, unsigned len, unsigned flags,
1134 			    struct page **pagep, void **fsdata)
1135 {
1136 	struct inode *inode = mapping->host;
1137 	int ret, needed_blocks;
1138 	handle_t *handle;
1139 	int retries = 0;
1140 	struct page *page;
1141 	pgoff_t index;
1142 	unsigned from, to;
1143 
1144 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1145 		return -EIO;
1146 
1147 	trace_ext4_write_begin(inode, pos, len, flags);
1148 	/*
1149 	 * Reserve one block more for addition to orphan list in case
1150 	 * we allocate blocks but write fails for some reason
1151 	 */
1152 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1153 	index = pos >> PAGE_SHIFT;
1154 	from = pos & (PAGE_SIZE - 1);
1155 	to = from + len;
1156 
1157 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1158 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1159 						    flags, pagep);
1160 		if (ret < 0)
1161 			return ret;
1162 		if (ret == 1)
1163 			return 0;
1164 	}
1165 
1166 	/*
1167 	 * grab_cache_page_write_begin() can take a long time if the
1168 	 * system is thrashing due to memory pressure, or if the page
1169 	 * is being written back.  So grab it first before we start
1170 	 * the transaction handle.  This also allows us to allocate
1171 	 * the page (if needed) without using GFP_NOFS.
1172 	 */
1173 retry_grab:
1174 	page = grab_cache_page_write_begin(mapping, index, flags);
1175 	if (!page)
1176 		return -ENOMEM;
1177 	unlock_page(page);
1178 
1179 retry_journal:
1180 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1181 	if (IS_ERR(handle)) {
1182 		put_page(page);
1183 		return PTR_ERR(handle);
1184 	}
1185 
1186 	lock_page(page);
1187 	if (page->mapping != mapping) {
1188 		/* The page got truncated from under us */
1189 		unlock_page(page);
1190 		put_page(page);
1191 		ext4_journal_stop(handle);
1192 		goto retry_grab;
1193 	}
1194 	/* In case writeback began while the page was unlocked */
1195 	wait_for_stable_page(page);
1196 
1197 #ifdef CONFIG_FS_ENCRYPTION
1198 	if (ext4_should_dioread_nolock(inode))
1199 		ret = ext4_block_write_begin(page, pos, len,
1200 					     ext4_get_block_unwritten);
1201 	else
1202 		ret = ext4_block_write_begin(page, pos, len,
1203 					     ext4_get_block);
1204 #else
1205 	if (ext4_should_dioread_nolock(inode))
1206 		ret = __block_write_begin(page, pos, len,
1207 					  ext4_get_block_unwritten);
1208 	else
1209 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1210 #endif
1211 	if (!ret && ext4_should_journal_data(inode)) {
1212 		ret = ext4_walk_page_buffers(handle, inode,
1213 					     page_buffers(page), from, to, NULL,
1214 					     do_journal_get_write_access);
1215 	}
1216 
1217 	if (ret) {
1218 		bool extended = (pos + len > inode->i_size) &&
1219 				!ext4_verity_in_progress(inode);
1220 
1221 		unlock_page(page);
1222 		/*
1223 		 * __block_write_begin may have instantiated a few blocks
1224 		 * outside i_size.  Trim these off again. Don't need
1225 		 * i_size_read because we hold i_mutex.
1226 		 *
1227 		 * Add inode to orphan list in case we crash before
1228 		 * truncate finishes
1229 		 */
1230 		if (extended && ext4_can_truncate(inode))
1231 			ext4_orphan_add(handle, inode);
1232 
1233 		ext4_journal_stop(handle);
1234 		if (extended) {
1235 			ext4_truncate_failed_write(inode);
1236 			/*
1237 			 * If truncate failed early the inode might
1238 			 * still be on the orphan list; we need to
1239 			 * make sure the inode is removed from the
1240 			 * orphan list in that case.
1241 			 */
1242 			if (inode->i_nlink)
1243 				ext4_orphan_del(NULL, inode);
1244 		}
1245 
1246 		if (ret == -ENOSPC &&
1247 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1248 			goto retry_journal;
1249 		put_page(page);
1250 		return ret;
1251 	}
1252 	*pagep = page;
1253 	return ret;
1254 }
1255 
1256 /* For write_end() in data=journal mode */
1257 static int write_end_fn(handle_t *handle, struct inode *inode,
1258 			struct buffer_head *bh)
1259 {
1260 	int ret;
1261 	if (!buffer_mapped(bh) || buffer_freed(bh))
1262 		return 0;
1263 	set_buffer_uptodate(bh);
1264 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1265 	clear_buffer_meta(bh);
1266 	clear_buffer_prio(bh);
1267 	return ret;
1268 }
1269 
1270 /*
1271  * We need to pick up the new inode size which generic_commit_write gave us
1272  * `file' can be NULL - eg, when called from page_symlink().
1273  *
1274  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1275  * buffers are managed internally.
1276  */
1277 static int ext4_write_end(struct file *file,
1278 			  struct address_space *mapping,
1279 			  loff_t pos, unsigned len, unsigned copied,
1280 			  struct page *page, void *fsdata)
1281 {
1282 	handle_t *handle = ext4_journal_current_handle();
1283 	struct inode *inode = mapping->host;
1284 	loff_t old_size = inode->i_size;
1285 	int ret = 0, ret2;
1286 	int i_size_changed = 0;
1287 	int inline_data = ext4_has_inline_data(inode);
1288 	bool verity = ext4_verity_in_progress(inode);
1289 
1290 	trace_ext4_write_end(inode, pos, len, copied);
1291 	if (inline_data) {
1292 		ret = ext4_write_inline_data_end(inode, pos, len,
1293 						 copied, page);
1294 		if (ret < 0) {
1295 			unlock_page(page);
1296 			put_page(page);
1297 			goto errout;
1298 		}
1299 		copied = ret;
1300 	} else
1301 		copied = block_write_end(file, mapping, pos,
1302 					 len, copied, page, fsdata);
1303 	/*
1304 	 * it's important to update i_size while still holding page lock:
1305 	 * page writeout could otherwise come in and zero beyond i_size.
1306 	 *
1307 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1308 	 * blocks are being written past EOF, so skip the i_size update.
1309 	 */
1310 	if (!verity)
1311 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1312 	unlock_page(page);
1313 	put_page(page);
1314 
1315 	if (old_size < pos && !verity)
1316 		pagecache_isize_extended(inode, old_size, pos);
1317 	/*
1318 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1319 	 * makes the holding time of page lock longer. Second, it forces lock
1320 	 * ordering of page lock and transaction start for journaling
1321 	 * filesystems.
1322 	 */
1323 	if (i_size_changed || inline_data)
1324 		ret = ext4_mark_inode_dirty(handle, inode);
1325 
1326 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1327 		/* if we have allocated more blocks and copied
1328 		 * less. We will have blocks allocated outside
1329 		 * inode->i_size. So truncate them
1330 		 */
1331 		ext4_orphan_add(handle, inode);
1332 errout:
1333 	ret2 = ext4_journal_stop(handle);
1334 	if (!ret)
1335 		ret = ret2;
1336 
1337 	if (pos + len > inode->i_size && !verity) {
1338 		ext4_truncate_failed_write(inode);
1339 		/*
1340 		 * If truncate failed early the inode might still be
1341 		 * on the orphan list; we need to make sure the inode
1342 		 * is removed from the orphan list in that case.
1343 		 */
1344 		if (inode->i_nlink)
1345 			ext4_orphan_del(NULL, inode);
1346 	}
1347 
1348 	return ret ? ret : copied;
1349 }
1350 
1351 /*
1352  * This is a private version of page_zero_new_buffers() which doesn't
1353  * set the buffer to be dirty, since in data=journalled mode we need
1354  * to call ext4_handle_dirty_metadata() instead.
1355  */
1356 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1357 					    struct inode *inode,
1358 					    struct page *page,
1359 					    unsigned from, unsigned to)
1360 {
1361 	unsigned int block_start = 0, block_end;
1362 	struct buffer_head *head, *bh;
1363 
1364 	bh = head = page_buffers(page);
1365 	do {
1366 		block_end = block_start + bh->b_size;
1367 		if (buffer_new(bh)) {
1368 			if (block_end > from && block_start < to) {
1369 				if (!PageUptodate(page)) {
1370 					unsigned start, size;
1371 
1372 					start = max(from, block_start);
1373 					size = min(to, block_end) - start;
1374 
1375 					zero_user(page, start, size);
1376 					write_end_fn(handle, inode, bh);
1377 				}
1378 				clear_buffer_new(bh);
1379 			}
1380 		}
1381 		block_start = block_end;
1382 		bh = bh->b_this_page;
1383 	} while (bh != head);
1384 }
1385 
1386 static int ext4_journalled_write_end(struct file *file,
1387 				     struct address_space *mapping,
1388 				     loff_t pos, unsigned len, unsigned copied,
1389 				     struct page *page, void *fsdata)
1390 {
1391 	handle_t *handle = ext4_journal_current_handle();
1392 	struct inode *inode = mapping->host;
1393 	loff_t old_size = inode->i_size;
1394 	int ret = 0, ret2;
1395 	int partial = 0;
1396 	unsigned from, to;
1397 	int size_changed = 0;
1398 	int inline_data = ext4_has_inline_data(inode);
1399 	bool verity = ext4_verity_in_progress(inode);
1400 
1401 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1402 	from = pos & (PAGE_SIZE - 1);
1403 	to = from + len;
1404 
1405 	BUG_ON(!ext4_handle_valid(handle));
1406 
1407 	if (inline_data) {
1408 		ret = ext4_write_inline_data_end(inode, pos, len,
1409 						 copied, page);
1410 		if (ret < 0) {
1411 			unlock_page(page);
1412 			put_page(page);
1413 			goto errout;
1414 		}
1415 		copied = ret;
1416 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1417 		copied = 0;
1418 		ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1419 	} else {
1420 		if (unlikely(copied < len))
1421 			ext4_journalled_zero_new_buffers(handle, inode, page,
1422 							 from + copied, to);
1423 		ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1424 					     from, from + copied, &partial,
1425 					     write_end_fn);
1426 		if (!partial)
1427 			SetPageUptodate(page);
1428 	}
1429 	if (!verity)
1430 		size_changed = ext4_update_inode_size(inode, pos + copied);
1431 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1432 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1433 	unlock_page(page);
1434 	put_page(page);
1435 
1436 	if (old_size < pos && !verity)
1437 		pagecache_isize_extended(inode, old_size, pos);
1438 
1439 	if (size_changed || inline_data) {
1440 		ret2 = ext4_mark_inode_dirty(handle, inode);
1441 		if (!ret)
1442 			ret = ret2;
1443 	}
1444 
1445 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1446 		/* if we have allocated more blocks and copied
1447 		 * less. We will have blocks allocated outside
1448 		 * inode->i_size. So truncate them
1449 		 */
1450 		ext4_orphan_add(handle, inode);
1451 
1452 errout:
1453 	ret2 = ext4_journal_stop(handle);
1454 	if (!ret)
1455 		ret = ret2;
1456 	if (pos + len > inode->i_size && !verity) {
1457 		ext4_truncate_failed_write(inode);
1458 		/*
1459 		 * If truncate failed early the inode might still be
1460 		 * on the orphan list; we need to make sure the inode
1461 		 * is removed from the orphan list in that case.
1462 		 */
1463 		if (inode->i_nlink)
1464 			ext4_orphan_del(NULL, inode);
1465 	}
1466 
1467 	return ret ? ret : copied;
1468 }
1469 
1470 /*
1471  * Reserve space for a single cluster
1472  */
1473 static int ext4_da_reserve_space(struct inode *inode)
1474 {
1475 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1476 	struct ext4_inode_info *ei = EXT4_I(inode);
1477 	int ret;
1478 
1479 	/*
1480 	 * We will charge metadata quota at writeout time; this saves
1481 	 * us from metadata over-estimation, though we may go over by
1482 	 * a small amount in the end.  Here we just reserve for data.
1483 	 */
1484 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1485 	if (ret)
1486 		return ret;
1487 
1488 	spin_lock(&ei->i_block_reservation_lock);
1489 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1490 		spin_unlock(&ei->i_block_reservation_lock);
1491 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1492 		return -ENOSPC;
1493 	}
1494 	ei->i_reserved_data_blocks++;
1495 	trace_ext4_da_reserve_space(inode);
1496 	spin_unlock(&ei->i_block_reservation_lock);
1497 
1498 	return 0;       /* success */
1499 }
1500 
1501 void ext4_da_release_space(struct inode *inode, int to_free)
1502 {
1503 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1504 	struct ext4_inode_info *ei = EXT4_I(inode);
1505 
1506 	if (!to_free)
1507 		return;		/* Nothing to release, exit */
1508 
1509 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1510 
1511 	trace_ext4_da_release_space(inode, to_free);
1512 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1513 		/*
1514 		 * if there aren't enough reserved blocks, then the
1515 		 * counter is messed up somewhere.  Since this
1516 		 * function is called from invalidate page, it's
1517 		 * harmless to return without any action.
1518 		 */
1519 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1520 			 "ino %lu, to_free %d with only %d reserved "
1521 			 "data blocks", inode->i_ino, to_free,
1522 			 ei->i_reserved_data_blocks);
1523 		WARN_ON(1);
1524 		to_free = ei->i_reserved_data_blocks;
1525 	}
1526 	ei->i_reserved_data_blocks -= to_free;
1527 
1528 	/* update fs dirty data blocks counter */
1529 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1530 
1531 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1532 
1533 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1534 }
1535 
1536 /*
1537  * Delayed allocation stuff
1538  */
1539 
1540 struct mpage_da_data {
1541 	struct inode *inode;
1542 	struct writeback_control *wbc;
1543 
1544 	pgoff_t first_page;	/* The first page to write */
1545 	pgoff_t next_page;	/* Current page to examine */
1546 	pgoff_t last_page;	/* Last page to examine */
1547 	/*
1548 	 * Extent to map - this can be after first_page because that can be
1549 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1550 	 * is delalloc or unwritten.
1551 	 */
1552 	struct ext4_map_blocks map;
1553 	struct ext4_io_submit io_submit;	/* IO submission data */
1554 	unsigned int do_map:1;
1555 	unsigned int scanned_until_end:1;
1556 };
1557 
1558 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1559 				       bool invalidate)
1560 {
1561 	int nr_pages, i;
1562 	pgoff_t index, end;
1563 	struct pagevec pvec;
1564 	struct inode *inode = mpd->inode;
1565 	struct address_space *mapping = inode->i_mapping;
1566 
1567 	/* This is necessary when next_page == 0. */
1568 	if (mpd->first_page >= mpd->next_page)
1569 		return;
1570 
1571 	mpd->scanned_until_end = 0;
1572 	index = mpd->first_page;
1573 	end   = mpd->next_page - 1;
1574 	if (invalidate) {
1575 		ext4_lblk_t start, last;
1576 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1577 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1578 		ext4_es_remove_extent(inode, start, last - start + 1);
1579 	}
1580 
1581 	pagevec_init(&pvec);
1582 	while (index <= end) {
1583 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1584 		if (nr_pages == 0)
1585 			break;
1586 		for (i = 0; i < nr_pages; i++) {
1587 			struct page *page = pvec.pages[i];
1588 
1589 			BUG_ON(!PageLocked(page));
1590 			BUG_ON(PageWriteback(page));
1591 			if (invalidate) {
1592 				if (page_mapped(page))
1593 					clear_page_dirty_for_io(page);
1594 				block_invalidatepage(page, 0, PAGE_SIZE);
1595 				ClearPageUptodate(page);
1596 			}
1597 			unlock_page(page);
1598 		}
1599 		pagevec_release(&pvec);
1600 	}
1601 }
1602 
1603 static void ext4_print_free_blocks(struct inode *inode)
1604 {
1605 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1606 	struct super_block *sb = inode->i_sb;
1607 	struct ext4_inode_info *ei = EXT4_I(inode);
1608 
1609 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1610 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1611 			ext4_count_free_clusters(sb)));
1612 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1613 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1614 	       (long long) EXT4_C2B(EXT4_SB(sb),
1615 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1616 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1617 	       (long long) EXT4_C2B(EXT4_SB(sb),
1618 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1619 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1620 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1621 		 ei->i_reserved_data_blocks);
1622 	return;
1623 }
1624 
1625 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1626 				      struct buffer_head *bh)
1627 {
1628 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1629 }
1630 
1631 /*
1632  * ext4_insert_delayed_block - adds a delayed block to the extents status
1633  *                             tree, incrementing the reserved cluster/block
1634  *                             count or making a pending reservation
1635  *                             where needed
1636  *
1637  * @inode - file containing the newly added block
1638  * @lblk - logical block to be added
1639  *
1640  * Returns 0 on success, negative error code on failure.
1641  */
1642 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1643 {
1644 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1645 	int ret;
1646 	bool allocated = false;
1647 
1648 	/*
1649 	 * If the cluster containing lblk is shared with a delayed,
1650 	 * written, or unwritten extent in a bigalloc file system, it's
1651 	 * already been accounted for and does not need to be reserved.
1652 	 * A pending reservation must be made for the cluster if it's
1653 	 * shared with a written or unwritten extent and doesn't already
1654 	 * have one.  Written and unwritten extents can be purged from the
1655 	 * extents status tree if the system is under memory pressure, so
1656 	 * it's necessary to examine the extent tree if a search of the
1657 	 * extents status tree doesn't get a match.
1658 	 */
1659 	if (sbi->s_cluster_ratio == 1) {
1660 		ret = ext4_da_reserve_space(inode);
1661 		if (ret != 0)   /* ENOSPC */
1662 			goto errout;
1663 	} else {   /* bigalloc */
1664 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1665 			if (!ext4_es_scan_clu(inode,
1666 					      &ext4_es_is_mapped, lblk)) {
1667 				ret = ext4_clu_mapped(inode,
1668 						      EXT4_B2C(sbi, lblk));
1669 				if (ret < 0)
1670 					goto errout;
1671 				if (ret == 0) {
1672 					ret = ext4_da_reserve_space(inode);
1673 					if (ret != 0)   /* ENOSPC */
1674 						goto errout;
1675 				} else {
1676 					allocated = true;
1677 				}
1678 			} else {
1679 				allocated = true;
1680 			}
1681 		}
1682 	}
1683 
1684 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1685 
1686 errout:
1687 	return ret;
1688 }
1689 
1690 /*
1691  * This function is grabs code from the very beginning of
1692  * ext4_map_blocks, but assumes that the caller is from delayed write
1693  * time. This function looks up the requested blocks and sets the
1694  * buffer delay bit under the protection of i_data_sem.
1695  */
1696 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1697 			      struct ext4_map_blocks *map,
1698 			      struct buffer_head *bh)
1699 {
1700 	struct extent_status es;
1701 	int retval;
1702 	sector_t invalid_block = ~((sector_t) 0xffff);
1703 #ifdef ES_AGGRESSIVE_TEST
1704 	struct ext4_map_blocks orig_map;
1705 
1706 	memcpy(&orig_map, map, sizeof(*map));
1707 #endif
1708 
1709 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1710 		invalid_block = ~0;
1711 
1712 	map->m_flags = 0;
1713 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1714 		  (unsigned long) map->m_lblk);
1715 
1716 	/* Lookup extent status tree firstly */
1717 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1718 		if (ext4_es_is_hole(&es)) {
1719 			retval = 0;
1720 			down_read(&EXT4_I(inode)->i_data_sem);
1721 			goto add_delayed;
1722 		}
1723 
1724 		/*
1725 		 * Delayed extent could be allocated by fallocate.
1726 		 * So we need to check it.
1727 		 */
1728 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1729 			map_bh(bh, inode->i_sb, invalid_block);
1730 			set_buffer_new(bh);
1731 			set_buffer_delay(bh);
1732 			return 0;
1733 		}
1734 
1735 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1736 		retval = es.es_len - (iblock - es.es_lblk);
1737 		if (retval > map->m_len)
1738 			retval = map->m_len;
1739 		map->m_len = retval;
1740 		if (ext4_es_is_written(&es))
1741 			map->m_flags |= EXT4_MAP_MAPPED;
1742 		else if (ext4_es_is_unwritten(&es))
1743 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1744 		else
1745 			BUG();
1746 
1747 #ifdef ES_AGGRESSIVE_TEST
1748 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1749 #endif
1750 		return retval;
1751 	}
1752 
1753 	/*
1754 	 * Try to see if we can get the block without requesting a new
1755 	 * file system block.
1756 	 */
1757 	down_read(&EXT4_I(inode)->i_data_sem);
1758 	if (ext4_has_inline_data(inode))
1759 		retval = 0;
1760 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1761 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1762 	else
1763 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1764 
1765 add_delayed:
1766 	if (retval == 0) {
1767 		int ret;
1768 
1769 		/*
1770 		 * XXX: __block_prepare_write() unmaps passed block,
1771 		 * is it OK?
1772 		 */
1773 
1774 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1775 		if (ret != 0) {
1776 			retval = ret;
1777 			goto out_unlock;
1778 		}
1779 
1780 		map_bh(bh, inode->i_sb, invalid_block);
1781 		set_buffer_new(bh);
1782 		set_buffer_delay(bh);
1783 	} else if (retval > 0) {
1784 		int ret;
1785 		unsigned int status;
1786 
1787 		if (unlikely(retval != map->m_len)) {
1788 			ext4_warning(inode->i_sb,
1789 				     "ES len assertion failed for inode "
1790 				     "%lu: retval %d != map->m_len %d",
1791 				     inode->i_ino, retval, map->m_len);
1792 			WARN_ON(1);
1793 		}
1794 
1795 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1796 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1797 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1798 					    map->m_pblk, status);
1799 		if (ret != 0)
1800 			retval = ret;
1801 	}
1802 
1803 out_unlock:
1804 	up_read((&EXT4_I(inode)->i_data_sem));
1805 
1806 	return retval;
1807 }
1808 
1809 /*
1810  * This is a special get_block_t callback which is used by
1811  * ext4_da_write_begin().  It will either return mapped block or
1812  * reserve space for a single block.
1813  *
1814  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1815  * We also have b_blocknr = -1 and b_bdev initialized properly
1816  *
1817  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1818  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1819  * initialized properly.
1820  */
1821 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1822 			   struct buffer_head *bh, int create)
1823 {
1824 	struct ext4_map_blocks map;
1825 	int ret = 0;
1826 
1827 	BUG_ON(create == 0);
1828 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1829 
1830 	map.m_lblk = iblock;
1831 	map.m_len = 1;
1832 
1833 	/*
1834 	 * first, we need to know whether the block is allocated already
1835 	 * preallocated blocks are unmapped but should treated
1836 	 * the same as allocated blocks.
1837 	 */
1838 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1839 	if (ret <= 0)
1840 		return ret;
1841 
1842 	map_bh(bh, inode->i_sb, map.m_pblk);
1843 	ext4_update_bh_state(bh, map.m_flags);
1844 
1845 	if (buffer_unwritten(bh)) {
1846 		/* A delayed write to unwritten bh should be marked
1847 		 * new and mapped.  Mapped ensures that we don't do
1848 		 * get_block multiple times when we write to the same
1849 		 * offset and new ensures that we do proper zero out
1850 		 * for partial write.
1851 		 */
1852 		set_buffer_new(bh);
1853 		set_buffer_mapped(bh);
1854 	}
1855 	return 0;
1856 }
1857 
1858 static int bget_one(handle_t *handle, struct inode *inode,
1859 		    struct buffer_head *bh)
1860 {
1861 	get_bh(bh);
1862 	return 0;
1863 }
1864 
1865 static int bput_one(handle_t *handle, struct inode *inode,
1866 		    struct buffer_head *bh)
1867 {
1868 	put_bh(bh);
1869 	return 0;
1870 }
1871 
1872 static int __ext4_journalled_writepage(struct page *page,
1873 				       unsigned int len)
1874 {
1875 	struct address_space *mapping = page->mapping;
1876 	struct inode *inode = mapping->host;
1877 	struct buffer_head *page_bufs = NULL;
1878 	handle_t *handle = NULL;
1879 	int ret = 0, err = 0;
1880 	int inline_data = ext4_has_inline_data(inode);
1881 	struct buffer_head *inode_bh = NULL;
1882 
1883 	ClearPageChecked(page);
1884 
1885 	if (inline_data) {
1886 		BUG_ON(page->index != 0);
1887 		BUG_ON(len > ext4_get_max_inline_size(inode));
1888 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1889 		if (inode_bh == NULL)
1890 			goto out;
1891 	} else {
1892 		page_bufs = page_buffers(page);
1893 		if (!page_bufs) {
1894 			BUG();
1895 			goto out;
1896 		}
1897 		ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1898 				       NULL, bget_one);
1899 	}
1900 	/*
1901 	 * We need to release the page lock before we start the
1902 	 * journal, so grab a reference so the page won't disappear
1903 	 * out from under us.
1904 	 */
1905 	get_page(page);
1906 	unlock_page(page);
1907 
1908 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1909 				    ext4_writepage_trans_blocks(inode));
1910 	if (IS_ERR(handle)) {
1911 		ret = PTR_ERR(handle);
1912 		put_page(page);
1913 		goto out_no_pagelock;
1914 	}
1915 	BUG_ON(!ext4_handle_valid(handle));
1916 
1917 	lock_page(page);
1918 	put_page(page);
1919 	if (page->mapping != mapping) {
1920 		/* The page got truncated from under us */
1921 		ext4_journal_stop(handle);
1922 		ret = 0;
1923 		goto out;
1924 	}
1925 
1926 	if (inline_data) {
1927 		ret = ext4_mark_inode_dirty(handle, inode);
1928 	} else {
1929 		ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1930 					     NULL, do_journal_get_write_access);
1931 
1932 		err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1933 					     NULL, write_end_fn);
1934 	}
1935 	if (ret == 0)
1936 		ret = err;
1937 	err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1938 	if (ret == 0)
1939 		ret = err;
1940 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1941 	err = ext4_journal_stop(handle);
1942 	if (!ret)
1943 		ret = err;
1944 
1945 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1946 out:
1947 	unlock_page(page);
1948 out_no_pagelock:
1949 	if (!inline_data && page_bufs)
1950 		ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len,
1951 				       NULL, bput_one);
1952 	brelse(inode_bh);
1953 	return ret;
1954 }
1955 
1956 /*
1957  * Note that we don't need to start a transaction unless we're journaling data
1958  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1959  * need to file the inode to the transaction's list in ordered mode because if
1960  * we are writing back data added by write(), the inode is already there and if
1961  * we are writing back data modified via mmap(), no one guarantees in which
1962  * transaction the data will hit the disk. In case we are journaling data, we
1963  * cannot start transaction directly because transaction start ranks above page
1964  * lock so we have to do some magic.
1965  *
1966  * This function can get called via...
1967  *   - ext4_writepages after taking page lock (have journal handle)
1968  *   - journal_submit_inode_data_buffers (no journal handle)
1969  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1970  *   - grab_page_cache when doing write_begin (have journal handle)
1971  *
1972  * We don't do any block allocation in this function. If we have page with
1973  * multiple blocks we need to write those buffer_heads that are mapped. This
1974  * is important for mmaped based write. So if we do with blocksize 1K
1975  * truncate(f, 1024);
1976  * a = mmap(f, 0, 4096);
1977  * a[0] = 'a';
1978  * truncate(f, 4096);
1979  * we have in the page first buffer_head mapped via page_mkwrite call back
1980  * but other buffer_heads would be unmapped but dirty (dirty done via the
1981  * do_wp_page). So writepage should write the first block. If we modify
1982  * the mmap area beyond 1024 we will again get a page_fault and the
1983  * page_mkwrite callback will do the block allocation and mark the
1984  * buffer_heads mapped.
1985  *
1986  * We redirty the page if we have any buffer_heads that is either delay or
1987  * unwritten in the page.
1988  *
1989  * We can get recursively called as show below.
1990  *
1991  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1992  *		ext4_writepage()
1993  *
1994  * But since we don't do any block allocation we should not deadlock.
1995  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1996  */
1997 static int ext4_writepage(struct page *page,
1998 			  struct writeback_control *wbc)
1999 {
2000 	int ret = 0;
2001 	loff_t size;
2002 	unsigned int len;
2003 	struct buffer_head *page_bufs = NULL;
2004 	struct inode *inode = page->mapping->host;
2005 	struct ext4_io_submit io_submit;
2006 	bool keep_towrite = false;
2007 
2008 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2009 		inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2010 		unlock_page(page);
2011 		return -EIO;
2012 	}
2013 
2014 	trace_ext4_writepage(page);
2015 	size = i_size_read(inode);
2016 	if (page->index == size >> PAGE_SHIFT &&
2017 	    !ext4_verity_in_progress(inode))
2018 		len = size & ~PAGE_MASK;
2019 	else
2020 		len = PAGE_SIZE;
2021 
2022 	page_bufs = page_buffers(page);
2023 	/*
2024 	 * We cannot do block allocation or other extent handling in this
2025 	 * function. If there are buffers needing that, we have to redirty
2026 	 * the page. But we may reach here when we do a journal commit via
2027 	 * journal_submit_inode_data_buffers() and in that case we must write
2028 	 * allocated buffers to achieve data=ordered mode guarantees.
2029 	 *
2030 	 * Also, if there is only one buffer per page (the fs block
2031 	 * size == the page size), if one buffer needs block
2032 	 * allocation or needs to modify the extent tree to clear the
2033 	 * unwritten flag, we know that the page can't be written at
2034 	 * all, so we might as well refuse the write immediately.
2035 	 * Unfortunately if the block size != page size, we can't as
2036 	 * easily detect this case using ext4_walk_page_buffers(), but
2037 	 * for the extremely common case, this is an optimization that
2038 	 * skips a useless round trip through ext4_bio_write_page().
2039 	 */
2040 	if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2041 				   ext4_bh_delay_or_unwritten)) {
2042 		redirty_page_for_writepage(wbc, page);
2043 		if ((current->flags & PF_MEMALLOC) ||
2044 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2045 			/*
2046 			 * For memory cleaning there's no point in writing only
2047 			 * some buffers. So just bail out. Warn if we came here
2048 			 * from direct reclaim.
2049 			 */
2050 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2051 							== PF_MEMALLOC);
2052 			unlock_page(page);
2053 			return 0;
2054 		}
2055 		keep_towrite = true;
2056 	}
2057 
2058 	if (PageChecked(page) && ext4_should_journal_data(inode))
2059 		/*
2060 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2061 		 * doesn't seem much point in redirtying the page here.
2062 		 */
2063 		return __ext4_journalled_writepage(page, len);
2064 
2065 	ext4_io_submit_init(&io_submit, wbc);
2066 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2067 	if (!io_submit.io_end) {
2068 		redirty_page_for_writepage(wbc, page);
2069 		unlock_page(page);
2070 		return -ENOMEM;
2071 	}
2072 	ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2073 	ext4_io_submit(&io_submit);
2074 	/* Drop io_end reference we got from init */
2075 	ext4_put_io_end_defer(io_submit.io_end);
2076 	return ret;
2077 }
2078 
2079 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2080 {
2081 	int len;
2082 	loff_t size;
2083 	int err;
2084 
2085 	BUG_ON(page->index != mpd->first_page);
2086 	clear_page_dirty_for_io(page);
2087 	/*
2088 	 * We have to be very careful here!  Nothing protects writeback path
2089 	 * against i_size changes and the page can be writeably mapped into
2090 	 * page tables. So an application can be growing i_size and writing
2091 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2092 	 * write-protects our page in page tables and the page cannot get
2093 	 * written to again until we release page lock. So only after
2094 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2095 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2096 	 * on the barrier provided by TestClearPageDirty in
2097 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2098 	 * after page tables are updated.
2099 	 */
2100 	size = i_size_read(mpd->inode);
2101 	if (page->index == size >> PAGE_SHIFT &&
2102 	    !ext4_verity_in_progress(mpd->inode))
2103 		len = size & ~PAGE_MASK;
2104 	else
2105 		len = PAGE_SIZE;
2106 	err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2107 	if (!err)
2108 		mpd->wbc->nr_to_write--;
2109 	mpd->first_page++;
2110 
2111 	return err;
2112 }
2113 
2114 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2115 
2116 /*
2117  * mballoc gives us at most this number of blocks...
2118  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2119  * The rest of mballoc seems to handle chunks up to full group size.
2120  */
2121 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2122 
2123 /*
2124  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2125  *
2126  * @mpd - extent of blocks
2127  * @lblk - logical number of the block in the file
2128  * @bh - buffer head we want to add to the extent
2129  *
2130  * The function is used to collect contig. blocks in the same state. If the
2131  * buffer doesn't require mapping for writeback and we haven't started the
2132  * extent of buffers to map yet, the function returns 'true' immediately - the
2133  * caller can write the buffer right away. Otherwise the function returns true
2134  * if the block has been added to the extent, false if the block couldn't be
2135  * added.
2136  */
2137 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2138 				   struct buffer_head *bh)
2139 {
2140 	struct ext4_map_blocks *map = &mpd->map;
2141 
2142 	/* Buffer that doesn't need mapping for writeback? */
2143 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2144 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2145 		/* So far no extent to map => we write the buffer right away */
2146 		if (map->m_len == 0)
2147 			return true;
2148 		return false;
2149 	}
2150 
2151 	/* First block in the extent? */
2152 	if (map->m_len == 0) {
2153 		/* We cannot map unless handle is started... */
2154 		if (!mpd->do_map)
2155 			return false;
2156 		map->m_lblk = lblk;
2157 		map->m_len = 1;
2158 		map->m_flags = bh->b_state & BH_FLAGS;
2159 		return true;
2160 	}
2161 
2162 	/* Don't go larger than mballoc is willing to allocate */
2163 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2164 		return false;
2165 
2166 	/* Can we merge the block to our big extent? */
2167 	if (lblk == map->m_lblk + map->m_len &&
2168 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2169 		map->m_len++;
2170 		return true;
2171 	}
2172 	return false;
2173 }
2174 
2175 /*
2176  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2177  *
2178  * @mpd - extent of blocks for mapping
2179  * @head - the first buffer in the page
2180  * @bh - buffer we should start processing from
2181  * @lblk - logical number of the block in the file corresponding to @bh
2182  *
2183  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2184  * the page for IO if all buffers in this page were mapped and there's no
2185  * accumulated extent of buffers to map or add buffers in the page to the
2186  * extent of buffers to map. The function returns 1 if the caller can continue
2187  * by processing the next page, 0 if it should stop adding buffers to the
2188  * extent to map because we cannot extend it anymore. It can also return value
2189  * < 0 in case of error during IO submission.
2190  */
2191 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2192 				   struct buffer_head *head,
2193 				   struct buffer_head *bh,
2194 				   ext4_lblk_t lblk)
2195 {
2196 	struct inode *inode = mpd->inode;
2197 	int err;
2198 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2199 							>> inode->i_blkbits;
2200 
2201 	if (ext4_verity_in_progress(inode))
2202 		blocks = EXT_MAX_BLOCKS;
2203 
2204 	do {
2205 		BUG_ON(buffer_locked(bh));
2206 
2207 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2208 			/* Found extent to map? */
2209 			if (mpd->map.m_len)
2210 				return 0;
2211 			/* Buffer needs mapping and handle is not started? */
2212 			if (!mpd->do_map)
2213 				return 0;
2214 			/* Everything mapped so far and we hit EOF */
2215 			break;
2216 		}
2217 	} while (lblk++, (bh = bh->b_this_page) != head);
2218 	/* So far everything mapped? Submit the page for IO. */
2219 	if (mpd->map.m_len == 0) {
2220 		err = mpage_submit_page(mpd, head->b_page);
2221 		if (err < 0)
2222 			return err;
2223 	}
2224 	if (lblk >= blocks) {
2225 		mpd->scanned_until_end = 1;
2226 		return 0;
2227 	}
2228 	return 1;
2229 }
2230 
2231 /*
2232  * mpage_process_page - update page buffers corresponding to changed extent and
2233  *		       may submit fully mapped page for IO
2234  *
2235  * @mpd		- description of extent to map, on return next extent to map
2236  * @m_lblk	- logical block mapping.
2237  * @m_pblk	- corresponding physical mapping.
2238  * @map_bh	- determines on return whether this page requires any further
2239  *		  mapping or not.
2240  * Scan given page buffers corresponding to changed extent and update buffer
2241  * state according to new extent state.
2242  * We map delalloc buffers to their physical location, clear unwritten bits.
2243  * If the given page is not fully mapped, we update @map to the next extent in
2244  * the given page that needs mapping & return @map_bh as true.
2245  */
2246 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2247 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2248 			      bool *map_bh)
2249 {
2250 	struct buffer_head *head, *bh;
2251 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2252 	ext4_lblk_t lblk = *m_lblk;
2253 	ext4_fsblk_t pblock = *m_pblk;
2254 	int err = 0;
2255 	int blkbits = mpd->inode->i_blkbits;
2256 	ssize_t io_end_size = 0;
2257 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2258 
2259 	bh = head = page_buffers(page);
2260 	do {
2261 		if (lblk < mpd->map.m_lblk)
2262 			continue;
2263 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2264 			/*
2265 			 * Buffer after end of mapped extent.
2266 			 * Find next buffer in the page to map.
2267 			 */
2268 			mpd->map.m_len = 0;
2269 			mpd->map.m_flags = 0;
2270 			io_end_vec->size += io_end_size;
2271 			io_end_size = 0;
2272 
2273 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2274 			if (err > 0)
2275 				err = 0;
2276 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2277 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2278 				if (IS_ERR(io_end_vec)) {
2279 					err = PTR_ERR(io_end_vec);
2280 					goto out;
2281 				}
2282 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2283 			}
2284 			*map_bh = true;
2285 			goto out;
2286 		}
2287 		if (buffer_delay(bh)) {
2288 			clear_buffer_delay(bh);
2289 			bh->b_blocknr = pblock++;
2290 		}
2291 		clear_buffer_unwritten(bh);
2292 		io_end_size += (1 << blkbits);
2293 	} while (lblk++, (bh = bh->b_this_page) != head);
2294 
2295 	io_end_vec->size += io_end_size;
2296 	io_end_size = 0;
2297 	*map_bh = false;
2298 out:
2299 	*m_lblk = lblk;
2300 	*m_pblk = pblock;
2301 	return err;
2302 }
2303 
2304 /*
2305  * mpage_map_buffers - update buffers corresponding to changed extent and
2306  *		       submit fully mapped pages for IO
2307  *
2308  * @mpd - description of extent to map, on return next extent to map
2309  *
2310  * Scan buffers corresponding to changed extent (we expect corresponding pages
2311  * to be already locked) and update buffer state according to new extent state.
2312  * We map delalloc buffers to their physical location, clear unwritten bits,
2313  * and mark buffers as uninit when we perform writes to unwritten extents
2314  * and do extent conversion after IO is finished. If the last page is not fully
2315  * mapped, we update @map to the next extent in the last page that needs
2316  * mapping. Otherwise we submit the page for IO.
2317  */
2318 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2319 {
2320 	struct pagevec pvec;
2321 	int nr_pages, i;
2322 	struct inode *inode = mpd->inode;
2323 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2324 	pgoff_t start, end;
2325 	ext4_lblk_t lblk;
2326 	ext4_fsblk_t pblock;
2327 	int err;
2328 	bool map_bh = false;
2329 
2330 	start = mpd->map.m_lblk >> bpp_bits;
2331 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2332 	lblk = start << bpp_bits;
2333 	pblock = mpd->map.m_pblk;
2334 
2335 	pagevec_init(&pvec);
2336 	while (start <= end) {
2337 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2338 						&start, end);
2339 		if (nr_pages == 0)
2340 			break;
2341 		for (i = 0; i < nr_pages; i++) {
2342 			struct page *page = pvec.pages[i];
2343 
2344 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2345 						 &map_bh);
2346 			/*
2347 			 * If map_bh is true, means page may require further bh
2348 			 * mapping, or maybe the page was submitted for IO.
2349 			 * So we return to call further extent mapping.
2350 			 */
2351 			if (err < 0 || map_bh)
2352 				goto out;
2353 			/* Page fully mapped - let IO run! */
2354 			err = mpage_submit_page(mpd, page);
2355 			if (err < 0)
2356 				goto out;
2357 		}
2358 		pagevec_release(&pvec);
2359 	}
2360 	/* Extent fully mapped and matches with page boundary. We are done. */
2361 	mpd->map.m_len = 0;
2362 	mpd->map.m_flags = 0;
2363 	return 0;
2364 out:
2365 	pagevec_release(&pvec);
2366 	return err;
2367 }
2368 
2369 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2370 {
2371 	struct inode *inode = mpd->inode;
2372 	struct ext4_map_blocks *map = &mpd->map;
2373 	int get_blocks_flags;
2374 	int err, dioread_nolock;
2375 
2376 	trace_ext4_da_write_pages_extent(inode, map);
2377 	/*
2378 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2379 	 * to convert an unwritten extent to be initialized (in the case
2380 	 * where we have written into one or more preallocated blocks).  It is
2381 	 * possible that we're going to need more metadata blocks than
2382 	 * previously reserved. However we must not fail because we're in
2383 	 * writeback and there is nothing we can do about it so it might result
2384 	 * in data loss.  So use reserved blocks to allocate metadata if
2385 	 * possible.
2386 	 *
2387 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2388 	 * the blocks in question are delalloc blocks.  This indicates
2389 	 * that the blocks and quotas has already been checked when
2390 	 * the data was copied into the page cache.
2391 	 */
2392 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2393 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2394 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2395 	dioread_nolock = ext4_should_dioread_nolock(inode);
2396 	if (dioread_nolock)
2397 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2398 	if (map->m_flags & BIT(BH_Delay))
2399 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2400 
2401 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2402 	if (err < 0)
2403 		return err;
2404 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2405 		if (!mpd->io_submit.io_end->handle &&
2406 		    ext4_handle_valid(handle)) {
2407 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2408 			handle->h_rsv_handle = NULL;
2409 		}
2410 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2411 	}
2412 
2413 	BUG_ON(map->m_len == 0);
2414 	return 0;
2415 }
2416 
2417 /*
2418  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2419  *				 mpd->len and submit pages underlying it for IO
2420  *
2421  * @handle - handle for journal operations
2422  * @mpd - extent to map
2423  * @give_up_on_write - we set this to true iff there is a fatal error and there
2424  *                     is no hope of writing the data. The caller should discard
2425  *                     dirty pages to avoid infinite loops.
2426  *
2427  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2428  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2429  * them to initialized or split the described range from larger unwritten
2430  * extent. Note that we need not map all the described range since allocation
2431  * can return less blocks or the range is covered by more unwritten extents. We
2432  * cannot map more because we are limited by reserved transaction credits. On
2433  * the other hand we always make sure that the last touched page is fully
2434  * mapped so that it can be written out (and thus forward progress is
2435  * guaranteed). After mapping we submit all mapped pages for IO.
2436  */
2437 static int mpage_map_and_submit_extent(handle_t *handle,
2438 				       struct mpage_da_data *mpd,
2439 				       bool *give_up_on_write)
2440 {
2441 	struct inode *inode = mpd->inode;
2442 	struct ext4_map_blocks *map = &mpd->map;
2443 	int err;
2444 	loff_t disksize;
2445 	int progress = 0;
2446 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2447 	struct ext4_io_end_vec *io_end_vec;
2448 
2449 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2450 	if (IS_ERR(io_end_vec))
2451 		return PTR_ERR(io_end_vec);
2452 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2453 	do {
2454 		err = mpage_map_one_extent(handle, mpd);
2455 		if (err < 0) {
2456 			struct super_block *sb = inode->i_sb;
2457 
2458 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2459 			    ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2460 				goto invalidate_dirty_pages;
2461 			/*
2462 			 * Let the uper layers retry transient errors.
2463 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2464 			 * is non-zero, a commit should free up blocks.
2465 			 */
2466 			if ((err == -ENOMEM) ||
2467 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2468 				if (progress)
2469 					goto update_disksize;
2470 				return err;
2471 			}
2472 			ext4_msg(sb, KERN_CRIT,
2473 				 "Delayed block allocation failed for "
2474 				 "inode %lu at logical offset %llu with"
2475 				 " max blocks %u with error %d",
2476 				 inode->i_ino,
2477 				 (unsigned long long)map->m_lblk,
2478 				 (unsigned)map->m_len, -err);
2479 			ext4_msg(sb, KERN_CRIT,
2480 				 "This should not happen!! Data will "
2481 				 "be lost\n");
2482 			if (err == -ENOSPC)
2483 				ext4_print_free_blocks(inode);
2484 		invalidate_dirty_pages:
2485 			*give_up_on_write = true;
2486 			return err;
2487 		}
2488 		progress = 1;
2489 		/*
2490 		 * Update buffer state, submit mapped pages, and get us new
2491 		 * extent to map
2492 		 */
2493 		err = mpage_map_and_submit_buffers(mpd);
2494 		if (err < 0)
2495 			goto update_disksize;
2496 	} while (map->m_len);
2497 
2498 update_disksize:
2499 	/*
2500 	 * Update on-disk size after IO is submitted.  Races with
2501 	 * truncate are avoided by checking i_size under i_data_sem.
2502 	 */
2503 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2504 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2505 		int err2;
2506 		loff_t i_size;
2507 
2508 		down_write(&EXT4_I(inode)->i_data_sem);
2509 		i_size = i_size_read(inode);
2510 		if (disksize > i_size)
2511 			disksize = i_size;
2512 		if (disksize > EXT4_I(inode)->i_disksize)
2513 			EXT4_I(inode)->i_disksize = disksize;
2514 		up_write(&EXT4_I(inode)->i_data_sem);
2515 		err2 = ext4_mark_inode_dirty(handle, inode);
2516 		if (err2) {
2517 			ext4_error_err(inode->i_sb, -err2,
2518 				       "Failed to mark inode %lu dirty",
2519 				       inode->i_ino);
2520 		}
2521 		if (!err)
2522 			err = err2;
2523 	}
2524 	return err;
2525 }
2526 
2527 /*
2528  * Calculate the total number of credits to reserve for one writepages
2529  * iteration. This is called from ext4_writepages(). We map an extent of
2530  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2531  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2532  * bpp - 1 blocks in bpp different extents.
2533  */
2534 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2535 {
2536 	int bpp = ext4_journal_blocks_per_page(inode);
2537 
2538 	return ext4_meta_trans_blocks(inode,
2539 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2540 }
2541 
2542 /*
2543  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2544  * 				 and underlying extent to map
2545  *
2546  * @mpd - where to look for pages
2547  *
2548  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2549  * IO immediately. When we find a page which isn't mapped we start accumulating
2550  * extent of buffers underlying these pages that needs mapping (formed by
2551  * either delayed or unwritten buffers). We also lock the pages containing
2552  * these buffers. The extent found is returned in @mpd structure (starting at
2553  * mpd->lblk with length mpd->len blocks).
2554  *
2555  * Note that this function can attach bios to one io_end structure which are
2556  * neither logically nor physically contiguous. Although it may seem as an
2557  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2558  * case as we need to track IO to all buffers underlying a page in one io_end.
2559  */
2560 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2561 {
2562 	struct address_space *mapping = mpd->inode->i_mapping;
2563 	struct pagevec pvec;
2564 	unsigned int nr_pages;
2565 	long left = mpd->wbc->nr_to_write;
2566 	pgoff_t index = mpd->first_page;
2567 	pgoff_t end = mpd->last_page;
2568 	xa_mark_t tag;
2569 	int i, err = 0;
2570 	int blkbits = mpd->inode->i_blkbits;
2571 	ext4_lblk_t lblk;
2572 	struct buffer_head *head;
2573 
2574 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2575 		tag = PAGECACHE_TAG_TOWRITE;
2576 	else
2577 		tag = PAGECACHE_TAG_DIRTY;
2578 
2579 	pagevec_init(&pvec);
2580 	mpd->map.m_len = 0;
2581 	mpd->next_page = index;
2582 	while (index <= end) {
2583 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2584 				tag);
2585 		if (nr_pages == 0)
2586 			break;
2587 
2588 		for (i = 0; i < nr_pages; i++) {
2589 			struct page *page = pvec.pages[i];
2590 
2591 			/*
2592 			 * Accumulated enough dirty pages? This doesn't apply
2593 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2594 			 * keep going because someone may be concurrently
2595 			 * dirtying pages, and we might have synced a lot of
2596 			 * newly appeared dirty pages, but have not synced all
2597 			 * of the old dirty pages.
2598 			 */
2599 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2600 				goto out;
2601 
2602 			/* If we can't merge this page, we are done. */
2603 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2604 				goto out;
2605 
2606 			lock_page(page);
2607 			/*
2608 			 * If the page is no longer dirty, or its mapping no
2609 			 * longer corresponds to inode we are writing (which
2610 			 * means it has been truncated or invalidated), or the
2611 			 * page is already under writeback and we are not doing
2612 			 * a data integrity writeback, skip the page
2613 			 */
2614 			if (!PageDirty(page) ||
2615 			    (PageWriteback(page) &&
2616 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2617 			    unlikely(page->mapping != mapping)) {
2618 				unlock_page(page);
2619 				continue;
2620 			}
2621 
2622 			wait_on_page_writeback(page);
2623 			BUG_ON(PageWriteback(page));
2624 
2625 			if (mpd->map.m_len == 0)
2626 				mpd->first_page = page->index;
2627 			mpd->next_page = page->index + 1;
2628 			/* Add all dirty buffers to mpd */
2629 			lblk = ((ext4_lblk_t)page->index) <<
2630 				(PAGE_SHIFT - blkbits);
2631 			head = page_buffers(page);
2632 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2633 			if (err <= 0)
2634 				goto out;
2635 			err = 0;
2636 			left--;
2637 		}
2638 		pagevec_release(&pvec);
2639 		cond_resched();
2640 	}
2641 	mpd->scanned_until_end = 1;
2642 	return 0;
2643 out:
2644 	pagevec_release(&pvec);
2645 	return err;
2646 }
2647 
2648 static int ext4_writepages(struct address_space *mapping,
2649 			   struct writeback_control *wbc)
2650 {
2651 	pgoff_t	writeback_index = 0;
2652 	long nr_to_write = wbc->nr_to_write;
2653 	int range_whole = 0;
2654 	int cycled = 1;
2655 	handle_t *handle = NULL;
2656 	struct mpage_da_data mpd;
2657 	struct inode *inode = mapping->host;
2658 	int needed_blocks, rsv_blocks = 0, ret = 0;
2659 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2660 	struct blk_plug plug;
2661 	bool give_up_on_write = false;
2662 
2663 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2664 		return -EIO;
2665 
2666 	percpu_down_read(&sbi->s_writepages_rwsem);
2667 	trace_ext4_writepages(inode, wbc);
2668 
2669 	/*
2670 	 * No pages to write? This is mainly a kludge to avoid starting
2671 	 * a transaction for special inodes like journal inode on last iput()
2672 	 * because that could violate lock ordering on umount
2673 	 */
2674 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2675 		goto out_writepages;
2676 
2677 	if (ext4_should_journal_data(inode)) {
2678 		ret = generic_writepages(mapping, wbc);
2679 		goto out_writepages;
2680 	}
2681 
2682 	/*
2683 	 * If the filesystem has aborted, it is read-only, so return
2684 	 * right away instead of dumping stack traces later on that
2685 	 * will obscure the real source of the problem.  We test
2686 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2687 	 * the latter could be true if the filesystem is mounted
2688 	 * read-only, and in that case, ext4_writepages should
2689 	 * *never* be called, so if that ever happens, we would want
2690 	 * the stack trace.
2691 	 */
2692 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2693 		     ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2694 		ret = -EROFS;
2695 		goto out_writepages;
2696 	}
2697 
2698 	/*
2699 	 * If we have inline data and arrive here, it means that
2700 	 * we will soon create the block for the 1st page, so
2701 	 * we'd better clear the inline data here.
2702 	 */
2703 	if (ext4_has_inline_data(inode)) {
2704 		/* Just inode will be modified... */
2705 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2706 		if (IS_ERR(handle)) {
2707 			ret = PTR_ERR(handle);
2708 			goto out_writepages;
2709 		}
2710 		BUG_ON(ext4_test_inode_state(inode,
2711 				EXT4_STATE_MAY_INLINE_DATA));
2712 		ext4_destroy_inline_data(handle, inode);
2713 		ext4_journal_stop(handle);
2714 	}
2715 
2716 	if (ext4_should_dioread_nolock(inode)) {
2717 		/*
2718 		 * We may need to convert up to one extent per block in
2719 		 * the page and we may dirty the inode.
2720 		 */
2721 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2722 						PAGE_SIZE >> inode->i_blkbits);
2723 	}
2724 
2725 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2726 		range_whole = 1;
2727 
2728 	if (wbc->range_cyclic) {
2729 		writeback_index = mapping->writeback_index;
2730 		if (writeback_index)
2731 			cycled = 0;
2732 		mpd.first_page = writeback_index;
2733 		mpd.last_page = -1;
2734 	} else {
2735 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2736 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2737 	}
2738 
2739 	mpd.inode = inode;
2740 	mpd.wbc = wbc;
2741 	ext4_io_submit_init(&mpd.io_submit, wbc);
2742 retry:
2743 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2744 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2745 	blk_start_plug(&plug);
2746 
2747 	/*
2748 	 * First writeback pages that don't need mapping - we can avoid
2749 	 * starting a transaction unnecessarily and also avoid being blocked
2750 	 * in the block layer on device congestion while having transaction
2751 	 * started.
2752 	 */
2753 	mpd.do_map = 0;
2754 	mpd.scanned_until_end = 0;
2755 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2756 	if (!mpd.io_submit.io_end) {
2757 		ret = -ENOMEM;
2758 		goto unplug;
2759 	}
2760 	ret = mpage_prepare_extent_to_map(&mpd);
2761 	/* Unlock pages we didn't use */
2762 	mpage_release_unused_pages(&mpd, false);
2763 	/* Submit prepared bio */
2764 	ext4_io_submit(&mpd.io_submit);
2765 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2766 	mpd.io_submit.io_end = NULL;
2767 	if (ret < 0)
2768 		goto unplug;
2769 
2770 	while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2771 		/* For each extent of pages we use new io_end */
2772 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2773 		if (!mpd.io_submit.io_end) {
2774 			ret = -ENOMEM;
2775 			break;
2776 		}
2777 
2778 		/*
2779 		 * We have two constraints: We find one extent to map and we
2780 		 * must always write out whole page (makes a difference when
2781 		 * blocksize < pagesize) so that we don't block on IO when we
2782 		 * try to write out the rest of the page. Journalled mode is
2783 		 * not supported by delalloc.
2784 		 */
2785 		BUG_ON(ext4_should_journal_data(inode));
2786 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2787 
2788 		/* start a new transaction */
2789 		handle = ext4_journal_start_with_reserve(inode,
2790 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2791 		if (IS_ERR(handle)) {
2792 			ret = PTR_ERR(handle);
2793 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2794 			       "%ld pages, ino %lu; err %d", __func__,
2795 				wbc->nr_to_write, inode->i_ino, ret);
2796 			/* Release allocated io_end */
2797 			ext4_put_io_end(mpd.io_submit.io_end);
2798 			mpd.io_submit.io_end = NULL;
2799 			break;
2800 		}
2801 		mpd.do_map = 1;
2802 
2803 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2804 		ret = mpage_prepare_extent_to_map(&mpd);
2805 		if (!ret && mpd.map.m_len)
2806 			ret = mpage_map_and_submit_extent(handle, &mpd,
2807 					&give_up_on_write);
2808 		/*
2809 		 * Caution: If the handle is synchronous,
2810 		 * ext4_journal_stop() can wait for transaction commit
2811 		 * to finish which may depend on writeback of pages to
2812 		 * complete or on page lock to be released.  In that
2813 		 * case, we have to wait until after we have
2814 		 * submitted all the IO, released page locks we hold,
2815 		 * and dropped io_end reference (for extent conversion
2816 		 * to be able to complete) before stopping the handle.
2817 		 */
2818 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2819 			ext4_journal_stop(handle);
2820 			handle = NULL;
2821 			mpd.do_map = 0;
2822 		}
2823 		/* Unlock pages we didn't use */
2824 		mpage_release_unused_pages(&mpd, give_up_on_write);
2825 		/* Submit prepared bio */
2826 		ext4_io_submit(&mpd.io_submit);
2827 
2828 		/*
2829 		 * Drop our io_end reference we got from init. We have
2830 		 * to be careful and use deferred io_end finishing if
2831 		 * we are still holding the transaction as we can
2832 		 * release the last reference to io_end which may end
2833 		 * up doing unwritten extent conversion.
2834 		 */
2835 		if (handle) {
2836 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2837 			ext4_journal_stop(handle);
2838 		} else
2839 			ext4_put_io_end(mpd.io_submit.io_end);
2840 		mpd.io_submit.io_end = NULL;
2841 
2842 		if (ret == -ENOSPC && sbi->s_journal) {
2843 			/*
2844 			 * Commit the transaction which would
2845 			 * free blocks released in the transaction
2846 			 * and try again
2847 			 */
2848 			jbd2_journal_force_commit_nested(sbi->s_journal);
2849 			ret = 0;
2850 			continue;
2851 		}
2852 		/* Fatal error - ENOMEM, EIO... */
2853 		if (ret)
2854 			break;
2855 	}
2856 unplug:
2857 	blk_finish_plug(&plug);
2858 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2859 		cycled = 1;
2860 		mpd.last_page = writeback_index - 1;
2861 		mpd.first_page = 0;
2862 		goto retry;
2863 	}
2864 
2865 	/* Update index */
2866 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2867 		/*
2868 		 * Set the writeback_index so that range_cyclic
2869 		 * mode will write it back later
2870 		 */
2871 		mapping->writeback_index = mpd.first_page;
2872 
2873 out_writepages:
2874 	trace_ext4_writepages_result(inode, wbc, ret,
2875 				     nr_to_write - wbc->nr_to_write);
2876 	percpu_up_read(&sbi->s_writepages_rwsem);
2877 	return ret;
2878 }
2879 
2880 static int ext4_dax_writepages(struct address_space *mapping,
2881 			       struct writeback_control *wbc)
2882 {
2883 	int ret;
2884 	long nr_to_write = wbc->nr_to_write;
2885 	struct inode *inode = mapping->host;
2886 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2887 
2888 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2889 		return -EIO;
2890 
2891 	percpu_down_read(&sbi->s_writepages_rwsem);
2892 	trace_ext4_writepages(inode, wbc);
2893 
2894 	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2895 	trace_ext4_writepages_result(inode, wbc, ret,
2896 				     nr_to_write - wbc->nr_to_write);
2897 	percpu_up_read(&sbi->s_writepages_rwsem);
2898 	return ret;
2899 }
2900 
2901 static int ext4_nonda_switch(struct super_block *sb)
2902 {
2903 	s64 free_clusters, dirty_clusters;
2904 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2905 
2906 	/*
2907 	 * switch to non delalloc mode if we are running low
2908 	 * on free block. The free block accounting via percpu
2909 	 * counters can get slightly wrong with percpu_counter_batch getting
2910 	 * accumulated on each CPU without updating global counters
2911 	 * Delalloc need an accurate free block accounting. So switch
2912 	 * to non delalloc when we are near to error range.
2913 	 */
2914 	free_clusters =
2915 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2916 	dirty_clusters =
2917 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2918 	/*
2919 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2920 	 */
2921 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2922 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2923 
2924 	if (2 * free_clusters < 3 * dirty_clusters ||
2925 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2926 		/*
2927 		 * free block count is less than 150% of dirty blocks
2928 		 * or free blocks is less than watermark
2929 		 */
2930 		return 1;
2931 	}
2932 	return 0;
2933 }
2934 
2935 /* We always reserve for an inode update; the superblock could be there too */
2936 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2937 {
2938 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2939 		return 1;
2940 
2941 	if (pos + len <= 0x7fffffffULL)
2942 		return 1;
2943 
2944 	/* We might need to update the superblock to set LARGE_FILE */
2945 	return 2;
2946 }
2947 
2948 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2949 			       loff_t pos, unsigned len, unsigned flags,
2950 			       struct page **pagep, void **fsdata)
2951 {
2952 	int ret, retries = 0;
2953 	struct page *page;
2954 	pgoff_t index;
2955 	struct inode *inode = mapping->host;
2956 	handle_t *handle;
2957 
2958 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2959 		return -EIO;
2960 
2961 	index = pos >> PAGE_SHIFT;
2962 
2963 	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2964 	    ext4_verity_in_progress(inode)) {
2965 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2966 		return ext4_write_begin(file, mapping, pos,
2967 					len, flags, pagep, fsdata);
2968 	}
2969 	*fsdata = (void *)0;
2970 	trace_ext4_da_write_begin(inode, pos, len, flags);
2971 
2972 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2973 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2974 						      pos, len, flags,
2975 						      pagep, fsdata);
2976 		if (ret < 0)
2977 			return ret;
2978 		if (ret == 1)
2979 			return 0;
2980 	}
2981 
2982 	/*
2983 	 * grab_cache_page_write_begin() can take a long time if the
2984 	 * system is thrashing due to memory pressure, or if the page
2985 	 * is being written back.  So grab it first before we start
2986 	 * the transaction handle.  This also allows us to allocate
2987 	 * the page (if needed) without using GFP_NOFS.
2988 	 */
2989 retry_grab:
2990 	page = grab_cache_page_write_begin(mapping, index, flags);
2991 	if (!page)
2992 		return -ENOMEM;
2993 	unlock_page(page);
2994 
2995 	/*
2996 	 * With delayed allocation, we don't log the i_disksize update
2997 	 * if there is delayed block allocation. But we still need
2998 	 * to journalling the i_disksize update if writes to the end
2999 	 * of file which has an already mapped buffer.
3000 	 */
3001 retry_journal:
3002 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3003 				ext4_da_write_credits(inode, pos, len));
3004 	if (IS_ERR(handle)) {
3005 		put_page(page);
3006 		return PTR_ERR(handle);
3007 	}
3008 
3009 	lock_page(page);
3010 	if (page->mapping != mapping) {
3011 		/* The page got truncated from under us */
3012 		unlock_page(page);
3013 		put_page(page);
3014 		ext4_journal_stop(handle);
3015 		goto retry_grab;
3016 	}
3017 	/* In case writeback began while the page was unlocked */
3018 	wait_for_stable_page(page);
3019 
3020 #ifdef CONFIG_FS_ENCRYPTION
3021 	ret = ext4_block_write_begin(page, pos, len,
3022 				     ext4_da_get_block_prep);
3023 #else
3024 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3025 #endif
3026 	if (ret < 0) {
3027 		unlock_page(page);
3028 		ext4_journal_stop(handle);
3029 		/*
3030 		 * block_write_begin may have instantiated a few blocks
3031 		 * outside i_size.  Trim these off again. Don't need
3032 		 * i_size_read because we hold i_mutex.
3033 		 */
3034 		if (pos + len > inode->i_size)
3035 			ext4_truncate_failed_write(inode);
3036 
3037 		if (ret == -ENOSPC &&
3038 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3039 			goto retry_journal;
3040 
3041 		put_page(page);
3042 		return ret;
3043 	}
3044 
3045 	*pagep = page;
3046 	return ret;
3047 }
3048 
3049 /*
3050  * Check if we should update i_disksize
3051  * when write to the end of file but not require block allocation
3052  */
3053 static int ext4_da_should_update_i_disksize(struct page *page,
3054 					    unsigned long offset)
3055 {
3056 	struct buffer_head *bh;
3057 	struct inode *inode = page->mapping->host;
3058 	unsigned int idx;
3059 	int i;
3060 
3061 	bh = page_buffers(page);
3062 	idx = offset >> inode->i_blkbits;
3063 
3064 	for (i = 0; i < idx; i++)
3065 		bh = bh->b_this_page;
3066 
3067 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3068 		return 0;
3069 	return 1;
3070 }
3071 
3072 static int ext4_da_write_end(struct file *file,
3073 			     struct address_space *mapping,
3074 			     loff_t pos, unsigned len, unsigned copied,
3075 			     struct page *page, void *fsdata)
3076 {
3077 	struct inode *inode = mapping->host;
3078 	int ret = 0, ret2;
3079 	handle_t *handle = ext4_journal_current_handle();
3080 	loff_t new_i_size;
3081 	unsigned long start, end;
3082 	int write_mode = (int)(unsigned long)fsdata;
3083 
3084 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3085 		return ext4_write_end(file, mapping, pos,
3086 				      len, copied, page, fsdata);
3087 
3088 	trace_ext4_da_write_end(inode, pos, len, copied);
3089 	start = pos & (PAGE_SIZE - 1);
3090 	end = start + copied - 1;
3091 
3092 	/*
3093 	 * generic_write_end() will run mark_inode_dirty() if i_size
3094 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3095 	 * into that.
3096 	 */
3097 	new_i_size = pos + copied;
3098 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3099 		if (ext4_has_inline_data(inode) ||
3100 		    ext4_da_should_update_i_disksize(page, end)) {
3101 			ext4_update_i_disksize(inode, new_i_size);
3102 			/* We need to mark inode dirty even if
3103 			 * new_i_size is less that inode->i_size
3104 			 * bu greater than i_disksize.(hint delalloc)
3105 			 */
3106 			ret = ext4_mark_inode_dirty(handle, inode);
3107 		}
3108 	}
3109 
3110 	if (write_mode != CONVERT_INLINE_DATA &&
3111 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3112 	    ext4_has_inline_data(inode))
3113 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3114 						     page);
3115 	else
3116 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3117 							page, fsdata);
3118 
3119 	copied = ret2;
3120 	if (ret2 < 0)
3121 		ret = ret2;
3122 	ret2 = ext4_journal_stop(handle);
3123 	if (unlikely(ret2 && !ret))
3124 		ret = ret2;
3125 
3126 	return ret ? ret : copied;
3127 }
3128 
3129 /*
3130  * Force all delayed allocation blocks to be allocated for a given inode.
3131  */
3132 int ext4_alloc_da_blocks(struct inode *inode)
3133 {
3134 	trace_ext4_alloc_da_blocks(inode);
3135 
3136 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3137 		return 0;
3138 
3139 	/*
3140 	 * We do something simple for now.  The filemap_flush() will
3141 	 * also start triggering a write of the data blocks, which is
3142 	 * not strictly speaking necessary (and for users of
3143 	 * laptop_mode, not even desirable).  However, to do otherwise
3144 	 * would require replicating code paths in:
3145 	 *
3146 	 * ext4_writepages() ->
3147 	 *    write_cache_pages() ---> (via passed in callback function)
3148 	 *        __mpage_da_writepage() -->
3149 	 *           mpage_add_bh_to_extent()
3150 	 *           mpage_da_map_blocks()
3151 	 *
3152 	 * The problem is that write_cache_pages(), located in
3153 	 * mm/page-writeback.c, marks pages clean in preparation for
3154 	 * doing I/O, which is not desirable if we're not planning on
3155 	 * doing I/O at all.
3156 	 *
3157 	 * We could call write_cache_pages(), and then redirty all of
3158 	 * the pages by calling redirty_page_for_writepage() but that
3159 	 * would be ugly in the extreme.  So instead we would need to
3160 	 * replicate parts of the code in the above functions,
3161 	 * simplifying them because we wouldn't actually intend to
3162 	 * write out the pages, but rather only collect contiguous
3163 	 * logical block extents, call the multi-block allocator, and
3164 	 * then update the buffer heads with the block allocations.
3165 	 *
3166 	 * For now, though, we'll cheat by calling filemap_flush(),
3167 	 * which will map the blocks, and start the I/O, but not
3168 	 * actually wait for the I/O to complete.
3169 	 */
3170 	return filemap_flush(inode->i_mapping);
3171 }
3172 
3173 /*
3174  * bmap() is special.  It gets used by applications such as lilo and by
3175  * the swapper to find the on-disk block of a specific piece of data.
3176  *
3177  * Naturally, this is dangerous if the block concerned is still in the
3178  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3179  * filesystem and enables swap, then they may get a nasty shock when the
3180  * data getting swapped to that swapfile suddenly gets overwritten by
3181  * the original zero's written out previously to the journal and
3182  * awaiting writeback in the kernel's buffer cache.
3183  *
3184  * So, if we see any bmap calls here on a modified, data-journaled file,
3185  * take extra steps to flush any blocks which might be in the cache.
3186  */
3187 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3188 {
3189 	struct inode *inode = mapping->host;
3190 	journal_t *journal;
3191 	int err;
3192 
3193 	/*
3194 	 * We can get here for an inline file via the FIBMAP ioctl
3195 	 */
3196 	if (ext4_has_inline_data(inode))
3197 		return 0;
3198 
3199 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3200 			test_opt(inode->i_sb, DELALLOC)) {
3201 		/*
3202 		 * With delalloc we want to sync the file
3203 		 * so that we can make sure we allocate
3204 		 * blocks for file
3205 		 */
3206 		filemap_write_and_wait(mapping);
3207 	}
3208 
3209 	if (EXT4_JOURNAL(inode) &&
3210 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3211 		/*
3212 		 * This is a REALLY heavyweight approach, but the use of
3213 		 * bmap on dirty files is expected to be extremely rare:
3214 		 * only if we run lilo or swapon on a freshly made file
3215 		 * do we expect this to happen.
3216 		 *
3217 		 * (bmap requires CAP_SYS_RAWIO so this does not
3218 		 * represent an unprivileged user DOS attack --- we'd be
3219 		 * in trouble if mortal users could trigger this path at
3220 		 * will.)
3221 		 *
3222 		 * NB. EXT4_STATE_JDATA is not set on files other than
3223 		 * regular files.  If somebody wants to bmap a directory
3224 		 * or symlink and gets confused because the buffer
3225 		 * hasn't yet been flushed to disk, they deserve
3226 		 * everything they get.
3227 		 */
3228 
3229 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3230 		journal = EXT4_JOURNAL(inode);
3231 		jbd2_journal_lock_updates(journal);
3232 		err = jbd2_journal_flush(journal, 0);
3233 		jbd2_journal_unlock_updates(journal);
3234 
3235 		if (err)
3236 			return 0;
3237 	}
3238 
3239 	return iomap_bmap(mapping, block, &ext4_iomap_ops);
3240 }
3241 
3242 static int ext4_readpage(struct file *file, struct page *page)
3243 {
3244 	int ret = -EAGAIN;
3245 	struct inode *inode = page->mapping->host;
3246 
3247 	trace_ext4_readpage(page);
3248 
3249 	if (ext4_has_inline_data(inode))
3250 		ret = ext4_readpage_inline(inode, page);
3251 
3252 	if (ret == -EAGAIN)
3253 		return ext4_mpage_readpages(inode, NULL, page);
3254 
3255 	return ret;
3256 }
3257 
3258 static void ext4_readahead(struct readahead_control *rac)
3259 {
3260 	struct inode *inode = rac->mapping->host;
3261 
3262 	/* If the file has inline data, no need to do readahead. */
3263 	if (ext4_has_inline_data(inode))
3264 		return;
3265 
3266 	ext4_mpage_readpages(inode, rac, NULL);
3267 }
3268 
3269 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3270 				unsigned int length)
3271 {
3272 	trace_ext4_invalidatepage(page, offset, length);
3273 
3274 	/* No journalling happens on data buffers when this function is used */
3275 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3276 
3277 	block_invalidatepage(page, offset, length);
3278 }
3279 
3280 static int __ext4_journalled_invalidatepage(struct page *page,
3281 					    unsigned int offset,
3282 					    unsigned int length)
3283 {
3284 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3285 
3286 	trace_ext4_journalled_invalidatepage(page, offset, length);
3287 
3288 	/*
3289 	 * If it's a full truncate we just forget about the pending dirtying
3290 	 */
3291 	if (offset == 0 && length == PAGE_SIZE)
3292 		ClearPageChecked(page);
3293 
3294 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3295 }
3296 
3297 /* Wrapper for aops... */
3298 static void ext4_journalled_invalidatepage(struct page *page,
3299 					   unsigned int offset,
3300 					   unsigned int length)
3301 {
3302 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3303 }
3304 
3305 static int ext4_releasepage(struct page *page, gfp_t wait)
3306 {
3307 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3308 
3309 	trace_ext4_releasepage(page);
3310 
3311 	/* Page has dirty journalled data -> cannot release */
3312 	if (PageChecked(page))
3313 		return 0;
3314 	if (journal)
3315 		return jbd2_journal_try_to_free_buffers(journal, page);
3316 	else
3317 		return try_to_free_buffers(page);
3318 }
3319 
3320 static bool ext4_inode_datasync_dirty(struct inode *inode)
3321 {
3322 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3323 
3324 	if (journal) {
3325 		if (jbd2_transaction_committed(journal,
3326 			EXT4_I(inode)->i_datasync_tid))
3327 			return false;
3328 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3329 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3330 		return true;
3331 	}
3332 
3333 	/* Any metadata buffers to write? */
3334 	if (!list_empty(&inode->i_mapping->private_list))
3335 		return true;
3336 	return inode->i_state & I_DIRTY_DATASYNC;
3337 }
3338 
3339 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3340 			   struct ext4_map_blocks *map, loff_t offset,
3341 			   loff_t length)
3342 {
3343 	u8 blkbits = inode->i_blkbits;
3344 
3345 	/*
3346 	 * Writes that span EOF might trigger an I/O size update on completion,
3347 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3348 	 * there is no other metadata changes being made or are pending.
3349 	 */
3350 	iomap->flags = 0;
3351 	if (ext4_inode_datasync_dirty(inode) ||
3352 	    offset + length > i_size_read(inode))
3353 		iomap->flags |= IOMAP_F_DIRTY;
3354 
3355 	if (map->m_flags & EXT4_MAP_NEW)
3356 		iomap->flags |= IOMAP_F_NEW;
3357 
3358 	iomap->bdev = inode->i_sb->s_bdev;
3359 	iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3360 	iomap->offset = (u64) map->m_lblk << blkbits;
3361 	iomap->length = (u64) map->m_len << blkbits;
3362 
3363 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3364 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3365 		iomap->flags |= IOMAP_F_MERGED;
3366 
3367 	/*
3368 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3369 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3370 	 * set. In order for any allocated unwritten extents to be converted
3371 	 * into written extents correctly within the ->end_io() handler, we
3372 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3373 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3374 	 * been set first.
3375 	 */
3376 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3377 		iomap->type = IOMAP_UNWRITTEN;
3378 		iomap->addr = (u64) map->m_pblk << blkbits;
3379 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3380 		iomap->type = IOMAP_MAPPED;
3381 		iomap->addr = (u64) map->m_pblk << blkbits;
3382 	} else {
3383 		iomap->type = IOMAP_HOLE;
3384 		iomap->addr = IOMAP_NULL_ADDR;
3385 	}
3386 }
3387 
3388 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3389 			    unsigned int flags)
3390 {
3391 	handle_t *handle;
3392 	u8 blkbits = inode->i_blkbits;
3393 	int ret, dio_credits, m_flags = 0, retries = 0;
3394 
3395 	/*
3396 	 * Trim the mapping request to the maximum value that we can map at
3397 	 * once for direct I/O.
3398 	 */
3399 	if (map->m_len > DIO_MAX_BLOCKS)
3400 		map->m_len = DIO_MAX_BLOCKS;
3401 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3402 
3403 retry:
3404 	/*
3405 	 * Either we allocate blocks and then don't get an unwritten extent, so
3406 	 * in that case we have reserved enough credits. Or, the blocks are
3407 	 * already allocated and unwritten. In that case, the extent conversion
3408 	 * fits into the credits as well.
3409 	 */
3410 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3411 	if (IS_ERR(handle))
3412 		return PTR_ERR(handle);
3413 
3414 	/*
3415 	 * DAX and direct I/O are the only two operations that are currently
3416 	 * supported with IOMAP_WRITE.
3417 	 */
3418 	WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3419 	if (IS_DAX(inode))
3420 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3421 	/*
3422 	 * We use i_size instead of i_disksize here because delalloc writeback
3423 	 * can complete at any point during the I/O and subsequently push the
3424 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3425 	 * happening and thus expose allocated blocks to direct I/O reads.
3426 	 */
3427 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3428 		m_flags = EXT4_GET_BLOCKS_CREATE;
3429 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3430 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3431 
3432 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3433 
3434 	/*
3435 	 * We cannot fill holes in indirect tree based inodes as that could
3436 	 * expose stale data in the case of a crash. Use the magic error code
3437 	 * to fallback to buffered I/O.
3438 	 */
3439 	if (!m_flags && !ret)
3440 		ret = -ENOTBLK;
3441 
3442 	ext4_journal_stop(handle);
3443 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3444 		goto retry;
3445 
3446 	return ret;
3447 }
3448 
3449 
3450 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3451 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3452 {
3453 	int ret;
3454 	struct ext4_map_blocks map;
3455 	u8 blkbits = inode->i_blkbits;
3456 
3457 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3458 		return -EINVAL;
3459 
3460 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3461 		return -ERANGE;
3462 
3463 	/*
3464 	 * Calculate the first and last logical blocks respectively.
3465 	 */
3466 	map.m_lblk = offset >> blkbits;
3467 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3468 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3469 
3470 	if (flags & IOMAP_WRITE) {
3471 		/*
3472 		 * We check here if the blocks are already allocated, then we
3473 		 * don't need to start a journal txn and we can directly return
3474 		 * the mapping information. This could boost performance
3475 		 * especially in multi-threaded overwrite requests.
3476 		 */
3477 		if (offset + length <= i_size_read(inode)) {
3478 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3479 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3480 				goto out;
3481 		}
3482 		ret = ext4_iomap_alloc(inode, &map, flags);
3483 	} else {
3484 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3485 	}
3486 
3487 	if (ret < 0)
3488 		return ret;
3489 out:
3490 	ext4_set_iomap(inode, iomap, &map, offset, length);
3491 
3492 	return 0;
3493 }
3494 
3495 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3496 		loff_t length, unsigned flags, struct iomap *iomap,
3497 		struct iomap *srcmap)
3498 {
3499 	int ret;
3500 
3501 	/*
3502 	 * Even for writes we don't need to allocate blocks, so just pretend
3503 	 * we are reading to save overhead of starting a transaction.
3504 	 */
3505 	flags &= ~IOMAP_WRITE;
3506 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3507 	WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3508 	return ret;
3509 }
3510 
3511 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3512 			  ssize_t written, unsigned flags, struct iomap *iomap)
3513 {
3514 	/*
3515 	 * Check to see whether an error occurred while writing out the data to
3516 	 * the allocated blocks. If so, return the magic error code so that we
3517 	 * fallback to buffered I/O and attempt to complete the remainder of
3518 	 * the I/O. Any blocks that may have been allocated in preparation for
3519 	 * the direct I/O will be reused during buffered I/O.
3520 	 */
3521 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3522 		return -ENOTBLK;
3523 
3524 	return 0;
3525 }
3526 
3527 const struct iomap_ops ext4_iomap_ops = {
3528 	.iomap_begin		= ext4_iomap_begin,
3529 	.iomap_end		= ext4_iomap_end,
3530 };
3531 
3532 const struct iomap_ops ext4_iomap_overwrite_ops = {
3533 	.iomap_begin		= ext4_iomap_overwrite_begin,
3534 	.iomap_end		= ext4_iomap_end,
3535 };
3536 
3537 static bool ext4_iomap_is_delalloc(struct inode *inode,
3538 				   struct ext4_map_blocks *map)
3539 {
3540 	struct extent_status es;
3541 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3542 
3543 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3544 				  map->m_lblk, end, &es);
3545 
3546 	if (!es.es_len || es.es_lblk > end)
3547 		return false;
3548 
3549 	if (es.es_lblk > map->m_lblk) {
3550 		map->m_len = es.es_lblk - map->m_lblk;
3551 		return false;
3552 	}
3553 
3554 	offset = map->m_lblk - es.es_lblk;
3555 	map->m_len = es.es_len - offset;
3556 
3557 	return true;
3558 }
3559 
3560 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3561 				   loff_t length, unsigned int flags,
3562 				   struct iomap *iomap, struct iomap *srcmap)
3563 {
3564 	int ret;
3565 	bool delalloc = false;
3566 	struct ext4_map_blocks map;
3567 	u8 blkbits = inode->i_blkbits;
3568 
3569 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3570 		return -EINVAL;
3571 
3572 	if (ext4_has_inline_data(inode)) {
3573 		ret = ext4_inline_data_iomap(inode, iomap);
3574 		if (ret != -EAGAIN) {
3575 			if (ret == 0 && offset >= iomap->length)
3576 				ret = -ENOENT;
3577 			return ret;
3578 		}
3579 	}
3580 
3581 	/*
3582 	 * Calculate the first and last logical block respectively.
3583 	 */
3584 	map.m_lblk = offset >> blkbits;
3585 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3586 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3587 
3588 	/*
3589 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3590 	 * So handle it here itself instead of querying ext4_map_blocks().
3591 	 * Since ext4_map_blocks() will warn about it and will return
3592 	 * -EIO error.
3593 	 */
3594 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3595 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3596 
3597 		if (offset >= sbi->s_bitmap_maxbytes) {
3598 			map.m_flags = 0;
3599 			goto set_iomap;
3600 		}
3601 	}
3602 
3603 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3604 	if (ret < 0)
3605 		return ret;
3606 	if (ret == 0)
3607 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3608 
3609 set_iomap:
3610 	ext4_set_iomap(inode, iomap, &map, offset, length);
3611 	if (delalloc && iomap->type == IOMAP_HOLE)
3612 		iomap->type = IOMAP_DELALLOC;
3613 
3614 	return 0;
3615 }
3616 
3617 const struct iomap_ops ext4_iomap_report_ops = {
3618 	.iomap_begin = ext4_iomap_begin_report,
3619 };
3620 
3621 /*
3622  * Pages can be marked dirty completely asynchronously from ext4's journalling
3623  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3624  * much here because ->set_page_dirty is called under VFS locks.  The page is
3625  * not necessarily locked.
3626  *
3627  * We cannot just dirty the page and leave attached buffers clean, because the
3628  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3629  * or jbddirty because all the journalling code will explode.
3630  *
3631  * So what we do is to mark the page "pending dirty" and next time writepage
3632  * is called, propagate that into the buffers appropriately.
3633  */
3634 static int ext4_journalled_set_page_dirty(struct page *page)
3635 {
3636 	SetPageChecked(page);
3637 	return __set_page_dirty_nobuffers(page);
3638 }
3639 
3640 static int ext4_set_page_dirty(struct page *page)
3641 {
3642 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3643 	WARN_ON_ONCE(!page_has_buffers(page));
3644 	return __set_page_dirty_buffers(page);
3645 }
3646 
3647 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3648 				    struct file *file, sector_t *span)
3649 {
3650 	return iomap_swapfile_activate(sis, file, span,
3651 				       &ext4_iomap_report_ops);
3652 }
3653 
3654 static const struct address_space_operations ext4_aops = {
3655 	.readpage		= ext4_readpage,
3656 	.readahead		= ext4_readahead,
3657 	.writepage		= ext4_writepage,
3658 	.writepages		= ext4_writepages,
3659 	.write_begin		= ext4_write_begin,
3660 	.write_end		= ext4_write_end,
3661 	.set_page_dirty		= ext4_set_page_dirty,
3662 	.bmap			= ext4_bmap,
3663 	.invalidatepage		= ext4_invalidatepage,
3664 	.releasepage		= ext4_releasepage,
3665 	.direct_IO		= noop_direct_IO,
3666 	.migratepage		= buffer_migrate_page,
3667 	.is_partially_uptodate  = block_is_partially_uptodate,
3668 	.error_remove_page	= generic_error_remove_page,
3669 	.swap_activate		= ext4_iomap_swap_activate,
3670 };
3671 
3672 static const struct address_space_operations ext4_journalled_aops = {
3673 	.readpage		= ext4_readpage,
3674 	.readahead		= ext4_readahead,
3675 	.writepage		= ext4_writepage,
3676 	.writepages		= ext4_writepages,
3677 	.write_begin		= ext4_write_begin,
3678 	.write_end		= ext4_journalled_write_end,
3679 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3680 	.bmap			= ext4_bmap,
3681 	.invalidatepage		= ext4_journalled_invalidatepage,
3682 	.releasepage		= ext4_releasepage,
3683 	.direct_IO		= noop_direct_IO,
3684 	.is_partially_uptodate  = block_is_partially_uptodate,
3685 	.error_remove_page	= generic_error_remove_page,
3686 	.swap_activate		= ext4_iomap_swap_activate,
3687 };
3688 
3689 static const struct address_space_operations ext4_da_aops = {
3690 	.readpage		= ext4_readpage,
3691 	.readahead		= ext4_readahead,
3692 	.writepage		= ext4_writepage,
3693 	.writepages		= ext4_writepages,
3694 	.write_begin		= ext4_da_write_begin,
3695 	.write_end		= ext4_da_write_end,
3696 	.set_page_dirty		= ext4_set_page_dirty,
3697 	.bmap			= ext4_bmap,
3698 	.invalidatepage		= ext4_invalidatepage,
3699 	.releasepage		= ext4_releasepage,
3700 	.direct_IO		= noop_direct_IO,
3701 	.migratepage		= buffer_migrate_page,
3702 	.is_partially_uptodate  = block_is_partially_uptodate,
3703 	.error_remove_page	= generic_error_remove_page,
3704 	.swap_activate		= ext4_iomap_swap_activate,
3705 };
3706 
3707 static const struct address_space_operations ext4_dax_aops = {
3708 	.writepages		= ext4_dax_writepages,
3709 	.direct_IO		= noop_direct_IO,
3710 	.set_page_dirty		= __set_page_dirty_no_writeback,
3711 	.bmap			= ext4_bmap,
3712 	.invalidatepage		= noop_invalidatepage,
3713 	.swap_activate		= ext4_iomap_swap_activate,
3714 };
3715 
3716 void ext4_set_aops(struct inode *inode)
3717 {
3718 	switch (ext4_inode_journal_mode(inode)) {
3719 	case EXT4_INODE_ORDERED_DATA_MODE:
3720 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3721 		break;
3722 	case EXT4_INODE_JOURNAL_DATA_MODE:
3723 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3724 		return;
3725 	default:
3726 		BUG();
3727 	}
3728 	if (IS_DAX(inode))
3729 		inode->i_mapping->a_ops = &ext4_dax_aops;
3730 	else if (test_opt(inode->i_sb, DELALLOC))
3731 		inode->i_mapping->a_ops = &ext4_da_aops;
3732 	else
3733 		inode->i_mapping->a_ops = &ext4_aops;
3734 }
3735 
3736 static int __ext4_block_zero_page_range(handle_t *handle,
3737 		struct address_space *mapping, loff_t from, loff_t length)
3738 {
3739 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3740 	unsigned offset = from & (PAGE_SIZE-1);
3741 	unsigned blocksize, pos;
3742 	ext4_lblk_t iblock;
3743 	struct inode *inode = mapping->host;
3744 	struct buffer_head *bh;
3745 	struct page *page;
3746 	int err = 0;
3747 
3748 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3749 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3750 	if (!page)
3751 		return -ENOMEM;
3752 
3753 	blocksize = inode->i_sb->s_blocksize;
3754 
3755 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3756 
3757 	if (!page_has_buffers(page))
3758 		create_empty_buffers(page, blocksize, 0);
3759 
3760 	/* Find the buffer that contains "offset" */
3761 	bh = page_buffers(page);
3762 	pos = blocksize;
3763 	while (offset >= pos) {
3764 		bh = bh->b_this_page;
3765 		iblock++;
3766 		pos += blocksize;
3767 	}
3768 	if (buffer_freed(bh)) {
3769 		BUFFER_TRACE(bh, "freed: skip");
3770 		goto unlock;
3771 	}
3772 	if (!buffer_mapped(bh)) {
3773 		BUFFER_TRACE(bh, "unmapped");
3774 		ext4_get_block(inode, iblock, bh, 0);
3775 		/* unmapped? It's a hole - nothing to do */
3776 		if (!buffer_mapped(bh)) {
3777 			BUFFER_TRACE(bh, "still unmapped");
3778 			goto unlock;
3779 		}
3780 	}
3781 
3782 	/* Ok, it's mapped. Make sure it's up-to-date */
3783 	if (PageUptodate(page))
3784 		set_buffer_uptodate(bh);
3785 
3786 	if (!buffer_uptodate(bh)) {
3787 		err = ext4_read_bh_lock(bh, 0, true);
3788 		if (err)
3789 			goto unlock;
3790 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3791 			/* We expect the key to be set. */
3792 			BUG_ON(!fscrypt_has_encryption_key(inode));
3793 			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3794 							       bh_offset(bh));
3795 			if (err) {
3796 				clear_buffer_uptodate(bh);
3797 				goto unlock;
3798 			}
3799 		}
3800 	}
3801 	if (ext4_should_journal_data(inode)) {
3802 		BUFFER_TRACE(bh, "get write access");
3803 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3804 						    EXT4_JTR_NONE);
3805 		if (err)
3806 			goto unlock;
3807 	}
3808 	zero_user(page, offset, length);
3809 	BUFFER_TRACE(bh, "zeroed end of block");
3810 
3811 	if (ext4_should_journal_data(inode)) {
3812 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3813 	} else {
3814 		err = 0;
3815 		mark_buffer_dirty(bh);
3816 		if (ext4_should_order_data(inode))
3817 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3818 					length);
3819 	}
3820 
3821 unlock:
3822 	unlock_page(page);
3823 	put_page(page);
3824 	return err;
3825 }
3826 
3827 /*
3828  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3829  * starting from file offset 'from'.  The range to be zero'd must
3830  * be contained with in one block.  If the specified range exceeds
3831  * the end of the block it will be shortened to end of the block
3832  * that corresponds to 'from'
3833  */
3834 static int ext4_block_zero_page_range(handle_t *handle,
3835 		struct address_space *mapping, loff_t from, loff_t length)
3836 {
3837 	struct inode *inode = mapping->host;
3838 	unsigned offset = from & (PAGE_SIZE-1);
3839 	unsigned blocksize = inode->i_sb->s_blocksize;
3840 	unsigned max = blocksize - (offset & (blocksize - 1));
3841 
3842 	/*
3843 	 * correct length if it does not fall between
3844 	 * 'from' and the end of the block
3845 	 */
3846 	if (length > max || length < 0)
3847 		length = max;
3848 
3849 	if (IS_DAX(inode)) {
3850 		return iomap_zero_range(inode, from, length, NULL,
3851 					&ext4_iomap_ops);
3852 	}
3853 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3854 }
3855 
3856 /*
3857  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3858  * up to the end of the block which corresponds to `from'.
3859  * This required during truncate. We need to physically zero the tail end
3860  * of that block so it doesn't yield old data if the file is later grown.
3861  */
3862 static int ext4_block_truncate_page(handle_t *handle,
3863 		struct address_space *mapping, loff_t from)
3864 {
3865 	unsigned offset = from & (PAGE_SIZE-1);
3866 	unsigned length;
3867 	unsigned blocksize;
3868 	struct inode *inode = mapping->host;
3869 
3870 	/* If we are processing an encrypted inode during orphan list handling */
3871 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3872 		return 0;
3873 
3874 	blocksize = inode->i_sb->s_blocksize;
3875 	length = blocksize - (offset & (blocksize - 1));
3876 
3877 	return ext4_block_zero_page_range(handle, mapping, from, length);
3878 }
3879 
3880 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3881 			     loff_t lstart, loff_t length)
3882 {
3883 	struct super_block *sb = inode->i_sb;
3884 	struct address_space *mapping = inode->i_mapping;
3885 	unsigned partial_start, partial_end;
3886 	ext4_fsblk_t start, end;
3887 	loff_t byte_end = (lstart + length - 1);
3888 	int err = 0;
3889 
3890 	partial_start = lstart & (sb->s_blocksize - 1);
3891 	partial_end = byte_end & (sb->s_blocksize - 1);
3892 
3893 	start = lstart >> sb->s_blocksize_bits;
3894 	end = byte_end >> sb->s_blocksize_bits;
3895 
3896 	/* Handle partial zero within the single block */
3897 	if (start == end &&
3898 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3899 		err = ext4_block_zero_page_range(handle, mapping,
3900 						 lstart, length);
3901 		return err;
3902 	}
3903 	/* Handle partial zero out on the start of the range */
3904 	if (partial_start) {
3905 		err = ext4_block_zero_page_range(handle, mapping,
3906 						 lstart, sb->s_blocksize);
3907 		if (err)
3908 			return err;
3909 	}
3910 	/* Handle partial zero out on the end of the range */
3911 	if (partial_end != sb->s_blocksize - 1)
3912 		err = ext4_block_zero_page_range(handle, mapping,
3913 						 byte_end - partial_end,
3914 						 partial_end + 1);
3915 	return err;
3916 }
3917 
3918 int ext4_can_truncate(struct inode *inode)
3919 {
3920 	if (S_ISREG(inode->i_mode))
3921 		return 1;
3922 	if (S_ISDIR(inode->i_mode))
3923 		return 1;
3924 	if (S_ISLNK(inode->i_mode))
3925 		return !ext4_inode_is_fast_symlink(inode);
3926 	return 0;
3927 }
3928 
3929 /*
3930  * We have to make sure i_disksize gets properly updated before we truncate
3931  * page cache due to hole punching or zero range. Otherwise i_disksize update
3932  * can get lost as it may have been postponed to submission of writeback but
3933  * that will never happen after we truncate page cache.
3934  */
3935 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3936 				      loff_t len)
3937 {
3938 	handle_t *handle;
3939 	int ret;
3940 
3941 	loff_t size = i_size_read(inode);
3942 
3943 	WARN_ON(!inode_is_locked(inode));
3944 	if (offset > size || offset + len < size)
3945 		return 0;
3946 
3947 	if (EXT4_I(inode)->i_disksize >= size)
3948 		return 0;
3949 
3950 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3951 	if (IS_ERR(handle))
3952 		return PTR_ERR(handle);
3953 	ext4_update_i_disksize(inode, size);
3954 	ret = ext4_mark_inode_dirty(handle, inode);
3955 	ext4_journal_stop(handle);
3956 
3957 	return ret;
3958 }
3959 
3960 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3961 {
3962 	up_write(&ei->i_mmap_sem);
3963 	schedule();
3964 	down_write(&ei->i_mmap_sem);
3965 }
3966 
3967 int ext4_break_layouts(struct inode *inode)
3968 {
3969 	struct ext4_inode_info *ei = EXT4_I(inode);
3970 	struct page *page;
3971 	int error;
3972 
3973 	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3974 		return -EINVAL;
3975 
3976 	do {
3977 		page = dax_layout_busy_page(inode->i_mapping);
3978 		if (!page)
3979 			return 0;
3980 
3981 		error = ___wait_var_event(&page->_refcount,
3982 				atomic_read(&page->_refcount) == 1,
3983 				TASK_INTERRUPTIBLE, 0, 0,
3984 				ext4_wait_dax_page(ei));
3985 	} while (error == 0);
3986 
3987 	return error;
3988 }
3989 
3990 /*
3991  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3992  * associated with the given offset and length
3993  *
3994  * @inode:  File inode
3995  * @offset: The offset where the hole will begin
3996  * @len:    The length of the hole
3997  *
3998  * Returns: 0 on success or negative on failure
3999  */
4000 
4001 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4002 {
4003 	struct super_block *sb = inode->i_sb;
4004 	ext4_lblk_t first_block, stop_block;
4005 	struct address_space *mapping = inode->i_mapping;
4006 	loff_t first_block_offset, last_block_offset;
4007 	handle_t *handle;
4008 	unsigned int credits;
4009 	int ret = 0, ret2 = 0;
4010 
4011 	trace_ext4_punch_hole(inode, offset, length, 0);
4012 
4013 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4014 	if (ext4_has_inline_data(inode)) {
4015 		down_write(&EXT4_I(inode)->i_mmap_sem);
4016 		ret = ext4_convert_inline_data(inode);
4017 		up_write(&EXT4_I(inode)->i_mmap_sem);
4018 		if (ret)
4019 			return ret;
4020 	}
4021 
4022 	/*
4023 	 * Write out all dirty pages to avoid race conditions
4024 	 * Then release them.
4025 	 */
4026 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4027 		ret = filemap_write_and_wait_range(mapping, offset,
4028 						   offset + length - 1);
4029 		if (ret)
4030 			return ret;
4031 	}
4032 
4033 	inode_lock(inode);
4034 
4035 	/* No need to punch hole beyond i_size */
4036 	if (offset >= inode->i_size)
4037 		goto out_mutex;
4038 
4039 	/*
4040 	 * If the hole extends beyond i_size, set the hole
4041 	 * to end after the page that contains i_size
4042 	 */
4043 	if (offset + length > inode->i_size) {
4044 		length = inode->i_size +
4045 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4046 		   offset;
4047 	}
4048 
4049 	if (offset & (sb->s_blocksize - 1) ||
4050 	    (offset + length) & (sb->s_blocksize - 1)) {
4051 		/*
4052 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4053 		 * partial block
4054 		 */
4055 		ret = ext4_inode_attach_jinode(inode);
4056 		if (ret < 0)
4057 			goto out_mutex;
4058 
4059 	}
4060 
4061 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4062 	inode_dio_wait(inode);
4063 
4064 	/*
4065 	 * Prevent page faults from reinstantiating pages we have released from
4066 	 * page cache.
4067 	 */
4068 	down_write(&EXT4_I(inode)->i_mmap_sem);
4069 
4070 	ret = ext4_break_layouts(inode);
4071 	if (ret)
4072 		goto out_dio;
4073 
4074 	first_block_offset = round_up(offset, sb->s_blocksize);
4075 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4076 
4077 	/* Now release the pages and zero block aligned part of pages*/
4078 	if (last_block_offset > first_block_offset) {
4079 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4080 		if (ret)
4081 			goto out_dio;
4082 		truncate_pagecache_range(inode, first_block_offset,
4083 					 last_block_offset);
4084 	}
4085 
4086 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4087 		credits = ext4_writepage_trans_blocks(inode);
4088 	else
4089 		credits = ext4_blocks_for_truncate(inode);
4090 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4091 	if (IS_ERR(handle)) {
4092 		ret = PTR_ERR(handle);
4093 		ext4_std_error(sb, ret);
4094 		goto out_dio;
4095 	}
4096 
4097 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4098 				       length);
4099 	if (ret)
4100 		goto out_stop;
4101 
4102 	first_block = (offset + sb->s_blocksize - 1) >>
4103 		EXT4_BLOCK_SIZE_BITS(sb);
4104 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4105 
4106 	/* If there are blocks to remove, do it */
4107 	if (stop_block > first_block) {
4108 
4109 		down_write(&EXT4_I(inode)->i_data_sem);
4110 		ext4_discard_preallocations(inode, 0);
4111 
4112 		ret = ext4_es_remove_extent(inode, first_block,
4113 					    stop_block - first_block);
4114 		if (ret) {
4115 			up_write(&EXT4_I(inode)->i_data_sem);
4116 			goto out_stop;
4117 		}
4118 
4119 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4120 			ret = ext4_ext_remove_space(inode, first_block,
4121 						    stop_block - 1);
4122 		else
4123 			ret = ext4_ind_remove_space(handle, inode, first_block,
4124 						    stop_block);
4125 
4126 		up_write(&EXT4_I(inode)->i_data_sem);
4127 	}
4128 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4129 	if (IS_SYNC(inode))
4130 		ext4_handle_sync(handle);
4131 
4132 	inode->i_mtime = inode->i_ctime = current_time(inode);
4133 	ret2 = ext4_mark_inode_dirty(handle, inode);
4134 	if (unlikely(ret2))
4135 		ret = ret2;
4136 	if (ret >= 0)
4137 		ext4_update_inode_fsync_trans(handle, inode, 1);
4138 out_stop:
4139 	ext4_journal_stop(handle);
4140 out_dio:
4141 	up_write(&EXT4_I(inode)->i_mmap_sem);
4142 out_mutex:
4143 	inode_unlock(inode);
4144 	return ret;
4145 }
4146 
4147 int ext4_inode_attach_jinode(struct inode *inode)
4148 {
4149 	struct ext4_inode_info *ei = EXT4_I(inode);
4150 	struct jbd2_inode *jinode;
4151 
4152 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4153 		return 0;
4154 
4155 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4156 	spin_lock(&inode->i_lock);
4157 	if (!ei->jinode) {
4158 		if (!jinode) {
4159 			spin_unlock(&inode->i_lock);
4160 			return -ENOMEM;
4161 		}
4162 		ei->jinode = jinode;
4163 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4164 		jinode = NULL;
4165 	}
4166 	spin_unlock(&inode->i_lock);
4167 	if (unlikely(jinode != NULL))
4168 		jbd2_free_inode(jinode);
4169 	return 0;
4170 }
4171 
4172 /*
4173  * ext4_truncate()
4174  *
4175  * We block out ext4_get_block() block instantiations across the entire
4176  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4177  * simultaneously on behalf of the same inode.
4178  *
4179  * As we work through the truncate and commit bits of it to the journal there
4180  * is one core, guiding principle: the file's tree must always be consistent on
4181  * disk.  We must be able to restart the truncate after a crash.
4182  *
4183  * The file's tree may be transiently inconsistent in memory (although it
4184  * probably isn't), but whenever we close off and commit a journal transaction,
4185  * the contents of (the filesystem + the journal) must be consistent and
4186  * restartable.  It's pretty simple, really: bottom up, right to left (although
4187  * left-to-right works OK too).
4188  *
4189  * Note that at recovery time, journal replay occurs *before* the restart of
4190  * truncate against the orphan inode list.
4191  *
4192  * The committed inode has the new, desired i_size (which is the same as
4193  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4194  * that this inode's truncate did not complete and it will again call
4195  * ext4_truncate() to have another go.  So there will be instantiated blocks
4196  * to the right of the truncation point in a crashed ext4 filesystem.  But
4197  * that's fine - as long as they are linked from the inode, the post-crash
4198  * ext4_truncate() run will find them and release them.
4199  */
4200 int ext4_truncate(struct inode *inode)
4201 {
4202 	struct ext4_inode_info *ei = EXT4_I(inode);
4203 	unsigned int credits;
4204 	int err = 0, err2;
4205 	handle_t *handle;
4206 	struct address_space *mapping = inode->i_mapping;
4207 
4208 	/*
4209 	 * There is a possibility that we're either freeing the inode
4210 	 * or it's a completely new inode. In those cases we might not
4211 	 * have i_mutex locked because it's not necessary.
4212 	 */
4213 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4214 		WARN_ON(!inode_is_locked(inode));
4215 	trace_ext4_truncate_enter(inode);
4216 
4217 	if (!ext4_can_truncate(inode))
4218 		goto out_trace;
4219 
4220 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4221 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4222 
4223 	if (ext4_has_inline_data(inode)) {
4224 		int has_inline = 1;
4225 
4226 		err = ext4_inline_data_truncate(inode, &has_inline);
4227 		if (err || has_inline)
4228 			goto out_trace;
4229 	}
4230 
4231 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4232 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4233 		if (ext4_inode_attach_jinode(inode) < 0)
4234 			goto out_trace;
4235 	}
4236 
4237 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4238 		credits = ext4_writepage_trans_blocks(inode);
4239 	else
4240 		credits = ext4_blocks_for_truncate(inode);
4241 
4242 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4243 	if (IS_ERR(handle)) {
4244 		err = PTR_ERR(handle);
4245 		goto out_trace;
4246 	}
4247 
4248 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4249 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4250 
4251 	/*
4252 	 * We add the inode to the orphan list, so that if this
4253 	 * truncate spans multiple transactions, and we crash, we will
4254 	 * resume the truncate when the filesystem recovers.  It also
4255 	 * marks the inode dirty, to catch the new size.
4256 	 *
4257 	 * Implication: the file must always be in a sane, consistent
4258 	 * truncatable state while each transaction commits.
4259 	 */
4260 	err = ext4_orphan_add(handle, inode);
4261 	if (err)
4262 		goto out_stop;
4263 
4264 	down_write(&EXT4_I(inode)->i_data_sem);
4265 
4266 	ext4_discard_preallocations(inode, 0);
4267 
4268 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4269 		err = ext4_ext_truncate(handle, inode);
4270 	else
4271 		ext4_ind_truncate(handle, inode);
4272 
4273 	up_write(&ei->i_data_sem);
4274 	if (err)
4275 		goto out_stop;
4276 
4277 	if (IS_SYNC(inode))
4278 		ext4_handle_sync(handle);
4279 
4280 out_stop:
4281 	/*
4282 	 * If this was a simple ftruncate() and the file will remain alive,
4283 	 * then we need to clear up the orphan record which we created above.
4284 	 * However, if this was a real unlink then we were called by
4285 	 * ext4_evict_inode(), and we allow that function to clean up the
4286 	 * orphan info for us.
4287 	 */
4288 	if (inode->i_nlink)
4289 		ext4_orphan_del(handle, inode);
4290 
4291 	inode->i_mtime = inode->i_ctime = current_time(inode);
4292 	err2 = ext4_mark_inode_dirty(handle, inode);
4293 	if (unlikely(err2 && !err))
4294 		err = err2;
4295 	ext4_journal_stop(handle);
4296 
4297 out_trace:
4298 	trace_ext4_truncate_exit(inode);
4299 	return err;
4300 }
4301 
4302 /*
4303  * ext4_get_inode_loc returns with an extra refcount against the inode's
4304  * underlying buffer_head on success. If 'in_mem' is true, we have all
4305  * data in memory that is needed to recreate the on-disk version of this
4306  * inode.
4307  */
4308 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4309 				struct ext4_iloc *iloc, int in_mem,
4310 				ext4_fsblk_t *ret_block)
4311 {
4312 	struct ext4_group_desc	*gdp;
4313 	struct buffer_head	*bh;
4314 	ext4_fsblk_t		block;
4315 	struct blk_plug		plug;
4316 	int			inodes_per_block, inode_offset;
4317 
4318 	iloc->bh = NULL;
4319 	if (ino < EXT4_ROOT_INO ||
4320 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4321 		return -EFSCORRUPTED;
4322 
4323 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4324 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4325 	if (!gdp)
4326 		return -EIO;
4327 
4328 	/*
4329 	 * Figure out the offset within the block group inode table
4330 	 */
4331 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4332 	inode_offset = ((ino - 1) %
4333 			EXT4_INODES_PER_GROUP(sb));
4334 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4335 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4336 
4337 	bh = sb_getblk(sb, block);
4338 	if (unlikely(!bh))
4339 		return -ENOMEM;
4340 	if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4341 		goto simulate_eio;
4342 	if (!buffer_uptodate(bh)) {
4343 		lock_buffer(bh);
4344 
4345 		if (ext4_buffer_uptodate(bh)) {
4346 			/* someone brought it uptodate while we waited */
4347 			unlock_buffer(bh);
4348 			goto has_buffer;
4349 		}
4350 
4351 		/*
4352 		 * If we have all information of the inode in memory and this
4353 		 * is the only valid inode in the block, we need not read the
4354 		 * block.
4355 		 */
4356 		if (in_mem) {
4357 			struct buffer_head *bitmap_bh;
4358 			int i, start;
4359 
4360 			start = inode_offset & ~(inodes_per_block - 1);
4361 
4362 			/* Is the inode bitmap in cache? */
4363 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4364 			if (unlikely(!bitmap_bh))
4365 				goto make_io;
4366 
4367 			/*
4368 			 * If the inode bitmap isn't in cache then the
4369 			 * optimisation may end up performing two reads instead
4370 			 * of one, so skip it.
4371 			 */
4372 			if (!buffer_uptodate(bitmap_bh)) {
4373 				brelse(bitmap_bh);
4374 				goto make_io;
4375 			}
4376 			for (i = start; i < start + inodes_per_block; i++) {
4377 				if (i == inode_offset)
4378 					continue;
4379 				if (ext4_test_bit(i, bitmap_bh->b_data))
4380 					break;
4381 			}
4382 			brelse(bitmap_bh);
4383 			if (i == start + inodes_per_block) {
4384 				/* all other inodes are free, so skip I/O */
4385 				memset(bh->b_data, 0, bh->b_size);
4386 				set_buffer_uptodate(bh);
4387 				unlock_buffer(bh);
4388 				goto has_buffer;
4389 			}
4390 		}
4391 
4392 make_io:
4393 		/*
4394 		 * If we need to do any I/O, try to pre-readahead extra
4395 		 * blocks from the inode table.
4396 		 */
4397 		blk_start_plug(&plug);
4398 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4399 			ext4_fsblk_t b, end, table;
4400 			unsigned num;
4401 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4402 
4403 			table = ext4_inode_table(sb, gdp);
4404 			/* s_inode_readahead_blks is always a power of 2 */
4405 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4406 			if (table > b)
4407 				b = table;
4408 			end = b + ra_blks;
4409 			num = EXT4_INODES_PER_GROUP(sb);
4410 			if (ext4_has_group_desc_csum(sb))
4411 				num -= ext4_itable_unused_count(sb, gdp);
4412 			table += num / inodes_per_block;
4413 			if (end > table)
4414 				end = table;
4415 			while (b <= end)
4416 				ext4_sb_breadahead_unmovable(sb, b++);
4417 		}
4418 
4419 		/*
4420 		 * There are other valid inodes in the buffer, this inode
4421 		 * has in-inode xattrs, or we don't have this inode in memory.
4422 		 * Read the block from disk.
4423 		 */
4424 		trace_ext4_load_inode(sb, ino);
4425 		ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4426 		blk_finish_plug(&plug);
4427 		wait_on_buffer(bh);
4428 		if (!buffer_uptodate(bh)) {
4429 		simulate_eio:
4430 			if (ret_block)
4431 				*ret_block = block;
4432 			brelse(bh);
4433 			return -EIO;
4434 		}
4435 	}
4436 has_buffer:
4437 	iloc->bh = bh;
4438 	return 0;
4439 }
4440 
4441 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4442 					struct ext4_iloc *iloc)
4443 {
4444 	ext4_fsblk_t err_blk;
4445 	int ret;
4446 
4447 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0,
4448 					&err_blk);
4449 
4450 	if (ret == -EIO)
4451 		ext4_error_inode_block(inode, err_blk, EIO,
4452 					"unable to read itable block");
4453 
4454 	return ret;
4455 }
4456 
4457 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4458 {
4459 	ext4_fsblk_t err_blk;
4460 	int ret;
4461 
4462 	/* We have all inode data except xattrs in memory here. */
4463 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc,
4464 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk);
4465 
4466 	if (ret == -EIO)
4467 		ext4_error_inode_block(inode, err_blk, EIO,
4468 					"unable to read itable block");
4469 
4470 	return ret;
4471 }
4472 
4473 
4474 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4475 			  struct ext4_iloc *iloc)
4476 {
4477 	return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL);
4478 }
4479 
4480 static bool ext4_should_enable_dax(struct inode *inode)
4481 {
4482 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4483 
4484 	if (test_opt2(inode->i_sb, DAX_NEVER))
4485 		return false;
4486 	if (!S_ISREG(inode->i_mode))
4487 		return false;
4488 	if (ext4_should_journal_data(inode))
4489 		return false;
4490 	if (ext4_has_inline_data(inode))
4491 		return false;
4492 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4493 		return false;
4494 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4495 		return false;
4496 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4497 		return false;
4498 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4499 		return true;
4500 
4501 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4502 }
4503 
4504 void ext4_set_inode_flags(struct inode *inode, bool init)
4505 {
4506 	unsigned int flags = EXT4_I(inode)->i_flags;
4507 	unsigned int new_fl = 0;
4508 
4509 	WARN_ON_ONCE(IS_DAX(inode) && init);
4510 
4511 	if (flags & EXT4_SYNC_FL)
4512 		new_fl |= S_SYNC;
4513 	if (flags & EXT4_APPEND_FL)
4514 		new_fl |= S_APPEND;
4515 	if (flags & EXT4_IMMUTABLE_FL)
4516 		new_fl |= S_IMMUTABLE;
4517 	if (flags & EXT4_NOATIME_FL)
4518 		new_fl |= S_NOATIME;
4519 	if (flags & EXT4_DIRSYNC_FL)
4520 		new_fl |= S_DIRSYNC;
4521 
4522 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4523 	 * here if already set. */
4524 	new_fl |= (inode->i_flags & S_DAX);
4525 	if (init && ext4_should_enable_dax(inode))
4526 		new_fl |= S_DAX;
4527 
4528 	if (flags & EXT4_ENCRYPT_FL)
4529 		new_fl |= S_ENCRYPTED;
4530 	if (flags & EXT4_CASEFOLD_FL)
4531 		new_fl |= S_CASEFOLD;
4532 	if (flags & EXT4_VERITY_FL)
4533 		new_fl |= S_VERITY;
4534 	inode_set_flags(inode, new_fl,
4535 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4536 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4537 }
4538 
4539 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4540 				  struct ext4_inode_info *ei)
4541 {
4542 	blkcnt_t i_blocks ;
4543 	struct inode *inode = &(ei->vfs_inode);
4544 	struct super_block *sb = inode->i_sb;
4545 
4546 	if (ext4_has_feature_huge_file(sb)) {
4547 		/* we are using combined 48 bit field */
4548 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4549 					le32_to_cpu(raw_inode->i_blocks_lo);
4550 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4551 			/* i_blocks represent file system block size */
4552 			return i_blocks  << (inode->i_blkbits - 9);
4553 		} else {
4554 			return i_blocks;
4555 		}
4556 	} else {
4557 		return le32_to_cpu(raw_inode->i_blocks_lo);
4558 	}
4559 }
4560 
4561 static inline int ext4_iget_extra_inode(struct inode *inode,
4562 					 struct ext4_inode *raw_inode,
4563 					 struct ext4_inode_info *ei)
4564 {
4565 	__le32 *magic = (void *)raw_inode +
4566 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4567 
4568 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4569 	    EXT4_INODE_SIZE(inode->i_sb) &&
4570 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4571 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4572 		return ext4_find_inline_data_nolock(inode);
4573 	} else
4574 		EXT4_I(inode)->i_inline_off = 0;
4575 	return 0;
4576 }
4577 
4578 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4579 {
4580 	if (!ext4_has_feature_project(inode->i_sb))
4581 		return -EOPNOTSUPP;
4582 	*projid = EXT4_I(inode)->i_projid;
4583 	return 0;
4584 }
4585 
4586 /*
4587  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4588  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4589  * set.
4590  */
4591 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4592 {
4593 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4594 		inode_set_iversion_raw(inode, val);
4595 	else
4596 		inode_set_iversion_queried(inode, val);
4597 }
4598 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4599 {
4600 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4601 		return inode_peek_iversion_raw(inode);
4602 	else
4603 		return inode_peek_iversion(inode);
4604 }
4605 
4606 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4607 			  ext4_iget_flags flags, const char *function,
4608 			  unsigned int line)
4609 {
4610 	struct ext4_iloc iloc;
4611 	struct ext4_inode *raw_inode;
4612 	struct ext4_inode_info *ei;
4613 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4614 	struct inode *inode;
4615 	journal_t *journal = EXT4_SB(sb)->s_journal;
4616 	long ret;
4617 	loff_t size;
4618 	int block;
4619 	uid_t i_uid;
4620 	gid_t i_gid;
4621 	projid_t i_projid;
4622 
4623 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4624 	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4625 	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4626 	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4627 	      ino == le32_to_cpu(es->s_prj_quota_inum))) ||
4628 	    (ino < EXT4_ROOT_INO) ||
4629 	    (ino > le32_to_cpu(es->s_inodes_count))) {
4630 		if (flags & EXT4_IGET_HANDLE)
4631 			return ERR_PTR(-ESTALE);
4632 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4633 			     "inode #%lu: comm %s: iget: illegal inode #",
4634 			     ino, current->comm);
4635 		return ERR_PTR(-EFSCORRUPTED);
4636 	}
4637 
4638 	inode = iget_locked(sb, ino);
4639 	if (!inode)
4640 		return ERR_PTR(-ENOMEM);
4641 	if (!(inode->i_state & I_NEW))
4642 		return inode;
4643 
4644 	ei = EXT4_I(inode);
4645 	iloc.bh = NULL;
4646 
4647 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4648 	if (ret < 0)
4649 		goto bad_inode;
4650 	raw_inode = ext4_raw_inode(&iloc);
4651 
4652 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4653 		ext4_error_inode(inode, function, line, 0,
4654 				 "iget: root inode unallocated");
4655 		ret = -EFSCORRUPTED;
4656 		goto bad_inode;
4657 	}
4658 
4659 	if ((flags & EXT4_IGET_HANDLE) &&
4660 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4661 		ret = -ESTALE;
4662 		goto bad_inode;
4663 	}
4664 
4665 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4666 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4667 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4668 			EXT4_INODE_SIZE(inode->i_sb) ||
4669 		    (ei->i_extra_isize & 3)) {
4670 			ext4_error_inode(inode, function, line, 0,
4671 					 "iget: bad extra_isize %u "
4672 					 "(inode size %u)",
4673 					 ei->i_extra_isize,
4674 					 EXT4_INODE_SIZE(inode->i_sb));
4675 			ret = -EFSCORRUPTED;
4676 			goto bad_inode;
4677 		}
4678 	} else
4679 		ei->i_extra_isize = 0;
4680 
4681 	/* Precompute checksum seed for inode metadata */
4682 	if (ext4_has_metadata_csum(sb)) {
4683 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4684 		__u32 csum;
4685 		__le32 inum = cpu_to_le32(inode->i_ino);
4686 		__le32 gen = raw_inode->i_generation;
4687 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4688 				   sizeof(inum));
4689 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4690 					      sizeof(gen));
4691 	}
4692 
4693 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4694 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4695 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4696 		ext4_error_inode_err(inode, function, line, 0,
4697 				EFSBADCRC, "iget: checksum invalid");
4698 		ret = -EFSBADCRC;
4699 		goto bad_inode;
4700 	}
4701 
4702 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4703 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4704 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4705 	if (ext4_has_feature_project(sb) &&
4706 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4707 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4708 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4709 	else
4710 		i_projid = EXT4_DEF_PROJID;
4711 
4712 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4713 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4714 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4715 	}
4716 	i_uid_write(inode, i_uid);
4717 	i_gid_write(inode, i_gid);
4718 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4719 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4720 
4721 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4722 	ei->i_inline_off = 0;
4723 	ei->i_dir_start_lookup = 0;
4724 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4725 	/* We now have enough fields to check if the inode was active or not.
4726 	 * This is needed because nfsd might try to access dead inodes
4727 	 * the test is that same one that e2fsck uses
4728 	 * NeilBrown 1999oct15
4729 	 */
4730 	if (inode->i_nlink == 0) {
4731 		if ((inode->i_mode == 0 ||
4732 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4733 		    ino != EXT4_BOOT_LOADER_INO) {
4734 			/* this inode is deleted */
4735 			ret = -ESTALE;
4736 			goto bad_inode;
4737 		}
4738 		/* The only unlinked inodes we let through here have
4739 		 * valid i_mode and are being read by the orphan
4740 		 * recovery code: that's fine, we're about to complete
4741 		 * the process of deleting those.
4742 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4743 		 * not initialized on a new filesystem. */
4744 	}
4745 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4746 	ext4_set_inode_flags(inode, true);
4747 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4748 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4749 	if (ext4_has_feature_64bit(sb))
4750 		ei->i_file_acl |=
4751 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4752 	inode->i_size = ext4_isize(sb, raw_inode);
4753 	if ((size = i_size_read(inode)) < 0) {
4754 		ext4_error_inode(inode, function, line, 0,
4755 				 "iget: bad i_size value: %lld", size);
4756 		ret = -EFSCORRUPTED;
4757 		goto bad_inode;
4758 	}
4759 	/*
4760 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4761 	 * we'd normally treat htree data as empty space. But with metadata
4762 	 * checksumming that corrupts checksums so forbid that.
4763 	 */
4764 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4765 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4766 		ext4_error_inode(inode, function, line, 0,
4767 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4768 		ret = -EFSCORRUPTED;
4769 		goto bad_inode;
4770 	}
4771 	ei->i_disksize = inode->i_size;
4772 #ifdef CONFIG_QUOTA
4773 	ei->i_reserved_quota = 0;
4774 #endif
4775 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4776 	ei->i_block_group = iloc.block_group;
4777 	ei->i_last_alloc_group = ~0;
4778 	/*
4779 	 * NOTE! The in-memory inode i_data array is in little-endian order
4780 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4781 	 */
4782 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4783 		ei->i_data[block] = raw_inode->i_block[block];
4784 	INIT_LIST_HEAD(&ei->i_orphan);
4785 	ext4_fc_init_inode(&ei->vfs_inode);
4786 
4787 	/*
4788 	 * Set transaction id's of transactions that have to be committed
4789 	 * to finish f[data]sync. We set them to currently running transaction
4790 	 * as we cannot be sure that the inode or some of its metadata isn't
4791 	 * part of the transaction - the inode could have been reclaimed and
4792 	 * now it is reread from disk.
4793 	 */
4794 	if (journal) {
4795 		transaction_t *transaction;
4796 		tid_t tid;
4797 
4798 		read_lock(&journal->j_state_lock);
4799 		if (journal->j_running_transaction)
4800 			transaction = journal->j_running_transaction;
4801 		else
4802 			transaction = journal->j_committing_transaction;
4803 		if (transaction)
4804 			tid = transaction->t_tid;
4805 		else
4806 			tid = journal->j_commit_sequence;
4807 		read_unlock(&journal->j_state_lock);
4808 		ei->i_sync_tid = tid;
4809 		ei->i_datasync_tid = tid;
4810 	}
4811 
4812 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4813 		if (ei->i_extra_isize == 0) {
4814 			/* The extra space is currently unused. Use it. */
4815 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4816 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4817 					    EXT4_GOOD_OLD_INODE_SIZE;
4818 		} else {
4819 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4820 			if (ret)
4821 				goto bad_inode;
4822 		}
4823 	}
4824 
4825 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4826 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4827 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4828 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4829 
4830 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4831 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4832 
4833 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4834 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4835 				ivers |=
4836 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4837 		}
4838 		ext4_inode_set_iversion_queried(inode, ivers);
4839 	}
4840 
4841 	ret = 0;
4842 	if (ei->i_file_acl &&
4843 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4844 		ext4_error_inode(inode, function, line, 0,
4845 				 "iget: bad extended attribute block %llu",
4846 				 ei->i_file_acl);
4847 		ret = -EFSCORRUPTED;
4848 		goto bad_inode;
4849 	} else if (!ext4_has_inline_data(inode)) {
4850 		/* validate the block references in the inode */
4851 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4852 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4853 			(S_ISLNK(inode->i_mode) &&
4854 			!ext4_inode_is_fast_symlink(inode)))) {
4855 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4856 				ret = ext4_ext_check_inode(inode);
4857 			else
4858 				ret = ext4_ind_check_inode(inode);
4859 		}
4860 	}
4861 	if (ret)
4862 		goto bad_inode;
4863 
4864 	if (S_ISREG(inode->i_mode)) {
4865 		inode->i_op = &ext4_file_inode_operations;
4866 		inode->i_fop = &ext4_file_operations;
4867 		ext4_set_aops(inode);
4868 	} else if (S_ISDIR(inode->i_mode)) {
4869 		inode->i_op = &ext4_dir_inode_operations;
4870 		inode->i_fop = &ext4_dir_operations;
4871 	} else if (S_ISLNK(inode->i_mode)) {
4872 		/* VFS does not allow setting these so must be corruption */
4873 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4874 			ext4_error_inode(inode, function, line, 0,
4875 					 "iget: immutable or append flags "
4876 					 "not allowed on symlinks");
4877 			ret = -EFSCORRUPTED;
4878 			goto bad_inode;
4879 		}
4880 		if (IS_ENCRYPTED(inode)) {
4881 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4882 			ext4_set_aops(inode);
4883 		} else if (ext4_inode_is_fast_symlink(inode)) {
4884 			inode->i_link = (char *)ei->i_data;
4885 			inode->i_op = &ext4_fast_symlink_inode_operations;
4886 			nd_terminate_link(ei->i_data, inode->i_size,
4887 				sizeof(ei->i_data) - 1);
4888 		} else {
4889 			inode->i_op = &ext4_symlink_inode_operations;
4890 			ext4_set_aops(inode);
4891 		}
4892 		inode_nohighmem(inode);
4893 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4894 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4895 		inode->i_op = &ext4_special_inode_operations;
4896 		if (raw_inode->i_block[0])
4897 			init_special_inode(inode, inode->i_mode,
4898 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4899 		else
4900 			init_special_inode(inode, inode->i_mode,
4901 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4902 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4903 		make_bad_inode(inode);
4904 	} else {
4905 		ret = -EFSCORRUPTED;
4906 		ext4_error_inode(inode, function, line, 0,
4907 				 "iget: bogus i_mode (%o)", inode->i_mode);
4908 		goto bad_inode;
4909 	}
4910 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4911 		ext4_error_inode(inode, function, line, 0,
4912 				 "casefold flag without casefold feature");
4913 	brelse(iloc.bh);
4914 
4915 	unlock_new_inode(inode);
4916 	return inode;
4917 
4918 bad_inode:
4919 	brelse(iloc.bh);
4920 	iget_failed(inode);
4921 	return ERR_PTR(ret);
4922 }
4923 
4924 static int ext4_inode_blocks_set(handle_t *handle,
4925 				struct ext4_inode *raw_inode,
4926 				struct ext4_inode_info *ei)
4927 {
4928 	struct inode *inode = &(ei->vfs_inode);
4929 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4930 	struct super_block *sb = inode->i_sb;
4931 
4932 	if (i_blocks <= ~0U) {
4933 		/*
4934 		 * i_blocks can be represented in a 32 bit variable
4935 		 * as multiple of 512 bytes
4936 		 */
4937 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4938 		raw_inode->i_blocks_high = 0;
4939 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4940 		return 0;
4941 	}
4942 	if (!ext4_has_feature_huge_file(sb))
4943 		return -EFBIG;
4944 
4945 	if (i_blocks <= 0xffffffffffffULL) {
4946 		/*
4947 		 * i_blocks can be represented in a 48 bit variable
4948 		 * as multiple of 512 bytes
4949 		 */
4950 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4951 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4952 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4953 	} else {
4954 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4955 		/* i_block is stored in file system block size */
4956 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4957 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4958 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4959 	}
4960 	return 0;
4961 }
4962 
4963 static void __ext4_update_other_inode_time(struct super_block *sb,
4964 					   unsigned long orig_ino,
4965 					   unsigned long ino,
4966 					   struct ext4_inode *raw_inode)
4967 {
4968 	struct inode *inode;
4969 
4970 	inode = find_inode_by_ino_rcu(sb, ino);
4971 	if (!inode)
4972 		return;
4973 
4974 	if (!inode_is_dirtytime_only(inode))
4975 		return;
4976 
4977 	spin_lock(&inode->i_lock);
4978 	if (inode_is_dirtytime_only(inode)) {
4979 		struct ext4_inode_info	*ei = EXT4_I(inode);
4980 
4981 		inode->i_state &= ~I_DIRTY_TIME;
4982 		spin_unlock(&inode->i_lock);
4983 
4984 		spin_lock(&ei->i_raw_lock);
4985 		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4986 		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4987 		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4988 		ext4_inode_csum_set(inode, raw_inode, ei);
4989 		spin_unlock(&ei->i_raw_lock);
4990 		trace_ext4_other_inode_update_time(inode, orig_ino);
4991 		return;
4992 	}
4993 	spin_unlock(&inode->i_lock);
4994 }
4995 
4996 /*
4997  * Opportunistically update the other time fields for other inodes in
4998  * the same inode table block.
4999  */
5000 static void ext4_update_other_inodes_time(struct super_block *sb,
5001 					  unsigned long orig_ino, char *buf)
5002 {
5003 	unsigned long ino;
5004 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5005 	int inode_size = EXT4_INODE_SIZE(sb);
5006 
5007 	/*
5008 	 * Calculate the first inode in the inode table block.  Inode
5009 	 * numbers are one-based.  That is, the first inode in a block
5010 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5011 	 */
5012 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5013 	rcu_read_lock();
5014 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5015 		if (ino == orig_ino)
5016 			continue;
5017 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5018 					       (struct ext4_inode *)buf);
5019 	}
5020 	rcu_read_unlock();
5021 }
5022 
5023 /*
5024  * Post the struct inode info into an on-disk inode location in the
5025  * buffer-cache.  This gobbles the caller's reference to the
5026  * buffer_head in the inode location struct.
5027  *
5028  * The caller must have write access to iloc->bh.
5029  */
5030 static int ext4_do_update_inode(handle_t *handle,
5031 				struct inode *inode,
5032 				struct ext4_iloc *iloc)
5033 {
5034 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5035 	struct ext4_inode_info *ei = EXT4_I(inode);
5036 	struct buffer_head *bh = iloc->bh;
5037 	struct super_block *sb = inode->i_sb;
5038 	int err = 0, block;
5039 	int need_datasync = 0, set_large_file = 0;
5040 	uid_t i_uid;
5041 	gid_t i_gid;
5042 	projid_t i_projid;
5043 
5044 	spin_lock(&ei->i_raw_lock);
5045 
5046 	/* For fields not tracked in the in-memory inode,
5047 	 * initialise them to zero for new inodes. */
5048 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5049 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5050 
5051 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5052 	if (err) {
5053 		spin_unlock(&ei->i_raw_lock);
5054 		goto out_brelse;
5055 	}
5056 
5057 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5058 	i_uid = i_uid_read(inode);
5059 	i_gid = i_gid_read(inode);
5060 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5061 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5062 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5063 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5064 /*
5065  * Fix up interoperability with old kernels. Otherwise, old inodes get
5066  * re-used with the upper 16 bits of the uid/gid intact
5067  */
5068 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5069 			raw_inode->i_uid_high = 0;
5070 			raw_inode->i_gid_high = 0;
5071 		} else {
5072 			raw_inode->i_uid_high =
5073 				cpu_to_le16(high_16_bits(i_uid));
5074 			raw_inode->i_gid_high =
5075 				cpu_to_le16(high_16_bits(i_gid));
5076 		}
5077 	} else {
5078 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5079 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5080 		raw_inode->i_uid_high = 0;
5081 		raw_inode->i_gid_high = 0;
5082 	}
5083 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5084 
5085 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5086 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5087 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5088 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5089 
5090 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5091 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5092 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5093 		raw_inode->i_file_acl_high =
5094 			cpu_to_le16(ei->i_file_acl >> 32);
5095 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5096 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5097 		ext4_isize_set(raw_inode, ei->i_disksize);
5098 		need_datasync = 1;
5099 	}
5100 	if (ei->i_disksize > 0x7fffffffULL) {
5101 		if (!ext4_has_feature_large_file(sb) ||
5102 				EXT4_SB(sb)->s_es->s_rev_level ==
5103 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5104 			set_large_file = 1;
5105 	}
5106 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5107 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5108 		if (old_valid_dev(inode->i_rdev)) {
5109 			raw_inode->i_block[0] =
5110 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5111 			raw_inode->i_block[1] = 0;
5112 		} else {
5113 			raw_inode->i_block[0] = 0;
5114 			raw_inode->i_block[1] =
5115 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5116 			raw_inode->i_block[2] = 0;
5117 		}
5118 	} else if (!ext4_has_inline_data(inode)) {
5119 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5120 			raw_inode->i_block[block] = ei->i_data[block];
5121 	}
5122 
5123 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5124 		u64 ivers = ext4_inode_peek_iversion(inode);
5125 
5126 		raw_inode->i_disk_version = cpu_to_le32(ivers);
5127 		if (ei->i_extra_isize) {
5128 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5129 				raw_inode->i_version_hi =
5130 					cpu_to_le32(ivers >> 32);
5131 			raw_inode->i_extra_isize =
5132 				cpu_to_le16(ei->i_extra_isize);
5133 		}
5134 	}
5135 
5136 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5137 	       i_projid != EXT4_DEF_PROJID);
5138 
5139 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5140 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5141 		raw_inode->i_projid = cpu_to_le32(i_projid);
5142 
5143 	ext4_inode_csum_set(inode, raw_inode, ei);
5144 	spin_unlock(&ei->i_raw_lock);
5145 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5146 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5147 					      bh->b_data);
5148 
5149 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5150 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5151 	if (err)
5152 		goto out_brelse;
5153 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5154 	if (set_large_file) {
5155 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5156 		err = ext4_journal_get_write_access(handle, sb,
5157 						    EXT4_SB(sb)->s_sbh,
5158 						    EXT4_JTR_NONE);
5159 		if (err)
5160 			goto out_brelse;
5161 		lock_buffer(EXT4_SB(sb)->s_sbh);
5162 		ext4_set_feature_large_file(sb);
5163 		ext4_superblock_csum_set(sb);
5164 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5165 		ext4_handle_sync(handle);
5166 		err = ext4_handle_dirty_metadata(handle, NULL,
5167 						 EXT4_SB(sb)->s_sbh);
5168 	}
5169 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5170 out_brelse:
5171 	brelse(bh);
5172 	ext4_std_error(inode->i_sb, err);
5173 	return err;
5174 }
5175 
5176 /*
5177  * ext4_write_inode()
5178  *
5179  * We are called from a few places:
5180  *
5181  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5182  *   Here, there will be no transaction running. We wait for any running
5183  *   transaction to commit.
5184  *
5185  * - Within flush work (sys_sync(), kupdate and such).
5186  *   We wait on commit, if told to.
5187  *
5188  * - Within iput_final() -> write_inode_now()
5189  *   We wait on commit, if told to.
5190  *
5191  * In all cases it is actually safe for us to return without doing anything,
5192  * because the inode has been copied into a raw inode buffer in
5193  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5194  * writeback.
5195  *
5196  * Note that we are absolutely dependent upon all inode dirtiers doing the
5197  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5198  * which we are interested.
5199  *
5200  * It would be a bug for them to not do this.  The code:
5201  *
5202  *	mark_inode_dirty(inode)
5203  *	stuff();
5204  *	inode->i_size = expr;
5205  *
5206  * is in error because write_inode() could occur while `stuff()' is running,
5207  * and the new i_size will be lost.  Plus the inode will no longer be on the
5208  * superblock's dirty inode list.
5209  */
5210 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5211 {
5212 	int err;
5213 
5214 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5215 	    sb_rdonly(inode->i_sb))
5216 		return 0;
5217 
5218 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5219 		return -EIO;
5220 
5221 	if (EXT4_SB(inode->i_sb)->s_journal) {
5222 		if (ext4_journal_current_handle()) {
5223 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5224 			dump_stack();
5225 			return -EIO;
5226 		}
5227 
5228 		/*
5229 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5230 		 * ext4_sync_fs() will force the commit after everything is
5231 		 * written.
5232 		 */
5233 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5234 			return 0;
5235 
5236 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5237 						EXT4_I(inode)->i_sync_tid);
5238 	} else {
5239 		struct ext4_iloc iloc;
5240 
5241 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5242 		if (err)
5243 			return err;
5244 		/*
5245 		 * sync(2) will flush the whole buffer cache. No need to do
5246 		 * it here separately for each inode.
5247 		 */
5248 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5249 			sync_dirty_buffer(iloc.bh);
5250 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5251 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5252 					       "IO error syncing inode");
5253 			err = -EIO;
5254 		}
5255 		brelse(iloc.bh);
5256 	}
5257 	return err;
5258 }
5259 
5260 /*
5261  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5262  * buffers that are attached to a page stradding i_size and are undergoing
5263  * commit. In that case we have to wait for commit to finish and try again.
5264  */
5265 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5266 {
5267 	struct page *page;
5268 	unsigned offset;
5269 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5270 	tid_t commit_tid = 0;
5271 	int ret;
5272 
5273 	offset = inode->i_size & (PAGE_SIZE - 1);
5274 	/*
5275 	 * If the page is fully truncated, we don't need to wait for any commit
5276 	 * (and we even should not as __ext4_journalled_invalidatepage() may
5277 	 * strip all buffers from the page but keep the page dirty which can then
5278 	 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5279 	 * buffers). Also we don't need to wait for any commit if all buffers in
5280 	 * the page remain valid. This is most beneficial for the common case of
5281 	 * blocksize == PAGESIZE.
5282 	 */
5283 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5284 		return;
5285 	while (1) {
5286 		page = find_lock_page(inode->i_mapping,
5287 				      inode->i_size >> PAGE_SHIFT);
5288 		if (!page)
5289 			return;
5290 		ret = __ext4_journalled_invalidatepage(page, offset,
5291 						PAGE_SIZE - offset);
5292 		unlock_page(page);
5293 		put_page(page);
5294 		if (ret != -EBUSY)
5295 			return;
5296 		commit_tid = 0;
5297 		read_lock(&journal->j_state_lock);
5298 		if (journal->j_committing_transaction)
5299 			commit_tid = journal->j_committing_transaction->t_tid;
5300 		read_unlock(&journal->j_state_lock);
5301 		if (commit_tid)
5302 			jbd2_log_wait_commit(journal, commit_tid);
5303 	}
5304 }
5305 
5306 /*
5307  * ext4_setattr()
5308  *
5309  * Called from notify_change.
5310  *
5311  * We want to trap VFS attempts to truncate the file as soon as
5312  * possible.  In particular, we want to make sure that when the VFS
5313  * shrinks i_size, we put the inode on the orphan list and modify
5314  * i_disksize immediately, so that during the subsequent flushing of
5315  * dirty pages and freeing of disk blocks, we can guarantee that any
5316  * commit will leave the blocks being flushed in an unused state on
5317  * disk.  (On recovery, the inode will get truncated and the blocks will
5318  * be freed, so we have a strong guarantee that no future commit will
5319  * leave these blocks visible to the user.)
5320  *
5321  * Another thing we have to assure is that if we are in ordered mode
5322  * and inode is still attached to the committing transaction, we must
5323  * we start writeout of all the dirty pages which are being truncated.
5324  * This way we are sure that all the data written in the previous
5325  * transaction are already on disk (truncate waits for pages under
5326  * writeback).
5327  *
5328  * Called with inode->i_mutex down.
5329  */
5330 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5331 		 struct iattr *attr)
5332 {
5333 	struct inode *inode = d_inode(dentry);
5334 	int error, rc = 0;
5335 	int orphan = 0;
5336 	const unsigned int ia_valid = attr->ia_valid;
5337 
5338 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5339 		return -EIO;
5340 
5341 	if (unlikely(IS_IMMUTABLE(inode)))
5342 		return -EPERM;
5343 
5344 	if (unlikely(IS_APPEND(inode) &&
5345 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5346 				  ATTR_GID | ATTR_TIMES_SET))))
5347 		return -EPERM;
5348 
5349 	error = setattr_prepare(mnt_userns, dentry, attr);
5350 	if (error)
5351 		return error;
5352 
5353 	error = fscrypt_prepare_setattr(dentry, attr);
5354 	if (error)
5355 		return error;
5356 
5357 	error = fsverity_prepare_setattr(dentry, attr);
5358 	if (error)
5359 		return error;
5360 
5361 	if (is_quota_modification(inode, attr)) {
5362 		error = dquot_initialize(inode);
5363 		if (error)
5364 			return error;
5365 	}
5366 	ext4_fc_start_update(inode);
5367 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5368 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5369 		handle_t *handle;
5370 
5371 		/* (user+group)*(old+new) structure, inode write (sb,
5372 		 * inode block, ? - but truncate inode update has it) */
5373 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5374 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5375 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5376 		if (IS_ERR(handle)) {
5377 			error = PTR_ERR(handle);
5378 			goto err_out;
5379 		}
5380 
5381 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5382 		 * counts xattr inode references.
5383 		 */
5384 		down_read(&EXT4_I(inode)->xattr_sem);
5385 		error = dquot_transfer(inode, attr);
5386 		up_read(&EXT4_I(inode)->xattr_sem);
5387 
5388 		if (error) {
5389 			ext4_journal_stop(handle);
5390 			ext4_fc_stop_update(inode);
5391 			return error;
5392 		}
5393 		/* Update corresponding info in inode so that everything is in
5394 		 * one transaction */
5395 		if (attr->ia_valid & ATTR_UID)
5396 			inode->i_uid = attr->ia_uid;
5397 		if (attr->ia_valid & ATTR_GID)
5398 			inode->i_gid = attr->ia_gid;
5399 		error = ext4_mark_inode_dirty(handle, inode);
5400 		ext4_journal_stop(handle);
5401 		if (unlikely(error)) {
5402 			ext4_fc_stop_update(inode);
5403 			return error;
5404 		}
5405 	}
5406 
5407 	if (attr->ia_valid & ATTR_SIZE) {
5408 		handle_t *handle;
5409 		loff_t oldsize = inode->i_size;
5410 		int shrink = (attr->ia_size < inode->i_size);
5411 
5412 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5413 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5414 
5415 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5416 				ext4_fc_stop_update(inode);
5417 				return -EFBIG;
5418 			}
5419 		}
5420 		if (!S_ISREG(inode->i_mode)) {
5421 			ext4_fc_stop_update(inode);
5422 			return -EINVAL;
5423 		}
5424 
5425 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5426 			inode_inc_iversion(inode);
5427 
5428 		if (shrink) {
5429 			if (ext4_should_order_data(inode)) {
5430 				error = ext4_begin_ordered_truncate(inode,
5431 							    attr->ia_size);
5432 				if (error)
5433 					goto err_out;
5434 			}
5435 			/*
5436 			 * Blocks are going to be removed from the inode. Wait
5437 			 * for dio in flight.
5438 			 */
5439 			inode_dio_wait(inode);
5440 		}
5441 
5442 		down_write(&EXT4_I(inode)->i_mmap_sem);
5443 
5444 		rc = ext4_break_layouts(inode);
5445 		if (rc) {
5446 			up_write(&EXT4_I(inode)->i_mmap_sem);
5447 			goto err_out;
5448 		}
5449 
5450 		if (attr->ia_size != inode->i_size) {
5451 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5452 			if (IS_ERR(handle)) {
5453 				error = PTR_ERR(handle);
5454 				goto out_mmap_sem;
5455 			}
5456 			if (ext4_handle_valid(handle) && shrink) {
5457 				error = ext4_orphan_add(handle, inode);
5458 				orphan = 1;
5459 			}
5460 			/*
5461 			 * Update c/mtime on truncate up, ext4_truncate() will
5462 			 * update c/mtime in shrink case below
5463 			 */
5464 			if (!shrink) {
5465 				inode->i_mtime = current_time(inode);
5466 				inode->i_ctime = inode->i_mtime;
5467 			}
5468 
5469 			if (shrink)
5470 				ext4_fc_track_range(handle, inode,
5471 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5472 					inode->i_sb->s_blocksize_bits,
5473 					(oldsize > 0 ? oldsize - 1 : 0) >>
5474 					inode->i_sb->s_blocksize_bits);
5475 			else
5476 				ext4_fc_track_range(
5477 					handle, inode,
5478 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5479 					inode->i_sb->s_blocksize_bits,
5480 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5481 					inode->i_sb->s_blocksize_bits);
5482 
5483 			down_write(&EXT4_I(inode)->i_data_sem);
5484 			EXT4_I(inode)->i_disksize = attr->ia_size;
5485 			rc = ext4_mark_inode_dirty(handle, inode);
5486 			if (!error)
5487 				error = rc;
5488 			/*
5489 			 * We have to update i_size under i_data_sem together
5490 			 * with i_disksize to avoid races with writeback code
5491 			 * running ext4_wb_update_i_disksize().
5492 			 */
5493 			if (!error)
5494 				i_size_write(inode, attr->ia_size);
5495 			up_write(&EXT4_I(inode)->i_data_sem);
5496 			ext4_journal_stop(handle);
5497 			if (error)
5498 				goto out_mmap_sem;
5499 			if (!shrink) {
5500 				pagecache_isize_extended(inode, oldsize,
5501 							 inode->i_size);
5502 			} else if (ext4_should_journal_data(inode)) {
5503 				ext4_wait_for_tail_page_commit(inode);
5504 			}
5505 		}
5506 
5507 		/*
5508 		 * Truncate pagecache after we've waited for commit
5509 		 * in data=journal mode to make pages freeable.
5510 		 */
5511 		truncate_pagecache(inode, inode->i_size);
5512 		/*
5513 		 * Call ext4_truncate() even if i_size didn't change to
5514 		 * truncate possible preallocated blocks.
5515 		 */
5516 		if (attr->ia_size <= oldsize) {
5517 			rc = ext4_truncate(inode);
5518 			if (rc)
5519 				error = rc;
5520 		}
5521 out_mmap_sem:
5522 		up_write(&EXT4_I(inode)->i_mmap_sem);
5523 	}
5524 
5525 	if (!error) {
5526 		setattr_copy(mnt_userns, inode, attr);
5527 		mark_inode_dirty(inode);
5528 	}
5529 
5530 	/*
5531 	 * If the call to ext4_truncate failed to get a transaction handle at
5532 	 * all, we need to clean up the in-core orphan list manually.
5533 	 */
5534 	if (orphan && inode->i_nlink)
5535 		ext4_orphan_del(NULL, inode);
5536 
5537 	if (!error && (ia_valid & ATTR_MODE))
5538 		rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5539 
5540 err_out:
5541 	if  (error)
5542 		ext4_std_error(inode->i_sb, error);
5543 	if (!error)
5544 		error = rc;
5545 	ext4_fc_stop_update(inode);
5546 	return error;
5547 }
5548 
5549 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5550 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5551 {
5552 	struct inode *inode = d_inode(path->dentry);
5553 	struct ext4_inode *raw_inode;
5554 	struct ext4_inode_info *ei = EXT4_I(inode);
5555 	unsigned int flags;
5556 
5557 	if ((request_mask & STATX_BTIME) &&
5558 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5559 		stat->result_mask |= STATX_BTIME;
5560 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5561 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5562 	}
5563 
5564 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5565 	if (flags & EXT4_APPEND_FL)
5566 		stat->attributes |= STATX_ATTR_APPEND;
5567 	if (flags & EXT4_COMPR_FL)
5568 		stat->attributes |= STATX_ATTR_COMPRESSED;
5569 	if (flags & EXT4_ENCRYPT_FL)
5570 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5571 	if (flags & EXT4_IMMUTABLE_FL)
5572 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5573 	if (flags & EXT4_NODUMP_FL)
5574 		stat->attributes |= STATX_ATTR_NODUMP;
5575 	if (flags & EXT4_VERITY_FL)
5576 		stat->attributes |= STATX_ATTR_VERITY;
5577 
5578 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5579 				  STATX_ATTR_COMPRESSED |
5580 				  STATX_ATTR_ENCRYPTED |
5581 				  STATX_ATTR_IMMUTABLE |
5582 				  STATX_ATTR_NODUMP |
5583 				  STATX_ATTR_VERITY);
5584 
5585 	generic_fillattr(mnt_userns, inode, stat);
5586 	return 0;
5587 }
5588 
5589 int ext4_file_getattr(struct user_namespace *mnt_userns,
5590 		      const struct path *path, struct kstat *stat,
5591 		      u32 request_mask, unsigned int query_flags)
5592 {
5593 	struct inode *inode = d_inode(path->dentry);
5594 	u64 delalloc_blocks;
5595 
5596 	ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5597 
5598 	/*
5599 	 * If there is inline data in the inode, the inode will normally not
5600 	 * have data blocks allocated (it may have an external xattr block).
5601 	 * Report at least one sector for such files, so tools like tar, rsync,
5602 	 * others don't incorrectly think the file is completely sparse.
5603 	 */
5604 	if (unlikely(ext4_has_inline_data(inode)))
5605 		stat->blocks += (stat->size + 511) >> 9;
5606 
5607 	/*
5608 	 * We can't update i_blocks if the block allocation is delayed
5609 	 * otherwise in the case of system crash before the real block
5610 	 * allocation is done, we will have i_blocks inconsistent with
5611 	 * on-disk file blocks.
5612 	 * We always keep i_blocks updated together with real
5613 	 * allocation. But to not confuse with user, stat
5614 	 * will return the blocks that include the delayed allocation
5615 	 * blocks for this file.
5616 	 */
5617 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5618 				   EXT4_I(inode)->i_reserved_data_blocks);
5619 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5620 	return 0;
5621 }
5622 
5623 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5624 				   int pextents)
5625 {
5626 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5627 		return ext4_ind_trans_blocks(inode, lblocks);
5628 	return ext4_ext_index_trans_blocks(inode, pextents);
5629 }
5630 
5631 /*
5632  * Account for index blocks, block groups bitmaps and block group
5633  * descriptor blocks if modify datablocks and index blocks
5634  * worse case, the indexs blocks spread over different block groups
5635  *
5636  * If datablocks are discontiguous, they are possible to spread over
5637  * different block groups too. If they are contiguous, with flexbg,
5638  * they could still across block group boundary.
5639  *
5640  * Also account for superblock, inode, quota and xattr blocks
5641  */
5642 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5643 				  int pextents)
5644 {
5645 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5646 	int gdpblocks;
5647 	int idxblocks;
5648 	int ret = 0;
5649 
5650 	/*
5651 	 * How many index blocks need to touch to map @lblocks logical blocks
5652 	 * to @pextents physical extents?
5653 	 */
5654 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5655 
5656 	ret = idxblocks;
5657 
5658 	/*
5659 	 * Now let's see how many group bitmaps and group descriptors need
5660 	 * to account
5661 	 */
5662 	groups = idxblocks + pextents;
5663 	gdpblocks = groups;
5664 	if (groups > ngroups)
5665 		groups = ngroups;
5666 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5667 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5668 
5669 	/* bitmaps and block group descriptor blocks */
5670 	ret += groups + gdpblocks;
5671 
5672 	/* Blocks for super block, inode, quota and xattr blocks */
5673 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5674 
5675 	return ret;
5676 }
5677 
5678 /*
5679  * Calculate the total number of credits to reserve to fit
5680  * the modification of a single pages into a single transaction,
5681  * which may include multiple chunks of block allocations.
5682  *
5683  * This could be called via ext4_write_begin()
5684  *
5685  * We need to consider the worse case, when
5686  * one new block per extent.
5687  */
5688 int ext4_writepage_trans_blocks(struct inode *inode)
5689 {
5690 	int bpp = ext4_journal_blocks_per_page(inode);
5691 	int ret;
5692 
5693 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5694 
5695 	/* Account for data blocks for journalled mode */
5696 	if (ext4_should_journal_data(inode))
5697 		ret += bpp;
5698 	return ret;
5699 }
5700 
5701 /*
5702  * Calculate the journal credits for a chunk of data modification.
5703  *
5704  * This is called from DIO, fallocate or whoever calling
5705  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5706  *
5707  * journal buffers for data blocks are not included here, as DIO
5708  * and fallocate do no need to journal data buffers.
5709  */
5710 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5711 {
5712 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5713 }
5714 
5715 /*
5716  * The caller must have previously called ext4_reserve_inode_write().
5717  * Give this, we know that the caller already has write access to iloc->bh.
5718  */
5719 int ext4_mark_iloc_dirty(handle_t *handle,
5720 			 struct inode *inode, struct ext4_iloc *iloc)
5721 {
5722 	int err = 0;
5723 
5724 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5725 		put_bh(iloc->bh);
5726 		return -EIO;
5727 	}
5728 	ext4_fc_track_inode(handle, inode);
5729 
5730 	if (IS_I_VERSION(inode))
5731 		inode_inc_iversion(inode);
5732 
5733 	/* the do_update_inode consumes one bh->b_count */
5734 	get_bh(iloc->bh);
5735 
5736 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5737 	err = ext4_do_update_inode(handle, inode, iloc);
5738 	put_bh(iloc->bh);
5739 	return err;
5740 }
5741 
5742 /*
5743  * On success, We end up with an outstanding reference count against
5744  * iloc->bh.  This _must_ be cleaned up later.
5745  */
5746 
5747 int
5748 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5749 			 struct ext4_iloc *iloc)
5750 {
5751 	int err;
5752 
5753 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5754 		return -EIO;
5755 
5756 	err = ext4_get_inode_loc(inode, iloc);
5757 	if (!err) {
5758 		BUFFER_TRACE(iloc->bh, "get_write_access");
5759 		err = ext4_journal_get_write_access(handle, inode->i_sb,
5760 						    iloc->bh, EXT4_JTR_NONE);
5761 		if (err) {
5762 			brelse(iloc->bh);
5763 			iloc->bh = NULL;
5764 		}
5765 	}
5766 	ext4_std_error(inode->i_sb, err);
5767 	return err;
5768 }
5769 
5770 static int __ext4_expand_extra_isize(struct inode *inode,
5771 				     unsigned int new_extra_isize,
5772 				     struct ext4_iloc *iloc,
5773 				     handle_t *handle, int *no_expand)
5774 {
5775 	struct ext4_inode *raw_inode;
5776 	struct ext4_xattr_ibody_header *header;
5777 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5778 	struct ext4_inode_info *ei = EXT4_I(inode);
5779 	int error;
5780 
5781 	/* this was checked at iget time, but double check for good measure */
5782 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5783 	    (ei->i_extra_isize & 3)) {
5784 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5785 				 ei->i_extra_isize,
5786 				 EXT4_INODE_SIZE(inode->i_sb));
5787 		return -EFSCORRUPTED;
5788 	}
5789 	if ((new_extra_isize < ei->i_extra_isize) ||
5790 	    (new_extra_isize < 4) ||
5791 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5792 		return -EINVAL;	/* Should never happen */
5793 
5794 	raw_inode = ext4_raw_inode(iloc);
5795 
5796 	header = IHDR(inode, raw_inode);
5797 
5798 	/* No extended attributes present */
5799 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5800 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5801 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5802 		       EXT4_I(inode)->i_extra_isize, 0,
5803 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5804 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5805 		return 0;
5806 	}
5807 
5808 	/* try to expand with EAs present */
5809 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5810 					   raw_inode, handle);
5811 	if (error) {
5812 		/*
5813 		 * Inode size expansion failed; don't try again
5814 		 */
5815 		*no_expand = 1;
5816 	}
5817 
5818 	return error;
5819 }
5820 
5821 /*
5822  * Expand an inode by new_extra_isize bytes.
5823  * Returns 0 on success or negative error number on failure.
5824  */
5825 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5826 					  unsigned int new_extra_isize,
5827 					  struct ext4_iloc iloc,
5828 					  handle_t *handle)
5829 {
5830 	int no_expand;
5831 	int error;
5832 
5833 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5834 		return -EOVERFLOW;
5835 
5836 	/*
5837 	 * In nojournal mode, we can immediately attempt to expand
5838 	 * the inode.  When journaled, we first need to obtain extra
5839 	 * buffer credits since we may write into the EA block
5840 	 * with this same handle. If journal_extend fails, then it will
5841 	 * only result in a minor loss of functionality for that inode.
5842 	 * If this is felt to be critical, then e2fsck should be run to
5843 	 * force a large enough s_min_extra_isize.
5844 	 */
5845 	if (ext4_journal_extend(handle,
5846 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5847 		return -ENOSPC;
5848 
5849 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5850 		return -EBUSY;
5851 
5852 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5853 					  handle, &no_expand);
5854 	ext4_write_unlock_xattr(inode, &no_expand);
5855 
5856 	return error;
5857 }
5858 
5859 int ext4_expand_extra_isize(struct inode *inode,
5860 			    unsigned int new_extra_isize,
5861 			    struct ext4_iloc *iloc)
5862 {
5863 	handle_t *handle;
5864 	int no_expand;
5865 	int error, rc;
5866 
5867 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5868 		brelse(iloc->bh);
5869 		return -EOVERFLOW;
5870 	}
5871 
5872 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5873 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5874 	if (IS_ERR(handle)) {
5875 		error = PTR_ERR(handle);
5876 		brelse(iloc->bh);
5877 		return error;
5878 	}
5879 
5880 	ext4_write_lock_xattr(inode, &no_expand);
5881 
5882 	BUFFER_TRACE(iloc->bh, "get_write_access");
5883 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5884 					      EXT4_JTR_NONE);
5885 	if (error) {
5886 		brelse(iloc->bh);
5887 		goto out_unlock;
5888 	}
5889 
5890 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5891 					  handle, &no_expand);
5892 
5893 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5894 	if (!error)
5895 		error = rc;
5896 
5897 out_unlock:
5898 	ext4_write_unlock_xattr(inode, &no_expand);
5899 	ext4_journal_stop(handle);
5900 	return error;
5901 }
5902 
5903 /*
5904  * What we do here is to mark the in-core inode as clean with respect to inode
5905  * dirtiness (it may still be data-dirty).
5906  * This means that the in-core inode may be reaped by prune_icache
5907  * without having to perform any I/O.  This is a very good thing,
5908  * because *any* task may call prune_icache - even ones which
5909  * have a transaction open against a different journal.
5910  *
5911  * Is this cheating?  Not really.  Sure, we haven't written the
5912  * inode out, but prune_icache isn't a user-visible syncing function.
5913  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5914  * we start and wait on commits.
5915  */
5916 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5917 				const char *func, unsigned int line)
5918 {
5919 	struct ext4_iloc iloc;
5920 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5921 	int err;
5922 
5923 	might_sleep();
5924 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5925 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5926 	if (err)
5927 		goto out;
5928 
5929 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5930 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5931 					       iloc, handle);
5932 
5933 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5934 out:
5935 	if (unlikely(err))
5936 		ext4_error_inode_err(inode, func, line, 0, err,
5937 					"mark_inode_dirty error");
5938 	return err;
5939 }
5940 
5941 /*
5942  * ext4_dirty_inode() is called from __mark_inode_dirty()
5943  *
5944  * We're really interested in the case where a file is being extended.
5945  * i_size has been changed by generic_commit_write() and we thus need
5946  * to include the updated inode in the current transaction.
5947  *
5948  * Also, dquot_alloc_block() will always dirty the inode when blocks
5949  * are allocated to the file.
5950  *
5951  * If the inode is marked synchronous, we don't honour that here - doing
5952  * so would cause a commit on atime updates, which we don't bother doing.
5953  * We handle synchronous inodes at the highest possible level.
5954  */
5955 void ext4_dirty_inode(struct inode *inode, int flags)
5956 {
5957 	handle_t *handle;
5958 
5959 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5960 	if (IS_ERR(handle))
5961 		return;
5962 	ext4_mark_inode_dirty(handle, inode);
5963 	ext4_journal_stop(handle);
5964 }
5965 
5966 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5967 {
5968 	journal_t *journal;
5969 	handle_t *handle;
5970 	int err;
5971 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5972 
5973 	/*
5974 	 * We have to be very careful here: changing a data block's
5975 	 * journaling status dynamically is dangerous.  If we write a
5976 	 * data block to the journal, change the status and then delete
5977 	 * that block, we risk forgetting to revoke the old log record
5978 	 * from the journal and so a subsequent replay can corrupt data.
5979 	 * So, first we make sure that the journal is empty and that
5980 	 * nobody is changing anything.
5981 	 */
5982 
5983 	journal = EXT4_JOURNAL(inode);
5984 	if (!journal)
5985 		return 0;
5986 	if (is_journal_aborted(journal))
5987 		return -EROFS;
5988 
5989 	/* Wait for all existing dio workers */
5990 	inode_dio_wait(inode);
5991 
5992 	/*
5993 	 * Before flushing the journal and switching inode's aops, we have
5994 	 * to flush all dirty data the inode has. There can be outstanding
5995 	 * delayed allocations, there can be unwritten extents created by
5996 	 * fallocate or buffered writes in dioread_nolock mode covered by
5997 	 * dirty data which can be converted only after flushing the dirty
5998 	 * data (and journalled aops don't know how to handle these cases).
5999 	 */
6000 	if (val) {
6001 		down_write(&EXT4_I(inode)->i_mmap_sem);
6002 		err = filemap_write_and_wait(inode->i_mapping);
6003 		if (err < 0) {
6004 			up_write(&EXT4_I(inode)->i_mmap_sem);
6005 			return err;
6006 		}
6007 	}
6008 
6009 	percpu_down_write(&sbi->s_writepages_rwsem);
6010 	jbd2_journal_lock_updates(journal);
6011 
6012 	/*
6013 	 * OK, there are no updates running now, and all cached data is
6014 	 * synced to disk.  We are now in a completely consistent state
6015 	 * which doesn't have anything in the journal, and we know that
6016 	 * no filesystem updates are running, so it is safe to modify
6017 	 * the inode's in-core data-journaling state flag now.
6018 	 */
6019 
6020 	if (val)
6021 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6022 	else {
6023 		err = jbd2_journal_flush(journal, 0);
6024 		if (err < 0) {
6025 			jbd2_journal_unlock_updates(journal);
6026 			percpu_up_write(&sbi->s_writepages_rwsem);
6027 			return err;
6028 		}
6029 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6030 	}
6031 	ext4_set_aops(inode);
6032 
6033 	jbd2_journal_unlock_updates(journal);
6034 	percpu_up_write(&sbi->s_writepages_rwsem);
6035 
6036 	if (val)
6037 		up_write(&EXT4_I(inode)->i_mmap_sem);
6038 
6039 	/* Finally we can mark the inode as dirty. */
6040 
6041 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6042 	if (IS_ERR(handle))
6043 		return PTR_ERR(handle);
6044 
6045 	ext4_fc_mark_ineligible(inode->i_sb,
6046 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
6047 	err = ext4_mark_inode_dirty(handle, inode);
6048 	ext4_handle_sync(handle);
6049 	ext4_journal_stop(handle);
6050 	ext4_std_error(inode->i_sb, err);
6051 
6052 	return err;
6053 }
6054 
6055 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6056 			    struct buffer_head *bh)
6057 {
6058 	return !buffer_mapped(bh);
6059 }
6060 
6061 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6062 {
6063 	struct vm_area_struct *vma = vmf->vma;
6064 	struct page *page = vmf->page;
6065 	loff_t size;
6066 	unsigned long len;
6067 	int err;
6068 	vm_fault_t ret;
6069 	struct file *file = vma->vm_file;
6070 	struct inode *inode = file_inode(file);
6071 	struct address_space *mapping = inode->i_mapping;
6072 	handle_t *handle;
6073 	get_block_t *get_block;
6074 	int retries = 0;
6075 
6076 	if (unlikely(IS_IMMUTABLE(inode)))
6077 		return VM_FAULT_SIGBUS;
6078 
6079 	sb_start_pagefault(inode->i_sb);
6080 	file_update_time(vma->vm_file);
6081 
6082 	down_read(&EXT4_I(inode)->i_mmap_sem);
6083 
6084 	err = ext4_convert_inline_data(inode);
6085 	if (err)
6086 		goto out_ret;
6087 
6088 	/*
6089 	 * On data journalling we skip straight to the transaction handle:
6090 	 * there's no delalloc; page truncated will be checked later; the
6091 	 * early return w/ all buffers mapped (calculates size/len) can't
6092 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6093 	 */
6094 	if (ext4_should_journal_data(inode))
6095 		goto retry_alloc;
6096 
6097 	/* Delalloc case is easy... */
6098 	if (test_opt(inode->i_sb, DELALLOC) &&
6099 	    !ext4_nonda_switch(inode->i_sb)) {
6100 		do {
6101 			err = block_page_mkwrite(vma, vmf,
6102 						   ext4_da_get_block_prep);
6103 		} while (err == -ENOSPC &&
6104 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6105 		goto out_ret;
6106 	}
6107 
6108 	lock_page(page);
6109 	size = i_size_read(inode);
6110 	/* Page got truncated from under us? */
6111 	if (page->mapping != mapping || page_offset(page) > size) {
6112 		unlock_page(page);
6113 		ret = VM_FAULT_NOPAGE;
6114 		goto out;
6115 	}
6116 
6117 	if (page->index == size >> PAGE_SHIFT)
6118 		len = size & ~PAGE_MASK;
6119 	else
6120 		len = PAGE_SIZE;
6121 	/*
6122 	 * Return if we have all the buffers mapped. This avoids the need to do
6123 	 * journal_start/journal_stop which can block and take a long time
6124 	 *
6125 	 * This cannot be done for data journalling, as we have to add the
6126 	 * inode to the transaction's list to writeprotect pages on commit.
6127 	 */
6128 	if (page_has_buffers(page)) {
6129 		if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6130 					    0, len, NULL,
6131 					    ext4_bh_unmapped)) {
6132 			/* Wait so that we don't change page under IO */
6133 			wait_for_stable_page(page);
6134 			ret = VM_FAULT_LOCKED;
6135 			goto out;
6136 		}
6137 	}
6138 	unlock_page(page);
6139 	/* OK, we need to fill the hole... */
6140 	if (ext4_should_dioread_nolock(inode))
6141 		get_block = ext4_get_block_unwritten;
6142 	else
6143 		get_block = ext4_get_block;
6144 retry_alloc:
6145 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6146 				    ext4_writepage_trans_blocks(inode));
6147 	if (IS_ERR(handle)) {
6148 		ret = VM_FAULT_SIGBUS;
6149 		goto out;
6150 	}
6151 	/*
6152 	 * Data journalling can't use block_page_mkwrite() because it
6153 	 * will set_buffer_dirty() before do_journal_get_write_access()
6154 	 * thus might hit warning messages for dirty metadata buffers.
6155 	 */
6156 	if (!ext4_should_journal_data(inode)) {
6157 		err = block_page_mkwrite(vma, vmf, get_block);
6158 	} else {
6159 		lock_page(page);
6160 		size = i_size_read(inode);
6161 		/* Page got truncated from under us? */
6162 		if (page->mapping != mapping || page_offset(page) > size) {
6163 			ret = VM_FAULT_NOPAGE;
6164 			goto out_error;
6165 		}
6166 
6167 		if (page->index == size >> PAGE_SHIFT)
6168 			len = size & ~PAGE_MASK;
6169 		else
6170 			len = PAGE_SIZE;
6171 
6172 		err = __block_write_begin(page, 0, len, ext4_get_block);
6173 		if (!err) {
6174 			ret = VM_FAULT_SIGBUS;
6175 			if (ext4_walk_page_buffers(handle, inode,
6176 					page_buffers(page), 0, len, NULL,
6177 					do_journal_get_write_access))
6178 				goto out_error;
6179 			if (ext4_walk_page_buffers(handle, inode,
6180 					page_buffers(page), 0, len, NULL,
6181 					write_end_fn))
6182 				goto out_error;
6183 			if (ext4_jbd2_inode_add_write(handle, inode,
6184 						      page_offset(page), len))
6185 				goto out_error;
6186 			ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6187 		} else {
6188 			unlock_page(page);
6189 		}
6190 	}
6191 	ext4_journal_stop(handle);
6192 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6193 		goto retry_alloc;
6194 out_ret:
6195 	ret = block_page_mkwrite_return(err);
6196 out:
6197 	up_read(&EXT4_I(inode)->i_mmap_sem);
6198 	sb_end_pagefault(inode->i_sb);
6199 	return ret;
6200 out_error:
6201 	unlock_page(page);
6202 	ext4_journal_stop(handle);
6203 	goto out;
6204 }
6205 
6206 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6207 {
6208 	struct inode *inode = file_inode(vmf->vma->vm_file);
6209 	vm_fault_t ret;
6210 
6211 	down_read(&EXT4_I(inode)->i_mmap_sem);
6212 	ret = filemap_fault(vmf);
6213 	up_read(&EXT4_I(inode)->i_mmap_sem);
6214 
6215 	return ret;
6216 }
6217