xref: /openbmc/linux/fs/ext4/inode.c (revision 0a2d31b62dba9b5b92a38c67c9cc42630513662a)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/module.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
46 #include "truncate.h"
47 
48 #include <trace/events/ext4.h>
49 
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51 
52 static inline int ext4_begin_ordered_truncate(struct inode *inode,
53 					      loff_t new_size)
54 {
55 	trace_ext4_begin_ordered_truncate(inode, new_size);
56 	/*
57 	 * If jinode is zero, then we never opened the file for
58 	 * writing, so there's no need to call
59 	 * jbd2_journal_begin_ordered_truncate() since there's no
60 	 * outstanding writes we need to flush.
61 	 */
62 	if (!EXT4_I(inode)->jinode)
63 		return 0;
64 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
65 						   EXT4_I(inode)->jinode,
66 						   new_size);
67 }
68 
69 static void ext4_invalidatepage(struct page *page, unsigned long offset);
70 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
71 				   struct buffer_head *bh_result, int create);
72 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
73 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
74 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
75 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
76 
77 /*
78  * Test whether an inode is a fast symlink.
79  */
80 static int ext4_inode_is_fast_symlink(struct inode *inode)
81 {
82 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
83 		(inode->i_sb->s_blocksize >> 9) : 0;
84 
85 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
86 }
87 
88 /*
89  * Restart the transaction associated with *handle.  This does a commit,
90  * so before we call here everything must be consistently dirtied against
91  * this transaction.
92  */
93 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
94 				 int nblocks)
95 {
96 	int ret;
97 
98 	/*
99 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
100 	 * moment, get_block can be called only for blocks inside i_size since
101 	 * page cache has been already dropped and writes are blocked by
102 	 * i_mutex. So we can safely drop the i_data_sem here.
103 	 */
104 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
105 	jbd_debug(2, "restarting handle %p\n", handle);
106 	up_write(&EXT4_I(inode)->i_data_sem);
107 	ret = ext4_journal_restart(handle, nblocks);
108 	down_write(&EXT4_I(inode)->i_data_sem);
109 	ext4_discard_preallocations(inode);
110 
111 	return ret;
112 }
113 
114 /*
115  * Called at the last iput() if i_nlink is zero.
116  */
117 void ext4_evict_inode(struct inode *inode)
118 {
119 	handle_t *handle;
120 	int err;
121 
122 	trace_ext4_evict_inode(inode);
123 	if (inode->i_nlink) {
124 		/*
125 		 * When journalling data dirty buffers are tracked only in the
126 		 * journal. So although mm thinks everything is clean and
127 		 * ready for reaping the inode might still have some pages to
128 		 * write in the running transaction or waiting to be
129 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
130 		 * (via truncate_inode_pages()) to discard these buffers can
131 		 * cause data loss. Also even if we did not discard these
132 		 * buffers, we would have no way to find them after the inode
133 		 * is reaped and thus user could see stale data if he tries to
134 		 * read them before the transaction is checkpointed. So be
135 		 * careful and force everything to disk here... We use
136 		 * ei->i_datasync_tid to store the newest transaction
137 		 * containing inode's data.
138 		 *
139 		 * Note that directories do not have this problem because they
140 		 * don't use page cache.
141 		 */
142 		if (ext4_should_journal_data(inode) &&
143 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
144 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
145 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
146 
147 			jbd2_log_start_commit(journal, commit_tid);
148 			jbd2_log_wait_commit(journal, commit_tid);
149 			filemap_write_and_wait(&inode->i_data);
150 		}
151 		truncate_inode_pages(&inode->i_data, 0);
152 		goto no_delete;
153 	}
154 
155 	if (!is_bad_inode(inode))
156 		dquot_initialize(inode);
157 
158 	if (ext4_should_order_data(inode))
159 		ext4_begin_ordered_truncate(inode, 0);
160 	truncate_inode_pages(&inode->i_data, 0);
161 
162 	if (is_bad_inode(inode))
163 		goto no_delete;
164 
165 	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
166 	if (IS_ERR(handle)) {
167 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
168 		/*
169 		 * If we're going to skip the normal cleanup, we still need to
170 		 * make sure that the in-core orphan linked list is properly
171 		 * cleaned up.
172 		 */
173 		ext4_orphan_del(NULL, inode);
174 		goto no_delete;
175 	}
176 
177 	if (IS_SYNC(inode))
178 		ext4_handle_sync(handle);
179 	inode->i_size = 0;
180 	err = ext4_mark_inode_dirty(handle, inode);
181 	if (err) {
182 		ext4_warning(inode->i_sb,
183 			     "couldn't mark inode dirty (err %d)", err);
184 		goto stop_handle;
185 	}
186 	if (inode->i_blocks)
187 		ext4_truncate(inode);
188 
189 	/*
190 	 * ext4_ext_truncate() doesn't reserve any slop when it
191 	 * restarts journal transactions; therefore there may not be
192 	 * enough credits left in the handle to remove the inode from
193 	 * the orphan list and set the dtime field.
194 	 */
195 	if (!ext4_handle_has_enough_credits(handle, 3)) {
196 		err = ext4_journal_extend(handle, 3);
197 		if (err > 0)
198 			err = ext4_journal_restart(handle, 3);
199 		if (err != 0) {
200 			ext4_warning(inode->i_sb,
201 				     "couldn't extend journal (err %d)", err);
202 		stop_handle:
203 			ext4_journal_stop(handle);
204 			ext4_orphan_del(NULL, inode);
205 			goto no_delete;
206 		}
207 	}
208 
209 	/*
210 	 * Kill off the orphan record which ext4_truncate created.
211 	 * AKPM: I think this can be inside the above `if'.
212 	 * Note that ext4_orphan_del() has to be able to cope with the
213 	 * deletion of a non-existent orphan - this is because we don't
214 	 * know if ext4_truncate() actually created an orphan record.
215 	 * (Well, we could do this if we need to, but heck - it works)
216 	 */
217 	ext4_orphan_del(handle, inode);
218 	EXT4_I(inode)->i_dtime	= get_seconds();
219 
220 	/*
221 	 * One subtle ordering requirement: if anything has gone wrong
222 	 * (transaction abort, IO errors, whatever), then we can still
223 	 * do these next steps (the fs will already have been marked as
224 	 * having errors), but we can't free the inode if the mark_dirty
225 	 * fails.
226 	 */
227 	if (ext4_mark_inode_dirty(handle, inode))
228 		/* If that failed, just do the required in-core inode clear. */
229 		ext4_clear_inode(inode);
230 	else
231 		ext4_free_inode(handle, inode);
232 	ext4_journal_stop(handle);
233 	return;
234 no_delete:
235 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
236 }
237 
238 #ifdef CONFIG_QUOTA
239 qsize_t *ext4_get_reserved_space(struct inode *inode)
240 {
241 	return &EXT4_I(inode)->i_reserved_quota;
242 }
243 #endif
244 
245 /*
246  * Calculate the number of metadata blocks need to reserve
247  * to allocate a block located at @lblock
248  */
249 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
250 {
251 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
252 		return ext4_ext_calc_metadata_amount(inode, lblock);
253 
254 	return ext4_ind_calc_metadata_amount(inode, lblock);
255 }
256 
257 /*
258  * Called with i_data_sem down, which is important since we can call
259  * ext4_discard_preallocations() from here.
260  */
261 void ext4_da_update_reserve_space(struct inode *inode,
262 					int used, int quota_claim)
263 {
264 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
265 	struct ext4_inode_info *ei = EXT4_I(inode);
266 
267 	spin_lock(&ei->i_block_reservation_lock);
268 	trace_ext4_da_update_reserve_space(inode, used);
269 	if (unlikely(used > ei->i_reserved_data_blocks)) {
270 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
271 			 "with only %d reserved data blocks\n",
272 			 __func__, inode->i_ino, used,
273 			 ei->i_reserved_data_blocks);
274 		WARN_ON(1);
275 		used = ei->i_reserved_data_blocks;
276 	}
277 
278 	/* Update per-inode reservations */
279 	ei->i_reserved_data_blocks -= used;
280 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
281 	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
282 			   used + ei->i_allocated_meta_blocks);
283 	ei->i_allocated_meta_blocks = 0;
284 
285 	if (ei->i_reserved_data_blocks == 0) {
286 		/*
287 		 * We can release all of the reserved metadata blocks
288 		 * only when we have written all of the delayed
289 		 * allocation blocks.
290 		 */
291 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
292 				   ei->i_reserved_meta_blocks);
293 		ei->i_reserved_meta_blocks = 0;
294 		ei->i_da_metadata_calc_len = 0;
295 	}
296 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
297 
298 	/* Update quota subsystem for data blocks */
299 	if (quota_claim)
300 		dquot_claim_block(inode, used);
301 	else {
302 		/*
303 		 * We did fallocate with an offset that is already delayed
304 		 * allocated. So on delayed allocated writeback we should
305 		 * not re-claim the quota for fallocated blocks.
306 		 */
307 		dquot_release_reservation_block(inode, used);
308 	}
309 
310 	/*
311 	 * If we have done all the pending block allocations and if
312 	 * there aren't any writers on the inode, we can discard the
313 	 * inode's preallocations.
314 	 */
315 	if ((ei->i_reserved_data_blocks == 0) &&
316 	    (atomic_read(&inode->i_writecount) == 0))
317 		ext4_discard_preallocations(inode);
318 }
319 
320 static int __check_block_validity(struct inode *inode, const char *func,
321 				unsigned int line,
322 				struct ext4_map_blocks *map)
323 {
324 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
325 				   map->m_len)) {
326 		ext4_error_inode(inode, func, line, map->m_pblk,
327 				 "lblock %lu mapped to illegal pblock "
328 				 "(length %d)", (unsigned long) map->m_lblk,
329 				 map->m_len);
330 		return -EIO;
331 	}
332 	return 0;
333 }
334 
335 #define check_block_validity(inode, map)	\
336 	__check_block_validity((inode), __func__, __LINE__, (map))
337 
338 /*
339  * Return the number of contiguous dirty pages in a given inode
340  * starting at page frame idx.
341  */
342 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
343 				    unsigned int max_pages)
344 {
345 	struct address_space *mapping = inode->i_mapping;
346 	pgoff_t	index;
347 	struct pagevec pvec;
348 	pgoff_t num = 0;
349 	int i, nr_pages, done = 0;
350 
351 	if (max_pages == 0)
352 		return 0;
353 	pagevec_init(&pvec, 0);
354 	while (!done) {
355 		index = idx;
356 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
357 					      PAGECACHE_TAG_DIRTY,
358 					      (pgoff_t)PAGEVEC_SIZE);
359 		if (nr_pages == 0)
360 			break;
361 		for (i = 0; i < nr_pages; i++) {
362 			struct page *page = pvec.pages[i];
363 			struct buffer_head *bh, *head;
364 
365 			lock_page(page);
366 			if (unlikely(page->mapping != mapping) ||
367 			    !PageDirty(page) ||
368 			    PageWriteback(page) ||
369 			    page->index != idx) {
370 				done = 1;
371 				unlock_page(page);
372 				break;
373 			}
374 			if (page_has_buffers(page)) {
375 				bh = head = page_buffers(page);
376 				do {
377 					if (!buffer_delay(bh) &&
378 					    !buffer_unwritten(bh))
379 						done = 1;
380 					bh = bh->b_this_page;
381 				} while (!done && (bh != head));
382 			}
383 			unlock_page(page);
384 			if (done)
385 				break;
386 			idx++;
387 			num++;
388 			if (num >= max_pages) {
389 				done = 1;
390 				break;
391 			}
392 		}
393 		pagevec_release(&pvec);
394 	}
395 	return num;
396 }
397 
398 /*
399  * The ext4_map_blocks() function tries to look up the requested blocks,
400  * and returns if the blocks are already mapped.
401  *
402  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
403  * and store the allocated blocks in the result buffer head and mark it
404  * mapped.
405  *
406  * If file type is extents based, it will call ext4_ext_map_blocks(),
407  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
408  * based files
409  *
410  * On success, it returns the number of blocks being mapped or allocate.
411  * if create==0 and the blocks are pre-allocated and uninitialized block,
412  * the result buffer head is unmapped. If the create ==1, it will make sure
413  * the buffer head is mapped.
414  *
415  * It returns 0 if plain look up failed (blocks have not been allocated), in
416  * that casem, buffer head is unmapped
417  *
418  * It returns the error in case of allocation failure.
419  */
420 int ext4_map_blocks(handle_t *handle, struct inode *inode,
421 		    struct ext4_map_blocks *map, int flags)
422 {
423 	int retval;
424 
425 	map->m_flags = 0;
426 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
427 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
428 		  (unsigned long) map->m_lblk);
429 	/*
430 	 * Try to see if we can get the block without requesting a new
431 	 * file system block.
432 	 */
433 	down_read((&EXT4_I(inode)->i_data_sem));
434 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
435 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
436 	} else {
437 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
438 	}
439 	up_read((&EXT4_I(inode)->i_data_sem));
440 
441 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
442 		int ret = check_block_validity(inode, map);
443 		if (ret != 0)
444 			return ret;
445 	}
446 
447 	/* If it is only a block(s) look up */
448 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
449 		return retval;
450 
451 	/*
452 	 * Returns if the blocks have already allocated
453 	 *
454 	 * Note that if blocks have been preallocated
455 	 * ext4_ext_get_block() returns th create = 0
456 	 * with buffer head unmapped.
457 	 */
458 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
459 		return retval;
460 
461 	/*
462 	 * When we call get_blocks without the create flag, the
463 	 * BH_Unwritten flag could have gotten set if the blocks
464 	 * requested were part of a uninitialized extent.  We need to
465 	 * clear this flag now that we are committed to convert all or
466 	 * part of the uninitialized extent to be an initialized
467 	 * extent.  This is because we need to avoid the combination
468 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
469 	 * set on the buffer_head.
470 	 */
471 	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
472 
473 	/*
474 	 * New blocks allocate and/or writing to uninitialized extent
475 	 * will possibly result in updating i_data, so we take
476 	 * the write lock of i_data_sem, and call get_blocks()
477 	 * with create == 1 flag.
478 	 */
479 	down_write((&EXT4_I(inode)->i_data_sem));
480 
481 	/*
482 	 * if the caller is from delayed allocation writeout path
483 	 * we have already reserved fs blocks for allocation
484 	 * let the underlying get_block() function know to
485 	 * avoid double accounting
486 	 */
487 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
488 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
489 	/*
490 	 * We need to check for EXT4 here because migrate
491 	 * could have changed the inode type in between
492 	 */
493 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
494 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
495 	} else {
496 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
497 
498 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
499 			/*
500 			 * We allocated new blocks which will result in
501 			 * i_data's format changing.  Force the migrate
502 			 * to fail by clearing migrate flags
503 			 */
504 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
505 		}
506 
507 		/*
508 		 * Update reserved blocks/metadata blocks after successful
509 		 * block allocation which had been deferred till now. We don't
510 		 * support fallocate for non extent files. So we can update
511 		 * reserve space here.
512 		 */
513 		if ((retval > 0) &&
514 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
515 			ext4_da_update_reserve_space(inode, retval, 1);
516 	}
517 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
518 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
519 
520 	up_write((&EXT4_I(inode)->i_data_sem));
521 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
522 		int ret = check_block_validity(inode, map);
523 		if (ret != 0)
524 			return ret;
525 	}
526 	return retval;
527 }
528 
529 /* Maximum number of blocks we map for direct IO at once. */
530 #define DIO_MAX_BLOCKS 4096
531 
532 static int _ext4_get_block(struct inode *inode, sector_t iblock,
533 			   struct buffer_head *bh, int flags)
534 {
535 	handle_t *handle = ext4_journal_current_handle();
536 	struct ext4_map_blocks map;
537 	int ret = 0, started = 0;
538 	int dio_credits;
539 
540 	map.m_lblk = iblock;
541 	map.m_len = bh->b_size >> inode->i_blkbits;
542 
543 	if (flags && !handle) {
544 		/* Direct IO write... */
545 		if (map.m_len > DIO_MAX_BLOCKS)
546 			map.m_len = DIO_MAX_BLOCKS;
547 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
548 		handle = ext4_journal_start(inode, dio_credits);
549 		if (IS_ERR(handle)) {
550 			ret = PTR_ERR(handle);
551 			return ret;
552 		}
553 		started = 1;
554 	}
555 
556 	ret = ext4_map_blocks(handle, inode, &map, flags);
557 	if (ret > 0) {
558 		map_bh(bh, inode->i_sb, map.m_pblk);
559 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
560 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
561 		ret = 0;
562 	}
563 	if (started)
564 		ext4_journal_stop(handle);
565 	return ret;
566 }
567 
568 int ext4_get_block(struct inode *inode, sector_t iblock,
569 		   struct buffer_head *bh, int create)
570 {
571 	return _ext4_get_block(inode, iblock, bh,
572 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
573 }
574 
575 /*
576  * `handle' can be NULL if create is zero
577  */
578 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
579 				ext4_lblk_t block, int create, int *errp)
580 {
581 	struct ext4_map_blocks map;
582 	struct buffer_head *bh;
583 	int fatal = 0, err;
584 
585 	J_ASSERT(handle != NULL || create == 0);
586 
587 	map.m_lblk = block;
588 	map.m_len = 1;
589 	err = ext4_map_blocks(handle, inode, &map,
590 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
591 
592 	if (err < 0)
593 		*errp = err;
594 	if (err <= 0)
595 		return NULL;
596 	*errp = 0;
597 
598 	bh = sb_getblk(inode->i_sb, map.m_pblk);
599 	if (!bh) {
600 		*errp = -EIO;
601 		return NULL;
602 	}
603 	if (map.m_flags & EXT4_MAP_NEW) {
604 		J_ASSERT(create != 0);
605 		J_ASSERT(handle != NULL);
606 
607 		/*
608 		 * Now that we do not always journal data, we should
609 		 * keep in mind whether this should always journal the
610 		 * new buffer as metadata.  For now, regular file
611 		 * writes use ext4_get_block instead, so it's not a
612 		 * problem.
613 		 */
614 		lock_buffer(bh);
615 		BUFFER_TRACE(bh, "call get_create_access");
616 		fatal = ext4_journal_get_create_access(handle, bh);
617 		if (!fatal && !buffer_uptodate(bh)) {
618 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
619 			set_buffer_uptodate(bh);
620 		}
621 		unlock_buffer(bh);
622 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
623 		err = ext4_handle_dirty_metadata(handle, inode, bh);
624 		if (!fatal)
625 			fatal = err;
626 	} else {
627 		BUFFER_TRACE(bh, "not a new buffer");
628 	}
629 	if (fatal) {
630 		*errp = fatal;
631 		brelse(bh);
632 		bh = NULL;
633 	}
634 	return bh;
635 }
636 
637 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
638 			       ext4_lblk_t block, int create, int *err)
639 {
640 	struct buffer_head *bh;
641 
642 	bh = ext4_getblk(handle, inode, block, create, err);
643 	if (!bh)
644 		return bh;
645 	if (buffer_uptodate(bh))
646 		return bh;
647 	ll_rw_block(READ_META, 1, &bh);
648 	wait_on_buffer(bh);
649 	if (buffer_uptodate(bh))
650 		return bh;
651 	put_bh(bh);
652 	*err = -EIO;
653 	return NULL;
654 }
655 
656 static int walk_page_buffers(handle_t *handle,
657 			     struct buffer_head *head,
658 			     unsigned from,
659 			     unsigned to,
660 			     int *partial,
661 			     int (*fn)(handle_t *handle,
662 				       struct buffer_head *bh))
663 {
664 	struct buffer_head *bh;
665 	unsigned block_start, block_end;
666 	unsigned blocksize = head->b_size;
667 	int err, ret = 0;
668 	struct buffer_head *next;
669 
670 	for (bh = head, block_start = 0;
671 	     ret == 0 && (bh != head || !block_start);
672 	     block_start = block_end, bh = next) {
673 		next = bh->b_this_page;
674 		block_end = block_start + blocksize;
675 		if (block_end <= from || block_start >= to) {
676 			if (partial && !buffer_uptodate(bh))
677 				*partial = 1;
678 			continue;
679 		}
680 		err = (*fn)(handle, bh);
681 		if (!ret)
682 			ret = err;
683 	}
684 	return ret;
685 }
686 
687 /*
688  * To preserve ordering, it is essential that the hole instantiation and
689  * the data write be encapsulated in a single transaction.  We cannot
690  * close off a transaction and start a new one between the ext4_get_block()
691  * and the commit_write().  So doing the jbd2_journal_start at the start of
692  * prepare_write() is the right place.
693  *
694  * Also, this function can nest inside ext4_writepage() ->
695  * block_write_full_page(). In that case, we *know* that ext4_writepage()
696  * has generated enough buffer credits to do the whole page.  So we won't
697  * block on the journal in that case, which is good, because the caller may
698  * be PF_MEMALLOC.
699  *
700  * By accident, ext4 can be reentered when a transaction is open via
701  * quota file writes.  If we were to commit the transaction while thus
702  * reentered, there can be a deadlock - we would be holding a quota
703  * lock, and the commit would never complete if another thread had a
704  * transaction open and was blocking on the quota lock - a ranking
705  * violation.
706  *
707  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
708  * will _not_ run commit under these circumstances because handle->h_ref
709  * is elevated.  We'll still have enough credits for the tiny quotafile
710  * write.
711  */
712 static int do_journal_get_write_access(handle_t *handle,
713 				       struct buffer_head *bh)
714 {
715 	int dirty = buffer_dirty(bh);
716 	int ret;
717 
718 	if (!buffer_mapped(bh) || buffer_freed(bh))
719 		return 0;
720 	/*
721 	 * __block_write_begin() could have dirtied some buffers. Clean
722 	 * the dirty bit as jbd2_journal_get_write_access() could complain
723 	 * otherwise about fs integrity issues. Setting of the dirty bit
724 	 * by __block_write_begin() isn't a real problem here as we clear
725 	 * the bit before releasing a page lock and thus writeback cannot
726 	 * ever write the buffer.
727 	 */
728 	if (dirty)
729 		clear_buffer_dirty(bh);
730 	ret = ext4_journal_get_write_access(handle, bh);
731 	if (!ret && dirty)
732 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
733 	return ret;
734 }
735 
736 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
737 		   struct buffer_head *bh_result, int create);
738 static int ext4_write_begin(struct file *file, struct address_space *mapping,
739 			    loff_t pos, unsigned len, unsigned flags,
740 			    struct page **pagep, void **fsdata)
741 {
742 	struct inode *inode = mapping->host;
743 	int ret, needed_blocks;
744 	handle_t *handle;
745 	int retries = 0;
746 	struct page *page;
747 	pgoff_t index;
748 	unsigned from, to;
749 
750 	trace_ext4_write_begin(inode, pos, len, flags);
751 	/*
752 	 * Reserve one block more for addition to orphan list in case
753 	 * we allocate blocks but write fails for some reason
754 	 */
755 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
756 	index = pos >> PAGE_CACHE_SHIFT;
757 	from = pos & (PAGE_CACHE_SIZE - 1);
758 	to = from + len;
759 
760 retry:
761 	handle = ext4_journal_start(inode, needed_blocks);
762 	if (IS_ERR(handle)) {
763 		ret = PTR_ERR(handle);
764 		goto out;
765 	}
766 
767 	/* We cannot recurse into the filesystem as the transaction is already
768 	 * started */
769 	flags |= AOP_FLAG_NOFS;
770 
771 	page = grab_cache_page_write_begin(mapping, index, flags);
772 	if (!page) {
773 		ext4_journal_stop(handle);
774 		ret = -ENOMEM;
775 		goto out;
776 	}
777 	*pagep = page;
778 
779 	if (ext4_should_dioread_nolock(inode))
780 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
781 	else
782 		ret = __block_write_begin(page, pos, len, ext4_get_block);
783 
784 	if (!ret && ext4_should_journal_data(inode)) {
785 		ret = walk_page_buffers(handle, page_buffers(page),
786 				from, to, NULL, do_journal_get_write_access);
787 	}
788 
789 	if (ret) {
790 		unlock_page(page);
791 		page_cache_release(page);
792 		/*
793 		 * __block_write_begin may have instantiated a few blocks
794 		 * outside i_size.  Trim these off again. Don't need
795 		 * i_size_read because we hold i_mutex.
796 		 *
797 		 * Add inode to orphan list in case we crash before
798 		 * truncate finishes
799 		 */
800 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
801 			ext4_orphan_add(handle, inode);
802 
803 		ext4_journal_stop(handle);
804 		if (pos + len > inode->i_size) {
805 			ext4_truncate_failed_write(inode);
806 			/*
807 			 * If truncate failed early the inode might
808 			 * still be on the orphan list; we need to
809 			 * make sure the inode is removed from the
810 			 * orphan list in that case.
811 			 */
812 			if (inode->i_nlink)
813 				ext4_orphan_del(NULL, inode);
814 		}
815 	}
816 
817 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
818 		goto retry;
819 out:
820 	return ret;
821 }
822 
823 /* For write_end() in data=journal mode */
824 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
825 {
826 	if (!buffer_mapped(bh) || buffer_freed(bh))
827 		return 0;
828 	set_buffer_uptodate(bh);
829 	return ext4_handle_dirty_metadata(handle, NULL, bh);
830 }
831 
832 static int ext4_generic_write_end(struct file *file,
833 				  struct address_space *mapping,
834 				  loff_t pos, unsigned len, unsigned copied,
835 				  struct page *page, void *fsdata)
836 {
837 	int i_size_changed = 0;
838 	struct inode *inode = mapping->host;
839 	handle_t *handle = ext4_journal_current_handle();
840 
841 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
842 
843 	/*
844 	 * No need to use i_size_read() here, the i_size
845 	 * cannot change under us because we hold i_mutex.
846 	 *
847 	 * But it's important to update i_size while still holding page lock:
848 	 * page writeout could otherwise come in and zero beyond i_size.
849 	 */
850 	if (pos + copied > inode->i_size) {
851 		i_size_write(inode, pos + copied);
852 		i_size_changed = 1;
853 	}
854 
855 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
856 		/* We need to mark inode dirty even if
857 		 * new_i_size is less that inode->i_size
858 		 * bu greater than i_disksize.(hint delalloc)
859 		 */
860 		ext4_update_i_disksize(inode, (pos + copied));
861 		i_size_changed = 1;
862 	}
863 	unlock_page(page);
864 	page_cache_release(page);
865 
866 	/*
867 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
868 	 * makes the holding time of page lock longer. Second, it forces lock
869 	 * ordering of page lock and transaction start for journaling
870 	 * filesystems.
871 	 */
872 	if (i_size_changed)
873 		ext4_mark_inode_dirty(handle, inode);
874 
875 	return copied;
876 }
877 
878 /*
879  * We need to pick up the new inode size which generic_commit_write gave us
880  * `file' can be NULL - eg, when called from page_symlink().
881  *
882  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
883  * buffers are managed internally.
884  */
885 static int ext4_ordered_write_end(struct file *file,
886 				  struct address_space *mapping,
887 				  loff_t pos, unsigned len, unsigned copied,
888 				  struct page *page, void *fsdata)
889 {
890 	handle_t *handle = ext4_journal_current_handle();
891 	struct inode *inode = mapping->host;
892 	int ret = 0, ret2;
893 
894 	trace_ext4_ordered_write_end(inode, pos, len, copied);
895 	ret = ext4_jbd2_file_inode(handle, inode);
896 
897 	if (ret == 0) {
898 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
899 							page, fsdata);
900 		copied = ret2;
901 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
902 			/* if we have allocated more blocks and copied
903 			 * less. We will have blocks allocated outside
904 			 * inode->i_size. So truncate them
905 			 */
906 			ext4_orphan_add(handle, inode);
907 		if (ret2 < 0)
908 			ret = ret2;
909 	}
910 	ret2 = ext4_journal_stop(handle);
911 	if (!ret)
912 		ret = ret2;
913 
914 	if (pos + len > inode->i_size) {
915 		ext4_truncate_failed_write(inode);
916 		/*
917 		 * If truncate failed early the inode might still be
918 		 * on the orphan list; we need to make sure the inode
919 		 * is removed from the orphan list in that case.
920 		 */
921 		if (inode->i_nlink)
922 			ext4_orphan_del(NULL, inode);
923 	}
924 
925 
926 	return ret ? ret : copied;
927 }
928 
929 static int ext4_writeback_write_end(struct file *file,
930 				    struct address_space *mapping,
931 				    loff_t pos, unsigned len, unsigned copied,
932 				    struct page *page, void *fsdata)
933 {
934 	handle_t *handle = ext4_journal_current_handle();
935 	struct inode *inode = mapping->host;
936 	int ret = 0, ret2;
937 
938 	trace_ext4_writeback_write_end(inode, pos, len, copied);
939 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
940 							page, fsdata);
941 	copied = ret2;
942 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
943 		/* if we have allocated more blocks and copied
944 		 * less. We will have blocks allocated outside
945 		 * inode->i_size. So truncate them
946 		 */
947 		ext4_orphan_add(handle, inode);
948 
949 	if (ret2 < 0)
950 		ret = ret2;
951 
952 	ret2 = ext4_journal_stop(handle);
953 	if (!ret)
954 		ret = ret2;
955 
956 	if (pos + len > inode->i_size) {
957 		ext4_truncate_failed_write(inode);
958 		/*
959 		 * If truncate failed early the inode might still be
960 		 * on the orphan list; we need to make sure the inode
961 		 * is removed from the orphan list in that case.
962 		 */
963 		if (inode->i_nlink)
964 			ext4_orphan_del(NULL, inode);
965 	}
966 
967 	return ret ? ret : copied;
968 }
969 
970 static int ext4_journalled_write_end(struct file *file,
971 				     struct address_space *mapping,
972 				     loff_t pos, unsigned len, unsigned copied,
973 				     struct page *page, void *fsdata)
974 {
975 	handle_t *handle = ext4_journal_current_handle();
976 	struct inode *inode = mapping->host;
977 	int ret = 0, ret2;
978 	int partial = 0;
979 	unsigned from, to;
980 	loff_t new_i_size;
981 
982 	trace_ext4_journalled_write_end(inode, pos, len, copied);
983 	from = pos & (PAGE_CACHE_SIZE - 1);
984 	to = from + len;
985 
986 	if (copied < len) {
987 		if (!PageUptodate(page))
988 			copied = 0;
989 		page_zero_new_buffers(page, from+copied, to);
990 	}
991 
992 	ret = walk_page_buffers(handle, page_buffers(page), from,
993 				to, &partial, write_end_fn);
994 	if (!partial)
995 		SetPageUptodate(page);
996 	new_i_size = pos + copied;
997 	if (new_i_size > inode->i_size)
998 		i_size_write(inode, pos+copied);
999 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1000 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1001 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1002 		ext4_update_i_disksize(inode, new_i_size);
1003 		ret2 = ext4_mark_inode_dirty(handle, inode);
1004 		if (!ret)
1005 			ret = ret2;
1006 	}
1007 
1008 	unlock_page(page);
1009 	page_cache_release(page);
1010 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1011 		/* if we have allocated more blocks and copied
1012 		 * less. We will have blocks allocated outside
1013 		 * inode->i_size. So truncate them
1014 		 */
1015 		ext4_orphan_add(handle, inode);
1016 
1017 	ret2 = ext4_journal_stop(handle);
1018 	if (!ret)
1019 		ret = ret2;
1020 	if (pos + len > inode->i_size) {
1021 		ext4_truncate_failed_write(inode);
1022 		/*
1023 		 * If truncate failed early the inode might still be
1024 		 * on the orphan list; we need to make sure the inode
1025 		 * is removed from the orphan list in that case.
1026 		 */
1027 		if (inode->i_nlink)
1028 			ext4_orphan_del(NULL, inode);
1029 	}
1030 
1031 	return ret ? ret : copied;
1032 }
1033 
1034 /*
1035  * Reserve a single block located at lblock
1036  */
1037 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1038 {
1039 	int retries = 0;
1040 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1041 	struct ext4_inode_info *ei = EXT4_I(inode);
1042 	unsigned long md_needed;
1043 	int ret;
1044 
1045 	/*
1046 	 * recalculate the amount of metadata blocks to reserve
1047 	 * in order to allocate nrblocks
1048 	 * worse case is one extent per block
1049 	 */
1050 repeat:
1051 	spin_lock(&ei->i_block_reservation_lock);
1052 	md_needed = ext4_calc_metadata_amount(inode, lblock);
1053 	trace_ext4_da_reserve_space(inode, md_needed);
1054 	spin_unlock(&ei->i_block_reservation_lock);
1055 
1056 	/*
1057 	 * We will charge metadata quota at writeout time; this saves
1058 	 * us from metadata over-estimation, though we may go over by
1059 	 * a small amount in the end.  Here we just reserve for data.
1060 	 */
1061 	ret = dquot_reserve_block(inode, 1);
1062 	if (ret)
1063 		return ret;
1064 	/*
1065 	 * We do still charge estimated metadata to the sb though;
1066 	 * we cannot afford to run out of free blocks.
1067 	 */
1068 	if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1069 		dquot_release_reservation_block(inode, 1);
1070 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1071 			yield();
1072 			goto repeat;
1073 		}
1074 		return -ENOSPC;
1075 	}
1076 	spin_lock(&ei->i_block_reservation_lock);
1077 	ei->i_reserved_data_blocks++;
1078 	ei->i_reserved_meta_blocks += md_needed;
1079 	spin_unlock(&ei->i_block_reservation_lock);
1080 
1081 	return 0;       /* success */
1082 }
1083 
1084 static void ext4_da_release_space(struct inode *inode, int to_free)
1085 {
1086 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1087 	struct ext4_inode_info *ei = EXT4_I(inode);
1088 
1089 	if (!to_free)
1090 		return;		/* Nothing to release, exit */
1091 
1092 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1093 
1094 	trace_ext4_da_release_space(inode, to_free);
1095 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1096 		/*
1097 		 * if there aren't enough reserved blocks, then the
1098 		 * counter is messed up somewhere.  Since this
1099 		 * function is called from invalidate page, it's
1100 		 * harmless to return without any action.
1101 		 */
1102 		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1103 			 "ino %lu, to_free %d with only %d reserved "
1104 			 "data blocks\n", inode->i_ino, to_free,
1105 			 ei->i_reserved_data_blocks);
1106 		WARN_ON(1);
1107 		to_free = ei->i_reserved_data_blocks;
1108 	}
1109 	ei->i_reserved_data_blocks -= to_free;
1110 
1111 	if (ei->i_reserved_data_blocks == 0) {
1112 		/*
1113 		 * We can release all of the reserved metadata blocks
1114 		 * only when we have written all of the delayed
1115 		 * allocation blocks.
1116 		 */
1117 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1118 				   ei->i_reserved_meta_blocks);
1119 		ei->i_reserved_meta_blocks = 0;
1120 		ei->i_da_metadata_calc_len = 0;
1121 	}
1122 
1123 	/* update fs dirty data blocks counter */
1124 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1125 
1126 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1127 
1128 	dquot_release_reservation_block(inode, to_free);
1129 }
1130 
1131 static void ext4_da_page_release_reservation(struct page *page,
1132 					     unsigned long offset)
1133 {
1134 	int to_release = 0;
1135 	struct buffer_head *head, *bh;
1136 	unsigned int curr_off = 0;
1137 
1138 	head = page_buffers(page);
1139 	bh = head;
1140 	do {
1141 		unsigned int next_off = curr_off + bh->b_size;
1142 
1143 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1144 			to_release++;
1145 			clear_buffer_delay(bh);
1146 		}
1147 		curr_off = next_off;
1148 	} while ((bh = bh->b_this_page) != head);
1149 	ext4_da_release_space(page->mapping->host, to_release);
1150 }
1151 
1152 /*
1153  * Delayed allocation stuff
1154  */
1155 
1156 /*
1157  * mpage_da_submit_io - walks through extent of pages and try to write
1158  * them with writepage() call back
1159  *
1160  * @mpd->inode: inode
1161  * @mpd->first_page: first page of the extent
1162  * @mpd->next_page: page after the last page of the extent
1163  *
1164  * By the time mpage_da_submit_io() is called we expect all blocks
1165  * to be allocated. this may be wrong if allocation failed.
1166  *
1167  * As pages are already locked by write_cache_pages(), we can't use it
1168  */
1169 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1170 			      struct ext4_map_blocks *map)
1171 {
1172 	struct pagevec pvec;
1173 	unsigned long index, end;
1174 	int ret = 0, err, nr_pages, i;
1175 	struct inode *inode = mpd->inode;
1176 	struct address_space *mapping = inode->i_mapping;
1177 	loff_t size = i_size_read(inode);
1178 	unsigned int len, block_start;
1179 	struct buffer_head *bh, *page_bufs = NULL;
1180 	int journal_data = ext4_should_journal_data(inode);
1181 	sector_t pblock = 0, cur_logical = 0;
1182 	struct ext4_io_submit io_submit;
1183 
1184 	BUG_ON(mpd->next_page <= mpd->first_page);
1185 	memset(&io_submit, 0, sizeof(io_submit));
1186 	/*
1187 	 * We need to start from the first_page to the next_page - 1
1188 	 * to make sure we also write the mapped dirty buffer_heads.
1189 	 * If we look at mpd->b_blocknr we would only be looking
1190 	 * at the currently mapped buffer_heads.
1191 	 */
1192 	index = mpd->first_page;
1193 	end = mpd->next_page - 1;
1194 
1195 	pagevec_init(&pvec, 0);
1196 	while (index <= end) {
1197 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1198 		if (nr_pages == 0)
1199 			break;
1200 		for (i = 0; i < nr_pages; i++) {
1201 			int commit_write = 0, skip_page = 0;
1202 			struct page *page = pvec.pages[i];
1203 
1204 			index = page->index;
1205 			if (index > end)
1206 				break;
1207 
1208 			if (index == size >> PAGE_CACHE_SHIFT)
1209 				len = size & ~PAGE_CACHE_MASK;
1210 			else
1211 				len = PAGE_CACHE_SIZE;
1212 			if (map) {
1213 				cur_logical = index << (PAGE_CACHE_SHIFT -
1214 							inode->i_blkbits);
1215 				pblock = map->m_pblk + (cur_logical -
1216 							map->m_lblk);
1217 			}
1218 			index++;
1219 
1220 			BUG_ON(!PageLocked(page));
1221 			BUG_ON(PageWriteback(page));
1222 
1223 			/*
1224 			 * If the page does not have buffers (for
1225 			 * whatever reason), try to create them using
1226 			 * __block_write_begin.  If this fails,
1227 			 * skip the page and move on.
1228 			 */
1229 			if (!page_has_buffers(page)) {
1230 				if (__block_write_begin(page, 0, len,
1231 						noalloc_get_block_write)) {
1232 				skip_page:
1233 					unlock_page(page);
1234 					continue;
1235 				}
1236 				commit_write = 1;
1237 			}
1238 
1239 			bh = page_bufs = page_buffers(page);
1240 			block_start = 0;
1241 			do {
1242 				if (!bh)
1243 					goto skip_page;
1244 				if (map && (cur_logical >= map->m_lblk) &&
1245 				    (cur_logical <= (map->m_lblk +
1246 						     (map->m_len - 1)))) {
1247 					if (buffer_delay(bh)) {
1248 						clear_buffer_delay(bh);
1249 						bh->b_blocknr = pblock;
1250 					}
1251 					if (buffer_unwritten(bh) ||
1252 					    buffer_mapped(bh))
1253 						BUG_ON(bh->b_blocknr != pblock);
1254 					if (map->m_flags & EXT4_MAP_UNINIT)
1255 						set_buffer_uninit(bh);
1256 					clear_buffer_unwritten(bh);
1257 				}
1258 
1259 				/* skip page if block allocation undone */
1260 				if (buffer_delay(bh) || buffer_unwritten(bh))
1261 					skip_page = 1;
1262 				bh = bh->b_this_page;
1263 				block_start += bh->b_size;
1264 				cur_logical++;
1265 				pblock++;
1266 			} while (bh != page_bufs);
1267 
1268 			if (skip_page)
1269 				goto skip_page;
1270 
1271 			if (commit_write)
1272 				/* mark the buffer_heads as dirty & uptodate */
1273 				block_commit_write(page, 0, len);
1274 
1275 			clear_page_dirty_for_io(page);
1276 			/*
1277 			 * Delalloc doesn't support data journalling,
1278 			 * but eventually maybe we'll lift this
1279 			 * restriction.
1280 			 */
1281 			if (unlikely(journal_data && PageChecked(page)))
1282 				err = __ext4_journalled_writepage(page, len);
1283 			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1284 				err = ext4_bio_write_page(&io_submit, page,
1285 							  len, mpd->wbc);
1286 			else
1287 				err = block_write_full_page(page,
1288 					noalloc_get_block_write, mpd->wbc);
1289 
1290 			if (!err)
1291 				mpd->pages_written++;
1292 			/*
1293 			 * In error case, we have to continue because
1294 			 * remaining pages are still locked
1295 			 */
1296 			if (ret == 0)
1297 				ret = err;
1298 		}
1299 		pagevec_release(&pvec);
1300 	}
1301 	ext4_io_submit(&io_submit);
1302 	return ret;
1303 }
1304 
1305 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1306 {
1307 	int nr_pages, i;
1308 	pgoff_t index, end;
1309 	struct pagevec pvec;
1310 	struct inode *inode = mpd->inode;
1311 	struct address_space *mapping = inode->i_mapping;
1312 
1313 	index = mpd->first_page;
1314 	end   = mpd->next_page - 1;
1315 	while (index <= end) {
1316 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1317 		if (nr_pages == 0)
1318 			break;
1319 		for (i = 0; i < nr_pages; i++) {
1320 			struct page *page = pvec.pages[i];
1321 			if (page->index > end)
1322 				break;
1323 			BUG_ON(!PageLocked(page));
1324 			BUG_ON(PageWriteback(page));
1325 			block_invalidatepage(page, 0);
1326 			ClearPageUptodate(page);
1327 			unlock_page(page);
1328 		}
1329 		index = pvec.pages[nr_pages - 1]->index + 1;
1330 		pagevec_release(&pvec);
1331 	}
1332 	return;
1333 }
1334 
1335 static void ext4_print_free_blocks(struct inode *inode)
1336 {
1337 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1338 	printk(KERN_CRIT "Total free blocks count %lld\n",
1339 	       ext4_count_free_blocks(inode->i_sb));
1340 	printk(KERN_CRIT "Free/Dirty block details\n");
1341 	printk(KERN_CRIT "free_blocks=%lld\n",
1342 	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
1343 	printk(KERN_CRIT "dirty_blocks=%lld\n",
1344 	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1345 	printk(KERN_CRIT "Block reservation details\n");
1346 	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1347 	       EXT4_I(inode)->i_reserved_data_blocks);
1348 	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1349 	       EXT4_I(inode)->i_reserved_meta_blocks);
1350 	return;
1351 }
1352 
1353 /*
1354  * mpage_da_map_and_submit - go through given space, map them
1355  *       if necessary, and then submit them for I/O
1356  *
1357  * @mpd - bh describing space
1358  *
1359  * The function skips space we know is already mapped to disk blocks.
1360  *
1361  */
1362 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1363 {
1364 	int err, blks, get_blocks_flags;
1365 	struct ext4_map_blocks map, *mapp = NULL;
1366 	sector_t next = mpd->b_blocknr;
1367 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1368 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1369 	handle_t *handle = NULL;
1370 
1371 	/*
1372 	 * If the blocks are mapped already, or we couldn't accumulate
1373 	 * any blocks, then proceed immediately to the submission stage.
1374 	 */
1375 	if ((mpd->b_size == 0) ||
1376 	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1377 	     !(mpd->b_state & (1 << BH_Delay)) &&
1378 	     !(mpd->b_state & (1 << BH_Unwritten))))
1379 		goto submit_io;
1380 
1381 	handle = ext4_journal_current_handle();
1382 	BUG_ON(!handle);
1383 
1384 	/*
1385 	 * Call ext4_map_blocks() to allocate any delayed allocation
1386 	 * blocks, or to convert an uninitialized extent to be
1387 	 * initialized (in the case where we have written into
1388 	 * one or more preallocated blocks).
1389 	 *
1390 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1391 	 * indicate that we are on the delayed allocation path.  This
1392 	 * affects functions in many different parts of the allocation
1393 	 * call path.  This flag exists primarily because we don't
1394 	 * want to change *many* call functions, so ext4_map_blocks()
1395 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1396 	 * inode's allocation semaphore is taken.
1397 	 *
1398 	 * If the blocks in questions were delalloc blocks, set
1399 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1400 	 * variables are updated after the blocks have been allocated.
1401 	 */
1402 	map.m_lblk = next;
1403 	map.m_len = max_blocks;
1404 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1405 	if (ext4_should_dioread_nolock(mpd->inode))
1406 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1407 	if (mpd->b_state & (1 << BH_Delay))
1408 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1409 
1410 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1411 	if (blks < 0) {
1412 		struct super_block *sb = mpd->inode->i_sb;
1413 
1414 		err = blks;
1415 		/*
1416 		 * If get block returns EAGAIN or ENOSPC and there
1417 		 * appears to be free blocks we will just let
1418 		 * mpage_da_submit_io() unlock all of the pages.
1419 		 */
1420 		if (err == -EAGAIN)
1421 			goto submit_io;
1422 
1423 		if (err == -ENOSPC &&
1424 		    ext4_count_free_blocks(sb)) {
1425 			mpd->retval = err;
1426 			goto submit_io;
1427 		}
1428 
1429 		/*
1430 		 * get block failure will cause us to loop in
1431 		 * writepages, because a_ops->writepage won't be able
1432 		 * to make progress. The page will be redirtied by
1433 		 * writepage and writepages will again try to write
1434 		 * the same.
1435 		 */
1436 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1437 			ext4_msg(sb, KERN_CRIT,
1438 				 "delayed block allocation failed for inode %lu "
1439 				 "at logical offset %llu with max blocks %zd "
1440 				 "with error %d", mpd->inode->i_ino,
1441 				 (unsigned long long) next,
1442 				 mpd->b_size >> mpd->inode->i_blkbits, err);
1443 			ext4_msg(sb, KERN_CRIT,
1444 				"This should not happen!! Data will be lost\n");
1445 			if (err == -ENOSPC)
1446 				ext4_print_free_blocks(mpd->inode);
1447 		}
1448 		/* invalidate all the pages */
1449 		ext4_da_block_invalidatepages(mpd);
1450 
1451 		/* Mark this page range as having been completed */
1452 		mpd->io_done = 1;
1453 		return;
1454 	}
1455 	BUG_ON(blks == 0);
1456 
1457 	mapp = &map;
1458 	if (map.m_flags & EXT4_MAP_NEW) {
1459 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1460 		int i;
1461 
1462 		for (i = 0; i < map.m_len; i++)
1463 			unmap_underlying_metadata(bdev, map.m_pblk + i);
1464 	}
1465 
1466 	if (ext4_should_order_data(mpd->inode)) {
1467 		err = ext4_jbd2_file_inode(handle, mpd->inode);
1468 		if (err)
1469 			/* This only happens if the journal is aborted */
1470 			return;
1471 	}
1472 
1473 	/*
1474 	 * Update on-disk size along with block allocation.
1475 	 */
1476 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1477 	if (disksize > i_size_read(mpd->inode))
1478 		disksize = i_size_read(mpd->inode);
1479 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1480 		ext4_update_i_disksize(mpd->inode, disksize);
1481 		err = ext4_mark_inode_dirty(handle, mpd->inode);
1482 		if (err)
1483 			ext4_error(mpd->inode->i_sb,
1484 				   "Failed to mark inode %lu dirty",
1485 				   mpd->inode->i_ino);
1486 	}
1487 
1488 submit_io:
1489 	mpage_da_submit_io(mpd, mapp);
1490 	mpd->io_done = 1;
1491 }
1492 
1493 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1494 		(1 << BH_Delay) | (1 << BH_Unwritten))
1495 
1496 /*
1497  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1498  *
1499  * @mpd->lbh - extent of blocks
1500  * @logical - logical number of the block in the file
1501  * @bh - bh of the block (used to access block's state)
1502  *
1503  * the function is used to collect contig. blocks in same state
1504  */
1505 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1506 				   sector_t logical, size_t b_size,
1507 				   unsigned long b_state)
1508 {
1509 	sector_t next;
1510 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1511 
1512 	/*
1513 	 * XXX Don't go larger than mballoc is willing to allocate
1514 	 * This is a stopgap solution.  We eventually need to fold
1515 	 * mpage_da_submit_io() into this function and then call
1516 	 * ext4_map_blocks() multiple times in a loop
1517 	 */
1518 	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1519 		goto flush_it;
1520 
1521 	/* check if thereserved journal credits might overflow */
1522 	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1523 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1524 			/*
1525 			 * With non-extent format we are limited by the journal
1526 			 * credit available.  Total credit needed to insert
1527 			 * nrblocks contiguous blocks is dependent on the
1528 			 * nrblocks.  So limit nrblocks.
1529 			 */
1530 			goto flush_it;
1531 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1532 				EXT4_MAX_TRANS_DATA) {
1533 			/*
1534 			 * Adding the new buffer_head would make it cross the
1535 			 * allowed limit for which we have journal credit
1536 			 * reserved. So limit the new bh->b_size
1537 			 */
1538 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1539 						mpd->inode->i_blkbits;
1540 			/* we will do mpage_da_submit_io in the next loop */
1541 		}
1542 	}
1543 	/*
1544 	 * First block in the extent
1545 	 */
1546 	if (mpd->b_size == 0) {
1547 		mpd->b_blocknr = logical;
1548 		mpd->b_size = b_size;
1549 		mpd->b_state = b_state & BH_FLAGS;
1550 		return;
1551 	}
1552 
1553 	next = mpd->b_blocknr + nrblocks;
1554 	/*
1555 	 * Can we merge the block to our big extent?
1556 	 */
1557 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1558 		mpd->b_size += b_size;
1559 		return;
1560 	}
1561 
1562 flush_it:
1563 	/*
1564 	 * We couldn't merge the block to our extent, so we
1565 	 * need to flush current  extent and start new one
1566 	 */
1567 	mpage_da_map_and_submit(mpd);
1568 	return;
1569 }
1570 
1571 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1572 {
1573 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1574 }
1575 
1576 /*
1577  * This is a special get_blocks_t callback which is used by
1578  * ext4_da_write_begin().  It will either return mapped block or
1579  * reserve space for a single block.
1580  *
1581  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1582  * We also have b_blocknr = -1 and b_bdev initialized properly
1583  *
1584  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1585  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1586  * initialized properly.
1587  */
1588 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1589 				  struct buffer_head *bh, int create)
1590 {
1591 	struct ext4_map_blocks map;
1592 	int ret = 0;
1593 	sector_t invalid_block = ~((sector_t) 0xffff);
1594 
1595 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1596 		invalid_block = ~0;
1597 
1598 	BUG_ON(create == 0);
1599 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1600 
1601 	map.m_lblk = iblock;
1602 	map.m_len = 1;
1603 
1604 	/*
1605 	 * first, we need to know whether the block is allocated already
1606 	 * preallocated blocks are unmapped but should treated
1607 	 * the same as allocated blocks.
1608 	 */
1609 	ret = ext4_map_blocks(NULL, inode, &map, 0);
1610 	if (ret < 0)
1611 		return ret;
1612 	if (ret == 0) {
1613 		if (buffer_delay(bh))
1614 			return 0; /* Not sure this could or should happen */
1615 		/*
1616 		 * XXX: __block_write_begin() unmaps passed block, is it OK?
1617 		 */
1618 		ret = ext4_da_reserve_space(inode, iblock);
1619 		if (ret)
1620 			/* not enough space to reserve */
1621 			return ret;
1622 
1623 		map_bh(bh, inode->i_sb, invalid_block);
1624 		set_buffer_new(bh);
1625 		set_buffer_delay(bh);
1626 		return 0;
1627 	}
1628 
1629 	map_bh(bh, inode->i_sb, map.m_pblk);
1630 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1631 
1632 	if (buffer_unwritten(bh)) {
1633 		/* A delayed write to unwritten bh should be marked
1634 		 * new and mapped.  Mapped ensures that we don't do
1635 		 * get_block multiple times when we write to the same
1636 		 * offset and new ensures that we do proper zero out
1637 		 * for partial write.
1638 		 */
1639 		set_buffer_new(bh);
1640 		set_buffer_mapped(bh);
1641 	}
1642 	return 0;
1643 }
1644 
1645 /*
1646  * This function is used as a standard get_block_t calback function
1647  * when there is no desire to allocate any blocks.  It is used as a
1648  * callback function for block_write_begin() and block_write_full_page().
1649  * These functions should only try to map a single block at a time.
1650  *
1651  * Since this function doesn't do block allocations even if the caller
1652  * requests it by passing in create=1, it is critically important that
1653  * any caller checks to make sure that any buffer heads are returned
1654  * by this function are either all already mapped or marked for
1655  * delayed allocation before calling  block_write_full_page().  Otherwise,
1656  * b_blocknr could be left unitialized, and the page write functions will
1657  * be taken by surprise.
1658  */
1659 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1660 				   struct buffer_head *bh_result, int create)
1661 {
1662 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1663 	return _ext4_get_block(inode, iblock, bh_result, 0);
1664 }
1665 
1666 static int bget_one(handle_t *handle, struct buffer_head *bh)
1667 {
1668 	get_bh(bh);
1669 	return 0;
1670 }
1671 
1672 static int bput_one(handle_t *handle, struct buffer_head *bh)
1673 {
1674 	put_bh(bh);
1675 	return 0;
1676 }
1677 
1678 static int __ext4_journalled_writepage(struct page *page,
1679 				       unsigned int len)
1680 {
1681 	struct address_space *mapping = page->mapping;
1682 	struct inode *inode = mapping->host;
1683 	struct buffer_head *page_bufs;
1684 	handle_t *handle = NULL;
1685 	int ret = 0;
1686 	int err;
1687 
1688 	ClearPageChecked(page);
1689 	page_bufs = page_buffers(page);
1690 	BUG_ON(!page_bufs);
1691 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1692 	/* As soon as we unlock the page, it can go away, but we have
1693 	 * references to buffers so we are safe */
1694 	unlock_page(page);
1695 
1696 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1697 	if (IS_ERR(handle)) {
1698 		ret = PTR_ERR(handle);
1699 		goto out;
1700 	}
1701 
1702 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1703 				do_journal_get_write_access);
1704 
1705 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1706 				write_end_fn);
1707 	if (ret == 0)
1708 		ret = err;
1709 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1710 	err = ext4_journal_stop(handle);
1711 	if (!ret)
1712 		ret = err;
1713 
1714 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1715 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1716 out:
1717 	return ret;
1718 }
1719 
1720 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1721 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1722 
1723 /*
1724  * Note that we don't need to start a transaction unless we're journaling data
1725  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1726  * need to file the inode to the transaction's list in ordered mode because if
1727  * we are writing back data added by write(), the inode is already there and if
1728  * we are writing back data modified via mmap(), no one guarantees in which
1729  * transaction the data will hit the disk. In case we are journaling data, we
1730  * cannot start transaction directly because transaction start ranks above page
1731  * lock so we have to do some magic.
1732  *
1733  * This function can get called via...
1734  *   - ext4_da_writepages after taking page lock (have journal handle)
1735  *   - journal_submit_inode_data_buffers (no journal handle)
1736  *   - shrink_page_list via pdflush (no journal handle)
1737  *   - grab_page_cache when doing write_begin (have journal handle)
1738  *
1739  * We don't do any block allocation in this function. If we have page with
1740  * multiple blocks we need to write those buffer_heads that are mapped. This
1741  * is important for mmaped based write. So if we do with blocksize 1K
1742  * truncate(f, 1024);
1743  * a = mmap(f, 0, 4096);
1744  * a[0] = 'a';
1745  * truncate(f, 4096);
1746  * we have in the page first buffer_head mapped via page_mkwrite call back
1747  * but other bufer_heads would be unmapped but dirty(dirty done via the
1748  * do_wp_page). So writepage should write the first block. If we modify
1749  * the mmap area beyond 1024 we will again get a page_fault and the
1750  * page_mkwrite callback will do the block allocation and mark the
1751  * buffer_heads mapped.
1752  *
1753  * We redirty the page if we have any buffer_heads that is either delay or
1754  * unwritten in the page.
1755  *
1756  * We can get recursively called as show below.
1757  *
1758  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1759  *		ext4_writepage()
1760  *
1761  * But since we don't do any block allocation we should not deadlock.
1762  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1763  */
1764 static int ext4_writepage(struct page *page,
1765 			  struct writeback_control *wbc)
1766 {
1767 	int ret = 0, commit_write = 0;
1768 	loff_t size;
1769 	unsigned int len;
1770 	struct buffer_head *page_bufs = NULL;
1771 	struct inode *inode = page->mapping->host;
1772 
1773 	trace_ext4_writepage(page);
1774 	size = i_size_read(inode);
1775 	if (page->index == size >> PAGE_CACHE_SHIFT)
1776 		len = size & ~PAGE_CACHE_MASK;
1777 	else
1778 		len = PAGE_CACHE_SIZE;
1779 
1780 	/*
1781 	 * If the page does not have buffers (for whatever reason),
1782 	 * try to create them using __block_write_begin.  If this
1783 	 * fails, redirty the page and move on.
1784 	 */
1785 	if (!page_has_buffers(page)) {
1786 		if (__block_write_begin(page, 0, len,
1787 					noalloc_get_block_write)) {
1788 		redirty_page:
1789 			redirty_page_for_writepage(wbc, page);
1790 			unlock_page(page);
1791 			return 0;
1792 		}
1793 		commit_write = 1;
1794 	}
1795 	page_bufs = page_buffers(page);
1796 	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1797 			      ext4_bh_delay_or_unwritten)) {
1798 		/*
1799 		 * We don't want to do block allocation, so redirty
1800 		 * the page and return.  We may reach here when we do
1801 		 * a journal commit via journal_submit_inode_data_buffers.
1802 		 * We can also reach here via shrink_page_list
1803 		 */
1804 		goto redirty_page;
1805 	}
1806 	if (commit_write)
1807 		/* now mark the buffer_heads as dirty and uptodate */
1808 		block_commit_write(page, 0, len);
1809 
1810 	if (PageChecked(page) && ext4_should_journal_data(inode))
1811 		/*
1812 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1813 		 * doesn't seem much point in redirtying the page here.
1814 		 */
1815 		return __ext4_journalled_writepage(page, len);
1816 
1817 	if (buffer_uninit(page_bufs)) {
1818 		ext4_set_bh_endio(page_bufs, inode);
1819 		ret = block_write_full_page_endio(page, noalloc_get_block_write,
1820 					    wbc, ext4_end_io_buffer_write);
1821 	} else
1822 		ret = block_write_full_page(page, noalloc_get_block_write,
1823 					    wbc);
1824 
1825 	return ret;
1826 }
1827 
1828 /*
1829  * This is called via ext4_da_writepages() to
1830  * calculate the total number of credits to reserve to fit
1831  * a single extent allocation into a single transaction,
1832  * ext4_da_writpeages() will loop calling this before
1833  * the block allocation.
1834  */
1835 
1836 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1837 {
1838 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1839 
1840 	/*
1841 	 * With non-extent format the journal credit needed to
1842 	 * insert nrblocks contiguous block is dependent on
1843 	 * number of contiguous block. So we will limit
1844 	 * number of contiguous block to a sane value
1845 	 */
1846 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1847 	    (max_blocks > EXT4_MAX_TRANS_DATA))
1848 		max_blocks = EXT4_MAX_TRANS_DATA;
1849 
1850 	return ext4_chunk_trans_blocks(inode, max_blocks);
1851 }
1852 
1853 /*
1854  * write_cache_pages_da - walk the list of dirty pages of the given
1855  * address space and accumulate pages that need writing, and call
1856  * mpage_da_map_and_submit to map a single contiguous memory region
1857  * and then write them.
1858  */
1859 static int write_cache_pages_da(struct address_space *mapping,
1860 				struct writeback_control *wbc,
1861 				struct mpage_da_data *mpd,
1862 				pgoff_t *done_index)
1863 {
1864 	struct buffer_head	*bh, *head;
1865 	struct inode		*inode = mapping->host;
1866 	struct pagevec		pvec;
1867 	unsigned int		nr_pages;
1868 	sector_t		logical;
1869 	pgoff_t			index, end;
1870 	long			nr_to_write = wbc->nr_to_write;
1871 	int			i, tag, ret = 0;
1872 
1873 	memset(mpd, 0, sizeof(struct mpage_da_data));
1874 	mpd->wbc = wbc;
1875 	mpd->inode = inode;
1876 	pagevec_init(&pvec, 0);
1877 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
1878 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
1879 
1880 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1881 		tag = PAGECACHE_TAG_TOWRITE;
1882 	else
1883 		tag = PAGECACHE_TAG_DIRTY;
1884 
1885 	*done_index = index;
1886 	while (index <= end) {
1887 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1888 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1889 		if (nr_pages == 0)
1890 			return 0;
1891 
1892 		for (i = 0; i < nr_pages; i++) {
1893 			struct page *page = pvec.pages[i];
1894 
1895 			/*
1896 			 * At this point, the page may be truncated or
1897 			 * invalidated (changing page->mapping to NULL), or
1898 			 * even swizzled back from swapper_space to tmpfs file
1899 			 * mapping. However, page->index will not change
1900 			 * because we have a reference on the page.
1901 			 */
1902 			if (page->index > end)
1903 				goto out;
1904 
1905 			*done_index = page->index + 1;
1906 
1907 			/*
1908 			 * If we can't merge this page, and we have
1909 			 * accumulated an contiguous region, write it
1910 			 */
1911 			if ((mpd->next_page != page->index) &&
1912 			    (mpd->next_page != mpd->first_page)) {
1913 				mpage_da_map_and_submit(mpd);
1914 				goto ret_extent_tail;
1915 			}
1916 
1917 			lock_page(page);
1918 
1919 			/*
1920 			 * If the page is no longer dirty, or its
1921 			 * mapping no longer corresponds to inode we
1922 			 * are writing (which means it has been
1923 			 * truncated or invalidated), or the page is
1924 			 * already under writeback and we are not
1925 			 * doing a data integrity writeback, skip the page
1926 			 */
1927 			if (!PageDirty(page) ||
1928 			    (PageWriteback(page) &&
1929 			     (wbc->sync_mode == WB_SYNC_NONE)) ||
1930 			    unlikely(page->mapping != mapping)) {
1931 				unlock_page(page);
1932 				continue;
1933 			}
1934 
1935 			wait_on_page_writeback(page);
1936 			BUG_ON(PageWriteback(page));
1937 
1938 			if (mpd->next_page != page->index)
1939 				mpd->first_page = page->index;
1940 			mpd->next_page = page->index + 1;
1941 			logical = (sector_t) page->index <<
1942 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
1943 
1944 			if (!page_has_buffers(page)) {
1945 				mpage_add_bh_to_extent(mpd, logical,
1946 						       PAGE_CACHE_SIZE,
1947 						       (1 << BH_Dirty) | (1 << BH_Uptodate));
1948 				if (mpd->io_done)
1949 					goto ret_extent_tail;
1950 			} else {
1951 				/*
1952 				 * Page with regular buffer heads,
1953 				 * just add all dirty ones
1954 				 */
1955 				head = page_buffers(page);
1956 				bh = head;
1957 				do {
1958 					BUG_ON(buffer_locked(bh));
1959 					/*
1960 					 * We need to try to allocate
1961 					 * unmapped blocks in the same page.
1962 					 * Otherwise we won't make progress
1963 					 * with the page in ext4_writepage
1964 					 */
1965 					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
1966 						mpage_add_bh_to_extent(mpd, logical,
1967 								       bh->b_size,
1968 								       bh->b_state);
1969 						if (mpd->io_done)
1970 							goto ret_extent_tail;
1971 					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
1972 						/*
1973 						 * mapped dirty buffer. We need
1974 						 * to update the b_state
1975 						 * because we look at b_state
1976 						 * in mpage_da_map_blocks.  We
1977 						 * don't update b_size because
1978 						 * if we find an unmapped
1979 						 * buffer_head later we need to
1980 						 * use the b_state flag of that
1981 						 * buffer_head.
1982 						 */
1983 						if (mpd->b_size == 0)
1984 							mpd->b_state = bh->b_state & BH_FLAGS;
1985 					}
1986 					logical++;
1987 				} while ((bh = bh->b_this_page) != head);
1988 			}
1989 
1990 			if (nr_to_write > 0) {
1991 				nr_to_write--;
1992 				if (nr_to_write == 0 &&
1993 				    wbc->sync_mode == WB_SYNC_NONE)
1994 					/*
1995 					 * We stop writing back only if we are
1996 					 * not doing integrity sync. In case of
1997 					 * integrity sync we have to keep going
1998 					 * because someone may be concurrently
1999 					 * dirtying pages, and we might have
2000 					 * synced a lot of newly appeared dirty
2001 					 * pages, but have not synced all of the
2002 					 * old dirty pages.
2003 					 */
2004 					goto out;
2005 			}
2006 		}
2007 		pagevec_release(&pvec);
2008 		cond_resched();
2009 	}
2010 	return 0;
2011 ret_extent_tail:
2012 	ret = MPAGE_DA_EXTENT_TAIL;
2013 out:
2014 	pagevec_release(&pvec);
2015 	cond_resched();
2016 	return ret;
2017 }
2018 
2019 
2020 static int ext4_da_writepages(struct address_space *mapping,
2021 			      struct writeback_control *wbc)
2022 {
2023 	pgoff_t	index;
2024 	int range_whole = 0;
2025 	handle_t *handle = NULL;
2026 	struct mpage_da_data mpd;
2027 	struct inode *inode = mapping->host;
2028 	int pages_written = 0;
2029 	unsigned int max_pages;
2030 	int range_cyclic, cycled = 1, io_done = 0;
2031 	int needed_blocks, ret = 0;
2032 	long desired_nr_to_write, nr_to_writebump = 0;
2033 	loff_t range_start = wbc->range_start;
2034 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2035 	pgoff_t done_index = 0;
2036 	pgoff_t end;
2037 
2038 	trace_ext4_da_writepages(inode, wbc);
2039 
2040 	/*
2041 	 * No pages to write? This is mainly a kludge to avoid starting
2042 	 * a transaction for special inodes like journal inode on last iput()
2043 	 * because that could violate lock ordering on umount
2044 	 */
2045 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2046 		return 0;
2047 
2048 	/*
2049 	 * If the filesystem has aborted, it is read-only, so return
2050 	 * right away instead of dumping stack traces later on that
2051 	 * will obscure the real source of the problem.  We test
2052 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2053 	 * the latter could be true if the filesystem is mounted
2054 	 * read-only, and in that case, ext4_da_writepages should
2055 	 * *never* be called, so if that ever happens, we would want
2056 	 * the stack trace.
2057 	 */
2058 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2059 		return -EROFS;
2060 
2061 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2062 		range_whole = 1;
2063 
2064 	range_cyclic = wbc->range_cyclic;
2065 	if (wbc->range_cyclic) {
2066 		index = mapping->writeback_index;
2067 		if (index)
2068 			cycled = 0;
2069 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2070 		wbc->range_end  = LLONG_MAX;
2071 		wbc->range_cyclic = 0;
2072 		end = -1;
2073 	} else {
2074 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2075 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2076 	}
2077 
2078 	/*
2079 	 * This works around two forms of stupidity.  The first is in
2080 	 * the writeback code, which caps the maximum number of pages
2081 	 * written to be 1024 pages.  This is wrong on multiple
2082 	 * levels; different architectues have a different page size,
2083 	 * which changes the maximum amount of data which gets
2084 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2085 	 * forces this value to be 16 megabytes by multiplying
2086 	 * nr_to_write parameter by four, and then relies on its
2087 	 * allocator to allocate larger extents to make them
2088 	 * contiguous.  Unfortunately this brings us to the second
2089 	 * stupidity, which is that ext4's mballoc code only allocates
2090 	 * at most 2048 blocks.  So we force contiguous writes up to
2091 	 * the number of dirty blocks in the inode, or
2092 	 * sbi->max_writeback_mb_bump whichever is smaller.
2093 	 */
2094 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2095 	if (!range_cyclic && range_whole) {
2096 		if (wbc->nr_to_write == LONG_MAX)
2097 			desired_nr_to_write = wbc->nr_to_write;
2098 		else
2099 			desired_nr_to_write = wbc->nr_to_write * 8;
2100 	} else
2101 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2102 							   max_pages);
2103 	if (desired_nr_to_write > max_pages)
2104 		desired_nr_to_write = max_pages;
2105 
2106 	if (wbc->nr_to_write < desired_nr_to_write) {
2107 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2108 		wbc->nr_to_write = desired_nr_to_write;
2109 	}
2110 
2111 retry:
2112 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2113 		tag_pages_for_writeback(mapping, index, end);
2114 
2115 	while (!ret && wbc->nr_to_write > 0) {
2116 
2117 		/*
2118 		 * we  insert one extent at a time. So we need
2119 		 * credit needed for single extent allocation.
2120 		 * journalled mode is currently not supported
2121 		 * by delalloc
2122 		 */
2123 		BUG_ON(ext4_should_journal_data(inode));
2124 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2125 
2126 		/* start a new transaction*/
2127 		handle = ext4_journal_start(inode, needed_blocks);
2128 		if (IS_ERR(handle)) {
2129 			ret = PTR_ERR(handle);
2130 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2131 			       "%ld pages, ino %lu; err %d", __func__,
2132 				wbc->nr_to_write, inode->i_ino, ret);
2133 			goto out_writepages;
2134 		}
2135 
2136 		/*
2137 		 * Now call write_cache_pages_da() to find the next
2138 		 * contiguous region of logical blocks that need
2139 		 * blocks to be allocated by ext4 and submit them.
2140 		 */
2141 		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2142 		/*
2143 		 * If we have a contiguous extent of pages and we
2144 		 * haven't done the I/O yet, map the blocks and submit
2145 		 * them for I/O.
2146 		 */
2147 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2148 			mpage_da_map_and_submit(&mpd);
2149 			ret = MPAGE_DA_EXTENT_TAIL;
2150 		}
2151 		trace_ext4_da_write_pages(inode, &mpd);
2152 		wbc->nr_to_write -= mpd.pages_written;
2153 
2154 		ext4_journal_stop(handle);
2155 
2156 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2157 			/* commit the transaction which would
2158 			 * free blocks released in the transaction
2159 			 * and try again
2160 			 */
2161 			jbd2_journal_force_commit_nested(sbi->s_journal);
2162 			ret = 0;
2163 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2164 			/*
2165 			 * got one extent now try with
2166 			 * rest of the pages
2167 			 */
2168 			pages_written += mpd.pages_written;
2169 			ret = 0;
2170 			io_done = 1;
2171 		} else if (wbc->nr_to_write)
2172 			/*
2173 			 * There is no more writeout needed
2174 			 * or we requested for a noblocking writeout
2175 			 * and we found the device congested
2176 			 */
2177 			break;
2178 	}
2179 	if (!io_done && !cycled) {
2180 		cycled = 1;
2181 		index = 0;
2182 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2183 		wbc->range_end  = mapping->writeback_index - 1;
2184 		goto retry;
2185 	}
2186 
2187 	/* Update index */
2188 	wbc->range_cyclic = range_cyclic;
2189 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2190 		/*
2191 		 * set the writeback_index so that range_cyclic
2192 		 * mode will write it back later
2193 		 */
2194 		mapping->writeback_index = done_index;
2195 
2196 out_writepages:
2197 	wbc->nr_to_write -= nr_to_writebump;
2198 	wbc->range_start = range_start;
2199 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2200 	return ret;
2201 }
2202 
2203 #define FALL_BACK_TO_NONDELALLOC 1
2204 static int ext4_nonda_switch(struct super_block *sb)
2205 {
2206 	s64 free_blocks, dirty_blocks;
2207 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2208 
2209 	/*
2210 	 * switch to non delalloc mode if we are running low
2211 	 * on free block. The free block accounting via percpu
2212 	 * counters can get slightly wrong with percpu_counter_batch getting
2213 	 * accumulated on each CPU without updating global counters
2214 	 * Delalloc need an accurate free block accounting. So switch
2215 	 * to non delalloc when we are near to error range.
2216 	 */
2217 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2218 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2219 	if (2 * free_blocks < 3 * dirty_blocks ||
2220 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2221 		/*
2222 		 * free block count is less than 150% of dirty blocks
2223 		 * or free blocks is less than watermark
2224 		 */
2225 		return 1;
2226 	}
2227 	/*
2228 	 * Even if we don't switch but are nearing capacity,
2229 	 * start pushing delalloc when 1/2 of free blocks are dirty.
2230 	 */
2231 	if (free_blocks < 2 * dirty_blocks)
2232 		writeback_inodes_sb_if_idle(sb);
2233 
2234 	return 0;
2235 }
2236 
2237 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2238 			       loff_t pos, unsigned len, unsigned flags,
2239 			       struct page **pagep, void **fsdata)
2240 {
2241 	int ret, retries = 0;
2242 	struct page *page;
2243 	pgoff_t index;
2244 	struct inode *inode = mapping->host;
2245 	handle_t *handle;
2246 
2247 	index = pos >> PAGE_CACHE_SHIFT;
2248 
2249 	if (ext4_nonda_switch(inode->i_sb)) {
2250 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2251 		return ext4_write_begin(file, mapping, pos,
2252 					len, flags, pagep, fsdata);
2253 	}
2254 	*fsdata = (void *)0;
2255 	trace_ext4_da_write_begin(inode, pos, len, flags);
2256 retry:
2257 	/*
2258 	 * With delayed allocation, we don't log the i_disksize update
2259 	 * if there is delayed block allocation. But we still need
2260 	 * to journalling the i_disksize update if writes to the end
2261 	 * of file which has an already mapped buffer.
2262 	 */
2263 	handle = ext4_journal_start(inode, 1);
2264 	if (IS_ERR(handle)) {
2265 		ret = PTR_ERR(handle);
2266 		goto out;
2267 	}
2268 	/* We cannot recurse into the filesystem as the transaction is already
2269 	 * started */
2270 	flags |= AOP_FLAG_NOFS;
2271 
2272 	page = grab_cache_page_write_begin(mapping, index, flags);
2273 	if (!page) {
2274 		ext4_journal_stop(handle);
2275 		ret = -ENOMEM;
2276 		goto out;
2277 	}
2278 	*pagep = page;
2279 
2280 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2281 	if (ret < 0) {
2282 		unlock_page(page);
2283 		ext4_journal_stop(handle);
2284 		page_cache_release(page);
2285 		/*
2286 		 * block_write_begin may have instantiated a few blocks
2287 		 * outside i_size.  Trim these off again. Don't need
2288 		 * i_size_read because we hold i_mutex.
2289 		 */
2290 		if (pos + len > inode->i_size)
2291 			ext4_truncate_failed_write(inode);
2292 	}
2293 
2294 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2295 		goto retry;
2296 out:
2297 	return ret;
2298 }
2299 
2300 /*
2301  * Check if we should update i_disksize
2302  * when write to the end of file but not require block allocation
2303  */
2304 static int ext4_da_should_update_i_disksize(struct page *page,
2305 					    unsigned long offset)
2306 {
2307 	struct buffer_head *bh;
2308 	struct inode *inode = page->mapping->host;
2309 	unsigned int idx;
2310 	int i;
2311 
2312 	bh = page_buffers(page);
2313 	idx = offset >> inode->i_blkbits;
2314 
2315 	for (i = 0; i < idx; i++)
2316 		bh = bh->b_this_page;
2317 
2318 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2319 		return 0;
2320 	return 1;
2321 }
2322 
2323 static int ext4_da_write_end(struct file *file,
2324 			     struct address_space *mapping,
2325 			     loff_t pos, unsigned len, unsigned copied,
2326 			     struct page *page, void *fsdata)
2327 {
2328 	struct inode *inode = mapping->host;
2329 	int ret = 0, ret2;
2330 	handle_t *handle = ext4_journal_current_handle();
2331 	loff_t new_i_size;
2332 	unsigned long start, end;
2333 	int write_mode = (int)(unsigned long)fsdata;
2334 
2335 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2336 		if (ext4_should_order_data(inode)) {
2337 			return ext4_ordered_write_end(file, mapping, pos,
2338 					len, copied, page, fsdata);
2339 		} else if (ext4_should_writeback_data(inode)) {
2340 			return ext4_writeback_write_end(file, mapping, pos,
2341 					len, copied, page, fsdata);
2342 		} else {
2343 			BUG();
2344 		}
2345 	}
2346 
2347 	trace_ext4_da_write_end(inode, pos, len, copied);
2348 	start = pos & (PAGE_CACHE_SIZE - 1);
2349 	end = start + copied - 1;
2350 
2351 	/*
2352 	 * generic_write_end() will run mark_inode_dirty() if i_size
2353 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2354 	 * into that.
2355 	 */
2356 
2357 	new_i_size = pos + copied;
2358 	if (new_i_size > EXT4_I(inode)->i_disksize) {
2359 		if (ext4_da_should_update_i_disksize(page, end)) {
2360 			down_write(&EXT4_I(inode)->i_data_sem);
2361 			if (new_i_size > EXT4_I(inode)->i_disksize) {
2362 				/*
2363 				 * Updating i_disksize when extending file
2364 				 * without needing block allocation
2365 				 */
2366 				if (ext4_should_order_data(inode))
2367 					ret = ext4_jbd2_file_inode(handle,
2368 								   inode);
2369 
2370 				EXT4_I(inode)->i_disksize = new_i_size;
2371 			}
2372 			up_write(&EXT4_I(inode)->i_data_sem);
2373 			/* We need to mark inode dirty even if
2374 			 * new_i_size is less that inode->i_size
2375 			 * bu greater than i_disksize.(hint delalloc)
2376 			 */
2377 			ext4_mark_inode_dirty(handle, inode);
2378 		}
2379 	}
2380 	ret2 = generic_write_end(file, mapping, pos, len, copied,
2381 							page, fsdata);
2382 	copied = ret2;
2383 	if (ret2 < 0)
2384 		ret = ret2;
2385 	ret2 = ext4_journal_stop(handle);
2386 	if (!ret)
2387 		ret = ret2;
2388 
2389 	return ret ? ret : copied;
2390 }
2391 
2392 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2393 {
2394 	/*
2395 	 * Drop reserved blocks
2396 	 */
2397 	BUG_ON(!PageLocked(page));
2398 	if (!page_has_buffers(page))
2399 		goto out;
2400 
2401 	ext4_da_page_release_reservation(page, offset);
2402 
2403 out:
2404 	ext4_invalidatepage(page, offset);
2405 
2406 	return;
2407 }
2408 
2409 /*
2410  * Force all delayed allocation blocks to be allocated for a given inode.
2411  */
2412 int ext4_alloc_da_blocks(struct inode *inode)
2413 {
2414 	trace_ext4_alloc_da_blocks(inode);
2415 
2416 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2417 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2418 		return 0;
2419 
2420 	/*
2421 	 * We do something simple for now.  The filemap_flush() will
2422 	 * also start triggering a write of the data blocks, which is
2423 	 * not strictly speaking necessary (and for users of
2424 	 * laptop_mode, not even desirable).  However, to do otherwise
2425 	 * would require replicating code paths in:
2426 	 *
2427 	 * ext4_da_writepages() ->
2428 	 *    write_cache_pages() ---> (via passed in callback function)
2429 	 *        __mpage_da_writepage() -->
2430 	 *           mpage_add_bh_to_extent()
2431 	 *           mpage_da_map_blocks()
2432 	 *
2433 	 * The problem is that write_cache_pages(), located in
2434 	 * mm/page-writeback.c, marks pages clean in preparation for
2435 	 * doing I/O, which is not desirable if we're not planning on
2436 	 * doing I/O at all.
2437 	 *
2438 	 * We could call write_cache_pages(), and then redirty all of
2439 	 * the pages by calling redirty_page_for_writepage() but that
2440 	 * would be ugly in the extreme.  So instead we would need to
2441 	 * replicate parts of the code in the above functions,
2442 	 * simplifying them because we wouldn't actually intend to
2443 	 * write out the pages, but rather only collect contiguous
2444 	 * logical block extents, call the multi-block allocator, and
2445 	 * then update the buffer heads with the block allocations.
2446 	 *
2447 	 * For now, though, we'll cheat by calling filemap_flush(),
2448 	 * which will map the blocks, and start the I/O, but not
2449 	 * actually wait for the I/O to complete.
2450 	 */
2451 	return filemap_flush(inode->i_mapping);
2452 }
2453 
2454 /*
2455  * bmap() is special.  It gets used by applications such as lilo and by
2456  * the swapper to find the on-disk block of a specific piece of data.
2457  *
2458  * Naturally, this is dangerous if the block concerned is still in the
2459  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2460  * filesystem and enables swap, then they may get a nasty shock when the
2461  * data getting swapped to that swapfile suddenly gets overwritten by
2462  * the original zero's written out previously to the journal and
2463  * awaiting writeback in the kernel's buffer cache.
2464  *
2465  * So, if we see any bmap calls here on a modified, data-journaled file,
2466  * take extra steps to flush any blocks which might be in the cache.
2467  */
2468 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2469 {
2470 	struct inode *inode = mapping->host;
2471 	journal_t *journal;
2472 	int err;
2473 
2474 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2475 			test_opt(inode->i_sb, DELALLOC)) {
2476 		/*
2477 		 * With delalloc we want to sync the file
2478 		 * so that we can make sure we allocate
2479 		 * blocks for file
2480 		 */
2481 		filemap_write_and_wait(mapping);
2482 	}
2483 
2484 	if (EXT4_JOURNAL(inode) &&
2485 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2486 		/*
2487 		 * This is a REALLY heavyweight approach, but the use of
2488 		 * bmap on dirty files is expected to be extremely rare:
2489 		 * only if we run lilo or swapon on a freshly made file
2490 		 * do we expect this to happen.
2491 		 *
2492 		 * (bmap requires CAP_SYS_RAWIO so this does not
2493 		 * represent an unprivileged user DOS attack --- we'd be
2494 		 * in trouble if mortal users could trigger this path at
2495 		 * will.)
2496 		 *
2497 		 * NB. EXT4_STATE_JDATA is not set on files other than
2498 		 * regular files.  If somebody wants to bmap a directory
2499 		 * or symlink and gets confused because the buffer
2500 		 * hasn't yet been flushed to disk, they deserve
2501 		 * everything they get.
2502 		 */
2503 
2504 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2505 		journal = EXT4_JOURNAL(inode);
2506 		jbd2_journal_lock_updates(journal);
2507 		err = jbd2_journal_flush(journal);
2508 		jbd2_journal_unlock_updates(journal);
2509 
2510 		if (err)
2511 			return 0;
2512 	}
2513 
2514 	return generic_block_bmap(mapping, block, ext4_get_block);
2515 }
2516 
2517 static int ext4_readpage(struct file *file, struct page *page)
2518 {
2519 	trace_ext4_readpage(page);
2520 	return mpage_readpage(page, ext4_get_block);
2521 }
2522 
2523 static int
2524 ext4_readpages(struct file *file, struct address_space *mapping,
2525 		struct list_head *pages, unsigned nr_pages)
2526 {
2527 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2528 }
2529 
2530 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2531 {
2532 	struct buffer_head *head, *bh;
2533 	unsigned int curr_off = 0;
2534 
2535 	if (!page_has_buffers(page))
2536 		return;
2537 	head = bh = page_buffers(page);
2538 	do {
2539 		if (offset <= curr_off && test_clear_buffer_uninit(bh)
2540 					&& bh->b_private) {
2541 			ext4_free_io_end(bh->b_private);
2542 			bh->b_private = NULL;
2543 			bh->b_end_io = NULL;
2544 		}
2545 		curr_off = curr_off + bh->b_size;
2546 		bh = bh->b_this_page;
2547 	} while (bh != head);
2548 }
2549 
2550 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2551 {
2552 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2553 
2554 	trace_ext4_invalidatepage(page, offset);
2555 
2556 	/*
2557 	 * free any io_end structure allocated for buffers to be discarded
2558 	 */
2559 	if (ext4_should_dioread_nolock(page->mapping->host))
2560 		ext4_invalidatepage_free_endio(page, offset);
2561 	/*
2562 	 * If it's a full truncate we just forget about the pending dirtying
2563 	 */
2564 	if (offset == 0)
2565 		ClearPageChecked(page);
2566 
2567 	if (journal)
2568 		jbd2_journal_invalidatepage(journal, page, offset);
2569 	else
2570 		block_invalidatepage(page, offset);
2571 }
2572 
2573 static int ext4_releasepage(struct page *page, gfp_t wait)
2574 {
2575 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2576 
2577 	trace_ext4_releasepage(page);
2578 
2579 	WARN_ON(PageChecked(page));
2580 	if (!page_has_buffers(page))
2581 		return 0;
2582 	if (journal)
2583 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2584 	else
2585 		return try_to_free_buffers(page);
2586 }
2587 
2588 /*
2589  * ext4_get_block used when preparing for a DIO write or buffer write.
2590  * We allocate an uinitialized extent if blocks haven't been allocated.
2591  * The extent will be converted to initialized after the IO is complete.
2592  */
2593 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2594 		   struct buffer_head *bh_result, int create)
2595 {
2596 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2597 		   inode->i_ino, create);
2598 	return _ext4_get_block(inode, iblock, bh_result,
2599 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2600 }
2601 
2602 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2603 			    ssize_t size, void *private, int ret,
2604 			    bool is_async)
2605 {
2606 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2607         ext4_io_end_t *io_end = iocb->private;
2608 	struct workqueue_struct *wq;
2609 	unsigned long flags;
2610 	struct ext4_inode_info *ei;
2611 
2612 	/* if not async direct IO or dio with 0 bytes write, just return */
2613 	if (!io_end || !size)
2614 		goto out;
2615 
2616 	ext_debug("ext4_end_io_dio(): io_end 0x%p"
2617 		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2618  		  iocb->private, io_end->inode->i_ino, iocb, offset,
2619 		  size);
2620 
2621 	/* if not aio dio with unwritten extents, just free io and return */
2622 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2623 		ext4_free_io_end(io_end);
2624 		iocb->private = NULL;
2625 out:
2626 		if (is_async)
2627 			aio_complete(iocb, ret, 0);
2628 		inode_dio_done(inode);
2629 		return;
2630 	}
2631 
2632 	io_end->offset = offset;
2633 	io_end->size = size;
2634 	if (is_async) {
2635 		io_end->iocb = iocb;
2636 		io_end->result = ret;
2637 	}
2638 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2639 
2640 	/* Add the io_end to per-inode completed aio dio list*/
2641 	ei = EXT4_I(io_end->inode);
2642 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2643 	list_add_tail(&io_end->list, &ei->i_completed_io_list);
2644 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2645 
2646 	/* queue the work to convert unwritten extents to written */
2647 	queue_work(wq, &io_end->work);
2648 	iocb->private = NULL;
2649 
2650 	/* XXX: probably should move into the real I/O completion handler */
2651 	inode_dio_done(inode);
2652 }
2653 
2654 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2655 {
2656 	ext4_io_end_t *io_end = bh->b_private;
2657 	struct workqueue_struct *wq;
2658 	struct inode *inode;
2659 	unsigned long flags;
2660 
2661 	if (!test_clear_buffer_uninit(bh) || !io_end)
2662 		goto out;
2663 
2664 	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2665 		printk("sb umounted, discard end_io request for inode %lu\n",
2666 			io_end->inode->i_ino);
2667 		ext4_free_io_end(io_end);
2668 		goto out;
2669 	}
2670 
2671 	io_end->flag = EXT4_IO_END_UNWRITTEN;
2672 	inode = io_end->inode;
2673 
2674 	/* Add the io_end to per-inode completed io list*/
2675 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2676 	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2677 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2678 
2679 	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2680 	/* queue the work to convert unwritten extents to written */
2681 	queue_work(wq, &io_end->work);
2682 out:
2683 	bh->b_private = NULL;
2684 	bh->b_end_io = NULL;
2685 	clear_buffer_uninit(bh);
2686 	end_buffer_async_write(bh, uptodate);
2687 }
2688 
2689 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2690 {
2691 	ext4_io_end_t *io_end;
2692 	struct page *page = bh->b_page;
2693 	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2694 	size_t size = bh->b_size;
2695 
2696 retry:
2697 	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2698 	if (!io_end) {
2699 		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2700 		schedule();
2701 		goto retry;
2702 	}
2703 	io_end->offset = offset;
2704 	io_end->size = size;
2705 	/*
2706 	 * We need to hold a reference to the page to make sure it
2707 	 * doesn't get evicted before ext4_end_io_work() has a chance
2708 	 * to convert the extent from written to unwritten.
2709 	 */
2710 	io_end->page = page;
2711 	get_page(io_end->page);
2712 
2713 	bh->b_private = io_end;
2714 	bh->b_end_io = ext4_end_io_buffer_write;
2715 	return 0;
2716 }
2717 
2718 /*
2719  * For ext4 extent files, ext4 will do direct-io write to holes,
2720  * preallocated extents, and those write extend the file, no need to
2721  * fall back to buffered IO.
2722  *
2723  * For holes, we fallocate those blocks, mark them as uninitialized
2724  * If those blocks were preallocated, we mark sure they are splited, but
2725  * still keep the range to write as uninitialized.
2726  *
2727  * The unwrritten extents will be converted to written when DIO is completed.
2728  * For async direct IO, since the IO may still pending when return, we
2729  * set up an end_io call back function, which will do the conversion
2730  * when async direct IO completed.
2731  *
2732  * If the O_DIRECT write will extend the file then add this inode to the
2733  * orphan list.  So recovery will truncate it back to the original size
2734  * if the machine crashes during the write.
2735  *
2736  */
2737 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2738 			      const struct iovec *iov, loff_t offset,
2739 			      unsigned long nr_segs)
2740 {
2741 	struct file *file = iocb->ki_filp;
2742 	struct inode *inode = file->f_mapping->host;
2743 	ssize_t ret;
2744 	size_t count = iov_length(iov, nr_segs);
2745 
2746 	loff_t final_size = offset + count;
2747 	if (rw == WRITE && final_size <= inode->i_size) {
2748 		/*
2749  		 * We could direct write to holes and fallocate.
2750 		 *
2751  		 * Allocated blocks to fill the hole are marked as uninitialized
2752  		 * to prevent parallel buffered read to expose the stale data
2753  		 * before DIO complete the data IO.
2754 		 *
2755  		 * As to previously fallocated extents, ext4 get_block
2756  		 * will just simply mark the buffer mapped but still
2757  		 * keep the extents uninitialized.
2758  		 *
2759 		 * for non AIO case, we will convert those unwritten extents
2760 		 * to written after return back from blockdev_direct_IO.
2761 		 *
2762 		 * for async DIO, the conversion needs to be defered when
2763 		 * the IO is completed. The ext4 end_io callback function
2764 		 * will be called to take care of the conversion work.
2765 		 * Here for async case, we allocate an io_end structure to
2766 		 * hook to the iocb.
2767  		 */
2768 		iocb->private = NULL;
2769 		EXT4_I(inode)->cur_aio_dio = NULL;
2770 		if (!is_sync_kiocb(iocb)) {
2771 			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2772 			if (!iocb->private)
2773 				return -ENOMEM;
2774 			/*
2775 			 * we save the io structure for current async
2776 			 * direct IO, so that later ext4_map_blocks()
2777 			 * could flag the io structure whether there
2778 			 * is a unwritten extents needs to be converted
2779 			 * when IO is completed.
2780 			 */
2781 			EXT4_I(inode)->cur_aio_dio = iocb->private;
2782 		}
2783 
2784 		ret = __blockdev_direct_IO(rw, iocb, inode,
2785 					 inode->i_sb->s_bdev, iov,
2786 					 offset, nr_segs,
2787 					 ext4_get_block_write,
2788 					 ext4_end_io_dio,
2789 					 NULL,
2790 					 DIO_LOCKING | DIO_SKIP_HOLES);
2791 		if (iocb->private)
2792 			EXT4_I(inode)->cur_aio_dio = NULL;
2793 		/*
2794 		 * The io_end structure takes a reference to the inode,
2795 		 * that structure needs to be destroyed and the
2796 		 * reference to the inode need to be dropped, when IO is
2797 		 * complete, even with 0 byte write, or failed.
2798 		 *
2799 		 * In the successful AIO DIO case, the io_end structure will be
2800 		 * desctroyed and the reference to the inode will be dropped
2801 		 * after the end_io call back function is called.
2802 		 *
2803 		 * In the case there is 0 byte write, or error case, since
2804 		 * VFS direct IO won't invoke the end_io call back function,
2805 		 * we need to free the end_io structure here.
2806 		 */
2807 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2808 			ext4_free_io_end(iocb->private);
2809 			iocb->private = NULL;
2810 		} else if (ret > 0 && ext4_test_inode_state(inode,
2811 						EXT4_STATE_DIO_UNWRITTEN)) {
2812 			int err;
2813 			/*
2814 			 * for non AIO case, since the IO is already
2815 			 * completed, we could do the conversion right here
2816 			 */
2817 			err = ext4_convert_unwritten_extents(inode,
2818 							     offset, ret);
2819 			if (err < 0)
2820 				ret = err;
2821 			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2822 		}
2823 		return ret;
2824 	}
2825 
2826 	/* for write the the end of file case, we fall back to old way */
2827 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2828 }
2829 
2830 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2831 			      const struct iovec *iov, loff_t offset,
2832 			      unsigned long nr_segs)
2833 {
2834 	struct file *file = iocb->ki_filp;
2835 	struct inode *inode = file->f_mapping->host;
2836 	ssize_t ret;
2837 
2838 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2839 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2840 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
2841 	else
2842 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2843 	trace_ext4_direct_IO_exit(inode, offset,
2844 				iov_length(iov, nr_segs), rw, ret);
2845 	return ret;
2846 }
2847 
2848 /*
2849  * Pages can be marked dirty completely asynchronously from ext4's journalling
2850  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
2851  * much here because ->set_page_dirty is called under VFS locks.  The page is
2852  * not necessarily locked.
2853  *
2854  * We cannot just dirty the page and leave attached buffers clean, because the
2855  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
2856  * or jbddirty because all the journalling code will explode.
2857  *
2858  * So what we do is to mark the page "pending dirty" and next time writepage
2859  * is called, propagate that into the buffers appropriately.
2860  */
2861 static int ext4_journalled_set_page_dirty(struct page *page)
2862 {
2863 	SetPageChecked(page);
2864 	return __set_page_dirty_nobuffers(page);
2865 }
2866 
2867 static const struct address_space_operations ext4_ordered_aops = {
2868 	.readpage		= ext4_readpage,
2869 	.readpages		= ext4_readpages,
2870 	.writepage		= ext4_writepage,
2871 	.write_begin		= ext4_write_begin,
2872 	.write_end		= ext4_ordered_write_end,
2873 	.bmap			= ext4_bmap,
2874 	.invalidatepage		= ext4_invalidatepage,
2875 	.releasepage		= ext4_releasepage,
2876 	.direct_IO		= ext4_direct_IO,
2877 	.migratepage		= buffer_migrate_page,
2878 	.is_partially_uptodate  = block_is_partially_uptodate,
2879 	.error_remove_page	= generic_error_remove_page,
2880 };
2881 
2882 static const struct address_space_operations ext4_writeback_aops = {
2883 	.readpage		= ext4_readpage,
2884 	.readpages		= ext4_readpages,
2885 	.writepage		= ext4_writepage,
2886 	.write_begin		= ext4_write_begin,
2887 	.write_end		= ext4_writeback_write_end,
2888 	.bmap			= ext4_bmap,
2889 	.invalidatepage		= ext4_invalidatepage,
2890 	.releasepage		= ext4_releasepage,
2891 	.direct_IO		= ext4_direct_IO,
2892 	.migratepage		= buffer_migrate_page,
2893 	.is_partially_uptodate  = block_is_partially_uptodate,
2894 	.error_remove_page	= generic_error_remove_page,
2895 };
2896 
2897 static const struct address_space_operations ext4_journalled_aops = {
2898 	.readpage		= ext4_readpage,
2899 	.readpages		= ext4_readpages,
2900 	.writepage		= ext4_writepage,
2901 	.write_begin		= ext4_write_begin,
2902 	.write_end		= ext4_journalled_write_end,
2903 	.set_page_dirty		= ext4_journalled_set_page_dirty,
2904 	.bmap			= ext4_bmap,
2905 	.invalidatepage		= ext4_invalidatepage,
2906 	.releasepage		= ext4_releasepage,
2907 	.is_partially_uptodate  = block_is_partially_uptodate,
2908 	.error_remove_page	= generic_error_remove_page,
2909 };
2910 
2911 static const struct address_space_operations ext4_da_aops = {
2912 	.readpage		= ext4_readpage,
2913 	.readpages		= ext4_readpages,
2914 	.writepage		= ext4_writepage,
2915 	.writepages		= ext4_da_writepages,
2916 	.write_begin		= ext4_da_write_begin,
2917 	.write_end		= ext4_da_write_end,
2918 	.bmap			= ext4_bmap,
2919 	.invalidatepage		= ext4_da_invalidatepage,
2920 	.releasepage		= ext4_releasepage,
2921 	.direct_IO		= ext4_direct_IO,
2922 	.migratepage		= buffer_migrate_page,
2923 	.is_partially_uptodate  = block_is_partially_uptodate,
2924 	.error_remove_page	= generic_error_remove_page,
2925 };
2926 
2927 void ext4_set_aops(struct inode *inode)
2928 {
2929 	if (ext4_should_order_data(inode) &&
2930 		test_opt(inode->i_sb, DELALLOC))
2931 		inode->i_mapping->a_ops = &ext4_da_aops;
2932 	else if (ext4_should_order_data(inode))
2933 		inode->i_mapping->a_ops = &ext4_ordered_aops;
2934 	else if (ext4_should_writeback_data(inode) &&
2935 		 test_opt(inode->i_sb, DELALLOC))
2936 		inode->i_mapping->a_ops = &ext4_da_aops;
2937 	else if (ext4_should_writeback_data(inode))
2938 		inode->i_mapping->a_ops = &ext4_writeback_aops;
2939 	else
2940 		inode->i_mapping->a_ops = &ext4_journalled_aops;
2941 }
2942 
2943 /*
2944  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2945  * up to the end of the block which corresponds to `from'.
2946  * This required during truncate. We need to physically zero the tail end
2947  * of that block so it doesn't yield old data if the file is later grown.
2948  */
2949 int ext4_block_truncate_page(handle_t *handle,
2950 		struct address_space *mapping, loff_t from)
2951 {
2952 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2953 	unsigned length;
2954 	unsigned blocksize;
2955 	struct inode *inode = mapping->host;
2956 
2957 	blocksize = inode->i_sb->s_blocksize;
2958 	length = blocksize - (offset & (blocksize - 1));
2959 
2960 	return ext4_block_zero_page_range(handle, mapping, from, length);
2961 }
2962 
2963 /*
2964  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
2965  * starting from file offset 'from'.  The range to be zero'd must
2966  * be contained with in one block.  If the specified range exceeds
2967  * the end of the block it will be shortened to end of the block
2968  * that cooresponds to 'from'
2969  */
2970 int ext4_block_zero_page_range(handle_t *handle,
2971 		struct address_space *mapping, loff_t from, loff_t length)
2972 {
2973 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2974 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2975 	unsigned blocksize, max, pos;
2976 	ext4_lblk_t iblock;
2977 	struct inode *inode = mapping->host;
2978 	struct buffer_head *bh;
2979 	struct page *page;
2980 	int err = 0;
2981 
2982 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
2983 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
2984 	if (!page)
2985 		return -EINVAL;
2986 
2987 	blocksize = inode->i_sb->s_blocksize;
2988 	max = blocksize - (offset & (blocksize - 1));
2989 
2990 	/*
2991 	 * correct length if it does not fall between
2992 	 * 'from' and the end of the block
2993 	 */
2994 	if (length > max || length < 0)
2995 		length = max;
2996 
2997 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2998 
2999 	if (!page_has_buffers(page))
3000 		create_empty_buffers(page, blocksize, 0);
3001 
3002 	/* Find the buffer that contains "offset" */
3003 	bh = page_buffers(page);
3004 	pos = blocksize;
3005 	while (offset >= pos) {
3006 		bh = bh->b_this_page;
3007 		iblock++;
3008 		pos += blocksize;
3009 	}
3010 
3011 	err = 0;
3012 	if (buffer_freed(bh)) {
3013 		BUFFER_TRACE(bh, "freed: skip");
3014 		goto unlock;
3015 	}
3016 
3017 	if (!buffer_mapped(bh)) {
3018 		BUFFER_TRACE(bh, "unmapped");
3019 		ext4_get_block(inode, iblock, bh, 0);
3020 		/* unmapped? It's a hole - nothing to do */
3021 		if (!buffer_mapped(bh)) {
3022 			BUFFER_TRACE(bh, "still unmapped");
3023 			goto unlock;
3024 		}
3025 	}
3026 
3027 	/* Ok, it's mapped. Make sure it's up-to-date */
3028 	if (PageUptodate(page))
3029 		set_buffer_uptodate(bh);
3030 
3031 	if (!buffer_uptodate(bh)) {
3032 		err = -EIO;
3033 		ll_rw_block(READ, 1, &bh);
3034 		wait_on_buffer(bh);
3035 		/* Uhhuh. Read error. Complain and punt. */
3036 		if (!buffer_uptodate(bh))
3037 			goto unlock;
3038 	}
3039 
3040 	if (ext4_should_journal_data(inode)) {
3041 		BUFFER_TRACE(bh, "get write access");
3042 		err = ext4_journal_get_write_access(handle, bh);
3043 		if (err)
3044 			goto unlock;
3045 	}
3046 
3047 	zero_user(page, offset, length);
3048 
3049 	BUFFER_TRACE(bh, "zeroed end of block");
3050 
3051 	err = 0;
3052 	if (ext4_should_journal_data(inode)) {
3053 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3054 	} else {
3055 		if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
3056 			err = ext4_jbd2_file_inode(handle, inode);
3057 		mark_buffer_dirty(bh);
3058 	}
3059 
3060 unlock:
3061 	unlock_page(page);
3062 	page_cache_release(page);
3063 	return err;
3064 }
3065 
3066 int ext4_can_truncate(struct inode *inode)
3067 {
3068 	if (S_ISREG(inode->i_mode))
3069 		return 1;
3070 	if (S_ISDIR(inode->i_mode))
3071 		return 1;
3072 	if (S_ISLNK(inode->i_mode))
3073 		return !ext4_inode_is_fast_symlink(inode);
3074 	return 0;
3075 }
3076 
3077 /*
3078  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3079  * associated with the given offset and length
3080  *
3081  * @inode:  File inode
3082  * @offset: The offset where the hole will begin
3083  * @len:    The length of the hole
3084  *
3085  * Returns: 0 on sucess or negative on failure
3086  */
3087 
3088 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3089 {
3090 	struct inode *inode = file->f_path.dentry->d_inode;
3091 	if (!S_ISREG(inode->i_mode))
3092 		return -ENOTSUPP;
3093 
3094 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3095 		/* TODO: Add support for non extent hole punching */
3096 		return -ENOTSUPP;
3097 	}
3098 
3099 	return ext4_ext_punch_hole(file, offset, length);
3100 }
3101 
3102 /*
3103  * ext4_truncate()
3104  *
3105  * We block out ext4_get_block() block instantiations across the entire
3106  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3107  * simultaneously on behalf of the same inode.
3108  *
3109  * As we work through the truncate and commmit bits of it to the journal there
3110  * is one core, guiding principle: the file's tree must always be consistent on
3111  * disk.  We must be able to restart the truncate after a crash.
3112  *
3113  * The file's tree may be transiently inconsistent in memory (although it
3114  * probably isn't), but whenever we close off and commit a journal transaction,
3115  * the contents of (the filesystem + the journal) must be consistent and
3116  * restartable.  It's pretty simple, really: bottom up, right to left (although
3117  * left-to-right works OK too).
3118  *
3119  * Note that at recovery time, journal replay occurs *before* the restart of
3120  * truncate against the orphan inode list.
3121  *
3122  * The committed inode has the new, desired i_size (which is the same as
3123  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3124  * that this inode's truncate did not complete and it will again call
3125  * ext4_truncate() to have another go.  So there will be instantiated blocks
3126  * to the right of the truncation point in a crashed ext4 filesystem.  But
3127  * that's fine - as long as they are linked from the inode, the post-crash
3128  * ext4_truncate() run will find them and release them.
3129  */
3130 void ext4_truncate(struct inode *inode)
3131 {
3132 	trace_ext4_truncate_enter(inode);
3133 
3134 	if (!ext4_can_truncate(inode))
3135 		return;
3136 
3137 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3138 
3139 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3140 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3141 
3142 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3143 		ext4_ext_truncate(inode);
3144 	else
3145 		ext4_ind_truncate(inode);
3146 
3147 	trace_ext4_truncate_exit(inode);
3148 }
3149 
3150 /*
3151  * ext4_get_inode_loc returns with an extra refcount against the inode's
3152  * underlying buffer_head on success. If 'in_mem' is true, we have all
3153  * data in memory that is needed to recreate the on-disk version of this
3154  * inode.
3155  */
3156 static int __ext4_get_inode_loc(struct inode *inode,
3157 				struct ext4_iloc *iloc, int in_mem)
3158 {
3159 	struct ext4_group_desc	*gdp;
3160 	struct buffer_head	*bh;
3161 	struct super_block	*sb = inode->i_sb;
3162 	ext4_fsblk_t		block;
3163 	int			inodes_per_block, inode_offset;
3164 
3165 	iloc->bh = NULL;
3166 	if (!ext4_valid_inum(sb, inode->i_ino))
3167 		return -EIO;
3168 
3169 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3170 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3171 	if (!gdp)
3172 		return -EIO;
3173 
3174 	/*
3175 	 * Figure out the offset within the block group inode table
3176 	 */
3177 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3178 	inode_offset = ((inode->i_ino - 1) %
3179 			EXT4_INODES_PER_GROUP(sb));
3180 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3181 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3182 
3183 	bh = sb_getblk(sb, block);
3184 	if (!bh) {
3185 		EXT4_ERROR_INODE_BLOCK(inode, block,
3186 				       "unable to read itable block");
3187 		return -EIO;
3188 	}
3189 	if (!buffer_uptodate(bh)) {
3190 		lock_buffer(bh);
3191 
3192 		/*
3193 		 * If the buffer has the write error flag, we have failed
3194 		 * to write out another inode in the same block.  In this
3195 		 * case, we don't have to read the block because we may
3196 		 * read the old inode data successfully.
3197 		 */
3198 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3199 			set_buffer_uptodate(bh);
3200 
3201 		if (buffer_uptodate(bh)) {
3202 			/* someone brought it uptodate while we waited */
3203 			unlock_buffer(bh);
3204 			goto has_buffer;
3205 		}
3206 
3207 		/*
3208 		 * If we have all information of the inode in memory and this
3209 		 * is the only valid inode in the block, we need not read the
3210 		 * block.
3211 		 */
3212 		if (in_mem) {
3213 			struct buffer_head *bitmap_bh;
3214 			int i, start;
3215 
3216 			start = inode_offset & ~(inodes_per_block - 1);
3217 
3218 			/* Is the inode bitmap in cache? */
3219 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3220 			if (!bitmap_bh)
3221 				goto make_io;
3222 
3223 			/*
3224 			 * If the inode bitmap isn't in cache then the
3225 			 * optimisation may end up performing two reads instead
3226 			 * of one, so skip it.
3227 			 */
3228 			if (!buffer_uptodate(bitmap_bh)) {
3229 				brelse(bitmap_bh);
3230 				goto make_io;
3231 			}
3232 			for (i = start; i < start + inodes_per_block; i++) {
3233 				if (i == inode_offset)
3234 					continue;
3235 				if (ext4_test_bit(i, bitmap_bh->b_data))
3236 					break;
3237 			}
3238 			brelse(bitmap_bh);
3239 			if (i == start + inodes_per_block) {
3240 				/* all other inodes are free, so skip I/O */
3241 				memset(bh->b_data, 0, bh->b_size);
3242 				set_buffer_uptodate(bh);
3243 				unlock_buffer(bh);
3244 				goto has_buffer;
3245 			}
3246 		}
3247 
3248 make_io:
3249 		/*
3250 		 * If we need to do any I/O, try to pre-readahead extra
3251 		 * blocks from the inode table.
3252 		 */
3253 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3254 			ext4_fsblk_t b, end, table;
3255 			unsigned num;
3256 
3257 			table = ext4_inode_table(sb, gdp);
3258 			/* s_inode_readahead_blks is always a power of 2 */
3259 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3260 			if (table > b)
3261 				b = table;
3262 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3263 			num = EXT4_INODES_PER_GROUP(sb);
3264 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3265 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3266 				num -= ext4_itable_unused_count(sb, gdp);
3267 			table += num / inodes_per_block;
3268 			if (end > table)
3269 				end = table;
3270 			while (b <= end)
3271 				sb_breadahead(sb, b++);
3272 		}
3273 
3274 		/*
3275 		 * There are other valid inodes in the buffer, this inode
3276 		 * has in-inode xattrs, or we don't have this inode in memory.
3277 		 * Read the block from disk.
3278 		 */
3279 		trace_ext4_load_inode(inode);
3280 		get_bh(bh);
3281 		bh->b_end_io = end_buffer_read_sync;
3282 		submit_bh(READ_META, bh);
3283 		wait_on_buffer(bh);
3284 		if (!buffer_uptodate(bh)) {
3285 			EXT4_ERROR_INODE_BLOCK(inode, block,
3286 					       "unable to read itable block");
3287 			brelse(bh);
3288 			return -EIO;
3289 		}
3290 	}
3291 has_buffer:
3292 	iloc->bh = bh;
3293 	return 0;
3294 }
3295 
3296 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3297 {
3298 	/* We have all inode data except xattrs in memory here. */
3299 	return __ext4_get_inode_loc(inode, iloc,
3300 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3301 }
3302 
3303 void ext4_set_inode_flags(struct inode *inode)
3304 {
3305 	unsigned int flags = EXT4_I(inode)->i_flags;
3306 
3307 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3308 	if (flags & EXT4_SYNC_FL)
3309 		inode->i_flags |= S_SYNC;
3310 	if (flags & EXT4_APPEND_FL)
3311 		inode->i_flags |= S_APPEND;
3312 	if (flags & EXT4_IMMUTABLE_FL)
3313 		inode->i_flags |= S_IMMUTABLE;
3314 	if (flags & EXT4_NOATIME_FL)
3315 		inode->i_flags |= S_NOATIME;
3316 	if (flags & EXT4_DIRSYNC_FL)
3317 		inode->i_flags |= S_DIRSYNC;
3318 }
3319 
3320 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3321 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3322 {
3323 	unsigned int vfs_fl;
3324 	unsigned long old_fl, new_fl;
3325 
3326 	do {
3327 		vfs_fl = ei->vfs_inode.i_flags;
3328 		old_fl = ei->i_flags;
3329 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3330 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3331 				EXT4_DIRSYNC_FL);
3332 		if (vfs_fl & S_SYNC)
3333 			new_fl |= EXT4_SYNC_FL;
3334 		if (vfs_fl & S_APPEND)
3335 			new_fl |= EXT4_APPEND_FL;
3336 		if (vfs_fl & S_IMMUTABLE)
3337 			new_fl |= EXT4_IMMUTABLE_FL;
3338 		if (vfs_fl & S_NOATIME)
3339 			new_fl |= EXT4_NOATIME_FL;
3340 		if (vfs_fl & S_DIRSYNC)
3341 			new_fl |= EXT4_DIRSYNC_FL;
3342 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3343 }
3344 
3345 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3346 				  struct ext4_inode_info *ei)
3347 {
3348 	blkcnt_t i_blocks ;
3349 	struct inode *inode = &(ei->vfs_inode);
3350 	struct super_block *sb = inode->i_sb;
3351 
3352 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3353 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3354 		/* we are using combined 48 bit field */
3355 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3356 					le32_to_cpu(raw_inode->i_blocks_lo);
3357 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3358 			/* i_blocks represent file system block size */
3359 			return i_blocks  << (inode->i_blkbits - 9);
3360 		} else {
3361 			return i_blocks;
3362 		}
3363 	} else {
3364 		return le32_to_cpu(raw_inode->i_blocks_lo);
3365 	}
3366 }
3367 
3368 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3369 {
3370 	struct ext4_iloc iloc;
3371 	struct ext4_inode *raw_inode;
3372 	struct ext4_inode_info *ei;
3373 	struct inode *inode;
3374 	journal_t *journal = EXT4_SB(sb)->s_journal;
3375 	long ret;
3376 	int block;
3377 
3378 	inode = iget_locked(sb, ino);
3379 	if (!inode)
3380 		return ERR_PTR(-ENOMEM);
3381 	if (!(inode->i_state & I_NEW))
3382 		return inode;
3383 
3384 	ei = EXT4_I(inode);
3385 	iloc.bh = NULL;
3386 
3387 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3388 	if (ret < 0)
3389 		goto bad_inode;
3390 	raw_inode = ext4_raw_inode(&iloc);
3391 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3392 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3393 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3394 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3395 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3396 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3397 	}
3398 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3399 
3400 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3401 	ei->i_dir_start_lookup = 0;
3402 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3403 	/* We now have enough fields to check if the inode was active or not.
3404 	 * This is needed because nfsd might try to access dead inodes
3405 	 * the test is that same one that e2fsck uses
3406 	 * NeilBrown 1999oct15
3407 	 */
3408 	if (inode->i_nlink == 0) {
3409 		if (inode->i_mode == 0 ||
3410 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3411 			/* this inode is deleted */
3412 			ret = -ESTALE;
3413 			goto bad_inode;
3414 		}
3415 		/* The only unlinked inodes we let through here have
3416 		 * valid i_mode and are being read by the orphan
3417 		 * recovery code: that's fine, we're about to complete
3418 		 * the process of deleting those. */
3419 	}
3420 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3421 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3422 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3423 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3424 		ei->i_file_acl |=
3425 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3426 	inode->i_size = ext4_isize(raw_inode);
3427 	ei->i_disksize = inode->i_size;
3428 #ifdef CONFIG_QUOTA
3429 	ei->i_reserved_quota = 0;
3430 #endif
3431 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3432 	ei->i_block_group = iloc.block_group;
3433 	ei->i_last_alloc_group = ~0;
3434 	/*
3435 	 * NOTE! The in-memory inode i_data array is in little-endian order
3436 	 * even on big-endian machines: we do NOT byteswap the block numbers!
3437 	 */
3438 	for (block = 0; block < EXT4_N_BLOCKS; block++)
3439 		ei->i_data[block] = raw_inode->i_block[block];
3440 	INIT_LIST_HEAD(&ei->i_orphan);
3441 
3442 	/*
3443 	 * Set transaction id's of transactions that have to be committed
3444 	 * to finish f[data]sync. We set them to currently running transaction
3445 	 * as we cannot be sure that the inode or some of its metadata isn't
3446 	 * part of the transaction - the inode could have been reclaimed and
3447 	 * now it is reread from disk.
3448 	 */
3449 	if (journal) {
3450 		transaction_t *transaction;
3451 		tid_t tid;
3452 
3453 		read_lock(&journal->j_state_lock);
3454 		if (journal->j_running_transaction)
3455 			transaction = journal->j_running_transaction;
3456 		else
3457 			transaction = journal->j_committing_transaction;
3458 		if (transaction)
3459 			tid = transaction->t_tid;
3460 		else
3461 			tid = journal->j_commit_sequence;
3462 		read_unlock(&journal->j_state_lock);
3463 		ei->i_sync_tid = tid;
3464 		ei->i_datasync_tid = tid;
3465 	}
3466 
3467 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3468 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3469 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3470 		    EXT4_INODE_SIZE(inode->i_sb)) {
3471 			ret = -EIO;
3472 			goto bad_inode;
3473 		}
3474 		if (ei->i_extra_isize == 0) {
3475 			/* The extra space is currently unused. Use it. */
3476 			ei->i_extra_isize = sizeof(struct ext4_inode) -
3477 					    EXT4_GOOD_OLD_INODE_SIZE;
3478 		} else {
3479 			__le32 *magic = (void *)raw_inode +
3480 					EXT4_GOOD_OLD_INODE_SIZE +
3481 					ei->i_extra_isize;
3482 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3483 				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3484 		}
3485 	} else
3486 		ei->i_extra_isize = 0;
3487 
3488 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3489 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3490 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3491 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3492 
3493 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3494 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3495 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3496 			inode->i_version |=
3497 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3498 	}
3499 
3500 	ret = 0;
3501 	if (ei->i_file_acl &&
3502 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3503 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3504 				 ei->i_file_acl);
3505 		ret = -EIO;
3506 		goto bad_inode;
3507 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3508 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3509 		    (S_ISLNK(inode->i_mode) &&
3510 		     !ext4_inode_is_fast_symlink(inode)))
3511 			/* Validate extent which is part of inode */
3512 			ret = ext4_ext_check_inode(inode);
3513 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3514 		   (S_ISLNK(inode->i_mode) &&
3515 		    !ext4_inode_is_fast_symlink(inode))) {
3516 		/* Validate block references which are part of inode */
3517 		ret = ext4_ind_check_inode(inode);
3518 	}
3519 	if (ret)
3520 		goto bad_inode;
3521 
3522 	if (S_ISREG(inode->i_mode)) {
3523 		inode->i_op = &ext4_file_inode_operations;
3524 		inode->i_fop = &ext4_file_operations;
3525 		ext4_set_aops(inode);
3526 	} else if (S_ISDIR(inode->i_mode)) {
3527 		inode->i_op = &ext4_dir_inode_operations;
3528 		inode->i_fop = &ext4_dir_operations;
3529 	} else if (S_ISLNK(inode->i_mode)) {
3530 		if (ext4_inode_is_fast_symlink(inode)) {
3531 			inode->i_op = &ext4_fast_symlink_inode_operations;
3532 			nd_terminate_link(ei->i_data, inode->i_size,
3533 				sizeof(ei->i_data) - 1);
3534 		} else {
3535 			inode->i_op = &ext4_symlink_inode_operations;
3536 			ext4_set_aops(inode);
3537 		}
3538 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3539 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3540 		inode->i_op = &ext4_special_inode_operations;
3541 		if (raw_inode->i_block[0])
3542 			init_special_inode(inode, inode->i_mode,
3543 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3544 		else
3545 			init_special_inode(inode, inode->i_mode,
3546 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3547 	} else {
3548 		ret = -EIO;
3549 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3550 		goto bad_inode;
3551 	}
3552 	brelse(iloc.bh);
3553 	ext4_set_inode_flags(inode);
3554 	unlock_new_inode(inode);
3555 	return inode;
3556 
3557 bad_inode:
3558 	brelse(iloc.bh);
3559 	iget_failed(inode);
3560 	return ERR_PTR(ret);
3561 }
3562 
3563 static int ext4_inode_blocks_set(handle_t *handle,
3564 				struct ext4_inode *raw_inode,
3565 				struct ext4_inode_info *ei)
3566 {
3567 	struct inode *inode = &(ei->vfs_inode);
3568 	u64 i_blocks = inode->i_blocks;
3569 	struct super_block *sb = inode->i_sb;
3570 
3571 	if (i_blocks <= ~0U) {
3572 		/*
3573 		 * i_blocks can be represnted in a 32 bit variable
3574 		 * as multiple of 512 bytes
3575 		 */
3576 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3577 		raw_inode->i_blocks_high = 0;
3578 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3579 		return 0;
3580 	}
3581 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3582 		return -EFBIG;
3583 
3584 	if (i_blocks <= 0xffffffffffffULL) {
3585 		/*
3586 		 * i_blocks can be represented in a 48 bit variable
3587 		 * as multiple of 512 bytes
3588 		 */
3589 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3590 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3591 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3592 	} else {
3593 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3594 		/* i_block is stored in file system block size */
3595 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
3596 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3597 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3598 	}
3599 	return 0;
3600 }
3601 
3602 /*
3603  * Post the struct inode info into an on-disk inode location in the
3604  * buffer-cache.  This gobbles the caller's reference to the
3605  * buffer_head in the inode location struct.
3606  *
3607  * The caller must have write access to iloc->bh.
3608  */
3609 static int ext4_do_update_inode(handle_t *handle,
3610 				struct inode *inode,
3611 				struct ext4_iloc *iloc)
3612 {
3613 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3614 	struct ext4_inode_info *ei = EXT4_I(inode);
3615 	struct buffer_head *bh = iloc->bh;
3616 	int err = 0, rc, block;
3617 
3618 	/* For fields not not tracking in the in-memory inode,
3619 	 * initialise them to zero for new inodes. */
3620 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3621 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3622 
3623 	ext4_get_inode_flags(ei);
3624 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3625 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3626 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3627 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3628 /*
3629  * Fix up interoperability with old kernels. Otherwise, old inodes get
3630  * re-used with the upper 16 bits of the uid/gid intact
3631  */
3632 		if (!ei->i_dtime) {
3633 			raw_inode->i_uid_high =
3634 				cpu_to_le16(high_16_bits(inode->i_uid));
3635 			raw_inode->i_gid_high =
3636 				cpu_to_le16(high_16_bits(inode->i_gid));
3637 		} else {
3638 			raw_inode->i_uid_high = 0;
3639 			raw_inode->i_gid_high = 0;
3640 		}
3641 	} else {
3642 		raw_inode->i_uid_low =
3643 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
3644 		raw_inode->i_gid_low =
3645 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
3646 		raw_inode->i_uid_high = 0;
3647 		raw_inode->i_gid_high = 0;
3648 	}
3649 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3650 
3651 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3652 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3653 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3654 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3655 
3656 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
3657 		goto out_brelse;
3658 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3659 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3660 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3661 	    cpu_to_le32(EXT4_OS_HURD))
3662 		raw_inode->i_file_acl_high =
3663 			cpu_to_le16(ei->i_file_acl >> 32);
3664 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3665 	ext4_isize_set(raw_inode, ei->i_disksize);
3666 	if (ei->i_disksize > 0x7fffffffULL) {
3667 		struct super_block *sb = inode->i_sb;
3668 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3669 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3670 				EXT4_SB(sb)->s_es->s_rev_level ==
3671 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3672 			/* If this is the first large file
3673 			 * created, add a flag to the superblock.
3674 			 */
3675 			err = ext4_journal_get_write_access(handle,
3676 					EXT4_SB(sb)->s_sbh);
3677 			if (err)
3678 				goto out_brelse;
3679 			ext4_update_dynamic_rev(sb);
3680 			EXT4_SET_RO_COMPAT_FEATURE(sb,
3681 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3682 			sb->s_dirt = 1;
3683 			ext4_handle_sync(handle);
3684 			err = ext4_handle_dirty_metadata(handle, NULL,
3685 					EXT4_SB(sb)->s_sbh);
3686 		}
3687 	}
3688 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3689 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3690 		if (old_valid_dev(inode->i_rdev)) {
3691 			raw_inode->i_block[0] =
3692 				cpu_to_le32(old_encode_dev(inode->i_rdev));
3693 			raw_inode->i_block[1] = 0;
3694 		} else {
3695 			raw_inode->i_block[0] = 0;
3696 			raw_inode->i_block[1] =
3697 				cpu_to_le32(new_encode_dev(inode->i_rdev));
3698 			raw_inode->i_block[2] = 0;
3699 		}
3700 	} else
3701 		for (block = 0; block < EXT4_N_BLOCKS; block++)
3702 			raw_inode->i_block[block] = ei->i_data[block];
3703 
3704 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3705 	if (ei->i_extra_isize) {
3706 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3707 			raw_inode->i_version_hi =
3708 			cpu_to_le32(inode->i_version >> 32);
3709 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3710 	}
3711 
3712 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3713 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
3714 	if (!err)
3715 		err = rc;
3716 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
3717 
3718 	ext4_update_inode_fsync_trans(handle, inode, 0);
3719 out_brelse:
3720 	brelse(bh);
3721 	ext4_std_error(inode->i_sb, err);
3722 	return err;
3723 }
3724 
3725 /*
3726  * ext4_write_inode()
3727  *
3728  * We are called from a few places:
3729  *
3730  * - Within generic_file_write() for O_SYNC files.
3731  *   Here, there will be no transaction running. We wait for any running
3732  *   trasnaction to commit.
3733  *
3734  * - Within sys_sync(), kupdate and such.
3735  *   We wait on commit, if tol to.
3736  *
3737  * - Within prune_icache() (PF_MEMALLOC == true)
3738  *   Here we simply return.  We can't afford to block kswapd on the
3739  *   journal commit.
3740  *
3741  * In all cases it is actually safe for us to return without doing anything,
3742  * because the inode has been copied into a raw inode buffer in
3743  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3744  * knfsd.
3745  *
3746  * Note that we are absolutely dependent upon all inode dirtiers doing the
3747  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3748  * which we are interested.
3749  *
3750  * It would be a bug for them to not do this.  The code:
3751  *
3752  *	mark_inode_dirty(inode)
3753  *	stuff();
3754  *	inode->i_size = expr;
3755  *
3756  * is in error because a kswapd-driven write_inode() could occur while
3757  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3758  * will no longer be on the superblock's dirty inode list.
3759  */
3760 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
3761 {
3762 	int err;
3763 
3764 	if (current->flags & PF_MEMALLOC)
3765 		return 0;
3766 
3767 	if (EXT4_SB(inode->i_sb)->s_journal) {
3768 		if (ext4_journal_current_handle()) {
3769 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3770 			dump_stack();
3771 			return -EIO;
3772 		}
3773 
3774 		if (wbc->sync_mode != WB_SYNC_ALL)
3775 			return 0;
3776 
3777 		err = ext4_force_commit(inode->i_sb);
3778 	} else {
3779 		struct ext4_iloc iloc;
3780 
3781 		err = __ext4_get_inode_loc(inode, &iloc, 0);
3782 		if (err)
3783 			return err;
3784 		if (wbc->sync_mode == WB_SYNC_ALL)
3785 			sync_dirty_buffer(iloc.bh);
3786 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
3787 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
3788 					 "IO error syncing inode");
3789 			err = -EIO;
3790 		}
3791 		brelse(iloc.bh);
3792 	}
3793 	return err;
3794 }
3795 
3796 /*
3797  * ext4_setattr()
3798  *
3799  * Called from notify_change.
3800  *
3801  * We want to trap VFS attempts to truncate the file as soon as
3802  * possible.  In particular, we want to make sure that when the VFS
3803  * shrinks i_size, we put the inode on the orphan list and modify
3804  * i_disksize immediately, so that during the subsequent flushing of
3805  * dirty pages and freeing of disk blocks, we can guarantee that any
3806  * commit will leave the blocks being flushed in an unused state on
3807  * disk.  (On recovery, the inode will get truncated and the blocks will
3808  * be freed, so we have a strong guarantee that no future commit will
3809  * leave these blocks visible to the user.)
3810  *
3811  * Another thing we have to assure is that if we are in ordered mode
3812  * and inode is still attached to the committing transaction, we must
3813  * we start writeout of all the dirty pages which are being truncated.
3814  * This way we are sure that all the data written in the previous
3815  * transaction are already on disk (truncate waits for pages under
3816  * writeback).
3817  *
3818  * Called with inode->i_mutex down.
3819  */
3820 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3821 {
3822 	struct inode *inode = dentry->d_inode;
3823 	int error, rc = 0;
3824 	int orphan = 0;
3825 	const unsigned int ia_valid = attr->ia_valid;
3826 
3827 	error = inode_change_ok(inode, attr);
3828 	if (error)
3829 		return error;
3830 
3831 	if (is_quota_modification(inode, attr))
3832 		dquot_initialize(inode);
3833 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3834 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3835 		handle_t *handle;
3836 
3837 		/* (user+group)*(old+new) structure, inode write (sb,
3838 		 * inode block, ? - but truncate inode update has it) */
3839 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3840 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
3841 		if (IS_ERR(handle)) {
3842 			error = PTR_ERR(handle);
3843 			goto err_out;
3844 		}
3845 		error = dquot_transfer(inode, attr);
3846 		if (error) {
3847 			ext4_journal_stop(handle);
3848 			return error;
3849 		}
3850 		/* Update corresponding info in inode so that everything is in
3851 		 * one transaction */
3852 		if (attr->ia_valid & ATTR_UID)
3853 			inode->i_uid = attr->ia_uid;
3854 		if (attr->ia_valid & ATTR_GID)
3855 			inode->i_gid = attr->ia_gid;
3856 		error = ext4_mark_inode_dirty(handle, inode);
3857 		ext4_journal_stop(handle);
3858 	}
3859 
3860 	if (attr->ia_valid & ATTR_SIZE) {
3861 		inode_dio_wait(inode);
3862 
3863 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3864 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3865 
3866 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
3867 				return -EFBIG;
3868 		}
3869 	}
3870 
3871 	if (S_ISREG(inode->i_mode) &&
3872 	    attr->ia_valid & ATTR_SIZE &&
3873 	    (attr->ia_size < inode->i_size)) {
3874 		handle_t *handle;
3875 
3876 		handle = ext4_journal_start(inode, 3);
3877 		if (IS_ERR(handle)) {
3878 			error = PTR_ERR(handle);
3879 			goto err_out;
3880 		}
3881 		if (ext4_handle_valid(handle)) {
3882 			error = ext4_orphan_add(handle, inode);
3883 			orphan = 1;
3884 		}
3885 		EXT4_I(inode)->i_disksize = attr->ia_size;
3886 		rc = ext4_mark_inode_dirty(handle, inode);
3887 		if (!error)
3888 			error = rc;
3889 		ext4_journal_stop(handle);
3890 
3891 		if (ext4_should_order_data(inode)) {
3892 			error = ext4_begin_ordered_truncate(inode,
3893 							    attr->ia_size);
3894 			if (error) {
3895 				/* Do as much error cleanup as possible */
3896 				handle = ext4_journal_start(inode, 3);
3897 				if (IS_ERR(handle)) {
3898 					ext4_orphan_del(NULL, inode);
3899 					goto err_out;
3900 				}
3901 				ext4_orphan_del(handle, inode);
3902 				orphan = 0;
3903 				ext4_journal_stop(handle);
3904 				goto err_out;
3905 			}
3906 		}
3907 	}
3908 
3909 	if (attr->ia_valid & ATTR_SIZE) {
3910 		if (attr->ia_size != i_size_read(inode)) {
3911 			truncate_setsize(inode, attr->ia_size);
3912 			ext4_truncate(inode);
3913 		} else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3914 			ext4_truncate(inode);
3915 	}
3916 
3917 	if (!rc) {
3918 		setattr_copy(inode, attr);
3919 		mark_inode_dirty(inode);
3920 	}
3921 
3922 	/*
3923 	 * If the call to ext4_truncate failed to get a transaction handle at
3924 	 * all, we need to clean up the in-core orphan list manually.
3925 	 */
3926 	if (orphan && inode->i_nlink)
3927 		ext4_orphan_del(NULL, inode);
3928 
3929 	if (!rc && (ia_valid & ATTR_MODE))
3930 		rc = ext4_acl_chmod(inode);
3931 
3932 err_out:
3933 	ext4_std_error(inode->i_sb, error);
3934 	if (!error)
3935 		error = rc;
3936 	return error;
3937 }
3938 
3939 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
3940 		 struct kstat *stat)
3941 {
3942 	struct inode *inode;
3943 	unsigned long delalloc_blocks;
3944 
3945 	inode = dentry->d_inode;
3946 	generic_fillattr(inode, stat);
3947 
3948 	/*
3949 	 * We can't update i_blocks if the block allocation is delayed
3950 	 * otherwise in the case of system crash before the real block
3951 	 * allocation is done, we will have i_blocks inconsistent with
3952 	 * on-disk file blocks.
3953 	 * We always keep i_blocks updated together with real
3954 	 * allocation. But to not confuse with user, stat
3955 	 * will return the blocks that include the delayed allocation
3956 	 * blocks for this file.
3957 	 */
3958 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
3959 
3960 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
3961 	return 0;
3962 }
3963 
3964 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
3965 {
3966 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3967 		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
3968 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
3969 }
3970 
3971 /*
3972  * Account for index blocks, block groups bitmaps and block group
3973  * descriptor blocks if modify datablocks and index blocks
3974  * worse case, the indexs blocks spread over different block groups
3975  *
3976  * If datablocks are discontiguous, they are possible to spread over
3977  * different block groups too. If they are contiuguous, with flexbg,
3978  * they could still across block group boundary.
3979  *
3980  * Also account for superblock, inode, quota and xattr blocks
3981  */
3982 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
3983 {
3984 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
3985 	int gdpblocks;
3986 	int idxblocks;
3987 	int ret = 0;
3988 
3989 	/*
3990 	 * How many index blocks need to touch to modify nrblocks?
3991 	 * The "Chunk" flag indicating whether the nrblocks is
3992 	 * physically contiguous on disk
3993 	 *
3994 	 * For Direct IO and fallocate, they calls get_block to allocate
3995 	 * one single extent at a time, so they could set the "Chunk" flag
3996 	 */
3997 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
3998 
3999 	ret = idxblocks;
4000 
4001 	/*
4002 	 * Now let's see how many group bitmaps and group descriptors need
4003 	 * to account
4004 	 */
4005 	groups = idxblocks;
4006 	if (chunk)
4007 		groups += 1;
4008 	else
4009 		groups += nrblocks;
4010 
4011 	gdpblocks = groups;
4012 	if (groups > ngroups)
4013 		groups = ngroups;
4014 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4015 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4016 
4017 	/* bitmaps and block group descriptor blocks */
4018 	ret += groups + gdpblocks;
4019 
4020 	/* Blocks for super block, inode, quota and xattr blocks */
4021 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4022 
4023 	return ret;
4024 }
4025 
4026 /*
4027  * Calculate the total number of credits to reserve to fit
4028  * the modification of a single pages into a single transaction,
4029  * which may include multiple chunks of block allocations.
4030  *
4031  * This could be called via ext4_write_begin()
4032  *
4033  * We need to consider the worse case, when
4034  * one new block per extent.
4035  */
4036 int ext4_writepage_trans_blocks(struct inode *inode)
4037 {
4038 	int bpp = ext4_journal_blocks_per_page(inode);
4039 	int ret;
4040 
4041 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4042 
4043 	/* Account for data blocks for journalled mode */
4044 	if (ext4_should_journal_data(inode))
4045 		ret += bpp;
4046 	return ret;
4047 }
4048 
4049 /*
4050  * Calculate the journal credits for a chunk of data modification.
4051  *
4052  * This is called from DIO, fallocate or whoever calling
4053  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4054  *
4055  * journal buffers for data blocks are not included here, as DIO
4056  * and fallocate do no need to journal data buffers.
4057  */
4058 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4059 {
4060 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4061 }
4062 
4063 /*
4064  * The caller must have previously called ext4_reserve_inode_write().
4065  * Give this, we know that the caller already has write access to iloc->bh.
4066  */
4067 int ext4_mark_iloc_dirty(handle_t *handle,
4068 			 struct inode *inode, struct ext4_iloc *iloc)
4069 {
4070 	int err = 0;
4071 
4072 	if (test_opt(inode->i_sb, I_VERSION))
4073 		inode_inc_iversion(inode);
4074 
4075 	/* the do_update_inode consumes one bh->b_count */
4076 	get_bh(iloc->bh);
4077 
4078 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4079 	err = ext4_do_update_inode(handle, inode, iloc);
4080 	put_bh(iloc->bh);
4081 	return err;
4082 }
4083 
4084 /*
4085  * On success, We end up with an outstanding reference count against
4086  * iloc->bh.  This _must_ be cleaned up later.
4087  */
4088 
4089 int
4090 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4091 			 struct ext4_iloc *iloc)
4092 {
4093 	int err;
4094 
4095 	err = ext4_get_inode_loc(inode, iloc);
4096 	if (!err) {
4097 		BUFFER_TRACE(iloc->bh, "get_write_access");
4098 		err = ext4_journal_get_write_access(handle, iloc->bh);
4099 		if (err) {
4100 			brelse(iloc->bh);
4101 			iloc->bh = NULL;
4102 		}
4103 	}
4104 	ext4_std_error(inode->i_sb, err);
4105 	return err;
4106 }
4107 
4108 /*
4109  * Expand an inode by new_extra_isize bytes.
4110  * Returns 0 on success or negative error number on failure.
4111  */
4112 static int ext4_expand_extra_isize(struct inode *inode,
4113 				   unsigned int new_extra_isize,
4114 				   struct ext4_iloc iloc,
4115 				   handle_t *handle)
4116 {
4117 	struct ext4_inode *raw_inode;
4118 	struct ext4_xattr_ibody_header *header;
4119 
4120 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4121 		return 0;
4122 
4123 	raw_inode = ext4_raw_inode(&iloc);
4124 
4125 	header = IHDR(inode, raw_inode);
4126 
4127 	/* No extended attributes present */
4128 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4129 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4130 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4131 			new_extra_isize);
4132 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4133 		return 0;
4134 	}
4135 
4136 	/* try to expand with EAs present */
4137 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4138 					  raw_inode, handle);
4139 }
4140 
4141 /*
4142  * What we do here is to mark the in-core inode as clean with respect to inode
4143  * dirtiness (it may still be data-dirty).
4144  * This means that the in-core inode may be reaped by prune_icache
4145  * without having to perform any I/O.  This is a very good thing,
4146  * because *any* task may call prune_icache - even ones which
4147  * have a transaction open against a different journal.
4148  *
4149  * Is this cheating?  Not really.  Sure, we haven't written the
4150  * inode out, but prune_icache isn't a user-visible syncing function.
4151  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4152  * we start and wait on commits.
4153  *
4154  * Is this efficient/effective?  Well, we're being nice to the system
4155  * by cleaning up our inodes proactively so they can be reaped
4156  * without I/O.  But we are potentially leaving up to five seconds'
4157  * worth of inodes floating about which prune_icache wants us to
4158  * write out.  One way to fix that would be to get prune_icache()
4159  * to do a write_super() to free up some memory.  It has the desired
4160  * effect.
4161  */
4162 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4163 {
4164 	struct ext4_iloc iloc;
4165 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4166 	static unsigned int mnt_count;
4167 	int err, ret;
4168 
4169 	might_sleep();
4170 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4171 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4172 	if (ext4_handle_valid(handle) &&
4173 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4174 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4175 		/*
4176 		 * We need extra buffer credits since we may write into EA block
4177 		 * with this same handle. If journal_extend fails, then it will
4178 		 * only result in a minor loss of functionality for that inode.
4179 		 * If this is felt to be critical, then e2fsck should be run to
4180 		 * force a large enough s_min_extra_isize.
4181 		 */
4182 		if ((jbd2_journal_extend(handle,
4183 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4184 			ret = ext4_expand_extra_isize(inode,
4185 						      sbi->s_want_extra_isize,
4186 						      iloc, handle);
4187 			if (ret) {
4188 				ext4_set_inode_state(inode,
4189 						     EXT4_STATE_NO_EXPAND);
4190 				if (mnt_count !=
4191 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4192 					ext4_warning(inode->i_sb,
4193 					"Unable to expand inode %lu. Delete"
4194 					" some EAs or run e2fsck.",
4195 					inode->i_ino);
4196 					mnt_count =
4197 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4198 				}
4199 			}
4200 		}
4201 	}
4202 	if (!err)
4203 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4204 	return err;
4205 }
4206 
4207 /*
4208  * ext4_dirty_inode() is called from __mark_inode_dirty()
4209  *
4210  * We're really interested in the case where a file is being extended.
4211  * i_size has been changed by generic_commit_write() and we thus need
4212  * to include the updated inode in the current transaction.
4213  *
4214  * Also, dquot_alloc_block() will always dirty the inode when blocks
4215  * are allocated to the file.
4216  *
4217  * If the inode is marked synchronous, we don't honour that here - doing
4218  * so would cause a commit on atime updates, which we don't bother doing.
4219  * We handle synchronous inodes at the highest possible level.
4220  */
4221 void ext4_dirty_inode(struct inode *inode, int flags)
4222 {
4223 	handle_t *handle;
4224 
4225 	handle = ext4_journal_start(inode, 2);
4226 	if (IS_ERR(handle))
4227 		goto out;
4228 
4229 	ext4_mark_inode_dirty(handle, inode);
4230 
4231 	ext4_journal_stop(handle);
4232 out:
4233 	return;
4234 }
4235 
4236 #if 0
4237 /*
4238  * Bind an inode's backing buffer_head into this transaction, to prevent
4239  * it from being flushed to disk early.  Unlike
4240  * ext4_reserve_inode_write, this leaves behind no bh reference and
4241  * returns no iloc structure, so the caller needs to repeat the iloc
4242  * lookup to mark the inode dirty later.
4243  */
4244 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4245 {
4246 	struct ext4_iloc iloc;
4247 
4248 	int err = 0;
4249 	if (handle) {
4250 		err = ext4_get_inode_loc(inode, &iloc);
4251 		if (!err) {
4252 			BUFFER_TRACE(iloc.bh, "get_write_access");
4253 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4254 			if (!err)
4255 				err = ext4_handle_dirty_metadata(handle,
4256 								 NULL,
4257 								 iloc.bh);
4258 			brelse(iloc.bh);
4259 		}
4260 	}
4261 	ext4_std_error(inode->i_sb, err);
4262 	return err;
4263 }
4264 #endif
4265 
4266 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4267 {
4268 	journal_t *journal;
4269 	handle_t *handle;
4270 	int err;
4271 
4272 	/*
4273 	 * We have to be very careful here: changing a data block's
4274 	 * journaling status dynamically is dangerous.  If we write a
4275 	 * data block to the journal, change the status and then delete
4276 	 * that block, we risk forgetting to revoke the old log record
4277 	 * from the journal and so a subsequent replay can corrupt data.
4278 	 * So, first we make sure that the journal is empty and that
4279 	 * nobody is changing anything.
4280 	 */
4281 
4282 	journal = EXT4_JOURNAL(inode);
4283 	if (!journal)
4284 		return 0;
4285 	if (is_journal_aborted(journal))
4286 		return -EROFS;
4287 
4288 	jbd2_journal_lock_updates(journal);
4289 	jbd2_journal_flush(journal);
4290 
4291 	/*
4292 	 * OK, there are no updates running now, and all cached data is
4293 	 * synced to disk.  We are now in a completely consistent state
4294 	 * which doesn't have anything in the journal, and we know that
4295 	 * no filesystem updates are running, so it is safe to modify
4296 	 * the inode's in-core data-journaling state flag now.
4297 	 */
4298 
4299 	if (val)
4300 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4301 	else
4302 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4303 	ext4_set_aops(inode);
4304 
4305 	jbd2_journal_unlock_updates(journal);
4306 
4307 	/* Finally we can mark the inode as dirty. */
4308 
4309 	handle = ext4_journal_start(inode, 1);
4310 	if (IS_ERR(handle))
4311 		return PTR_ERR(handle);
4312 
4313 	err = ext4_mark_inode_dirty(handle, inode);
4314 	ext4_handle_sync(handle);
4315 	ext4_journal_stop(handle);
4316 	ext4_std_error(inode->i_sb, err);
4317 
4318 	return err;
4319 }
4320 
4321 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4322 {
4323 	return !buffer_mapped(bh);
4324 }
4325 
4326 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4327 {
4328 	struct page *page = vmf->page;
4329 	loff_t size;
4330 	unsigned long len;
4331 	int ret;
4332 	struct file *file = vma->vm_file;
4333 	struct inode *inode = file->f_path.dentry->d_inode;
4334 	struct address_space *mapping = inode->i_mapping;
4335 	handle_t *handle;
4336 	get_block_t *get_block;
4337 	int retries = 0;
4338 
4339 	/*
4340 	 * This check is racy but catches the common case. We rely on
4341 	 * __block_page_mkwrite() to do a reliable check.
4342 	 */
4343 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4344 	/* Delalloc case is easy... */
4345 	if (test_opt(inode->i_sb, DELALLOC) &&
4346 	    !ext4_should_journal_data(inode) &&
4347 	    !ext4_nonda_switch(inode->i_sb)) {
4348 		do {
4349 			ret = __block_page_mkwrite(vma, vmf,
4350 						   ext4_da_get_block_prep);
4351 		} while (ret == -ENOSPC &&
4352 		       ext4_should_retry_alloc(inode->i_sb, &retries));
4353 		goto out_ret;
4354 	}
4355 
4356 	lock_page(page);
4357 	size = i_size_read(inode);
4358 	/* Page got truncated from under us? */
4359 	if (page->mapping != mapping || page_offset(page) > size) {
4360 		unlock_page(page);
4361 		ret = VM_FAULT_NOPAGE;
4362 		goto out;
4363 	}
4364 
4365 	if (page->index == size >> PAGE_CACHE_SHIFT)
4366 		len = size & ~PAGE_CACHE_MASK;
4367 	else
4368 		len = PAGE_CACHE_SIZE;
4369 	/*
4370 	 * Return if we have all the buffers mapped. This avoids the need to do
4371 	 * journal_start/journal_stop which can block and take a long time
4372 	 */
4373 	if (page_has_buffers(page)) {
4374 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4375 					ext4_bh_unmapped)) {
4376 			/* Wait so that we don't change page under IO */
4377 			wait_on_page_writeback(page);
4378 			ret = VM_FAULT_LOCKED;
4379 			goto out;
4380 		}
4381 	}
4382 	unlock_page(page);
4383 	/* OK, we need to fill the hole... */
4384 	if (ext4_should_dioread_nolock(inode))
4385 		get_block = ext4_get_block_write;
4386 	else
4387 		get_block = ext4_get_block;
4388 retry_alloc:
4389 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4390 	if (IS_ERR(handle)) {
4391 		ret = VM_FAULT_SIGBUS;
4392 		goto out;
4393 	}
4394 	ret = __block_page_mkwrite(vma, vmf, get_block);
4395 	if (!ret && ext4_should_journal_data(inode)) {
4396 		if (walk_page_buffers(handle, page_buffers(page), 0,
4397 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4398 			unlock_page(page);
4399 			ret = VM_FAULT_SIGBUS;
4400 			goto out;
4401 		}
4402 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4403 	}
4404 	ext4_journal_stop(handle);
4405 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4406 		goto retry_alloc;
4407 out_ret:
4408 	ret = block_page_mkwrite_return(ret);
4409 out:
4410 	return ret;
4411 }
4412