1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/module.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/jbd2.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "ext4_extents.h" 46 #include "truncate.h" 47 48 #include <trace/events/ext4.h> 49 50 #define MPAGE_DA_EXTENT_TAIL 0x01 51 52 static inline int ext4_begin_ordered_truncate(struct inode *inode, 53 loff_t new_size) 54 { 55 trace_ext4_begin_ordered_truncate(inode, new_size); 56 /* 57 * If jinode is zero, then we never opened the file for 58 * writing, so there's no need to call 59 * jbd2_journal_begin_ordered_truncate() since there's no 60 * outstanding writes we need to flush. 61 */ 62 if (!EXT4_I(inode)->jinode) 63 return 0; 64 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 65 EXT4_I(inode)->jinode, 66 new_size); 67 } 68 69 static void ext4_invalidatepage(struct page *page, unsigned long offset); 70 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 71 struct buffer_head *bh_result, int create); 72 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 73 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 74 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 75 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 76 77 /* 78 * Test whether an inode is a fast symlink. 79 */ 80 static int ext4_inode_is_fast_symlink(struct inode *inode) 81 { 82 int ea_blocks = EXT4_I(inode)->i_file_acl ? 83 (inode->i_sb->s_blocksize >> 9) : 0; 84 85 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 86 } 87 88 /* 89 * Restart the transaction associated with *handle. This does a commit, 90 * so before we call here everything must be consistently dirtied against 91 * this transaction. 92 */ 93 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 94 int nblocks) 95 { 96 int ret; 97 98 /* 99 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 100 * moment, get_block can be called only for blocks inside i_size since 101 * page cache has been already dropped and writes are blocked by 102 * i_mutex. So we can safely drop the i_data_sem here. 103 */ 104 BUG_ON(EXT4_JOURNAL(inode) == NULL); 105 jbd_debug(2, "restarting handle %p\n", handle); 106 up_write(&EXT4_I(inode)->i_data_sem); 107 ret = ext4_journal_restart(handle, nblocks); 108 down_write(&EXT4_I(inode)->i_data_sem); 109 ext4_discard_preallocations(inode); 110 111 return ret; 112 } 113 114 /* 115 * Called at the last iput() if i_nlink is zero. 116 */ 117 void ext4_evict_inode(struct inode *inode) 118 { 119 handle_t *handle; 120 int err; 121 122 trace_ext4_evict_inode(inode); 123 if (inode->i_nlink) { 124 /* 125 * When journalling data dirty buffers are tracked only in the 126 * journal. So although mm thinks everything is clean and 127 * ready for reaping the inode might still have some pages to 128 * write in the running transaction or waiting to be 129 * checkpointed. Thus calling jbd2_journal_invalidatepage() 130 * (via truncate_inode_pages()) to discard these buffers can 131 * cause data loss. Also even if we did not discard these 132 * buffers, we would have no way to find them after the inode 133 * is reaped and thus user could see stale data if he tries to 134 * read them before the transaction is checkpointed. So be 135 * careful and force everything to disk here... We use 136 * ei->i_datasync_tid to store the newest transaction 137 * containing inode's data. 138 * 139 * Note that directories do not have this problem because they 140 * don't use page cache. 141 */ 142 if (ext4_should_journal_data(inode) && 143 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) { 144 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 145 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 146 147 jbd2_log_start_commit(journal, commit_tid); 148 jbd2_log_wait_commit(journal, commit_tid); 149 filemap_write_and_wait(&inode->i_data); 150 } 151 truncate_inode_pages(&inode->i_data, 0); 152 goto no_delete; 153 } 154 155 if (!is_bad_inode(inode)) 156 dquot_initialize(inode); 157 158 if (ext4_should_order_data(inode)) 159 ext4_begin_ordered_truncate(inode, 0); 160 truncate_inode_pages(&inode->i_data, 0); 161 162 if (is_bad_inode(inode)) 163 goto no_delete; 164 165 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3); 166 if (IS_ERR(handle)) { 167 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 168 /* 169 * If we're going to skip the normal cleanup, we still need to 170 * make sure that the in-core orphan linked list is properly 171 * cleaned up. 172 */ 173 ext4_orphan_del(NULL, inode); 174 goto no_delete; 175 } 176 177 if (IS_SYNC(inode)) 178 ext4_handle_sync(handle); 179 inode->i_size = 0; 180 err = ext4_mark_inode_dirty(handle, inode); 181 if (err) { 182 ext4_warning(inode->i_sb, 183 "couldn't mark inode dirty (err %d)", err); 184 goto stop_handle; 185 } 186 if (inode->i_blocks) 187 ext4_truncate(inode); 188 189 /* 190 * ext4_ext_truncate() doesn't reserve any slop when it 191 * restarts journal transactions; therefore there may not be 192 * enough credits left in the handle to remove the inode from 193 * the orphan list and set the dtime field. 194 */ 195 if (!ext4_handle_has_enough_credits(handle, 3)) { 196 err = ext4_journal_extend(handle, 3); 197 if (err > 0) 198 err = ext4_journal_restart(handle, 3); 199 if (err != 0) { 200 ext4_warning(inode->i_sb, 201 "couldn't extend journal (err %d)", err); 202 stop_handle: 203 ext4_journal_stop(handle); 204 ext4_orphan_del(NULL, inode); 205 goto no_delete; 206 } 207 } 208 209 /* 210 * Kill off the orphan record which ext4_truncate created. 211 * AKPM: I think this can be inside the above `if'. 212 * Note that ext4_orphan_del() has to be able to cope with the 213 * deletion of a non-existent orphan - this is because we don't 214 * know if ext4_truncate() actually created an orphan record. 215 * (Well, we could do this if we need to, but heck - it works) 216 */ 217 ext4_orphan_del(handle, inode); 218 EXT4_I(inode)->i_dtime = get_seconds(); 219 220 /* 221 * One subtle ordering requirement: if anything has gone wrong 222 * (transaction abort, IO errors, whatever), then we can still 223 * do these next steps (the fs will already have been marked as 224 * having errors), but we can't free the inode if the mark_dirty 225 * fails. 226 */ 227 if (ext4_mark_inode_dirty(handle, inode)) 228 /* If that failed, just do the required in-core inode clear. */ 229 ext4_clear_inode(inode); 230 else 231 ext4_free_inode(handle, inode); 232 ext4_journal_stop(handle); 233 return; 234 no_delete: 235 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 236 } 237 238 #ifdef CONFIG_QUOTA 239 qsize_t *ext4_get_reserved_space(struct inode *inode) 240 { 241 return &EXT4_I(inode)->i_reserved_quota; 242 } 243 #endif 244 245 /* 246 * Calculate the number of metadata blocks need to reserve 247 * to allocate a block located at @lblock 248 */ 249 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 250 { 251 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 252 return ext4_ext_calc_metadata_amount(inode, lblock); 253 254 return ext4_ind_calc_metadata_amount(inode, lblock); 255 } 256 257 /* 258 * Called with i_data_sem down, which is important since we can call 259 * ext4_discard_preallocations() from here. 260 */ 261 void ext4_da_update_reserve_space(struct inode *inode, 262 int used, int quota_claim) 263 { 264 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 265 struct ext4_inode_info *ei = EXT4_I(inode); 266 267 spin_lock(&ei->i_block_reservation_lock); 268 trace_ext4_da_update_reserve_space(inode, used); 269 if (unlikely(used > ei->i_reserved_data_blocks)) { 270 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d " 271 "with only %d reserved data blocks\n", 272 __func__, inode->i_ino, used, 273 ei->i_reserved_data_blocks); 274 WARN_ON(1); 275 used = ei->i_reserved_data_blocks; 276 } 277 278 /* Update per-inode reservations */ 279 ei->i_reserved_data_blocks -= used; 280 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 281 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 282 used + ei->i_allocated_meta_blocks); 283 ei->i_allocated_meta_blocks = 0; 284 285 if (ei->i_reserved_data_blocks == 0) { 286 /* 287 * We can release all of the reserved metadata blocks 288 * only when we have written all of the delayed 289 * allocation blocks. 290 */ 291 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 292 ei->i_reserved_meta_blocks); 293 ei->i_reserved_meta_blocks = 0; 294 ei->i_da_metadata_calc_len = 0; 295 } 296 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 297 298 /* Update quota subsystem for data blocks */ 299 if (quota_claim) 300 dquot_claim_block(inode, used); 301 else { 302 /* 303 * We did fallocate with an offset that is already delayed 304 * allocated. So on delayed allocated writeback we should 305 * not re-claim the quota for fallocated blocks. 306 */ 307 dquot_release_reservation_block(inode, used); 308 } 309 310 /* 311 * If we have done all the pending block allocations and if 312 * there aren't any writers on the inode, we can discard the 313 * inode's preallocations. 314 */ 315 if ((ei->i_reserved_data_blocks == 0) && 316 (atomic_read(&inode->i_writecount) == 0)) 317 ext4_discard_preallocations(inode); 318 } 319 320 static int __check_block_validity(struct inode *inode, const char *func, 321 unsigned int line, 322 struct ext4_map_blocks *map) 323 { 324 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 325 map->m_len)) { 326 ext4_error_inode(inode, func, line, map->m_pblk, 327 "lblock %lu mapped to illegal pblock " 328 "(length %d)", (unsigned long) map->m_lblk, 329 map->m_len); 330 return -EIO; 331 } 332 return 0; 333 } 334 335 #define check_block_validity(inode, map) \ 336 __check_block_validity((inode), __func__, __LINE__, (map)) 337 338 /* 339 * Return the number of contiguous dirty pages in a given inode 340 * starting at page frame idx. 341 */ 342 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 343 unsigned int max_pages) 344 { 345 struct address_space *mapping = inode->i_mapping; 346 pgoff_t index; 347 struct pagevec pvec; 348 pgoff_t num = 0; 349 int i, nr_pages, done = 0; 350 351 if (max_pages == 0) 352 return 0; 353 pagevec_init(&pvec, 0); 354 while (!done) { 355 index = idx; 356 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 357 PAGECACHE_TAG_DIRTY, 358 (pgoff_t)PAGEVEC_SIZE); 359 if (nr_pages == 0) 360 break; 361 for (i = 0; i < nr_pages; i++) { 362 struct page *page = pvec.pages[i]; 363 struct buffer_head *bh, *head; 364 365 lock_page(page); 366 if (unlikely(page->mapping != mapping) || 367 !PageDirty(page) || 368 PageWriteback(page) || 369 page->index != idx) { 370 done = 1; 371 unlock_page(page); 372 break; 373 } 374 if (page_has_buffers(page)) { 375 bh = head = page_buffers(page); 376 do { 377 if (!buffer_delay(bh) && 378 !buffer_unwritten(bh)) 379 done = 1; 380 bh = bh->b_this_page; 381 } while (!done && (bh != head)); 382 } 383 unlock_page(page); 384 if (done) 385 break; 386 idx++; 387 num++; 388 if (num >= max_pages) { 389 done = 1; 390 break; 391 } 392 } 393 pagevec_release(&pvec); 394 } 395 return num; 396 } 397 398 /* 399 * The ext4_map_blocks() function tries to look up the requested blocks, 400 * and returns if the blocks are already mapped. 401 * 402 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 403 * and store the allocated blocks in the result buffer head and mark it 404 * mapped. 405 * 406 * If file type is extents based, it will call ext4_ext_map_blocks(), 407 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 408 * based files 409 * 410 * On success, it returns the number of blocks being mapped or allocate. 411 * if create==0 and the blocks are pre-allocated and uninitialized block, 412 * the result buffer head is unmapped. If the create ==1, it will make sure 413 * the buffer head is mapped. 414 * 415 * It returns 0 if plain look up failed (blocks have not been allocated), in 416 * that casem, buffer head is unmapped 417 * 418 * It returns the error in case of allocation failure. 419 */ 420 int ext4_map_blocks(handle_t *handle, struct inode *inode, 421 struct ext4_map_blocks *map, int flags) 422 { 423 int retval; 424 425 map->m_flags = 0; 426 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 427 "logical block %lu\n", inode->i_ino, flags, map->m_len, 428 (unsigned long) map->m_lblk); 429 /* 430 * Try to see if we can get the block without requesting a new 431 * file system block. 432 */ 433 down_read((&EXT4_I(inode)->i_data_sem)); 434 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 435 retval = ext4_ext_map_blocks(handle, inode, map, 0); 436 } else { 437 retval = ext4_ind_map_blocks(handle, inode, map, 0); 438 } 439 up_read((&EXT4_I(inode)->i_data_sem)); 440 441 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 442 int ret = check_block_validity(inode, map); 443 if (ret != 0) 444 return ret; 445 } 446 447 /* If it is only a block(s) look up */ 448 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 449 return retval; 450 451 /* 452 * Returns if the blocks have already allocated 453 * 454 * Note that if blocks have been preallocated 455 * ext4_ext_get_block() returns th create = 0 456 * with buffer head unmapped. 457 */ 458 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 459 return retval; 460 461 /* 462 * When we call get_blocks without the create flag, the 463 * BH_Unwritten flag could have gotten set if the blocks 464 * requested were part of a uninitialized extent. We need to 465 * clear this flag now that we are committed to convert all or 466 * part of the uninitialized extent to be an initialized 467 * extent. This is because we need to avoid the combination 468 * of BH_Unwritten and BH_Mapped flags being simultaneously 469 * set on the buffer_head. 470 */ 471 map->m_flags &= ~EXT4_MAP_UNWRITTEN; 472 473 /* 474 * New blocks allocate and/or writing to uninitialized extent 475 * will possibly result in updating i_data, so we take 476 * the write lock of i_data_sem, and call get_blocks() 477 * with create == 1 flag. 478 */ 479 down_write((&EXT4_I(inode)->i_data_sem)); 480 481 /* 482 * if the caller is from delayed allocation writeout path 483 * we have already reserved fs blocks for allocation 484 * let the underlying get_block() function know to 485 * avoid double accounting 486 */ 487 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 488 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 489 /* 490 * We need to check for EXT4 here because migrate 491 * could have changed the inode type in between 492 */ 493 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 494 retval = ext4_ext_map_blocks(handle, inode, map, flags); 495 } else { 496 retval = ext4_ind_map_blocks(handle, inode, map, flags); 497 498 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 499 /* 500 * We allocated new blocks which will result in 501 * i_data's format changing. Force the migrate 502 * to fail by clearing migrate flags 503 */ 504 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 505 } 506 507 /* 508 * Update reserved blocks/metadata blocks after successful 509 * block allocation which had been deferred till now. We don't 510 * support fallocate for non extent files. So we can update 511 * reserve space here. 512 */ 513 if ((retval > 0) && 514 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 515 ext4_da_update_reserve_space(inode, retval, 1); 516 } 517 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 518 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 519 520 up_write((&EXT4_I(inode)->i_data_sem)); 521 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 522 int ret = check_block_validity(inode, map); 523 if (ret != 0) 524 return ret; 525 } 526 return retval; 527 } 528 529 /* Maximum number of blocks we map for direct IO at once. */ 530 #define DIO_MAX_BLOCKS 4096 531 532 static int _ext4_get_block(struct inode *inode, sector_t iblock, 533 struct buffer_head *bh, int flags) 534 { 535 handle_t *handle = ext4_journal_current_handle(); 536 struct ext4_map_blocks map; 537 int ret = 0, started = 0; 538 int dio_credits; 539 540 map.m_lblk = iblock; 541 map.m_len = bh->b_size >> inode->i_blkbits; 542 543 if (flags && !handle) { 544 /* Direct IO write... */ 545 if (map.m_len > DIO_MAX_BLOCKS) 546 map.m_len = DIO_MAX_BLOCKS; 547 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 548 handle = ext4_journal_start(inode, dio_credits); 549 if (IS_ERR(handle)) { 550 ret = PTR_ERR(handle); 551 return ret; 552 } 553 started = 1; 554 } 555 556 ret = ext4_map_blocks(handle, inode, &map, flags); 557 if (ret > 0) { 558 map_bh(bh, inode->i_sb, map.m_pblk); 559 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 560 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 561 ret = 0; 562 } 563 if (started) 564 ext4_journal_stop(handle); 565 return ret; 566 } 567 568 int ext4_get_block(struct inode *inode, sector_t iblock, 569 struct buffer_head *bh, int create) 570 { 571 return _ext4_get_block(inode, iblock, bh, 572 create ? EXT4_GET_BLOCKS_CREATE : 0); 573 } 574 575 /* 576 * `handle' can be NULL if create is zero 577 */ 578 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 579 ext4_lblk_t block, int create, int *errp) 580 { 581 struct ext4_map_blocks map; 582 struct buffer_head *bh; 583 int fatal = 0, err; 584 585 J_ASSERT(handle != NULL || create == 0); 586 587 map.m_lblk = block; 588 map.m_len = 1; 589 err = ext4_map_blocks(handle, inode, &map, 590 create ? EXT4_GET_BLOCKS_CREATE : 0); 591 592 if (err < 0) 593 *errp = err; 594 if (err <= 0) 595 return NULL; 596 *errp = 0; 597 598 bh = sb_getblk(inode->i_sb, map.m_pblk); 599 if (!bh) { 600 *errp = -EIO; 601 return NULL; 602 } 603 if (map.m_flags & EXT4_MAP_NEW) { 604 J_ASSERT(create != 0); 605 J_ASSERT(handle != NULL); 606 607 /* 608 * Now that we do not always journal data, we should 609 * keep in mind whether this should always journal the 610 * new buffer as metadata. For now, regular file 611 * writes use ext4_get_block instead, so it's not a 612 * problem. 613 */ 614 lock_buffer(bh); 615 BUFFER_TRACE(bh, "call get_create_access"); 616 fatal = ext4_journal_get_create_access(handle, bh); 617 if (!fatal && !buffer_uptodate(bh)) { 618 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 619 set_buffer_uptodate(bh); 620 } 621 unlock_buffer(bh); 622 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 623 err = ext4_handle_dirty_metadata(handle, inode, bh); 624 if (!fatal) 625 fatal = err; 626 } else { 627 BUFFER_TRACE(bh, "not a new buffer"); 628 } 629 if (fatal) { 630 *errp = fatal; 631 brelse(bh); 632 bh = NULL; 633 } 634 return bh; 635 } 636 637 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 638 ext4_lblk_t block, int create, int *err) 639 { 640 struct buffer_head *bh; 641 642 bh = ext4_getblk(handle, inode, block, create, err); 643 if (!bh) 644 return bh; 645 if (buffer_uptodate(bh)) 646 return bh; 647 ll_rw_block(READ_META, 1, &bh); 648 wait_on_buffer(bh); 649 if (buffer_uptodate(bh)) 650 return bh; 651 put_bh(bh); 652 *err = -EIO; 653 return NULL; 654 } 655 656 static int walk_page_buffers(handle_t *handle, 657 struct buffer_head *head, 658 unsigned from, 659 unsigned to, 660 int *partial, 661 int (*fn)(handle_t *handle, 662 struct buffer_head *bh)) 663 { 664 struct buffer_head *bh; 665 unsigned block_start, block_end; 666 unsigned blocksize = head->b_size; 667 int err, ret = 0; 668 struct buffer_head *next; 669 670 for (bh = head, block_start = 0; 671 ret == 0 && (bh != head || !block_start); 672 block_start = block_end, bh = next) { 673 next = bh->b_this_page; 674 block_end = block_start + blocksize; 675 if (block_end <= from || block_start >= to) { 676 if (partial && !buffer_uptodate(bh)) 677 *partial = 1; 678 continue; 679 } 680 err = (*fn)(handle, bh); 681 if (!ret) 682 ret = err; 683 } 684 return ret; 685 } 686 687 /* 688 * To preserve ordering, it is essential that the hole instantiation and 689 * the data write be encapsulated in a single transaction. We cannot 690 * close off a transaction and start a new one between the ext4_get_block() 691 * and the commit_write(). So doing the jbd2_journal_start at the start of 692 * prepare_write() is the right place. 693 * 694 * Also, this function can nest inside ext4_writepage() -> 695 * block_write_full_page(). In that case, we *know* that ext4_writepage() 696 * has generated enough buffer credits to do the whole page. So we won't 697 * block on the journal in that case, which is good, because the caller may 698 * be PF_MEMALLOC. 699 * 700 * By accident, ext4 can be reentered when a transaction is open via 701 * quota file writes. If we were to commit the transaction while thus 702 * reentered, there can be a deadlock - we would be holding a quota 703 * lock, and the commit would never complete if another thread had a 704 * transaction open and was blocking on the quota lock - a ranking 705 * violation. 706 * 707 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 708 * will _not_ run commit under these circumstances because handle->h_ref 709 * is elevated. We'll still have enough credits for the tiny quotafile 710 * write. 711 */ 712 static int do_journal_get_write_access(handle_t *handle, 713 struct buffer_head *bh) 714 { 715 int dirty = buffer_dirty(bh); 716 int ret; 717 718 if (!buffer_mapped(bh) || buffer_freed(bh)) 719 return 0; 720 /* 721 * __block_write_begin() could have dirtied some buffers. Clean 722 * the dirty bit as jbd2_journal_get_write_access() could complain 723 * otherwise about fs integrity issues. Setting of the dirty bit 724 * by __block_write_begin() isn't a real problem here as we clear 725 * the bit before releasing a page lock and thus writeback cannot 726 * ever write the buffer. 727 */ 728 if (dirty) 729 clear_buffer_dirty(bh); 730 ret = ext4_journal_get_write_access(handle, bh); 731 if (!ret && dirty) 732 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 733 return ret; 734 } 735 736 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 737 struct buffer_head *bh_result, int create); 738 static int ext4_write_begin(struct file *file, struct address_space *mapping, 739 loff_t pos, unsigned len, unsigned flags, 740 struct page **pagep, void **fsdata) 741 { 742 struct inode *inode = mapping->host; 743 int ret, needed_blocks; 744 handle_t *handle; 745 int retries = 0; 746 struct page *page; 747 pgoff_t index; 748 unsigned from, to; 749 750 trace_ext4_write_begin(inode, pos, len, flags); 751 /* 752 * Reserve one block more for addition to orphan list in case 753 * we allocate blocks but write fails for some reason 754 */ 755 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 756 index = pos >> PAGE_CACHE_SHIFT; 757 from = pos & (PAGE_CACHE_SIZE - 1); 758 to = from + len; 759 760 retry: 761 handle = ext4_journal_start(inode, needed_blocks); 762 if (IS_ERR(handle)) { 763 ret = PTR_ERR(handle); 764 goto out; 765 } 766 767 /* We cannot recurse into the filesystem as the transaction is already 768 * started */ 769 flags |= AOP_FLAG_NOFS; 770 771 page = grab_cache_page_write_begin(mapping, index, flags); 772 if (!page) { 773 ext4_journal_stop(handle); 774 ret = -ENOMEM; 775 goto out; 776 } 777 *pagep = page; 778 779 if (ext4_should_dioread_nolock(inode)) 780 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 781 else 782 ret = __block_write_begin(page, pos, len, ext4_get_block); 783 784 if (!ret && ext4_should_journal_data(inode)) { 785 ret = walk_page_buffers(handle, page_buffers(page), 786 from, to, NULL, do_journal_get_write_access); 787 } 788 789 if (ret) { 790 unlock_page(page); 791 page_cache_release(page); 792 /* 793 * __block_write_begin may have instantiated a few blocks 794 * outside i_size. Trim these off again. Don't need 795 * i_size_read because we hold i_mutex. 796 * 797 * Add inode to orphan list in case we crash before 798 * truncate finishes 799 */ 800 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 801 ext4_orphan_add(handle, inode); 802 803 ext4_journal_stop(handle); 804 if (pos + len > inode->i_size) { 805 ext4_truncate_failed_write(inode); 806 /* 807 * If truncate failed early the inode might 808 * still be on the orphan list; we need to 809 * make sure the inode is removed from the 810 * orphan list in that case. 811 */ 812 if (inode->i_nlink) 813 ext4_orphan_del(NULL, inode); 814 } 815 } 816 817 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 818 goto retry; 819 out: 820 return ret; 821 } 822 823 /* For write_end() in data=journal mode */ 824 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 825 { 826 if (!buffer_mapped(bh) || buffer_freed(bh)) 827 return 0; 828 set_buffer_uptodate(bh); 829 return ext4_handle_dirty_metadata(handle, NULL, bh); 830 } 831 832 static int ext4_generic_write_end(struct file *file, 833 struct address_space *mapping, 834 loff_t pos, unsigned len, unsigned copied, 835 struct page *page, void *fsdata) 836 { 837 int i_size_changed = 0; 838 struct inode *inode = mapping->host; 839 handle_t *handle = ext4_journal_current_handle(); 840 841 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 842 843 /* 844 * No need to use i_size_read() here, the i_size 845 * cannot change under us because we hold i_mutex. 846 * 847 * But it's important to update i_size while still holding page lock: 848 * page writeout could otherwise come in and zero beyond i_size. 849 */ 850 if (pos + copied > inode->i_size) { 851 i_size_write(inode, pos + copied); 852 i_size_changed = 1; 853 } 854 855 if (pos + copied > EXT4_I(inode)->i_disksize) { 856 /* We need to mark inode dirty even if 857 * new_i_size is less that inode->i_size 858 * bu greater than i_disksize.(hint delalloc) 859 */ 860 ext4_update_i_disksize(inode, (pos + copied)); 861 i_size_changed = 1; 862 } 863 unlock_page(page); 864 page_cache_release(page); 865 866 /* 867 * Don't mark the inode dirty under page lock. First, it unnecessarily 868 * makes the holding time of page lock longer. Second, it forces lock 869 * ordering of page lock and transaction start for journaling 870 * filesystems. 871 */ 872 if (i_size_changed) 873 ext4_mark_inode_dirty(handle, inode); 874 875 return copied; 876 } 877 878 /* 879 * We need to pick up the new inode size which generic_commit_write gave us 880 * `file' can be NULL - eg, when called from page_symlink(). 881 * 882 * ext4 never places buffers on inode->i_mapping->private_list. metadata 883 * buffers are managed internally. 884 */ 885 static int ext4_ordered_write_end(struct file *file, 886 struct address_space *mapping, 887 loff_t pos, unsigned len, unsigned copied, 888 struct page *page, void *fsdata) 889 { 890 handle_t *handle = ext4_journal_current_handle(); 891 struct inode *inode = mapping->host; 892 int ret = 0, ret2; 893 894 trace_ext4_ordered_write_end(inode, pos, len, copied); 895 ret = ext4_jbd2_file_inode(handle, inode); 896 897 if (ret == 0) { 898 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 899 page, fsdata); 900 copied = ret2; 901 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 902 /* if we have allocated more blocks and copied 903 * less. We will have blocks allocated outside 904 * inode->i_size. So truncate them 905 */ 906 ext4_orphan_add(handle, inode); 907 if (ret2 < 0) 908 ret = ret2; 909 } 910 ret2 = ext4_journal_stop(handle); 911 if (!ret) 912 ret = ret2; 913 914 if (pos + len > inode->i_size) { 915 ext4_truncate_failed_write(inode); 916 /* 917 * If truncate failed early the inode might still be 918 * on the orphan list; we need to make sure the inode 919 * is removed from the orphan list in that case. 920 */ 921 if (inode->i_nlink) 922 ext4_orphan_del(NULL, inode); 923 } 924 925 926 return ret ? ret : copied; 927 } 928 929 static int ext4_writeback_write_end(struct file *file, 930 struct address_space *mapping, 931 loff_t pos, unsigned len, unsigned copied, 932 struct page *page, void *fsdata) 933 { 934 handle_t *handle = ext4_journal_current_handle(); 935 struct inode *inode = mapping->host; 936 int ret = 0, ret2; 937 938 trace_ext4_writeback_write_end(inode, pos, len, copied); 939 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 940 page, fsdata); 941 copied = ret2; 942 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 943 /* if we have allocated more blocks and copied 944 * less. We will have blocks allocated outside 945 * inode->i_size. So truncate them 946 */ 947 ext4_orphan_add(handle, inode); 948 949 if (ret2 < 0) 950 ret = ret2; 951 952 ret2 = ext4_journal_stop(handle); 953 if (!ret) 954 ret = ret2; 955 956 if (pos + len > inode->i_size) { 957 ext4_truncate_failed_write(inode); 958 /* 959 * If truncate failed early the inode might still be 960 * on the orphan list; we need to make sure the inode 961 * is removed from the orphan list in that case. 962 */ 963 if (inode->i_nlink) 964 ext4_orphan_del(NULL, inode); 965 } 966 967 return ret ? ret : copied; 968 } 969 970 static int ext4_journalled_write_end(struct file *file, 971 struct address_space *mapping, 972 loff_t pos, unsigned len, unsigned copied, 973 struct page *page, void *fsdata) 974 { 975 handle_t *handle = ext4_journal_current_handle(); 976 struct inode *inode = mapping->host; 977 int ret = 0, ret2; 978 int partial = 0; 979 unsigned from, to; 980 loff_t new_i_size; 981 982 trace_ext4_journalled_write_end(inode, pos, len, copied); 983 from = pos & (PAGE_CACHE_SIZE - 1); 984 to = from + len; 985 986 if (copied < len) { 987 if (!PageUptodate(page)) 988 copied = 0; 989 page_zero_new_buffers(page, from+copied, to); 990 } 991 992 ret = walk_page_buffers(handle, page_buffers(page), from, 993 to, &partial, write_end_fn); 994 if (!partial) 995 SetPageUptodate(page); 996 new_i_size = pos + copied; 997 if (new_i_size > inode->i_size) 998 i_size_write(inode, pos+copied); 999 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1000 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1001 if (new_i_size > EXT4_I(inode)->i_disksize) { 1002 ext4_update_i_disksize(inode, new_i_size); 1003 ret2 = ext4_mark_inode_dirty(handle, inode); 1004 if (!ret) 1005 ret = ret2; 1006 } 1007 1008 unlock_page(page); 1009 page_cache_release(page); 1010 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1011 /* if we have allocated more blocks and copied 1012 * less. We will have blocks allocated outside 1013 * inode->i_size. So truncate them 1014 */ 1015 ext4_orphan_add(handle, inode); 1016 1017 ret2 = ext4_journal_stop(handle); 1018 if (!ret) 1019 ret = ret2; 1020 if (pos + len > inode->i_size) { 1021 ext4_truncate_failed_write(inode); 1022 /* 1023 * If truncate failed early the inode might still be 1024 * on the orphan list; we need to make sure the inode 1025 * is removed from the orphan list in that case. 1026 */ 1027 if (inode->i_nlink) 1028 ext4_orphan_del(NULL, inode); 1029 } 1030 1031 return ret ? ret : copied; 1032 } 1033 1034 /* 1035 * Reserve a single block located at lblock 1036 */ 1037 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1038 { 1039 int retries = 0; 1040 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1041 struct ext4_inode_info *ei = EXT4_I(inode); 1042 unsigned long md_needed; 1043 int ret; 1044 1045 /* 1046 * recalculate the amount of metadata blocks to reserve 1047 * in order to allocate nrblocks 1048 * worse case is one extent per block 1049 */ 1050 repeat: 1051 spin_lock(&ei->i_block_reservation_lock); 1052 md_needed = ext4_calc_metadata_amount(inode, lblock); 1053 trace_ext4_da_reserve_space(inode, md_needed); 1054 spin_unlock(&ei->i_block_reservation_lock); 1055 1056 /* 1057 * We will charge metadata quota at writeout time; this saves 1058 * us from metadata over-estimation, though we may go over by 1059 * a small amount in the end. Here we just reserve for data. 1060 */ 1061 ret = dquot_reserve_block(inode, 1); 1062 if (ret) 1063 return ret; 1064 /* 1065 * We do still charge estimated metadata to the sb though; 1066 * we cannot afford to run out of free blocks. 1067 */ 1068 if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) { 1069 dquot_release_reservation_block(inode, 1); 1070 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1071 yield(); 1072 goto repeat; 1073 } 1074 return -ENOSPC; 1075 } 1076 spin_lock(&ei->i_block_reservation_lock); 1077 ei->i_reserved_data_blocks++; 1078 ei->i_reserved_meta_blocks += md_needed; 1079 spin_unlock(&ei->i_block_reservation_lock); 1080 1081 return 0; /* success */ 1082 } 1083 1084 static void ext4_da_release_space(struct inode *inode, int to_free) 1085 { 1086 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1087 struct ext4_inode_info *ei = EXT4_I(inode); 1088 1089 if (!to_free) 1090 return; /* Nothing to release, exit */ 1091 1092 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1093 1094 trace_ext4_da_release_space(inode, to_free); 1095 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1096 /* 1097 * if there aren't enough reserved blocks, then the 1098 * counter is messed up somewhere. Since this 1099 * function is called from invalidate page, it's 1100 * harmless to return without any action. 1101 */ 1102 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: " 1103 "ino %lu, to_free %d with only %d reserved " 1104 "data blocks\n", inode->i_ino, to_free, 1105 ei->i_reserved_data_blocks); 1106 WARN_ON(1); 1107 to_free = ei->i_reserved_data_blocks; 1108 } 1109 ei->i_reserved_data_blocks -= to_free; 1110 1111 if (ei->i_reserved_data_blocks == 0) { 1112 /* 1113 * We can release all of the reserved metadata blocks 1114 * only when we have written all of the delayed 1115 * allocation blocks. 1116 */ 1117 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 1118 ei->i_reserved_meta_blocks); 1119 ei->i_reserved_meta_blocks = 0; 1120 ei->i_da_metadata_calc_len = 0; 1121 } 1122 1123 /* update fs dirty data blocks counter */ 1124 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free); 1125 1126 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1127 1128 dquot_release_reservation_block(inode, to_free); 1129 } 1130 1131 static void ext4_da_page_release_reservation(struct page *page, 1132 unsigned long offset) 1133 { 1134 int to_release = 0; 1135 struct buffer_head *head, *bh; 1136 unsigned int curr_off = 0; 1137 1138 head = page_buffers(page); 1139 bh = head; 1140 do { 1141 unsigned int next_off = curr_off + bh->b_size; 1142 1143 if ((offset <= curr_off) && (buffer_delay(bh))) { 1144 to_release++; 1145 clear_buffer_delay(bh); 1146 } 1147 curr_off = next_off; 1148 } while ((bh = bh->b_this_page) != head); 1149 ext4_da_release_space(page->mapping->host, to_release); 1150 } 1151 1152 /* 1153 * Delayed allocation stuff 1154 */ 1155 1156 /* 1157 * mpage_da_submit_io - walks through extent of pages and try to write 1158 * them with writepage() call back 1159 * 1160 * @mpd->inode: inode 1161 * @mpd->first_page: first page of the extent 1162 * @mpd->next_page: page after the last page of the extent 1163 * 1164 * By the time mpage_da_submit_io() is called we expect all blocks 1165 * to be allocated. this may be wrong if allocation failed. 1166 * 1167 * As pages are already locked by write_cache_pages(), we can't use it 1168 */ 1169 static int mpage_da_submit_io(struct mpage_da_data *mpd, 1170 struct ext4_map_blocks *map) 1171 { 1172 struct pagevec pvec; 1173 unsigned long index, end; 1174 int ret = 0, err, nr_pages, i; 1175 struct inode *inode = mpd->inode; 1176 struct address_space *mapping = inode->i_mapping; 1177 loff_t size = i_size_read(inode); 1178 unsigned int len, block_start; 1179 struct buffer_head *bh, *page_bufs = NULL; 1180 int journal_data = ext4_should_journal_data(inode); 1181 sector_t pblock = 0, cur_logical = 0; 1182 struct ext4_io_submit io_submit; 1183 1184 BUG_ON(mpd->next_page <= mpd->first_page); 1185 memset(&io_submit, 0, sizeof(io_submit)); 1186 /* 1187 * We need to start from the first_page to the next_page - 1 1188 * to make sure we also write the mapped dirty buffer_heads. 1189 * If we look at mpd->b_blocknr we would only be looking 1190 * at the currently mapped buffer_heads. 1191 */ 1192 index = mpd->first_page; 1193 end = mpd->next_page - 1; 1194 1195 pagevec_init(&pvec, 0); 1196 while (index <= end) { 1197 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1198 if (nr_pages == 0) 1199 break; 1200 for (i = 0; i < nr_pages; i++) { 1201 int commit_write = 0, skip_page = 0; 1202 struct page *page = pvec.pages[i]; 1203 1204 index = page->index; 1205 if (index > end) 1206 break; 1207 1208 if (index == size >> PAGE_CACHE_SHIFT) 1209 len = size & ~PAGE_CACHE_MASK; 1210 else 1211 len = PAGE_CACHE_SIZE; 1212 if (map) { 1213 cur_logical = index << (PAGE_CACHE_SHIFT - 1214 inode->i_blkbits); 1215 pblock = map->m_pblk + (cur_logical - 1216 map->m_lblk); 1217 } 1218 index++; 1219 1220 BUG_ON(!PageLocked(page)); 1221 BUG_ON(PageWriteback(page)); 1222 1223 /* 1224 * If the page does not have buffers (for 1225 * whatever reason), try to create them using 1226 * __block_write_begin. If this fails, 1227 * skip the page and move on. 1228 */ 1229 if (!page_has_buffers(page)) { 1230 if (__block_write_begin(page, 0, len, 1231 noalloc_get_block_write)) { 1232 skip_page: 1233 unlock_page(page); 1234 continue; 1235 } 1236 commit_write = 1; 1237 } 1238 1239 bh = page_bufs = page_buffers(page); 1240 block_start = 0; 1241 do { 1242 if (!bh) 1243 goto skip_page; 1244 if (map && (cur_logical >= map->m_lblk) && 1245 (cur_logical <= (map->m_lblk + 1246 (map->m_len - 1)))) { 1247 if (buffer_delay(bh)) { 1248 clear_buffer_delay(bh); 1249 bh->b_blocknr = pblock; 1250 } 1251 if (buffer_unwritten(bh) || 1252 buffer_mapped(bh)) 1253 BUG_ON(bh->b_blocknr != pblock); 1254 if (map->m_flags & EXT4_MAP_UNINIT) 1255 set_buffer_uninit(bh); 1256 clear_buffer_unwritten(bh); 1257 } 1258 1259 /* skip page if block allocation undone */ 1260 if (buffer_delay(bh) || buffer_unwritten(bh)) 1261 skip_page = 1; 1262 bh = bh->b_this_page; 1263 block_start += bh->b_size; 1264 cur_logical++; 1265 pblock++; 1266 } while (bh != page_bufs); 1267 1268 if (skip_page) 1269 goto skip_page; 1270 1271 if (commit_write) 1272 /* mark the buffer_heads as dirty & uptodate */ 1273 block_commit_write(page, 0, len); 1274 1275 clear_page_dirty_for_io(page); 1276 /* 1277 * Delalloc doesn't support data journalling, 1278 * but eventually maybe we'll lift this 1279 * restriction. 1280 */ 1281 if (unlikely(journal_data && PageChecked(page))) 1282 err = __ext4_journalled_writepage(page, len); 1283 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT)) 1284 err = ext4_bio_write_page(&io_submit, page, 1285 len, mpd->wbc); 1286 else 1287 err = block_write_full_page(page, 1288 noalloc_get_block_write, mpd->wbc); 1289 1290 if (!err) 1291 mpd->pages_written++; 1292 /* 1293 * In error case, we have to continue because 1294 * remaining pages are still locked 1295 */ 1296 if (ret == 0) 1297 ret = err; 1298 } 1299 pagevec_release(&pvec); 1300 } 1301 ext4_io_submit(&io_submit); 1302 return ret; 1303 } 1304 1305 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd) 1306 { 1307 int nr_pages, i; 1308 pgoff_t index, end; 1309 struct pagevec pvec; 1310 struct inode *inode = mpd->inode; 1311 struct address_space *mapping = inode->i_mapping; 1312 1313 index = mpd->first_page; 1314 end = mpd->next_page - 1; 1315 while (index <= end) { 1316 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1317 if (nr_pages == 0) 1318 break; 1319 for (i = 0; i < nr_pages; i++) { 1320 struct page *page = pvec.pages[i]; 1321 if (page->index > end) 1322 break; 1323 BUG_ON(!PageLocked(page)); 1324 BUG_ON(PageWriteback(page)); 1325 block_invalidatepage(page, 0); 1326 ClearPageUptodate(page); 1327 unlock_page(page); 1328 } 1329 index = pvec.pages[nr_pages - 1]->index + 1; 1330 pagevec_release(&pvec); 1331 } 1332 return; 1333 } 1334 1335 static void ext4_print_free_blocks(struct inode *inode) 1336 { 1337 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1338 printk(KERN_CRIT "Total free blocks count %lld\n", 1339 ext4_count_free_blocks(inode->i_sb)); 1340 printk(KERN_CRIT "Free/Dirty block details\n"); 1341 printk(KERN_CRIT "free_blocks=%lld\n", 1342 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter)); 1343 printk(KERN_CRIT "dirty_blocks=%lld\n", 1344 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 1345 printk(KERN_CRIT "Block reservation details\n"); 1346 printk(KERN_CRIT "i_reserved_data_blocks=%u\n", 1347 EXT4_I(inode)->i_reserved_data_blocks); 1348 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n", 1349 EXT4_I(inode)->i_reserved_meta_blocks); 1350 return; 1351 } 1352 1353 /* 1354 * mpage_da_map_and_submit - go through given space, map them 1355 * if necessary, and then submit them for I/O 1356 * 1357 * @mpd - bh describing space 1358 * 1359 * The function skips space we know is already mapped to disk blocks. 1360 * 1361 */ 1362 static void mpage_da_map_and_submit(struct mpage_da_data *mpd) 1363 { 1364 int err, blks, get_blocks_flags; 1365 struct ext4_map_blocks map, *mapp = NULL; 1366 sector_t next = mpd->b_blocknr; 1367 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 1368 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 1369 handle_t *handle = NULL; 1370 1371 /* 1372 * If the blocks are mapped already, or we couldn't accumulate 1373 * any blocks, then proceed immediately to the submission stage. 1374 */ 1375 if ((mpd->b_size == 0) || 1376 ((mpd->b_state & (1 << BH_Mapped)) && 1377 !(mpd->b_state & (1 << BH_Delay)) && 1378 !(mpd->b_state & (1 << BH_Unwritten)))) 1379 goto submit_io; 1380 1381 handle = ext4_journal_current_handle(); 1382 BUG_ON(!handle); 1383 1384 /* 1385 * Call ext4_map_blocks() to allocate any delayed allocation 1386 * blocks, or to convert an uninitialized extent to be 1387 * initialized (in the case where we have written into 1388 * one or more preallocated blocks). 1389 * 1390 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 1391 * indicate that we are on the delayed allocation path. This 1392 * affects functions in many different parts of the allocation 1393 * call path. This flag exists primarily because we don't 1394 * want to change *many* call functions, so ext4_map_blocks() 1395 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the 1396 * inode's allocation semaphore is taken. 1397 * 1398 * If the blocks in questions were delalloc blocks, set 1399 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 1400 * variables are updated after the blocks have been allocated. 1401 */ 1402 map.m_lblk = next; 1403 map.m_len = max_blocks; 1404 get_blocks_flags = EXT4_GET_BLOCKS_CREATE; 1405 if (ext4_should_dioread_nolock(mpd->inode)) 1406 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 1407 if (mpd->b_state & (1 << BH_Delay)) 1408 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 1409 1410 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 1411 if (blks < 0) { 1412 struct super_block *sb = mpd->inode->i_sb; 1413 1414 err = blks; 1415 /* 1416 * If get block returns EAGAIN or ENOSPC and there 1417 * appears to be free blocks we will just let 1418 * mpage_da_submit_io() unlock all of the pages. 1419 */ 1420 if (err == -EAGAIN) 1421 goto submit_io; 1422 1423 if (err == -ENOSPC && 1424 ext4_count_free_blocks(sb)) { 1425 mpd->retval = err; 1426 goto submit_io; 1427 } 1428 1429 /* 1430 * get block failure will cause us to loop in 1431 * writepages, because a_ops->writepage won't be able 1432 * to make progress. The page will be redirtied by 1433 * writepage and writepages will again try to write 1434 * the same. 1435 */ 1436 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 1437 ext4_msg(sb, KERN_CRIT, 1438 "delayed block allocation failed for inode %lu " 1439 "at logical offset %llu with max blocks %zd " 1440 "with error %d", mpd->inode->i_ino, 1441 (unsigned long long) next, 1442 mpd->b_size >> mpd->inode->i_blkbits, err); 1443 ext4_msg(sb, KERN_CRIT, 1444 "This should not happen!! Data will be lost\n"); 1445 if (err == -ENOSPC) 1446 ext4_print_free_blocks(mpd->inode); 1447 } 1448 /* invalidate all the pages */ 1449 ext4_da_block_invalidatepages(mpd); 1450 1451 /* Mark this page range as having been completed */ 1452 mpd->io_done = 1; 1453 return; 1454 } 1455 BUG_ON(blks == 0); 1456 1457 mapp = ↦ 1458 if (map.m_flags & EXT4_MAP_NEW) { 1459 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 1460 int i; 1461 1462 for (i = 0; i < map.m_len; i++) 1463 unmap_underlying_metadata(bdev, map.m_pblk + i); 1464 } 1465 1466 if (ext4_should_order_data(mpd->inode)) { 1467 err = ext4_jbd2_file_inode(handle, mpd->inode); 1468 if (err) 1469 /* This only happens if the journal is aborted */ 1470 return; 1471 } 1472 1473 /* 1474 * Update on-disk size along with block allocation. 1475 */ 1476 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 1477 if (disksize > i_size_read(mpd->inode)) 1478 disksize = i_size_read(mpd->inode); 1479 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 1480 ext4_update_i_disksize(mpd->inode, disksize); 1481 err = ext4_mark_inode_dirty(handle, mpd->inode); 1482 if (err) 1483 ext4_error(mpd->inode->i_sb, 1484 "Failed to mark inode %lu dirty", 1485 mpd->inode->i_ino); 1486 } 1487 1488 submit_io: 1489 mpage_da_submit_io(mpd, mapp); 1490 mpd->io_done = 1; 1491 } 1492 1493 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1494 (1 << BH_Delay) | (1 << BH_Unwritten)) 1495 1496 /* 1497 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1498 * 1499 * @mpd->lbh - extent of blocks 1500 * @logical - logical number of the block in the file 1501 * @bh - bh of the block (used to access block's state) 1502 * 1503 * the function is used to collect contig. blocks in same state 1504 */ 1505 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 1506 sector_t logical, size_t b_size, 1507 unsigned long b_state) 1508 { 1509 sector_t next; 1510 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 1511 1512 /* 1513 * XXX Don't go larger than mballoc is willing to allocate 1514 * This is a stopgap solution. We eventually need to fold 1515 * mpage_da_submit_io() into this function and then call 1516 * ext4_map_blocks() multiple times in a loop 1517 */ 1518 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize) 1519 goto flush_it; 1520 1521 /* check if thereserved journal credits might overflow */ 1522 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) { 1523 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1524 /* 1525 * With non-extent format we are limited by the journal 1526 * credit available. Total credit needed to insert 1527 * nrblocks contiguous blocks is dependent on the 1528 * nrblocks. So limit nrblocks. 1529 */ 1530 goto flush_it; 1531 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 1532 EXT4_MAX_TRANS_DATA) { 1533 /* 1534 * Adding the new buffer_head would make it cross the 1535 * allowed limit for which we have journal credit 1536 * reserved. So limit the new bh->b_size 1537 */ 1538 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 1539 mpd->inode->i_blkbits; 1540 /* we will do mpage_da_submit_io in the next loop */ 1541 } 1542 } 1543 /* 1544 * First block in the extent 1545 */ 1546 if (mpd->b_size == 0) { 1547 mpd->b_blocknr = logical; 1548 mpd->b_size = b_size; 1549 mpd->b_state = b_state & BH_FLAGS; 1550 return; 1551 } 1552 1553 next = mpd->b_blocknr + nrblocks; 1554 /* 1555 * Can we merge the block to our big extent? 1556 */ 1557 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 1558 mpd->b_size += b_size; 1559 return; 1560 } 1561 1562 flush_it: 1563 /* 1564 * We couldn't merge the block to our extent, so we 1565 * need to flush current extent and start new one 1566 */ 1567 mpage_da_map_and_submit(mpd); 1568 return; 1569 } 1570 1571 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1572 { 1573 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1574 } 1575 1576 /* 1577 * This is a special get_blocks_t callback which is used by 1578 * ext4_da_write_begin(). It will either return mapped block or 1579 * reserve space for a single block. 1580 * 1581 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1582 * We also have b_blocknr = -1 and b_bdev initialized properly 1583 * 1584 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1585 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1586 * initialized properly. 1587 */ 1588 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1589 struct buffer_head *bh, int create) 1590 { 1591 struct ext4_map_blocks map; 1592 int ret = 0; 1593 sector_t invalid_block = ~((sector_t) 0xffff); 1594 1595 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1596 invalid_block = ~0; 1597 1598 BUG_ON(create == 0); 1599 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1600 1601 map.m_lblk = iblock; 1602 map.m_len = 1; 1603 1604 /* 1605 * first, we need to know whether the block is allocated already 1606 * preallocated blocks are unmapped but should treated 1607 * the same as allocated blocks. 1608 */ 1609 ret = ext4_map_blocks(NULL, inode, &map, 0); 1610 if (ret < 0) 1611 return ret; 1612 if (ret == 0) { 1613 if (buffer_delay(bh)) 1614 return 0; /* Not sure this could or should happen */ 1615 /* 1616 * XXX: __block_write_begin() unmaps passed block, is it OK? 1617 */ 1618 ret = ext4_da_reserve_space(inode, iblock); 1619 if (ret) 1620 /* not enough space to reserve */ 1621 return ret; 1622 1623 map_bh(bh, inode->i_sb, invalid_block); 1624 set_buffer_new(bh); 1625 set_buffer_delay(bh); 1626 return 0; 1627 } 1628 1629 map_bh(bh, inode->i_sb, map.m_pblk); 1630 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1631 1632 if (buffer_unwritten(bh)) { 1633 /* A delayed write to unwritten bh should be marked 1634 * new and mapped. Mapped ensures that we don't do 1635 * get_block multiple times when we write to the same 1636 * offset and new ensures that we do proper zero out 1637 * for partial write. 1638 */ 1639 set_buffer_new(bh); 1640 set_buffer_mapped(bh); 1641 } 1642 return 0; 1643 } 1644 1645 /* 1646 * This function is used as a standard get_block_t calback function 1647 * when there is no desire to allocate any blocks. It is used as a 1648 * callback function for block_write_begin() and block_write_full_page(). 1649 * These functions should only try to map a single block at a time. 1650 * 1651 * Since this function doesn't do block allocations even if the caller 1652 * requests it by passing in create=1, it is critically important that 1653 * any caller checks to make sure that any buffer heads are returned 1654 * by this function are either all already mapped or marked for 1655 * delayed allocation before calling block_write_full_page(). Otherwise, 1656 * b_blocknr could be left unitialized, and the page write functions will 1657 * be taken by surprise. 1658 */ 1659 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 1660 struct buffer_head *bh_result, int create) 1661 { 1662 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 1663 return _ext4_get_block(inode, iblock, bh_result, 0); 1664 } 1665 1666 static int bget_one(handle_t *handle, struct buffer_head *bh) 1667 { 1668 get_bh(bh); 1669 return 0; 1670 } 1671 1672 static int bput_one(handle_t *handle, struct buffer_head *bh) 1673 { 1674 put_bh(bh); 1675 return 0; 1676 } 1677 1678 static int __ext4_journalled_writepage(struct page *page, 1679 unsigned int len) 1680 { 1681 struct address_space *mapping = page->mapping; 1682 struct inode *inode = mapping->host; 1683 struct buffer_head *page_bufs; 1684 handle_t *handle = NULL; 1685 int ret = 0; 1686 int err; 1687 1688 ClearPageChecked(page); 1689 page_bufs = page_buffers(page); 1690 BUG_ON(!page_bufs); 1691 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 1692 /* As soon as we unlock the page, it can go away, but we have 1693 * references to buffers so we are safe */ 1694 unlock_page(page); 1695 1696 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1697 if (IS_ERR(handle)) { 1698 ret = PTR_ERR(handle); 1699 goto out; 1700 } 1701 1702 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1703 do_journal_get_write_access); 1704 1705 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1706 write_end_fn); 1707 if (ret == 0) 1708 ret = err; 1709 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1710 err = ext4_journal_stop(handle); 1711 if (!ret) 1712 ret = err; 1713 1714 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 1715 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1716 out: 1717 return ret; 1718 } 1719 1720 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 1721 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 1722 1723 /* 1724 * Note that we don't need to start a transaction unless we're journaling data 1725 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1726 * need to file the inode to the transaction's list in ordered mode because if 1727 * we are writing back data added by write(), the inode is already there and if 1728 * we are writing back data modified via mmap(), no one guarantees in which 1729 * transaction the data will hit the disk. In case we are journaling data, we 1730 * cannot start transaction directly because transaction start ranks above page 1731 * lock so we have to do some magic. 1732 * 1733 * This function can get called via... 1734 * - ext4_da_writepages after taking page lock (have journal handle) 1735 * - journal_submit_inode_data_buffers (no journal handle) 1736 * - shrink_page_list via pdflush (no journal handle) 1737 * - grab_page_cache when doing write_begin (have journal handle) 1738 * 1739 * We don't do any block allocation in this function. If we have page with 1740 * multiple blocks we need to write those buffer_heads that are mapped. This 1741 * is important for mmaped based write. So if we do with blocksize 1K 1742 * truncate(f, 1024); 1743 * a = mmap(f, 0, 4096); 1744 * a[0] = 'a'; 1745 * truncate(f, 4096); 1746 * we have in the page first buffer_head mapped via page_mkwrite call back 1747 * but other bufer_heads would be unmapped but dirty(dirty done via the 1748 * do_wp_page). So writepage should write the first block. If we modify 1749 * the mmap area beyond 1024 we will again get a page_fault and the 1750 * page_mkwrite callback will do the block allocation and mark the 1751 * buffer_heads mapped. 1752 * 1753 * We redirty the page if we have any buffer_heads that is either delay or 1754 * unwritten in the page. 1755 * 1756 * We can get recursively called as show below. 1757 * 1758 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1759 * ext4_writepage() 1760 * 1761 * But since we don't do any block allocation we should not deadlock. 1762 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1763 */ 1764 static int ext4_writepage(struct page *page, 1765 struct writeback_control *wbc) 1766 { 1767 int ret = 0, commit_write = 0; 1768 loff_t size; 1769 unsigned int len; 1770 struct buffer_head *page_bufs = NULL; 1771 struct inode *inode = page->mapping->host; 1772 1773 trace_ext4_writepage(page); 1774 size = i_size_read(inode); 1775 if (page->index == size >> PAGE_CACHE_SHIFT) 1776 len = size & ~PAGE_CACHE_MASK; 1777 else 1778 len = PAGE_CACHE_SIZE; 1779 1780 /* 1781 * If the page does not have buffers (for whatever reason), 1782 * try to create them using __block_write_begin. If this 1783 * fails, redirty the page and move on. 1784 */ 1785 if (!page_has_buffers(page)) { 1786 if (__block_write_begin(page, 0, len, 1787 noalloc_get_block_write)) { 1788 redirty_page: 1789 redirty_page_for_writepage(wbc, page); 1790 unlock_page(page); 1791 return 0; 1792 } 1793 commit_write = 1; 1794 } 1795 page_bufs = page_buffers(page); 1796 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1797 ext4_bh_delay_or_unwritten)) { 1798 /* 1799 * We don't want to do block allocation, so redirty 1800 * the page and return. We may reach here when we do 1801 * a journal commit via journal_submit_inode_data_buffers. 1802 * We can also reach here via shrink_page_list 1803 */ 1804 goto redirty_page; 1805 } 1806 if (commit_write) 1807 /* now mark the buffer_heads as dirty and uptodate */ 1808 block_commit_write(page, 0, len); 1809 1810 if (PageChecked(page) && ext4_should_journal_data(inode)) 1811 /* 1812 * It's mmapped pagecache. Add buffers and journal it. There 1813 * doesn't seem much point in redirtying the page here. 1814 */ 1815 return __ext4_journalled_writepage(page, len); 1816 1817 if (buffer_uninit(page_bufs)) { 1818 ext4_set_bh_endio(page_bufs, inode); 1819 ret = block_write_full_page_endio(page, noalloc_get_block_write, 1820 wbc, ext4_end_io_buffer_write); 1821 } else 1822 ret = block_write_full_page(page, noalloc_get_block_write, 1823 wbc); 1824 1825 return ret; 1826 } 1827 1828 /* 1829 * This is called via ext4_da_writepages() to 1830 * calculate the total number of credits to reserve to fit 1831 * a single extent allocation into a single transaction, 1832 * ext4_da_writpeages() will loop calling this before 1833 * the block allocation. 1834 */ 1835 1836 static int ext4_da_writepages_trans_blocks(struct inode *inode) 1837 { 1838 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 1839 1840 /* 1841 * With non-extent format the journal credit needed to 1842 * insert nrblocks contiguous block is dependent on 1843 * number of contiguous block. So we will limit 1844 * number of contiguous block to a sane value 1845 */ 1846 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 1847 (max_blocks > EXT4_MAX_TRANS_DATA)) 1848 max_blocks = EXT4_MAX_TRANS_DATA; 1849 1850 return ext4_chunk_trans_blocks(inode, max_blocks); 1851 } 1852 1853 /* 1854 * write_cache_pages_da - walk the list of dirty pages of the given 1855 * address space and accumulate pages that need writing, and call 1856 * mpage_da_map_and_submit to map a single contiguous memory region 1857 * and then write them. 1858 */ 1859 static int write_cache_pages_da(struct address_space *mapping, 1860 struct writeback_control *wbc, 1861 struct mpage_da_data *mpd, 1862 pgoff_t *done_index) 1863 { 1864 struct buffer_head *bh, *head; 1865 struct inode *inode = mapping->host; 1866 struct pagevec pvec; 1867 unsigned int nr_pages; 1868 sector_t logical; 1869 pgoff_t index, end; 1870 long nr_to_write = wbc->nr_to_write; 1871 int i, tag, ret = 0; 1872 1873 memset(mpd, 0, sizeof(struct mpage_da_data)); 1874 mpd->wbc = wbc; 1875 mpd->inode = inode; 1876 pagevec_init(&pvec, 0); 1877 index = wbc->range_start >> PAGE_CACHE_SHIFT; 1878 end = wbc->range_end >> PAGE_CACHE_SHIFT; 1879 1880 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1881 tag = PAGECACHE_TAG_TOWRITE; 1882 else 1883 tag = PAGECACHE_TAG_DIRTY; 1884 1885 *done_index = index; 1886 while (index <= end) { 1887 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 1888 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1889 if (nr_pages == 0) 1890 return 0; 1891 1892 for (i = 0; i < nr_pages; i++) { 1893 struct page *page = pvec.pages[i]; 1894 1895 /* 1896 * At this point, the page may be truncated or 1897 * invalidated (changing page->mapping to NULL), or 1898 * even swizzled back from swapper_space to tmpfs file 1899 * mapping. However, page->index will not change 1900 * because we have a reference on the page. 1901 */ 1902 if (page->index > end) 1903 goto out; 1904 1905 *done_index = page->index + 1; 1906 1907 /* 1908 * If we can't merge this page, and we have 1909 * accumulated an contiguous region, write it 1910 */ 1911 if ((mpd->next_page != page->index) && 1912 (mpd->next_page != mpd->first_page)) { 1913 mpage_da_map_and_submit(mpd); 1914 goto ret_extent_tail; 1915 } 1916 1917 lock_page(page); 1918 1919 /* 1920 * If the page is no longer dirty, or its 1921 * mapping no longer corresponds to inode we 1922 * are writing (which means it has been 1923 * truncated or invalidated), or the page is 1924 * already under writeback and we are not 1925 * doing a data integrity writeback, skip the page 1926 */ 1927 if (!PageDirty(page) || 1928 (PageWriteback(page) && 1929 (wbc->sync_mode == WB_SYNC_NONE)) || 1930 unlikely(page->mapping != mapping)) { 1931 unlock_page(page); 1932 continue; 1933 } 1934 1935 wait_on_page_writeback(page); 1936 BUG_ON(PageWriteback(page)); 1937 1938 if (mpd->next_page != page->index) 1939 mpd->first_page = page->index; 1940 mpd->next_page = page->index + 1; 1941 logical = (sector_t) page->index << 1942 (PAGE_CACHE_SHIFT - inode->i_blkbits); 1943 1944 if (!page_has_buffers(page)) { 1945 mpage_add_bh_to_extent(mpd, logical, 1946 PAGE_CACHE_SIZE, 1947 (1 << BH_Dirty) | (1 << BH_Uptodate)); 1948 if (mpd->io_done) 1949 goto ret_extent_tail; 1950 } else { 1951 /* 1952 * Page with regular buffer heads, 1953 * just add all dirty ones 1954 */ 1955 head = page_buffers(page); 1956 bh = head; 1957 do { 1958 BUG_ON(buffer_locked(bh)); 1959 /* 1960 * We need to try to allocate 1961 * unmapped blocks in the same page. 1962 * Otherwise we won't make progress 1963 * with the page in ext4_writepage 1964 */ 1965 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 1966 mpage_add_bh_to_extent(mpd, logical, 1967 bh->b_size, 1968 bh->b_state); 1969 if (mpd->io_done) 1970 goto ret_extent_tail; 1971 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 1972 /* 1973 * mapped dirty buffer. We need 1974 * to update the b_state 1975 * because we look at b_state 1976 * in mpage_da_map_blocks. We 1977 * don't update b_size because 1978 * if we find an unmapped 1979 * buffer_head later we need to 1980 * use the b_state flag of that 1981 * buffer_head. 1982 */ 1983 if (mpd->b_size == 0) 1984 mpd->b_state = bh->b_state & BH_FLAGS; 1985 } 1986 logical++; 1987 } while ((bh = bh->b_this_page) != head); 1988 } 1989 1990 if (nr_to_write > 0) { 1991 nr_to_write--; 1992 if (nr_to_write == 0 && 1993 wbc->sync_mode == WB_SYNC_NONE) 1994 /* 1995 * We stop writing back only if we are 1996 * not doing integrity sync. In case of 1997 * integrity sync we have to keep going 1998 * because someone may be concurrently 1999 * dirtying pages, and we might have 2000 * synced a lot of newly appeared dirty 2001 * pages, but have not synced all of the 2002 * old dirty pages. 2003 */ 2004 goto out; 2005 } 2006 } 2007 pagevec_release(&pvec); 2008 cond_resched(); 2009 } 2010 return 0; 2011 ret_extent_tail: 2012 ret = MPAGE_DA_EXTENT_TAIL; 2013 out: 2014 pagevec_release(&pvec); 2015 cond_resched(); 2016 return ret; 2017 } 2018 2019 2020 static int ext4_da_writepages(struct address_space *mapping, 2021 struct writeback_control *wbc) 2022 { 2023 pgoff_t index; 2024 int range_whole = 0; 2025 handle_t *handle = NULL; 2026 struct mpage_da_data mpd; 2027 struct inode *inode = mapping->host; 2028 int pages_written = 0; 2029 unsigned int max_pages; 2030 int range_cyclic, cycled = 1, io_done = 0; 2031 int needed_blocks, ret = 0; 2032 long desired_nr_to_write, nr_to_writebump = 0; 2033 loff_t range_start = wbc->range_start; 2034 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2035 pgoff_t done_index = 0; 2036 pgoff_t end; 2037 2038 trace_ext4_da_writepages(inode, wbc); 2039 2040 /* 2041 * No pages to write? This is mainly a kludge to avoid starting 2042 * a transaction for special inodes like journal inode on last iput() 2043 * because that could violate lock ordering on umount 2044 */ 2045 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2046 return 0; 2047 2048 /* 2049 * If the filesystem has aborted, it is read-only, so return 2050 * right away instead of dumping stack traces later on that 2051 * will obscure the real source of the problem. We test 2052 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2053 * the latter could be true if the filesystem is mounted 2054 * read-only, and in that case, ext4_da_writepages should 2055 * *never* be called, so if that ever happens, we would want 2056 * the stack trace. 2057 */ 2058 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2059 return -EROFS; 2060 2061 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2062 range_whole = 1; 2063 2064 range_cyclic = wbc->range_cyclic; 2065 if (wbc->range_cyclic) { 2066 index = mapping->writeback_index; 2067 if (index) 2068 cycled = 0; 2069 wbc->range_start = index << PAGE_CACHE_SHIFT; 2070 wbc->range_end = LLONG_MAX; 2071 wbc->range_cyclic = 0; 2072 end = -1; 2073 } else { 2074 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2075 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2076 } 2077 2078 /* 2079 * This works around two forms of stupidity. The first is in 2080 * the writeback code, which caps the maximum number of pages 2081 * written to be 1024 pages. This is wrong on multiple 2082 * levels; different architectues have a different page size, 2083 * which changes the maximum amount of data which gets 2084 * written. Secondly, 4 megabytes is way too small. XFS 2085 * forces this value to be 16 megabytes by multiplying 2086 * nr_to_write parameter by four, and then relies on its 2087 * allocator to allocate larger extents to make them 2088 * contiguous. Unfortunately this brings us to the second 2089 * stupidity, which is that ext4's mballoc code only allocates 2090 * at most 2048 blocks. So we force contiguous writes up to 2091 * the number of dirty blocks in the inode, or 2092 * sbi->max_writeback_mb_bump whichever is smaller. 2093 */ 2094 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2095 if (!range_cyclic && range_whole) { 2096 if (wbc->nr_to_write == LONG_MAX) 2097 desired_nr_to_write = wbc->nr_to_write; 2098 else 2099 desired_nr_to_write = wbc->nr_to_write * 8; 2100 } else 2101 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2102 max_pages); 2103 if (desired_nr_to_write > max_pages) 2104 desired_nr_to_write = max_pages; 2105 2106 if (wbc->nr_to_write < desired_nr_to_write) { 2107 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2108 wbc->nr_to_write = desired_nr_to_write; 2109 } 2110 2111 retry: 2112 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2113 tag_pages_for_writeback(mapping, index, end); 2114 2115 while (!ret && wbc->nr_to_write > 0) { 2116 2117 /* 2118 * we insert one extent at a time. So we need 2119 * credit needed for single extent allocation. 2120 * journalled mode is currently not supported 2121 * by delalloc 2122 */ 2123 BUG_ON(ext4_should_journal_data(inode)); 2124 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2125 2126 /* start a new transaction*/ 2127 handle = ext4_journal_start(inode, needed_blocks); 2128 if (IS_ERR(handle)) { 2129 ret = PTR_ERR(handle); 2130 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2131 "%ld pages, ino %lu; err %d", __func__, 2132 wbc->nr_to_write, inode->i_ino, ret); 2133 goto out_writepages; 2134 } 2135 2136 /* 2137 * Now call write_cache_pages_da() to find the next 2138 * contiguous region of logical blocks that need 2139 * blocks to be allocated by ext4 and submit them. 2140 */ 2141 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index); 2142 /* 2143 * If we have a contiguous extent of pages and we 2144 * haven't done the I/O yet, map the blocks and submit 2145 * them for I/O. 2146 */ 2147 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2148 mpage_da_map_and_submit(&mpd); 2149 ret = MPAGE_DA_EXTENT_TAIL; 2150 } 2151 trace_ext4_da_write_pages(inode, &mpd); 2152 wbc->nr_to_write -= mpd.pages_written; 2153 2154 ext4_journal_stop(handle); 2155 2156 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2157 /* commit the transaction which would 2158 * free blocks released in the transaction 2159 * and try again 2160 */ 2161 jbd2_journal_force_commit_nested(sbi->s_journal); 2162 ret = 0; 2163 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2164 /* 2165 * got one extent now try with 2166 * rest of the pages 2167 */ 2168 pages_written += mpd.pages_written; 2169 ret = 0; 2170 io_done = 1; 2171 } else if (wbc->nr_to_write) 2172 /* 2173 * There is no more writeout needed 2174 * or we requested for a noblocking writeout 2175 * and we found the device congested 2176 */ 2177 break; 2178 } 2179 if (!io_done && !cycled) { 2180 cycled = 1; 2181 index = 0; 2182 wbc->range_start = index << PAGE_CACHE_SHIFT; 2183 wbc->range_end = mapping->writeback_index - 1; 2184 goto retry; 2185 } 2186 2187 /* Update index */ 2188 wbc->range_cyclic = range_cyclic; 2189 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2190 /* 2191 * set the writeback_index so that range_cyclic 2192 * mode will write it back later 2193 */ 2194 mapping->writeback_index = done_index; 2195 2196 out_writepages: 2197 wbc->nr_to_write -= nr_to_writebump; 2198 wbc->range_start = range_start; 2199 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 2200 return ret; 2201 } 2202 2203 #define FALL_BACK_TO_NONDELALLOC 1 2204 static int ext4_nonda_switch(struct super_block *sb) 2205 { 2206 s64 free_blocks, dirty_blocks; 2207 struct ext4_sb_info *sbi = EXT4_SB(sb); 2208 2209 /* 2210 * switch to non delalloc mode if we are running low 2211 * on free block. The free block accounting via percpu 2212 * counters can get slightly wrong with percpu_counter_batch getting 2213 * accumulated on each CPU without updating global counters 2214 * Delalloc need an accurate free block accounting. So switch 2215 * to non delalloc when we are near to error range. 2216 */ 2217 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 2218 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter); 2219 if (2 * free_blocks < 3 * dirty_blocks || 2220 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) { 2221 /* 2222 * free block count is less than 150% of dirty blocks 2223 * or free blocks is less than watermark 2224 */ 2225 return 1; 2226 } 2227 /* 2228 * Even if we don't switch but are nearing capacity, 2229 * start pushing delalloc when 1/2 of free blocks are dirty. 2230 */ 2231 if (free_blocks < 2 * dirty_blocks) 2232 writeback_inodes_sb_if_idle(sb); 2233 2234 return 0; 2235 } 2236 2237 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2238 loff_t pos, unsigned len, unsigned flags, 2239 struct page **pagep, void **fsdata) 2240 { 2241 int ret, retries = 0; 2242 struct page *page; 2243 pgoff_t index; 2244 struct inode *inode = mapping->host; 2245 handle_t *handle; 2246 2247 index = pos >> PAGE_CACHE_SHIFT; 2248 2249 if (ext4_nonda_switch(inode->i_sb)) { 2250 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2251 return ext4_write_begin(file, mapping, pos, 2252 len, flags, pagep, fsdata); 2253 } 2254 *fsdata = (void *)0; 2255 trace_ext4_da_write_begin(inode, pos, len, flags); 2256 retry: 2257 /* 2258 * With delayed allocation, we don't log the i_disksize update 2259 * if there is delayed block allocation. But we still need 2260 * to journalling the i_disksize update if writes to the end 2261 * of file which has an already mapped buffer. 2262 */ 2263 handle = ext4_journal_start(inode, 1); 2264 if (IS_ERR(handle)) { 2265 ret = PTR_ERR(handle); 2266 goto out; 2267 } 2268 /* We cannot recurse into the filesystem as the transaction is already 2269 * started */ 2270 flags |= AOP_FLAG_NOFS; 2271 2272 page = grab_cache_page_write_begin(mapping, index, flags); 2273 if (!page) { 2274 ext4_journal_stop(handle); 2275 ret = -ENOMEM; 2276 goto out; 2277 } 2278 *pagep = page; 2279 2280 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2281 if (ret < 0) { 2282 unlock_page(page); 2283 ext4_journal_stop(handle); 2284 page_cache_release(page); 2285 /* 2286 * block_write_begin may have instantiated a few blocks 2287 * outside i_size. Trim these off again. Don't need 2288 * i_size_read because we hold i_mutex. 2289 */ 2290 if (pos + len > inode->i_size) 2291 ext4_truncate_failed_write(inode); 2292 } 2293 2294 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 2295 goto retry; 2296 out: 2297 return ret; 2298 } 2299 2300 /* 2301 * Check if we should update i_disksize 2302 * when write to the end of file but not require block allocation 2303 */ 2304 static int ext4_da_should_update_i_disksize(struct page *page, 2305 unsigned long offset) 2306 { 2307 struct buffer_head *bh; 2308 struct inode *inode = page->mapping->host; 2309 unsigned int idx; 2310 int i; 2311 2312 bh = page_buffers(page); 2313 idx = offset >> inode->i_blkbits; 2314 2315 for (i = 0; i < idx; i++) 2316 bh = bh->b_this_page; 2317 2318 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2319 return 0; 2320 return 1; 2321 } 2322 2323 static int ext4_da_write_end(struct file *file, 2324 struct address_space *mapping, 2325 loff_t pos, unsigned len, unsigned copied, 2326 struct page *page, void *fsdata) 2327 { 2328 struct inode *inode = mapping->host; 2329 int ret = 0, ret2; 2330 handle_t *handle = ext4_journal_current_handle(); 2331 loff_t new_i_size; 2332 unsigned long start, end; 2333 int write_mode = (int)(unsigned long)fsdata; 2334 2335 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 2336 if (ext4_should_order_data(inode)) { 2337 return ext4_ordered_write_end(file, mapping, pos, 2338 len, copied, page, fsdata); 2339 } else if (ext4_should_writeback_data(inode)) { 2340 return ext4_writeback_write_end(file, mapping, pos, 2341 len, copied, page, fsdata); 2342 } else { 2343 BUG(); 2344 } 2345 } 2346 2347 trace_ext4_da_write_end(inode, pos, len, copied); 2348 start = pos & (PAGE_CACHE_SIZE - 1); 2349 end = start + copied - 1; 2350 2351 /* 2352 * generic_write_end() will run mark_inode_dirty() if i_size 2353 * changes. So let's piggyback the i_disksize mark_inode_dirty 2354 * into that. 2355 */ 2356 2357 new_i_size = pos + copied; 2358 if (new_i_size > EXT4_I(inode)->i_disksize) { 2359 if (ext4_da_should_update_i_disksize(page, end)) { 2360 down_write(&EXT4_I(inode)->i_data_sem); 2361 if (new_i_size > EXT4_I(inode)->i_disksize) { 2362 /* 2363 * Updating i_disksize when extending file 2364 * without needing block allocation 2365 */ 2366 if (ext4_should_order_data(inode)) 2367 ret = ext4_jbd2_file_inode(handle, 2368 inode); 2369 2370 EXT4_I(inode)->i_disksize = new_i_size; 2371 } 2372 up_write(&EXT4_I(inode)->i_data_sem); 2373 /* We need to mark inode dirty even if 2374 * new_i_size is less that inode->i_size 2375 * bu greater than i_disksize.(hint delalloc) 2376 */ 2377 ext4_mark_inode_dirty(handle, inode); 2378 } 2379 } 2380 ret2 = generic_write_end(file, mapping, pos, len, copied, 2381 page, fsdata); 2382 copied = ret2; 2383 if (ret2 < 0) 2384 ret = ret2; 2385 ret2 = ext4_journal_stop(handle); 2386 if (!ret) 2387 ret = ret2; 2388 2389 return ret ? ret : copied; 2390 } 2391 2392 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2393 { 2394 /* 2395 * Drop reserved blocks 2396 */ 2397 BUG_ON(!PageLocked(page)); 2398 if (!page_has_buffers(page)) 2399 goto out; 2400 2401 ext4_da_page_release_reservation(page, offset); 2402 2403 out: 2404 ext4_invalidatepage(page, offset); 2405 2406 return; 2407 } 2408 2409 /* 2410 * Force all delayed allocation blocks to be allocated for a given inode. 2411 */ 2412 int ext4_alloc_da_blocks(struct inode *inode) 2413 { 2414 trace_ext4_alloc_da_blocks(inode); 2415 2416 if (!EXT4_I(inode)->i_reserved_data_blocks && 2417 !EXT4_I(inode)->i_reserved_meta_blocks) 2418 return 0; 2419 2420 /* 2421 * We do something simple for now. The filemap_flush() will 2422 * also start triggering a write of the data blocks, which is 2423 * not strictly speaking necessary (and for users of 2424 * laptop_mode, not even desirable). However, to do otherwise 2425 * would require replicating code paths in: 2426 * 2427 * ext4_da_writepages() -> 2428 * write_cache_pages() ---> (via passed in callback function) 2429 * __mpage_da_writepage() --> 2430 * mpage_add_bh_to_extent() 2431 * mpage_da_map_blocks() 2432 * 2433 * The problem is that write_cache_pages(), located in 2434 * mm/page-writeback.c, marks pages clean in preparation for 2435 * doing I/O, which is not desirable if we're not planning on 2436 * doing I/O at all. 2437 * 2438 * We could call write_cache_pages(), and then redirty all of 2439 * the pages by calling redirty_page_for_writepage() but that 2440 * would be ugly in the extreme. So instead we would need to 2441 * replicate parts of the code in the above functions, 2442 * simplifying them because we wouldn't actually intend to 2443 * write out the pages, but rather only collect contiguous 2444 * logical block extents, call the multi-block allocator, and 2445 * then update the buffer heads with the block allocations. 2446 * 2447 * For now, though, we'll cheat by calling filemap_flush(), 2448 * which will map the blocks, and start the I/O, but not 2449 * actually wait for the I/O to complete. 2450 */ 2451 return filemap_flush(inode->i_mapping); 2452 } 2453 2454 /* 2455 * bmap() is special. It gets used by applications such as lilo and by 2456 * the swapper to find the on-disk block of a specific piece of data. 2457 * 2458 * Naturally, this is dangerous if the block concerned is still in the 2459 * journal. If somebody makes a swapfile on an ext4 data-journaling 2460 * filesystem and enables swap, then they may get a nasty shock when the 2461 * data getting swapped to that swapfile suddenly gets overwritten by 2462 * the original zero's written out previously to the journal and 2463 * awaiting writeback in the kernel's buffer cache. 2464 * 2465 * So, if we see any bmap calls here on a modified, data-journaled file, 2466 * take extra steps to flush any blocks which might be in the cache. 2467 */ 2468 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2469 { 2470 struct inode *inode = mapping->host; 2471 journal_t *journal; 2472 int err; 2473 2474 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2475 test_opt(inode->i_sb, DELALLOC)) { 2476 /* 2477 * With delalloc we want to sync the file 2478 * so that we can make sure we allocate 2479 * blocks for file 2480 */ 2481 filemap_write_and_wait(mapping); 2482 } 2483 2484 if (EXT4_JOURNAL(inode) && 2485 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2486 /* 2487 * This is a REALLY heavyweight approach, but the use of 2488 * bmap on dirty files is expected to be extremely rare: 2489 * only if we run lilo or swapon on a freshly made file 2490 * do we expect this to happen. 2491 * 2492 * (bmap requires CAP_SYS_RAWIO so this does not 2493 * represent an unprivileged user DOS attack --- we'd be 2494 * in trouble if mortal users could trigger this path at 2495 * will.) 2496 * 2497 * NB. EXT4_STATE_JDATA is not set on files other than 2498 * regular files. If somebody wants to bmap a directory 2499 * or symlink and gets confused because the buffer 2500 * hasn't yet been flushed to disk, they deserve 2501 * everything they get. 2502 */ 2503 2504 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2505 journal = EXT4_JOURNAL(inode); 2506 jbd2_journal_lock_updates(journal); 2507 err = jbd2_journal_flush(journal); 2508 jbd2_journal_unlock_updates(journal); 2509 2510 if (err) 2511 return 0; 2512 } 2513 2514 return generic_block_bmap(mapping, block, ext4_get_block); 2515 } 2516 2517 static int ext4_readpage(struct file *file, struct page *page) 2518 { 2519 trace_ext4_readpage(page); 2520 return mpage_readpage(page, ext4_get_block); 2521 } 2522 2523 static int 2524 ext4_readpages(struct file *file, struct address_space *mapping, 2525 struct list_head *pages, unsigned nr_pages) 2526 { 2527 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2528 } 2529 2530 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset) 2531 { 2532 struct buffer_head *head, *bh; 2533 unsigned int curr_off = 0; 2534 2535 if (!page_has_buffers(page)) 2536 return; 2537 head = bh = page_buffers(page); 2538 do { 2539 if (offset <= curr_off && test_clear_buffer_uninit(bh) 2540 && bh->b_private) { 2541 ext4_free_io_end(bh->b_private); 2542 bh->b_private = NULL; 2543 bh->b_end_io = NULL; 2544 } 2545 curr_off = curr_off + bh->b_size; 2546 bh = bh->b_this_page; 2547 } while (bh != head); 2548 } 2549 2550 static void ext4_invalidatepage(struct page *page, unsigned long offset) 2551 { 2552 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2553 2554 trace_ext4_invalidatepage(page, offset); 2555 2556 /* 2557 * free any io_end structure allocated for buffers to be discarded 2558 */ 2559 if (ext4_should_dioread_nolock(page->mapping->host)) 2560 ext4_invalidatepage_free_endio(page, offset); 2561 /* 2562 * If it's a full truncate we just forget about the pending dirtying 2563 */ 2564 if (offset == 0) 2565 ClearPageChecked(page); 2566 2567 if (journal) 2568 jbd2_journal_invalidatepage(journal, page, offset); 2569 else 2570 block_invalidatepage(page, offset); 2571 } 2572 2573 static int ext4_releasepage(struct page *page, gfp_t wait) 2574 { 2575 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2576 2577 trace_ext4_releasepage(page); 2578 2579 WARN_ON(PageChecked(page)); 2580 if (!page_has_buffers(page)) 2581 return 0; 2582 if (journal) 2583 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2584 else 2585 return try_to_free_buffers(page); 2586 } 2587 2588 /* 2589 * ext4_get_block used when preparing for a DIO write or buffer write. 2590 * We allocate an uinitialized extent if blocks haven't been allocated. 2591 * The extent will be converted to initialized after the IO is complete. 2592 */ 2593 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 2594 struct buffer_head *bh_result, int create) 2595 { 2596 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 2597 inode->i_ino, create); 2598 return _ext4_get_block(inode, iblock, bh_result, 2599 EXT4_GET_BLOCKS_IO_CREATE_EXT); 2600 } 2601 2602 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 2603 ssize_t size, void *private, int ret, 2604 bool is_async) 2605 { 2606 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; 2607 ext4_io_end_t *io_end = iocb->private; 2608 struct workqueue_struct *wq; 2609 unsigned long flags; 2610 struct ext4_inode_info *ei; 2611 2612 /* if not async direct IO or dio with 0 bytes write, just return */ 2613 if (!io_end || !size) 2614 goto out; 2615 2616 ext_debug("ext4_end_io_dio(): io_end 0x%p" 2617 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n", 2618 iocb->private, io_end->inode->i_ino, iocb, offset, 2619 size); 2620 2621 /* if not aio dio with unwritten extents, just free io and return */ 2622 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { 2623 ext4_free_io_end(io_end); 2624 iocb->private = NULL; 2625 out: 2626 if (is_async) 2627 aio_complete(iocb, ret, 0); 2628 inode_dio_done(inode); 2629 return; 2630 } 2631 2632 io_end->offset = offset; 2633 io_end->size = size; 2634 if (is_async) { 2635 io_end->iocb = iocb; 2636 io_end->result = ret; 2637 } 2638 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 2639 2640 /* Add the io_end to per-inode completed aio dio list*/ 2641 ei = EXT4_I(io_end->inode); 2642 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 2643 list_add_tail(&io_end->list, &ei->i_completed_io_list); 2644 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 2645 2646 /* queue the work to convert unwritten extents to written */ 2647 queue_work(wq, &io_end->work); 2648 iocb->private = NULL; 2649 2650 /* XXX: probably should move into the real I/O completion handler */ 2651 inode_dio_done(inode); 2652 } 2653 2654 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate) 2655 { 2656 ext4_io_end_t *io_end = bh->b_private; 2657 struct workqueue_struct *wq; 2658 struct inode *inode; 2659 unsigned long flags; 2660 2661 if (!test_clear_buffer_uninit(bh) || !io_end) 2662 goto out; 2663 2664 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) { 2665 printk("sb umounted, discard end_io request for inode %lu\n", 2666 io_end->inode->i_ino); 2667 ext4_free_io_end(io_end); 2668 goto out; 2669 } 2670 2671 io_end->flag = EXT4_IO_END_UNWRITTEN; 2672 inode = io_end->inode; 2673 2674 /* Add the io_end to per-inode completed io list*/ 2675 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); 2676 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list); 2677 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); 2678 2679 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq; 2680 /* queue the work to convert unwritten extents to written */ 2681 queue_work(wq, &io_end->work); 2682 out: 2683 bh->b_private = NULL; 2684 bh->b_end_io = NULL; 2685 clear_buffer_uninit(bh); 2686 end_buffer_async_write(bh, uptodate); 2687 } 2688 2689 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode) 2690 { 2691 ext4_io_end_t *io_end; 2692 struct page *page = bh->b_page; 2693 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT; 2694 size_t size = bh->b_size; 2695 2696 retry: 2697 io_end = ext4_init_io_end(inode, GFP_ATOMIC); 2698 if (!io_end) { 2699 pr_warn_ratelimited("%s: allocation fail\n", __func__); 2700 schedule(); 2701 goto retry; 2702 } 2703 io_end->offset = offset; 2704 io_end->size = size; 2705 /* 2706 * We need to hold a reference to the page to make sure it 2707 * doesn't get evicted before ext4_end_io_work() has a chance 2708 * to convert the extent from written to unwritten. 2709 */ 2710 io_end->page = page; 2711 get_page(io_end->page); 2712 2713 bh->b_private = io_end; 2714 bh->b_end_io = ext4_end_io_buffer_write; 2715 return 0; 2716 } 2717 2718 /* 2719 * For ext4 extent files, ext4 will do direct-io write to holes, 2720 * preallocated extents, and those write extend the file, no need to 2721 * fall back to buffered IO. 2722 * 2723 * For holes, we fallocate those blocks, mark them as uninitialized 2724 * If those blocks were preallocated, we mark sure they are splited, but 2725 * still keep the range to write as uninitialized. 2726 * 2727 * The unwrritten extents will be converted to written when DIO is completed. 2728 * For async direct IO, since the IO may still pending when return, we 2729 * set up an end_io call back function, which will do the conversion 2730 * when async direct IO completed. 2731 * 2732 * If the O_DIRECT write will extend the file then add this inode to the 2733 * orphan list. So recovery will truncate it back to the original size 2734 * if the machine crashes during the write. 2735 * 2736 */ 2737 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 2738 const struct iovec *iov, loff_t offset, 2739 unsigned long nr_segs) 2740 { 2741 struct file *file = iocb->ki_filp; 2742 struct inode *inode = file->f_mapping->host; 2743 ssize_t ret; 2744 size_t count = iov_length(iov, nr_segs); 2745 2746 loff_t final_size = offset + count; 2747 if (rw == WRITE && final_size <= inode->i_size) { 2748 /* 2749 * We could direct write to holes and fallocate. 2750 * 2751 * Allocated blocks to fill the hole are marked as uninitialized 2752 * to prevent parallel buffered read to expose the stale data 2753 * before DIO complete the data IO. 2754 * 2755 * As to previously fallocated extents, ext4 get_block 2756 * will just simply mark the buffer mapped but still 2757 * keep the extents uninitialized. 2758 * 2759 * for non AIO case, we will convert those unwritten extents 2760 * to written after return back from blockdev_direct_IO. 2761 * 2762 * for async DIO, the conversion needs to be defered when 2763 * the IO is completed. The ext4 end_io callback function 2764 * will be called to take care of the conversion work. 2765 * Here for async case, we allocate an io_end structure to 2766 * hook to the iocb. 2767 */ 2768 iocb->private = NULL; 2769 EXT4_I(inode)->cur_aio_dio = NULL; 2770 if (!is_sync_kiocb(iocb)) { 2771 iocb->private = ext4_init_io_end(inode, GFP_NOFS); 2772 if (!iocb->private) 2773 return -ENOMEM; 2774 /* 2775 * we save the io structure for current async 2776 * direct IO, so that later ext4_map_blocks() 2777 * could flag the io structure whether there 2778 * is a unwritten extents needs to be converted 2779 * when IO is completed. 2780 */ 2781 EXT4_I(inode)->cur_aio_dio = iocb->private; 2782 } 2783 2784 ret = __blockdev_direct_IO(rw, iocb, inode, 2785 inode->i_sb->s_bdev, iov, 2786 offset, nr_segs, 2787 ext4_get_block_write, 2788 ext4_end_io_dio, 2789 NULL, 2790 DIO_LOCKING | DIO_SKIP_HOLES); 2791 if (iocb->private) 2792 EXT4_I(inode)->cur_aio_dio = NULL; 2793 /* 2794 * The io_end structure takes a reference to the inode, 2795 * that structure needs to be destroyed and the 2796 * reference to the inode need to be dropped, when IO is 2797 * complete, even with 0 byte write, or failed. 2798 * 2799 * In the successful AIO DIO case, the io_end structure will be 2800 * desctroyed and the reference to the inode will be dropped 2801 * after the end_io call back function is called. 2802 * 2803 * In the case there is 0 byte write, or error case, since 2804 * VFS direct IO won't invoke the end_io call back function, 2805 * we need to free the end_io structure here. 2806 */ 2807 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 2808 ext4_free_io_end(iocb->private); 2809 iocb->private = NULL; 2810 } else if (ret > 0 && ext4_test_inode_state(inode, 2811 EXT4_STATE_DIO_UNWRITTEN)) { 2812 int err; 2813 /* 2814 * for non AIO case, since the IO is already 2815 * completed, we could do the conversion right here 2816 */ 2817 err = ext4_convert_unwritten_extents(inode, 2818 offset, ret); 2819 if (err < 0) 2820 ret = err; 2821 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 2822 } 2823 return ret; 2824 } 2825 2826 /* for write the the end of file case, we fall back to old way */ 2827 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 2828 } 2829 2830 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 2831 const struct iovec *iov, loff_t offset, 2832 unsigned long nr_segs) 2833 { 2834 struct file *file = iocb->ki_filp; 2835 struct inode *inode = file->f_mapping->host; 2836 ssize_t ret; 2837 2838 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 2839 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 2840 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 2841 else 2842 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 2843 trace_ext4_direct_IO_exit(inode, offset, 2844 iov_length(iov, nr_segs), rw, ret); 2845 return ret; 2846 } 2847 2848 /* 2849 * Pages can be marked dirty completely asynchronously from ext4's journalling 2850 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 2851 * much here because ->set_page_dirty is called under VFS locks. The page is 2852 * not necessarily locked. 2853 * 2854 * We cannot just dirty the page and leave attached buffers clean, because the 2855 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 2856 * or jbddirty because all the journalling code will explode. 2857 * 2858 * So what we do is to mark the page "pending dirty" and next time writepage 2859 * is called, propagate that into the buffers appropriately. 2860 */ 2861 static int ext4_journalled_set_page_dirty(struct page *page) 2862 { 2863 SetPageChecked(page); 2864 return __set_page_dirty_nobuffers(page); 2865 } 2866 2867 static const struct address_space_operations ext4_ordered_aops = { 2868 .readpage = ext4_readpage, 2869 .readpages = ext4_readpages, 2870 .writepage = ext4_writepage, 2871 .write_begin = ext4_write_begin, 2872 .write_end = ext4_ordered_write_end, 2873 .bmap = ext4_bmap, 2874 .invalidatepage = ext4_invalidatepage, 2875 .releasepage = ext4_releasepage, 2876 .direct_IO = ext4_direct_IO, 2877 .migratepage = buffer_migrate_page, 2878 .is_partially_uptodate = block_is_partially_uptodate, 2879 .error_remove_page = generic_error_remove_page, 2880 }; 2881 2882 static const struct address_space_operations ext4_writeback_aops = { 2883 .readpage = ext4_readpage, 2884 .readpages = ext4_readpages, 2885 .writepage = ext4_writepage, 2886 .write_begin = ext4_write_begin, 2887 .write_end = ext4_writeback_write_end, 2888 .bmap = ext4_bmap, 2889 .invalidatepage = ext4_invalidatepage, 2890 .releasepage = ext4_releasepage, 2891 .direct_IO = ext4_direct_IO, 2892 .migratepage = buffer_migrate_page, 2893 .is_partially_uptodate = block_is_partially_uptodate, 2894 .error_remove_page = generic_error_remove_page, 2895 }; 2896 2897 static const struct address_space_operations ext4_journalled_aops = { 2898 .readpage = ext4_readpage, 2899 .readpages = ext4_readpages, 2900 .writepage = ext4_writepage, 2901 .write_begin = ext4_write_begin, 2902 .write_end = ext4_journalled_write_end, 2903 .set_page_dirty = ext4_journalled_set_page_dirty, 2904 .bmap = ext4_bmap, 2905 .invalidatepage = ext4_invalidatepage, 2906 .releasepage = ext4_releasepage, 2907 .is_partially_uptodate = block_is_partially_uptodate, 2908 .error_remove_page = generic_error_remove_page, 2909 }; 2910 2911 static const struct address_space_operations ext4_da_aops = { 2912 .readpage = ext4_readpage, 2913 .readpages = ext4_readpages, 2914 .writepage = ext4_writepage, 2915 .writepages = ext4_da_writepages, 2916 .write_begin = ext4_da_write_begin, 2917 .write_end = ext4_da_write_end, 2918 .bmap = ext4_bmap, 2919 .invalidatepage = ext4_da_invalidatepage, 2920 .releasepage = ext4_releasepage, 2921 .direct_IO = ext4_direct_IO, 2922 .migratepage = buffer_migrate_page, 2923 .is_partially_uptodate = block_is_partially_uptodate, 2924 .error_remove_page = generic_error_remove_page, 2925 }; 2926 2927 void ext4_set_aops(struct inode *inode) 2928 { 2929 if (ext4_should_order_data(inode) && 2930 test_opt(inode->i_sb, DELALLOC)) 2931 inode->i_mapping->a_ops = &ext4_da_aops; 2932 else if (ext4_should_order_data(inode)) 2933 inode->i_mapping->a_ops = &ext4_ordered_aops; 2934 else if (ext4_should_writeback_data(inode) && 2935 test_opt(inode->i_sb, DELALLOC)) 2936 inode->i_mapping->a_ops = &ext4_da_aops; 2937 else if (ext4_should_writeback_data(inode)) 2938 inode->i_mapping->a_ops = &ext4_writeback_aops; 2939 else 2940 inode->i_mapping->a_ops = &ext4_journalled_aops; 2941 } 2942 2943 /* 2944 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 2945 * up to the end of the block which corresponds to `from'. 2946 * This required during truncate. We need to physically zero the tail end 2947 * of that block so it doesn't yield old data if the file is later grown. 2948 */ 2949 int ext4_block_truncate_page(handle_t *handle, 2950 struct address_space *mapping, loff_t from) 2951 { 2952 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2953 unsigned length; 2954 unsigned blocksize; 2955 struct inode *inode = mapping->host; 2956 2957 blocksize = inode->i_sb->s_blocksize; 2958 length = blocksize - (offset & (blocksize - 1)); 2959 2960 return ext4_block_zero_page_range(handle, mapping, from, length); 2961 } 2962 2963 /* 2964 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 2965 * starting from file offset 'from'. The range to be zero'd must 2966 * be contained with in one block. If the specified range exceeds 2967 * the end of the block it will be shortened to end of the block 2968 * that cooresponds to 'from' 2969 */ 2970 int ext4_block_zero_page_range(handle_t *handle, 2971 struct address_space *mapping, loff_t from, loff_t length) 2972 { 2973 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 2974 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2975 unsigned blocksize, max, pos; 2976 ext4_lblk_t iblock; 2977 struct inode *inode = mapping->host; 2978 struct buffer_head *bh; 2979 struct page *page; 2980 int err = 0; 2981 2982 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 2983 mapping_gfp_mask(mapping) & ~__GFP_FS); 2984 if (!page) 2985 return -EINVAL; 2986 2987 blocksize = inode->i_sb->s_blocksize; 2988 max = blocksize - (offset & (blocksize - 1)); 2989 2990 /* 2991 * correct length if it does not fall between 2992 * 'from' and the end of the block 2993 */ 2994 if (length > max || length < 0) 2995 length = max; 2996 2997 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 2998 2999 if (!page_has_buffers(page)) 3000 create_empty_buffers(page, blocksize, 0); 3001 3002 /* Find the buffer that contains "offset" */ 3003 bh = page_buffers(page); 3004 pos = blocksize; 3005 while (offset >= pos) { 3006 bh = bh->b_this_page; 3007 iblock++; 3008 pos += blocksize; 3009 } 3010 3011 err = 0; 3012 if (buffer_freed(bh)) { 3013 BUFFER_TRACE(bh, "freed: skip"); 3014 goto unlock; 3015 } 3016 3017 if (!buffer_mapped(bh)) { 3018 BUFFER_TRACE(bh, "unmapped"); 3019 ext4_get_block(inode, iblock, bh, 0); 3020 /* unmapped? It's a hole - nothing to do */ 3021 if (!buffer_mapped(bh)) { 3022 BUFFER_TRACE(bh, "still unmapped"); 3023 goto unlock; 3024 } 3025 } 3026 3027 /* Ok, it's mapped. Make sure it's up-to-date */ 3028 if (PageUptodate(page)) 3029 set_buffer_uptodate(bh); 3030 3031 if (!buffer_uptodate(bh)) { 3032 err = -EIO; 3033 ll_rw_block(READ, 1, &bh); 3034 wait_on_buffer(bh); 3035 /* Uhhuh. Read error. Complain and punt. */ 3036 if (!buffer_uptodate(bh)) 3037 goto unlock; 3038 } 3039 3040 if (ext4_should_journal_data(inode)) { 3041 BUFFER_TRACE(bh, "get write access"); 3042 err = ext4_journal_get_write_access(handle, bh); 3043 if (err) 3044 goto unlock; 3045 } 3046 3047 zero_user(page, offset, length); 3048 3049 BUFFER_TRACE(bh, "zeroed end of block"); 3050 3051 err = 0; 3052 if (ext4_should_journal_data(inode)) { 3053 err = ext4_handle_dirty_metadata(handle, inode, bh); 3054 } else { 3055 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode) 3056 err = ext4_jbd2_file_inode(handle, inode); 3057 mark_buffer_dirty(bh); 3058 } 3059 3060 unlock: 3061 unlock_page(page); 3062 page_cache_release(page); 3063 return err; 3064 } 3065 3066 int ext4_can_truncate(struct inode *inode) 3067 { 3068 if (S_ISREG(inode->i_mode)) 3069 return 1; 3070 if (S_ISDIR(inode->i_mode)) 3071 return 1; 3072 if (S_ISLNK(inode->i_mode)) 3073 return !ext4_inode_is_fast_symlink(inode); 3074 return 0; 3075 } 3076 3077 /* 3078 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3079 * associated with the given offset and length 3080 * 3081 * @inode: File inode 3082 * @offset: The offset where the hole will begin 3083 * @len: The length of the hole 3084 * 3085 * Returns: 0 on sucess or negative on failure 3086 */ 3087 3088 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3089 { 3090 struct inode *inode = file->f_path.dentry->d_inode; 3091 if (!S_ISREG(inode->i_mode)) 3092 return -ENOTSUPP; 3093 3094 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3095 /* TODO: Add support for non extent hole punching */ 3096 return -ENOTSUPP; 3097 } 3098 3099 return ext4_ext_punch_hole(file, offset, length); 3100 } 3101 3102 /* 3103 * ext4_truncate() 3104 * 3105 * We block out ext4_get_block() block instantiations across the entire 3106 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3107 * simultaneously on behalf of the same inode. 3108 * 3109 * As we work through the truncate and commmit bits of it to the journal there 3110 * is one core, guiding principle: the file's tree must always be consistent on 3111 * disk. We must be able to restart the truncate after a crash. 3112 * 3113 * The file's tree may be transiently inconsistent in memory (although it 3114 * probably isn't), but whenever we close off and commit a journal transaction, 3115 * the contents of (the filesystem + the journal) must be consistent and 3116 * restartable. It's pretty simple, really: bottom up, right to left (although 3117 * left-to-right works OK too). 3118 * 3119 * Note that at recovery time, journal replay occurs *before* the restart of 3120 * truncate against the orphan inode list. 3121 * 3122 * The committed inode has the new, desired i_size (which is the same as 3123 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3124 * that this inode's truncate did not complete and it will again call 3125 * ext4_truncate() to have another go. So there will be instantiated blocks 3126 * to the right of the truncation point in a crashed ext4 filesystem. But 3127 * that's fine - as long as they are linked from the inode, the post-crash 3128 * ext4_truncate() run will find them and release them. 3129 */ 3130 void ext4_truncate(struct inode *inode) 3131 { 3132 trace_ext4_truncate_enter(inode); 3133 3134 if (!ext4_can_truncate(inode)) 3135 return; 3136 3137 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3138 3139 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3140 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3141 3142 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3143 ext4_ext_truncate(inode); 3144 else 3145 ext4_ind_truncate(inode); 3146 3147 trace_ext4_truncate_exit(inode); 3148 } 3149 3150 /* 3151 * ext4_get_inode_loc returns with an extra refcount against the inode's 3152 * underlying buffer_head on success. If 'in_mem' is true, we have all 3153 * data in memory that is needed to recreate the on-disk version of this 3154 * inode. 3155 */ 3156 static int __ext4_get_inode_loc(struct inode *inode, 3157 struct ext4_iloc *iloc, int in_mem) 3158 { 3159 struct ext4_group_desc *gdp; 3160 struct buffer_head *bh; 3161 struct super_block *sb = inode->i_sb; 3162 ext4_fsblk_t block; 3163 int inodes_per_block, inode_offset; 3164 3165 iloc->bh = NULL; 3166 if (!ext4_valid_inum(sb, inode->i_ino)) 3167 return -EIO; 3168 3169 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3170 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3171 if (!gdp) 3172 return -EIO; 3173 3174 /* 3175 * Figure out the offset within the block group inode table 3176 */ 3177 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3178 inode_offset = ((inode->i_ino - 1) % 3179 EXT4_INODES_PER_GROUP(sb)); 3180 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3181 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3182 3183 bh = sb_getblk(sb, block); 3184 if (!bh) { 3185 EXT4_ERROR_INODE_BLOCK(inode, block, 3186 "unable to read itable block"); 3187 return -EIO; 3188 } 3189 if (!buffer_uptodate(bh)) { 3190 lock_buffer(bh); 3191 3192 /* 3193 * If the buffer has the write error flag, we have failed 3194 * to write out another inode in the same block. In this 3195 * case, we don't have to read the block because we may 3196 * read the old inode data successfully. 3197 */ 3198 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3199 set_buffer_uptodate(bh); 3200 3201 if (buffer_uptodate(bh)) { 3202 /* someone brought it uptodate while we waited */ 3203 unlock_buffer(bh); 3204 goto has_buffer; 3205 } 3206 3207 /* 3208 * If we have all information of the inode in memory and this 3209 * is the only valid inode in the block, we need not read the 3210 * block. 3211 */ 3212 if (in_mem) { 3213 struct buffer_head *bitmap_bh; 3214 int i, start; 3215 3216 start = inode_offset & ~(inodes_per_block - 1); 3217 3218 /* Is the inode bitmap in cache? */ 3219 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3220 if (!bitmap_bh) 3221 goto make_io; 3222 3223 /* 3224 * If the inode bitmap isn't in cache then the 3225 * optimisation may end up performing two reads instead 3226 * of one, so skip it. 3227 */ 3228 if (!buffer_uptodate(bitmap_bh)) { 3229 brelse(bitmap_bh); 3230 goto make_io; 3231 } 3232 for (i = start; i < start + inodes_per_block; i++) { 3233 if (i == inode_offset) 3234 continue; 3235 if (ext4_test_bit(i, bitmap_bh->b_data)) 3236 break; 3237 } 3238 brelse(bitmap_bh); 3239 if (i == start + inodes_per_block) { 3240 /* all other inodes are free, so skip I/O */ 3241 memset(bh->b_data, 0, bh->b_size); 3242 set_buffer_uptodate(bh); 3243 unlock_buffer(bh); 3244 goto has_buffer; 3245 } 3246 } 3247 3248 make_io: 3249 /* 3250 * If we need to do any I/O, try to pre-readahead extra 3251 * blocks from the inode table. 3252 */ 3253 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3254 ext4_fsblk_t b, end, table; 3255 unsigned num; 3256 3257 table = ext4_inode_table(sb, gdp); 3258 /* s_inode_readahead_blks is always a power of 2 */ 3259 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 3260 if (table > b) 3261 b = table; 3262 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 3263 num = EXT4_INODES_PER_GROUP(sb); 3264 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3265 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3266 num -= ext4_itable_unused_count(sb, gdp); 3267 table += num / inodes_per_block; 3268 if (end > table) 3269 end = table; 3270 while (b <= end) 3271 sb_breadahead(sb, b++); 3272 } 3273 3274 /* 3275 * There are other valid inodes in the buffer, this inode 3276 * has in-inode xattrs, or we don't have this inode in memory. 3277 * Read the block from disk. 3278 */ 3279 trace_ext4_load_inode(inode); 3280 get_bh(bh); 3281 bh->b_end_io = end_buffer_read_sync; 3282 submit_bh(READ_META, bh); 3283 wait_on_buffer(bh); 3284 if (!buffer_uptodate(bh)) { 3285 EXT4_ERROR_INODE_BLOCK(inode, block, 3286 "unable to read itable block"); 3287 brelse(bh); 3288 return -EIO; 3289 } 3290 } 3291 has_buffer: 3292 iloc->bh = bh; 3293 return 0; 3294 } 3295 3296 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3297 { 3298 /* We have all inode data except xattrs in memory here. */ 3299 return __ext4_get_inode_loc(inode, iloc, 3300 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3301 } 3302 3303 void ext4_set_inode_flags(struct inode *inode) 3304 { 3305 unsigned int flags = EXT4_I(inode)->i_flags; 3306 3307 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3308 if (flags & EXT4_SYNC_FL) 3309 inode->i_flags |= S_SYNC; 3310 if (flags & EXT4_APPEND_FL) 3311 inode->i_flags |= S_APPEND; 3312 if (flags & EXT4_IMMUTABLE_FL) 3313 inode->i_flags |= S_IMMUTABLE; 3314 if (flags & EXT4_NOATIME_FL) 3315 inode->i_flags |= S_NOATIME; 3316 if (flags & EXT4_DIRSYNC_FL) 3317 inode->i_flags |= S_DIRSYNC; 3318 } 3319 3320 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3321 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3322 { 3323 unsigned int vfs_fl; 3324 unsigned long old_fl, new_fl; 3325 3326 do { 3327 vfs_fl = ei->vfs_inode.i_flags; 3328 old_fl = ei->i_flags; 3329 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3330 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3331 EXT4_DIRSYNC_FL); 3332 if (vfs_fl & S_SYNC) 3333 new_fl |= EXT4_SYNC_FL; 3334 if (vfs_fl & S_APPEND) 3335 new_fl |= EXT4_APPEND_FL; 3336 if (vfs_fl & S_IMMUTABLE) 3337 new_fl |= EXT4_IMMUTABLE_FL; 3338 if (vfs_fl & S_NOATIME) 3339 new_fl |= EXT4_NOATIME_FL; 3340 if (vfs_fl & S_DIRSYNC) 3341 new_fl |= EXT4_DIRSYNC_FL; 3342 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3343 } 3344 3345 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3346 struct ext4_inode_info *ei) 3347 { 3348 blkcnt_t i_blocks ; 3349 struct inode *inode = &(ei->vfs_inode); 3350 struct super_block *sb = inode->i_sb; 3351 3352 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3353 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3354 /* we are using combined 48 bit field */ 3355 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3356 le32_to_cpu(raw_inode->i_blocks_lo); 3357 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3358 /* i_blocks represent file system block size */ 3359 return i_blocks << (inode->i_blkbits - 9); 3360 } else { 3361 return i_blocks; 3362 } 3363 } else { 3364 return le32_to_cpu(raw_inode->i_blocks_lo); 3365 } 3366 } 3367 3368 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3369 { 3370 struct ext4_iloc iloc; 3371 struct ext4_inode *raw_inode; 3372 struct ext4_inode_info *ei; 3373 struct inode *inode; 3374 journal_t *journal = EXT4_SB(sb)->s_journal; 3375 long ret; 3376 int block; 3377 3378 inode = iget_locked(sb, ino); 3379 if (!inode) 3380 return ERR_PTR(-ENOMEM); 3381 if (!(inode->i_state & I_NEW)) 3382 return inode; 3383 3384 ei = EXT4_I(inode); 3385 iloc.bh = NULL; 3386 3387 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3388 if (ret < 0) 3389 goto bad_inode; 3390 raw_inode = ext4_raw_inode(&iloc); 3391 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 3392 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 3393 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 3394 if (!(test_opt(inode->i_sb, NO_UID32))) { 3395 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 3396 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 3397 } 3398 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 3399 3400 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 3401 ei->i_dir_start_lookup = 0; 3402 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 3403 /* We now have enough fields to check if the inode was active or not. 3404 * This is needed because nfsd might try to access dead inodes 3405 * the test is that same one that e2fsck uses 3406 * NeilBrown 1999oct15 3407 */ 3408 if (inode->i_nlink == 0) { 3409 if (inode->i_mode == 0 || 3410 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 3411 /* this inode is deleted */ 3412 ret = -ESTALE; 3413 goto bad_inode; 3414 } 3415 /* The only unlinked inodes we let through here have 3416 * valid i_mode and are being read by the orphan 3417 * recovery code: that's fine, we're about to complete 3418 * the process of deleting those. */ 3419 } 3420 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 3421 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 3422 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 3423 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 3424 ei->i_file_acl |= 3425 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 3426 inode->i_size = ext4_isize(raw_inode); 3427 ei->i_disksize = inode->i_size; 3428 #ifdef CONFIG_QUOTA 3429 ei->i_reserved_quota = 0; 3430 #endif 3431 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 3432 ei->i_block_group = iloc.block_group; 3433 ei->i_last_alloc_group = ~0; 3434 /* 3435 * NOTE! The in-memory inode i_data array is in little-endian order 3436 * even on big-endian machines: we do NOT byteswap the block numbers! 3437 */ 3438 for (block = 0; block < EXT4_N_BLOCKS; block++) 3439 ei->i_data[block] = raw_inode->i_block[block]; 3440 INIT_LIST_HEAD(&ei->i_orphan); 3441 3442 /* 3443 * Set transaction id's of transactions that have to be committed 3444 * to finish f[data]sync. We set them to currently running transaction 3445 * as we cannot be sure that the inode or some of its metadata isn't 3446 * part of the transaction - the inode could have been reclaimed and 3447 * now it is reread from disk. 3448 */ 3449 if (journal) { 3450 transaction_t *transaction; 3451 tid_t tid; 3452 3453 read_lock(&journal->j_state_lock); 3454 if (journal->j_running_transaction) 3455 transaction = journal->j_running_transaction; 3456 else 3457 transaction = journal->j_committing_transaction; 3458 if (transaction) 3459 tid = transaction->t_tid; 3460 else 3461 tid = journal->j_commit_sequence; 3462 read_unlock(&journal->j_state_lock); 3463 ei->i_sync_tid = tid; 3464 ei->i_datasync_tid = tid; 3465 } 3466 3467 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3468 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3469 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3470 EXT4_INODE_SIZE(inode->i_sb)) { 3471 ret = -EIO; 3472 goto bad_inode; 3473 } 3474 if (ei->i_extra_isize == 0) { 3475 /* The extra space is currently unused. Use it. */ 3476 ei->i_extra_isize = sizeof(struct ext4_inode) - 3477 EXT4_GOOD_OLD_INODE_SIZE; 3478 } else { 3479 __le32 *magic = (void *)raw_inode + 3480 EXT4_GOOD_OLD_INODE_SIZE + 3481 ei->i_extra_isize; 3482 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 3483 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3484 } 3485 } else 3486 ei->i_extra_isize = 0; 3487 3488 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 3489 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 3490 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 3491 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 3492 3493 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 3494 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3495 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 3496 inode->i_version |= 3497 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 3498 } 3499 3500 ret = 0; 3501 if (ei->i_file_acl && 3502 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 3503 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 3504 ei->i_file_acl); 3505 ret = -EIO; 3506 goto bad_inode; 3507 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3508 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3509 (S_ISLNK(inode->i_mode) && 3510 !ext4_inode_is_fast_symlink(inode))) 3511 /* Validate extent which is part of inode */ 3512 ret = ext4_ext_check_inode(inode); 3513 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3514 (S_ISLNK(inode->i_mode) && 3515 !ext4_inode_is_fast_symlink(inode))) { 3516 /* Validate block references which are part of inode */ 3517 ret = ext4_ind_check_inode(inode); 3518 } 3519 if (ret) 3520 goto bad_inode; 3521 3522 if (S_ISREG(inode->i_mode)) { 3523 inode->i_op = &ext4_file_inode_operations; 3524 inode->i_fop = &ext4_file_operations; 3525 ext4_set_aops(inode); 3526 } else if (S_ISDIR(inode->i_mode)) { 3527 inode->i_op = &ext4_dir_inode_operations; 3528 inode->i_fop = &ext4_dir_operations; 3529 } else if (S_ISLNK(inode->i_mode)) { 3530 if (ext4_inode_is_fast_symlink(inode)) { 3531 inode->i_op = &ext4_fast_symlink_inode_operations; 3532 nd_terminate_link(ei->i_data, inode->i_size, 3533 sizeof(ei->i_data) - 1); 3534 } else { 3535 inode->i_op = &ext4_symlink_inode_operations; 3536 ext4_set_aops(inode); 3537 } 3538 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 3539 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 3540 inode->i_op = &ext4_special_inode_operations; 3541 if (raw_inode->i_block[0]) 3542 init_special_inode(inode, inode->i_mode, 3543 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 3544 else 3545 init_special_inode(inode, inode->i_mode, 3546 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 3547 } else { 3548 ret = -EIO; 3549 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 3550 goto bad_inode; 3551 } 3552 brelse(iloc.bh); 3553 ext4_set_inode_flags(inode); 3554 unlock_new_inode(inode); 3555 return inode; 3556 3557 bad_inode: 3558 brelse(iloc.bh); 3559 iget_failed(inode); 3560 return ERR_PTR(ret); 3561 } 3562 3563 static int ext4_inode_blocks_set(handle_t *handle, 3564 struct ext4_inode *raw_inode, 3565 struct ext4_inode_info *ei) 3566 { 3567 struct inode *inode = &(ei->vfs_inode); 3568 u64 i_blocks = inode->i_blocks; 3569 struct super_block *sb = inode->i_sb; 3570 3571 if (i_blocks <= ~0U) { 3572 /* 3573 * i_blocks can be represnted in a 32 bit variable 3574 * as multiple of 512 bytes 3575 */ 3576 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3577 raw_inode->i_blocks_high = 0; 3578 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3579 return 0; 3580 } 3581 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 3582 return -EFBIG; 3583 3584 if (i_blocks <= 0xffffffffffffULL) { 3585 /* 3586 * i_blocks can be represented in a 48 bit variable 3587 * as multiple of 512 bytes 3588 */ 3589 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3590 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 3591 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3592 } else { 3593 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3594 /* i_block is stored in file system block size */ 3595 i_blocks = i_blocks >> (inode->i_blkbits - 9); 3596 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3597 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 3598 } 3599 return 0; 3600 } 3601 3602 /* 3603 * Post the struct inode info into an on-disk inode location in the 3604 * buffer-cache. This gobbles the caller's reference to the 3605 * buffer_head in the inode location struct. 3606 * 3607 * The caller must have write access to iloc->bh. 3608 */ 3609 static int ext4_do_update_inode(handle_t *handle, 3610 struct inode *inode, 3611 struct ext4_iloc *iloc) 3612 { 3613 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 3614 struct ext4_inode_info *ei = EXT4_I(inode); 3615 struct buffer_head *bh = iloc->bh; 3616 int err = 0, rc, block; 3617 3618 /* For fields not not tracking in the in-memory inode, 3619 * initialise them to zero for new inodes. */ 3620 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 3621 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 3622 3623 ext4_get_inode_flags(ei); 3624 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 3625 if (!(test_opt(inode->i_sb, NO_UID32))) { 3626 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 3627 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 3628 /* 3629 * Fix up interoperability with old kernels. Otherwise, old inodes get 3630 * re-used with the upper 16 bits of the uid/gid intact 3631 */ 3632 if (!ei->i_dtime) { 3633 raw_inode->i_uid_high = 3634 cpu_to_le16(high_16_bits(inode->i_uid)); 3635 raw_inode->i_gid_high = 3636 cpu_to_le16(high_16_bits(inode->i_gid)); 3637 } else { 3638 raw_inode->i_uid_high = 0; 3639 raw_inode->i_gid_high = 0; 3640 } 3641 } else { 3642 raw_inode->i_uid_low = 3643 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 3644 raw_inode->i_gid_low = 3645 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 3646 raw_inode->i_uid_high = 0; 3647 raw_inode->i_gid_high = 0; 3648 } 3649 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 3650 3651 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 3652 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 3653 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 3654 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 3655 3656 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 3657 goto out_brelse; 3658 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 3659 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 3660 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 3661 cpu_to_le32(EXT4_OS_HURD)) 3662 raw_inode->i_file_acl_high = 3663 cpu_to_le16(ei->i_file_acl >> 32); 3664 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 3665 ext4_isize_set(raw_inode, ei->i_disksize); 3666 if (ei->i_disksize > 0x7fffffffULL) { 3667 struct super_block *sb = inode->i_sb; 3668 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 3669 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 3670 EXT4_SB(sb)->s_es->s_rev_level == 3671 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 3672 /* If this is the first large file 3673 * created, add a flag to the superblock. 3674 */ 3675 err = ext4_journal_get_write_access(handle, 3676 EXT4_SB(sb)->s_sbh); 3677 if (err) 3678 goto out_brelse; 3679 ext4_update_dynamic_rev(sb); 3680 EXT4_SET_RO_COMPAT_FEATURE(sb, 3681 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 3682 sb->s_dirt = 1; 3683 ext4_handle_sync(handle); 3684 err = ext4_handle_dirty_metadata(handle, NULL, 3685 EXT4_SB(sb)->s_sbh); 3686 } 3687 } 3688 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 3689 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 3690 if (old_valid_dev(inode->i_rdev)) { 3691 raw_inode->i_block[0] = 3692 cpu_to_le32(old_encode_dev(inode->i_rdev)); 3693 raw_inode->i_block[1] = 0; 3694 } else { 3695 raw_inode->i_block[0] = 0; 3696 raw_inode->i_block[1] = 3697 cpu_to_le32(new_encode_dev(inode->i_rdev)); 3698 raw_inode->i_block[2] = 0; 3699 } 3700 } else 3701 for (block = 0; block < EXT4_N_BLOCKS; block++) 3702 raw_inode->i_block[block] = ei->i_data[block]; 3703 3704 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 3705 if (ei->i_extra_isize) { 3706 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 3707 raw_inode->i_version_hi = 3708 cpu_to_le32(inode->i_version >> 32); 3709 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 3710 } 3711 3712 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 3713 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 3714 if (!err) 3715 err = rc; 3716 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 3717 3718 ext4_update_inode_fsync_trans(handle, inode, 0); 3719 out_brelse: 3720 brelse(bh); 3721 ext4_std_error(inode->i_sb, err); 3722 return err; 3723 } 3724 3725 /* 3726 * ext4_write_inode() 3727 * 3728 * We are called from a few places: 3729 * 3730 * - Within generic_file_write() for O_SYNC files. 3731 * Here, there will be no transaction running. We wait for any running 3732 * trasnaction to commit. 3733 * 3734 * - Within sys_sync(), kupdate and such. 3735 * We wait on commit, if tol to. 3736 * 3737 * - Within prune_icache() (PF_MEMALLOC == true) 3738 * Here we simply return. We can't afford to block kswapd on the 3739 * journal commit. 3740 * 3741 * In all cases it is actually safe for us to return without doing anything, 3742 * because the inode has been copied into a raw inode buffer in 3743 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 3744 * knfsd. 3745 * 3746 * Note that we are absolutely dependent upon all inode dirtiers doing the 3747 * right thing: they *must* call mark_inode_dirty() after dirtying info in 3748 * which we are interested. 3749 * 3750 * It would be a bug for them to not do this. The code: 3751 * 3752 * mark_inode_dirty(inode) 3753 * stuff(); 3754 * inode->i_size = expr; 3755 * 3756 * is in error because a kswapd-driven write_inode() could occur while 3757 * `stuff()' is running, and the new i_size will be lost. Plus the inode 3758 * will no longer be on the superblock's dirty inode list. 3759 */ 3760 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 3761 { 3762 int err; 3763 3764 if (current->flags & PF_MEMALLOC) 3765 return 0; 3766 3767 if (EXT4_SB(inode->i_sb)->s_journal) { 3768 if (ext4_journal_current_handle()) { 3769 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 3770 dump_stack(); 3771 return -EIO; 3772 } 3773 3774 if (wbc->sync_mode != WB_SYNC_ALL) 3775 return 0; 3776 3777 err = ext4_force_commit(inode->i_sb); 3778 } else { 3779 struct ext4_iloc iloc; 3780 3781 err = __ext4_get_inode_loc(inode, &iloc, 0); 3782 if (err) 3783 return err; 3784 if (wbc->sync_mode == WB_SYNC_ALL) 3785 sync_dirty_buffer(iloc.bh); 3786 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 3787 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 3788 "IO error syncing inode"); 3789 err = -EIO; 3790 } 3791 brelse(iloc.bh); 3792 } 3793 return err; 3794 } 3795 3796 /* 3797 * ext4_setattr() 3798 * 3799 * Called from notify_change. 3800 * 3801 * We want to trap VFS attempts to truncate the file as soon as 3802 * possible. In particular, we want to make sure that when the VFS 3803 * shrinks i_size, we put the inode on the orphan list and modify 3804 * i_disksize immediately, so that during the subsequent flushing of 3805 * dirty pages and freeing of disk blocks, we can guarantee that any 3806 * commit will leave the blocks being flushed in an unused state on 3807 * disk. (On recovery, the inode will get truncated and the blocks will 3808 * be freed, so we have a strong guarantee that no future commit will 3809 * leave these blocks visible to the user.) 3810 * 3811 * Another thing we have to assure is that if we are in ordered mode 3812 * and inode is still attached to the committing transaction, we must 3813 * we start writeout of all the dirty pages which are being truncated. 3814 * This way we are sure that all the data written in the previous 3815 * transaction are already on disk (truncate waits for pages under 3816 * writeback). 3817 * 3818 * Called with inode->i_mutex down. 3819 */ 3820 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 3821 { 3822 struct inode *inode = dentry->d_inode; 3823 int error, rc = 0; 3824 int orphan = 0; 3825 const unsigned int ia_valid = attr->ia_valid; 3826 3827 error = inode_change_ok(inode, attr); 3828 if (error) 3829 return error; 3830 3831 if (is_quota_modification(inode, attr)) 3832 dquot_initialize(inode); 3833 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 3834 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 3835 handle_t *handle; 3836 3837 /* (user+group)*(old+new) structure, inode write (sb, 3838 * inode block, ? - but truncate inode update has it) */ 3839 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 3840 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3); 3841 if (IS_ERR(handle)) { 3842 error = PTR_ERR(handle); 3843 goto err_out; 3844 } 3845 error = dquot_transfer(inode, attr); 3846 if (error) { 3847 ext4_journal_stop(handle); 3848 return error; 3849 } 3850 /* Update corresponding info in inode so that everything is in 3851 * one transaction */ 3852 if (attr->ia_valid & ATTR_UID) 3853 inode->i_uid = attr->ia_uid; 3854 if (attr->ia_valid & ATTR_GID) 3855 inode->i_gid = attr->ia_gid; 3856 error = ext4_mark_inode_dirty(handle, inode); 3857 ext4_journal_stop(handle); 3858 } 3859 3860 if (attr->ia_valid & ATTR_SIZE) { 3861 inode_dio_wait(inode); 3862 3863 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3864 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3865 3866 if (attr->ia_size > sbi->s_bitmap_maxbytes) 3867 return -EFBIG; 3868 } 3869 } 3870 3871 if (S_ISREG(inode->i_mode) && 3872 attr->ia_valid & ATTR_SIZE && 3873 (attr->ia_size < inode->i_size)) { 3874 handle_t *handle; 3875 3876 handle = ext4_journal_start(inode, 3); 3877 if (IS_ERR(handle)) { 3878 error = PTR_ERR(handle); 3879 goto err_out; 3880 } 3881 if (ext4_handle_valid(handle)) { 3882 error = ext4_orphan_add(handle, inode); 3883 orphan = 1; 3884 } 3885 EXT4_I(inode)->i_disksize = attr->ia_size; 3886 rc = ext4_mark_inode_dirty(handle, inode); 3887 if (!error) 3888 error = rc; 3889 ext4_journal_stop(handle); 3890 3891 if (ext4_should_order_data(inode)) { 3892 error = ext4_begin_ordered_truncate(inode, 3893 attr->ia_size); 3894 if (error) { 3895 /* Do as much error cleanup as possible */ 3896 handle = ext4_journal_start(inode, 3); 3897 if (IS_ERR(handle)) { 3898 ext4_orphan_del(NULL, inode); 3899 goto err_out; 3900 } 3901 ext4_orphan_del(handle, inode); 3902 orphan = 0; 3903 ext4_journal_stop(handle); 3904 goto err_out; 3905 } 3906 } 3907 } 3908 3909 if (attr->ia_valid & ATTR_SIZE) { 3910 if (attr->ia_size != i_size_read(inode)) { 3911 truncate_setsize(inode, attr->ia_size); 3912 ext4_truncate(inode); 3913 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3914 ext4_truncate(inode); 3915 } 3916 3917 if (!rc) { 3918 setattr_copy(inode, attr); 3919 mark_inode_dirty(inode); 3920 } 3921 3922 /* 3923 * If the call to ext4_truncate failed to get a transaction handle at 3924 * all, we need to clean up the in-core orphan list manually. 3925 */ 3926 if (orphan && inode->i_nlink) 3927 ext4_orphan_del(NULL, inode); 3928 3929 if (!rc && (ia_valid & ATTR_MODE)) 3930 rc = ext4_acl_chmod(inode); 3931 3932 err_out: 3933 ext4_std_error(inode->i_sb, error); 3934 if (!error) 3935 error = rc; 3936 return error; 3937 } 3938 3939 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 3940 struct kstat *stat) 3941 { 3942 struct inode *inode; 3943 unsigned long delalloc_blocks; 3944 3945 inode = dentry->d_inode; 3946 generic_fillattr(inode, stat); 3947 3948 /* 3949 * We can't update i_blocks if the block allocation is delayed 3950 * otherwise in the case of system crash before the real block 3951 * allocation is done, we will have i_blocks inconsistent with 3952 * on-disk file blocks. 3953 * We always keep i_blocks updated together with real 3954 * allocation. But to not confuse with user, stat 3955 * will return the blocks that include the delayed allocation 3956 * blocks for this file. 3957 */ 3958 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 3959 3960 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 3961 return 0; 3962 } 3963 3964 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 3965 { 3966 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 3967 return ext4_ind_trans_blocks(inode, nrblocks, chunk); 3968 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 3969 } 3970 3971 /* 3972 * Account for index blocks, block groups bitmaps and block group 3973 * descriptor blocks if modify datablocks and index blocks 3974 * worse case, the indexs blocks spread over different block groups 3975 * 3976 * If datablocks are discontiguous, they are possible to spread over 3977 * different block groups too. If they are contiuguous, with flexbg, 3978 * they could still across block group boundary. 3979 * 3980 * Also account for superblock, inode, quota and xattr blocks 3981 */ 3982 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 3983 { 3984 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 3985 int gdpblocks; 3986 int idxblocks; 3987 int ret = 0; 3988 3989 /* 3990 * How many index blocks need to touch to modify nrblocks? 3991 * The "Chunk" flag indicating whether the nrblocks is 3992 * physically contiguous on disk 3993 * 3994 * For Direct IO and fallocate, they calls get_block to allocate 3995 * one single extent at a time, so they could set the "Chunk" flag 3996 */ 3997 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 3998 3999 ret = idxblocks; 4000 4001 /* 4002 * Now let's see how many group bitmaps and group descriptors need 4003 * to account 4004 */ 4005 groups = idxblocks; 4006 if (chunk) 4007 groups += 1; 4008 else 4009 groups += nrblocks; 4010 4011 gdpblocks = groups; 4012 if (groups > ngroups) 4013 groups = ngroups; 4014 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4015 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4016 4017 /* bitmaps and block group descriptor blocks */ 4018 ret += groups + gdpblocks; 4019 4020 /* Blocks for super block, inode, quota and xattr blocks */ 4021 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4022 4023 return ret; 4024 } 4025 4026 /* 4027 * Calculate the total number of credits to reserve to fit 4028 * the modification of a single pages into a single transaction, 4029 * which may include multiple chunks of block allocations. 4030 * 4031 * This could be called via ext4_write_begin() 4032 * 4033 * We need to consider the worse case, when 4034 * one new block per extent. 4035 */ 4036 int ext4_writepage_trans_blocks(struct inode *inode) 4037 { 4038 int bpp = ext4_journal_blocks_per_page(inode); 4039 int ret; 4040 4041 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4042 4043 /* Account for data blocks for journalled mode */ 4044 if (ext4_should_journal_data(inode)) 4045 ret += bpp; 4046 return ret; 4047 } 4048 4049 /* 4050 * Calculate the journal credits for a chunk of data modification. 4051 * 4052 * This is called from DIO, fallocate or whoever calling 4053 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4054 * 4055 * journal buffers for data blocks are not included here, as DIO 4056 * and fallocate do no need to journal data buffers. 4057 */ 4058 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4059 { 4060 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4061 } 4062 4063 /* 4064 * The caller must have previously called ext4_reserve_inode_write(). 4065 * Give this, we know that the caller already has write access to iloc->bh. 4066 */ 4067 int ext4_mark_iloc_dirty(handle_t *handle, 4068 struct inode *inode, struct ext4_iloc *iloc) 4069 { 4070 int err = 0; 4071 4072 if (test_opt(inode->i_sb, I_VERSION)) 4073 inode_inc_iversion(inode); 4074 4075 /* the do_update_inode consumes one bh->b_count */ 4076 get_bh(iloc->bh); 4077 4078 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4079 err = ext4_do_update_inode(handle, inode, iloc); 4080 put_bh(iloc->bh); 4081 return err; 4082 } 4083 4084 /* 4085 * On success, We end up with an outstanding reference count against 4086 * iloc->bh. This _must_ be cleaned up later. 4087 */ 4088 4089 int 4090 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4091 struct ext4_iloc *iloc) 4092 { 4093 int err; 4094 4095 err = ext4_get_inode_loc(inode, iloc); 4096 if (!err) { 4097 BUFFER_TRACE(iloc->bh, "get_write_access"); 4098 err = ext4_journal_get_write_access(handle, iloc->bh); 4099 if (err) { 4100 brelse(iloc->bh); 4101 iloc->bh = NULL; 4102 } 4103 } 4104 ext4_std_error(inode->i_sb, err); 4105 return err; 4106 } 4107 4108 /* 4109 * Expand an inode by new_extra_isize bytes. 4110 * Returns 0 on success or negative error number on failure. 4111 */ 4112 static int ext4_expand_extra_isize(struct inode *inode, 4113 unsigned int new_extra_isize, 4114 struct ext4_iloc iloc, 4115 handle_t *handle) 4116 { 4117 struct ext4_inode *raw_inode; 4118 struct ext4_xattr_ibody_header *header; 4119 4120 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4121 return 0; 4122 4123 raw_inode = ext4_raw_inode(&iloc); 4124 4125 header = IHDR(inode, raw_inode); 4126 4127 /* No extended attributes present */ 4128 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4129 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4130 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4131 new_extra_isize); 4132 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4133 return 0; 4134 } 4135 4136 /* try to expand with EAs present */ 4137 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4138 raw_inode, handle); 4139 } 4140 4141 /* 4142 * What we do here is to mark the in-core inode as clean with respect to inode 4143 * dirtiness (it may still be data-dirty). 4144 * This means that the in-core inode may be reaped by prune_icache 4145 * without having to perform any I/O. This is a very good thing, 4146 * because *any* task may call prune_icache - even ones which 4147 * have a transaction open against a different journal. 4148 * 4149 * Is this cheating? Not really. Sure, we haven't written the 4150 * inode out, but prune_icache isn't a user-visible syncing function. 4151 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4152 * we start and wait on commits. 4153 * 4154 * Is this efficient/effective? Well, we're being nice to the system 4155 * by cleaning up our inodes proactively so they can be reaped 4156 * without I/O. But we are potentially leaving up to five seconds' 4157 * worth of inodes floating about which prune_icache wants us to 4158 * write out. One way to fix that would be to get prune_icache() 4159 * to do a write_super() to free up some memory. It has the desired 4160 * effect. 4161 */ 4162 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4163 { 4164 struct ext4_iloc iloc; 4165 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4166 static unsigned int mnt_count; 4167 int err, ret; 4168 4169 might_sleep(); 4170 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4171 err = ext4_reserve_inode_write(handle, inode, &iloc); 4172 if (ext4_handle_valid(handle) && 4173 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4174 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4175 /* 4176 * We need extra buffer credits since we may write into EA block 4177 * with this same handle. If journal_extend fails, then it will 4178 * only result in a minor loss of functionality for that inode. 4179 * If this is felt to be critical, then e2fsck should be run to 4180 * force a large enough s_min_extra_isize. 4181 */ 4182 if ((jbd2_journal_extend(handle, 4183 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4184 ret = ext4_expand_extra_isize(inode, 4185 sbi->s_want_extra_isize, 4186 iloc, handle); 4187 if (ret) { 4188 ext4_set_inode_state(inode, 4189 EXT4_STATE_NO_EXPAND); 4190 if (mnt_count != 4191 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4192 ext4_warning(inode->i_sb, 4193 "Unable to expand inode %lu. Delete" 4194 " some EAs or run e2fsck.", 4195 inode->i_ino); 4196 mnt_count = 4197 le16_to_cpu(sbi->s_es->s_mnt_count); 4198 } 4199 } 4200 } 4201 } 4202 if (!err) 4203 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4204 return err; 4205 } 4206 4207 /* 4208 * ext4_dirty_inode() is called from __mark_inode_dirty() 4209 * 4210 * We're really interested in the case where a file is being extended. 4211 * i_size has been changed by generic_commit_write() and we thus need 4212 * to include the updated inode in the current transaction. 4213 * 4214 * Also, dquot_alloc_block() will always dirty the inode when blocks 4215 * are allocated to the file. 4216 * 4217 * If the inode is marked synchronous, we don't honour that here - doing 4218 * so would cause a commit on atime updates, which we don't bother doing. 4219 * We handle synchronous inodes at the highest possible level. 4220 */ 4221 void ext4_dirty_inode(struct inode *inode, int flags) 4222 { 4223 handle_t *handle; 4224 4225 handle = ext4_journal_start(inode, 2); 4226 if (IS_ERR(handle)) 4227 goto out; 4228 4229 ext4_mark_inode_dirty(handle, inode); 4230 4231 ext4_journal_stop(handle); 4232 out: 4233 return; 4234 } 4235 4236 #if 0 4237 /* 4238 * Bind an inode's backing buffer_head into this transaction, to prevent 4239 * it from being flushed to disk early. Unlike 4240 * ext4_reserve_inode_write, this leaves behind no bh reference and 4241 * returns no iloc structure, so the caller needs to repeat the iloc 4242 * lookup to mark the inode dirty later. 4243 */ 4244 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4245 { 4246 struct ext4_iloc iloc; 4247 4248 int err = 0; 4249 if (handle) { 4250 err = ext4_get_inode_loc(inode, &iloc); 4251 if (!err) { 4252 BUFFER_TRACE(iloc.bh, "get_write_access"); 4253 err = jbd2_journal_get_write_access(handle, iloc.bh); 4254 if (!err) 4255 err = ext4_handle_dirty_metadata(handle, 4256 NULL, 4257 iloc.bh); 4258 brelse(iloc.bh); 4259 } 4260 } 4261 ext4_std_error(inode->i_sb, err); 4262 return err; 4263 } 4264 #endif 4265 4266 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4267 { 4268 journal_t *journal; 4269 handle_t *handle; 4270 int err; 4271 4272 /* 4273 * We have to be very careful here: changing a data block's 4274 * journaling status dynamically is dangerous. If we write a 4275 * data block to the journal, change the status and then delete 4276 * that block, we risk forgetting to revoke the old log record 4277 * from the journal and so a subsequent replay can corrupt data. 4278 * So, first we make sure that the journal is empty and that 4279 * nobody is changing anything. 4280 */ 4281 4282 journal = EXT4_JOURNAL(inode); 4283 if (!journal) 4284 return 0; 4285 if (is_journal_aborted(journal)) 4286 return -EROFS; 4287 4288 jbd2_journal_lock_updates(journal); 4289 jbd2_journal_flush(journal); 4290 4291 /* 4292 * OK, there are no updates running now, and all cached data is 4293 * synced to disk. We are now in a completely consistent state 4294 * which doesn't have anything in the journal, and we know that 4295 * no filesystem updates are running, so it is safe to modify 4296 * the inode's in-core data-journaling state flag now. 4297 */ 4298 4299 if (val) 4300 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4301 else 4302 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4303 ext4_set_aops(inode); 4304 4305 jbd2_journal_unlock_updates(journal); 4306 4307 /* Finally we can mark the inode as dirty. */ 4308 4309 handle = ext4_journal_start(inode, 1); 4310 if (IS_ERR(handle)) 4311 return PTR_ERR(handle); 4312 4313 err = ext4_mark_inode_dirty(handle, inode); 4314 ext4_handle_sync(handle); 4315 ext4_journal_stop(handle); 4316 ext4_std_error(inode->i_sb, err); 4317 4318 return err; 4319 } 4320 4321 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4322 { 4323 return !buffer_mapped(bh); 4324 } 4325 4326 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 4327 { 4328 struct page *page = vmf->page; 4329 loff_t size; 4330 unsigned long len; 4331 int ret; 4332 struct file *file = vma->vm_file; 4333 struct inode *inode = file->f_path.dentry->d_inode; 4334 struct address_space *mapping = inode->i_mapping; 4335 handle_t *handle; 4336 get_block_t *get_block; 4337 int retries = 0; 4338 4339 /* 4340 * This check is racy but catches the common case. We rely on 4341 * __block_page_mkwrite() to do a reliable check. 4342 */ 4343 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 4344 /* Delalloc case is easy... */ 4345 if (test_opt(inode->i_sb, DELALLOC) && 4346 !ext4_should_journal_data(inode) && 4347 !ext4_nonda_switch(inode->i_sb)) { 4348 do { 4349 ret = __block_page_mkwrite(vma, vmf, 4350 ext4_da_get_block_prep); 4351 } while (ret == -ENOSPC && 4352 ext4_should_retry_alloc(inode->i_sb, &retries)); 4353 goto out_ret; 4354 } 4355 4356 lock_page(page); 4357 size = i_size_read(inode); 4358 /* Page got truncated from under us? */ 4359 if (page->mapping != mapping || page_offset(page) > size) { 4360 unlock_page(page); 4361 ret = VM_FAULT_NOPAGE; 4362 goto out; 4363 } 4364 4365 if (page->index == size >> PAGE_CACHE_SHIFT) 4366 len = size & ~PAGE_CACHE_MASK; 4367 else 4368 len = PAGE_CACHE_SIZE; 4369 /* 4370 * Return if we have all the buffers mapped. This avoids the need to do 4371 * journal_start/journal_stop which can block and take a long time 4372 */ 4373 if (page_has_buffers(page)) { 4374 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 4375 ext4_bh_unmapped)) { 4376 /* Wait so that we don't change page under IO */ 4377 wait_on_page_writeback(page); 4378 ret = VM_FAULT_LOCKED; 4379 goto out; 4380 } 4381 } 4382 unlock_page(page); 4383 /* OK, we need to fill the hole... */ 4384 if (ext4_should_dioread_nolock(inode)) 4385 get_block = ext4_get_block_write; 4386 else 4387 get_block = ext4_get_block; 4388 retry_alloc: 4389 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 4390 if (IS_ERR(handle)) { 4391 ret = VM_FAULT_SIGBUS; 4392 goto out; 4393 } 4394 ret = __block_page_mkwrite(vma, vmf, get_block); 4395 if (!ret && ext4_should_journal_data(inode)) { 4396 if (walk_page_buffers(handle, page_buffers(page), 0, 4397 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 4398 unlock_page(page); 4399 ret = VM_FAULT_SIGBUS; 4400 goto out; 4401 } 4402 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 4403 } 4404 ext4_journal_stop(handle); 4405 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 4406 goto retry_alloc; 4407 out_ret: 4408 ret = block_page_mkwrite_return(ret); 4409 out: 4410 return ret; 4411 } 4412