xref: /openbmc/linux/fs/ext4/inode.c (revision 09edf4d381957b144440bac18a4769c53063b943)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43 
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48 
49 #include <trace/events/ext4.h>
50 
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52 
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 			      struct ext4_inode_info *ei)
55 {
56 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 	__u32 csum;
58 	__u16 dummy_csum = 0;
59 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 	unsigned int csum_size = sizeof(dummy_csum);
61 
62 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 	offset += csum_size;
65 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
67 
68 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 		offset = offsetof(struct ext4_inode, i_checksum_hi);
70 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 				   EXT4_GOOD_OLD_INODE_SIZE,
72 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
73 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 					   csum_size);
76 			offset += csum_size;
77 		}
78 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
80 	}
81 
82 	return csum;
83 }
84 
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 				  struct ext4_inode_info *ei)
87 {
88 	__u32 provided, calculated;
89 
90 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 	    cpu_to_le32(EXT4_OS_LINUX) ||
92 	    !ext4_has_metadata_csum(inode->i_sb))
93 		return 1;
94 
95 	provided = le16_to_cpu(raw->i_checksum_lo);
96 	calculated = ext4_inode_csum(inode, raw, ei);
97 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 	else
101 		calculated &= 0xFFFF;
102 
103 	return provided == calculated;
104 }
105 
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 				struct ext4_inode_info *ei)
108 {
109 	__u32 csum;
110 
111 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 	    cpu_to_le32(EXT4_OS_LINUX) ||
113 	    !ext4_has_metadata_csum(inode->i_sb))
114 		return;
115 
116 	csum = ext4_inode_csum(inode, raw, ei);
117 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122 
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 					      loff_t new_size)
125 {
126 	trace_ext4_begin_ordered_truncate(inode, new_size);
127 	/*
128 	 * If jinode is zero, then we never opened the file for
129 	 * writing, so there's no need to call
130 	 * jbd2_journal_begin_ordered_truncate() since there's no
131 	 * outstanding writes we need to flush.
132 	 */
133 	if (!EXT4_I(inode)->jinode)
134 		return 0;
135 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 						   EXT4_I(inode)->jinode,
137 						   new_size);
138 }
139 
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 				unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 				  int pextents);
146 
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156 
157 		if (ext4_has_inline_data(inode))
158 			return 0;
159 
160 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161 	}
162 	return S_ISLNK(inode->i_mode) && inode->i_size &&
163 	       (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165 
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172 				 int nblocks)
173 {
174 	int ret;
175 
176 	/*
177 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
178 	 * moment, get_block can be called only for blocks inside i_size since
179 	 * page cache has been already dropped and writes are blocked by
180 	 * i_mutex. So we can safely drop the i_data_sem here.
181 	 */
182 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
183 	jbd_debug(2, "restarting handle %p\n", handle);
184 	up_write(&EXT4_I(inode)->i_data_sem);
185 	ret = ext4_journal_restart(handle, nblocks);
186 	down_write(&EXT4_I(inode)->i_data_sem);
187 	ext4_discard_preallocations(inode);
188 
189 	return ret;
190 }
191 
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext4_evict_inode(struct inode *inode)
196 {
197 	handle_t *handle;
198 	int err;
199 	int extra_credits = 3;
200 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
201 
202 	trace_ext4_evict_inode(inode);
203 
204 	if (inode->i_nlink) {
205 		/*
206 		 * When journalling data dirty buffers are tracked only in the
207 		 * journal. So although mm thinks everything is clean and
208 		 * ready for reaping the inode might still have some pages to
209 		 * write in the running transaction or waiting to be
210 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
211 		 * (via truncate_inode_pages()) to discard these buffers can
212 		 * cause data loss. Also even if we did not discard these
213 		 * buffers, we would have no way to find them after the inode
214 		 * is reaped and thus user could see stale data if he tries to
215 		 * read them before the transaction is checkpointed. So be
216 		 * careful and force everything to disk here... We use
217 		 * ei->i_datasync_tid to store the newest transaction
218 		 * containing inode's data.
219 		 *
220 		 * Note that directories do not have this problem because they
221 		 * don't use page cache.
222 		 */
223 		if (inode->i_ino != EXT4_JOURNAL_INO &&
224 		    ext4_should_journal_data(inode) &&
225 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226 		    inode->i_data.nrpages) {
227 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229 
230 			jbd2_complete_transaction(journal, commit_tid);
231 			filemap_write_and_wait(&inode->i_data);
232 		}
233 		truncate_inode_pages_final(&inode->i_data);
234 
235 		goto no_delete;
236 	}
237 
238 	if (is_bad_inode(inode))
239 		goto no_delete;
240 	dquot_initialize(inode);
241 
242 	if (ext4_should_order_data(inode))
243 		ext4_begin_ordered_truncate(inode, 0);
244 	truncate_inode_pages_final(&inode->i_data);
245 
246 	/*
247 	 * Protect us against freezing - iput() caller didn't have to have any
248 	 * protection against it
249 	 */
250 	sb_start_intwrite(inode->i_sb);
251 
252 	if (!IS_NOQUOTA(inode))
253 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254 
255 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256 				 ext4_blocks_for_truncate(inode)+extra_credits);
257 	if (IS_ERR(handle)) {
258 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
259 		/*
260 		 * If we're going to skip the normal cleanup, we still need to
261 		 * make sure that the in-core orphan linked list is properly
262 		 * cleaned up.
263 		 */
264 		ext4_orphan_del(NULL, inode);
265 		sb_end_intwrite(inode->i_sb);
266 		goto no_delete;
267 	}
268 
269 	if (IS_SYNC(inode))
270 		ext4_handle_sync(handle);
271 
272 	/*
273 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
274 	 * special handling of symlinks here because i_size is used to
275 	 * determine whether ext4_inode_info->i_data contains symlink data or
276 	 * block mappings. Setting i_size to 0 will remove its fast symlink
277 	 * status. Erase i_data so that it becomes a valid empty block map.
278 	 */
279 	if (ext4_inode_is_fast_symlink(inode))
280 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281 	inode->i_size = 0;
282 	err = ext4_mark_inode_dirty(handle, inode);
283 	if (err) {
284 		ext4_warning(inode->i_sb,
285 			     "couldn't mark inode dirty (err %d)", err);
286 		goto stop_handle;
287 	}
288 	if (inode->i_blocks) {
289 		err = ext4_truncate(inode);
290 		if (err) {
291 			ext4_error(inode->i_sb,
292 				   "couldn't truncate inode %lu (err %d)",
293 				   inode->i_ino, err);
294 			goto stop_handle;
295 		}
296 	}
297 
298 	/* Remove xattr references. */
299 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300 				      extra_credits);
301 	if (err) {
302 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304 		ext4_journal_stop(handle);
305 		ext4_orphan_del(NULL, inode);
306 		sb_end_intwrite(inode->i_sb);
307 		ext4_xattr_inode_array_free(ea_inode_array);
308 		goto no_delete;
309 	}
310 
311 	/*
312 	 * Kill off the orphan record which ext4_truncate created.
313 	 * AKPM: I think this can be inside the above `if'.
314 	 * Note that ext4_orphan_del() has to be able to cope with the
315 	 * deletion of a non-existent orphan - this is because we don't
316 	 * know if ext4_truncate() actually created an orphan record.
317 	 * (Well, we could do this if we need to, but heck - it works)
318 	 */
319 	ext4_orphan_del(handle, inode);
320 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
321 
322 	/*
323 	 * One subtle ordering requirement: if anything has gone wrong
324 	 * (transaction abort, IO errors, whatever), then we can still
325 	 * do these next steps (the fs will already have been marked as
326 	 * having errors), but we can't free the inode if the mark_dirty
327 	 * fails.
328 	 */
329 	if (ext4_mark_inode_dirty(handle, inode))
330 		/* If that failed, just do the required in-core inode clear. */
331 		ext4_clear_inode(inode);
332 	else
333 		ext4_free_inode(handle, inode);
334 	ext4_journal_stop(handle);
335 	sb_end_intwrite(inode->i_sb);
336 	ext4_xattr_inode_array_free(ea_inode_array);
337 	return;
338 no_delete:
339 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
340 }
341 
342 #ifdef CONFIG_QUOTA
343 qsize_t *ext4_get_reserved_space(struct inode *inode)
344 {
345 	return &EXT4_I(inode)->i_reserved_quota;
346 }
347 #endif
348 
349 /*
350  * Called with i_data_sem down, which is important since we can call
351  * ext4_discard_preallocations() from here.
352  */
353 void ext4_da_update_reserve_space(struct inode *inode,
354 					int used, int quota_claim)
355 {
356 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357 	struct ext4_inode_info *ei = EXT4_I(inode);
358 
359 	spin_lock(&ei->i_block_reservation_lock);
360 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361 	if (unlikely(used > ei->i_reserved_data_blocks)) {
362 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363 			 "with only %d reserved data blocks",
364 			 __func__, inode->i_ino, used,
365 			 ei->i_reserved_data_blocks);
366 		WARN_ON(1);
367 		used = ei->i_reserved_data_blocks;
368 	}
369 
370 	/* Update per-inode reservations */
371 	ei->i_reserved_data_blocks -= used;
372 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373 
374 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
375 
376 	/* Update quota subsystem for data blocks */
377 	if (quota_claim)
378 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
379 	else {
380 		/*
381 		 * We did fallocate with an offset that is already delayed
382 		 * allocated. So on delayed allocated writeback we should
383 		 * not re-claim the quota for fallocated blocks.
384 		 */
385 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
386 	}
387 
388 	/*
389 	 * If we have done all the pending block allocations and if
390 	 * there aren't any writers on the inode, we can discard the
391 	 * inode's preallocations.
392 	 */
393 	if ((ei->i_reserved_data_blocks == 0) &&
394 	    !inode_is_open_for_write(inode))
395 		ext4_discard_preallocations(inode);
396 }
397 
398 static int __check_block_validity(struct inode *inode, const char *func,
399 				unsigned int line,
400 				struct ext4_map_blocks *map)
401 {
402 	if (ext4_has_feature_journal(inode->i_sb) &&
403 	    (inode->i_ino ==
404 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
405 		return 0;
406 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
407 				   map->m_len)) {
408 		ext4_error_inode(inode, func, line, map->m_pblk,
409 				 "lblock %lu mapped to illegal pblock %llu "
410 				 "(length %d)", (unsigned long) map->m_lblk,
411 				 map->m_pblk, map->m_len);
412 		return -EFSCORRUPTED;
413 	}
414 	return 0;
415 }
416 
417 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
418 		       ext4_lblk_t len)
419 {
420 	int ret;
421 
422 	if (IS_ENCRYPTED(inode))
423 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
424 
425 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
426 	if (ret > 0)
427 		ret = 0;
428 
429 	return ret;
430 }
431 
432 #define check_block_validity(inode, map)	\
433 	__check_block_validity((inode), __func__, __LINE__, (map))
434 
435 #ifdef ES_AGGRESSIVE_TEST
436 static void ext4_map_blocks_es_recheck(handle_t *handle,
437 				       struct inode *inode,
438 				       struct ext4_map_blocks *es_map,
439 				       struct ext4_map_blocks *map,
440 				       int flags)
441 {
442 	int retval;
443 
444 	map->m_flags = 0;
445 	/*
446 	 * There is a race window that the result is not the same.
447 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
448 	 * is that we lookup a block mapping in extent status tree with
449 	 * out taking i_data_sem.  So at the time the unwritten extent
450 	 * could be converted.
451 	 */
452 	down_read(&EXT4_I(inode)->i_data_sem);
453 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
454 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
455 					     EXT4_GET_BLOCKS_KEEP_SIZE);
456 	} else {
457 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
458 					     EXT4_GET_BLOCKS_KEEP_SIZE);
459 	}
460 	up_read((&EXT4_I(inode)->i_data_sem));
461 
462 	/*
463 	 * We don't check m_len because extent will be collpased in status
464 	 * tree.  So the m_len might not equal.
465 	 */
466 	if (es_map->m_lblk != map->m_lblk ||
467 	    es_map->m_flags != map->m_flags ||
468 	    es_map->m_pblk != map->m_pblk) {
469 		printk("ES cache assertion failed for inode: %lu "
470 		       "es_cached ex [%d/%d/%llu/%x] != "
471 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
473 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
474 		       map->m_len, map->m_pblk, map->m_flags,
475 		       retval, flags);
476 	}
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479 
480 /*
481  * The ext4_map_blocks() function tries to look up the requested blocks,
482  * and returns if the blocks are already mapped.
483  *
484  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485  * and store the allocated blocks in the result buffer head and mark it
486  * mapped.
487  *
488  * If file type is extents based, it will call ext4_ext_map_blocks(),
489  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490  * based files
491  *
492  * On success, it returns the number of blocks being mapped or allocated.  if
493  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
494  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, @map is returned as unmapped but we still do fill map->m_len to
498  * indicate the length of a hole starting at map->m_lblk.
499  *
500  * It returns the error in case of allocation failure.
501  */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503 		    struct ext4_map_blocks *map, int flags)
504 {
505 	struct extent_status es;
506 	int retval;
507 	int ret = 0;
508 #ifdef ES_AGGRESSIVE_TEST
509 	struct ext4_map_blocks orig_map;
510 
511 	memcpy(&orig_map, map, sizeof(*map));
512 #endif
513 
514 	map->m_flags = 0;
515 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
516 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
517 		  (unsigned long) map->m_lblk);
518 
519 	/*
520 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
521 	 */
522 	if (unlikely(map->m_len > INT_MAX))
523 		map->m_len = INT_MAX;
524 
525 	/* We can handle the block number less than EXT_MAX_BLOCKS */
526 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
527 		return -EFSCORRUPTED;
528 
529 	/* Lookup extent status tree firstly */
530 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
531 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
532 			map->m_pblk = ext4_es_pblock(&es) +
533 					map->m_lblk - es.es_lblk;
534 			map->m_flags |= ext4_es_is_written(&es) ?
535 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
536 			retval = es.es_len - (map->m_lblk - es.es_lblk);
537 			if (retval > map->m_len)
538 				retval = map->m_len;
539 			map->m_len = retval;
540 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541 			map->m_pblk = 0;
542 			retval = es.es_len - (map->m_lblk - es.es_lblk);
543 			if (retval > map->m_len)
544 				retval = map->m_len;
545 			map->m_len = retval;
546 			retval = 0;
547 		} else {
548 			BUG();
549 		}
550 #ifdef ES_AGGRESSIVE_TEST
551 		ext4_map_blocks_es_recheck(handle, inode, map,
552 					   &orig_map, flags);
553 #endif
554 		goto found;
555 	}
556 
557 	/*
558 	 * Try to see if we can get the block without requesting a new
559 	 * file system block.
560 	 */
561 	down_read(&EXT4_I(inode)->i_data_sem);
562 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
563 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
564 					     EXT4_GET_BLOCKS_KEEP_SIZE);
565 	} else {
566 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
567 					     EXT4_GET_BLOCKS_KEEP_SIZE);
568 	}
569 	if (retval > 0) {
570 		unsigned int status;
571 
572 		if (unlikely(retval != map->m_len)) {
573 			ext4_warning(inode->i_sb,
574 				     "ES len assertion failed for inode "
575 				     "%lu: retval %d != map->m_len %d",
576 				     inode->i_ino, retval, map->m_len);
577 			WARN_ON(1);
578 		}
579 
580 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
581 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
582 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
583 		    !(status & EXTENT_STATUS_WRITTEN) &&
584 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
585 				       map->m_lblk + map->m_len - 1))
586 			status |= EXTENT_STATUS_DELAYED;
587 		ret = ext4_es_insert_extent(inode, map->m_lblk,
588 					    map->m_len, map->m_pblk, status);
589 		if (ret < 0)
590 			retval = ret;
591 	}
592 	up_read((&EXT4_I(inode)->i_data_sem));
593 
594 found:
595 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
596 		ret = check_block_validity(inode, map);
597 		if (ret != 0)
598 			return ret;
599 	}
600 
601 	/* If it is only a block(s) look up */
602 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
603 		return retval;
604 
605 	/*
606 	 * Returns if the blocks have already allocated
607 	 *
608 	 * Note that if blocks have been preallocated
609 	 * ext4_ext_get_block() returns the create = 0
610 	 * with buffer head unmapped.
611 	 */
612 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
613 		/*
614 		 * If we need to convert extent to unwritten
615 		 * we continue and do the actual work in
616 		 * ext4_ext_map_blocks()
617 		 */
618 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
619 			return retval;
620 
621 	/*
622 	 * Here we clear m_flags because after allocating an new extent,
623 	 * it will be set again.
624 	 */
625 	map->m_flags &= ~EXT4_MAP_FLAGS;
626 
627 	/*
628 	 * New blocks allocate and/or writing to unwritten extent
629 	 * will possibly result in updating i_data, so we take
630 	 * the write lock of i_data_sem, and call get_block()
631 	 * with create == 1 flag.
632 	 */
633 	down_write(&EXT4_I(inode)->i_data_sem);
634 
635 	/*
636 	 * We need to check for EXT4 here because migrate
637 	 * could have changed the inode type in between
638 	 */
639 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
640 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
641 	} else {
642 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
643 
644 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
645 			/*
646 			 * We allocated new blocks which will result in
647 			 * i_data's format changing.  Force the migrate
648 			 * to fail by clearing migrate flags
649 			 */
650 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
651 		}
652 
653 		/*
654 		 * Update reserved blocks/metadata blocks after successful
655 		 * block allocation which had been deferred till now. We don't
656 		 * support fallocate for non extent files. So we can update
657 		 * reserve space here.
658 		 */
659 		if ((retval > 0) &&
660 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
661 			ext4_da_update_reserve_space(inode, retval, 1);
662 	}
663 
664 	if (retval > 0) {
665 		unsigned int status;
666 
667 		if (unlikely(retval != map->m_len)) {
668 			ext4_warning(inode->i_sb,
669 				     "ES len assertion failed for inode "
670 				     "%lu: retval %d != map->m_len %d",
671 				     inode->i_ino, retval, map->m_len);
672 			WARN_ON(1);
673 		}
674 
675 		/*
676 		 * We have to zeroout blocks before inserting them into extent
677 		 * status tree. Otherwise someone could look them up there and
678 		 * use them before they are really zeroed. We also have to
679 		 * unmap metadata before zeroing as otherwise writeback can
680 		 * overwrite zeros with stale data from block device.
681 		 */
682 		if (flags & EXT4_GET_BLOCKS_ZERO &&
683 		    map->m_flags & EXT4_MAP_MAPPED &&
684 		    map->m_flags & EXT4_MAP_NEW) {
685 			ret = ext4_issue_zeroout(inode, map->m_lblk,
686 						 map->m_pblk, map->m_len);
687 			if (ret) {
688 				retval = ret;
689 				goto out_sem;
690 			}
691 		}
692 
693 		/*
694 		 * If the extent has been zeroed out, we don't need to update
695 		 * extent status tree.
696 		 */
697 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
698 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
699 			if (ext4_es_is_written(&es))
700 				goto out_sem;
701 		}
702 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
703 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
704 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
705 		    !(status & EXTENT_STATUS_WRITTEN) &&
706 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
707 				       map->m_lblk + map->m_len - 1))
708 			status |= EXTENT_STATUS_DELAYED;
709 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
710 					    map->m_pblk, status);
711 		if (ret < 0) {
712 			retval = ret;
713 			goto out_sem;
714 		}
715 	}
716 
717 out_sem:
718 	up_write((&EXT4_I(inode)->i_data_sem));
719 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
720 		ret = check_block_validity(inode, map);
721 		if (ret != 0)
722 			return ret;
723 
724 		/*
725 		 * Inodes with freshly allocated blocks where contents will be
726 		 * visible after transaction commit must be on transaction's
727 		 * ordered data list.
728 		 */
729 		if (map->m_flags & EXT4_MAP_NEW &&
730 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
731 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
732 		    !ext4_is_quota_file(inode) &&
733 		    ext4_should_order_data(inode)) {
734 			loff_t start_byte =
735 				(loff_t)map->m_lblk << inode->i_blkbits;
736 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
737 
738 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
739 				ret = ext4_jbd2_inode_add_wait(handle, inode,
740 						start_byte, length);
741 			else
742 				ret = ext4_jbd2_inode_add_write(handle, inode,
743 						start_byte, length);
744 			if (ret)
745 				return ret;
746 		}
747 	}
748 	return retval;
749 }
750 
751 /*
752  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
753  * we have to be careful as someone else may be manipulating b_state as well.
754  */
755 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
756 {
757 	unsigned long old_state;
758 	unsigned long new_state;
759 
760 	flags &= EXT4_MAP_FLAGS;
761 
762 	/* Dummy buffer_head? Set non-atomically. */
763 	if (!bh->b_page) {
764 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
765 		return;
766 	}
767 	/*
768 	 * Someone else may be modifying b_state. Be careful! This is ugly but
769 	 * once we get rid of using bh as a container for mapping information
770 	 * to pass to / from get_block functions, this can go away.
771 	 */
772 	do {
773 		old_state = READ_ONCE(bh->b_state);
774 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
775 	} while (unlikely(
776 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
777 }
778 
779 static int _ext4_get_block(struct inode *inode, sector_t iblock,
780 			   struct buffer_head *bh, int flags)
781 {
782 	struct ext4_map_blocks map;
783 	int ret = 0;
784 
785 	if (ext4_has_inline_data(inode))
786 		return -ERANGE;
787 
788 	map.m_lblk = iblock;
789 	map.m_len = bh->b_size >> inode->i_blkbits;
790 
791 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
792 			      flags);
793 	if (ret > 0) {
794 		map_bh(bh, inode->i_sb, map.m_pblk);
795 		ext4_update_bh_state(bh, map.m_flags);
796 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
797 		ret = 0;
798 	} else if (ret == 0) {
799 		/* hole case, need to fill in bh->b_size */
800 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
801 	}
802 	return ret;
803 }
804 
805 int ext4_get_block(struct inode *inode, sector_t iblock,
806 		   struct buffer_head *bh, int create)
807 {
808 	return _ext4_get_block(inode, iblock, bh,
809 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
810 }
811 
812 /*
813  * Get block function used when preparing for buffered write if we require
814  * creating an unwritten extent if blocks haven't been allocated.  The extent
815  * will be converted to written after the IO is complete.
816  */
817 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
818 			     struct buffer_head *bh_result, int create)
819 {
820 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
821 		   inode->i_ino, create);
822 	return _ext4_get_block(inode, iblock, bh_result,
823 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
824 }
825 
826 /* Maximum number of blocks we map for direct IO at once. */
827 #define DIO_MAX_BLOCKS 4096
828 
829 /*
830  * Get blocks function for the cases that need to start a transaction -
831  * generally difference cases of direct IO and DAX IO. It also handles retries
832  * in case of ENOSPC.
833  */
834 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
835 				struct buffer_head *bh_result, int flags)
836 {
837 	int dio_credits;
838 	handle_t *handle;
839 	int retries = 0;
840 	int ret;
841 
842 	/* Trim mapping request to maximum we can map at once for DIO */
843 	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
844 		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
845 	dio_credits = ext4_chunk_trans_blocks(inode,
846 				      bh_result->b_size >> inode->i_blkbits);
847 retry:
848 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
849 	if (IS_ERR(handle))
850 		return PTR_ERR(handle);
851 
852 	ret = _ext4_get_block(inode, iblock, bh_result, flags);
853 	ext4_journal_stop(handle);
854 
855 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
856 		goto retry;
857 	return ret;
858 }
859 
860 /* Get block function for DIO reads and writes to inodes without extents */
861 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
862 		       struct buffer_head *bh, int create)
863 {
864 	/* We don't expect handle for direct IO */
865 	WARN_ON_ONCE(ext4_journal_current_handle());
866 
867 	if (!create)
868 		return _ext4_get_block(inode, iblock, bh, 0);
869 	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
870 }
871 
872 /*
873  * Get block function for AIO DIO writes when we create unwritten extent if
874  * blocks are not allocated yet. The extent will be converted to written
875  * after IO is complete.
876  */
877 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
878 		sector_t iblock, struct buffer_head *bh_result,	int create)
879 {
880 	int ret;
881 
882 	/* We don't expect handle for direct IO */
883 	WARN_ON_ONCE(ext4_journal_current_handle());
884 
885 	ret = ext4_get_block_trans(inode, iblock, bh_result,
886 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
887 
888 	/*
889 	 * When doing DIO using unwritten extents, we need io_end to convert
890 	 * unwritten extents to written on IO completion. We allocate io_end
891 	 * once we spot unwritten extent and store it in b_private. Generic
892 	 * DIO code keeps b_private set and furthermore passes the value to
893 	 * our completion callback in 'private' argument.
894 	 */
895 	if (!ret && buffer_unwritten(bh_result)) {
896 		if (!bh_result->b_private) {
897 			ext4_io_end_t *io_end;
898 
899 			io_end = ext4_init_io_end(inode, GFP_KERNEL);
900 			if (!io_end)
901 				return -ENOMEM;
902 			bh_result->b_private = io_end;
903 			ext4_set_io_unwritten_flag(inode, io_end);
904 		}
905 		set_buffer_defer_completion(bh_result);
906 	}
907 
908 	return ret;
909 }
910 
911 /*
912  * Get block function for non-AIO DIO writes when we create unwritten extent if
913  * blocks are not allocated yet. The extent will be converted to written
914  * after IO is complete by ext4_direct_IO_write().
915  */
916 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
917 		sector_t iblock, struct buffer_head *bh_result,	int create)
918 {
919 	int ret;
920 
921 	/* We don't expect handle for direct IO */
922 	WARN_ON_ONCE(ext4_journal_current_handle());
923 
924 	ret = ext4_get_block_trans(inode, iblock, bh_result,
925 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
926 
927 	/*
928 	 * Mark inode as having pending DIO writes to unwritten extents.
929 	 * ext4_direct_IO_write() checks this flag and converts extents to
930 	 * written.
931 	 */
932 	if (!ret && buffer_unwritten(bh_result))
933 		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
934 
935 	return ret;
936 }
937 
938 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
939 		   struct buffer_head *bh_result, int create)
940 {
941 	int ret;
942 
943 	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
944 		   inode->i_ino, create);
945 	/* We don't expect handle for direct IO */
946 	WARN_ON_ONCE(ext4_journal_current_handle());
947 
948 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
949 	/*
950 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
951 	 * that.
952 	 */
953 	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
954 
955 	return ret;
956 }
957 
958 
959 /*
960  * `handle' can be NULL if create is zero
961  */
962 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
963 				ext4_lblk_t block, int map_flags)
964 {
965 	struct ext4_map_blocks map;
966 	struct buffer_head *bh;
967 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
968 	int err;
969 
970 	J_ASSERT(handle != NULL || create == 0);
971 
972 	map.m_lblk = block;
973 	map.m_len = 1;
974 	err = ext4_map_blocks(handle, inode, &map, map_flags);
975 
976 	if (err == 0)
977 		return create ? ERR_PTR(-ENOSPC) : NULL;
978 	if (err < 0)
979 		return ERR_PTR(err);
980 
981 	bh = sb_getblk(inode->i_sb, map.m_pblk);
982 	if (unlikely(!bh))
983 		return ERR_PTR(-ENOMEM);
984 	if (map.m_flags & EXT4_MAP_NEW) {
985 		J_ASSERT(create != 0);
986 		J_ASSERT(handle != NULL);
987 
988 		/*
989 		 * Now that we do not always journal data, we should
990 		 * keep in mind whether this should always journal the
991 		 * new buffer as metadata.  For now, regular file
992 		 * writes use ext4_get_block instead, so it's not a
993 		 * problem.
994 		 */
995 		lock_buffer(bh);
996 		BUFFER_TRACE(bh, "call get_create_access");
997 		err = ext4_journal_get_create_access(handle, bh);
998 		if (unlikely(err)) {
999 			unlock_buffer(bh);
1000 			goto errout;
1001 		}
1002 		if (!buffer_uptodate(bh)) {
1003 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1004 			set_buffer_uptodate(bh);
1005 		}
1006 		unlock_buffer(bh);
1007 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1008 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1009 		if (unlikely(err))
1010 			goto errout;
1011 	} else
1012 		BUFFER_TRACE(bh, "not a new buffer");
1013 	return bh;
1014 errout:
1015 	brelse(bh);
1016 	return ERR_PTR(err);
1017 }
1018 
1019 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1020 			       ext4_lblk_t block, int map_flags)
1021 {
1022 	struct buffer_head *bh;
1023 
1024 	bh = ext4_getblk(handle, inode, block, map_flags);
1025 	if (IS_ERR(bh))
1026 		return bh;
1027 	if (!bh || ext4_buffer_uptodate(bh))
1028 		return bh;
1029 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1030 	wait_on_buffer(bh);
1031 	if (buffer_uptodate(bh))
1032 		return bh;
1033 	put_bh(bh);
1034 	return ERR_PTR(-EIO);
1035 }
1036 
1037 /* Read a contiguous batch of blocks. */
1038 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1039 		     bool wait, struct buffer_head **bhs)
1040 {
1041 	int i, err;
1042 
1043 	for (i = 0; i < bh_count; i++) {
1044 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1045 		if (IS_ERR(bhs[i])) {
1046 			err = PTR_ERR(bhs[i]);
1047 			bh_count = i;
1048 			goto out_brelse;
1049 		}
1050 	}
1051 
1052 	for (i = 0; i < bh_count; i++)
1053 		/* Note that NULL bhs[i] is valid because of holes. */
1054 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
1055 			ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1056 				    &bhs[i]);
1057 
1058 	if (!wait)
1059 		return 0;
1060 
1061 	for (i = 0; i < bh_count; i++)
1062 		if (bhs[i])
1063 			wait_on_buffer(bhs[i]);
1064 
1065 	for (i = 0; i < bh_count; i++) {
1066 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
1067 			err = -EIO;
1068 			goto out_brelse;
1069 		}
1070 	}
1071 	return 0;
1072 
1073 out_brelse:
1074 	for (i = 0; i < bh_count; i++) {
1075 		brelse(bhs[i]);
1076 		bhs[i] = NULL;
1077 	}
1078 	return err;
1079 }
1080 
1081 int ext4_walk_page_buffers(handle_t *handle,
1082 			   struct buffer_head *head,
1083 			   unsigned from,
1084 			   unsigned to,
1085 			   int *partial,
1086 			   int (*fn)(handle_t *handle,
1087 				     struct buffer_head *bh))
1088 {
1089 	struct buffer_head *bh;
1090 	unsigned block_start, block_end;
1091 	unsigned blocksize = head->b_size;
1092 	int err, ret = 0;
1093 	struct buffer_head *next;
1094 
1095 	for (bh = head, block_start = 0;
1096 	     ret == 0 && (bh != head || !block_start);
1097 	     block_start = block_end, bh = next) {
1098 		next = bh->b_this_page;
1099 		block_end = block_start + blocksize;
1100 		if (block_end <= from || block_start >= to) {
1101 			if (partial && !buffer_uptodate(bh))
1102 				*partial = 1;
1103 			continue;
1104 		}
1105 		err = (*fn)(handle, bh);
1106 		if (!ret)
1107 			ret = err;
1108 	}
1109 	return ret;
1110 }
1111 
1112 /*
1113  * To preserve ordering, it is essential that the hole instantiation and
1114  * the data write be encapsulated in a single transaction.  We cannot
1115  * close off a transaction and start a new one between the ext4_get_block()
1116  * and the commit_write().  So doing the jbd2_journal_start at the start of
1117  * prepare_write() is the right place.
1118  *
1119  * Also, this function can nest inside ext4_writepage().  In that case, we
1120  * *know* that ext4_writepage() has generated enough buffer credits to do the
1121  * whole page.  So we won't block on the journal in that case, which is good,
1122  * because the caller may be PF_MEMALLOC.
1123  *
1124  * By accident, ext4 can be reentered when a transaction is open via
1125  * quota file writes.  If we were to commit the transaction while thus
1126  * reentered, there can be a deadlock - we would be holding a quota
1127  * lock, and the commit would never complete if another thread had a
1128  * transaction open and was blocking on the quota lock - a ranking
1129  * violation.
1130  *
1131  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1132  * will _not_ run commit under these circumstances because handle->h_ref
1133  * is elevated.  We'll still have enough credits for the tiny quotafile
1134  * write.
1135  */
1136 int do_journal_get_write_access(handle_t *handle,
1137 				struct buffer_head *bh)
1138 {
1139 	int dirty = buffer_dirty(bh);
1140 	int ret;
1141 
1142 	if (!buffer_mapped(bh) || buffer_freed(bh))
1143 		return 0;
1144 	/*
1145 	 * __block_write_begin() could have dirtied some buffers. Clean
1146 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1147 	 * otherwise about fs integrity issues. Setting of the dirty bit
1148 	 * by __block_write_begin() isn't a real problem here as we clear
1149 	 * the bit before releasing a page lock and thus writeback cannot
1150 	 * ever write the buffer.
1151 	 */
1152 	if (dirty)
1153 		clear_buffer_dirty(bh);
1154 	BUFFER_TRACE(bh, "get write access");
1155 	ret = ext4_journal_get_write_access(handle, bh);
1156 	if (!ret && dirty)
1157 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1158 	return ret;
1159 }
1160 
1161 #ifdef CONFIG_FS_ENCRYPTION
1162 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1163 				  get_block_t *get_block)
1164 {
1165 	unsigned from = pos & (PAGE_SIZE - 1);
1166 	unsigned to = from + len;
1167 	struct inode *inode = page->mapping->host;
1168 	unsigned block_start, block_end;
1169 	sector_t block;
1170 	int err = 0;
1171 	unsigned blocksize = inode->i_sb->s_blocksize;
1172 	unsigned bbits;
1173 	struct buffer_head *bh, *head, *wait[2];
1174 	int nr_wait = 0;
1175 	int i;
1176 
1177 	BUG_ON(!PageLocked(page));
1178 	BUG_ON(from > PAGE_SIZE);
1179 	BUG_ON(to > PAGE_SIZE);
1180 	BUG_ON(from > to);
1181 
1182 	if (!page_has_buffers(page))
1183 		create_empty_buffers(page, blocksize, 0);
1184 	head = page_buffers(page);
1185 	bbits = ilog2(blocksize);
1186 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1187 
1188 	for (bh = head, block_start = 0; bh != head || !block_start;
1189 	    block++, block_start = block_end, bh = bh->b_this_page) {
1190 		block_end = block_start + blocksize;
1191 		if (block_end <= from || block_start >= to) {
1192 			if (PageUptodate(page)) {
1193 				if (!buffer_uptodate(bh))
1194 					set_buffer_uptodate(bh);
1195 			}
1196 			continue;
1197 		}
1198 		if (buffer_new(bh))
1199 			clear_buffer_new(bh);
1200 		if (!buffer_mapped(bh)) {
1201 			WARN_ON(bh->b_size != blocksize);
1202 			err = get_block(inode, block, bh, 1);
1203 			if (err)
1204 				break;
1205 			if (buffer_new(bh)) {
1206 				if (PageUptodate(page)) {
1207 					clear_buffer_new(bh);
1208 					set_buffer_uptodate(bh);
1209 					mark_buffer_dirty(bh);
1210 					continue;
1211 				}
1212 				if (block_end > to || block_start < from)
1213 					zero_user_segments(page, to, block_end,
1214 							   block_start, from);
1215 				continue;
1216 			}
1217 		}
1218 		if (PageUptodate(page)) {
1219 			if (!buffer_uptodate(bh))
1220 				set_buffer_uptodate(bh);
1221 			continue;
1222 		}
1223 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1224 		    !buffer_unwritten(bh) &&
1225 		    (block_start < from || block_end > to)) {
1226 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1227 			wait[nr_wait++] = bh;
1228 		}
1229 	}
1230 	/*
1231 	 * If we issued read requests, let them complete.
1232 	 */
1233 	for (i = 0; i < nr_wait; i++) {
1234 		wait_on_buffer(wait[i]);
1235 		if (!buffer_uptodate(wait[i]))
1236 			err = -EIO;
1237 	}
1238 	if (unlikely(err)) {
1239 		page_zero_new_buffers(page, from, to);
1240 	} else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1241 		for (i = 0; i < nr_wait; i++) {
1242 			int err2;
1243 
1244 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1245 								bh_offset(wait[i]));
1246 			if (err2) {
1247 				clear_buffer_uptodate(wait[i]);
1248 				err = err2;
1249 			}
1250 		}
1251 	}
1252 
1253 	return err;
1254 }
1255 #endif
1256 
1257 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1258 			    loff_t pos, unsigned len, unsigned flags,
1259 			    struct page **pagep, void **fsdata)
1260 {
1261 	struct inode *inode = mapping->host;
1262 	int ret, needed_blocks;
1263 	handle_t *handle;
1264 	int retries = 0;
1265 	struct page *page;
1266 	pgoff_t index;
1267 	unsigned from, to;
1268 
1269 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1270 		return -EIO;
1271 
1272 	trace_ext4_write_begin(inode, pos, len, flags);
1273 	/*
1274 	 * Reserve one block more for addition to orphan list in case
1275 	 * we allocate blocks but write fails for some reason
1276 	 */
1277 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1278 	index = pos >> PAGE_SHIFT;
1279 	from = pos & (PAGE_SIZE - 1);
1280 	to = from + len;
1281 
1282 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1283 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1284 						    flags, pagep);
1285 		if (ret < 0)
1286 			return ret;
1287 		if (ret == 1)
1288 			return 0;
1289 	}
1290 
1291 	/*
1292 	 * grab_cache_page_write_begin() can take a long time if the
1293 	 * system is thrashing due to memory pressure, or if the page
1294 	 * is being written back.  So grab it first before we start
1295 	 * the transaction handle.  This also allows us to allocate
1296 	 * the page (if needed) without using GFP_NOFS.
1297 	 */
1298 retry_grab:
1299 	page = grab_cache_page_write_begin(mapping, index, flags);
1300 	if (!page)
1301 		return -ENOMEM;
1302 	unlock_page(page);
1303 
1304 retry_journal:
1305 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1306 	if (IS_ERR(handle)) {
1307 		put_page(page);
1308 		return PTR_ERR(handle);
1309 	}
1310 
1311 	lock_page(page);
1312 	if (page->mapping != mapping) {
1313 		/* The page got truncated from under us */
1314 		unlock_page(page);
1315 		put_page(page);
1316 		ext4_journal_stop(handle);
1317 		goto retry_grab;
1318 	}
1319 	/* In case writeback began while the page was unlocked */
1320 	wait_for_stable_page(page);
1321 
1322 #ifdef CONFIG_FS_ENCRYPTION
1323 	if (ext4_should_dioread_nolock(inode))
1324 		ret = ext4_block_write_begin(page, pos, len,
1325 					     ext4_get_block_unwritten);
1326 	else
1327 		ret = ext4_block_write_begin(page, pos, len,
1328 					     ext4_get_block);
1329 #else
1330 	if (ext4_should_dioread_nolock(inode))
1331 		ret = __block_write_begin(page, pos, len,
1332 					  ext4_get_block_unwritten);
1333 	else
1334 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1335 #endif
1336 	if (!ret && ext4_should_journal_data(inode)) {
1337 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1338 					     from, to, NULL,
1339 					     do_journal_get_write_access);
1340 	}
1341 
1342 	if (ret) {
1343 		bool extended = (pos + len > inode->i_size) &&
1344 				!ext4_verity_in_progress(inode);
1345 
1346 		unlock_page(page);
1347 		/*
1348 		 * __block_write_begin may have instantiated a few blocks
1349 		 * outside i_size.  Trim these off again. Don't need
1350 		 * i_size_read because we hold i_mutex.
1351 		 *
1352 		 * Add inode to orphan list in case we crash before
1353 		 * truncate finishes
1354 		 */
1355 		if (extended && ext4_can_truncate(inode))
1356 			ext4_orphan_add(handle, inode);
1357 
1358 		ext4_journal_stop(handle);
1359 		if (extended) {
1360 			ext4_truncate_failed_write(inode);
1361 			/*
1362 			 * If truncate failed early the inode might
1363 			 * still be on the orphan list; we need to
1364 			 * make sure the inode is removed from the
1365 			 * orphan list in that case.
1366 			 */
1367 			if (inode->i_nlink)
1368 				ext4_orphan_del(NULL, inode);
1369 		}
1370 
1371 		if (ret == -ENOSPC &&
1372 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1373 			goto retry_journal;
1374 		put_page(page);
1375 		return ret;
1376 	}
1377 	*pagep = page;
1378 	return ret;
1379 }
1380 
1381 /* For write_end() in data=journal mode */
1382 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1383 {
1384 	int ret;
1385 	if (!buffer_mapped(bh) || buffer_freed(bh))
1386 		return 0;
1387 	set_buffer_uptodate(bh);
1388 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1389 	clear_buffer_meta(bh);
1390 	clear_buffer_prio(bh);
1391 	return ret;
1392 }
1393 
1394 /*
1395  * We need to pick up the new inode size which generic_commit_write gave us
1396  * `file' can be NULL - eg, when called from page_symlink().
1397  *
1398  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1399  * buffers are managed internally.
1400  */
1401 static int ext4_write_end(struct file *file,
1402 			  struct address_space *mapping,
1403 			  loff_t pos, unsigned len, unsigned copied,
1404 			  struct page *page, void *fsdata)
1405 {
1406 	handle_t *handle = ext4_journal_current_handle();
1407 	struct inode *inode = mapping->host;
1408 	loff_t old_size = inode->i_size;
1409 	int ret = 0, ret2;
1410 	int i_size_changed = 0;
1411 	int inline_data = ext4_has_inline_data(inode);
1412 	bool verity = ext4_verity_in_progress(inode);
1413 
1414 	trace_ext4_write_end(inode, pos, len, copied);
1415 	if (inline_data) {
1416 		ret = ext4_write_inline_data_end(inode, pos, len,
1417 						 copied, page);
1418 		if (ret < 0) {
1419 			unlock_page(page);
1420 			put_page(page);
1421 			goto errout;
1422 		}
1423 		copied = ret;
1424 	} else
1425 		copied = block_write_end(file, mapping, pos,
1426 					 len, copied, page, fsdata);
1427 	/*
1428 	 * it's important to update i_size while still holding page lock:
1429 	 * page writeout could otherwise come in and zero beyond i_size.
1430 	 *
1431 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1432 	 * blocks are being written past EOF, so skip the i_size update.
1433 	 */
1434 	if (!verity)
1435 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1436 	unlock_page(page);
1437 	put_page(page);
1438 
1439 	if (old_size < pos && !verity)
1440 		pagecache_isize_extended(inode, old_size, pos);
1441 	/*
1442 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1443 	 * makes the holding time of page lock longer. Second, it forces lock
1444 	 * ordering of page lock and transaction start for journaling
1445 	 * filesystems.
1446 	 */
1447 	if (i_size_changed || inline_data)
1448 		ext4_mark_inode_dirty(handle, inode);
1449 
1450 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1451 		/* if we have allocated more blocks and copied
1452 		 * less. We will have blocks allocated outside
1453 		 * inode->i_size. So truncate them
1454 		 */
1455 		ext4_orphan_add(handle, inode);
1456 errout:
1457 	ret2 = ext4_journal_stop(handle);
1458 	if (!ret)
1459 		ret = ret2;
1460 
1461 	if (pos + len > inode->i_size && !verity) {
1462 		ext4_truncate_failed_write(inode);
1463 		/*
1464 		 * If truncate failed early the inode might still be
1465 		 * on the orphan list; we need to make sure the inode
1466 		 * is removed from the orphan list in that case.
1467 		 */
1468 		if (inode->i_nlink)
1469 			ext4_orphan_del(NULL, inode);
1470 	}
1471 
1472 	return ret ? ret : copied;
1473 }
1474 
1475 /*
1476  * This is a private version of page_zero_new_buffers() which doesn't
1477  * set the buffer to be dirty, since in data=journalled mode we need
1478  * to call ext4_handle_dirty_metadata() instead.
1479  */
1480 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1481 					    struct page *page,
1482 					    unsigned from, unsigned to)
1483 {
1484 	unsigned int block_start = 0, block_end;
1485 	struct buffer_head *head, *bh;
1486 
1487 	bh = head = page_buffers(page);
1488 	do {
1489 		block_end = block_start + bh->b_size;
1490 		if (buffer_new(bh)) {
1491 			if (block_end > from && block_start < to) {
1492 				if (!PageUptodate(page)) {
1493 					unsigned start, size;
1494 
1495 					start = max(from, block_start);
1496 					size = min(to, block_end) - start;
1497 
1498 					zero_user(page, start, size);
1499 					write_end_fn(handle, bh);
1500 				}
1501 				clear_buffer_new(bh);
1502 			}
1503 		}
1504 		block_start = block_end;
1505 		bh = bh->b_this_page;
1506 	} while (bh != head);
1507 }
1508 
1509 static int ext4_journalled_write_end(struct file *file,
1510 				     struct address_space *mapping,
1511 				     loff_t pos, unsigned len, unsigned copied,
1512 				     struct page *page, void *fsdata)
1513 {
1514 	handle_t *handle = ext4_journal_current_handle();
1515 	struct inode *inode = mapping->host;
1516 	loff_t old_size = inode->i_size;
1517 	int ret = 0, ret2;
1518 	int partial = 0;
1519 	unsigned from, to;
1520 	int size_changed = 0;
1521 	int inline_data = ext4_has_inline_data(inode);
1522 	bool verity = ext4_verity_in_progress(inode);
1523 
1524 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1525 	from = pos & (PAGE_SIZE - 1);
1526 	to = from + len;
1527 
1528 	BUG_ON(!ext4_handle_valid(handle));
1529 
1530 	if (inline_data) {
1531 		ret = ext4_write_inline_data_end(inode, pos, len,
1532 						 copied, page);
1533 		if (ret < 0) {
1534 			unlock_page(page);
1535 			put_page(page);
1536 			goto errout;
1537 		}
1538 		copied = ret;
1539 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1540 		copied = 0;
1541 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1542 	} else {
1543 		if (unlikely(copied < len))
1544 			ext4_journalled_zero_new_buffers(handle, page,
1545 							 from + copied, to);
1546 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1547 					     from + copied, &partial,
1548 					     write_end_fn);
1549 		if (!partial)
1550 			SetPageUptodate(page);
1551 	}
1552 	if (!verity)
1553 		size_changed = ext4_update_inode_size(inode, pos + copied);
1554 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1555 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1556 	unlock_page(page);
1557 	put_page(page);
1558 
1559 	if (old_size < pos && !verity)
1560 		pagecache_isize_extended(inode, old_size, pos);
1561 
1562 	if (size_changed || inline_data) {
1563 		ret2 = ext4_mark_inode_dirty(handle, inode);
1564 		if (!ret)
1565 			ret = ret2;
1566 	}
1567 
1568 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1569 		/* if we have allocated more blocks and copied
1570 		 * less. We will have blocks allocated outside
1571 		 * inode->i_size. So truncate them
1572 		 */
1573 		ext4_orphan_add(handle, inode);
1574 
1575 errout:
1576 	ret2 = ext4_journal_stop(handle);
1577 	if (!ret)
1578 		ret = ret2;
1579 	if (pos + len > inode->i_size && !verity) {
1580 		ext4_truncate_failed_write(inode);
1581 		/*
1582 		 * If truncate failed early the inode might still be
1583 		 * on the orphan list; we need to make sure the inode
1584 		 * is removed from the orphan list in that case.
1585 		 */
1586 		if (inode->i_nlink)
1587 			ext4_orphan_del(NULL, inode);
1588 	}
1589 
1590 	return ret ? ret : copied;
1591 }
1592 
1593 /*
1594  * Reserve space for a single cluster
1595  */
1596 static int ext4_da_reserve_space(struct inode *inode)
1597 {
1598 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1599 	struct ext4_inode_info *ei = EXT4_I(inode);
1600 	int ret;
1601 
1602 	/*
1603 	 * We will charge metadata quota at writeout time; this saves
1604 	 * us from metadata over-estimation, though we may go over by
1605 	 * a small amount in the end.  Here we just reserve for data.
1606 	 */
1607 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1608 	if (ret)
1609 		return ret;
1610 
1611 	spin_lock(&ei->i_block_reservation_lock);
1612 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1613 		spin_unlock(&ei->i_block_reservation_lock);
1614 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1615 		return -ENOSPC;
1616 	}
1617 	ei->i_reserved_data_blocks++;
1618 	trace_ext4_da_reserve_space(inode);
1619 	spin_unlock(&ei->i_block_reservation_lock);
1620 
1621 	return 0;       /* success */
1622 }
1623 
1624 void ext4_da_release_space(struct inode *inode, int to_free)
1625 {
1626 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1627 	struct ext4_inode_info *ei = EXT4_I(inode);
1628 
1629 	if (!to_free)
1630 		return;		/* Nothing to release, exit */
1631 
1632 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1633 
1634 	trace_ext4_da_release_space(inode, to_free);
1635 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1636 		/*
1637 		 * if there aren't enough reserved blocks, then the
1638 		 * counter is messed up somewhere.  Since this
1639 		 * function is called from invalidate page, it's
1640 		 * harmless to return without any action.
1641 		 */
1642 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1643 			 "ino %lu, to_free %d with only %d reserved "
1644 			 "data blocks", inode->i_ino, to_free,
1645 			 ei->i_reserved_data_blocks);
1646 		WARN_ON(1);
1647 		to_free = ei->i_reserved_data_blocks;
1648 	}
1649 	ei->i_reserved_data_blocks -= to_free;
1650 
1651 	/* update fs dirty data blocks counter */
1652 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1653 
1654 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1655 
1656 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1657 }
1658 
1659 /*
1660  * Delayed allocation stuff
1661  */
1662 
1663 struct mpage_da_data {
1664 	struct inode *inode;
1665 	struct writeback_control *wbc;
1666 
1667 	pgoff_t first_page;	/* The first page to write */
1668 	pgoff_t next_page;	/* Current page to examine */
1669 	pgoff_t last_page;	/* Last page to examine */
1670 	/*
1671 	 * Extent to map - this can be after first_page because that can be
1672 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1673 	 * is delalloc or unwritten.
1674 	 */
1675 	struct ext4_map_blocks map;
1676 	struct ext4_io_submit io_submit;	/* IO submission data */
1677 	unsigned int do_map:1;
1678 };
1679 
1680 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1681 				       bool invalidate)
1682 {
1683 	int nr_pages, i;
1684 	pgoff_t index, end;
1685 	struct pagevec pvec;
1686 	struct inode *inode = mpd->inode;
1687 	struct address_space *mapping = inode->i_mapping;
1688 
1689 	/* This is necessary when next_page == 0. */
1690 	if (mpd->first_page >= mpd->next_page)
1691 		return;
1692 
1693 	index = mpd->first_page;
1694 	end   = mpd->next_page - 1;
1695 	if (invalidate) {
1696 		ext4_lblk_t start, last;
1697 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1698 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1699 		ext4_es_remove_extent(inode, start, last - start + 1);
1700 	}
1701 
1702 	pagevec_init(&pvec);
1703 	while (index <= end) {
1704 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1705 		if (nr_pages == 0)
1706 			break;
1707 		for (i = 0; i < nr_pages; i++) {
1708 			struct page *page = pvec.pages[i];
1709 
1710 			BUG_ON(!PageLocked(page));
1711 			BUG_ON(PageWriteback(page));
1712 			if (invalidate) {
1713 				if (page_mapped(page))
1714 					clear_page_dirty_for_io(page);
1715 				block_invalidatepage(page, 0, PAGE_SIZE);
1716 				ClearPageUptodate(page);
1717 			}
1718 			unlock_page(page);
1719 		}
1720 		pagevec_release(&pvec);
1721 	}
1722 }
1723 
1724 static void ext4_print_free_blocks(struct inode *inode)
1725 {
1726 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1727 	struct super_block *sb = inode->i_sb;
1728 	struct ext4_inode_info *ei = EXT4_I(inode);
1729 
1730 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1731 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1732 			ext4_count_free_clusters(sb)));
1733 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1734 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1735 	       (long long) EXT4_C2B(EXT4_SB(sb),
1736 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1737 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1738 	       (long long) EXT4_C2B(EXT4_SB(sb),
1739 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1740 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1741 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1742 		 ei->i_reserved_data_blocks);
1743 	return;
1744 }
1745 
1746 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1747 {
1748 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1749 }
1750 
1751 /*
1752  * ext4_insert_delayed_block - adds a delayed block to the extents status
1753  *                             tree, incrementing the reserved cluster/block
1754  *                             count or making a pending reservation
1755  *                             where needed
1756  *
1757  * @inode - file containing the newly added block
1758  * @lblk - logical block to be added
1759  *
1760  * Returns 0 on success, negative error code on failure.
1761  */
1762 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1763 {
1764 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1765 	int ret;
1766 	bool allocated = false;
1767 
1768 	/*
1769 	 * If the cluster containing lblk is shared with a delayed,
1770 	 * written, or unwritten extent in a bigalloc file system, it's
1771 	 * already been accounted for and does not need to be reserved.
1772 	 * A pending reservation must be made for the cluster if it's
1773 	 * shared with a written or unwritten extent and doesn't already
1774 	 * have one.  Written and unwritten extents can be purged from the
1775 	 * extents status tree if the system is under memory pressure, so
1776 	 * it's necessary to examine the extent tree if a search of the
1777 	 * extents status tree doesn't get a match.
1778 	 */
1779 	if (sbi->s_cluster_ratio == 1) {
1780 		ret = ext4_da_reserve_space(inode);
1781 		if (ret != 0)   /* ENOSPC */
1782 			goto errout;
1783 	} else {   /* bigalloc */
1784 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1785 			if (!ext4_es_scan_clu(inode,
1786 					      &ext4_es_is_mapped, lblk)) {
1787 				ret = ext4_clu_mapped(inode,
1788 						      EXT4_B2C(sbi, lblk));
1789 				if (ret < 0)
1790 					goto errout;
1791 				if (ret == 0) {
1792 					ret = ext4_da_reserve_space(inode);
1793 					if (ret != 0)   /* ENOSPC */
1794 						goto errout;
1795 				} else {
1796 					allocated = true;
1797 				}
1798 			} else {
1799 				allocated = true;
1800 			}
1801 		}
1802 	}
1803 
1804 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1805 
1806 errout:
1807 	return ret;
1808 }
1809 
1810 /*
1811  * This function is grabs code from the very beginning of
1812  * ext4_map_blocks, but assumes that the caller is from delayed write
1813  * time. This function looks up the requested blocks and sets the
1814  * buffer delay bit under the protection of i_data_sem.
1815  */
1816 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1817 			      struct ext4_map_blocks *map,
1818 			      struct buffer_head *bh)
1819 {
1820 	struct extent_status es;
1821 	int retval;
1822 	sector_t invalid_block = ~((sector_t) 0xffff);
1823 #ifdef ES_AGGRESSIVE_TEST
1824 	struct ext4_map_blocks orig_map;
1825 
1826 	memcpy(&orig_map, map, sizeof(*map));
1827 #endif
1828 
1829 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1830 		invalid_block = ~0;
1831 
1832 	map->m_flags = 0;
1833 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1834 		  "logical block %lu\n", inode->i_ino, map->m_len,
1835 		  (unsigned long) map->m_lblk);
1836 
1837 	/* Lookup extent status tree firstly */
1838 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1839 		if (ext4_es_is_hole(&es)) {
1840 			retval = 0;
1841 			down_read(&EXT4_I(inode)->i_data_sem);
1842 			goto add_delayed;
1843 		}
1844 
1845 		/*
1846 		 * Delayed extent could be allocated by fallocate.
1847 		 * So we need to check it.
1848 		 */
1849 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1850 			map_bh(bh, inode->i_sb, invalid_block);
1851 			set_buffer_new(bh);
1852 			set_buffer_delay(bh);
1853 			return 0;
1854 		}
1855 
1856 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1857 		retval = es.es_len - (iblock - es.es_lblk);
1858 		if (retval > map->m_len)
1859 			retval = map->m_len;
1860 		map->m_len = retval;
1861 		if (ext4_es_is_written(&es))
1862 			map->m_flags |= EXT4_MAP_MAPPED;
1863 		else if (ext4_es_is_unwritten(&es))
1864 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1865 		else
1866 			BUG();
1867 
1868 #ifdef ES_AGGRESSIVE_TEST
1869 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1870 #endif
1871 		return retval;
1872 	}
1873 
1874 	/*
1875 	 * Try to see if we can get the block without requesting a new
1876 	 * file system block.
1877 	 */
1878 	down_read(&EXT4_I(inode)->i_data_sem);
1879 	if (ext4_has_inline_data(inode))
1880 		retval = 0;
1881 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1882 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1883 	else
1884 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1885 
1886 add_delayed:
1887 	if (retval == 0) {
1888 		int ret;
1889 
1890 		/*
1891 		 * XXX: __block_prepare_write() unmaps passed block,
1892 		 * is it OK?
1893 		 */
1894 
1895 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1896 		if (ret != 0) {
1897 			retval = ret;
1898 			goto out_unlock;
1899 		}
1900 
1901 		map_bh(bh, inode->i_sb, invalid_block);
1902 		set_buffer_new(bh);
1903 		set_buffer_delay(bh);
1904 	} else if (retval > 0) {
1905 		int ret;
1906 		unsigned int status;
1907 
1908 		if (unlikely(retval != map->m_len)) {
1909 			ext4_warning(inode->i_sb,
1910 				     "ES len assertion failed for inode "
1911 				     "%lu: retval %d != map->m_len %d",
1912 				     inode->i_ino, retval, map->m_len);
1913 			WARN_ON(1);
1914 		}
1915 
1916 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1917 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1918 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1919 					    map->m_pblk, status);
1920 		if (ret != 0)
1921 			retval = ret;
1922 	}
1923 
1924 out_unlock:
1925 	up_read((&EXT4_I(inode)->i_data_sem));
1926 
1927 	return retval;
1928 }
1929 
1930 /*
1931  * This is a special get_block_t callback which is used by
1932  * ext4_da_write_begin().  It will either return mapped block or
1933  * reserve space for a single block.
1934  *
1935  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1936  * We also have b_blocknr = -1 and b_bdev initialized properly
1937  *
1938  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1939  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1940  * initialized properly.
1941  */
1942 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1943 			   struct buffer_head *bh, int create)
1944 {
1945 	struct ext4_map_blocks map;
1946 	int ret = 0;
1947 
1948 	BUG_ON(create == 0);
1949 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1950 
1951 	map.m_lblk = iblock;
1952 	map.m_len = 1;
1953 
1954 	/*
1955 	 * first, we need to know whether the block is allocated already
1956 	 * preallocated blocks are unmapped but should treated
1957 	 * the same as allocated blocks.
1958 	 */
1959 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1960 	if (ret <= 0)
1961 		return ret;
1962 
1963 	map_bh(bh, inode->i_sb, map.m_pblk);
1964 	ext4_update_bh_state(bh, map.m_flags);
1965 
1966 	if (buffer_unwritten(bh)) {
1967 		/* A delayed write to unwritten bh should be marked
1968 		 * new and mapped.  Mapped ensures that we don't do
1969 		 * get_block multiple times when we write to the same
1970 		 * offset and new ensures that we do proper zero out
1971 		 * for partial write.
1972 		 */
1973 		set_buffer_new(bh);
1974 		set_buffer_mapped(bh);
1975 	}
1976 	return 0;
1977 }
1978 
1979 static int bget_one(handle_t *handle, struct buffer_head *bh)
1980 {
1981 	get_bh(bh);
1982 	return 0;
1983 }
1984 
1985 static int bput_one(handle_t *handle, struct buffer_head *bh)
1986 {
1987 	put_bh(bh);
1988 	return 0;
1989 }
1990 
1991 static int __ext4_journalled_writepage(struct page *page,
1992 				       unsigned int len)
1993 {
1994 	struct address_space *mapping = page->mapping;
1995 	struct inode *inode = mapping->host;
1996 	struct buffer_head *page_bufs = NULL;
1997 	handle_t *handle = NULL;
1998 	int ret = 0, err = 0;
1999 	int inline_data = ext4_has_inline_data(inode);
2000 	struct buffer_head *inode_bh = NULL;
2001 
2002 	ClearPageChecked(page);
2003 
2004 	if (inline_data) {
2005 		BUG_ON(page->index != 0);
2006 		BUG_ON(len > ext4_get_max_inline_size(inode));
2007 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2008 		if (inode_bh == NULL)
2009 			goto out;
2010 	} else {
2011 		page_bufs = page_buffers(page);
2012 		if (!page_bufs) {
2013 			BUG();
2014 			goto out;
2015 		}
2016 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2017 				       NULL, bget_one);
2018 	}
2019 	/*
2020 	 * We need to release the page lock before we start the
2021 	 * journal, so grab a reference so the page won't disappear
2022 	 * out from under us.
2023 	 */
2024 	get_page(page);
2025 	unlock_page(page);
2026 
2027 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2028 				    ext4_writepage_trans_blocks(inode));
2029 	if (IS_ERR(handle)) {
2030 		ret = PTR_ERR(handle);
2031 		put_page(page);
2032 		goto out_no_pagelock;
2033 	}
2034 	BUG_ON(!ext4_handle_valid(handle));
2035 
2036 	lock_page(page);
2037 	put_page(page);
2038 	if (page->mapping != mapping) {
2039 		/* The page got truncated from under us */
2040 		ext4_journal_stop(handle);
2041 		ret = 0;
2042 		goto out;
2043 	}
2044 
2045 	if (inline_data) {
2046 		ret = ext4_mark_inode_dirty(handle, inode);
2047 	} else {
2048 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2049 					     do_journal_get_write_access);
2050 
2051 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2052 					     write_end_fn);
2053 	}
2054 	if (ret == 0)
2055 		ret = err;
2056 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2057 	err = ext4_journal_stop(handle);
2058 	if (!ret)
2059 		ret = err;
2060 
2061 	if (!ext4_has_inline_data(inode))
2062 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2063 				       NULL, bput_one);
2064 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2065 out:
2066 	unlock_page(page);
2067 out_no_pagelock:
2068 	brelse(inode_bh);
2069 	return ret;
2070 }
2071 
2072 /*
2073  * Note that we don't need to start a transaction unless we're journaling data
2074  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2075  * need to file the inode to the transaction's list in ordered mode because if
2076  * we are writing back data added by write(), the inode is already there and if
2077  * we are writing back data modified via mmap(), no one guarantees in which
2078  * transaction the data will hit the disk. In case we are journaling data, we
2079  * cannot start transaction directly because transaction start ranks above page
2080  * lock so we have to do some magic.
2081  *
2082  * This function can get called via...
2083  *   - ext4_writepages after taking page lock (have journal handle)
2084  *   - journal_submit_inode_data_buffers (no journal handle)
2085  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2086  *   - grab_page_cache when doing write_begin (have journal handle)
2087  *
2088  * We don't do any block allocation in this function. If we have page with
2089  * multiple blocks we need to write those buffer_heads that are mapped. This
2090  * is important for mmaped based write. So if we do with blocksize 1K
2091  * truncate(f, 1024);
2092  * a = mmap(f, 0, 4096);
2093  * a[0] = 'a';
2094  * truncate(f, 4096);
2095  * we have in the page first buffer_head mapped via page_mkwrite call back
2096  * but other buffer_heads would be unmapped but dirty (dirty done via the
2097  * do_wp_page). So writepage should write the first block. If we modify
2098  * the mmap area beyond 1024 we will again get a page_fault and the
2099  * page_mkwrite callback will do the block allocation and mark the
2100  * buffer_heads mapped.
2101  *
2102  * We redirty the page if we have any buffer_heads that is either delay or
2103  * unwritten in the page.
2104  *
2105  * We can get recursively called as show below.
2106  *
2107  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2108  *		ext4_writepage()
2109  *
2110  * But since we don't do any block allocation we should not deadlock.
2111  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2112  */
2113 static int ext4_writepage(struct page *page,
2114 			  struct writeback_control *wbc)
2115 {
2116 	int ret = 0;
2117 	loff_t size;
2118 	unsigned int len;
2119 	struct buffer_head *page_bufs = NULL;
2120 	struct inode *inode = page->mapping->host;
2121 	struct ext4_io_submit io_submit;
2122 	bool keep_towrite = false;
2123 
2124 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2125 		ext4_invalidatepage(page, 0, PAGE_SIZE);
2126 		unlock_page(page);
2127 		return -EIO;
2128 	}
2129 
2130 	trace_ext4_writepage(page);
2131 	size = i_size_read(inode);
2132 	if (page->index == size >> PAGE_SHIFT &&
2133 	    !ext4_verity_in_progress(inode))
2134 		len = size & ~PAGE_MASK;
2135 	else
2136 		len = PAGE_SIZE;
2137 
2138 	page_bufs = page_buffers(page);
2139 	/*
2140 	 * We cannot do block allocation or other extent handling in this
2141 	 * function. If there are buffers needing that, we have to redirty
2142 	 * the page. But we may reach here when we do a journal commit via
2143 	 * journal_submit_inode_data_buffers() and in that case we must write
2144 	 * allocated buffers to achieve data=ordered mode guarantees.
2145 	 *
2146 	 * Also, if there is only one buffer per page (the fs block
2147 	 * size == the page size), if one buffer needs block
2148 	 * allocation or needs to modify the extent tree to clear the
2149 	 * unwritten flag, we know that the page can't be written at
2150 	 * all, so we might as well refuse the write immediately.
2151 	 * Unfortunately if the block size != page size, we can't as
2152 	 * easily detect this case using ext4_walk_page_buffers(), but
2153 	 * for the extremely common case, this is an optimization that
2154 	 * skips a useless round trip through ext4_bio_write_page().
2155 	 */
2156 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2157 				   ext4_bh_delay_or_unwritten)) {
2158 		redirty_page_for_writepage(wbc, page);
2159 		if ((current->flags & PF_MEMALLOC) ||
2160 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2161 			/*
2162 			 * For memory cleaning there's no point in writing only
2163 			 * some buffers. So just bail out. Warn if we came here
2164 			 * from direct reclaim.
2165 			 */
2166 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2167 							== PF_MEMALLOC);
2168 			unlock_page(page);
2169 			return 0;
2170 		}
2171 		keep_towrite = true;
2172 	}
2173 
2174 	if (PageChecked(page) && ext4_should_journal_data(inode))
2175 		/*
2176 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2177 		 * doesn't seem much point in redirtying the page here.
2178 		 */
2179 		return __ext4_journalled_writepage(page, len);
2180 
2181 	ext4_io_submit_init(&io_submit, wbc);
2182 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2183 	if (!io_submit.io_end) {
2184 		redirty_page_for_writepage(wbc, page);
2185 		unlock_page(page);
2186 		return -ENOMEM;
2187 	}
2188 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2189 	ext4_io_submit(&io_submit);
2190 	/* Drop io_end reference we got from init */
2191 	ext4_put_io_end_defer(io_submit.io_end);
2192 	return ret;
2193 }
2194 
2195 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2196 {
2197 	int len;
2198 	loff_t size;
2199 	int err;
2200 
2201 	BUG_ON(page->index != mpd->first_page);
2202 	clear_page_dirty_for_io(page);
2203 	/*
2204 	 * We have to be very careful here!  Nothing protects writeback path
2205 	 * against i_size changes and the page can be writeably mapped into
2206 	 * page tables. So an application can be growing i_size and writing
2207 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2208 	 * write-protects our page in page tables and the page cannot get
2209 	 * written to again until we release page lock. So only after
2210 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2211 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2212 	 * on the barrier provided by TestClearPageDirty in
2213 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2214 	 * after page tables are updated.
2215 	 */
2216 	size = i_size_read(mpd->inode);
2217 	if (page->index == size >> PAGE_SHIFT &&
2218 	    !ext4_verity_in_progress(mpd->inode))
2219 		len = size & ~PAGE_MASK;
2220 	else
2221 		len = PAGE_SIZE;
2222 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2223 	if (!err)
2224 		mpd->wbc->nr_to_write--;
2225 	mpd->first_page++;
2226 
2227 	return err;
2228 }
2229 
2230 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2231 
2232 /*
2233  * mballoc gives us at most this number of blocks...
2234  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2235  * The rest of mballoc seems to handle chunks up to full group size.
2236  */
2237 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2238 
2239 /*
2240  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2241  *
2242  * @mpd - extent of blocks
2243  * @lblk - logical number of the block in the file
2244  * @bh - buffer head we want to add to the extent
2245  *
2246  * The function is used to collect contig. blocks in the same state. If the
2247  * buffer doesn't require mapping for writeback and we haven't started the
2248  * extent of buffers to map yet, the function returns 'true' immediately - the
2249  * caller can write the buffer right away. Otherwise the function returns true
2250  * if the block has been added to the extent, false if the block couldn't be
2251  * added.
2252  */
2253 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2254 				   struct buffer_head *bh)
2255 {
2256 	struct ext4_map_blocks *map = &mpd->map;
2257 
2258 	/* Buffer that doesn't need mapping for writeback? */
2259 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2260 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2261 		/* So far no extent to map => we write the buffer right away */
2262 		if (map->m_len == 0)
2263 			return true;
2264 		return false;
2265 	}
2266 
2267 	/* First block in the extent? */
2268 	if (map->m_len == 0) {
2269 		/* We cannot map unless handle is started... */
2270 		if (!mpd->do_map)
2271 			return false;
2272 		map->m_lblk = lblk;
2273 		map->m_len = 1;
2274 		map->m_flags = bh->b_state & BH_FLAGS;
2275 		return true;
2276 	}
2277 
2278 	/* Don't go larger than mballoc is willing to allocate */
2279 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2280 		return false;
2281 
2282 	/* Can we merge the block to our big extent? */
2283 	if (lblk == map->m_lblk + map->m_len &&
2284 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2285 		map->m_len++;
2286 		return true;
2287 	}
2288 	return false;
2289 }
2290 
2291 /*
2292  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2293  *
2294  * @mpd - extent of blocks for mapping
2295  * @head - the first buffer in the page
2296  * @bh - buffer we should start processing from
2297  * @lblk - logical number of the block in the file corresponding to @bh
2298  *
2299  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2300  * the page for IO if all buffers in this page were mapped and there's no
2301  * accumulated extent of buffers to map or add buffers in the page to the
2302  * extent of buffers to map. The function returns 1 if the caller can continue
2303  * by processing the next page, 0 if it should stop adding buffers to the
2304  * extent to map because we cannot extend it anymore. It can also return value
2305  * < 0 in case of error during IO submission.
2306  */
2307 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2308 				   struct buffer_head *head,
2309 				   struct buffer_head *bh,
2310 				   ext4_lblk_t lblk)
2311 {
2312 	struct inode *inode = mpd->inode;
2313 	int err;
2314 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2315 							>> inode->i_blkbits;
2316 
2317 	if (ext4_verity_in_progress(inode))
2318 		blocks = EXT_MAX_BLOCKS;
2319 
2320 	do {
2321 		BUG_ON(buffer_locked(bh));
2322 
2323 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2324 			/* Found extent to map? */
2325 			if (mpd->map.m_len)
2326 				return 0;
2327 			/* Buffer needs mapping and handle is not started? */
2328 			if (!mpd->do_map)
2329 				return 0;
2330 			/* Everything mapped so far and we hit EOF */
2331 			break;
2332 		}
2333 	} while (lblk++, (bh = bh->b_this_page) != head);
2334 	/* So far everything mapped? Submit the page for IO. */
2335 	if (mpd->map.m_len == 0) {
2336 		err = mpage_submit_page(mpd, head->b_page);
2337 		if (err < 0)
2338 			return err;
2339 	}
2340 	return lblk < blocks;
2341 }
2342 
2343 /*
2344  * mpage_process_page - update page buffers corresponding to changed extent and
2345  *		       may submit fully mapped page for IO
2346  *
2347  * @mpd		- description of extent to map, on return next extent to map
2348  * @m_lblk	- logical block mapping.
2349  * @m_pblk	- corresponding physical mapping.
2350  * @map_bh	- determines on return whether this page requires any further
2351  *		  mapping or not.
2352  * Scan given page buffers corresponding to changed extent and update buffer
2353  * state according to new extent state.
2354  * We map delalloc buffers to their physical location, clear unwritten bits.
2355  * If the given page is not fully mapped, we update @map to the next extent in
2356  * the given page that needs mapping & return @map_bh as true.
2357  */
2358 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2359 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2360 			      bool *map_bh)
2361 {
2362 	struct buffer_head *head, *bh;
2363 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2364 	ext4_lblk_t lblk = *m_lblk;
2365 	ext4_fsblk_t pblock = *m_pblk;
2366 	int err = 0;
2367 	int blkbits = mpd->inode->i_blkbits;
2368 	ssize_t io_end_size = 0;
2369 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2370 
2371 	bh = head = page_buffers(page);
2372 	do {
2373 		if (lblk < mpd->map.m_lblk)
2374 			continue;
2375 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2376 			/*
2377 			 * Buffer after end of mapped extent.
2378 			 * Find next buffer in the page to map.
2379 			 */
2380 			mpd->map.m_len = 0;
2381 			mpd->map.m_flags = 0;
2382 			io_end_vec->size += io_end_size;
2383 			io_end_size = 0;
2384 
2385 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2386 			if (err > 0)
2387 				err = 0;
2388 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2389 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2390 				io_end_vec->offset = mpd->map.m_lblk << blkbits;
2391 			}
2392 			*map_bh = true;
2393 			goto out;
2394 		}
2395 		if (buffer_delay(bh)) {
2396 			clear_buffer_delay(bh);
2397 			bh->b_blocknr = pblock++;
2398 		}
2399 		clear_buffer_unwritten(bh);
2400 		io_end_size += (1 << blkbits);
2401 	} while (lblk++, (bh = bh->b_this_page) != head);
2402 
2403 	io_end_vec->size += io_end_size;
2404 	io_end_size = 0;
2405 	*map_bh = false;
2406 out:
2407 	*m_lblk = lblk;
2408 	*m_pblk = pblock;
2409 	return err;
2410 }
2411 
2412 /*
2413  * mpage_map_buffers - update buffers corresponding to changed extent and
2414  *		       submit fully mapped pages for IO
2415  *
2416  * @mpd - description of extent to map, on return next extent to map
2417  *
2418  * Scan buffers corresponding to changed extent (we expect corresponding pages
2419  * to be already locked) and update buffer state according to new extent state.
2420  * We map delalloc buffers to their physical location, clear unwritten bits,
2421  * and mark buffers as uninit when we perform writes to unwritten extents
2422  * and do extent conversion after IO is finished. If the last page is not fully
2423  * mapped, we update @map to the next extent in the last page that needs
2424  * mapping. Otherwise we submit the page for IO.
2425  */
2426 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2427 {
2428 	struct pagevec pvec;
2429 	int nr_pages, i;
2430 	struct inode *inode = mpd->inode;
2431 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2432 	pgoff_t start, end;
2433 	ext4_lblk_t lblk;
2434 	ext4_fsblk_t pblock;
2435 	int err;
2436 	bool map_bh = false;
2437 
2438 	start = mpd->map.m_lblk >> bpp_bits;
2439 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2440 	lblk = start << bpp_bits;
2441 	pblock = mpd->map.m_pblk;
2442 
2443 	pagevec_init(&pvec);
2444 	while (start <= end) {
2445 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2446 						&start, end);
2447 		if (nr_pages == 0)
2448 			break;
2449 		for (i = 0; i < nr_pages; i++) {
2450 			struct page *page = pvec.pages[i];
2451 
2452 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2453 						 &map_bh);
2454 			/*
2455 			 * If map_bh is true, means page may require further bh
2456 			 * mapping, or maybe the page was submitted for IO.
2457 			 * So we return to call further extent mapping.
2458 			 */
2459 			if (err < 0 || map_bh == true)
2460 				goto out;
2461 			/* Page fully mapped - let IO run! */
2462 			err = mpage_submit_page(mpd, page);
2463 			if (err < 0)
2464 				goto out;
2465 		}
2466 		pagevec_release(&pvec);
2467 	}
2468 	/* Extent fully mapped and matches with page boundary. We are done. */
2469 	mpd->map.m_len = 0;
2470 	mpd->map.m_flags = 0;
2471 	return 0;
2472 out:
2473 	pagevec_release(&pvec);
2474 	return err;
2475 }
2476 
2477 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2478 {
2479 	struct inode *inode = mpd->inode;
2480 	struct ext4_map_blocks *map = &mpd->map;
2481 	int get_blocks_flags;
2482 	int err, dioread_nolock;
2483 
2484 	trace_ext4_da_write_pages_extent(inode, map);
2485 	/*
2486 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2487 	 * to convert an unwritten extent to be initialized (in the case
2488 	 * where we have written into one or more preallocated blocks).  It is
2489 	 * possible that we're going to need more metadata blocks than
2490 	 * previously reserved. However we must not fail because we're in
2491 	 * writeback and there is nothing we can do about it so it might result
2492 	 * in data loss.  So use reserved blocks to allocate metadata if
2493 	 * possible.
2494 	 *
2495 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2496 	 * the blocks in question are delalloc blocks.  This indicates
2497 	 * that the blocks and quotas has already been checked when
2498 	 * the data was copied into the page cache.
2499 	 */
2500 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2501 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2502 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2503 	dioread_nolock = ext4_should_dioread_nolock(inode);
2504 	if (dioread_nolock)
2505 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2506 	if (map->m_flags & (1 << BH_Delay))
2507 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2508 
2509 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2510 	if (err < 0)
2511 		return err;
2512 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2513 		if (!mpd->io_submit.io_end->handle &&
2514 		    ext4_handle_valid(handle)) {
2515 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2516 			handle->h_rsv_handle = NULL;
2517 		}
2518 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2519 	}
2520 
2521 	BUG_ON(map->m_len == 0);
2522 	return 0;
2523 }
2524 
2525 /*
2526  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2527  *				 mpd->len and submit pages underlying it for IO
2528  *
2529  * @handle - handle for journal operations
2530  * @mpd - extent to map
2531  * @give_up_on_write - we set this to true iff there is a fatal error and there
2532  *                     is no hope of writing the data. The caller should discard
2533  *                     dirty pages to avoid infinite loops.
2534  *
2535  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2536  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2537  * them to initialized or split the described range from larger unwritten
2538  * extent. Note that we need not map all the described range since allocation
2539  * can return less blocks or the range is covered by more unwritten extents. We
2540  * cannot map more because we are limited by reserved transaction credits. On
2541  * the other hand we always make sure that the last touched page is fully
2542  * mapped so that it can be written out (and thus forward progress is
2543  * guaranteed). After mapping we submit all mapped pages for IO.
2544  */
2545 static int mpage_map_and_submit_extent(handle_t *handle,
2546 				       struct mpage_da_data *mpd,
2547 				       bool *give_up_on_write)
2548 {
2549 	struct inode *inode = mpd->inode;
2550 	struct ext4_map_blocks *map = &mpd->map;
2551 	int err;
2552 	loff_t disksize;
2553 	int progress = 0;
2554 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2555 	struct ext4_io_end_vec *io_end_vec = ext4_alloc_io_end_vec(io_end);
2556 
2557 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2558 	do {
2559 		err = mpage_map_one_extent(handle, mpd);
2560 		if (err < 0) {
2561 			struct super_block *sb = inode->i_sb;
2562 
2563 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2564 			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2565 				goto invalidate_dirty_pages;
2566 			/*
2567 			 * Let the uper layers retry transient errors.
2568 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2569 			 * is non-zero, a commit should free up blocks.
2570 			 */
2571 			if ((err == -ENOMEM) ||
2572 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2573 				if (progress)
2574 					goto update_disksize;
2575 				return err;
2576 			}
2577 			ext4_msg(sb, KERN_CRIT,
2578 				 "Delayed block allocation failed for "
2579 				 "inode %lu at logical offset %llu with"
2580 				 " max blocks %u with error %d",
2581 				 inode->i_ino,
2582 				 (unsigned long long)map->m_lblk,
2583 				 (unsigned)map->m_len, -err);
2584 			ext4_msg(sb, KERN_CRIT,
2585 				 "This should not happen!! Data will "
2586 				 "be lost\n");
2587 			if (err == -ENOSPC)
2588 				ext4_print_free_blocks(inode);
2589 		invalidate_dirty_pages:
2590 			*give_up_on_write = true;
2591 			return err;
2592 		}
2593 		progress = 1;
2594 		/*
2595 		 * Update buffer state, submit mapped pages, and get us new
2596 		 * extent to map
2597 		 */
2598 		err = mpage_map_and_submit_buffers(mpd);
2599 		if (err < 0)
2600 			goto update_disksize;
2601 	} while (map->m_len);
2602 
2603 update_disksize:
2604 	/*
2605 	 * Update on-disk size after IO is submitted.  Races with
2606 	 * truncate are avoided by checking i_size under i_data_sem.
2607 	 */
2608 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2609 	if (disksize > EXT4_I(inode)->i_disksize) {
2610 		int err2;
2611 		loff_t i_size;
2612 
2613 		down_write(&EXT4_I(inode)->i_data_sem);
2614 		i_size = i_size_read(inode);
2615 		if (disksize > i_size)
2616 			disksize = i_size;
2617 		if (disksize > EXT4_I(inode)->i_disksize)
2618 			EXT4_I(inode)->i_disksize = disksize;
2619 		up_write(&EXT4_I(inode)->i_data_sem);
2620 		err2 = ext4_mark_inode_dirty(handle, inode);
2621 		if (err2)
2622 			ext4_error(inode->i_sb,
2623 				   "Failed to mark inode %lu dirty",
2624 				   inode->i_ino);
2625 		if (!err)
2626 			err = err2;
2627 	}
2628 	return err;
2629 }
2630 
2631 /*
2632  * Calculate the total number of credits to reserve for one writepages
2633  * iteration. This is called from ext4_writepages(). We map an extent of
2634  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2635  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2636  * bpp - 1 blocks in bpp different extents.
2637  */
2638 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2639 {
2640 	int bpp = ext4_journal_blocks_per_page(inode);
2641 
2642 	return ext4_meta_trans_blocks(inode,
2643 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2644 }
2645 
2646 /*
2647  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2648  * 				 and underlying extent to map
2649  *
2650  * @mpd - where to look for pages
2651  *
2652  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2653  * IO immediately. When we find a page which isn't mapped we start accumulating
2654  * extent of buffers underlying these pages that needs mapping (formed by
2655  * either delayed or unwritten buffers). We also lock the pages containing
2656  * these buffers. The extent found is returned in @mpd structure (starting at
2657  * mpd->lblk with length mpd->len blocks).
2658  *
2659  * Note that this function can attach bios to one io_end structure which are
2660  * neither logically nor physically contiguous. Although it may seem as an
2661  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2662  * case as we need to track IO to all buffers underlying a page in one io_end.
2663  */
2664 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2665 {
2666 	struct address_space *mapping = mpd->inode->i_mapping;
2667 	struct pagevec pvec;
2668 	unsigned int nr_pages;
2669 	long left = mpd->wbc->nr_to_write;
2670 	pgoff_t index = mpd->first_page;
2671 	pgoff_t end = mpd->last_page;
2672 	xa_mark_t tag;
2673 	int i, err = 0;
2674 	int blkbits = mpd->inode->i_blkbits;
2675 	ext4_lblk_t lblk;
2676 	struct buffer_head *head;
2677 
2678 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2679 		tag = PAGECACHE_TAG_TOWRITE;
2680 	else
2681 		tag = PAGECACHE_TAG_DIRTY;
2682 
2683 	pagevec_init(&pvec);
2684 	mpd->map.m_len = 0;
2685 	mpd->next_page = index;
2686 	while (index <= end) {
2687 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2688 				tag);
2689 		if (nr_pages == 0)
2690 			goto out;
2691 
2692 		for (i = 0; i < nr_pages; i++) {
2693 			struct page *page = pvec.pages[i];
2694 
2695 			/*
2696 			 * Accumulated enough dirty pages? This doesn't apply
2697 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2698 			 * keep going because someone may be concurrently
2699 			 * dirtying pages, and we might have synced a lot of
2700 			 * newly appeared dirty pages, but have not synced all
2701 			 * of the old dirty pages.
2702 			 */
2703 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2704 				goto out;
2705 
2706 			/* If we can't merge this page, we are done. */
2707 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2708 				goto out;
2709 
2710 			lock_page(page);
2711 			/*
2712 			 * If the page is no longer dirty, or its mapping no
2713 			 * longer corresponds to inode we are writing (which
2714 			 * means it has been truncated or invalidated), or the
2715 			 * page is already under writeback and we are not doing
2716 			 * a data integrity writeback, skip the page
2717 			 */
2718 			if (!PageDirty(page) ||
2719 			    (PageWriteback(page) &&
2720 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2721 			    unlikely(page->mapping != mapping)) {
2722 				unlock_page(page);
2723 				continue;
2724 			}
2725 
2726 			wait_on_page_writeback(page);
2727 			BUG_ON(PageWriteback(page));
2728 
2729 			if (mpd->map.m_len == 0)
2730 				mpd->first_page = page->index;
2731 			mpd->next_page = page->index + 1;
2732 			/* Add all dirty buffers to mpd */
2733 			lblk = ((ext4_lblk_t)page->index) <<
2734 				(PAGE_SHIFT - blkbits);
2735 			head = page_buffers(page);
2736 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2737 			if (err <= 0)
2738 				goto out;
2739 			err = 0;
2740 			left--;
2741 		}
2742 		pagevec_release(&pvec);
2743 		cond_resched();
2744 	}
2745 	return 0;
2746 out:
2747 	pagevec_release(&pvec);
2748 	return err;
2749 }
2750 
2751 static int ext4_writepages(struct address_space *mapping,
2752 			   struct writeback_control *wbc)
2753 {
2754 	pgoff_t	writeback_index = 0;
2755 	long nr_to_write = wbc->nr_to_write;
2756 	int range_whole = 0;
2757 	int cycled = 1;
2758 	handle_t *handle = NULL;
2759 	struct mpage_da_data mpd;
2760 	struct inode *inode = mapping->host;
2761 	int needed_blocks, rsv_blocks = 0, ret = 0;
2762 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2763 	bool done;
2764 	struct blk_plug plug;
2765 	bool give_up_on_write = false;
2766 
2767 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2768 		return -EIO;
2769 
2770 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2771 	trace_ext4_writepages(inode, wbc);
2772 
2773 	/*
2774 	 * No pages to write? This is mainly a kludge to avoid starting
2775 	 * a transaction for special inodes like journal inode on last iput()
2776 	 * because that could violate lock ordering on umount
2777 	 */
2778 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2779 		goto out_writepages;
2780 
2781 	if (ext4_should_journal_data(inode)) {
2782 		ret = generic_writepages(mapping, wbc);
2783 		goto out_writepages;
2784 	}
2785 
2786 	/*
2787 	 * If the filesystem has aborted, it is read-only, so return
2788 	 * right away instead of dumping stack traces later on that
2789 	 * will obscure the real source of the problem.  We test
2790 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2791 	 * the latter could be true if the filesystem is mounted
2792 	 * read-only, and in that case, ext4_writepages should
2793 	 * *never* be called, so if that ever happens, we would want
2794 	 * the stack trace.
2795 	 */
2796 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2797 		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2798 		ret = -EROFS;
2799 		goto out_writepages;
2800 	}
2801 
2802 	/*
2803 	 * If we have inline data and arrive here, it means that
2804 	 * we will soon create the block for the 1st page, so
2805 	 * we'd better clear the inline data here.
2806 	 */
2807 	if (ext4_has_inline_data(inode)) {
2808 		/* Just inode will be modified... */
2809 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2810 		if (IS_ERR(handle)) {
2811 			ret = PTR_ERR(handle);
2812 			goto out_writepages;
2813 		}
2814 		BUG_ON(ext4_test_inode_state(inode,
2815 				EXT4_STATE_MAY_INLINE_DATA));
2816 		ext4_destroy_inline_data(handle, inode);
2817 		ext4_journal_stop(handle);
2818 	}
2819 
2820 	if (ext4_should_dioread_nolock(inode)) {
2821 		/*
2822 		 * We may need to convert up to one extent per block in
2823 		 * the page and we may dirty the inode.
2824 		 */
2825 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2826 						PAGE_SIZE >> inode->i_blkbits);
2827 	}
2828 
2829 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2830 		range_whole = 1;
2831 
2832 	if (wbc->range_cyclic) {
2833 		writeback_index = mapping->writeback_index;
2834 		if (writeback_index)
2835 			cycled = 0;
2836 		mpd.first_page = writeback_index;
2837 		mpd.last_page = -1;
2838 	} else {
2839 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2840 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2841 	}
2842 
2843 	mpd.inode = inode;
2844 	mpd.wbc = wbc;
2845 	ext4_io_submit_init(&mpd.io_submit, wbc);
2846 retry:
2847 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2848 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2849 	done = false;
2850 	blk_start_plug(&plug);
2851 
2852 	/*
2853 	 * First writeback pages that don't need mapping - we can avoid
2854 	 * starting a transaction unnecessarily and also avoid being blocked
2855 	 * in the block layer on device congestion while having transaction
2856 	 * started.
2857 	 */
2858 	mpd.do_map = 0;
2859 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2860 	if (!mpd.io_submit.io_end) {
2861 		ret = -ENOMEM;
2862 		goto unplug;
2863 	}
2864 	ret = mpage_prepare_extent_to_map(&mpd);
2865 	/* Unlock pages we didn't use */
2866 	mpage_release_unused_pages(&mpd, false);
2867 	/* Submit prepared bio */
2868 	ext4_io_submit(&mpd.io_submit);
2869 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2870 	mpd.io_submit.io_end = NULL;
2871 	if (ret < 0)
2872 		goto unplug;
2873 
2874 	while (!done && mpd.first_page <= mpd.last_page) {
2875 		/* For each extent of pages we use new io_end */
2876 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2877 		if (!mpd.io_submit.io_end) {
2878 			ret = -ENOMEM;
2879 			break;
2880 		}
2881 
2882 		/*
2883 		 * We have two constraints: We find one extent to map and we
2884 		 * must always write out whole page (makes a difference when
2885 		 * blocksize < pagesize) so that we don't block on IO when we
2886 		 * try to write out the rest of the page. Journalled mode is
2887 		 * not supported by delalloc.
2888 		 */
2889 		BUG_ON(ext4_should_journal_data(inode));
2890 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2891 
2892 		/* start a new transaction */
2893 		handle = ext4_journal_start_with_reserve(inode,
2894 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2895 		if (IS_ERR(handle)) {
2896 			ret = PTR_ERR(handle);
2897 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2898 			       "%ld pages, ino %lu; err %d", __func__,
2899 				wbc->nr_to_write, inode->i_ino, ret);
2900 			/* Release allocated io_end */
2901 			ext4_put_io_end(mpd.io_submit.io_end);
2902 			mpd.io_submit.io_end = NULL;
2903 			break;
2904 		}
2905 		mpd.do_map = 1;
2906 
2907 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2908 		ret = mpage_prepare_extent_to_map(&mpd);
2909 		if (!ret) {
2910 			if (mpd.map.m_len)
2911 				ret = mpage_map_and_submit_extent(handle, &mpd,
2912 					&give_up_on_write);
2913 			else {
2914 				/*
2915 				 * We scanned the whole range (or exhausted
2916 				 * nr_to_write), submitted what was mapped and
2917 				 * didn't find anything needing mapping. We are
2918 				 * done.
2919 				 */
2920 				done = true;
2921 			}
2922 		}
2923 		/*
2924 		 * Caution: If the handle is synchronous,
2925 		 * ext4_journal_stop() can wait for transaction commit
2926 		 * to finish which may depend on writeback of pages to
2927 		 * complete or on page lock to be released.  In that
2928 		 * case, we have to wait until after after we have
2929 		 * submitted all the IO, released page locks we hold,
2930 		 * and dropped io_end reference (for extent conversion
2931 		 * to be able to complete) before stopping the handle.
2932 		 */
2933 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2934 			ext4_journal_stop(handle);
2935 			handle = NULL;
2936 			mpd.do_map = 0;
2937 		}
2938 		/* Unlock pages we didn't use */
2939 		mpage_release_unused_pages(&mpd, give_up_on_write);
2940 		/* Submit prepared bio */
2941 		ext4_io_submit(&mpd.io_submit);
2942 
2943 		/*
2944 		 * Drop our io_end reference we got from init. We have
2945 		 * to be careful and use deferred io_end finishing if
2946 		 * we are still holding the transaction as we can
2947 		 * release the last reference to io_end which may end
2948 		 * up doing unwritten extent conversion.
2949 		 */
2950 		if (handle) {
2951 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2952 			ext4_journal_stop(handle);
2953 		} else
2954 			ext4_put_io_end(mpd.io_submit.io_end);
2955 		mpd.io_submit.io_end = NULL;
2956 
2957 		if (ret == -ENOSPC && sbi->s_journal) {
2958 			/*
2959 			 * Commit the transaction which would
2960 			 * free blocks released in the transaction
2961 			 * and try again
2962 			 */
2963 			jbd2_journal_force_commit_nested(sbi->s_journal);
2964 			ret = 0;
2965 			continue;
2966 		}
2967 		/* Fatal error - ENOMEM, EIO... */
2968 		if (ret)
2969 			break;
2970 	}
2971 unplug:
2972 	blk_finish_plug(&plug);
2973 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2974 		cycled = 1;
2975 		mpd.last_page = writeback_index - 1;
2976 		mpd.first_page = 0;
2977 		goto retry;
2978 	}
2979 
2980 	/* Update index */
2981 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2982 		/*
2983 		 * Set the writeback_index so that range_cyclic
2984 		 * mode will write it back later
2985 		 */
2986 		mapping->writeback_index = mpd.first_page;
2987 
2988 out_writepages:
2989 	trace_ext4_writepages_result(inode, wbc, ret,
2990 				     nr_to_write - wbc->nr_to_write);
2991 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2992 	return ret;
2993 }
2994 
2995 static int ext4_dax_writepages(struct address_space *mapping,
2996 			       struct writeback_control *wbc)
2997 {
2998 	int ret;
2999 	long nr_to_write = wbc->nr_to_write;
3000 	struct inode *inode = mapping->host;
3001 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
3002 
3003 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3004 		return -EIO;
3005 
3006 	percpu_down_read(&sbi->s_journal_flag_rwsem);
3007 	trace_ext4_writepages(inode, wbc);
3008 
3009 	ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
3010 	trace_ext4_writepages_result(inode, wbc, ret,
3011 				     nr_to_write - wbc->nr_to_write);
3012 	percpu_up_read(&sbi->s_journal_flag_rwsem);
3013 	return ret;
3014 }
3015 
3016 static int ext4_nonda_switch(struct super_block *sb)
3017 {
3018 	s64 free_clusters, dirty_clusters;
3019 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3020 
3021 	/*
3022 	 * switch to non delalloc mode if we are running low
3023 	 * on free block. The free block accounting via percpu
3024 	 * counters can get slightly wrong with percpu_counter_batch getting
3025 	 * accumulated on each CPU without updating global counters
3026 	 * Delalloc need an accurate free block accounting. So switch
3027 	 * to non delalloc when we are near to error range.
3028 	 */
3029 	free_clusters =
3030 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3031 	dirty_clusters =
3032 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3033 	/*
3034 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
3035 	 */
3036 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3037 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3038 
3039 	if (2 * free_clusters < 3 * dirty_clusters ||
3040 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3041 		/*
3042 		 * free block count is less than 150% of dirty blocks
3043 		 * or free blocks is less than watermark
3044 		 */
3045 		return 1;
3046 	}
3047 	return 0;
3048 }
3049 
3050 /* We always reserve for an inode update; the superblock could be there too */
3051 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3052 {
3053 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
3054 		return 1;
3055 
3056 	if (pos + len <= 0x7fffffffULL)
3057 		return 1;
3058 
3059 	/* We might need to update the superblock to set LARGE_FILE */
3060 	return 2;
3061 }
3062 
3063 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3064 			       loff_t pos, unsigned len, unsigned flags,
3065 			       struct page **pagep, void **fsdata)
3066 {
3067 	int ret, retries = 0;
3068 	struct page *page;
3069 	pgoff_t index;
3070 	struct inode *inode = mapping->host;
3071 	handle_t *handle;
3072 
3073 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3074 		return -EIO;
3075 
3076 	index = pos >> PAGE_SHIFT;
3077 
3078 	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
3079 	    ext4_verity_in_progress(inode)) {
3080 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3081 		return ext4_write_begin(file, mapping, pos,
3082 					len, flags, pagep, fsdata);
3083 	}
3084 	*fsdata = (void *)0;
3085 	trace_ext4_da_write_begin(inode, pos, len, flags);
3086 
3087 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3088 		ret = ext4_da_write_inline_data_begin(mapping, inode,
3089 						      pos, len, flags,
3090 						      pagep, fsdata);
3091 		if (ret < 0)
3092 			return ret;
3093 		if (ret == 1)
3094 			return 0;
3095 	}
3096 
3097 	/*
3098 	 * grab_cache_page_write_begin() can take a long time if the
3099 	 * system is thrashing due to memory pressure, or if the page
3100 	 * is being written back.  So grab it first before we start
3101 	 * the transaction handle.  This also allows us to allocate
3102 	 * the page (if needed) without using GFP_NOFS.
3103 	 */
3104 retry_grab:
3105 	page = grab_cache_page_write_begin(mapping, index, flags);
3106 	if (!page)
3107 		return -ENOMEM;
3108 	unlock_page(page);
3109 
3110 	/*
3111 	 * With delayed allocation, we don't log the i_disksize update
3112 	 * if there is delayed block allocation. But we still need
3113 	 * to journalling the i_disksize update if writes to the end
3114 	 * of file which has an already mapped buffer.
3115 	 */
3116 retry_journal:
3117 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3118 				ext4_da_write_credits(inode, pos, len));
3119 	if (IS_ERR(handle)) {
3120 		put_page(page);
3121 		return PTR_ERR(handle);
3122 	}
3123 
3124 	lock_page(page);
3125 	if (page->mapping != mapping) {
3126 		/* The page got truncated from under us */
3127 		unlock_page(page);
3128 		put_page(page);
3129 		ext4_journal_stop(handle);
3130 		goto retry_grab;
3131 	}
3132 	/* In case writeback began while the page was unlocked */
3133 	wait_for_stable_page(page);
3134 
3135 #ifdef CONFIG_FS_ENCRYPTION
3136 	ret = ext4_block_write_begin(page, pos, len,
3137 				     ext4_da_get_block_prep);
3138 #else
3139 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3140 #endif
3141 	if (ret < 0) {
3142 		unlock_page(page);
3143 		ext4_journal_stop(handle);
3144 		/*
3145 		 * block_write_begin may have instantiated a few blocks
3146 		 * outside i_size.  Trim these off again. Don't need
3147 		 * i_size_read because we hold i_mutex.
3148 		 */
3149 		if (pos + len > inode->i_size)
3150 			ext4_truncate_failed_write(inode);
3151 
3152 		if (ret == -ENOSPC &&
3153 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3154 			goto retry_journal;
3155 
3156 		put_page(page);
3157 		return ret;
3158 	}
3159 
3160 	*pagep = page;
3161 	return ret;
3162 }
3163 
3164 /*
3165  * Check if we should update i_disksize
3166  * when write to the end of file but not require block allocation
3167  */
3168 static int ext4_da_should_update_i_disksize(struct page *page,
3169 					    unsigned long offset)
3170 {
3171 	struct buffer_head *bh;
3172 	struct inode *inode = page->mapping->host;
3173 	unsigned int idx;
3174 	int i;
3175 
3176 	bh = page_buffers(page);
3177 	idx = offset >> inode->i_blkbits;
3178 
3179 	for (i = 0; i < idx; i++)
3180 		bh = bh->b_this_page;
3181 
3182 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3183 		return 0;
3184 	return 1;
3185 }
3186 
3187 static int ext4_da_write_end(struct file *file,
3188 			     struct address_space *mapping,
3189 			     loff_t pos, unsigned len, unsigned copied,
3190 			     struct page *page, void *fsdata)
3191 {
3192 	struct inode *inode = mapping->host;
3193 	int ret = 0, ret2;
3194 	handle_t *handle = ext4_journal_current_handle();
3195 	loff_t new_i_size;
3196 	unsigned long start, end;
3197 	int write_mode = (int)(unsigned long)fsdata;
3198 
3199 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3200 		return ext4_write_end(file, mapping, pos,
3201 				      len, copied, page, fsdata);
3202 
3203 	trace_ext4_da_write_end(inode, pos, len, copied);
3204 	start = pos & (PAGE_SIZE - 1);
3205 	end = start + copied - 1;
3206 
3207 	/*
3208 	 * generic_write_end() will run mark_inode_dirty() if i_size
3209 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3210 	 * into that.
3211 	 */
3212 	new_i_size = pos + copied;
3213 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3214 		if (ext4_has_inline_data(inode) ||
3215 		    ext4_da_should_update_i_disksize(page, end)) {
3216 			ext4_update_i_disksize(inode, new_i_size);
3217 			/* We need to mark inode dirty even if
3218 			 * new_i_size is less that inode->i_size
3219 			 * bu greater than i_disksize.(hint delalloc)
3220 			 */
3221 			ext4_mark_inode_dirty(handle, inode);
3222 		}
3223 	}
3224 
3225 	if (write_mode != CONVERT_INLINE_DATA &&
3226 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3227 	    ext4_has_inline_data(inode))
3228 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3229 						     page);
3230 	else
3231 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3232 							page, fsdata);
3233 
3234 	copied = ret2;
3235 	if (ret2 < 0)
3236 		ret = ret2;
3237 	ret2 = ext4_journal_stop(handle);
3238 	if (!ret)
3239 		ret = ret2;
3240 
3241 	return ret ? ret : copied;
3242 }
3243 
3244 /*
3245  * Force all delayed allocation blocks to be allocated for a given inode.
3246  */
3247 int ext4_alloc_da_blocks(struct inode *inode)
3248 {
3249 	trace_ext4_alloc_da_blocks(inode);
3250 
3251 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3252 		return 0;
3253 
3254 	/*
3255 	 * We do something simple for now.  The filemap_flush() will
3256 	 * also start triggering a write of the data blocks, which is
3257 	 * not strictly speaking necessary (and for users of
3258 	 * laptop_mode, not even desirable).  However, to do otherwise
3259 	 * would require replicating code paths in:
3260 	 *
3261 	 * ext4_writepages() ->
3262 	 *    write_cache_pages() ---> (via passed in callback function)
3263 	 *        __mpage_da_writepage() -->
3264 	 *           mpage_add_bh_to_extent()
3265 	 *           mpage_da_map_blocks()
3266 	 *
3267 	 * The problem is that write_cache_pages(), located in
3268 	 * mm/page-writeback.c, marks pages clean in preparation for
3269 	 * doing I/O, which is not desirable if we're not planning on
3270 	 * doing I/O at all.
3271 	 *
3272 	 * We could call write_cache_pages(), and then redirty all of
3273 	 * the pages by calling redirty_page_for_writepage() but that
3274 	 * would be ugly in the extreme.  So instead we would need to
3275 	 * replicate parts of the code in the above functions,
3276 	 * simplifying them because we wouldn't actually intend to
3277 	 * write out the pages, but rather only collect contiguous
3278 	 * logical block extents, call the multi-block allocator, and
3279 	 * then update the buffer heads with the block allocations.
3280 	 *
3281 	 * For now, though, we'll cheat by calling filemap_flush(),
3282 	 * which will map the blocks, and start the I/O, but not
3283 	 * actually wait for the I/O to complete.
3284 	 */
3285 	return filemap_flush(inode->i_mapping);
3286 }
3287 
3288 /*
3289  * bmap() is special.  It gets used by applications such as lilo and by
3290  * the swapper to find the on-disk block of a specific piece of data.
3291  *
3292  * Naturally, this is dangerous if the block concerned is still in the
3293  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3294  * filesystem and enables swap, then they may get a nasty shock when the
3295  * data getting swapped to that swapfile suddenly gets overwritten by
3296  * the original zero's written out previously to the journal and
3297  * awaiting writeback in the kernel's buffer cache.
3298  *
3299  * So, if we see any bmap calls here on a modified, data-journaled file,
3300  * take extra steps to flush any blocks which might be in the cache.
3301  */
3302 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3303 {
3304 	struct inode *inode = mapping->host;
3305 	journal_t *journal;
3306 	int err;
3307 
3308 	/*
3309 	 * We can get here for an inline file via the FIBMAP ioctl
3310 	 */
3311 	if (ext4_has_inline_data(inode))
3312 		return 0;
3313 
3314 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3315 			test_opt(inode->i_sb, DELALLOC)) {
3316 		/*
3317 		 * With delalloc we want to sync the file
3318 		 * so that we can make sure we allocate
3319 		 * blocks for file
3320 		 */
3321 		filemap_write_and_wait(mapping);
3322 	}
3323 
3324 	if (EXT4_JOURNAL(inode) &&
3325 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3326 		/*
3327 		 * This is a REALLY heavyweight approach, but the use of
3328 		 * bmap on dirty files is expected to be extremely rare:
3329 		 * only if we run lilo or swapon on a freshly made file
3330 		 * do we expect this to happen.
3331 		 *
3332 		 * (bmap requires CAP_SYS_RAWIO so this does not
3333 		 * represent an unprivileged user DOS attack --- we'd be
3334 		 * in trouble if mortal users could trigger this path at
3335 		 * will.)
3336 		 *
3337 		 * NB. EXT4_STATE_JDATA is not set on files other than
3338 		 * regular files.  If somebody wants to bmap a directory
3339 		 * or symlink and gets confused because the buffer
3340 		 * hasn't yet been flushed to disk, they deserve
3341 		 * everything they get.
3342 		 */
3343 
3344 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3345 		journal = EXT4_JOURNAL(inode);
3346 		jbd2_journal_lock_updates(journal);
3347 		err = jbd2_journal_flush(journal);
3348 		jbd2_journal_unlock_updates(journal);
3349 
3350 		if (err)
3351 			return 0;
3352 	}
3353 
3354 	return generic_block_bmap(mapping, block, ext4_get_block);
3355 }
3356 
3357 static int ext4_readpage(struct file *file, struct page *page)
3358 {
3359 	int ret = -EAGAIN;
3360 	struct inode *inode = page->mapping->host;
3361 
3362 	trace_ext4_readpage(page);
3363 
3364 	if (ext4_has_inline_data(inode))
3365 		ret = ext4_readpage_inline(inode, page);
3366 
3367 	if (ret == -EAGAIN)
3368 		return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3369 						false);
3370 
3371 	return ret;
3372 }
3373 
3374 static int
3375 ext4_readpages(struct file *file, struct address_space *mapping,
3376 		struct list_head *pages, unsigned nr_pages)
3377 {
3378 	struct inode *inode = mapping->host;
3379 
3380 	/* If the file has inline data, no need to do readpages. */
3381 	if (ext4_has_inline_data(inode))
3382 		return 0;
3383 
3384 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3385 }
3386 
3387 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3388 				unsigned int length)
3389 {
3390 	trace_ext4_invalidatepage(page, offset, length);
3391 
3392 	/* No journalling happens on data buffers when this function is used */
3393 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3394 
3395 	block_invalidatepage(page, offset, length);
3396 }
3397 
3398 static int __ext4_journalled_invalidatepage(struct page *page,
3399 					    unsigned int offset,
3400 					    unsigned int length)
3401 {
3402 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3403 
3404 	trace_ext4_journalled_invalidatepage(page, offset, length);
3405 
3406 	/*
3407 	 * If it's a full truncate we just forget about the pending dirtying
3408 	 */
3409 	if (offset == 0 && length == PAGE_SIZE)
3410 		ClearPageChecked(page);
3411 
3412 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3413 }
3414 
3415 /* Wrapper for aops... */
3416 static void ext4_journalled_invalidatepage(struct page *page,
3417 					   unsigned int offset,
3418 					   unsigned int length)
3419 {
3420 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3421 }
3422 
3423 static int ext4_releasepage(struct page *page, gfp_t wait)
3424 {
3425 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3426 
3427 	trace_ext4_releasepage(page);
3428 
3429 	/* Page has dirty journalled data -> cannot release */
3430 	if (PageChecked(page))
3431 		return 0;
3432 	if (journal)
3433 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3434 	else
3435 		return try_to_free_buffers(page);
3436 }
3437 
3438 static bool ext4_inode_datasync_dirty(struct inode *inode)
3439 {
3440 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3441 
3442 	if (journal)
3443 		return !jbd2_transaction_committed(journal,
3444 					EXT4_I(inode)->i_datasync_tid);
3445 	/* Any metadata buffers to write? */
3446 	if (!list_empty(&inode->i_mapping->private_list))
3447 		return true;
3448 	return inode->i_state & I_DIRTY_DATASYNC;
3449 }
3450 
3451 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3452 			   struct ext4_map_blocks *map, loff_t offset,
3453 			   loff_t length)
3454 {
3455 	u8 blkbits = inode->i_blkbits;
3456 
3457 	/*
3458 	 * Writes that span EOF might trigger an I/O size update on completion,
3459 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3460 	 * there is no other metadata changes being made or are pending.
3461 	 */
3462 	iomap->flags = 0;
3463 	if (ext4_inode_datasync_dirty(inode) ||
3464 	    offset + length > i_size_read(inode))
3465 		iomap->flags |= IOMAP_F_DIRTY;
3466 
3467 	if (map->m_flags & EXT4_MAP_NEW)
3468 		iomap->flags |= IOMAP_F_NEW;
3469 
3470 	iomap->bdev = inode->i_sb->s_bdev;
3471 	iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3472 	iomap->offset = (u64) map->m_lblk << blkbits;
3473 	iomap->length = (u64) map->m_len << blkbits;
3474 
3475 	/*
3476 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3477 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3478 	 * set. In order for any allocated unwritten extents to be converted
3479 	 * into written extents correctly within the ->end_io() handler, we
3480 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3481 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3482 	 * been set first.
3483 	 */
3484 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3485 		iomap->type = IOMAP_UNWRITTEN;
3486 		iomap->addr = (u64) map->m_pblk << blkbits;
3487 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3488 		iomap->type = IOMAP_MAPPED;
3489 		iomap->addr = (u64) map->m_pblk << blkbits;
3490 	} else {
3491 		iomap->type = IOMAP_HOLE;
3492 		iomap->addr = IOMAP_NULL_ADDR;
3493 	}
3494 }
3495 
3496 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3497 			    unsigned int flags)
3498 {
3499 	handle_t *handle;
3500 	u8 blkbits = inode->i_blkbits;
3501 	int ret, dio_credits, retries = 0;
3502 
3503 	/*
3504 	 * Trim the mapping request to the maximum value that we can map at
3505 	 * once for direct I/O.
3506 	 */
3507 	if (map->m_len > DIO_MAX_BLOCKS)
3508 		map->m_len = DIO_MAX_BLOCKS;
3509 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3510 
3511 retry:
3512 	/*
3513 	 * Either we allocate blocks and then don't get an unwritten extent, so
3514 	 * in that case we have reserved enough credits. Or, the blocks are
3515 	 * already allocated and unwritten. In that case, the extent conversion
3516 	 * fits into the credits as well.
3517 	 */
3518 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3519 	if (IS_ERR(handle))
3520 		return PTR_ERR(handle);
3521 
3522 	ret = ext4_map_blocks(handle, inode, map, EXT4_GET_BLOCKS_CREATE_ZERO);
3523 	if (ret < 0)
3524 		goto journal_stop;
3525 
3526 	/*
3527 	 * If we've allocated blocks beyond EOF, we need to ensure that they're
3528 	 * truncated if we crash before updating the inode size metadata within
3529 	 * ext4_iomap_end(). For faults, we don't need to do that (and cannot
3530 	 * due to orphan list operations needing an inode_lock()). If we happen
3531 	 * to instantiate blocks beyond EOF, it is because we race with a
3532 	 * truncate operation, which already has added the inode onto the
3533 	 * orphan list.
3534 	 */
3535 	if (!(flags & IOMAP_FAULT) && map->m_lblk + map->m_len >
3536 	    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3537 		int err;
3538 
3539 		err = ext4_orphan_add(handle, inode);
3540 		if (err < 0)
3541 			ret = err;
3542 	}
3543 
3544 journal_stop:
3545 	ext4_journal_stop(handle);
3546 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3547 		goto retry;
3548 
3549 	return ret;
3550 }
3551 
3552 
3553 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3554 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3555 {
3556 	int ret;
3557 	struct ext4_map_blocks map;
3558 	u8 blkbits = inode->i_blkbits;
3559 
3560 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3561 		return -EINVAL;
3562 
3563 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3564 		return -ERANGE;
3565 
3566 	/*
3567 	 * Calculate the first and last logical blocks respectively.
3568 	 */
3569 	map.m_lblk = offset >> blkbits;
3570 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3571 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3572 
3573 	if (flags & IOMAP_WRITE)
3574 		ret = ext4_iomap_alloc(inode, &map, flags);
3575 	else
3576 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3577 
3578 	if (ret < 0)
3579 		return ret;
3580 
3581 	ext4_set_iomap(inode, iomap, &map, offset, length);
3582 
3583 	return 0;
3584 }
3585 
3586 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3587 			  ssize_t written, unsigned flags, struct iomap *iomap)
3588 {
3589 	int ret = 0;
3590 	handle_t *handle;
3591 	int blkbits = inode->i_blkbits;
3592 	bool truncate = false;
3593 
3594 	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3595 		return 0;
3596 
3597 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3598 	if (IS_ERR(handle)) {
3599 		ret = PTR_ERR(handle);
3600 		goto orphan_del;
3601 	}
3602 	if (ext4_update_inode_size(inode, offset + written))
3603 		ext4_mark_inode_dirty(handle, inode);
3604 	/*
3605 	 * We may need to truncate allocated but not written blocks beyond EOF.
3606 	 */
3607 	if (iomap->offset + iomap->length >
3608 	    ALIGN(inode->i_size, 1 << blkbits)) {
3609 		ext4_lblk_t written_blk, end_blk;
3610 
3611 		written_blk = (offset + written) >> blkbits;
3612 		end_blk = (offset + length) >> blkbits;
3613 		if (written_blk < end_blk && ext4_can_truncate(inode))
3614 			truncate = true;
3615 	}
3616 	/*
3617 	 * Remove inode from orphan list if we were extending a inode and
3618 	 * everything went fine.
3619 	 */
3620 	if (!truncate && inode->i_nlink &&
3621 	    !list_empty(&EXT4_I(inode)->i_orphan))
3622 		ext4_orphan_del(handle, inode);
3623 	ext4_journal_stop(handle);
3624 	if (truncate) {
3625 		ext4_truncate_failed_write(inode);
3626 orphan_del:
3627 		/*
3628 		 * If truncate failed early the inode might still be on the
3629 		 * orphan list; we need to make sure the inode is removed from
3630 		 * the orphan list in that case.
3631 		 */
3632 		if (inode->i_nlink)
3633 			ext4_orphan_del(NULL, inode);
3634 	}
3635 	return ret;
3636 }
3637 
3638 const struct iomap_ops ext4_iomap_ops = {
3639 	.iomap_begin		= ext4_iomap_begin,
3640 	.iomap_end		= ext4_iomap_end,
3641 };
3642 
3643 static bool ext4_iomap_is_delalloc(struct inode *inode,
3644 				   struct ext4_map_blocks *map)
3645 {
3646 	struct extent_status es;
3647 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3648 
3649 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3650 				  map->m_lblk, end, &es);
3651 
3652 	if (!es.es_len || es.es_lblk > end)
3653 		return false;
3654 
3655 	if (es.es_lblk > map->m_lblk) {
3656 		map->m_len = es.es_lblk - map->m_lblk;
3657 		return false;
3658 	}
3659 
3660 	offset = map->m_lblk - es.es_lblk;
3661 	map->m_len = es.es_len - offset;
3662 
3663 	return true;
3664 }
3665 
3666 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3667 				   loff_t length, unsigned int flags,
3668 				   struct iomap *iomap, struct iomap *srcmap)
3669 {
3670 	int ret;
3671 	bool delalloc = false;
3672 	struct ext4_map_blocks map;
3673 	u8 blkbits = inode->i_blkbits;
3674 
3675 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3676 		return -EINVAL;
3677 
3678 	if (ext4_has_inline_data(inode)) {
3679 		ret = ext4_inline_data_iomap(inode, iomap);
3680 		if (ret != -EAGAIN) {
3681 			if (ret == 0 && offset >= iomap->length)
3682 				ret = -ENOENT;
3683 			return ret;
3684 		}
3685 	}
3686 
3687 	/*
3688 	 * Calculate the first and last logical block respectively.
3689 	 */
3690 	map.m_lblk = offset >> blkbits;
3691 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3692 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3693 
3694 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3695 	if (ret < 0)
3696 		return ret;
3697 	if (ret == 0)
3698 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3699 
3700 	ext4_set_iomap(inode, iomap, &map, offset, length);
3701 	if (delalloc && iomap->type == IOMAP_HOLE)
3702 		iomap->type = IOMAP_DELALLOC;
3703 
3704 	return 0;
3705 }
3706 
3707 const struct iomap_ops ext4_iomap_report_ops = {
3708 	.iomap_begin = ext4_iomap_begin_report,
3709 };
3710 
3711 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3712 			    ssize_t size, void *private)
3713 {
3714         ext4_io_end_t *io_end = private;
3715 	struct ext4_io_end_vec *io_end_vec;
3716 
3717 	/* if not async direct IO just return */
3718 	if (!io_end)
3719 		return 0;
3720 
3721 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3722 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3723 		  io_end, io_end->inode->i_ino, iocb, offset, size);
3724 
3725 	/*
3726 	 * Error during AIO DIO. We cannot convert unwritten extents as the
3727 	 * data was not written. Just clear the unwritten flag and drop io_end.
3728 	 */
3729 	if (size <= 0) {
3730 		ext4_clear_io_unwritten_flag(io_end);
3731 		size = 0;
3732 	}
3733 	io_end_vec = ext4_alloc_io_end_vec(io_end);
3734 	io_end_vec->offset = offset;
3735 	io_end_vec->size = size;
3736 	ext4_put_io_end(io_end);
3737 
3738 	return 0;
3739 }
3740 
3741 /*
3742  * Handling of direct IO writes.
3743  *
3744  * For ext4 extent files, ext4 will do direct-io write even to holes,
3745  * preallocated extents, and those write extend the file, no need to
3746  * fall back to buffered IO.
3747  *
3748  * For holes, we fallocate those blocks, mark them as unwritten
3749  * If those blocks were preallocated, we mark sure they are split, but
3750  * still keep the range to write as unwritten.
3751  *
3752  * The unwritten extents will be converted to written when DIO is completed.
3753  * For async direct IO, since the IO may still pending when return, we
3754  * set up an end_io call back function, which will do the conversion
3755  * when async direct IO completed.
3756  *
3757  * If the O_DIRECT write will extend the file then add this inode to the
3758  * orphan list.  So recovery will truncate it back to the original size
3759  * if the machine crashes during the write.
3760  *
3761  */
3762 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3763 {
3764 	struct file *file = iocb->ki_filp;
3765 	struct inode *inode = file->f_mapping->host;
3766 	struct ext4_inode_info *ei = EXT4_I(inode);
3767 	ssize_t ret;
3768 	loff_t offset = iocb->ki_pos;
3769 	size_t count = iov_iter_count(iter);
3770 	int overwrite = 0;
3771 	get_block_t *get_block_func = NULL;
3772 	int dio_flags = 0;
3773 	loff_t final_size = offset + count;
3774 	int orphan = 0;
3775 	handle_t *handle;
3776 
3777 	if (final_size > inode->i_size || final_size > ei->i_disksize) {
3778 		/* Credits for sb + inode write */
3779 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3780 		if (IS_ERR(handle)) {
3781 			ret = PTR_ERR(handle);
3782 			goto out;
3783 		}
3784 		ret = ext4_orphan_add(handle, inode);
3785 		if (ret) {
3786 			ext4_journal_stop(handle);
3787 			goto out;
3788 		}
3789 		orphan = 1;
3790 		ext4_update_i_disksize(inode, inode->i_size);
3791 		ext4_journal_stop(handle);
3792 	}
3793 
3794 	BUG_ON(iocb->private == NULL);
3795 
3796 	/*
3797 	 * Make all waiters for direct IO properly wait also for extent
3798 	 * conversion. This also disallows race between truncate() and
3799 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3800 	 */
3801 	inode_dio_begin(inode);
3802 
3803 	/* If we do a overwrite dio, i_mutex locking can be released */
3804 	overwrite = *((int *)iocb->private);
3805 
3806 	if (overwrite)
3807 		inode_unlock(inode);
3808 
3809 	/*
3810 	 * For extent mapped files we could direct write to holes and fallocate.
3811 	 *
3812 	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3813 	 * parallel buffered read to expose the stale data before DIO complete
3814 	 * the data IO.
3815 	 *
3816 	 * As to previously fallocated extents, ext4 get_block will just simply
3817 	 * mark the buffer mapped but still keep the extents unwritten.
3818 	 *
3819 	 * For non AIO case, we will convert those unwritten extents to written
3820 	 * after return back from blockdev_direct_IO. That way we save us from
3821 	 * allocating io_end structure and also the overhead of offloading
3822 	 * the extent convertion to a workqueue.
3823 	 *
3824 	 * For async DIO, the conversion needs to be deferred when the
3825 	 * IO is completed. The ext4 end_io callback function will be
3826 	 * called to take care of the conversion work.  Here for async
3827 	 * case, we allocate an io_end structure to hook to the iocb.
3828 	 */
3829 	iocb->private = NULL;
3830 	if (overwrite)
3831 		get_block_func = ext4_dio_get_block_overwrite;
3832 	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3833 		   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3834 		get_block_func = ext4_dio_get_block;
3835 		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3836 	} else if (is_sync_kiocb(iocb)) {
3837 		get_block_func = ext4_dio_get_block_unwritten_sync;
3838 		dio_flags = DIO_LOCKING;
3839 	} else {
3840 		get_block_func = ext4_dio_get_block_unwritten_async;
3841 		dio_flags = DIO_LOCKING;
3842 	}
3843 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3844 				   get_block_func, ext4_end_io_dio, NULL,
3845 				   dio_flags);
3846 
3847 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3848 						EXT4_STATE_DIO_UNWRITTEN)) {
3849 		int err;
3850 		/*
3851 		 * for non AIO case, since the IO is already
3852 		 * completed, we could do the conversion right here
3853 		 */
3854 		err = ext4_convert_unwritten_extents(NULL, inode,
3855 						     offset, ret);
3856 		if (err < 0)
3857 			ret = err;
3858 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3859 	}
3860 
3861 	inode_dio_end(inode);
3862 	/* take i_mutex locking again if we do a ovewrite dio */
3863 	if (overwrite)
3864 		inode_lock(inode);
3865 
3866 	if (ret < 0 && final_size > inode->i_size)
3867 		ext4_truncate_failed_write(inode);
3868 
3869 	/* Handle extending of i_size after direct IO write */
3870 	if (orphan) {
3871 		int err;
3872 
3873 		/* Credits for sb + inode write */
3874 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3875 		if (IS_ERR(handle)) {
3876 			/*
3877 			 * We wrote the data but cannot extend
3878 			 * i_size. Bail out. In async io case, we do
3879 			 * not return error here because we have
3880 			 * already submmitted the corresponding
3881 			 * bio. Returning error here makes the caller
3882 			 * think that this IO is done and failed
3883 			 * resulting in race with bio's completion
3884 			 * handler.
3885 			 */
3886 			if (!ret)
3887 				ret = PTR_ERR(handle);
3888 			if (inode->i_nlink)
3889 				ext4_orphan_del(NULL, inode);
3890 
3891 			goto out;
3892 		}
3893 		if (inode->i_nlink)
3894 			ext4_orphan_del(handle, inode);
3895 		if (ret > 0) {
3896 			loff_t end = offset + ret;
3897 			if (end > inode->i_size || end > ei->i_disksize) {
3898 				ext4_update_i_disksize(inode, end);
3899 				if (end > inode->i_size)
3900 					i_size_write(inode, end);
3901 				/*
3902 				 * We're going to return a positive `ret'
3903 				 * here due to non-zero-length I/O, so there's
3904 				 * no way of reporting error returns from
3905 				 * ext4_mark_inode_dirty() to userspace.  So
3906 				 * ignore it.
3907 				 */
3908 				ext4_mark_inode_dirty(handle, inode);
3909 			}
3910 		}
3911 		err = ext4_journal_stop(handle);
3912 		if (ret == 0)
3913 			ret = err;
3914 	}
3915 out:
3916 	return ret;
3917 }
3918 
3919 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3920 {
3921 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3922 	struct inode *inode = mapping->host;
3923 	size_t count = iov_iter_count(iter);
3924 	ssize_t ret;
3925 
3926 	/*
3927 	 * Shared inode_lock is enough for us - it protects against concurrent
3928 	 * writes & truncates and since we take care of writing back page cache,
3929 	 * we are protected against page writeback as well.
3930 	 */
3931 	if (iocb->ki_flags & IOCB_NOWAIT) {
3932 		if (!inode_trylock_shared(inode))
3933 			return -EAGAIN;
3934 	} else {
3935 		inode_lock_shared(inode);
3936 	}
3937 
3938 	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3939 					   iocb->ki_pos + count - 1);
3940 	if (ret)
3941 		goto out_unlock;
3942 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3943 				   iter, ext4_dio_get_block, NULL, NULL, 0);
3944 out_unlock:
3945 	inode_unlock_shared(inode);
3946 	return ret;
3947 }
3948 
3949 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3950 {
3951 	struct file *file = iocb->ki_filp;
3952 	struct inode *inode = file->f_mapping->host;
3953 	size_t count = iov_iter_count(iter);
3954 	loff_t offset = iocb->ki_pos;
3955 	ssize_t ret;
3956 
3957 #ifdef CONFIG_FS_ENCRYPTION
3958 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
3959 		return 0;
3960 #endif
3961 	if (fsverity_active(inode))
3962 		return 0;
3963 
3964 	/*
3965 	 * If we are doing data journalling we don't support O_DIRECT
3966 	 */
3967 	if (ext4_should_journal_data(inode))
3968 		return 0;
3969 
3970 	/* Let buffer I/O handle the inline data case. */
3971 	if (ext4_has_inline_data(inode))
3972 		return 0;
3973 
3974 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3975 	if (iov_iter_rw(iter) == READ)
3976 		ret = ext4_direct_IO_read(iocb, iter);
3977 	else
3978 		ret = ext4_direct_IO_write(iocb, iter);
3979 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3980 	return ret;
3981 }
3982 
3983 /*
3984  * Pages can be marked dirty completely asynchronously from ext4's journalling
3985  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3986  * much here because ->set_page_dirty is called under VFS locks.  The page is
3987  * not necessarily locked.
3988  *
3989  * We cannot just dirty the page and leave attached buffers clean, because the
3990  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3991  * or jbddirty because all the journalling code will explode.
3992  *
3993  * So what we do is to mark the page "pending dirty" and next time writepage
3994  * is called, propagate that into the buffers appropriately.
3995  */
3996 static int ext4_journalled_set_page_dirty(struct page *page)
3997 {
3998 	SetPageChecked(page);
3999 	return __set_page_dirty_nobuffers(page);
4000 }
4001 
4002 static int ext4_set_page_dirty(struct page *page)
4003 {
4004 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
4005 	WARN_ON_ONCE(!page_has_buffers(page));
4006 	return __set_page_dirty_buffers(page);
4007 }
4008 
4009 static const struct address_space_operations ext4_aops = {
4010 	.readpage		= ext4_readpage,
4011 	.readpages		= ext4_readpages,
4012 	.writepage		= ext4_writepage,
4013 	.writepages		= ext4_writepages,
4014 	.write_begin		= ext4_write_begin,
4015 	.write_end		= ext4_write_end,
4016 	.set_page_dirty		= ext4_set_page_dirty,
4017 	.bmap			= ext4_bmap,
4018 	.invalidatepage		= ext4_invalidatepage,
4019 	.releasepage		= ext4_releasepage,
4020 	.direct_IO		= ext4_direct_IO,
4021 	.migratepage		= buffer_migrate_page,
4022 	.is_partially_uptodate  = block_is_partially_uptodate,
4023 	.error_remove_page	= generic_error_remove_page,
4024 };
4025 
4026 static const struct address_space_operations ext4_journalled_aops = {
4027 	.readpage		= ext4_readpage,
4028 	.readpages		= ext4_readpages,
4029 	.writepage		= ext4_writepage,
4030 	.writepages		= ext4_writepages,
4031 	.write_begin		= ext4_write_begin,
4032 	.write_end		= ext4_journalled_write_end,
4033 	.set_page_dirty		= ext4_journalled_set_page_dirty,
4034 	.bmap			= ext4_bmap,
4035 	.invalidatepage		= ext4_journalled_invalidatepage,
4036 	.releasepage		= ext4_releasepage,
4037 	.direct_IO		= ext4_direct_IO,
4038 	.is_partially_uptodate  = block_is_partially_uptodate,
4039 	.error_remove_page	= generic_error_remove_page,
4040 };
4041 
4042 static const struct address_space_operations ext4_da_aops = {
4043 	.readpage		= ext4_readpage,
4044 	.readpages		= ext4_readpages,
4045 	.writepage		= ext4_writepage,
4046 	.writepages		= ext4_writepages,
4047 	.write_begin		= ext4_da_write_begin,
4048 	.write_end		= ext4_da_write_end,
4049 	.set_page_dirty		= ext4_set_page_dirty,
4050 	.bmap			= ext4_bmap,
4051 	.invalidatepage		= ext4_invalidatepage,
4052 	.releasepage		= ext4_releasepage,
4053 	.direct_IO		= ext4_direct_IO,
4054 	.migratepage		= buffer_migrate_page,
4055 	.is_partially_uptodate  = block_is_partially_uptodate,
4056 	.error_remove_page	= generic_error_remove_page,
4057 };
4058 
4059 static const struct address_space_operations ext4_dax_aops = {
4060 	.writepages		= ext4_dax_writepages,
4061 	.direct_IO		= noop_direct_IO,
4062 	.set_page_dirty		= noop_set_page_dirty,
4063 	.bmap			= ext4_bmap,
4064 	.invalidatepage		= noop_invalidatepage,
4065 };
4066 
4067 void ext4_set_aops(struct inode *inode)
4068 {
4069 	switch (ext4_inode_journal_mode(inode)) {
4070 	case EXT4_INODE_ORDERED_DATA_MODE:
4071 	case EXT4_INODE_WRITEBACK_DATA_MODE:
4072 		break;
4073 	case EXT4_INODE_JOURNAL_DATA_MODE:
4074 		inode->i_mapping->a_ops = &ext4_journalled_aops;
4075 		return;
4076 	default:
4077 		BUG();
4078 	}
4079 	if (IS_DAX(inode))
4080 		inode->i_mapping->a_ops = &ext4_dax_aops;
4081 	else if (test_opt(inode->i_sb, DELALLOC))
4082 		inode->i_mapping->a_ops = &ext4_da_aops;
4083 	else
4084 		inode->i_mapping->a_ops = &ext4_aops;
4085 }
4086 
4087 static int __ext4_block_zero_page_range(handle_t *handle,
4088 		struct address_space *mapping, loff_t from, loff_t length)
4089 {
4090 	ext4_fsblk_t index = from >> PAGE_SHIFT;
4091 	unsigned offset = from & (PAGE_SIZE-1);
4092 	unsigned blocksize, pos;
4093 	ext4_lblk_t iblock;
4094 	struct inode *inode = mapping->host;
4095 	struct buffer_head *bh;
4096 	struct page *page;
4097 	int err = 0;
4098 
4099 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
4100 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
4101 	if (!page)
4102 		return -ENOMEM;
4103 
4104 	blocksize = inode->i_sb->s_blocksize;
4105 
4106 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4107 
4108 	if (!page_has_buffers(page))
4109 		create_empty_buffers(page, blocksize, 0);
4110 
4111 	/* Find the buffer that contains "offset" */
4112 	bh = page_buffers(page);
4113 	pos = blocksize;
4114 	while (offset >= pos) {
4115 		bh = bh->b_this_page;
4116 		iblock++;
4117 		pos += blocksize;
4118 	}
4119 	if (buffer_freed(bh)) {
4120 		BUFFER_TRACE(bh, "freed: skip");
4121 		goto unlock;
4122 	}
4123 	if (!buffer_mapped(bh)) {
4124 		BUFFER_TRACE(bh, "unmapped");
4125 		ext4_get_block(inode, iblock, bh, 0);
4126 		/* unmapped? It's a hole - nothing to do */
4127 		if (!buffer_mapped(bh)) {
4128 			BUFFER_TRACE(bh, "still unmapped");
4129 			goto unlock;
4130 		}
4131 	}
4132 
4133 	/* Ok, it's mapped. Make sure it's up-to-date */
4134 	if (PageUptodate(page))
4135 		set_buffer_uptodate(bh);
4136 
4137 	if (!buffer_uptodate(bh)) {
4138 		err = -EIO;
4139 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4140 		wait_on_buffer(bh);
4141 		/* Uhhuh. Read error. Complain and punt. */
4142 		if (!buffer_uptodate(bh))
4143 			goto unlock;
4144 		if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
4145 			/* We expect the key to be set. */
4146 			BUG_ON(!fscrypt_has_encryption_key(inode));
4147 			WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks(
4148 					page, blocksize, bh_offset(bh)));
4149 		}
4150 	}
4151 	if (ext4_should_journal_data(inode)) {
4152 		BUFFER_TRACE(bh, "get write access");
4153 		err = ext4_journal_get_write_access(handle, bh);
4154 		if (err)
4155 			goto unlock;
4156 	}
4157 	zero_user(page, offset, length);
4158 	BUFFER_TRACE(bh, "zeroed end of block");
4159 
4160 	if (ext4_should_journal_data(inode)) {
4161 		err = ext4_handle_dirty_metadata(handle, inode, bh);
4162 	} else {
4163 		err = 0;
4164 		mark_buffer_dirty(bh);
4165 		if (ext4_should_order_data(inode))
4166 			err = ext4_jbd2_inode_add_write(handle, inode, from,
4167 					length);
4168 	}
4169 
4170 unlock:
4171 	unlock_page(page);
4172 	put_page(page);
4173 	return err;
4174 }
4175 
4176 /*
4177  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4178  * starting from file offset 'from'.  The range to be zero'd must
4179  * be contained with in one block.  If the specified range exceeds
4180  * the end of the block it will be shortened to end of the block
4181  * that cooresponds to 'from'
4182  */
4183 static int ext4_block_zero_page_range(handle_t *handle,
4184 		struct address_space *mapping, loff_t from, loff_t length)
4185 {
4186 	struct inode *inode = mapping->host;
4187 	unsigned offset = from & (PAGE_SIZE-1);
4188 	unsigned blocksize = inode->i_sb->s_blocksize;
4189 	unsigned max = blocksize - (offset & (blocksize - 1));
4190 
4191 	/*
4192 	 * correct length if it does not fall between
4193 	 * 'from' and the end of the block
4194 	 */
4195 	if (length > max || length < 0)
4196 		length = max;
4197 
4198 	if (IS_DAX(inode)) {
4199 		return iomap_zero_range(inode, from, length, NULL,
4200 					&ext4_iomap_ops);
4201 	}
4202 	return __ext4_block_zero_page_range(handle, mapping, from, length);
4203 }
4204 
4205 /*
4206  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4207  * up to the end of the block which corresponds to `from'.
4208  * This required during truncate. We need to physically zero the tail end
4209  * of that block so it doesn't yield old data if the file is later grown.
4210  */
4211 static int ext4_block_truncate_page(handle_t *handle,
4212 		struct address_space *mapping, loff_t from)
4213 {
4214 	unsigned offset = from & (PAGE_SIZE-1);
4215 	unsigned length;
4216 	unsigned blocksize;
4217 	struct inode *inode = mapping->host;
4218 
4219 	/* If we are processing an encrypted inode during orphan list handling */
4220 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
4221 		return 0;
4222 
4223 	blocksize = inode->i_sb->s_blocksize;
4224 	length = blocksize - (offset & (blocksize - 1));
4225 
4226 	return ext4_block_zero_page_range(handle, mapping, from, length);
4227 }
4228 
4229 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4230 			     loff_t lstart, loff_t length)
4231 {
4232 	struct super_block *sb = inode->i_sb;
4233 	struct address_space *mapping = inode->i_mapping;
4234 	unsigned partial_start, partial_end;
4235 	ext4_fsblk_t start, end;
4236 	loff_t byte_end = (lstart + length - 1);
4237 	int err = 0;
4238 
4239 	partial_start = lstart & (sb->s_blocksize - 1);
4240 	partial_end = byte_end & (sb->s_blocksize - 1);
4241 
4242 	start = lstart >> sb->s_blocksize_bits;
4243 	end = byte_end >> sb->s_blocksize_bits;
4244 
4245 	/* Handle partial zero within the single block */
4246 	if (start == end &&
4247 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
4248 		err = ext4_block_zero_page_range(handle, mapping,
4249 						 lstart, length);
4250 		return err;
4251 	}
4252 	/* Handle partial zero out on the start of the range */
4253 	if (partial_start) {
4254 		err = ext4_block_zero_page_range(handle, mapping,
4255 						 lstart, sb->s_blocksize);
4256 		if (err)
4257 			return err;
4258 	}
4259 	/* Handle partial zero out on the end of the range */
4260 	if (partial_end != sb->s_blocksize - 1)
4261 		err = ext4_block_zero_page_range(handle, mapping,
4262 						 byte_end - partial_end,
4263 						 partial_end + 1);
4264 	return err;
4265 }
4266 
4267 int ext4_can_truncate(struct inode *inode)
4268 {
4269 	if (S_ISREG(inode->i_mode))
4270 		return 1;
4271 	if (S_ISDIR(inode->i_mode))
4272 		return 1;
4273 	if (S_ISLNK(inode->i_mode))
4274 		return !ext4_inode_is_fast_symlink(inode);
4275 	return 0;
4276 }
4277 
4278 /*
4279  * We have to make sure i_disksize gets properly updated before we truncate
4280  * page cache due to hole punching or zero range. Otherwise i_disksize update
4281  * can get lost as it may have been postponed to submission of writeback but
4282  * that will never happen after we truncate page cache.
4283  */
4284 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4285 				      loff_t len)
4286 {
4287 	handle_t *handle;
4288 	loff_t size = i_size_read(inode);
4289 
4290 	WARN_ON(!inode_is_locked(inode));
4291 	if (offset > size || offset + len < size)
4292 		return 0;
4293 
4294 	if (EXT4_I(inode)->i_disksize >= size)
4295 		return 0;
4296 
4297 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4298 	if (IS_ERR(handle))
4299 		return PTR_ERR(handle);
4300 	ext4_update_i_disksize(inode, size);
4301 	ext4_mark_inode_dirty(handle, inode);
4302 	ext4_journal_stop(handle);
4303 
4304 	return 0;
4305 }
4306 
4307 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4308 {
4309 	up_write(&ei->i_mmap_sem);
4310 	schedule();
4311 	down_write(&ei->i_mmap_sem);
4312 }
4313 
4314 int ext4_break_layouts(struct inode *inode)
4315 {
4316 	struct ext4_inode_info *ei = EXT4_I(inode);
4317 	struct page *page;
4318 	int error;
4319 
4320 	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4321 		return -EINVAL;
4322 
4323 	do {
4324 		page = dax_layout_busy_page(inode->i_mapping);
4325 		if (!page)
4326 			return 0;
4327 
4328 		error = ___wait_var_event(&page->_refcount,
4329 				atomic_read(&page->_refcount) == 1,
4330 				TASK_INTERRUPTIBLE, 0, 0,
4331 				ext4_wait_dax_page(ei));
4332 	} while (error == 0);
4333 
4334 	return error;
4335 }
4336 
4337 /*
4338  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4339  * associated with the given offset and length
4340  *
4341  * @inode:  File inode
4342  * @offset: The offset where the hole will begin
4343  * @len:    The length of the hole
4344  *
4345  * Returns: 0 on success or negative on failure
4346  */
4347 
4348 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4349 {
4350 	struct super_block *sb = inode->i_sb;
4351 	ext4_lblk_t first_block, stop_block;
4352 	struct address_space *mapping = inode->i_mapping;
4353 	loff_t first_block_offset, last_block_offset;
4354 	handle_t *handle;
4355 	unsigned int credits;
4356 	int ret = 0;
4357 
4358 	if (!S_ISREG(inode->i_mode))
4359 		return -EOPNOTSUPP;
4360 
4361 	trace_ext4_punch_hole(inode, offset, length, 0);
4362 
4363 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4364 	if (ext4_has_inline_data(inode)) {
4365 		down_write(&EXT4_I(inode)->i_mmap_sem);
4366 		ret = ext4_convert_inline_data(inode);
4367 		up_write(&EXT4_I(inode)->i_mmap_sem);
4368 		if (ret)
4369 			return ret;
4370 	}
4371 
4372 	/*
4373 	 * Write out all dirty pages to avoid race conditions
4374 	 * Then release them.
4375 	 */
4376 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4377 		ret = filemap_write_and_wait_range(mapping, offset,
4378 						   offset + length - 1);
4379 		if (ret)
4380 			return ret;
4381 	}
4382 
4383 	inode_lock(inode);
4384 
4385 	/* No need to punch hole beyond i_size */
4386 	if (offset >= inode->i_size)
4387 		goto out_mutex;
4388 
4389 	/*
4390 	 * If the hole extends beyond i_size, set the hole
4391 	 * to end after the page that contains i_size
4392 	 */
4393 	if (offset + length > inode->i_size) {
4394 		length = inode->i_size +
4395 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4396 		   offset;
4397 	}
4398 
4399 	if (offset & (sb->s_blocksize - 1) ||
4400 	    (offset + length) & (sb->s_blocksize - 1)) {
4401 		/*
4402 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4403 		 * partial block
4404 		 */
4405 		ret = ext4_inode_attach_jinode(inode);
4406 		if (ret < 0)
4407 			goto out_mutex;
4408 
4409 	}
4410 
4411 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4412 	inode_dio_wait(inode);
4413 
4414 	/*
4415 	 * Prevent page faults from reinstantiating pages we have released from
4416 	 * page cache.
4417 	 */
4418 	down_write(&EXT4_I(inode)->i_mmap_sem);
4419 
4420 	ret = ext4_break_layouts(inode);
4421 	if (ret)
4422 		goto out_dio;
4423 
4424 	first_block_offset = round_up(offset, sb->s_blocksize);
4425 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4426 
4427 	/* Now release the pages and zero block aligned part of pages*/
4428 	if (last_block_offset > first_block_offset) {
4429 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4430 		if (ret)
4431 			goto out_dio;
4432 		truncate_pagecache_range(inode, first_block_offset,
4433 					 last_block_offset);
4434 	}
4435 
4436 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4437 		credits = ext4_writepage_trans_blocks(inode);
4438 	else
4439 		credits = ext4_blocks_for_truncate(inode);
4440 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4441 	if (IS_ERR(handle)) {
4442 		ret = PTR_ERR(handle);
4443 		ext4_std_error(sb, ret);
4444 		goto out_dio;
4445 	}
4446 
4447 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4448 				       length);
4449 	if (ret)
4450 		goto out_stop;
4451 
4452 	first_block = (offset + sb->s_blocksize - 1) >>
4453 		EXT4_BLOCK_SIZE_BITS(sb);
4454 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4455 
4456 	/* If there are blocks to remove, do it */
4457 	if (stop_block > first_block) {
4458 
4459 		down_write(&EXT4_I(inode)->i_data_sem);
4460 		ext4_discard_preallocations(inode);
4461 
4462 		ret = ext4_es_remove_extent(inode, first_block,
4463 					    stop_block - first_block);
4464 		if (ret) {
4465 			up_write(&EXT4_I(inode)->i_data_sem);
4466 			goto out_stop;
4467 		}
4468 
4469 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4470 			ret = ext4_ext_remove_space(inode, first_block,
4471 						    stop_block - 1);
4472 		else
4473 			ret = ext4_ind_remove_space(handle, inode, first_block,
4474 						    stop_block);
4475 
4476 		up_write(&EXT4_I(inode)->i_data_sem);
4477 	}
4478 	if (IS_SYNC(inode))
4479 		ext4_handle_sync(handle);
4480 
4481 	inode->i_mtime = inode->i_ctime = current_time(inode);
4482 	ext4_mark_inode_dirty(handle, inode);
4483 	if (ret >= 0)
4484 		ext4_update_inode_fsync_trans(handle, inode, 1);
4485 out_stop:
4486 	ext4_journal_stop(handle);
4487 out_dio:
4488 	up_write(&EXT4_I(inode)->i_mmap_sem);
4489 out_mutex:
4490 	inode_unlock(inode);
4491 	return ret;
4492 }
4493 
4494 int ext4_inode_attach_jinode(struct inode *inode)
4495 {
4496 	struct ext4_inode_info *ei = EXT4_I(inode);
4497 	struct jbd2_inode *jinode;
4498 
4499 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4500 		return 0;
4501 
4502 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4503 	spin_lock(&inode->i_lock);
4504 	if (!ei->jinode) {
4505 		if (!jinode) {
4506 			spin_unlock(&inode->i_lock);
4507 			return -ENOMEM;
4508 		}
4509 		ei->jinode = jinode;
4510 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4511 		jinode = NULL;
4512 	}
4513 	spin_unlock(&inode->i_lock);
4514 	if (unlikely(jinode != NULL))
4515 		jbd2_free_inode(jinode);
4516 	return 0;
4517 }
4518 
4519 /*
4520  * ext4_truncate()
4521  *
4522  * We block out ext4_get_block() block instantiations across the entire
4523  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4524  * simultaneously on behalf of the same inode.
4525  *
4526  * As we work through the truncate and commit bits of it to the journal there
4527  * is one core, guiding principle: the file's tree must always be consistent on
4528  * disk.  We must be able to restart the truncate after a crash.
4529  *
4530  * The file's tree may be transiently inconsistent in memory (although it
4531  * probably isn't), but whenever we close off and commit a journal transaction,
4532  * the contents of (the filesystem + the journal) must be consistent and
4533  * restartable.  It's pretty simple, really: bottom up, right to left (although
4534  * left-to-right works OK too).
4535  *
4536  * Note that at recovery time, journal replay occurs *before* the restart of
4537  * truncate against the orphan inode list.
4538  *
4539  * The committed inode has the new, desired i_size (which is the same as
4540  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4541  * that this inode's truncate did not complete and it will again call
4542  * ext4_truncate() to have another go.  So there will be instantiated blocks
4543  * to the right of the truncation point in a crashed ext4 filesystem.  But
4544  * that's fine - as long as they are linked from the inode, the post-crash
4545  * ext4_truncate() run will find them and release them.
4546  */
4547 int ext4_truncate(struct inode *inode)
4548 {
4549 	struct ext4_inode_info *ei = EXT4_I(inode);
4550 	unsigned int credits;
4551 	int err = 0;
4552 	handle_t *handle;
4553 	struct address_space *mapping = inode->i_mapping;
4554 
4555 	/*
4556 	 * There is a possibility that we're either freeing the inode
4557 	 * or it's a completely new inode. In those cases we might not
4558 	 * have i_mutex locked because it's not necessary.
4559 	 */
4560 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4561 		WARN_ON(!inode_is_locked(inode));
4562 	trace_ext4_truncate_enter(inode);
4563 
4564 	if (!ext4_can_truncate(inode))
4565 		return 0;
4566 
4567 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4568 
4569 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4570 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4571 
4572 	if (ext4_has_inline_data(inode)) {
4573 		int has_inline = 1;
4574 
4575 		err = ext4_inline_data_truncate(inode, &has_inline);
4576 		if (err)
4577 			return err;
4578 		if (has_inline)
4579 			return 0;
4580 	}
4581 
4582 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4583 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4584 		if (ext4_inode_attach_jinode(inode) < 0)
4585 			return 0;
4586 	}
4587 
4588 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4589 		credits = ext4_writepage_trans_blocks(inode);
4590 	else
4591 		credits = ext4_blocks_for_truncate(inode);
4592 
4593 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4594 	if (IS_ERR(handle))
4595 		return PTR_ERR(handle);
4596 
4597 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4598 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4599 
4600 	/*
4601 	 * We add the inode to the orphan list, so that if this
4602 	 * truncate spans multiple transactions, and we crash, we will
4603 	 * resume the truncate when the filesystem recovers.  It also
4604 	 * marks the inode dirty, to catch the new size.
4605 	 *
4606 	 * Implication: the file must always be in a sane, consistent
4607 	 * truncatable state while each transaction commits.
4608 	 */
4609 	err = ext4_orphan_add(handle, inode);
4610 	if (err)
4611 		goto out_stop;
4612 
4613 	down_write(&EXT4_I(inode)->i_data_sem);
4614 
4615 	ext4_discard_preallocations(inode);
4616 
4617 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4618 		err = ext4_ext_truncate(handle, inode);
4619 	else
4620 		ext4_ind_truncate(handle, inode);
4621 
4622 	up_write(&ei->i_data_sem);
4623 	if (err)
4624 		goto out_stop;
4625 
4626 	if (IS_SYNC(inode))
4627 		ext4_handle_sync(handle);
4628 
4629 out_stop:
4630 	/*
4631 	 * If this was a simple ftruncate() and the file will remain alive,
4632 	 * then we need to clear up the orphan record which we created above.
4633 	 * However, if this was a real unlink then we were called by
4634 	 * ext4_evict_inode(), and we allow that function to clean up the
4635 	 * orphan info for us.
4636 	 */
4637 	if (inode->i_nlink)
4638 		ext4_orphan_del(handle, inode);
4639 
4640 	inode->i_mtime = inode->i_ctime = current_time(inode);
4641 	ext4_mark_inode_dirty(handle, inode);
4642 	ext4_journal_stop(handle);
4643 
4644 	trace_ext4_truncate_exit(inode);
4645 	return err;
4646 }
4647 
4648 /*
4649  * ext4_get_inode_loc returns with an extra refcount against the inode's
4650  * underlying buffer_head on success. If 'in_mem' is true, we have all
4651  * data in memory that is needed to recreate the on-disk version of this
4652  * inode.
4653  */
4654 static int __ext4_get_inode_loc(struct inode *inode,
4655 				struct ext4_iloc *iloc, int in_mem)
4656 {
4657 	struct ext4_group_desc	*gdp;
4658 	struct buffer_head	*bh;
4659 	struct super_block	*sb = inode->i_sb;
4660 	ext4_fsblk_t		block;
4661 	struct blk_plug		plug;
4662 	int			inodes_per_block, inode_offset;
4663 
4664 	iloc->bh = NULL;
4665 	if (inode->i_ino < EXT4_ROOT_INO ||
4666 	    inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4667 		return -EFSCORRUPTED;
4668 
4669 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4670 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4671 	if (!gdp)
4672 		return -EIO;
4673 
4674 	/*
4675 	 * Figure out the offset within the block group inode table
4676 	 */
4677 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4678 	inode_offset = ((inode->i_ino - 1) %
4679 			EXT4_INODES_PER_GROUP(sb));
4680 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4681 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4682 
4683 	bh = sb_getblk(sb, block);
4684 	if (unlikely(!bh))
4685 		return -ENOMEM;
4686 	if (!buffer_uptodate(bh)) {
4687 		lock_buffer(bh);
4688 
4689 		/*
4690 		 * If the buffer has the write error flag, we have failed
4691 		 * to write out another inode in the same block.  In this
4692 		 * case, we don't have to read the block because we may
4693 		 * read the old inode data successfully.
4694 		 */
4695 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4696 			set_buffer_uptodate(bh);
4697 
4698 		if (buffer_uptodate(bh)) {
4699 			/* someone brought it uptodate while we waited */
4700 			unlock_buffer(bh);
4701 			goto has_buffer;
4702 		}
4703 
4704 		/*
4705 		 * If we have all information of the inode in memory and this
4706 		 * is the only valid inode in the block, we need not read the
4707 		 * block.
4708 		 */
4709 		if (in_mem) {
4710 			struct buffer_head *bitmap_bh;
4711 			int i, start;
4712 
4713 			start = inode_offset & ~(inodes_per_block - 1);
4714 
4715 			/* Is the inode bitmap in cache? */
4716 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4717 			if (unlikely(!bitmap_bh))
4718 				goto make_io;
4719 
4720 			/*
4721 			 * If the inode bitmap isn't in cache then the
4722 			 * optimisation may end up performing two reads instead
4723 			 * of one, so skip it.
4724 			 */
4725 			if (!buffer_uptodate(bitmap_bh)) {
4726 				brelse(bitmap_bh);
4727 				goto make_io;
4728 			}
4729 			for (i = start; i < start + inodes_per_block; i++) {
4730 				if (i == inode_offset)
4731 					continue;
4732 				if (ext4_test_bit(i, bitmap_bh->b_data))
4733 					break;
4734 			}
4735 			brelse(bitmap_bh);
4736 			if (i == start + inodes_per_block) {
4737 				/* all other inodes are free, so skip I/O */
4738 				memset(bh->b_data, 0, bh->b_size);
4739 				set_buffer_uptodate(bh);
4740 				unlock_buffer(bh);
4741 				goto has_buffer;
4742 			}
4743 		}
4744 
4745 make_io:
4746 		/*
4747 		 * If we need to do any I/O, try to pre-readahead extra
4748 		 * blocks from the inode table.
4749 		 */
4750 		blk_start_plug(&plug);
4751 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4752 			ext4_fsblk_t b, end, table;
4753 			unsigned num;
4754 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4755 
4756 			table = ext4_inode_table(sb, gdp);
4757 			/* s_inode_readahead_blks is always a power of 2 */
4758 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4759 			if (table > b)
4760 				b = table;
4761 			end = b + ra_blks;
4762 			num = EXT4_INODES_PER_GROUP(sb);
4763 			if (ext4_has_group_desc_csum(sb))
4764 				num -= ext4_itable_unused_count(sb, gdp);
4765 			table += num / inodes_per_block;
4766 			if (end > table)
4767 				end = table;
4768 			while (b <= end)
4769 				sb_breadahead(sb, b++);
4770 		}
4771 
4772 		/*
4773 		 * There are other valid inodes in the buffer, this inode
4774 		 * has in-inode xattrs, or we don't have this inode in memory.
4775 		 * Read the block from disk.
4776 		 */
4777 		trace_ext4_load_inode(inode);
4778 		get_bh(bh);
4779 		bh->b_end_io = end_buffer_read_sync;
4780 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4781 		blk_finish_plug(&plug);
4782 		wait_on_buffer(bh);
4783 		if (!buffer_uptodate(bh)) {
4784 			EXT4_ERROR_INODE_BLOCK(inode, block,
4785 					       "unable to read itable block");
4786 			brelse(bh);
4787 			return -EIO;
4788 		}
4789 	}
4790 has_buffer:
4791 	iloc->bh = bh;
4792 	return 0;
4793 }
4794 
4795 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4796 {
4797 	/* We have all inode data except xattrs in memory here. */
4798 	return __ext4_get_inode_loc(inode, iloc,
4799 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4800 }
4801 
4802 static bool ext4_should_use_dax(struct inode *inode)
4803 {
4804 	if (!test_opt(inode->i_sb, DAX))
4805 		return false;
4806 	if (!S_ISREG(inode->i_mode))
4807 		return false;
4808 	if (ext4_should_journal_data(inode))
4809 		return false;
4810 	if (ext4_has_inline_data(inode))
4811 		return false;
4812 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4813 		return false;
4814 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4815 		return false;
4816 	return true;
4817 }
4818 
4819 void ext4_set_inode_flags(struct inode *inode)
4820 {
4821 	unsigned int flags = EXT4_I(inode)->i_flags;
4822 	unsigned int new_fl = 0;
4823 
4824 	if (flags & EXT4_SYNC_FL)
4825 		new_fl |= S_SYNC;
4826 	if (flags & EXT4_APPEND_FL)
4827 		new_fl |= S_APPEND;
4828 	if (flags & EXT4_IMMUTABLE_FL)
4829 		new_fl |= S_IMMUTABLE;
4830 	if (flags & EXT4_NOATIME_FL)
4831 		new_fl |= S_NOATIME;
4832 	if (flags & EXT4_DIRSYNC_FL)
4833 		new_fl |= S_DIRSYNC;
4834 	if (ext4_should_use_dax(inode))
4835 		new_fl |= S_DAX;
4836 	if (flags & EXT4_ENCRYPT_FL)
4837 		new_fl |= S_ENCRYPTED;
4838 	if (flags & EXT4_CASEFOLD_FL)
4839 		new_fl |= S_CASEFOLD;
4840 	if (flags & EXT4_VERITY_FL)
4841 		new_fl |= S_VERITY;
4842 	inode_set_flags(inode, new_fl,
4843 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4844 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4845 }
4846 
4847 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4848 				  struct ext4_inode_info *ei)
4849 {
4850 	blkcnt_t i_blocks ;
4851 	struct inode *inode = &(ei->vfs_inode);
4852 	struct super_block *sb = inode->i_sb;
4853 
4854 	if (ext4_has_feature_huge_file(sb)) {
4855 		/* we are using combined 48 bit field */
4856 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4857 					le32_to_cpu(raw_inode->i_blocks_lo);
4858 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4859 			/* i_blocks represent file system block size */
4860 			return i_blocks  << (inode->i_blkbits - 9);
4861 		} else {
4862 			return i_blocks;
4863 		}
4864 	} else {
4865 		return le32_to_cpu(raw_inode->i_blocks_lo);
4866 	}
4867 }
4868 
4869 static inline int ext4_iget_extra_inode(struct inode *inode,
4870 					 struct ext4_inode *raw_inode,
4871 					 struct ext4_inode_info *ei)
4872 {
4873 	__le32 *magic = (void *)raw_inode +
4874 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4875 
4876 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4877 	    EXT4_INODE_SIZE(inode->i_sb) &&
4878 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4879 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4880 		return ext4_find_inline_data_nolock(inode);
4881 	} else
4882 		EXT4_I(inode)->i_inline_off = 0;
4883 	return 0;
4884 }
4885 
4886 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4887 {
4888 	if (!ext4_has_feature_project(inode->i_sb))
4889 		return -EOPNOTSUPP;
4890 	*projid = EXT4_I(inode)->i_projid;
4891 	return 0;
4892 }
4893 
4894 /*
4895  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4896  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4897  * set.
4898  */
4899 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4900 {
4901 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4902 		inode_set_iversion_raw(inode, val);
4903 	else
4904 		inode_set_iversion_queried(inode, val);
4905 }
4906 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4907 {
4908 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4909 		return inode_peek_iversion_raw(inode);
4910 	else
4911 		return inode_peek_iversion(inode);
4912 }
4913 
4914 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4915 			  ext4_iget_flags flags, const char *function,
4916 			  unsigned int line)
4917 {
4918 	struct ext4_iloc iloc;
4919 	struct ext4_inode *raw_inode;
4920 	struct ext4_inode_info *ei;
4921 	struct inode *inode;
4922 	journal_t *journal = EXT4_SB(sb)->s_journal;
4923 	long ret;
4924 	loff_t size;
4925 	int block;
4926 	uid_t i_uid;
4927 	gid_t i_gid;
4928 	projid_t i_projid;
4929 
4930 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4931 	     (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4932 	    (ino < EXT4_ROOT_INO) ||
4933 	    (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4934 		if (flags & EXT4_IGET_HANDLE)
4935 			return ERR_PTR(-ESTALE);
4936 		__ext4_error(sb, function, line,
4937 			     "inode #%lu: comm %s: iget: illegal inode #",
4938 			     ino, current->comm);
4939 		return ERR_PTR(-EFSCORRUPTED);
4940 	}
4941 
4942 	inode = iget_locked(sb, ino);
4943 	if (!inode)
4944 		return ERR_PTR(-ENOMEM);
4945 	if (!(inode->i_state & I_NEW))
4946 		return inode;
4947 
4948 	ei = EXT4_I(inode);
4949 	iloc.bh = NULL;
4950 
4951 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4952 	if (ret < 0)
4953 		goto bad_inode;
4954 	raw_inode = ext4_raw_inode(&iloc);
4955 
4956 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4957 		ext4_error_inode(inode, function, line, 0,
4958 				 "iget: root inode unallocated");
4959 		ret = -EFSCORRUPTED;
4960 		goto bad_inode;
4961 	}
4962 
4963 	if ((flags & EXT4_IGET_HANDLE) &&
4964 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4965 		ret = -ESTALE;
4966 		goto bad_inode;
4967 	}
4968 
4969 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4970 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4971 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4972 			EXT4_INODE_SIZE(inode->i_sb) ||
4973 		    (ei->i_extra_isize & 3)) {
4974 			ext4_error_inode(inode, function, line, 0,
4975 					 "iget: bad extra_isize %u "
4976 					 "(inode size %u)",
4977 					 ei->i_extra_isize,
4978 					 EXT4_INODE_SIZE(inode->i_sb));
4979 			ret = -EFSCORRUPTED;
4980 			goto bad_inode;
4981 		}
4982 	} else
4983 		ei->i_extra_isize = 0;
4984 
4985 	/* Precompute checksum seed for inode metadata */
4986 	if (ext4_has_metadata_csum(sb)) {
4987 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4988 		__u32 csum;
4989 		__le32 inum = cpu_to_le32(inode->i_ino);
4990 		__le32 gen = raw_inode->i_generation;
4991 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4992 				   sizeof(inum));
4993 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4994 					      sizeof(gen));
4995 	}
4996 
4997 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4998 		ext4_error_inode(inode, function, line, 0,
4999 				 "iget: checksum invalid");
5000 		ret = -EFSBADCRC;
5001 		goto bad_inode;
5002 	}
5003 
5004 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5005 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5006 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
5007 	if (ext4_has_feature_project(sb) &&
5008 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5009 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5010 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
5011 	else
5012 		i_projid = EXT4_DEF_PROJID;
5013 
5014 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5015 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5016 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5017 	}
5018 	i_uid_write(inode, i_uid);
5019 	i_gid_write(inode, i_gid);
5020 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
5021 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
5022 
5023 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
5024 	ei->i_inline_off = 0;
5025 	ei->i_dir_start_lookup = 0;
5026 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5027 	/* We now have enough fields to check if the inode was active or not.
5028 	 * This is needed because nfsd might try to access dead inodes
5029 	 * the test is that same one that e2fsck uses
5030 	 * NeilBrown 1999oct15
5031 	 */
5032 	if (inode->i_nlink == 0) {
5033 		if ((inode->i_mode == 0 ||
5034 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
5035 		    ino != EXT4_BOOT_LOADER_INO) {
5036 			/* this inode is deleted */
5037 			ret = -ESTALE;
5038 			goto bad_inode;
5039 		}
5040 		/* The only unlinked inodes we let through here have
5041 		 * valid i_mode and are being read by the orphan
5042 		 * recovery code: that's fine, we're about to complete
5043 		 * the process of deleting those.
5044 		 * OR it is the EXT4_BOOT_LOADER_INO which is
5045 		 * not initialized on a new filesystem. */
5046 	}
5047 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5048 	ext4_set_inode_flags(inode);
5049 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5050 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5051 	if (ext4_has_feature_64bit(sb))
5052 		ei->i_file_acl |=
5053 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5054 	inode->i_size = ext4_isize(sb, raw_inode);
5055 	if ((size = i_size_read(inode)) < 0) {
5056 		ext4_error_inode(inode, function, line, 0,
5057 				 "iget: bad i_size value: %lld", size);
5058 		ret = -EFSCORRUPTED;
5059 		goto bad_inode;
5060 	}
5061 	ei->i_disksize = inode->i_size;
5062 #ifdef CONFIG_QUOTA
5063 	ei->i_reserved_quota = 0;
5064 #endif
5065 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5066 	ei->i_block_group = iloc.block_group;
5067 	ei->i_last_alloc_group = ~0;
5068 	/*
5069 	 * NOTE! The in-memory inode i_data array is in little-endian order
5070 	 * even on big-endian machines: we do NOT byteswap the block numbers!
5071 	 */
5072 	for (block = 0; block < EXT4_N_BLOCKS; block++)
5073 		ei->i_data[block] = raw_inode->i_block[block];
5074 	INIT_LIST_HEAD(&ei->i_orphan);
5075 
5076 	/*
5077 	 * Set transaction id's of transactions that have to be committed
5078 	 * to finish f[data]sync. We set them to currently running transaction
5079 	 * as we cannot be sure that the inode or some of its metadata isn't
5080 	 * part of the transaction - the inode could have been reclaimed and
5081 	 * now it is reread from disk.
5082 	 */
5083 	if (journal) {
5084 		transaction_t *transaction;
5085 		tid_t tid;
5086 
5087 		read_lock(&journal->j_state_lock);
5088 		if (journal->j_running_transaction)
5089 			transaction = journal->j_running_transaction;
5090 		else
5091 			transaction = journal->j_committing_transaction;
5092 		if (transaction)
5093 			tid = transaction->t_tid;
5094 		else
5095 			tid = journal->j_commit_sequence;
5096 		read_unlock(&journal->j_state_lock);
5097 		ei->i_sync_tid = tid;
5098 		ei->i_datasync_tid = tid;
5099 	}
5100 
5101 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5102 		if (ei->i_extra_isize == 0) {
5103 			/* The extra space is currently unused. Use it. */
5104 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5105 			ei->i_extra_isize = sizeof(struct ext4_inode) -
5106 					    EXT4_GOOD_OLD_INODE_SIZE;
5107 		} else {
5108 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5109 			if (ret)
5110 				goto bad_inode;
5111 		}
5112 	}
5113 
5114 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5115 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5116 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5117 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5118 
5119 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5120 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5121 
5122 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5123 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5124 				ivers |=
5125 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5126 		}
5127 		ext4_inode_set_iversion_queried(inode, ivers);
5128 	}
5129 
5130 	ret = 0;
5131 	if (ei->i_file_acl &&
5132 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5133 		ext4_error_inode(inode, function, line, 0,
5134 				 "iget: bad extended attribute block %llu",
5135 				 ei->i_file_acl);
5136 		ret = -EFSCORRUPTED;
5137 		goto bad_inode;
5138 	} else if (!ext4_has_inline_data(inode)) {
5139 		/* validate the block references in the inode */
5140 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5141 		   (S_ISLNK(inode->i_mode) &&
5142 		    !ext4_inode_is_fast_symlink(inode))) {
5143 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5144 				ret = ext4_ext_check_inode(inode);
5145 			else
5146 				ret = ext4_ind_check_inode(inode);
5147 		}
5148 	}
5149 	if (ret)
5150 		goto bad_inode;
5151 
5152 	if (S_ISREG(inode->i_mode)) {
5153 		inode->i_op = &ext4_file_inode_operations;
5154 		inode->i_fop = &ext4_file_operations;
5155 		ext4_set_aops(inode);
5156 	} else if (S_ISDIR(inode->i_mode)) {
5157 		inode->i_op = &ext4_dir_inode_operations;
5158 		inode->i_fop = &ext4_dir_operations;
5159 	} else if (S_ISLNK(inode->i_mode)) {
5160 		/* VFS does not allow setting these so must be corruption */
5161 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5162 			ext4_error_inode(inode, function, line, 0,
5163 					 "iget: immutable or append flags "
5164 					 "not allowed on symlinks");
5165 			ret = -EFSCORRUPTED;
5166 			goto bad_inode;
5167 		}
5168 		if (IS_ENCRYPTED(inode)) {
5169 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5170 			ext4_set_aops(inode);
5171 		} else if (ext4_inode_is_fast_symlink(inode)) {
5172 			inode->i_link = (char *)ei->i_data;
5173 			inode->i_op = &ext4_fast_symlink_inode_operations;
5174 			nd_terminate_link(ei->i_data, inode->i_size,
5175 				sizeof(ei->i_data) - 1);
5176 		} else {
5177 			inode->i_op = &ext4_symlink_inode_operations;
5178 			ext4_set_aops(inode);
5179 		}
5180 		inode_nohighmem(inode);
5181 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5182 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5183 		inode->i_op = &ext4_special_inode_operations;
5184 		if (raw_inode->i_block[0])
5185 			init_special_inode(inode, inode->i_mode,
5186 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5187 		else
5188 			init_special_inode(inode, inode->i_mode,
5189 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5190 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5191 		make_bad_inode(inode);
5192 	} else {
5193 		ret = -EFSCORRUPTED;
5194 		ext4_error_inode(inode, function, line, 0,
5195 				 "iget: bogus i_mode (%o)", inode->i_mode);
5196 		goto bad_inode;
5197 	}
5198 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5199 		ext4_error_inode(inode, function, line, 0,
5200 				 "casefold flag without casefold feature");
5201 	brelse(iloc.bh);
5202 
5203 	unlock_new_inode(inode);
5204 	return inode;
5205 
5206 bad_inode:
5207 	brelse(iloc.bh);
5208 	iget_failed(inode);
5209 	return ERR_PTR(ret);
5210 }
5211 
5212 static int ext4_inode_blocks_set(handle_t *handle,
5213 				struct ext4_inode *raw_inode,
5214 				struct ext4_inode_info *ei)
5215 {
5216 	struct inode *inode = &(ei->vfs_inode);
5217 	u64 i_blocks = inode->i_blocks;
5218 	struct super_block *sb = inode->i_sb;
5219 
5220 	if (i_blocks <= ~0U) {
5221 		/*
5222 		 * i_blocks can be represented in a 32 bit variable
5223 		 * as multiple of 512 bytes
5224 		 */
5225 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5226 		raw_inode->i_blocks_high = 0;
5227 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5228 		return 0;
5229 	}
5230 	if (!ext4_has_feature_huge_file(sb))
5231 		return -EFBIG;
5232 
5233 	if (i_blocks <= 0xffffffffffffULL) {
5234 		/*
5235 		 * i_blocks can be represented in a 48 bit variable
5236 		 * as multiple of 512 bytes
5237 		 */
5238 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5239 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5240 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5241 	} else {
5242 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5243 		/* i_block is stored in file system block size */
5244 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
5245 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5246 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5247 	}
5248 	return 0;
5249 }
5250 
5251 struct other_inode {
5252 	unsigned long		orig_ino;
5253 	struct ext4_inode	*raw_inode;
5254 };
5255 
5256 static int other_inode_match(struct inode * inode, unsigned long ino,
5257 			     void *data)
5258 {
5259 	struct other_inode *oi = (struct other_inode *) data;
5260 
5261 	if ((inode->i_ino != ino) ||
5262 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5263 			       I_DIRTY_INODE)) ||
5264 	    ((inode->i_state & I_DIRTY_TIME) == 0))
5265 		return 0;
5266 	spin_lock(&inode->i_lock);
5267 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5268 				I_DIRTY_INODE)) == 0) &&
5269 	    (inode->i_state & I_DIRTY_TIME)) {
5270 		struct ext4_inode_info	*ei = EXT4_I(inode);
5271 
5272 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5273 		spin_unlock(&inode->i_lock);
5274 
5275 		spin_lock(&ei->i_raw_lock);
5276 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5277 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5278 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5279 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
5280 		spin_unlock(&ei->i_raw_lock);
5281 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5282 		return -1;
5283 	}
5284 	spin_unlock(&inode->i_lock);
5285 	return -1;
5286 }
5287 
5288 /*
5289  * Opportunistically update the other time fields for other inodes in
5290  * the same inode table block.
5291  */
5292 static void ext4_update_other_inodes_time(struct super_block *sb,
5293 					  unsigned long orig_ino, char *buf)
5294 {
5295 	struct other_inode oi;
5296 	unsigned long ino;
5297 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5298 	int inode_size = EXT4_INODE_SIZE(sb);
5299 
5300 	oi.orig_ino = orig_ino;
5301 	/*
5302 	 * Calculate the first inode in the inode table block.  Inode
5303 	 * numbers are one-based.  That is, the first inode in a block
5304 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5305 	 */
5306 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5307 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5308 		if (ino == orig_ino)
5309 			continue;
5310 		oi.raw_inode = (struct ext4_inode *) buf;
5311 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5312 	}
5313 }
5314 
5315 /*
5316  * Post the struct inode info into an on-disk inode location in the
5317  * buffer-cache.  This gobbles the caller's reference to the
5318  * buffer_head in the inode location struct.
5319  *
5320  * The caller must have write access to iloc->bh.
5321  */
5322 static int ext4_do_update_inode(handle_t *handle,
5323 				struct inode *inode,
5324 				struct ext4_iloc *iloc)
5325 {
5326 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5327 	struct ext4_inode_info *ei = EXT4_I(inode);
5328 	struct buffer_head *bh = iloc->bh;
5329 	struct super_block *sb = inode->i_sb;
5330 	int err = 0, rc, block;
5331 	int need_datasync = 0, set_large_file = 0;
5332 	uid_t i_uid;
5333 	gid_t i_gid;
5334 	projid_t i_projid;
5335 
5336 	spin_lock(&ei->i_raw_lock);
5337 
5338 	/* For fields not tracked in the in-memory inode,
5339 	 * initialise them to zero for new inodes. */
5340 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5341 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5342 
5343 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5344 	i_uid = i_uid_read(inode);
5345 	i_gid = i_gid_read(inode);
5346 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5347 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5348 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5349 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5350 /*
5351  * Fix up interoperability with old kernels. Otherwise, old inodes get
5352  * re-used with the upper 16 bits of the uid/gid intact
5353  */
5354 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5355 			raw_inode->i_uid_high = 0;
5356 			raw_inode->i_gid_high = 0;
5357 		} else {
5358 			raw_inode->i_uid_high =
5359 				cpu_to_le16(high_16_bits(i_uid));
5360 			raw_inode->i_gid_high =
5361 				cpu_to_le16(high_16_bits(i_gid));
5362 		}
5363 	} else {
5364 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5365 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5366 		raw_inode->i_uid_high = 0;
5367 		raw_inode->i_gid_high = 0;
5368 	}
5369 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5370 
5371 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5372 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5373 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5374 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5375 
5376 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5377 	if (err) {
5378 		spin_unlock(&ei->i_raw_lock);
5379 		goto out_brelse;
5380 	}
5381 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5382 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5383 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5384 		raw_inode->i_file_acl_high =
5385 			cpu_to_le16(ei->i_file_acl >> 32);
5386 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5387 	if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5388 		ext4_isize_set(raw_inode, ei->i_disksize);
5389 		need_datasync = 1;
5390 	}
5391 	if (ei->i_disksize > 0x7fffffffULL) {
5392 		if (!ext4_has_feature_large_file(sb) ||
5393 				EXT4_SB(sb)->s_es->s_rev_level ==
5394 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5395 			set_large_file = 1;
5396 	}
5397 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5398 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5399 		if (old_valid_dev(inode->i_rdev)) {
5400 			raw_inode->i_block[0] =
5401 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5402 			raw_inode->i_block[1] = 0;
5403 		} else {
5404 			raw_inode->i_block[0] = 0;
5405 			raw_inode->i_block[1] =
5406 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5407 			raw_inode->i_block[2] = 0;
5408 		}
5409 	} else if (!ext4_has_inline_data(inode)) {
5410 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5411 			raw_inode->i_block[block] = ei->i_data[block];
5412 	}
5413 
5414 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5415 		u64 ivers = ext4_inode_peek_iversion(inode);
5416 
5417 		raw_inode->i_disk_version = cpu_to_le32(ivers);
5418 		if (ei->i_extra_isize) {
5419 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5420 				raw_inode->i_version_hi =
5421 					cpu_to_le32(ivers >> 32);
5422 			raw_inode->i_extra_isize =
5423 				cpu_to_le16(ei->i_extra_isize);
5424 		}
5425 	}
5426 
5427 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5428 	       i_projid != EXT4_DEF_PROJID);
5429 
5430 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5431 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5432 		raw_inode->i_projid = cpu_to_le32(i_projid);
5433 
5434 	ext4_inode_csum_set(inode, raw_inode, ei);
5435 	spin_unlock(&ei->i_raw_lock);
5436 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5437 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5438 					      bh->b_data);
5439 
5440 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5441 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5442 	if (!err)
5443 		err = rc;
5444 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5445 	if (set_large_file) {
5446 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5447 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5448 		if (err)
5449 			goto out_brelse;
5450 		ext4_set_feature_large_file(sb);
5451 		ext4_handle_sync(handle);
5452 		err = ext4_handle_dirty_super(handle, sb);
5453 	}
5454 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5455 out_brelse:
5456 	brelse(bh);
5457 	ext4_std_error(inode->i_sb, err);
5458 	return err;
5459 }
5460 
5461 /*
5462  * ext4_write_inode()
5463  *
5464  * We are called from a few places:
5465  *
5466  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5467  *   Here, there will be no transaction running. We wait for any running
5468  *   transaction to commit.
5469  *
5470  * - Within flush work (sys_sync(), kupdate and such).
5471  *   We wait on commit, if told to.
5472  *
5473  * - Within iput_final() -> write_inode_now()
5474  *   We wait on commit, if told to.
5475  *
5476  * In all cases it is actually safe for us to return without doing anything,
5477  * because the inode has been copied into a raw inode buffer in
5478  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5479  * writeback.
5480  *
5481  * Note that we are absolutely dependent upon all inode dirtiers doing the
5482  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5483  * which we are interested.
5484  *
5485  * It would be a bug for them to not do this.  The code:
5486  *
5487  *	mark_inode_dirty(inode)
5488  *	stuff();
5489  *	inode->i_size = expr;
5490  *
5491  * is in error because write_inode() could occur while `stuff()' is running,
5492  * and the new i_size will be lost.  Plus the inode will no longer be on the
5493  * superblock's dirty inode list.
5494  */
5495 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5496 {
5497 	int err;
5498 
5499 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5500 	    sb_rdonly(inode->i_sb))
5501 		return 0;
5502 
5503 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5504 		return -EIO;
5505 
5506 	if (EXT4_SB(inode->i_sb)->s_journal) {
5507 		if (ext4_journal_current_handle()) {
5508 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5509 			dump_stack();
5510 			return -EIO;
5511 		}
5512 
5513 		/*
5514 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5515 		 * ext4_sync_fs() will force the commit after everything is
5516 		 * written.
5517 		 */
5518 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5519 			return 0;
5520 
5521 		err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5522 						EXT4_I(inode)->i_sync_tid);
5523 	} else {
5524 		struct ext4_iloc iloc;
5525 
5526 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5527 		if (err)
5528 			return err;
5529 		/*
5530 		 * sync(2) will flush the whole buffer cache. No need to do
5531 		 * it here separately for each inode.
5532 		 */
5533 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5534 			sync_dirty_buffer(iloc.bh);
5535 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5536 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5537 					 "IO error syncing inode");
5538 			err = -EIO;
5539 		}
5540 		brelse(iloc.bh);
5541 	}
5542 	return err;
5543 }
5544 
5545 /*
5546  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5547  * buffers that are attached to a page stradding i_size and are undergoing
5548  * commit. In that case we have to wait for commit to finish and try again.
5549  */
5550 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5551 {
5552 	struct page *page;
5553 	unsigned offset;
5554 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5555 	tid_t commit_tid = 0;
5556 	int ret;
5557 
5558 	offset = inode->i_size & (PAGE_SIZE - 1);
5559 	/*
5560 	 * All buffers in the last page remain valid? Then there's nothing to
5561 	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5562 	 * blocksize case
5563 	 */
5564 	if (offset > PAGE_SIZE - i_blocksize(inode))
5565 		return;
5566 	while (1) {
5567 		page = find_lock_page(inode->i_mapping,
5568 				      inode->i_size >> PAGE_SHIFT);
5569 		if (!page)
5570 			return;
5571 		ret = __ext4_journalled_invalidatepage(page, offset,
5572 						PAGE_SIZE - offset);
5573 		unlock_page(page);
5574 		put_page(page);
5575 		if (ret != -EBUSY)
5576 			return;
5577 		commit_tid = 0;
5578 		read_lock(&journal->j_state_lock);
5579 		if (journal->j_committing_transaction)
5580 			commit_tid = journal->j_committing_transaction->t_tid;
5581 		read_unlock(&journal->j_state_lock);
5582 		if (commit_tid)
5583 			jbd2_log_wait_commit(journal, commit_tid);
5584 	}
5585 }
5586 
5587 /*
5588  * ext4_setattr()
5589  *
5590  * Called from notify_change.
5591  *
5592  * We want to trap VFS attempts to truncate the file as soon as
5593  * possible.  In particular, we want to make sure that when the VFS
5594  * shrinks i_size, we put the inode on the orphan list and modify
5595  * i_disksize immediately, so that during the subsequent flushing of
5596  * dirty pages and freeing of disk blocks, we can guarantee that any
5597  * commit will leave the blocks being flushed in an unused state on
5598  * disk.  (On recovery, the inode will get truncated and the blocks will
5599  * be freed, so we have a strong guarantee that no future commit will
5600  * leave these blocks visible to the user.)
5601  *
5602  * Another thing we have to assure is that if we are in ordered mode
5603  * and inode is still attached to the committing transaction, we must
5604  * we start writeout of all the dirty pages which are being truncated.
5605  * This way we are sure that all the data written in the previous
5606  * transaction are already on disk (truncate waits for pages under
5607  * writeback).
5608  *
5609  * Called with inode->i_mutex down.
5610  */
5611 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5612 {
5613 	struct inode *inode = d_inode(dentry);
5614 	int error, rc = 0;
5615 	int orphan = 0;
5616 	const unsigned int ia_valid = attr->ia_valid;
5617 
5618 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5619 		return -EIO;
5620 
5621 	if (unlikely(IS_IMMUTABLE(inode)))
5622 		return -EPERM;
5623 
5624 	if (unlikely(IS_APPEND(inode) &&
5625 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5626 				  ATTR_GID | ATTR_TIMES_SET))))
5627 		return -EPERM;
5628 
5629 	error = setattr_prepare(dentry, attr);
5630 	if (error)
5631 		return error;
5632 
5633 	error = fscrypt_prepare_setattr(dentry, attr);
5634 	if (error)
5635 		return error;
5636 
5637 	error = fsverity_prepare_setattr(dentry, attr);
5638 	if (error)
5639 		return error;
5640 
5641 	if (is_quota_modification(inode, attr)) {
5642 		error = dquot_initialize(inode);
5643 		if (error)
5644 			return error;
5645 	}
5646 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5647 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5648 		handle_t *handle;
5649 
5650 		/* (user+group)*(old+new) structure, inode write (sb,
5651 		 * inode block, ? - but truncate inode update has it) */
5652 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5653 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5654 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5655 		if (IS_ERR(handle)) {
5656 			error = PTR_ERR(handle);
5657 			goto err_out;
5658 		}
5659 
5660 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5661 		 * counts xattr inode references.
5662 		 */
5663 		down_read(&EXT4_I(inode)->xattr_sem);
5664 		error = dquot_transfer(inode, attr);
5665 		up_read(&EXT4_I(inode)->xattr_sem);
5666 
5667 		if (error) {
5668 			ext4_journal_stop(handle);
5669 			return error;
5670 		}
5671 		/* Update corresponding info in inode so that everything is in
5672 		 * one transaction */
5673 		if (attr->ia_valid & ATTR_UID)
5674 			inode->i_uid = attr->ia_uid;
5675 		if (attr->ia_valid & ATTR_GID)
5676 			inode->i_gid = attr->ia_gid;
5677 		error = ext4_mark_inode_dirty(handle, inode);
5678 		ext4_journal_stop(handle);
5679 	}
5680 
5681 	if (attr->ia_valid & ATTR_SIZE) {
5682 		handle_t *handle;
5683 		loff_t oldsize = inode->i_size;
5684 		int shrink = (attr->ia_size < inode->i_size);
5685 
5686 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5687 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5688 
5689 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5690 				return -EFBIG;
5691 		}
5692 		if (!S_ISREG(inode->i_mode))
5693 			return -EINVAL;
5694 
5695 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5696 			inode_inc_iversion(inode);
5697 
5698 		if (shrink) {
5699 			if (ext4_should_order_data(inode)) {
5700 				error = ext4_begin_ordered_truncate(inode,
5701 							    attr->ia_size);
5702 				if (error)
5703 					goto err_out;
5704 			}
5705 			/*
5706 			 * Blocks are going to be removed from the inode. Wait
5707 			 * for dio in flight.
5708 			 */
5709 			inode_dio_wait(inode);
5710 		}
5711 
5712 		down_write(&EXT4_I(inode)->i_mmap_sem);
5713 
5714 		rc = ext4_break_layouts(inode);
5715 		if (rc) {
5716 			up_write(&EXT4_I(inode)->i_mmap_sem);
5717 			return rc;
5718 		}
5719 
5720 		if (attr->ia_size != inode->i_size) {
5721 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5722 			if (IS_ERR(handle)) {
5723 				error = PTR_ERR(handle);
5724 				goto out_mmap_sem;
5725 			}
5726 			if (ext4_handle_valid(handle) && shrink) {
5727 				error = ext4_orphan_add(handle, inode);
5728 				orphan = 1;
5729 			}
5730 			/*
5731 			 * Update c/mtime on truncate up, ext4_truncate() will
5732 			 * update c/mtime in shrink case below
5733 			 */
5734 			if (!shrink) {
5735 				inode->i_mtime = current_time(inode);
5736 				inode->i_ctime = inode->i_mtime;
5737 			}
5738 			down_write(&EXT4_I(inode)->i_data_sem);
5739 			EXT4_I(inode)->i_disksize = attr->ia_size;
5740 			rc = ext4_mark_inode_dirty(handle, inode);
5741 			if (!error)
5742 				error = rc;
5743 			/*
5744 			 * We have to update i_size under i_data_sem together
5745 			 * with i_disksize to avoid races with writeback code
5746 			 * running ext4_wb_update_i_disksize().
5747 			 */
5748 			if (!error)
5749 				i_size_write(inode, attr->ia_size);
5750 			up_write(&EXT4_I(inode)->i_data_sem);
5751 			ext4_journal_stop(handle);
5752 			if (error)
5753 				goto out_mmap_sem;
5754 			if (!shrink) {
5755 				pagecache_isize_extended(inode, oldsize,
5756 							 inode->i_size);
5757 			} else if (ext4_should_journal_data(inode)) {
5758 				ext4_wait_for_tail_page_commit(inode);
5759 			}
5760 		}
5761 
5762 		/*
5763 		 * Truncate pagecache after we've waited for commit
5764 		 * in data=journal mode to make pages freeable.
5765 		 */
5766 		truncate_pagecache(inode, inode->i_size);
5767 		/*
5768 		 * Call ext4_truncate() even if i_size didn't change to
5769 		 * truncate possible preallocated blocks.
5770 		 */
5771 		if (attr->ia_size <= oldsize) {
5772 			rc = ext4_truncate(inode);
5773 			if (rc)
5774 				error = rc;
5775 		}
5776 out_mmap_sem:
5777 		up_write(&EXT4_I(inode)->i_mmap_sem);
5778 	}
5779 
5780 	if (!error) {
5781 		setattr_copy(inode, attr);
5782 		mark_inode_dirty(inode);
5783 	}
5784 
5785 	/*
5786 	 * If the call to ext4_truncate failed to get a transaction handle at
5787 	 * all, we need to clean up the in-core orphan list manually.
5788 	 */
5789 	if (orphan && inode->i_nlink)
5790 		ext4_orphan_del(NULL, inode);
5791 
5792 	if (!error && (ia_valid & ATTR_MODE))
5793 		rc = posix_acl_chmod(inode, inode->i_mode);
5794 
5795 err_out:
5796 	ext4_std_error(inode->i_sb, error);
5797 	if (!error)
5798 		error = rc;
5799 	return error;
5800 }
5801 
5802 int ext4_getattr(const struct path *path, struct kstat *stat,
5803 		 u32 request_mask, unsigned int query_flags)
5804 {
5805 	struct inode *inode = d_inode(path->dentry);
5806 	struct ext4_inode *raw_inode;
5807 	struct ext4_inode_info *ei = EXT4_I(inode);
5808 	unsigned int flags;
5809 
5810 	if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5811 		stat->result_mask |= STATX_BTIME;
5812 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5813 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5814 	}
5815 
5816 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5817 	if (flags & EXT4_APPEND_FL)
5818 		stat->attributes |= STATX_ATTR_APPEND;
5819 	if (flags & EXT4_COMPR_FL)
5820 		stat->attributes |= STATX_ATTR_COMPRESSED;
5821 	if (flags & EXT4_ENCRYPT_FL)
5822 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5823 	if (flags & EXT4_IMMUTABLE_FL)
5824 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5825 	if (flags & EXT4_NODUMP_FL)
5826 		stat->attributes |= STATX_ATTR_NODUMP;
5827 
5828 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5829 				  STATX_ATTR_COMPRESSED |
5830 				  STATX_ATTR_ENCRYPTED |
5831 				  STATX_ATTR_IMMUTABLE |
5832 				  STATX_ATTR_NODUMP);
5833 
5834 	generic_fillattr(inode, stat);
5835 	return 0;
5836 }
5837 
5838 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5839 		      u32 request_mask, unsigned int query_flags)
5840 {
5841 	struct inode *inode = d_inode(path->dentry);
5842 	u64 delalloc_blocks;
5843 
5844 	ext4_getattr(path, stat, request_mask, query_flags);
5845 
5846 	/*
5847 	 * If there is inline data in the inode, the inode will normally not
5848 	 * have data blocks allocated (it may have an external xattr block).
5849 	 * Report at least one sector for such files, so tools like tar, rsync,
5850 	 * others don't incorrectly think the file is completely sparse.
5851 	 */
5852 	if (unlikely(ext4_has_inline_data(inode)))
5853 		stat->blocks += (stat->size + 511) >> 9;
5854 
5855 	/*
5856 	 * We can't update i_blocks if the block allocation is delayed
5857 	 * otherwise in the case of system crash before the real block
5858 	 * allocation is done, we will have i_blocks inconsistent with
5859 	 * on-disk file blocks.
5860 	 * We always keep i_blocks updated together with real
5861 	 * allocation. But to not confuse with user, stat
5862 	 * will return the blocks that include the delayed allocation
5863 	 * blocks for this file.
5864 	 */
5865 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5866 				   EXT4_I(inode)->i_reserved_data_blocks);
5867 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5868 	return 0;
5869 }
5870 
5871 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5872 				   int pextents)
5873 {
5874 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5875 		return ext4_ind_trans_blocks(inode, lblocks);
5876 	return ext4_ext_index_trans_blocks(inode, pextents);
5877 }
5878 
5879 /*
5880  * Account for index blocks, block groups bitmaps and block group
5881  * descriptor blocks if modify datablocks and index blocks
5882  * worse case, the indexs blocks spread over different block groups
5883  *
5884  * If datablocks are discontiguous, they are possible to spread over
5885  * different block groups too. If they are contiguous, with flexbg,
5886  * they could still across block group boundary.
5887  *
5888  * Also account for superblock, inode, quota and xattr blocks
5889  */
5890 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5891 				  int pextents)
5892 {
5893 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5894 	int gdpblocks;
5895 	int idxblocks;
5896 	int ret = 0;
5897 
5898 	/*
5899 	 * How many index blocks need to touch to map @lblocks logical blocks
5900 	 * to @pextents physical extents?
5901 	 */
5902 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5903 
5904 	ret = idxblocks;
5905 
5906 	/*
5907 	 * Now let's see how many group bitmaps and group descriptors need
5908 	 * to account
5909 	 */
5910 	groups = idxblocks + pextents;
5911 	gdpblocks = groups;
5912 	if (groups > ngroups)
5913 		groups = ngroups;
5914 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5915 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5916 
5917 	/* bitmaps and block group descriptor blocks */
5918 	ret += groups + gdpblocks;
5919 
5920 	/* Blocks for super block, inode, quota and xattr blocks */
5921 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5922 
5923 	return ret;
5924 }
5925 
5926 /*
5927  * Calculate the total number of credits to reserve to fit
5928  * the modification of a single pages into a single transaction,
5929  * which may include multiple chunks of block allocations.
5930  *
5931  * This could be called via ext4_write_begin()
5932  *
5933  * We need to consider the worse case, when
5934  * one new block per extent.
5935  */
5936 int ext4_writepage_trans_blocks(struct inode *inode)
5937 {
5938 	int bpp = ext4_journal_blocks_per_page(inode);
5939 	int ret;
5940 
5941 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5942 
5943 	/* Account for data blocks for journalled mode */
5944 	if (ext4_should_journal_data(inode))
5945 		ret += bpp;
5946 	return ret;
5947 }
5948 
5949 /*
5950  * Calculate the journal credits for a chunk of data modification.
5951  *
5952  * This is called from DIO, fallocate or whoever calling
5953  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5954  *
5955  * journal buffers for data blocks are not included here, as DIO
5956  * and fallocate do no need to journal data buffers.
5957  */
5958 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5959 {
5960 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5961 }
5962 
5963 /*
5964  * The caller must have previously called ext4_reserve_inode_write().
5965  * Give this, we know that the caller already has write access to iloc->bh.
5966  */
5967 int ext4_mark_iloc_dirty(handle_t *handle,
5968 			 struct inode *inode, struct ext4_iloc *iloc)
5969 {
5970 	int err = 0;
5971 
5972 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5973 		put_bh(iloc->bh);
5974 		return -EIO;
5975 	}
5976 	if (IS_I_VERSION(inode))
5977 		inode_inc_iversion(inode);
5978 
5979 	/* the do_update_inode consumes one bh->b_count */
5980 	get_bh(iloc->bh);
5981 
5982 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5983 	err = ext4_do_update_inode(handle, inode, iloc);
5984 	put_bh(iloc->bh);
5985 	return err;
5986 }
5987 
5988 /*
5989  * On success, We end up with an outstanding reference count against
5990  * iloc->bh.  This _must_ be cleaned up later.
5991  */
5992 
5993 int
5994 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5995 			 struct ext4_iloc *iloc)
5996 {
5997 	int err;
5998 
5999 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
6000 		return -EIO;
6001 
6002 	err = ext4_get_inode_loc(inode, iloc);
6003 	if (!err) {
6004 		BUFFER_TRACE(iloc->bh, "get_write_access");
6005 		err = ext4_journal_get_write_access(handle, iloc->bh);
6006 		if (err) {
6007 			brelse(iloc->bh);
6008 			iloc->bh = NULL;
6009 		}
6010 	}
6011 	ext4_std_error(inode->i_sb, err);
6012 	return err;
6013 }
6014 
6015 static int __ext4_expand_extra_isize(struct inode *inode,
6016 				     unsigned int new_extra_isize,
6017 				     struct ext4_iloc *iloc,
6018 				     handle_t *handle, int *no_expand)
6019 {
6020 	struct ext4_inode *raw_inode;
6021 	struct ext4_xattr_ibody_header *header;
6022 	int error;
6023 
6024 	raw_inode = ext4_raw_inode(iloc);
6025 
6026 	header = IHDR(inode, raw_inode);
6027 
6028 	/* No extended attributes present */
6029 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
6030 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6031 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
6032 		       EXT4_I(inode)->i_extra_isize, 0,
6033 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
6034 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
6035 		return 0;
6036 	}
6037 
6038 	/* try to expand with EAs present */
6039 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
6040 					   raw_inode, handle);
6041 	if (error) {
6042 		/*
6043 		 * Inode size expansion failed; don't try again
6044 		 */
6045 		*no_expand = 1;
6046 	}
6047 
6048 	return error;
6049 }
6050 
6051 /*
6052  * Expand an inode by new_extra_isize bytes.
6053  * Returns 0 on success or negative error number on failure.
6054  */
6055 static int ext4_try_to_expand_extra_isize(struct inode *inode,
6056 					  unsigned int new_extra_isize,
6057 					  struct ext4_iloc iloc,
6058 					  handle_t *handle)
6059 {
6060 	int no_expand;
6061 	int error;
6062 
6063 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
6064 		return -EOVERFLOW;
6065 
6066 	/*
6067 	 * In nojournal mode, we can immediately attempt to expand
6068 	 * the inode.  When journaled, we first need to obtain extra
6069 	 * buffer credits since we may write into the EA block
6070 	 * with this same handle. If journal_extend fails, then it will
6071 	 * only result in a minor loss of functionality for that inode.
6072 	 * If this is felt to be critical, then e2fsck should be run to
6073 	 * force a large enough s_min_extra_isize.
6074 	 */
6075 	if (ext4_handle_valid(handle) &&
6076 	    jbd2_journal_extend(handle,
6077 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
6078 		return -ENOSPC;
6079 
6080 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
6081 		return -EBUSY;
6082 
6083 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
6084 					  handle, &no_expand);
6085 	ext4_write_unlock_xattr(inode, &no_expand);
6086 
6087 	return error;
6088 }
6089 
6090 int ext4_expand_extra_isize(struct inode *inode,
6091 			    unsigned int new_extra_isize,
6092 			    struct ext4_iloc *iloc)
6093 {
6094 	handle_t *handle;
6095 	int no_expand;
6096 	int error, rc;
6097 
6098 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6099 		brelse(iloc->bh);
6100 		return -EOVERFLOW;
6101 	}
6102 
6103 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
6104 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6105 	if (IS_ERR(handle)) {
6106 		error = PTR_ERR(handle);
6107 		brelse(iloc->bh);
6108 		return error;
6109 	}
6110 
6111 	ext4_write_lock_xattr(inode, &no_expand);
6112 
6113 	BUFFER_TRACE(iloc->bh, "get_write_access");
6114 	error = ext4_journal_get_write_access(handle, iloc->bh);
6115 	if (error) {
6116 		brelse(iloc->bh);
6117 		goto out_stop;
6118 	}
6119 
6120 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6121 					  handle, &no_expand);
6122 
6123 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6124 	if (!error)
6125 		error = rc;
6126 
6127 	ext4_write_unlock_xattr(inode, &no_expand);
6128 out_stop:
6129 	ext4_journal_stop(handle);
6130 	return error;
6131 }
6132 
6133 /*
6134  * What we do here is to mark the in-core inode as clean with respect to inode
6135  * dirtiness (it may still be data-dirty).
6136  * This means that the in-core inode may be reaped by prune_icache
6137  * without having to perform any I/O.  This is a very good thing,
6138  * because *any* task may call prune_icache - even ones which
6139  * have a transaction open against a different journal.
6140  *
6141  * Is this cheating?  Not really.  Sure, we haven't written the
6142  * inode out, but prune_icache isn't a user-visible syncing function.
6143  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6144  * we start and wait on commits.
6145  */
6146 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6147 {
6148 	struct ext4_iloc iloc;
6149 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6150 	int err;
6151 
6152 	might_sleep();
6153 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6154 	err = ext4_reserve_inode_write(handle, inode, &iloc);
6155 	if (err)
6156 		return err;
6157 
6158 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6159 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6160 					       iloc, handle);
6161 
6162 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
6163 }
6164 
6165 /*
6166  * ext4_dirty_inode() is called from __mark_inode_dirty()
6167  *
6168  * We're really interested in the case where a file is being extended.
6169  * i_size has been changed by generic_commit_write() and we thus need
6170  * to include the updated inode in the current transaction.
6171  *
6172  * Also, dquot_alloc_block() will always dirty the inode when blocks
6173  * are allocated to the file.
6174  *
6175  * If the inode is marked synchronous, we don't honour that here - doing
6176  * so would cause a commit on atime updates, which we don't bother doing.
6177  * We handle synchronous inodes at the highest possible level.
6178  *
6179  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
6180  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6181  * to copy into the on-disk inode structure are the timestamp files.
6182  */
6183 void ext4_dirty_inode(struct inode *inode, int flags)
6184 {
6185 	handle_t *handle;
6186 
6187 	if (flags == I_DIRTY_TIME)
6188 		return;
6189 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6190 	if (IS_ERR(handle))
6191 		goto out;
6192 
6193 	ext4_mark_inode_dirty(handle, inode);
6194 
6195 	ext4_journal_stop(handle);
6196 out:
6197 	return;
6198 }
6199 
6200 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6201 {
6202 	journal_t *journal;
6203 	handle_t *handle;
6204 	int err;
6205 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6206 
6207 	/*
6208 	 * We have to be very careful here: changing a data block's
6209 	 * journaling status dynamically is dangerous.  If we write a
6210 	 * data block to the journal, change the status and then delete
6211 	 * that block, we risk forgetting to revoke the old log record
6212 	 * from the journal and so a subsequent replay can corrupt data.
6213 	 * So, first we make sure that the journal is empty and that
6214 	 * nobody is changing anything.
6215 	 */
6216 
6217 	journal = EXT4_JOURNAL(inode);
6218 	if (!journal)
6219 		return 0;
6220 	if (is_journal_aborted(journal))
6221 		return -EROFS;
6222 
6223 	/* Wait for all existing dio workers */
6224 	inode_dio_wait(inode);
6225 
6226 	/*
6227 	 * Before flushing the journal and switching inode's aops, we have
6228 	 * to flush all dirty data the inode has. There can be outstanding
6229 	 * delayed allocations, there can be unwritten extents created by
6230 	 * fallocate or buffered writes in dioread_nolock mode covered by
6231 	 * dirty data which can be converted only after flushing the dirty
6232 	 * data (and journalled aops don't know how to handle these cases).
6233 	 */
6234 	if (val) {
6235 		down_write(&EXT4_I(inode)->i_mmap_sem);
6236 		err = filemap_write_and_wait(inode->i_mapping);
6237 		if (err < 0) {
6238 			up_write(&EXT4_I(inode)->i_mmap_sem);
6239 			return err;
6240 		}
6241 	}
6242 
6243 	percpu_down_write(&sbi->s_journal_flag_rwsem);
6244 	jbd2_journal_lock_updates(journal);
6245 
6246 	/*
6247 	 * OK, there are no updates running now, and all cached data is
6248 	 * synced to disk.  We are now in a completely consistent state
6249 	 * which doesn't have anything in the journal, and we know that
6250 	 * no filesystem updates are running, so it is safe to modify
6251 	 * the inode's in-core data-journaling state flag now.
6252 	 */
6253 
6254 	if (val)
6255 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6256 	else {
6257 		err = jbd2_journal_flush(journal);
6258 		if (err < 0) {
6259 			jbd2_journal_unlock_updates(journal);
6260 			percpu_up_write(&sbi->s_journal_flag_rwsem);
6261 			return err;
6262 		}
6263 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6264 	}
6265 	ext4_set_aops(inode);
6266 
6267 	jbd2_journal_unlock_updates(journal);
6268 	percpu_up_write(&sbi->s_journal_flag_rwsem);
6269 
6270 	if (val)
6271 		up_write(&EXT4_I(inode)->i_mmap_sem);
6272 
6273 	/* Finally we can mark the inode as dirty. */
6274 
6275 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6276 	if (IS_ERR(handle))
6277 		return PTR_ERR(handle);
6278 
6279 	err = ext4_mark_inode_dirty(handle, inode);
6280 	ext4_handle_sync(handle);
6281 	ext4_journal_stop(handle);
6282 	ext4_std_error(inode->i_sb, err);
6283 
6284 	return err;
6285 }
6286 
6287 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6288 {
6289 	return !buffer_mapped(bh);
6290 }
6291 
6292 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6293 {
6294 	struct vm_area_struct *vma = vmf->vma;
6295 	struct page *page = vmf->page;
6296 	loff_t size;
6297 	unsigned long len;
6298 	int err;
6299 	vm_fault_t ret;
6300 	struct file *file = vma->vm_file;
6301 	struct inode *inode = file_inode(file);
6302 	struct address_space *mapping = inode->i_mapping;
6303 	handle_t *handle;
6304 	get_block_t *get_block;
6305 	int retries = 0;
6306 
6307 	if (unlikely(IS_IMMUTABLE(inode)))
6308 		return VM_FAULT_SIGBUS;
6309 
6310 	sb_start_pagefault(inode->i_sb);
6311 	file_update_time(vma->vm_file);
6312 
6313 	down_read(&EXT4_I(inode)->i_mmap_sem);
6314 
6315 	err = ext4_convert_inline_data(inode);
6316 	if (err)
6317 		goto out_ret;
6318 
6319 	/* Delalloc case is easy... */
6320 	if (test_opt(inode->i_sb, DELALLOC) &&
6321 	    !ext4_should_journal_data(inode) &&
6322 	    !ext4_nonda_switch(inode->i_sb)) {
6323 		do {
6324 			err = block_page_mkwrite(vma, vmf,
6325 						   ext4_da_get_block_prep);
6326 		} while (err == -ENOSPC &&
6327 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6328 		goto out_ret;
6329 	}
6330 
6331 	lock_page(page);
6332 	size = i_size_read(inode);
6333 	/* Page got truncated from under us? */
6334 	if (page->mapping != mapping || page_offset(page) > size) {
6335 		unlock_page(page);
6336 		ret = VM_FAULT_NOPAGE;
6337 		goto out;
6338 	}
6339 
6340 	if (page->index == size >> PAGE_SHIFT)
6341 		len = size & ~PAGE_MASK;
6342 	else
6343 		len = PAGE_SIZE;
6344 	/*
6345 	 * Return if we have all the buffers mapped. This avoids the need to do
6346 	 * journal_start/journal_stop which can block and take a long time
6347 	 */
6348 	if (page_has_buffers(page)) {
6349 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6350 					    0, len, NULL,
6351 					    ext4_bh_unmapped)) {
6352 			/* Wait so that we don't change page under IO */
6353 			wait_for_stable_page(page);
6354 			ret = VM_FAULT_LOCKED;
6355 			goto out;
6356 		}
6357 	}
6358 	unlock_page(page);
6359 	/* OK, we need to fill the hole... */
6360 	if (ext4_should_dioread_nolock(inode))
6361 		get_block = ext4_get_block_unwritten;
6362 	else
6363 		get_block = ext4_get_block;
6364 retry_alloc:
6365 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6366 				    ext4_writepage_trans_blocks(inode));
6367 	if (IS_ERR(handle)) {
6368 		ret = VM_FAULT_SIGBUS;
6369 		goto out;
6370 	}
6371 	err = block_page_mkwrite(vma, vmf, get_block);
6372 	if (!err && ext4_should_journal_data(inode)) {
6373 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6374 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
6375 			unlock_page(page);
6376 			ret = VM_FAULT_SIGBUS;
6377 			ext4_journal_stop(handle);
6378 			goto out;
6379 		}
6380 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6381 	}
6382 	ext4_journal_stop(handle);
6383 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6384 		goto retry_alloc;
6385 out_ret:
6386 	ret = block_page_mkwrite_return(err);
6387 out:
6388 	up_read(&EXT4_I(inode)->i_mmap_sem);
6389 	sb_end_pagefault(inode->i_sb);
6390 	return ret;
6391 }
6392 
6393 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6394 {
6395 	struct inode *inode = file_inode(vmf->vma->vm_file);
6396 	vm_fault_t ret;
6397 
6398 	down_read(&EXT4_I(inode)->i_mmap_sem);
6399 	ret = filemap_fault(vmf);
6400 	up_read(&EXT4_I(inode)->i_mmap_sem);
6401 
6402 	return ret;
6403 }
6404