1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/dax.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/bitops.h> 41 #include <linux/iomap.h> 42 #include <linux/iversion.h> 43 44 #include "ext4_jbd2.h" 45 #include "xattr.h" 46 #include "acl.h" 47 #include "truncate.h" 48 49 #include <trace/events/ext4.h> 50 51 #define MPAGE_DA_EXTENT_TAIL 0x01 52 53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 54 struct ext4_inode_info *ei) 55 { 56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 57 __u32 csum; 58 __u16 dummy_csum = 0; 59 int offset = offsetof(struct ext4_inode, i_checksum_lo); 60 unsigned int csum_size = sizeof(dummy_csum); 61 62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 64 offset += csum_size; 65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 66 EXT4_GOOD_OLD_INODE_SIZE - offset); 67 68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 69 offset = offsetof(struct ext4_inode, i_checksum_hi); 70 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 71 EXT4_GOOD_OLD_INODE_SIZE, 72 offset - EXT4_GOOD_OLD_INODE_SIZE); 73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 75 csum_size); 76 offset += csum_size; 77 } 78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 79 EXT4_INODE_SIZE(inode->i_sb) - offset); 80 } 81 82 return csum; 83 } 84 85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 86 struct ext4_inode_info *ei) 87 { 88 __u32 provided, calculated; 89 90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 91 cpu_to_le32(EXT4_OS_LINUX) || 92 !ext4_has_metadata_csum(inode->i_sb)) 93 return 1; 94 95 provided = le16_to_cpu(raw->i_checksum_lo); 96 calculated = ext4_inode_csum(inode, raw, ei); 97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 100 else 101 calculated &= 0xFFFF; 102 103 return provided == calculated; 104 } 105 106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 107 struct ext4_inode_info *ei) 108 { 109 __u32 csum; 110 111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 112 cpu_to_le32(EXT4_OS_LINUX) || 113 !ext4_has_metadata_csum(inode->i_sb)) 114 return; 115 116 csum = ext4_inode_csum(inode, raw, ei); 117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 120 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 121 } 122 123 static inline int ext4_begin_ordered_truncate(struct inode *inode, 124 loff_t new_size) 125 { 126 trace_ext4_begin_ordered_truncate(inode, new_size); 127 /* 128 * If jinode is zero, then we never opened the file for 129 * writing, so there's no need to call 130 * jbd2_journal_begin_ordered_truncate() since there's no 131 * outstanding writes we need to flush. 132 */ 133 if (!EXT4_I(inode)->jinode) 134 return 0; 135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 136 EXT4_I(inode)->jinode, 137 new_size); 138 } 139 140 static void ext4_invalidatepage(struct page *page, unsigned int offset, 141 unsigned int length); 142 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 145 int pextents); 146 147 /* 148 * Test whether an inode is a fast symlink. 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 150 */ 151 int ext4_inode_is_fast_symlink(struct inode *inode) 152 { 153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 154 int ea_blocks = EXT4_I(inode)->i_file_acl ? 155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 156 157 if (ext4_has_inline_data(inode)) 158 return 0; 159 160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 161 } 162 return S_ISLNK(inode->i_mode) && inode->i_size && 163 (inode->i_size < EXT4_N_BLOCKS * 4); 164 } 165 166 /* 167 * Restart the transaction associated with *handle. This does a commit, 168 * so before we call here everything must be consistently dirtied against 169 * this transaction. 170 */ 171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 172 int nblocks) 173 { 174 int ret; 175 176 /* 177 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 178 * moment, get_block can be called only for blocks inside i_size since 179 * page cache has been already dropped and writes are blocked by 180 * i_mutex. So we can safely drop the i_data_sem here. 181 */ 182 BUG_ON(EXT4_JOURNAL(inode) == NULL); 183 jbd_debug(2, "restarting handle %p\n", handle); 184 up_write(&EXT4_I(inode)->i_data_sem); 185 ret = ext4_journal_restart(handle, nblocks); 186 down_write(&EXT4_I(inode)->i_data_sem); 187 ext4_discard_preallocations(inode); 188 189 return ret; 190 } 191 192 /* 193 * Called at the last iput() if i_nlink is zero. 194 */ 195 void ext4_evict_inode(struct inode *inode) 196 { 197 handle_t *handle; 198 int err; 199 int extra_credits = 3; 200 struct ext4_xattr_inode_array *ea_inode_array = NULL; 201 202 trace_ext4_evict_inode(inode); 203 204 if (inode->i_nlink) { 205 /* 206 * When journalling data dirty buffers are tracked only in the 207 * journal. So although mm thinks everything is clean and 208 * ready for reaping the inode might still have some pages to 209 * write in the running transaction or waiting to be 210 * checkpointed. Thus calling jbd2_journal_invalidatepage() 211 * (via truncate_inode_pages()) to discard these buffers can 212 * cause data loss. Also even if we did not discard these 213 * buffers, we would have no way to find them after the inode 214 * is reaped and thus user could see stale data if he tries to 215 * read them before the transaction is checkpointed. So be 216 * careful and force everything to disk here... We use 217 * ei->i_datasync_tid to store the newest transaction 218 * containing inode's data. 219 * 220 * Note that directories do not have this problem because they 221 * don't use page cache. 222 */ 223 if (inode->i_ino != EXT4_JOURNAL_INO && 224 ext4_should_journal_data(inode) && 225 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 226 inode->i_data.nrpages) { 227 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 228 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 229 230 jbd2_complete_transaction(journal, commit_tid); 231 filemap_write_and_wait(&inode->i_data); 232 } 233 truncate_inode_pages_final(&inode->i_data); 234 235 goto no_delete; 236 } 237 238 if (is_bad_inode(inode)) 239 goto no_delete; 240 dquot_initialize(inode); 241 242 if (ext4_should_order_data(inode)) 243 ext4_begin_ordered_truncate(inode, 0); 244 truncate_inode_pages_final(&inode->i_data); 245 246 /* 247 * Protect us against freezing - iput() caller didn't have to have any 248 * protection against it 249 */ 250 sb_start_intwrite(inode->i_sb); 251 252 if (!IS_NOQUOTA(inode)) 253 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 254 255 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 256 ext4_blocks_for_truncate(inode)+extra_credits); 257 if (IS_ERR(handle)) { 258 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 259 /* 260 * If we're going to skip the normal cleanup, we still need to 261 * make sure that the in-core orphan linked list is properly 262 * cleaned up. 263 */ 264 ext4_orphan_del(NULL, inode); 265 sb_end_intwrite(inode->i_sb); 266 goto no_delete; 267 } 268 269 if (IS_SYNC(inode)) 270 ext4_handle_sync(handle); 271 272 /* 273 * Set inode->i_size to 0 before calling ext4_truncate(). We need 274 * special handling of symlinks here because i_size is used to 275 * determine whether ext4_inode_info->i_data contains symlink data or 276 * block mappings. Setting i_size to 0 will remove its fast symlink 277 * status. Erase i_data so that it becomes a valid empty block map. 278 */ 279 if (ext4_inode_is_fast_symlink(inode)) 280 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 281 inode->i_size = 0; 282 err = ext4_mark_inode_dirty(handle, inode); 283 if (err) { 284 ext4_warning(inode->i_sb, 285 "couldn't mark inode dirty (err %d)", err); 286 goto stop_handle; 287 } 288 if (inode->i_blocks) { 289 err = ext4_truncate(inode); 290 if (err) { 291 ext4_error(inode->i_sb, 292 "couldn't truncate inode %lu (err %d)", 293 inode->i_ino, err); 294 goto stop_handle; 295 } 296 } 297 298 /* Remove xattr references. */ 299 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 300 extra_credits); 301 if (err) { 302 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 303 stop_handle: 304 ext4_journal_stop(handle); 305 ext4_orphan_del(NULL, inode); 306 sb_end_intwrite(inode->i_sb); 307 ext4_xattr_inode_array_free(ea_inode_array); 308 goto no_delete; 309 } 310 311 /* 312 * Kill off the orphan record which ext4_truncate created. 313 * AKPM: I think this can be inside the above `if'. 314 * Note that ext4_orphan_del() has to be able to cope with the 315 * deletion of a non-existent orphan - this is because we don't 316 * know if ext4_truncate() actually created an orphan record. 317 * (Well, we could do this if we need to, but heck - it works) 318 */ 319 ext4_orphan_del(handle, inode); 320 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 321 322 /* 323 * One subtle ordering requirement: if anything has gone wrong 324 * (transaction abort, IO errors, whatever), then we can still 325 * do these next steps (the fs will already have been marked as 326 * having errors), but we can't free the inode if the mark_dirty 327 * fails. 328 */ 329 if (ext4_mark_inode_dirty(handle, inode)) 330 /* If that failed, just do the required in-core inode clear. */ 331 ext4_clear_inode(inode); 332 else 333 ext4_free_inode(handle, inode); 334 ext4_journal_stop(handle); 335 sb_end_intwrite(inode->i_sb); 336 ext4_xattr_inode_array_free(ea_inode_array); 337 return; 338 no_delete: 339 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 340 } 341 342 #ifdef CONFIG_QUOTA 343 qsize_t *ext4_get_reserved_space(struct inode *inode) 344 { 345 return &EXT4_I(inode)->i_reserved_quota; 346 } 347 #endif 348 349 /* 350 * Called with i_data_sem down, which is important since we can call 351 * ext4_discard_preallocations() from here. 352 */ 353 void ext4_da_update_reserve_space(struct inode *inode, 354 int used, int quota_claim) 355 { 356 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 357 struct ext4_inode_info *ei = EXT4_I(inode); 358 359 spin_lock(&ei->i_block_reservation_lock); 360 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 361 if (unlikely(used > ei->i_reserved_data_blocks)) { 362 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 363 "with only %d reserved data blocks", 364 __func__, inode->i_ino, used, 365 ei->i_reserved_data_blocks); 366 WARN_ON(1); 367 used = ei->i_reserved_data_blocks; 368 } 369 370 /* Update per-inode reservations */ 371 ei->i_reserved_data_blocks -= used; 372 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 373 374 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 375 376 /* Update quota subsystem for data blocks */ 377 if (quota_claim) 378 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 379 else { 380 /* 381 * We did fallocate with an offset that is already delayed 382 * allocated. So on delayed allocated writeback we should 383 * not re-claim the quota for fallocated blocks. 384 */ 385 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 386 } 387 388 /* 389 * If we have done all the pending block allocations and if 390 * there aren't any writers on the inode, we can discard the 391 * inode's preallocations. 392 */ 393 if ((ei->i_reserved_data_blocks == 0) && 394 !inode_is_open_for_write(inode)) 395 ext4_discard_preallocations(inode); 396 } 397 398 static int __check_block_validity(struct inode *inode, const char *func, 399 unsigned int line, 400 struct ext4_map_blocks *map) 401 { 402 if (ext4_has_feature_journal(inode->i_sb) && 403 (inode->i_ino == 404 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 405 return 0; 406 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 407 map->m_len)) { 408 ext4_error_inode(inode, func, line, map->m_pblk, 409 "lblock %lu mapped to illegal pblock %llu " 410 "(length %d)", (unsigned long) map->m_lblk, 411 map->m_pblk, map->m_len); 412 return -EFSCORRUPTED; 413 } 414 return 0; 415 } 416 417 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 418 ext4_lblk_t len) 419 { 420 int ret; 421 422 if (IS_ENCRYPTED(inode)) 423 return fscrypt_zeroout_range(inode, lblk, pblk, len); 424 425 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 426 if (ret > 0) 427 ret = 0; 428 429 return ret; 430 } 431 432 #define check_block_validity(inode, map) \ 433 __check_block_validity((inode), __func__, __LINE__, (map)) 434 435 #ifdef ES_AGGRESSIVE_TEST 436 static void ext4_map_blocks_es_recheck(handle_t *handle, 437 struct inode *inode, 438 struct ext4_map_blocks *es_map, 439 struct ext4_map_blocks *map, 440 int flags) 441 { 442 int retval; 443 444 map->m_flags = 0; 445 /* 446 * There is a race window that the result is not the same. 447 * e.g. xfstests #223 when dioread_nolock enables. The reason 448 * is that we lookup a block mapping in extent status tree with 449 * out taking i_data_sem. So at the time the unwritten extent 450 * could be converted. 451 */ 452 down_read(&EXT4_I(inode)->i_data_sem); 453 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 454 retval = ext4_ext_map_blocks(handle, inode, map, flags & 455 EXT4_GET_BLOCKS_KEEP_SIZE); 456 } else { 457 retval = ext4_ind_map_blocks(handle, inode, map, flags & 458 EXT4_GET_BLOCKS_KEEP_SIZE); 459 } 460 up_read((&EXT4_I(inode)->i_data_sem)); 461 462 /* 463 * We don't check m_len because extent will be collpased in status 464 * tree. So the m_len might not equal. 465 */ 466 if (es_map->m_lblk != map->m_lblk || 467 es_map->m_flags != map->m_flags || 468 es_map->m_pblk != map->m_pblk) { 469 printk("ES cache assertion failed for inode: %lu " 470 "es_cached ex [%d/%d/%llu/%x] != " 471 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 472 inode->i_ino, es_map->m_lblk, es_map->m_len, 473 es_map->m_pblk, es_map->m_flags, map->m_lblk, 474 map->m_len, map->m_pblk, map->m_flags, 475 retval, flags); 476 } 477 } 478 #endif /* ES_AGGRESSIVE_TEST */ 479 480 /* 481 * The ext4_map_blocks() function tries to look up the requested blocks, 482 * and returns if the blocks are already mapped. 483 * 484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 485 * and store the allocated blocks in the result buffer head and mark it 486 * mapped. 487 * 488 * If file type is extents based, it will call ext4_ext_map_blocks(), 489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 490 * based files 491 * 492 * On success, it returns the number of blocks being mapped or allocated. if 493 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 494 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 495 * 496 * It returns 0 if plain look up failed (blocks have not been allocated), in 497 * that case, @map is returned as unmapped but we still do fill map->m_len to 498 * indicate the length of a hole starting at map->m_lblk. 499 * 500 * It returns the error in case of allocation failure. 501 */ 502 int ext4_map_blocks(handle_t *handle, struct inode *inode, 503 struct ext4_map_blocks *map, int flags) 504 { 505 struct extent_status es; 506 int retval; 507 int ret = 0; 508 #ifdef ES_AGGRESSIVE_TEST 509 struct ext4_map_blocks orig_map; 510 511 memcpy(&orig_map, map, sizeof(*map)); 512 #endif 513 514 map->m_flags = 0; 515 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 516 "logical block %lu\n", inode->i_ino, flags, map->m_len, 517 (unsigned long) map->m_lblk); 518 519 /* 520 * ext4_map_blocks returns an int, and m_len is an unsigned int 521 */ 522 if (unlikely(map->m_len > INT_MAX)) 523 map->m_len = INT_MAX; 524 525 /* We can handle the block number less than EXT_MAX_BLOCKS */ 526 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 527 return -EFSCORRUPTED; 528 529 /* Lookup extent status tree firstly */ 530 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 531 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 532 map->m_pblk = ext4_es_pblock(&es) + 533 map->m_lblk - es.es_lblk; 534 map->m_flags |= ext4_es_is_written(&es) ? 535 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 536 retval = es.es_len - (map->m_lblk - es.es_lblk); 537 if (retval > map->m_len) 538 retval = map->m_len; 539 map->m_len = retval; 540 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 541 map->m_pblk = 0; 542 retval = es.es_len - (map->m_lblk - es.es_lblk); 543 if (retval > map->m_len) 544 retval = map->m_len; 545 map->m_len = retval; 546 retval = 0; 547 } else { 548 BUG(); 549 } 550 #ifdef ES_AGGRESSIVE_TEST 551 ext4_map_blocks_es_recheck(handle, inode, map, 552 &orig_map, flags); 553 #endif 554 goto found; 555 } 556 557 /* 558 * Try to see if we can get the block without requesting a new 559 * file system block. 560 */ 561 down_read(&EXT4_I(inode)->i_data_sem); 562 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 563 retval = ext4_ext_map_blocks(handle, inode, map, flags & 564 EXT4_GET_BLOCKS_KEEP_SIZE); 565 } else { 566 retval = ext4_ind_map_blocks(handle, inode, map, flags & 567 EXT4_GET_BLOCKS_KEEP_SIZE); 568 } 569 if (retval > 0) { 570 unsigned int status; 571 572 if (unlikely(retval != map->m_len)) { 573 ext4_warning(inode->i_sb, 574 "ES len assertion failed for inode " 575 "%lu: retval %d != map->m_len %d", 576 inode->i_ino, retval, map->m_len); 577 WARN_ON(1); 578 } 579 580 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 581 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 582 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 583 !(status & EXTENT_STATUS_WRITTEN) && 584 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 585 map->m_lblk + map->m_len - 1)) 586 status |= EXTENT_STATUS_DELAYED; 587 ret = ext4_es_insert_extent(inode, map->m_lblk, 588 map->m_len, map->m_pblk, status); 589 if (ret < 0) 590 retval = ret; 591 } 592 up_read((&EXT4_I(inode)->i_data_sem)); 593 594 found: 595 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 596 ret = check_block_validity(inode, map); 597 if (ret != 0) 598 return ret; 599 } 600 601 /* If it is only a block(s) look up */ 602 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 603 return retval; 604 605 /* 606 * Returns if the blocks have already allocated 607 * 608 * Note that if blocks have been preallocated 609 * ext4_ext_get_block() returns the create = 0 610 * with buffer head unmapped. 611 */ 612 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 613 /* 614 * If we need to convert extent to unwritten 615 * we continue and do the actual work in 616 * ext4_ext_map_blocks() 617 */ 618 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 619 return retval; 620 621 /* 622 * Here we clear m_flags because after allocating an new extent, 623 * it will be set again. 624 */ 625 map->m_flags &= ~EXT4_MAP_FLAGS; 626 627 /* 628 * New blocks allocate and/or writing to unwritten extent 629 * will possibly result in updating i_data, so we take 630 * the write lock of i_data_sem, and call get_block() 631 * with create == 1 flag. 632 */ 633 down_write(&EXT4_I(inode)->i_data_sem); 634 635 /* 636 * We need to check for EXT4 here because migrate 637 * could have changed the inode type in between 638 */ 639 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 640 retval = ext4_ext_map_blocks(handle, inode, map, flags); 641 } else { 642 retval = ext4_ind_map_blocks(handle, inode, map, flags); 643 644 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 645 /* 646 * We allocated new blocks which will result in 647 * i_data's format changing. Force the migrate 648 * to fail by clearing migrate flags 649 */ 650 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 651 } 652 653 /* 654 * Update reserved blocks/metadata blocks after successful 655 * block allocation which had been deferred till now. We don't 656 * support fallocate for non extent files. So we can update 657 * reserve space here. 658 */ 659 if ((retval > 0) && 660 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 661 ext4_da_update_reserve_space(inode, retval, 1); 662 } 663 664 if (retval > 0) { 665 unsigned int status; 666 667 if (unlikely(retval != map->m_len)) { 668 ext4_warning(inode->i_sb, 669 "ES len assertion failed for inode " 670 "%lu: retval %d != map->m_len %d", 671 inode->i_ino, retval, map->m_len); 672 WARN_ON(1); 673 } 674 675 /* 676 * We have to zeroout blocks before inserting them into extent 677 * status tree. Otherwise someone could look them up there and 678 * use them before they are really zeroed. We also have to 679 * unmap metadata before zeroing as otherwise writeback can 680 * overwrite zeros with stale data from block device. 681 */ 682 if (flags & EXT4_GET_BLOCKS_ZERO && 683 map->m_flags & EXT4_MAP_MAPPED && 684 map->m_flags & EXT4_MAP_NEW) { 685 ret = ext4_issue_zeroout(inode, map->m_lblk, 686 map->m_pblk, map->m_len); 687 if (ret) { 688 retval = ret; 689 goto out_sem; 690 } 691 } 692 693 /* 694 * If the extent has been zeroed out, we don't need to update 695 * extent status tree. 696 */ 697 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 698 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 699 if (ext4_es_is_written(&es)) 700 goto out_sem; 701 } 702 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 703 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 704 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 705 !(status & EXTENT_STATUS_WRITTEN) && 706 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 707 map->m_lblk + map->m_len - 1)) 708 status |= EXTENT_STATUS_DELAYED; 709 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 710 map->m_pblk, status); 711 if (ret < 0) { 712 retval = ret; 713 goto out_sem; 714 } 715 } 716 717 out_sem: 718 up_write((&EXT4_I(inode)->i_data_sem)); 719 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 720 ret = check_block_validity(inode, map); 721 if (ret != 0) 722 return ret; 723 724 /* 725 * Inodes with freshly allocated blocks where contents will be 726 * visible after transaction commit must be on transaction's 727 * ordered data list. 728 */ 729 if (map->m_flags & EXT4_MAP_NEW && 730 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 731 !(flags & EXT4_GET_BLOCKS_ZERO) && 732 !ext4_is_quota_file(inode) && 733 ext4_should_order_data(inode)) { 734 loff_t start_byte = 735 (loff_t)map->m_lblk << inode->i_blkbits; 736 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 737 738 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 739 ret = ext4_jbd2_inode_add_wait(handle, inode, 740 start_byte, length); 741 else 742 ret = ext4_jbd2_inode_add_write(handle, inode, 743 start_byte, length); 744 if (ret) 745 return ret; 746 } 747 } 748 return retval; 749 } 750 751 /* 752 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 753 * we have to be careful as someone else may be manipulating b_state as well. 754 */ 755 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 756 { 757 unsigned long old_state; 758 unsigned long new_state; 759 760 flags &= EXT4_MAP_FLAGS; 761 762 /* Dummy buffer_head? Set non-atomically. */ 763 if (!bh->b_page) { 764 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 765 return; 766 } 767 /* 768 * Someone else may be modifying b_state. Be careful! This is ugly but 769 * once we get rid of using bh as a container for mapping information 770 * to pass to / from get_block functions, this can go away. 771 */ 772 do { 773 old_state = READ_ONCE(bh->b_state); 774 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 775 } while (unlikely( 776 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 777 } 778 779 static int _ext4_get_block(struct inode *inode, sector_t iblock, 780 struct buffer_head *bh, int flags) 781 { 782 struct ext4_map_blocks map; 783 int ret = 0; 784 785 if (ext4_has_inline_data(inode)) 786 return -ERANGE; 787 788 map.m_lblk = iblock; 789 map.m_len = bh->b_size >> inode->i_blkbits; 790 791 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 792 flags); 793 if (ret > 0) { 794 map_bh(bh, inode->i_sb, map.m_pblk); 795 ext4_update_bh_state(bh, map.m_flags); 796 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 797 ret = 0; 798 } else if (ret == 0) { 799 /* hole case, need to fill in bh->b_size */ 800 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 801 } 802 return ret; 803 } 804 805 int ext4_get_block(struct inode *inode, sector_t iblock, 806 struct buffer_head *bh, int create) 807 { 808 return _ext4_get_block(inode, iblock, bh, 809 create ? EXT4_GET_BLOCKS_CREATE : 0); 810 } 811 812 /* 813 * Get block function used when preparing for buffered write if we require 814 * creating an unwritten extent if blocks haven't been allocated. The extent 815 * will be converted to written after the IO is complete. 816 */ 817 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 818 struct buffer_head *bh_result, int create) 819 { 820 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 821 inode->i_ino, create); 822 return _ext4_get_block(inode, iblock, bh_result, 823 EXT4_GET_BLOCKS_IO_CREATE_EXT); 824 } 825 826 /* Maximum number of blocks we map for direct IO at once. */ 827 #define DIO_MAX_BLOCKS 4096 828 829 /* 830 * Get blocks function for the cases that need to start a transaction - 831 * generally difference cases of direct IO and DAX IO. It also handles retries 832 * in case of ENOSPC. 833 */ 834 static int ext4_get_block_trans(struct inode *inode, sector_t iblock, 835 struct buffer_head *bh_result, int flags) 836 { 837 int dio_credits; 838 handle_t *handle; 839 int retries = 0; 840 int ret; 841 842 /* Trim mapping request to maximum we can map at once for DIO */ 843 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS) 844 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits; 845 dio_credits = ext4_chunk_trans_blocks(inode, 846 bh_result->b_size >> inode->i_blkbits); 847 retry: 848 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 849 if (IS_ERR(handle)) 850 return PTR_ERR(handle); 851 852 ret = _ext4_get_block(inode, iblock, bh_result, flags); 853 ext4_journal_stop(handle); 854 855 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 856 goto retry; 857 return ret; 858 } 859 860 /* Get block function for DIO reads and writes to inodes without extents */ 861 int ext4_dio_get_block(struct inode *inode, sector_t iblock, 862 struct buffer_head *bh, int create) 863 { 864 /* We don't expect handle for direct IO */ 865 WARN_ON_ONCE(ext4_journal_current_handle()); 866 867 if (!create) 868 return _ext4_get_block(inode, iblock, bh, 0); 869 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE); 870 } 871 872 /* 873 * Get block function for AIO DIO writes when we create unwritten extent if 874 * blocks are not allocated yet. The extent will be converted to written 875 * after IO is complete. 876 */ 877 static int ext4_dio_get_block_unwritten_async(struct inode *inode, 878 sector_t iblock, struct buffer_head *bh_result, int create) 879 { 880 int ret; 881 882 /* We don't expect handle for direct IO */ 883 WARN_ON_ONCE(ext4_journal_current_handle()); 884 885 ret = ext4_get_block_trans(inode, iblock, bh_result, 886 EXT4_GET_BLOCKS_IO_CREATE_EXT); 887 888 /* 889 * When doing DIO using unwritten extents, we need io_end to convert 890 * unwritten extents to written on IO completion. We allocate io_end 891 * once we spot unwritten extent and store it in b_private. Generic 892 * DIO code keeps b_private set and furthermore passes the value to 893 * our completion callback in 'private' argument. 894 */ 895 if (!ret && buffer_unwritten(bh_result)) { 896 if (!bh_result->b_private) { 897 ext4_io_end_t *io_end; 898 899 io_end = ext4_init_io_end(inode, GFP_KERNEL); 900 if (!io_end) 901 return -ENOMEM; 902 bh_result->b_private = io_end; 903 ext4_set_io_unwritten_flag(inode, io_end); 904 } 905 set_buffer_defer_completion(bh_result); 906 } 907 908 return ret; 909 } 910 911 /* 912 * Get block function for non-AIO DIO writes when we create unwritten extent if 913 * blocks are not allocated yet. The extent will be converted to written 914 * after IO is complete by ext4_direct_IO_write(). 915 */ 916 static int ext4_dio_get_block_unwritten_sync(struct inode *inode, 917 sector_t iblock, struct buffer_head *bh_result, int create) 918 { 919 int ret; 920 921 /* We don't expect handle for direct IO */ 922 WARN_ON_ONCE(ext4_journal_current_handle()); 923 924 ret = ext4_get_block_trans(inode, iblock, bh_result, 925 EXT4_GET_BLOCKS_IO_CREATE_EXT); 926 927 /* 928 * Mark inode as having pending DIO writes to unwritten extents. 929 * ext4_direct_IO_write() checks this flag and converts extents to 930 * written. 931 */ 932 if (!ret && buffer_unwritten(bh_result)) 933 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 934 935 return ret; 936 } 937 938 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock, 939 struct buffer_head *bh_result, int create) 940 { 941 int ret; 942 943 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n", 944 inode->i_ino, create); 945 /* We don't expect handle for direct IO */ 946 WARN_ON_ONCE(ext4_journal_current_handle()); 947 948 ret = _ext4_get_block(inode, iblock, bh_result, 0); 949 /* 950 * Blocks should have been preallocated! ext4_file_write_iter() checks 951 * that. 952 */ 953 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result)); 954 955 return ret; 956 } 957 958 959 /* 960 * `handle' can be NULL if create is zero 961 */ 962 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 963 ext4_lblk_t block, int map_flags) 964 { 965 struct ext4_map_blocks map; 966 struct buffer_head *bh; 967 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 968 int err; 969 970 J_ASSERT(handle != NULL || create == 0); 971 972 map.m_lblk = block; 973 map.m_len = 1; 974 err = ext4_map_blocks(handle, inode, &map, map_flags); 975 976 if (err == 0) 977 return create ? ERR_PTR(-ENOSPC) : NULL; 978 if (err < 0) 979 return ERR_PTR(err); 980 981 bh = sb_getblk(inode->i_sb, map.m_pblk); 982 if (unlikely(!bh)) 983 return ERR_PTR(-ENOMEM); 984 if (map.m_flags & EXT4_MAP_NEW) { 985 J_ASSERT(create != 0); 986 J_ASSERT(handle != NULL); 987 988 /* 989 * Now that we do not always journal data, we should 990 * keep in mind whether this should always journal the 991 * new buffer as metadata. For now, regular file 992 * writes use ext4_get_block instead, so it's not a 993 * problem. 994 */ 995 lock_buffer(bh); 996 BUFFER_TRACE(bh, "call get_create_access"); 997 err = ext4_journal_get_create_access(handle, bh); 998 if (unlikely(err)) { 999 unlock_buffer(bh); 1000 goto errout; 1001 } 1002 if (!buffer_uptodate(bh)) { 1003 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1004 set_buffer_uptodate(bh); 1005 } 1006 unlock_buffer(bh); 1007 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1008 err = ext4_handle_dirty_metadata(handle, inode, bh); 1009 if (unlikely(err)) 1010 goto errout; 1011 } else 1012 BUFFER_TRACE(bh, "not a new buffer"); 1013 return bh; 1014 errout: 1015 brelse(bh); 1016 return ERR_PTR(err); 1017 } 1018 1019 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1020 ext4_lblk_t block, int map_flags) 1021 { 1022 struct buffer_head *bh; 1023 1024 bh = ext4_getblk(handle, inode, block, map_flags); 1025 if (IS_ERR(bh)) 1026 return bh; 1027 if (!bh || ext4_buffer_uptodate(bh)) 1028 return bh; 1029 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh); 1030 wait_on_buffer(bh); 1031 if (buffer_uptodate(bh)) 1032 return bh; 1033 put_bh(bh); 1034 return ERR_PTR(-EIO); 1035 } 1036 1037 /* Read a contiguous batch of blocks. */ 1038 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 1039 bool wait, struct buffer_head **bhs) 1040 { 1041 int i, err; 1042 1043 for (i = 0; i < bh_count; i++) { 1044 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 1045 if (IS_ERR(bhs[i])) { 1046 err = PTR_ERR(bhs[i]); 1047 bh_count = i; 1048 goto out_brelse; 1049 } 1050 } 1051 1052 for (i = 0; i < bh_count; i++) 1053 /* Note that NULL bhs[i] is valid because of holes. */ 1054 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 1055 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, 1056 &bhs[i]); 1057 1058 if (!wait) 1059 return 0; 1060 1061 for (i = 0; i < bh_count; i++) 1062 if (bhs[i]) 1063 wait_on_buffer(bhs[i]); 1064 1065 for (i = 0; i < bh_count; i++) { 1066 if (bhs[i] && !buffer_uptodate(bhs[i])) { 1067 err = -EIO; 1068 goto out_brelse; 1069 } 1070 } 1071 return 0; 1072 1073 out_brelse: 1074 for (i = 0; i < bh_count; i++) { 1075 brelse(bhs[i]); 1076 bhs[i] = NULL; 1077 } 1078 return err; 1079 } 1080 1081 int ext4_walk_page_buffers(handle_t *handle, 1082 struct buffer_head *head, 1083 unsigned from, 1084 unsigned to, 1085 int *partial, 1086 int (*fn)(handle_t *handle, 1087 struct buffer_head *bh)) 1088 { 1089 struct buffer_head *bh; 1090 unsigned block_start, block_end; 1091 unsigned blocksize = head->b_size; 1092 int err, ret = 0; 1093 struct buffer_head *next; 1094 1095 for (bh = head, block_start = 0; 1096 ret == 0 && (bh != head || !block_start); 1097 block_start = block_end, bh = next) { 1098 next = bh->b_this_page; 1099 block_end = block_start + blocksize; 1100 if (block_end <= from || block_start >= to) { 1101 if (partial && !buffer_uptodate(bh)) 1102 *partial = 1; 1103 continue; 1104 } 1105 err = (*fn)(handle, bh); 1106 if (!ret) 1107 ret = err; 1108 } 1109 return ret; 1110 } 1111 1112 /* 1113 * To preserve ordering, it is essential that the hole instantiation and 1114 * the data write be encapsulated in a single transaction. We cannot 1115 * close off a transaction and start a new one between the ext4_get_block() 1116 * and the commit_write(). So doing the jbd2_journal_start at the start of 1117 * prepare_write() is the right place. 1118 * 1119 * Also, this function can nest inside ext4_writepage(). In that case, we 1120 * *know* that ext4_writepage() has generated enough buffer credits to do the 1121 * whole page. So we won't block on the journal in that case, which is good, 1122 * because the caller may be PF_MEMALLOC. 1123 * 1124 * By accident, ext4 can be reentered when a transaction is open via 1125 * quota file writes. If we were to commit the transaction while thus 1126 * reentered, there can be a deadlock - we would be holding a quota 1127 * lock, and the commit would never complete if another thread had a 1128 * transaction open and was blocking on the quota lock - a ranking 1129 * violation. 1130 * 1131 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1132 * will _not_ run commit under these circumstances because handle->h_ref 1133 * is elevated. We'll still have enough credits for the tiny quotafile 1134 * write. 1135 */ 1136 int do_journal_get_write_access(handle_t *handle, 1137 struct buffer_head *bh) 1138 { 1139 int dirty = buffer_dirty(bh); 1140 int ret; 1141 1142 if (!buffer_mapped(bh) || buffer_freed(bh)) 1143 return 0; 1144 /* 1145 * __block_write_begin() could have dirtied some buffers. Clean 1146 * the dirty bit as jbd2_journal_get_write_access() could complain 1147 * otherwise about fs integrity issues. Setting of the dirty bit 1148 * by __block_write_begin() isn't a real problem here as we clear 1149 * the bit before releasing a page lock and thus writeback cannot 1150 * ever write the buffer. 1151 */ 1152 if (dirty) 1153 clear_buffer_dirty(bh); 1154 BUFFER_TRACE(bh, "get write access"); 1155 ret = ext4_journal_get_write_access(handle, bh); 1156 if (!ret && dirty) 1157 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1158 return ret; 1159 } 1160 1161 #ifdef CONFIG_FS_ENCRYPTION 1162 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1163 get_block_t *get_block) 1164 { 1165 unsigned from = pos & (PAGE_SIZE - 1); 1166 unsigned to = from + len; 1167 struct inode *inode = page->mapping->host; 1168 unsigned block_start, block_end; 1169 sector_t block; 1170 int err = 0; 1171 unsigned blocksize = inode->i_sb->s_blocksize; 1172 unsigned bbits; 1173 struct buffer_head *bh, *head, *wait[2]; 1174 int nr_wait = 0; 1175 int i; 1176 1177 BUG_ON(!PageLocked(page)); 1178 BUG_ON(from > PAGE_SIZE); 1179 BUG_ON(to > PAGE_SIZE); 1180 BUG_ON(from > to); 1181 1182 if (!page_has_buffers(page)) 1183 create_empty_buffers(page, blocksize, 0); 1184 head = page_buffers(page); 1185 bbits = ilog2(blocksize); 1186 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1187 1188 for (bh = head, block_start = 0; bh != head || !block_start; 1189 block++, block_start = block_end, bh = bh->b_this_page) { 1190 block_end = block_start + blocksize; 1191 if (block_end <= from || block_start >= to) { 1192 if (PageUptodate(page)) { 1193 if (!buffer_uptodate(bh)) 1194 set_buffer_uptodate(bh); 1195 } 1196 continue; 1197 } 1198 if (buffer_new(bh)) 1199 clear_buffer_new(bh); 1200 if (!buffer_mapped(bh)) { 1201 WARN_ON(bh->b_size != blocksize); 1202 err = get_block(inode, block, bh, 1); 1203 if (err) 1204 break; 1205 if (buffer_new(bh)) { 1206 if (PageUptodate(page)) { 1207 clear_buffer_new(bh); 1208 set_buffer_uptodate(bh); 1209 mark_buffer_dirty(bh); 1210 continue; 1211 } 1212 if (block_end > to || block_start < from) 1213 zero_user_segments(page, to, block_end, 1214 block_start, from); 1215 continue; 1216 } 1217 } 1218 if (PageUptodate(page)) { 1219 if (!buffer_uptodate(bh)) 1220 set_buffer_uptodate(bh); 1221 continue; 1222 } 1223 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1224 !buffer_unwritten(bh) && 1225 (block_start < from || block_end > to)) { 1226 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1227 wait[nr_wait++] = bh; 1228 } 1229 } 1230 /* 1231 * If we issued read requests, let them complete. 1232 */ 1233 for (i = 0; i < nr_wait; i++) { 1234 wait_on_buffer(wait[i]); 1235 if (!buffer_uptodate(wait[i])) 1236 err = -EIO; 1237 } 1238 if (unlikely(err)) { 1239 page_zero_new_buffers(page, from, to); 1240 } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) { 1241 for (i = 0; i < nr_wait; i++) { 1242 int err2; 1243 1244 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize, 1245 bh_offset(wait[i])); 1246 if (err2) { 1247 clear_buffer_uptodate(wait[i]); 1248 err = err2; 1249 } 1250 } 1251 } 1252 1253 return err; 1254 } 1255 #endif 1256 1257 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1258 loff_t pos, unsigned len, unsigned flags, 1259 struct page **pagep, void **fsdata) 1260 { 1261 struct inode *inode = mapping->host; 1262 int ret, needed_blocks; 1263 handle_t *handle; 1264 int retries = 0; 1265 struct page *page; 1266 pgoff_t index; 1267 unsigned from, to; 1268 1269 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1270 return -EIO; 1271 1272 trace_ext4_write_begin(inode, pos, len, flags); 1273 /* 1274 * Reserve one block more for addition to orphan list in case 1275 * we allocate blocks but write fails for some reason 1276 */ 1277 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1278 index = pos >> PAGE_SHIFT; 1279 from = pos & (PAGE_SIZE - 1); 1280 to = from + len; 1281 1282 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1283 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1284 flags, pagep); 1285 if (ret < 0) 1286 return ret; 1287 if (ret == 1) 1288 return 0; 1289 } 1290 1291 /* 1292 * grab_cache_page_write_begin() can take a long time if the 1293 * system is thrashing due to memory pressure, or if the page 1294 * is being written back. So grab it first before we start 1295 * the transaction handle. This also allows us to allocate 1296 * the page (if needed) without using GFP_NOFS. 1297 */ 1298 retry_grab: 1299 page = grab_cache_page_write_begin(mapping, index, flags); 1300 if (!page) 1301 return -ENOMEM; 1302 unlock_page(page); 1303 1304 retry_journal: 1305 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1306 if (IS_ERR(handle)) { 1307 put_page(page); 1308 return PTR_ERR(handle); 1309 } 1310 1311 lock_page(page); 1312 if (page->mapping != mapping) { 1313 /* The page got truncated from under us */ 1314 unlock_page(page); 1315 put_page(page); 1316 ext4_journal_stop(handle); 1317 goto retry_grab; 1318 } 1319 /* In case writeback began while the page was unlocked */ 1320 wait_for_stable_page(page); 1321 1322 #ifdef CONFIG_FS_ENCRYPTION 1323 if (ext4_should_dioread_nolock(inode)) 1324 ret = ext4_block_write_begin(page, pos, len, 1325 ext4_get_block_unwritten); 1326 else 1327 ret = ext4_block_write_begin(page, pos, len, 1328 ext4_get_block); 1329 #else 1330 if (ext4_should_dioread_nolock(inode)) 1331 ret = __block_write_begin(page, pos, len, 1332 ext4_get_block_unwritten); 1333 else 1334 ret = __block_write_begin(page, pos, len, ext4_get_block); 1335 #endif 1336 if (!ret && ext4_should_journal_data(inode)) { 1337 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1338 from, to, NULL, 1339 do_journal_get_write_access); 1340 } 1341 1342 if (ret) { 1343 bool extended = (pos + len > inode->i_size) && 1344 !ext4_verity_in_progress(inode); 1345 1346 unlock_page(page); 1347 /* 1348 * __block_write_begin may have instantiated a few blocks 1349 * outside i_size. Trim these off again. Don't need 1350 * i_size_read because we hold i_mutex. 1351 * 1352 * Add inode to orphan list in case we crash before 1353 * truncate finishes 1354 */ 1355 if (extended && ext4_can_truncate(inode)) 1356 ext4_orphan_add(handle, inode); 1357 1358 ext4_journal_stop(handle); 1359 if (extended) { 1360 ext4_truncate_failed_write(inode); 1361 /* 1362 * If truncate failed early the inode might 1363 * still be on the orphan list; we need to 1364 * make sure the inode is removed from the 1365 * orphan list in that case. 1366 */ 1367 if (inode->i_nlink) 1368 ext4_orphan_del(NULL, inode); 1369 } 1370 1371 if (ret == -ENOSPC && 1372 ext4_should_retry_alloc(inode->i_sb, &retries)) 1373 goto retry_journal; 1374 put_page(page); 1375 return ret; 1376 } 1377 *pagep = page; 1378 return ret; 1379 } 1380 1381 /* For write_end() in data=journal mode */ 1382 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1383 { 1384 int ret; 1385 if (!buffer_mapped(bh) || buffer_freed(bh)) 1386 return 0; 1387 set_buffer_uptodate(bh); 1388 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1389 clear_buffer_meta(bh); 1390 clear_buffer_prio(bh); 1391 return ret; 1392 } 1393 1394 /* 1395 * We need to pick up the new inode size which generic_commit_write gave us 1396 * `file' can be NULL - eg, when called from page_symlink(). 1397 * 1398 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1399 * buffers are managed internally. 1400 */ 1401 static int ext4_write_end(struct file *file, 1402 struct address_space *mapping, 1403 loff_t pos, unsigned len, unsigned copied, 1404 struct page *page, void *fsdata) 1405 { 1406 handle_t *handle = ext4_journal_current_handle(); 1407 struct inode *inode = mapping->host; 1408 loff_t old_size = inode->i_size; 1409 int ret = 0, ret2; 1410 int i_size_changed = 0; 1411 int inline_data = ext4_has_inline_data(inode); 1412 bool verity = ext4_verity_in_progress(inode); 1413 1414 trace_ext4_write_end(inode, pos, len, copied); 1415 if (inline_data) { 1416 ret = ext4_write_inline_data_end(inode, pos, len, 1417 copied, page); 1418 if (ret < 0) { 1419 unlock_page(page); 1420 put_page(page); 1421 goto errout; 1422 } 1423 copied = ret; 1424 } else 1425 copied = block_write_end(file, mapping, pos, 1426 len, copied, page, fsdata); 1427 /* 1428 * it's important to update i_size while still holding page lock: 1429 * page writeout could otherwise come in and zero beyond i_size. 1430 * 1431 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1432 * blocks are being written past EOF, so skip the i_size update. 1433 */ 1434 if (!verity) 1435 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1436 unlock_page(page); 1437 put_page(page); 1438 1439 if (old_size < pos && !verity) 1440 pagecache_isize_extended(inode, old_size, pos); 1441 /* 1442 * Don't mark the inode dirty under page lock. First, it unnecessarily 1443 * makes the holding time of page lock longer. Second, it forces lock 1444 * ordering of page lock and transaction start for journaling 1445 * filesystems. 1446 */ 1447 if (i_size_changed || inline_data) 1448 ext4_mark_inode_dirty(handle, inode); 1449 1450 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1451 /* if we have allocated more blocks and copied 1452 * less. We will have blocks allocated outside 1453 * inode->i_size. So truncate them 1454 */ 1455 ext4_orphan_add(handle, inode); 1456 errout: 1457 ret2 = ext4_journal_stop(handle); 1458 if (!ret) 1459 ret = ret2; 1460 1461 if (pos + len > inode->i_size && !verity) { 1462 ext4_truncate_failed_write(inode); 1463 /* 1464 * If truncate failed early the inode might still be 1465 * on the orphan list; we need to make sure the inode 1466 * is removed from the orphan list in that case. 1467 */ 1468 if (inode->i_nlink) 1469 ext4_orphan_del(NULL, inode); 1470 } 1471 1472 return ret ? ret : copied; 1473 } 1474 1475 /* 1476 * This is a private version of page_zero_new_buffers() which doesn't 1477 * set the buffer to be dirty, since in data=journalled mode we need 1478 * to call ext4_handle_dirty_metadata() instead. 1479 */ 1480 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1481 struct page *page, 1482 unsigned from, unsigned to) 1483 { 1484 unsigned int block_start = 0, block_end; 1485 struct buffer_head *head, *bh; 1486 1487 bh = head = page_buffers(page); 1488 do { 1489 block_end = block_start + bh->b_size; 1490 if (buffer_new(bh)) { 1491 if (block_end > from && block_start < to) { 1492 if (!PageUptodate(page)) { 1493 unsigned start, size; 1494 1495 start = max(from, block_start); 1496 size = min(to, block_end) - start; 1497 1498 zero_user(page, start, size); 1499 write_end_fn(handle, bh); 1500 } 1501 clear_buffer_new(bh); 1502 } 1503 } 1504 block_start = block_end; 1505 bh = bh->b_this_page; 1506 } while (bh != head); 1507 } 1508 1509 static int ext4_journalled_write_end(struct file *file, 1510 struct address_space *mapping, 1511 loff_t pos, unsigned len, unsigned copied, 1512 struct page *page, void *fsdata) 1513 { 1514 handle_t *handle = ext4_journal_current_handle(); 1515 struct inode *inode = mapping->host; 1516 loff_t old_size = inode->i_size; 1517 int ret = 0, ret2; 1518 int partial = 0; 1519 unsigned from, to; 1520 int size_changed = 0; 1521 int inline_data = ext4_has_inline_data(inode); 1522 bool verity = ext4_verity_in_progress(inode); 1523 1524 trace_ext4_journalled_write_end(inode, pos, len, copied); 1525 from = pos & (PAGE_SIZE - 1); 1526 to = from + len; 1527 1528 BUG_ON(!ext4_handle_valid(handle)); 1529 1530 if (inline_data) { 1531 ret = ext4_write_inline_data_end(inode, pos, len, 1532 copied, page); 1533 if (ret < 0) { 1534 unlock_page(page); 1535 put_page(page); 1536 goto errout; 1537 } 1538 copied = ret; 1539 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1540 copied = 0; 1541 ext4_journalled_zero_new_buffers(handle, page, from, to); 1542 } else { 1543 if (unlikely(copied < len)) 1544 ext4_journalled_zero_new_buffers(handle, page, 1545 from + copied, to); 1546 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1547 from + copied, &partial, 1548 write_end_fn); 1549 if (!partial) 1550 SetPageUptodate(page); 1551 } 1552 if (!verity) 1553 size_changed = ext4_update_inode_size(inode, pos + copied); 1554 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1555 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1556 unlock_page(page); 1557 put_page(page); 1558 1559 if (old_size < pos && !verity) 1560 pagecache_isize_extended(inode, old_size, pos); 1561 1562 if (size_changed || inline_data) { 1563 ret2 = ext4_mark_inode_dirty(handle, inode); 1564 if (!ret) 1565 ret = ret2; 1566 } 1567 1568 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1569 /* if we have allocated more blocks and copied 1570 * less. We will have blocks allocated outside 1571 * inode->i_size. So truncate them 1572 */ 1573 ext4_orphan_add(handle, inode); 1574 1575 errout: 1576 ret2 = ext4_journal_stop(handle); 1577 if (!ret) 1578 ret = ret2; 1579 if (pos + len > inode->i_size && !verity) { 1580 ext4_truncate_failed_write(inode); 1581 /* 1582 * If truncate failed early the inode might still be 1583 * on the orphan list; we need to make sure the inode 1584 * is removed from the orphan list in that case. 1585 */ 1586 if (inode->i_nlink) 1587 ext4_orphan_del(NULL, inode); 1588 } 1589 1590 return ret ? ret : copied; 1591 } 1592 1593 /* 1594 * Reserve space for a single cluster 1595 */ 1596 static int ext4_da_reserve_space(struct inode *inode) 1597 { 1598 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1599 struct ext4_inode_info *ei = EXT4_I(inode); 1600 int ret; 1601 1602 /* 1603 * We will charge metadata quota at writeout time; this saves 1604 * us from metadata over-estimation, though we may go over by 1605 * a small amount in the end. Here we just reserve for data. 1606 */ 1607 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1608 if (ret) 1609 return ret; 1610 1611 spin_lock(&ei->i_block_reservation_lock); 1612 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1613 spin_unlock(&ei->i_block_reservation_lock); 1614 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1615 return -ENOSPC; 1616 } 1617 ei->i_reserved_data_blocks++; 1618 trace_ext4_da_reserve_space(inode); 1619 spin_unlock(&ei->i_block_reservation_lock); 1620 1621 return 0; /* success */ 1622 } 1623 1624 void ext4_da_release_space(struct inode *inode, int to_free) 1625 { 1626 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1627 struct ext4_inode_info *ei = EXT4_I(inode); 1628 1629 if (!to_free) 1630 return; /* Nothing to release, exit */ 1631 1632 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1633 1634 trace_ext4_da_release_space(inode, to_free); 1635 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1636 /* 1637 * if there aren't enough reserved blocks, then the 1638 * counter is messed up somewhere. Since this 1639 * function is called from invalidate page, it's 1640 * harmless to return without any action. 1641 */ 1642 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1643 "ino %lu, to_free %d with only %d reserved " 1644 "data blocks", inode->i_ino, to_free, 1645 ei->i_reserved_data_blocks); 1646 WARN_ON(1); 1647 to_free = ei->i_reserved_data_blocks; 1648 } 1649 ei->i_reserved_data_blocks -= to_free; 1650 1651 /* update fs dirty data blocks counter */ 1652 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1653 1654 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1655 1656 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1657 } 1658 1659 /* 1660 * Delayed allocation stuff 1661 */ 1662 1663 struct mpage_da_data { 1664 struct inode *inode; 1665 struct writeback_control *wbc; 1666 1667 pgoff_t first_page; /* The first page to write */ 1668 pgoff_t next_page; /* Current page to examine */ 1669 pgoff_t last_page; /* Last page to examine */ 1670 /* 1671 * Extent to map - this can be after first_page because that can be 1672 * fully mapped. We somewhat abuse m_flags to store whether the extent 1673 * is delalloc or unwritten. 1674 */ 1675 struct ext4_map_blocks map; 1676 struct ext4_io_submit io_submit; /* IO submission data */ 1677 unsigned int do_map:1; 1678 }; 1679 1680 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1681 bool invalidate) 1682 { 1683 int nr_pages, i; 1684 pgoff_t index, end; 1685 struct pagevec pvec; 1686 struct inode *inode = mpd->inode; 1687 struct address_space *mapping = inode->i_mapping; 1688 1689 /* This is necessary when next_page == 0. */ 1690 if (mpd->first_page >= mpd->next_page) 1691 return; 1692 1693 index = mpd->first_page; 1694 end = mpd->next_page - 1; 1695 if (invalidate) { 1696 ext4_lblk_t start, last; 1697 start = index << (PAGE_SHIFT - inode->i_blkbits); 1698 last = end << (PAGE_SHIFT - inode->i_blkbits); 1699 ext4_es_remove_extent(inode, start, last - start + 1); 1700 } 1701 1702 pagevec_init(&pvec); 1703 while (index <= end) { 1704 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1705 if (nr_pages == 0) 1706 break; 1707 for (i = 0; i < nr_pages; i++) { 1708 struct page *page = pvec.pages[i]; 1709 1710 BUG_ON(!PageLocked(page)); 1711 BUG_ON(PageWriteback(page)); 1712 if (invalidate) { 1713 if (page_mapped(page)) 1714 clear_page_dirty_for_io(page); 1715 block_invalidatepage(page, 0, PAGE_SIZE); 1716 ClearPageUptodate(page); 1717 } 1718 unlock_page(page); 1719 } 1720 pagevec_release(&pvec); 1721 } 1722 } 1723 1724 static void ext4_print_free_blocks(struct inode *inode) 1725 { 1726 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1727 struct super_block *sb = inode->i_sb; 1728 struct ext4_inode_info *ei = EXT4_I(inode); 1729 1730 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1731 EXT4_C2B(EXT4_SB(inode->i_sb), 1732 ext4_count_free_clusters(sb))); 1733 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1734 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1735 (long long) EXT4_C2B(EXT4_SB(sb), 1736 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1737 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1738 (long long) EXT4_C2B(EXT4_SB(sb), 1739 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1740 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1741 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1742 ei->i_reserved_data_blocks); 1743 return; 1744 } 1745 1746 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1747 { 1748 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1749 } 1750 1751 /* 1752 * ext4_insert_delayed_block - adds a delayed block to the extents status 1753 * tree, incrementing the reserved cluster/block 1754 * count or making a pending reservation 1755 * where needed 1756 * 1757 * @inode - file containing the newly added block 1758 * @lblk - logical block to be added 1759 * 1760 * Returns 0 on success, negative error code on failure. 1761 */ 1762 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1763 { 1764 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1765 int ret; 1766 bool allocated = false; 1767 1768 /* 1769 * If the cluster containing lblk is shared with a delayed, 1770 * written, or unwritten extent in a bigalloc file system, it's 1771 * already been accounted for and does not need to be reserved. 1772 * A pending reservation must be made for the cluster if it's 1773 * shared with a written or unwritten extent and doesn't already 1774 * have one. Written and unwritten extents can be purged from the 1775 * extents status tree if the system is under memory pressure, so 1776 * it's necessary to examine the extent tree if a search of the 1777 * extents status tree doesn't get a match. 1778 */ 1779 if (sbi->s_cluster_ratio == 1) { 1780 ret = ext4_da_reserve_space(inode); 1781 if (ret != 0) /* ENOSPC */ 1782 goto errout; 1783 } else { /* bigalloc */ 1784 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1785 if (!ext4_es_scan_clu(inode, 1786 &ext4_es_is_mapped, lblk)) { 1787 ret = ext4_clu_mapped(inode, 1788 EXT4_B2C(sbi, lblk)); 1789 if (ret < 0) 1790 goto errout; 1791 if (ret == 0) { 1792 ret = ext4_da_reserve_space(inode); 1793 if (ret != 0) /* ENOSPC */ 1794 goto errout; 1795 } else { 1796 allocated = true; 1797 } 1798 } else { 1799 allocated = true; 1800 } 1801 } 1802 } 1803 1804 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1805 1806 errout: 1807 return ret; 1808 } 1809 1810 /* 1811 * This function is grabs code from the very beginning of 1812 * ext4_map_blocks, but assumes that the caller is from delayed write 1813 * time. This function looks up the requested blocks and sets the 1814 * buffer delay bit under the protection of i_data_sem. 1815 */ 1816 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1817 struct ext4_map_blocks *map, 1818 struct buffer_head *bh) 1819 { 1820 struct extent_status es; 1821 int retval; 1822 sector_t invalid_block = ~((sector_t) 0xffff); 1823 #ifdef ES_AGGRESSIVE_TEST 1824 struct ext4_map_blocks orig_map; 1825 1826 memcpy(&orig_map, map, sizeof(*map)); 1827 #endif 1828 1829 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1830 invalid_block = ~0; 1831 1832 map->m_flags = 0; 1833 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1834 "logical block %lu\n", inode->i_ino, map->m_len, 1835 (unsigned long) map->m_lblk); 1836 1837 /* Lookup extent status tree firstly */ 1838 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1839 if (ext4_es_is_hole(&es)) { 1840 retval = 0; 1841 down_read(&EXT4_I(inode)->i_data_sem); 1842 goto add_delayed; 1843 } 1844 1845 /* 1846 * Delayed extent could be allocated by fallocate. 1847 * So we need to check it. 1848 */ 1849 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1850 map_bh(bh, inode->i_sb, invalid_block); 1851 set_buffer_new(bh); 1852 set_buffer_delay(bh); 1853 return 0; 1854 } 1855 1856 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1857 retval = es.es_len - (iblock - es.es_lblk); 1858 if (retval > map->m_len) 1859 retval = map->m_len; 1860 map->m_len = retval; 1861 if (ext4_es_is_written(&es)) 1862 map->m_flags |= EXT4_MAP_MAPPED; 1863 else if (ext4_es_is_unwritten(&es)) 1864 map->m_flags |= EXT4_MAP_UNWRITTEN; 1865 else 1866 BUG(); 1867 1868 #ifdef ES_AGGRESSIVE_TEST 1869 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1870 #endif 1871 return retval; 1872 } 1873 1874 /* 1875 * Try to see if we can get the block without requesting a new 1876 * file system block. 1877 */ 1878 down_read(&EXT4_I(inode)->i_data_sem); 1879 if (ext4_has_inline_data(inode)) 1880 retval = 0; 1881 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1882 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1883 else 1884 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1885 1886 add_delayed: 1887 if (retval == 0) { 1888 int ret; 1889 1890 /* 1891 * XXX: __block_prepare_write() unmaps passed block, 1892 * is it OK? 1893 */ 1894 1895 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1896 if (ret != 0) { 1897 retval = ret; 1898 goto out_unlock; 1899 } 1900 1901 map_bh(bh, inode->i_sb, invalid_block); 1902 set_buffer_new(bh); 1903 set_buffer_delay(bh); 1904 } else if (retval > 0) { 1905 int ret; 1906 unsigned int status; 1907 1908 if (unlikely(retval != map->m_len)) { 1909 ext4_warning(inode->i_sb, 1910 "ES len assertion failed for inode " 1911 "%lu: retval %d != map->m_len %d", 1912 inode->i_ino, retval, map->m_len); 1913 WARN_ON(1); 1914 } 1915 1916 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1917 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1918 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1919 map->m_pblk, status); 1920 if (ret != 0) 1921 retval = ret; 1922 } 1923 1924 out_unlock: 1925 up_read((&EXT4_I(inode)->i_data_sem)); 1926 1927 return retval; 1928 } 1929 1930 /* 1931 * This is a special get_block_t callback which is used by 1932 * ext4_da_write_begin(). It will either return mapped block or 1933 * reserve space for a single block. 1934 * 1935 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1936 * We also have b_blocknr = -1 and b_bdev initialized properly 1937 * 1938 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1939 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1940 * initialized properly. 1941 */ 1942 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1943 struct buffer_head *bh, int create) 1944 { 1945 struct ext4_map_blocks map; 1946 int ret = 0; 1947 1948 BUG_ON(create == 0); 1949 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1950 1951 map.m_lblk = iblock; 1952 map.m_len = 1; 1953 1954 /* 1955 * first, we need to know whether the block is allocated already 1956 * preallocated blocks are unmapped but should treated 1957 * the same as allocated blocks. 1958 */ 1959 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1960 if (ret <= 0) 1961 return ret; 1962 1963 map_bh(bh, inode->i_sb, map.m_pblk); 1964 ext4_update_bh_state(bh, map.m_flags); 1965 1966 if (buffer_unwritten(bh)) { 1967 /* A delayed write to unwritten bh should be marked 1968 * new and mapped. Mapped ensures that we don't do 1969 * get_block multiple times when we write to the same 1970 * offset and new ensures that we do proper zero out 1971 * for partial write. 1972 */ 1973 set_buffer_new(bh); 1974 set_buffer_mapped(bh); 1975 } 1976 return 0; 1977 } 1978 1979 static int bget_one(handle_t *handle, struct buffer_head *bh) 1980 { 1981 get_bh(bh); 1982 return 0; 1983 } 1984 1985 static int bput_one(handle_t *handle, struct buffer_head *bh) 1986 { 1987 put_bh(bh); 1988 return 0; 1989 } 1990 1991 static int __ext4_journalled_writepage(struct page *page, 1992 unsigned int len) 1993 { 1994 struct address_space *mapping = page->mapping; 1995 struct inode *inode = mapping->host; 1996 struct buffer_head *page_bufs = NULL; 1997 handle_t *handle = NULL; 1998 int ret = 0, err = 0; 1999 int inline_data = ext4_has_inline_data(inode); 2000 struct buffer_head *inode_bh = NULL; 2001 2002 ClearPageChecked(page); 2003 2004 if (inline_data) { 2005 BUG_ON(page->index != 0); 2006 BUG_ON(len > ext4_get_max_inline_size(inode)); 2007 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 2008 if (inode_bh == NULL) 2009 goto out; 2010 } else { 2011 page_bufs = page_buffers(page); 2012 if (!page_bufs) { 2013 BUG(); 2014 goto out; 2015 } 2016 ext4_walk_page_buffers(handle, page_bufs, 0, len, 2017 NULL, bget_one); 2018 } 2019 /* 2020 * We need to release the page lock before we start the 2021 * journal, so grab a reference so the page won't disappear 2022 * out from under us. 2023 */ 2024 get_page(page); 2025 unlock_page(page); 2026 2027 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2028 ext4_writepage_trans_blocks(inode)); 2029 if (IS_ERR(handle)) { 2030 ret = PTR_ERR(handle); 2031 put_page(page); 2032 goto out_no_pagelock; 2033 } 2034 BUG_ON(!ext4_handle_valid(handle)); 2035 2036 lock_page(page); 2037 put_page(page); 2038 if (page->mapping != mapping) { 2039 /* The page got truncated from under us */ 2040 ext4_journal_stop(handle); 2041 ret = 0; 2042 goto out; 2043 } 2044 2045 if (inline_data) { 2046 ret = ext4_mark_inode_dirty(handle, inode); 2047 } else { 2048 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2049 do_journal_get_write_access); 2050 2051 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2052 write_end_fn); 2053 } 2054 if (ret == 0) 2055 ret = err; 2056 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2057 err = ext4_journal_stop(handle); 2058 if (!ret) 2059 ret = err; 2060 2061 if (!ext4_has_inline_data(inode)) 2062 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 2063 NULL, bput_one); 2064 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2065 out: 2066 unlock_page(page); 2067 out_no_pagelock: 2068 brelse(inode_bh); 2069 return ret; 2070 } 2071 2072 /* 2073 * Note that we don't need to start a transaction unless we're journaling data 2074 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2075 * need to file the inode to the transaction's list in ordered mode because if 2076 * we are writing back data added by write(), the inode is already there and if 2077 * we are writing back data modified via mmap(), no one guarantees in which 2078 * transaction the data will hit the disk. In case we are journaling data, we 2079 * cannot start transaction directly because transaction start ranks above page 2080 * lock so we have to do some magic. 2081 * 2082 * This function can get called via... 2083 * - ext4_writepages after taking page lock (have journal handle) 2084 * - journal_submit_inode_data_buffers (no journal handle) 2085 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 2086 * - grab_page_cache when doing write_begin (have journal handle) 2087 * 2088 * We don't do any block allocation in this function. If we have page with 2089 * multiple blocks we need to write those buffer_heads that are mapped. This 2090 * is important for mmaped based write. So if we do with blocksize 1K 2091 * truncate(f, 1024); 2092 * a = mmap(f, 0, 4096); 2093 * a[0] = 'a'; 2094 * truncate(f, 4096); 2095 * we have in the page first buffer_head mapped via page_mkwrite call back 2096 * but other buffer_heads would be unmapped but dirty (dirty done via the 2097 * do_wp_page). So writepage should write the first block. If we modify 2098 * the mmap area beyond 1024 we will again get a page_fault and the 2099 * page_mkwrite callback will do the block allocation and mark the 2100 * buffer_heads mapped. 2101 * 2102 * We redirty the page if we have any buffer_heads that is either delay or 2103 * unwritten in the page. 2104 * 2105 * We can get recursively called as show below. 2106 * 2107 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2108 * ext4_writepage() 2109 * 2110 * But since we don't do any block allocation we should not deadlock. 2111 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2112 */ 2113 static int ext4_writepage(struct page *page, 2114 struct writeback_control *wbc) 2115 { 2116 int ret = 0; 2117 loff_t size; 2118 unsigned int len; 2119 struct buffer_head *page_bufs = NULL; 2120 struct inode *inode = page->mapping->host; 2121 struct ext4_io_submit io_submit; 2122 bool keep_towrite = false; 2123 2124 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2125 ext4_invalidatepage(page, 0, PAGE_SIZE); 2126 unlock_page(page); 2127 return -EIO; 2128 } 2129 2130 trace_ext4_writepage(page); 2131 size = i_size_read(inode); 2132 if (page->index == size >> PAGE_SHIFT && 2133 !ext4_verity_in_progress(inode)) 2134 len = size & ~PAGE_MASK; 2135 else 2136 len = PAGE_SIZE; 2137 2138 page_bufs = page_buffers(page); 2139 /* 2140 * We cannot do block allocation or other extent handling in this 2141 * function. If there are buffers needing that, we have to redirty 2142 * the page. But we may reach here when we do a journal commit via 2143 * journal_submit_inode_data_buffers() and in that case we must write 2144 * allocated buffers to achieve data=ordered mode guarantees. 2145 * 2146 * Also, if there is only one buffer per page (the fs block 2147 * size == the page size), if one buffer needs block 2148 * allocation or needs to modify the extent tree to clear the 2149 * unwritten flag, we know that the page can't be written at 2150 * all, so we might as well refuse the write immediately. 2151 * Unfortunately if the block size != page size, we can't as 2152 * easily detect this case using ext4_walk_page_buffers(), but 2153 * for the extremely common case, this is an optimization that 2154 * skips a useless round trip through ext4_bio_write_page(). 2155 */ 2156 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2157 ext4_bh_delay_or_unwritten)) { 2158 redirty_page_for_writepage(wbc, page); 2159 if ((current->flags & PF_MEMALLOC) || 2160 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2161 /* 2162 * For memory cleaning there's no point in writing only 2163 * some buffers. So just bail out. Warn if we came here 2164 * from direct reclaim. 2165 */ 2166 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2167 == PF_MEMALLOC); 2168 unlock_page(page); 2169 return 0; 2170 } 2171 keep_towrite = true; 2172 } 2173 2174 if (PageChecked(page) && ext4_should_journal_data(inode)) 2175 /* 2176 * It's mmapped pagecache. Add buffers and journal it. There 2177 * doesn't seem much point in redirtying the page here. 2178 */ 2179 return __ext4_journalled_writepage(page, len); 2180 2181 ext4_io_submit_init(&io_submit, wbc); 2182 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2183 if (!io_submit.io_end) { 2184 redirty_page_for_writepage(wbc, page); 2185 unlock_page(page); 2186 return -ENOMEM; 2187 } 2188 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2189 ext4_io_submit(&io_submit); 2190 /* Drop io_end reference we got from init */ 2191 ext4_put_io_end_defer(io_submit.io_end); 2192 return ret; 2193 } 2194 2195 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2196 { 2197 int len; 2198 loff_t size; 2199 int err; 2200 2201 BUG_ON(page->index != mpd->first_page); 2202 clear_page_dirty_for_io(page); 2203 /* 2204 * We have to be very careful here! Nothing protects writeback path 2205 * against i_size changes and the page can be writeably mapped into 2206 * page tables. So an application can be growing i_size and writing 2207 * data through mmap while writeback runs. clear_page_dirty_for_io() 2208 * write-protects our page in page tables and the page cannot get 2209 * written to again until we release page lock. So only after 2210 * clear_page_dirty_for_io() we are safe to sample i_size for 2211 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2212 * on the barrier provided by TestClearPageDirty in 2213 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2214 * after page tables are updated. 2215 */ 2216 size = i_size_read(mpd->inode); 2217 if (page->index == size >> PAGE_SHIFT && 2218 !ext4_verity_in_progress(mpd->inode)) 2219 len = size & ~PAGE_MASK; 2220 else 2221 len = PAGE_SIZE; 2222 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2223 if (!err) 2224 mpd->wbc->nr_to_write--; 2225 mpd->first_page++; 2226 2227 return err; 2228 } 2229 2230 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2231 2232 /* 2233 * mballoc gives us at most this number of blocks... 2234 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2235 * The rest of mballoc seems to handle chunks up to full group size. 2236 */ 2237 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2238 2239 /* 2240 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2241 * 2242 * @mpd - extent of blocks 2243 * @lblk - logical number of the block in the file 2244 * @bh - buffer head we want to add to the extent 2245 * 2246 * The function is used to collect contig. blocks in the same state. If the 2247 * buffer doesn't require mapping for writeback and we haven't started the 2248 * extent of buffers to map yet, the function returns 'true' immediately - the 2249 * caller can write the buffer right away. Otherwise the function returns true 2250 * if the block has been added to the extent, false if the block couldn't be 2251 * added. 2252 */ 2253 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2254 struct buffer_head *bh) 2255 { 2256 struct ext4_map_blocks *map = &mpd->map; 2257 2258 /* Buffer that doesn't need mapping for writeback? */ 2259 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2260 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2261 /* So far no extent to map => we write the buffer right away */ 2262 if (map->m_len == 0) 2263 return true; 2264 return false; 2265 } 2266 2267 /* First block in the extent? */ 2268 if (map->m_len == 0) { 2269 /* We cannot map unless handle is started... */ 2270 if (!mpd->do_map) 2271 return false; 2272 map->m_lblk = lblk; 2273 map->m_len = 1; 2274 map->m_flags = bh->b_state & BH_FLAGS; 2275 return true; 2276 } 2277 2278 /* Don't go larger than mballoc is willing to allocate */ 2279 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2280 return false; 2281 2282 /* Can we merge the block to our big extent? */ 2283 if (lblk == map->m_lblk + map->m_len && 2284 (bh->b_state & BH_FLAGS) == map->m_flags) { 2285 map->m_len++; 2286 return true; 2287 } 2288 return false; 2289 } 2290 2291 /* 2292 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2293 * 2294 * @mpd - extent of blocks for mapping 2295 * @head - the first buffer in the page 2296 * @bh - buffer we should start processing from 2297 * @lblk - logical number of the block in the file corresponding to @bh 2298 * 2299 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2300 * the page for IO if all buffers in this page were mapped and there's no 2301 * accumulated extent of buffers to map or add buffers in the page to the 2302 * extent of buffers to map. The function returns 1 if the caller can continue 2303 * by processing the next page, 0 if it should stop adding buffers to the 2304 * extent to map because we cannot extend it anymore. It can also return value 2305 * < 0 in case of error during IO submission. 2306 */ 2307 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2308 struct buffer_head *head, 2309 struct buffer_head *bh, 2310 ext4_lblk_t lblk) 2311 { 2312 struct inode *inode = mpd->inode; 2313 int err; 2314 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2315 >> inode->i_blkbits; 2316 2317 if (ext4_verity_in_progress(inode)) 2318 blocks = EXT_MAX_BLOCKS; 2319 2320 do { 2321 BUG_ON(buffer_locked(bh)); 2322 2323 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2324 /* Found extent to map? */ 2325 if (mpd->map.m_len) 2326 return 0; 2327 /* Buffer needs mapping and handle is not started? */ 2328 if (!mpd->do_map) 2329 return 0; 2330 /* Everything mapped so far and we hit EOF */ 2331 break; 2332 } 2333 } while (lblk++, (bh = bh->b_this_page) != head); 2334 /* So far everything mapped? Submit the page for IO. */ 2335 if (mpd->map.m_len == 0) { 2336 err = mpage_submit_page(mpd, head->b_page); 2337 if (err < 0) 2338 return err; 2339 } 2340 return lblk < blocks; 2341 } 2342 2343 /* 2344 * mpage_process_page - update page buffers corresponding to changed extent and 2345 * may submit fully mapped page for IO 2346 * 2347 * @mpd - description of extent to map, on return next extent to map 2348 * @m_lblk - logical block mapping. 2349 * @m_pblk - corresponding physical mapping. 2350 * @map_bh - determines on return whether this page requires any further 2351 * mapping or not. 2352 * Scan given page buffers corresponding to changed extent and update buffer 2353 * state according to new extent state. 2354 * We map delalloc buffers to their physical location, clear unwritten bits. 2355 * If the given page is not fully mapped, we update @map to the next extent in 2356 * the given page that needs mapping & return @map_bh as true. 2357 */ 2358 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page, 2359 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2360 bool *map_bh) 2361 { 2362 struct buffer_head *head, *bh; 2363 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2364 ext4_lblk_t lblk = *m_lblk; 2365 ext4_fsblk_t pblock = *m_pblk; 2366 int err = 0; 2367 int blkbits = mpd->inode->i_blkbits; 2368 ssize_t io_end_size = 0; 2369 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2370 2371 bh = head = page_buffers(page); 2372 do { 2373 if (lblk < mpd->map.m_lblk) 2374 continue; 2375 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2376 /* 2377 * Buffer after end of mapped extent. 2378 * Find next buffer in the page to map. 2379 */ 2380 mpd->map.m_len = 0; 2381 mpd->map.m_flags = 0; 2382 io_end_vec->size += io_end_size; 2383 io_end_size = 0; 2384 2385 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2386 if (err > 0) 2387 err = 0; 2388 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2389 io_end_vec = ext4_alloc_io_end_vec(io_end); 2390 io_end_vec->offset = mpd->map.m_lblk << blkbits; 2391 } 2392 *map_bh = true; 2393 goto out; 2394 } 2395 if (buffer_delay(bh)) { 2396 clear_buffer_delay(bh); 2397 bh->b_blocknr = pblock++; 2398 } 2399 clear_buffer_unwritten(bh); 2400 io_end_size += (1 << blkbits); 2401 } while (lblk++, (bh = bh->b_this_page) != head); 2402 2403 io_end_vec->size += io_end_size; 2404 io_end_size = 0; 2405 *map_bh = false; 2406 out: 2407 *m_lblk = lblk; 2408 *m_pblk = pblock; 2409 return err; 2410 } 2411 2412 /* 2413 * mpage_map_buffers - update buffers corresponding to changed extent and 2414 * submit fully mapped pages for IO 2415 * 2416 * @mpd - description of extent to map, on return next extent to map 2417 * 2418 * Scan buffers corresponding to changed extent (we expect corresponding pages 2419 * to be already locked) and update buffer state according to new extent state. 2420 * We map delalloc buffers to their physical location, clear unwritten bits, 2421 * and mark buffers as uninit when we perform writes to unwritten extents 2422 * and do extent conversion after IO is finished. If the last page is not fully 2423 * mapped, we update @map to the next extent in the last page that needs 2424 * mapping. Otherwise we submit the page for IO. 2425 */ 2426 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2427 { 2428 struct pagevec pvec; 2429 int nr_pages, i; 2430 struct inode *inode = mpd->inode; 2431 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2432 pgoff_t start, end; 2433 ext4_lblk_t lblk; 2434 ext4_fsblk_t pblock; 2435 int err; 2436 bool map_bh = false; 2437 2438 start = mpd->map.m_lblk >> bpp_bits; 2439 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2440 lblk = start << bpp_bits; 2441 pblock = mpd->map.m_pblk; 2442 2443 pagevec_init(&pvec); 2444 while (start <= end) { 2445 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2446 &start, end); 2447 if (nr_pages == 0) 2448 break; 2449 for (i = 0; i < nr_pages; i++) { 2450 struct page *page = pvec.pages[i]; 2451 2452 err = mpage_process_page(mpd, page, &lblk, &pblock, 2453 &map_bh); 2454 /* 2455 * If map_bh is true, means page may require further bh 2456 * mapping, or maybe the page was submitted for IO. 2457 * So we return to call further extent mapping. 2458 */ 2459 if (err < 0 || map_bh == true) 2460 goto out; 2461 /* Page fully mapped - let IO run! */ 2462 err = mpage_submit_page(mpd, page); 2463 if (err < 0) 2464 goto out; 2465 } 2466 pagevec_release(&pvec); 2467 } 2468 /* Extent fully mapped and matches with page boundary. We are done. */ 2469 mpd->map.m_len = 0; 2470 mpd->map.m_flags = 0; 2471 return 0; 2472 out: 2473 pagevec_release(&pvec); 2474 return err; 2475 } 2476 2477 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2478 { 2479 struct inode *inode = mpd->inode; 2480 struct ext4_map_blocks *map = &mpd->map; 2481 int get_blocks_flags; 2482 int err, dioread_nolock; 2483 2484 trace_ext4_da_write_pages_extent(inode, map); 2485 /* 2486 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2487 * to convert an unwritten extent to be initialized (in the case 2488 * where we have written into one or more preallocated blocks). It is 2489 * possible that we're going to need more metadata blocks than 2490 * previously reserved. However we must not fail because we're in 2491 * writeback and there is nothing we can do about it so it might result 2492 * in data loss. So use reserved blocks to allocate metadata if 2493 * possible. 2494 * 2495 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2496 * the blocks in question are delalloc blocks. This indicates 2497 * that the blocks and quotas has already been checked when 2498 * the data was copied into the page cache. 2499 */ 2500 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2501 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2502 EXT4_GET_BLOCKS_IO_SUBMIT; 2503 dioread_nolock = ext4_should_dioread_nolock(inode); 2504 if (dioread_nolock) 2505 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2506 if (map->m_flags & (1 << BH_Delay)) 2507 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2508 2509 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2510 if (err < 0) 2511 return err; 2512 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2513 if (!mpd->io_submit.io_end->handle && 2514 ext4_handle_valid(handle)) { 2515 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2516 handle->h_rsv_handle = NULL; 2517 } 2518 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2519 } 2520 2521 BUG_ON(map->m_len == 0); 2522 return 0; 2523 } 2524 2525 /* 2526 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2527 * mpd->len and submit pages underlying it for IO 2528 * 2529 * @handle - handle for journal operations 2530 * @mpd - extent to map 2531 * @give_up_on_write - we set this to true iff there is a fatal error and there 2532 * is no hope of writing the data. The caller should discard 2533 * dirty pages to avoid infinite loops. 2534 * 2535 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2536 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2537 * them to initialized or split the described range from larger unwritten 2538 * extent. Note that we need not map all the described range since allocation 2539 * can return less blocks or the range is covered by more unwritten extents. We 2540 * cannot map more because we are limited by reserved transaction credits. On 2541 * the other hand we always make sure that the last touched page is fully 2542 * mapped so that it can be written out (and thus forward progress is 2543 * guaranteed). After mapping we submit all mapped pages for IO. 2544 */ 2545 static int mpage_map_and_submit_extent(handle_t *handle, 2546 struct mpage_da_data *mpd, 2547 bool *give_up_on_write) 2548 { 2549 struct inode *inode = mpd->inode; 2550 struct ext4_map_blocks *map = &mpd->map; 2551 int err; 2552 loff_t disksize; 2553 int progress = 0; 2554 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2555 struct ext4_io_end_vec *io_end_vec = ext4_alloc_io_end_vec(io_end); 2556 2557 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2558 do { 2559 err = mpage_map_one_extent(handle, mpd); 2560 if (err < 0) { 2561 struct super_block *sb = inode->i_sb; 2562 2563 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2564 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2565 goto invalidate_dirty_pages; 2566 /* 2567 * Let the uper layers retry transient errors. 2568 * In the case of ENOSPC, if ext4_count_free_blocks() 2569 * is non-zero, a commit should free up blocks. 2570 */ 2571 if ((err == -ENOMEM) || 2572 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2573 if (progress) 2574 goto update_disksize; 2575 return err; 2576 } 2577 ext4_msg(sb, KERN_CRIT, 2578 "Delayed block allocation failed for " 2579 "inode %lu at logical offset %llu with" 2580 " max blocks %u with error %d", 2581 inode->i_ino, 2582 (unsigned long long)map->m_lblk, 2583 (unsigned)map->m_len, -err); 2584 ext4_msg(sb, KERN_CRIT, 2585 "This should not happen!! Data will " 2586 "be lost\n"); 2587 if (err == -ENOSPC) 2588 ext4_print_free_blocks(inode); 2589 invalidate_dirty_pages: 2590 *give_up_on_write = true; 2591 return err; 2592 } 2593 progress = 1; 2594 /* 2595 * Update buffer state, submit mapped pages, and get us new 2596 * extent to map 2597 */ 2598 err = mpage_map_and_submit_buffers(mpd); 2599 if (err < 0) 2600 goto update_disksize; 2601 } while (map->m_len); 2602 2603 update_disksize: 2604 /* 2605 * Update on-disk size after IO is submitted. Races with 2606 * truncate are avoided by checking i_size under i_data_sem. 2607 */ 2608 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2609 if (disksize > EXT4_I(inode)->i_disksize) { 2610 int err2; 2611 loff_t i_size; 2612 2613 down_write(&EXT4_I(inode)->i_data_sem); 2614 i_size = i_size_read(inode); 2615 if (disksize > i_size) 2616 disksize = i_size; 2617 if (disksize > EXT4_I(inode)->i_disksize) 2618 EXT4_I(inode)->i_disksize = disksize; 2619 up_write(&EXT4_I(inode)->i_data_sem); 2620 err2 = ext4_mark_inode_dirty(handle, inode); 2621 if (err2) 2622 ext4_error(inode->i_sb, 2623 "Failed to mark inode %lu dirty", 2624 inode->i_ino); 2625 if (!err) 2626 err = err2; 2627 } 2628 return err; 2629 } 2630 2631 /* 2632 * Calculate the total number of credits to reserve for one writepages 2633 * iteration. This is called from ext4_writepages(). We map an extent of 2634 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2635 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2636 * bpp - 1 blocks in bpp different extents. 2637 */ 2638 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2639 { 2640 int bpp = ext4_journal_blocks_per_page(inode); 2641 2642 return ext4_meta_trans_blocks(inode, 2643 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2644 } 2645 2646 /* 2647 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2648 * and underlying extent to map 2649 * 2650 * @mpd - where to look for pages 2651 * 2652 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2653 * IO immediately. When we find a page which isn't mapped we start accumulating 2654 * extent of buffers underlying these pages that needs mapping (formed by 2655 * either delayed or unwritten buffers). We also lock the pages containing 2656 * these buffers. The extent found is returned in @mpd structure (starting at 2657 * mpd->lblk with length mpd->len blocks). 2658 * 2659 * Note that this function can attach bios to one io_end structure which are 2660 * neither logically nor physically contiguous. Although it may seem as an 2661 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2662 * case as we need to track IO to all buffers underlying a page in one io_end. 2663 */ 2664 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2665 { 2666 struct address_space *mapping = mpd->inode->i_mapping; 2667 struct pagevec pvec; 2668 unsigned int nr_pages; 2669 long left = mpd->wbc->nr_to_write; 2670 pgoff_t index = mpd->first_page; 2671 pgoff_t end = mpd->last_page; 2672 xa_mark_t tag; 2673 int i, err = 0; 2674 int blkbits = mpd->inode->i_blkbits; 2675 ext4_lblk_t lblk; 2676 struct buffer_head *head; 2677 2678 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2679 tag = PAGECACHE_TAG_TOWRITE; 2680 else 2681 tag = PAGECACHE_TAG_DIRTY; 2682 2683 pagevec_init(&pvec); 2684 mpd->map.m_len = 0; 2685 mpd->next_page = index; 2686 while (index <= end) { 2687 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2688 tag); 2689 if (nr_pages == 0) 2690 goto out; 2691 2692 for (i = 0; i < nr_pages; i++) { 2693 struct page *page = pvec.pages[i]; 2694 2695 /* 2696 * Accumulated enough dirty pages? This doesn't apply 2697 * to WB_SYNC_ALL mode. For integrity sync we have to 2698 * keep going because someone may be concurrently 2699 * dirtying pages, and we might have synced a lot of 2700 * newly appeared dirty pages, but have not synced all 2701 * of the old dirty pages. 2702 */ 2703 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2704 goto out; 2705 2706 /* If we can't merge this page, we are done. */ 2707 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2708 goto out; 2709 2710 lock_page(page); 2711 /* 2712 * If the page is no longer dirty, or its mapping no 2713 * longer corresponds to inode we are writing (which 2714 * means it has been truncated or invalidated), or the 2715 * page is already under writeback and we are not doing 2716 * a data integrity writeback, skip the page 2717 */ 2718 if (!PageDirty(page) || 2719 (PageWriteback(page) && 2720 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2721 unlikely(page->mapping != mapping)) { 2722 unlock_page(page); 2723 continue; 2724 } 2725 2726 wait_on_page_writeback(page); 2727 BUG_ON(PageWriteback(page)); 2728 2729 if (mpd->map.m_len == 0) 2730 mpd->first_page = page->index; 2731 mpd->next_page = page->index + 1; 2732 /* Add all dirty buffers to mpd */ 2733 lblk = ((ext4_lblk_t)page->index) << 2734 (PAGE_SHIFT - blkbits); 2735 head = page_buffers(page); 2736 err = mpage_process_page_bufs(mpd, head, head, lblk); 2737 if (err <= 0) 2738 goto out; 2739 err = 0; 2740 left--; 2741 } 2742 pagevec_release(&pvec); 2743 cond_resched(); 2744 } 2745 return 0; 2746 out: 2747 pagevec_release(&pvec); 2748 return err; 2749 } 2750 2751 static int ext4_writepages(struct address_space *mapping, 2752 struct writeback_control *wbc) 2753 { 2754 pgoff_t writeback_index = 0; 2755 long nr_to_write = wbc->nr_to_write; 2756 int range_whole = 0; 2757 int cycled = 1; 2758 handle_t *handle = NULL; 2759 struct mpage_da_data mpd; 2760 struct inode *inode = mapping->host; 2761 int needed_blocks, rsv_blocks = 0, ret = 0; 2762 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2763 bool done; 2764 struct blk_plug plug; 2765 bool give_up_on_write = false; 2766 2767 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2768 return -EIO; 2769 2770 percpu_down_read(&sbi->s_journal_flag_rwsem); 2771 trace_ext4_writepages(inode, wbc); 2772 2773 /* 2774 * No pages to write? This is mainly a kludge to avoid starting 2775 * a transaction for special inodes like journal inode on last iput() 2776 * because that could violate lock ordering on umount 2777 */ 2778 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2779 goto out_writepages; 2780 2781 if (ext4_should_journal_data(inode)) { 2782 ret = generic_writepages(mapping, wbc); 2783 goto out_writepages; 2784 } 2785 2786 /* 2787 * If the filesystem has aborted, it is read-only, so return 2788 * right away instead of dumping stack traces later on that 2789 * will obscure the real source of the problem. We test 2790 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2791 * the latter could be true if the filesystem is mounted 2792 * read-only, and in that case, ext4_writepages should 2793 * *never* be called, so if that ever happens, we would want 2794 * the stack trace. 2795 */ 2796 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2797 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2798 ret = -EROFS; 2799 goto out_writepages; 2800 } 2801 2802 /* 2803 * If we have inline data and arrive here, it means that 2804 * we will soon create the block for the 1st page, so 2805 * we'd better clear the inline data here. 2806 */ 2807 if (ext4_has_inline_data(inode)) { 2808 /* Just inode will be modified... */ 2809 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2810 if (IS_ERR(handle)) { 2811 ret = PTR_ERR(handle); 2812 goto out_writepages; 2813 } 2814 BUG_ON(ext4_test_inode_state(inode, 2815 EXT4_STATE_MAY_INLINE_DATA)); 2816 ext4_destroy_inline_data(handle, inode); 2817 ext4_journal_stop(handle); 2818 } 2819 2820 if (ext4_should_dioread_nolock(inode)) { 2821 /* 2822 * We may need to convert up to one extent per block in 2823 * the page and we may dirty the inode. 2824 */ 2825 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2826 PAGE_SIZE >> inode->i_blkbits); 2827 } 2828 2829 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2830 range_whole = 1; 2831 2832 if (wbc->range_cyclic) { 2833 writeback_index = mapping->writeback_index; 2834 if (writeback_index) 2835 cycled = 0; 2836 mpd.first_page = writeback_index; 2837 mpd.last_page = -1; 2838 } else { 2839 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2840 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2841 } 2842 2843 mpd.inode = inode; 2844 mpd.wbc = wbc; 2845 ext4_io_submit_init(&mpd.io_submit, wbc); 2846 retry: 2847 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2848 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2849 done = false; 2850 blk_start_plug(&plug); 2851 2852 /* 2853 * First writeback pages that don't need mapping - we can avoid 2854 * starting a transaction unnecessarily and also avoid being blocked 2855 * in the block layer on device congestion while having transaction 2856 * started. 2857 */ 2858 mpd.do_map = 0; 2859 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2860 if (!mpd.io_submit.io_end) { 2861 ret = -ENOMEM; 2862 goto unplug; 2863 } 2864 ret = mpage_prepare_extent_to_map(&mpd); 2865 /* Unlock pages we didn't use */ 2866 mpage_release_unused_pages(&mpd, false); 2867 /* Submit prepared bio */ 2868 ext4_io_submit(&mpd.io_submit); 2869 ext4_put_io_end_defer(mpd.io_submit.io_end); 2870 mpd.io_submit.io_end = NULL; 2871 if (ret < 0) 2872 goto unplug; 2873 2874 while (!done && mpd.first_page <= mpd.last_page) { 2875 /* For each extent of pages we use new io_end */ 2876 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2877 if (!mpd.io_submit.io_end) { 2878 ret = -ENOMEM; 2879 break; 2880 } 2881 2882 /* 2883 * We have two constraints: We find one extent to map and we 2884 * must always write out whole page (makes a difference when 2885 * blocksize < pagesize) so that we don't block on IO when we 2886 * try to write out the rest of the page. Journalled mode is 2887 * not supported by delalloc. 2888 */ 2889 BUG_ON(ext4_should_journal_data(inode)); 2890 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2891 2892 /* start a new transaction */ 2893 handle = ext4_journal_start_with_reserve(inode, 2894 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2895 if (IS_ERR(handle)) { 2896 ret = PTR_ERR(handle); 2897 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2898 "%ld pages, ino %lu; err %d", __func__, 2899 wbc->nr_to_write, inode->i_ino, ret); 2900 /* Release allocated io_end */ 2901 ext4_put_io_end(mpd.io_submit.io_end); 2902 mpd.io_submit.io_end = NULL; 2903 break; 2904 } 2905 mpd.do_map = 1; 2906 2907 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2908 ret = mpage_prepare_extent_to_map(&mpd); 2909 if (!ret) { 2910 if (mpd.map.m_len) 2911 ret = mpage_map_and_submit_extent(handle, &mpd, 2912 &give_up_on_write); 2913 else { 2914 /* 2915 * We scanned the whole range (or exhausted 2916 * nr_to_write), submitted what was mapped and 2917 * didn't find anything needing mapping. We are 2918 * done. 2919 */ 2920 done = true; 2921 } 2922 } 2923 /* 2924 * Caution: If the handle is synchronous, 2925 * ext4_journal_stop() can wait for transaction commit 2926 * to finish which may depend on writeback of pages to 2927 * complete or on page lock to be released. In that 2928 * case, we have to wait until after after we have 2929 * submitted all the IO, released page locks we hold, 2930 * and dropped io_end reference (for extent conversion 2931 * to be able to complete) before stopping the handle. 2932 */ 2933 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2934 ext4_journal_stop(handle); 2935 handle = NULL; 2936 mpd.do_map = 0; 2937 } 2938 /* Unlock pages we didn't use */ 2939 mpage_release_unused_pages(&mpd, give_up_on_write); 2940 /* Submit prepared bio */ 2941 ext4_io_submit(&mpd.io_submit); 2942 2943 /* 2944 * Drop our io_end reference we got from init. We have 2945 * to be careful and use deferred io_end finishing if 2946 * we are still holding the transaction as we can 2947 * release the last reference to io_end which may end 2948 * up doing unwritten extent conversion. 2949 */ 2950 if (handle) { 2951 ext4_put_io_end_defer(mpd.io_submit.io_end); 2952 ext4_journal_stop(handle); 2953 } else 2954 ext4_put_io_end(mpd.io_submit.io_end); 2955 mpd.io_submit.io_end = NULL; 2956 2957 if (ret == -ENOSPC && sbi->s_journal) { 2958 /* 2959 * Commit the transaction which would 2960 * free blocks released in the transaction 2961 * and try again 2962 */ 2963 jbd2_journal_force_commit_nested(sbi->s_journal); 2964 ret = 0; 2965 continue; 2966 } 2967 /* Fatal error - ENOMEM, EIO... */ 2968 if (ret) 2969 break; 2970 } 2971 unplug: 2972 blk_finish_plug(&plug); 2973 if (!ret && !cycled && wbc->nr_to_write > 0) { 2974 cycled = 1; 2975 mpd.last_page = writeback_index - 1; 2976 mpd.first_page = 0; 2977 goto retry; 2978 } 2979 2980 /* Update index */ 2981 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2982 /* 2983 * Set the writeback_index so that range_cyclic 2984 * mode will write it back later 2985 */ 2986 mapping->writeback_index = mpd.first_page; 2987 2988 out_writepages: 2989 trace_ext4_writepages_result(inode, wbc, ret, 2990 nr_to_write - wbc->nr_to_write); 2991 percpu_up_read(&sbi->s_journal_flag_rwsem); 2992 return ret; 2993 } 2994 2995 static int ext4_dax_writepages(struct address_space *mapping, 2996 struct writeback_control *wbc) 2997 { 2998 int ret; 2999 long nr_to_write = wbc->nr_to_write; 3000 struct inode *inode = mapping->host; 3001 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 3002 3003 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 3004 return -EIO; 3005 3006 percpu_down_read(&sbi->s_journal_flag_rwsem); 3007 trace_ext4_writepages(inode, wbc); 3008 3009 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc); 3010 trace_ext4_writepages_result(inode, wbc, ret, 3011 nr_to_write - wbc->nr_to_write); 3012 percpu_up_read(&sbi->s_journal_flag_rwsem); 3013 return ret; 3014 } 3015 3016 static int ext4_nonda_switch(struct super_block *sb) 3017 { 3018 s64 free_clusters, dirty_clusters; 3019 struct ext4_sb_info *sbi = EXT4_SB(sb); 3020 3021 /* 3022 * switch to non delalloc mode if we are running low 3023 * on free block. The free block accounting via percpu 3024 * counters can get slightly wrong with percpu_counter_batch getting 3025 * accumulated on each CPU without updating global counters 3026 * Delalloc need an accurate free block accounting. So switch 3027 * to non delalloc when we are near to error range. 3028 */ 3029 free_clusters = 3030 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 3031 dirty_clusters = 3032 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 3033 /* 3034 * Start pushing delalloc when 1/2 of free blocks are dirty. 3035 */ 3036 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 3037 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 3038 3039 if (2 * free_clusters < 3 * dirty_clusters || 3040 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 3041 /* 3042 * free block count is less than 150% of dirty blocks 3043 * or free blocks is less than watermark 3044 */ 3045 return 1; 3046 } 3047 return 0; 3048 } 3049 3050 /* We always reserve for an inode update; the superblock could be there too */ 3051 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 3052 { 3053 if (likely(ext4_has_feature_large_file(inode->i_sb))) 3054 return 1; 3055 3056 if (pos + len <= 0x7fffffffULL) 3057 return 1; 3058 3059 /* We might need to update the superblock to set LARGE_FILE */ 3060 return 2; 3061 } 3062 3063 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3064 loff_t pos, unsigned len, unsigned flags, 3065 struct page **pagep, void **fsdata) 3066 { 3067 int ret, retries = 0; 3068 struct page *page; 3069 pgoff_t index; 3070 struct inode *inode = mapping->host; 3071 handle_t *handle; 3072 3073 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 3074 return -EIO; 3075 3076 index = pos >> PAGE_SHIFT; 3077 3078 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) || 3079 ext4_verity_in_progress(inode)) { 3080 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3081 return ext4_write_begin(file, mapping, pos, 3082 len, flags, pagep, fsdata); 3083 } 3084 *fsdata = (void *)0; 3085 trace_ext4_da_write_begin(inode, pos, len, flags); 3086 3087 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 3088 ret = ext4_da_write_inline_data_begin(mapping, inode, 3089 pos, len, flags, 3090 pagep, fsdata); 3091 if (ret < 0) 3092 return ret; 3093 if (ret == 1) 3094 return 0; 3095 } 3096 3097 /* 3098 * grab_cache_page_write_begin() can take a long time if the 3099 * system is thrashing due to memory pressure, or if the page 3100 * is being written back. So grab it first before we start 3101 * the transaction handle. This also allows us to allocate 3102 * the page (if needed) without using GFP_NOFS. 3103 */ 3104 retry_grab: 3105 page = grab_cache_page_write_begin(mapping, index, flags); 3106 if (!page) 3107 return -ENOMEM; 3108 unlock_page(page); 3109 3110 /* 3111 * With delayed allocation, we don't log the i_disksize update 3112 * if there is delayed block allocation. But we still need 3113 * to journalling the i_disksize update if writes to the end 3114 * of file which has an already mapped buffer. 3115 */ 3116 retry_journal: 3117 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 3118 ext4_da_write_credits(inode, pos, len)); 3119 if (IS_ERR(handle)) { 3120 put_page(page); 3121 return PTR_ERR(handle); 3122 } 3123 3124 lock_page(page); 3125 if (page->mapping != mapping) { 3126 /* The page got truncated from under us */ 3127 unlock_page(page); 3128 put_page(page); 3129 ext4_journal_stop(handle); 3130 goto retry_grab; 3131 } 3132 /* In case writeback began while the page was unlocked */ 3133 wait_for_stable_page(page); 3134 3135 #ifdef CONFIG_FS_ENCRYPTION 3136 ret = ext4_block_write_begin(page, pos, len, 3137 ext4_da_get_block_prep); 3138 #else 3139 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3140 #endif 3141 if (ret < 0) { 3142 unlock_page(page); 3143 ext4_journal_stop(handle); 3144 /* 3145 * block_write_begin may have instantiated a few blocks 3146 * outside i_size. Trim these off again. Don't need 3147 * i_size_read because we hold i_mutex. 3148 */ 3149 if (pos + len > inode->i_size) 3150 ext4_truncate_failed_write(inode); 3151 3152 if (ret == -ENOSPC && 3153 ext4_should_retry_alloc(inode->i_sb, &retries)) 3154 goto retry_journal; 3155 3156 put_page(page); 3157 return ret; 3158 } 3159 3160 *pagep = page; 3161 return ret; 3162 } 3163 3164 /* 3165 * Check if we should update i_disksize 3166 * when write to the end of file but not require block allocation 3167 */ 3168 static int ext4_da_should_update_i_disksize(struct page *page, 3169 unsigned long offset) 3170 { 3171 struct buffer_head *bh; 3172 struct inode *inode = page->mapping->host; 3173 unsigned int idx; 3174 int i; 3175 3176 bh = page_buffers(page); 3177 idx = offset >> inode->i_blkbits; 3178 3179 for (i = 0; i < idx; i++) 3180 bh = bh->b_this_page; 3181 3182 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3183 return 0; 3184 return 1; 3185 } 3186 3187 static int ext4_da_write_end(struct file *file, 3188 struct address_space *mapping, 3189 loff_t pos, unsigned len, unsigned copied, 3190 struct page *page, void *fsdata) 3191 { 3192 struct inode *inode = mapping->host; 3193 int ret = 0, ret2; 3194 handle_t *handle = ext4_journal_current_handle(); 3195 loff_t new_i_size; 3196 unsigned long start, end; 3197 int write_mode = (int)(unsigned long)fsdata; 3198 3199 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3200 return ext4_write_end(file, mapping, pos, 3201 len, copied, page, fsdata); 3202 3203 trace_ext4_da_write_end(inode, pos, len, copied); 3204 start = pos & (PAGE_SIZE - 1); 3205 end = start + copied - 1; 3206 3207 /* 3208 * generic_write_end() will run mark_inode_dirty() if i_size 3209 * changes. So let's piggyback the i_disksize mark_inode_dirty 3210 * into that. 3211 */ 3212 new_i_size = pos + copied; 3213 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3214 if (ext4_has_inline_data(inode) || 3215 ext4_da_should_update_i_disksize(page, end)) { 3216 ext4_update_i_disksize(inode, new_i_size); 3217 /* We need to mark inode dirty even if 3218 * new_i_size is less that inode->i_size 3219 * bu greater than i_disksize.(hint delalloc) 3220 */ 3221 ext4_mark_inode_dirty(handle, inode); 3222 } 3223 } 3224 3225 if (write_mode != CONVERT_INLINE_DATA && 3226 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3227 ext4_has_inline_data(inode)) 3228 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3229 page); 3230 else 3231 ret2 = generic_write_end(file, mapping, pos, len, copied, 3232 page, fsdata); 3233 3234 copied = ret2; 3235 if (ret2 < 0) 3236 ret = ret2; 3237 ret2 = ext4_journal_stop(handle); 3238 if (!ret) 3239 ret = ret2; 3240 3241 return ret ? ret : copied; 3242 } 3243 3244 /* 3245 * Force all delayed allocation blocks to be allocated for a given inode. 3246 */ 3247 int ext4_alloc_da_blocks(struct inode *inode) 3248 { 3249 trace_ext4_alloc_da_blocks(inode); 3250 3251 if (!EXT4_I(inode)->i_reserved_data_blocks) 3252 return 0; 3253 3254 /* 3255 * We do something simple for now. The filemap_flush() will 3256 * also start triggering a write of the data blocks, which is 3257 * not strictly speaking necessary (and for users of 3258 * laptop_mode, not even desirable). However, to do otherwise 3259 * would require replicating code paths in: 3260 * 3261 * ext4_writepages() -> 3262 * write_cache_pages() ---> (via passed in callback function) 3263 * __mpage_da_writepage() --> 3264 * mpage_add_bh_to_extent() 3265 * mpage_da_map_blocks() 3266 * 3267 * The problem is that write_cache_pages(), located in 3268 * mm/page-writeback.c, marks pages clean in preparation for 3269 * doing I/O, which is not desirable if we're not planning on 3270 * doing I/O at all. 3271 * 3272 * We could call write_cache_pages(), and then redirty all of 3273 * the pages by calling redirty_page_for_writepage() but that 3274 * would be ugly in the extreme. So instead we would need to 3275 * replicate parts of the code in the above functions, 3276 * simplifying them because we wouldn't actually intend to 3277 * write out the pages, but rather only collect contiguous 3278 * logical block extents, call the multi-block allocator, and 3279 * then update the buffer heads with the block allocations. 3280 * 3281 * For now, though, we'll cheat by calling filemap_flush(), 3282 * which will map the blocks, and start the I/O, but not 3283 * actually wait for the I/O to complete. 3284 */ 3285 return filemap_flush(inode->i_mapping); 3286 } 3287 3288 /* 3289 * bmap() is special. It gets used by applications such as lilo and by 3290 * the swapper to find the on-disk block of a specific piece of data. 3291 * 3292 * Naturally, this is dangerous if the block concerned is still in the 3293 * journal. If somebody makes a swapfile on an ext4 data-journaling 3294 * filesystem and enables swap, then they may get a nasty shock when the 3295 * data getting swapped to that swapfile suddenly gets overwritten by 3296 * the original zero's written out previously to the journal and 3297 * awaiting writeback in the kernel's buffer cache. 3298 * 3299 * So, if we see any bmap calls here on a modified, data-journaled file, 3300 * take extra steps to flush any blocks which might be in the cache. 3301 */ 3302 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3303 { 3304 struct inode *inode = mapping->host; 3305 journal_t *journal; 3306 int err; 3307 3308 /* 3309 * We can get here for an inline file via the FIBMAP ioctl 3310 */ 3311 if (ext4_has_inline_data(inode)) 3312 return 0; 3313 3314 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3315 test_opt(inode->i_sb, DELALLOC)) { 3316 /* 3317 * With delalloc we want to sync the file 3318 * so that we can make sure we allocate 3319 * blocks for file 3320 */ 3321 filemap_write_and_wait(mapping); 3322 } 3323 3324 if (EXT4_JOURNAL(inode) && 3325 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3326 /* 3327 * This is a REALLY heavyweight approach, but the use of 3328 * bmap on dirty files is expected to be extremely rare: 3329 * only if we run lilo or swapon on a freshly made file 3330 * do we expect this to happen. 3331 * 3332 * (bmap requires CAP_SYS_RAWIO so this does not 3333 * represent an unprivileged user DOS attack --- we'd be 3334 * in trouble if mortal users could trigger this path at 3335 * will.) 3336 * 3337 * NB. EXT4_STATE_JDATA is not set on files other than 3338 * regular files. If somebody wants to bmap a directory 3339 * or symlink and gets confused because the buffer 3340 * hasn't yet been flushed to disk, they deserve 3341 * everything they get. 3342 */ 3343 3344 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3345 journal = EXT4_JOURNAL(inode); 3346 jbd2_journal_lock_updates(journal); 3347 err = jbd2_journal_flush(journal); 3348 jbd2_journal_unlock_updates(journal); 3349 3350 if (err) 3351 return 0; 3352 } 3353 3354 return generic_block_bmap(mapping, block, ext4_get_block); 3355 } 3356 3357 static int ext4_readpage(struct file *file, struct page *page) 3358 { 3359 int ret = -EAGAIN; 3360 struct inode *inode = page->mapping->host; 3361 3362 trace_ext4_readpage(page); 3363 3364 if (ext4_has_inline_data(inode)) 3365 ret = ext4_readpage_inline(inode, page); 3366 3367 if (ret == -EAGAIN) 3368 return ext4_mpage_readpages(page->mapping, NULL, page, 1, 3369 false); 3370 3371 return ret; 3372 } 3373 3374 static int 3375 ext4_readpages(struct file *file, struct address_space *mapping, 3376 struct list_head *pages, unsigned nr_pages) 3377 { 3378 struct inode *inode = mapping->host; 3379 3380 /* If the file has inline data, no need to do readpages. */ 3381 if (ext4_has_inline_data(inode)) 3382 return 0; 3383 3384 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true); 3385 } 3386 3387 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3388 unsigned int length) 3389 { 3390 trace_ext4_invalidatepage(page, offset, length); 3391 3392 /* No journalling happens on data buffers when this function is used */ 3393 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3394 3395 block_invalidatepage(page, offset, length); 3396 } 3397 3398 static int __ext4_journalled_invalidatepage(struct page *page, 3399 unsigned int offset, 3400 unsigned int length) 3401 { 3402 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3403 3404 trace_ext4_journalled_invalidatepage(page, offset, length); 3405 3406 /* 3407 * If it's a full truncate we just forget about the pending dirtying 3408 */ 3409 if (offset == 0 && length == PAGE_SIZE) 3410 ClearPageChecked(page); 3411 3412 return jbd2_journal_invalidatepage(journal, page, offset, length); 3413 } 3414 3415 /* Wrapper for aops... */ 3416 static void ext4_journalled_invalidatepage(struct page *page, 3417 unsigned int offset, 3418 unsigned int length) 3419 { 3420 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3421 } 3422 3423 static int ext4_releasepage(struct page *page, gfp_t wait) 3424 { 3425 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3426 3427 trace_ext4_releasepage(page); 3428 3429 /* Page has dirty journalled data -> cannot release */ 3430 if (PageChecked(page)) 3431 return 0; 3432 if (journal) 3433 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3434 else 3435 return try_to_free_buffers(page); 3436 } 3437 3438 static bool ext4_inode_datasync_dirty(struct inode *inode) 3439 { 3440 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3441 3442 if (journal) 3443 return !jbd2_transaction_committed(journal, 3444 EXT4_I(inode)->i_datasync_tid); 3445 /* Any metadata buffers to write? */ 3446 if (!list_empty(&inode->i_mapping->private_list)) 3447 return true; 3448 return inode->i_state & I_DIRTY_DATASYNC; 3449 } 3450 3451 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3452 struct ext4_map_blocks *map, loff_t offset, 3453 loff_t length) 3454 { 3455 u8 blkbits = inode->i_blkbits; 3456 3457 /* 3458 * Writes that span EOF might trigger an I/O size update on completion, 3459 * so consider them to be dirty for the purpose of O_DSYNC, even if 3460 * there is no other metadata changes being made or are pending. 3461 */ 3462 iomap->flags = 0; 3463 if (ext4_inode_datasync_dirty(inode) || 3464 offset + length > i_size_read(inode)) 3465 iomap->flags |= IOMAP_F_DIRTY; 3466 3467 if (map->m_flags & EXT4_MAP_NEW) 3468 iomap->flags |= IOMAP_F_NEW; 3469 3470 iomap->bdev = inode->i_sb->s_bdev; 3471 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3472 iomap->offset = (u64) map->m_lblk << blkbits; 3473 iomap->length = (u64) map->m_len << blkbits; 3474 3475 /* 3476 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3477 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3478 * set. In order for any allocated unwritten extents to be converted 3479 * into written extents correctly within the ->end_io() handler, we 3480 * need to ensure that the iomap->type is set appropriately. Hence, the 3481 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3482 * been set first. 3483 */ 3484 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3485 iomap->type = IOMAP_UNWRITTEN; 3486 iomap->addr = (u64) map->m_pblk << blkbits; 3487 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3488 iomap->type = IOMAP_MAPPED; 3489 iomap->addr = (u64) map->m_pblk << blkbits; 3490 } else { 3491 iomap->type = IOMAP_HOLE; 3492 iomap->addr = IOMAP_NULL_ADDR; 3493 } 3494 } 3495 3496 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3497 unsigned int flags) 3498 { 3499 handle_t *handle; 3500 u8 blkbits = inode->i_blkbits; 3501 int ret, dio_credits, retries = 0; 3502 3503 /* 3504 * Trim the mapping request to the maximum value that we can map at 3505 * once for direct I/O. 3506 */ 3507 if (map->m_len > DIO_MAX_BLOCKS) 3508 map->m_len = DIO_MAX_BLOCKS; 3509 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3510 3511 retry: 3512 /* 3513 * Either we allocate blocks and then don't get an unwritten extent, so 3514 * in that case we have reserved enough credits. Or, the blocks are 3515 * already allocated and unwritten. In that case, the extent conversion 3516 * fits into the credits as well. 3517 */ 3518 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3519 if (IS_ERR(handle)) 3520 return PTR_ERR(handle); 3521 3522 ret = ext4_map_blocks(handle, inode, map, EXT4_GET_BLOCKS_CREATE_ZERO); 3523 if (ret < 0) 3524 goto journal_stop; 3525 3526 /* 3527 * If we've allocated blocks beyond EOF, we need to ensure that they're 3528 * truncated if we crash before updating the inode size metadata within 3529 * ext4_iomap_end(). For faults, we don't need to do that (and cannot 3530 * due to orphan list operations needing an inode_lock()). If we happen 3531 * to instantiate blocks beyond EOF, it is because we race with a 3532 * truncate operation, which already has added the inode onto the 3533 * orphan list. 3534 */ 3535 if (!(flags & IOMAP_FAULT) && map->m_lblk + map->m_len > 3536 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) { 3537 int err; 3538 3539 err = ext4_orphan_add(handle, inode); 3540 if (err < 0) 3541 ret = err; 3542 } 3543 3544 journal_stop: 3545 ext4_journal_stop(handle); 3546 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3547 goto retry; 3548 3549 return ret; 3550 } 3551 3552 3553 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3554 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3555 { 3556 int ret; 3557 struct ext4_map_blocks map; 3558 u8 blkbits = inode->i_blkbits; 3559 3560 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3561 return -EINVAL; 3562 3563 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3564 return -ERANGE; 3565 3566 /* 3567 * Calculate the first and last logical blocks respectively. 3568 */ 3569 map.m_lblk = offset >> blkbits; 3570 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3571 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3572 3573 if (flags & IOMAP_WRITE) 3574 ret = ext4_iomap_alloc(inode, &map, flags); 3575 else 3576 ret = ext4_map_blocks(NULL, inode, &map, 0); 3577 3578 if (ret < 0) 3579 return ret; 3580 3581 ext4_set_iomap(inode, iomap, &map, offset, length); 3582 3583 return 0; 3584 } 3585 3586 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3587 ssize_t written, unsigned flags, struct iomap *iomap) 3588 { 3589 int ret = 0; 3590 handle_t *handle; 3591 int blkbits = inode->i_blkbits; 3592 bool truncate = false; 3593 3594 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT)) 3595 return 0; 3596 3597 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3598 if (IS_ERR(handle)) { 3599 ret = PTR_ERR(handle); 3600 goto orphan_del; 3601 } 3602 if (ext4_update_inode_size(inode, offset + written)) 3603 ext4_mark_inode_dirty(handle, inode); 3604 /* 3605 * We may need to truncate allocated but not written blocks beyond EOF. 3606 */ 3607 if (iomap->offset + iomap->length > 3608 ALIGN(inode->i_size, 1 << blkbits)) { 3609 ext4_lblk_t written_blk, end_blk; 3610 3611 written_blk = (offset + written) >> blkbits; 3612 end_blk = (offset + length) >> blkbits; 3613 if (written_blk < end_blk && ext4_can_truncate(inode)) 3614 truncate = true; 3615 } 3616 /* 3617 * Remove inode from orphan list if we were extending a inode and 3618 * everything went fine. 3619 */ 3620 if (!truncate && inode->i_nlink && 3621 !list_empty(&EXT4_I(inode)->i_orphan)) 3622 ext4_orphan_del(handle, inode); 3623 ext4_journal_stop(handle); 3624 if (truncate) { 3625 ext4_truncate_failed_write(inode); 3626 orphan_del: 3627 /* 3628 * If truncate failed early the inode might still be on the 3629 * orphan list; we need to make sure the inode is removed from 3630 * the orphan list in that case. 3631 */ 3632 if (inode->i_nlink) 3633 ext4_orphan_del(NULL, inode); 3634 } 3635 return ret; 3636 } 3637 3638 const struct iomap_ops ext4_iomap_ops = { 3639 .iomap_begin = ext4_iomap_begin, 3640 .iomap_end = ext4_iomap_end, 3641 }; 3642 3643 static bool ext4_iomap_is_delalloc(struct inode *inode, 3644 struct ext4_map_blocks *map) 3645 { 3646 struct extent_status es; 3647 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3648 3649 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3650 map->m_lblk, end, &es); 3651 3652 if (!es.es_len || es.es_lblk > end) 3653 return false; 3654 3655 if (es.es_lblk > map->m_lblk) { 3656 map->m_len = es.es_lblk - map->m_lblk; 3657 return false; 3658 } 3659 3660 offset = map->m_lblk - es.es_lblk; 3661 map->m_len = es.es_len - offset; 3662 3663 return true; 3664 } 3665 3666 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3667 loff_t length, unsigned int flags, 3668 struct iomap *iomap, struct iomap *srcmap) 3669 { 3670 int ret; 3671 bool delalloc = false; 3672 struct ext4_map_blocks map; 3673 u8 blkbits = inode->i_blkbits; 3674 3675 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3676 return -EINVAL; 3677 3678 if (ext4_has_inline_data(inode)) { 3679 ret = ext4_inline_data_iomap(inode, iomap); 3680 if (ret != -EAGAIN) { 3681 if (ret == 0 && offset >= iomap->length) 3682 ret = -ENOENT; 3683 return ret; 3684 } 3685 } 3686 3687 /* 3688 * Calculate the first and last logical block respectively. 3689 */ 3690 map.m_lblk = offset >> blkbits; 3691 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3692 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3693 3694 ret = ext4_map_blocks(NULL, inode, &map, 0); 3695 if (ret < 0) 3696 return ret; 3697 if (ret == 0) 3698 delalloc = ext4_iomap_is_delalloc(inode, &map); 3699 3700 ext4_set_iomap(inode, iomap, &map, offset, length); 3701 if (delalloc && iomap->type == IOMAP_HOLE) 3702 iomap->type = IOMAP_DELALLOC; 3703 3704 return 0; 3705 } 3706 3707 const struct iomap_ops ext4_iomap_report_ops = { 3708 .iomap_begin = ext4_iomap_begin_report, 3709 }; 3710 3711 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3712 ssize_t size, void *private) 3713 { 3714 ext4_io_end_t *io_end = private; 3715 struct ext4_io_end_vec *io_end_vec; 3716 3717 /* if not async direct IO just return */ 3718 if (!io_end) 3719 return 0; 3720 3721 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3722 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3723 io_end, io_end->inode->i_ino, iocb, offset, size); 3724 3725 /* 3726 * Error during AIO DIO. We cannot convert unwritten extents as the 3727 * data was not written. Just clear the unwritten flag and drop io_end. 3728 */ 3729 if (size <= 0) { 3730 ext4_clear_io_unwritten_flag(io_end); 3731 size = 0; 3732 } 3733 io_end_vec = ext4_alloc_io_end_vec(io_end); 3734 io_end_vec->offset = offset; 3735 io_end_vec->size = size; 3736 ext4_put_io_end(io_end); 3737 3738 return 0; 3739 } 3740 3741 /* 3742 * Handling of direct IO writes. 3743 * 3744 * For ext4 extent files, ext4 will do direct-io write even to holes, 3745 * preallocated extents, and those write extend the file, no need to 3746 * fall back to buffered IO. 3747 * 3748 * For holes, we fallocate those blocks, mark them as unwritten 3749 * If those blocks were preallocated, we mark sure they are split, but 3750 * still keep the range to write as unwritten. 3751 * 3752 * The unwritten extents will be converted to written when DIO is completed. 3753 * For async direct IO, since the IO may still pending when return, we 3754 * set up an end_io call back function, which will do the conversion 3755 * when async direct IO completed. 3756 * 3757 * If the O_DIRECT write will extend the file then add this inode to the 3758 * orphan list. So recovery will truncate it back to the original size 3759 * if the machine crashes during the write. 3760 * 3761 */ 3762 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter) 3763 { 3764 struct file *file = iocb->ki_filp; 3765 struct inode *inode = file->f_mapping->host; 3766 struct ext4_inode_info *ei = EXT4_I(inode); 3767 ssize_t ret; 3768 loff_t offset = iocb->ki_pos; 3769 size_t count = iov_iter_count(iter); 3770 int overwrite = 0; 3771 get_block_t *get_block_func = NULL; 3772 int dio_flags = 0; 3773 loff_t final_size = offset + count; 3774 int orphan = 0; 3775 handle_t *handle; 3776 3777 if (final_size > inode->i_size || final_size > ei->i_disksize) { 3778 /* Credits for sb + inode write */ 3779 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3780 if (IS_ERR(handle)) { 3781 ret = PTR_ERR(handle); 3782 goto out; 3783 } 3784 ret = ext4_orphan_add(handle, inode); 3785 if (ret) { 3786 ext4_journal_stop(handle); 3787 goto out; 3788 } 3789 orphan = 1; 3790 ext4_update_i_disksize(inode, inode->i_size); 3791 ext4_journal_stop(handle); 3792 } 3793 3794 BUG_ON(iocb->private == NULL); 3795 3796 /* 3797 * Make all waiters for direct IO properly wait also for extent 3798 * conversion. This also disallows race between truncate() and 3799 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3800 */ 3801 inode_dio_begin(inode); 3802 3803 /* If we do a overwrite dio, i_mutex locking can be released */ 3804 overwrite = *((int *)iocb->private); 3805 3806 if (overwrite) 3807 inode_unlock(inode); 3808 3809 /* 3810 * For extent mapped files we could direct write to holes and fallocate. 3811 * 3812 * Allocated blocks to fill the hole are marked as unwritten to prevent 3813 * parallel buffered read to expose the stale data before DIO complete 3814 * the data IO. 3815 * 3816 * As to previously fallocated extents, ext4 get_block will just simply 3817 * mark the buffer mapped but still keep the extents unwritten. 3818 * 3819 * For non AIO case, we will convert those unwritten extents to written 3820 * after return back from blockdev_direct_IO. That way we save us from 3821 * allocating io_end structure and also the overhead of offloading 3822 * the extent convertion to a workqueue. 3823 * 3824 * For async DIO, the conversion needs to be deferred when the 3825 * IO is completed. The ext4 end_io callback function will be 3826 * called to take care of the conversion work. Here for async 3827 * case, we allocate an io_end structure to hook to the iocb. 3828 */ 3829 iocb->private = NULL; 3830 if (overwrite) 3831 get_block_func = ext4_dio_get_block_overwrite; 3832 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) || 3833 round_down(offset, i_blocksize(inode)) >= inode->i_size) { 3834 get_block_func = ext4_dio_get_block; 3835 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES; 3836 } else if (is_sync_kiocb(iocb)) { 3837 get_block_func = ext4_dio_get_block_unwritten_sync; 3838 dio_flags = DIO_LOCKING; 3839 } else { 3840 get_block_func = ext4_dio_get_block_unwritten_async; 3841 dio_flags = DIO_LOCKING; 3842 } 3843 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3844 get_block_func, ext4_end_io_dio, NULL, 3845 dio_flags); 3846 3847 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3848 EXT4_STATE_DIO_UNWRITTEN)) { 3849 int err; 3850 /* 3851 * for non AIO case, since the IO is already 3852 * completed, we could do the conversion right here 3853 */ 3854 err = ext4_convert_unwritten_extents(NULL, inode, 3855 offset, ret); 3856 if (err < 0) 3857 ret = err; 3858 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3859 } 3860 3861 inode_dio_end(inode); 3862 /* take i_mutex locking again if we do a ovewrite dio */ 3863 if (overwrite) 3864 inode_lock(inode); 3865 3866 if (ret < 0 && final_size > inode->i_size) 3867 ext4_truncate_failed_write(inode); 3868 3869 /* Handle extending of i_size after direct IO write */ 3870 if (orphan) { 3871 int err; 3872 3873 /* Credits for sb + inode write */ 3874 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3875 if (IS_ERR(handle)) { 3876 /* 3877 * We wrote the data but cannot extend 3878 * i_size. Bail out. In async io case, we do 3879 * not return error here because we have 3880 * already submmitted the corresponding 3881 * bio. Returning error here makes the caller 3882 * think that this IO is done and failed 3883 * resulting in race with bio's completion 3884 * handler. 3885 */ 3886 if (!ret) 3887 ret = PTR_ERR(handle); 3888 if (inode->i_nlink) 3889 ext4_orphan_del(NULL, inode); 3890 3891 goto out; 3892 } 3893 if (inode->i_nlink) 3894 ext4_orphan_del(handle, inode); 3895 if (ret > 0) { 3896 loff_t end = offset + ret; 3897 if (end > inode->i_size || end > ei->i_disksize) { 3898 ext4_update_i_disksize(inode, end); 3899 if (end > inode->i_size) 3900 i_size_write(inode, end); 3901 /* 3902 * We're going to return a positive `ret' 3903 * here due to non-zero-length I/O, so there's 3904 * no way of reporting error returns from 3905 * ext4_mark_inode_dirty() to userspace. So 3906 * ignore it. 3907 */ 3908 ext4_mark_inode_dirty(handle, inode); 3909 } 3910 } 3911 err = ext4_journal_stop(handle); 3912 if (ret == 0) 3913 ret = err; 3914 } 3915 out: 3916 return ret; 3917 } 3918 3919 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter) 3920 { 3921 struct address_space *mapping = iocb->ki_filp->f_mapping; 3922 struct inode *inode = mapping->host; 3923 size_t count = iov_iter_count(iter); 3924 ssize_t ret; 3925 3926 /* 3927 * Shared inode_lock is enough for us - it protects against concurrent 3928 * writes & truncates and since we take care of writing back page cache, 3929 * we are protected against page writeback as well. 3930 */ 3931 if (iocb->ki_flags & IOCB_NOWAIT) { 3932 if (!inode_trylock_shared(inode)) 3933 return -EAGAIN; 3934 } else { 3935 inode_lock_shared(inode); 3936 } 3937 3938 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, 3939 iocb->ki_pos + count - 1); 3940 if (ret) 3941 goto out_unlock; 3942 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3943 iter, ext4_dio_get_block, NULL, NULL, 0); 3944 out_unlock: 3945 inode_unlock_shared(inode); 3946 return ret; 3947 } 3948 3949 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3950 { 3951 struct file *file = iocb->ki_filp; 3952 struct inode *inode = file->f_mapping->host; 3953 size_t count = iov_iter_count(iter); 3954 loff_t offset = iocb->ki_pos; 3955 ssize_t ret; 3956 3957 #ifdef CONFIG_FS_ENCRYPTION 3958 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 3959 return 0; 3960 #endif 3961 if (fsverity_active(inode)) 3962 return 0; 3963 3964 /* 3965 * If we are doing data journalling we don't support O_DIRECT 3966 */ 3967 if (ext4_should_journal_data(inode)) 3968 return 0; 3969 3970 /* Let buffer I/O handle the inline data case. */ 3971 if (ext4_has_inline_data(inode)) 3972 return 0; 3973 3974 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3975 if (iov_iter_rw(iter) == READ) 3976 ret = ext4_direct_IO_read(iocb, iter); 3977 else 3978 ret = ext4_direct_IO_write(iocb, iter); 3979 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3980 return ret; 3981 } 3982 3983 /* 3984 * Pages can be marked dirty completely asynchronously from ext4's journalling 3985 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3986 * much here because ->set_page_dirty is called under VFS locks. The page is 3987 * not necessarily locked. 3988 * 3989 * We cannot just dirty the page and leave attached buffers clean, because the 3990 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3991 * or jbddirty because all the journalling code will explode. 3992 * 3993 * So what we do is to mark the page "pending dirty" and next time writepage 3994 * is called, propagate that into the buffers appropriately. 3995 */ 3996 static int ext4_journalled_set_page_dirty(struct page *page) 3997 { 3998 SetPageChecked(page); 3999 return __set_page_dirty_nobuffers(page); 4000 } 4001 4002 static int ext4_set_page_dirty(struct page *page) 4003 { 4004 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 4005 WARN_ON_ONCE(!page_has_buffers(page)); 4006 return __set_page_dirty_buffers(page); 4007 } 4008 4009 static const struct address_space_operations ext4_aops = { 4010 .readpage = ext4_readpage, 4011 .readpages = ext4_readpages, 4012 .writepage = ext4_writepage, 4013 .writepages = ext4_writepages, 4014 .write_begin = ext4_write_begin, 4015 .write_end = ext4_write_end, 4016 .set_page_dirty = ext4_set_page_dirty, 4017 .bmap = ext4_bmap, 4018 .invalidatepage = ext4_invalidatepage, 4019 .releasepage = ext4_releasepage, 4020 .direct_IO = ext4_direct_IO, 4021 .migratepage = buffer_migrate_page, 4022 .is_partially_uptodate = block_is_partially_uptodate, 4023 .error_remove_page = generic_error_remove_page, 4024 }; 4025 4026 static const struct address_space_operations ext4_journalled_aops = { 4027 .readpage = ext4_readpage, 4028 .readpages = ext4_readpages, 4029 .writepage = ext4_writepage, 4030 .writepages = ext4_writepages, 4031 .write_begin = ext4_write_begin, 4032 .write_end = ext4_journalled_write_end, 4033 .set_page_dirty = ext4_journalled_set_page_dirty, 4034 .bmap = ext4_bmap, 4035 .invalidatepage = ext4_journalled_invalidatepage, 4036 .releasepage = ext4_releasepage, 4037 .direct_IO = ext4_direct_IO, 4038 .is_partially_uptodate = block_is_partially_uptodate, 4039 .error_remove_page = generic_error_remove_page, 4040 }; 4041 4042 static const struct address_space_operations ext4_da_aops = { 4043 .readpage = ext4_readpage, 4044 .readpages = ext4_readpages, 4045 .writepage = ext4_writepage, 4046 .writepages = ext4_writepages, 4047 .write_begin = ext4_da_write_begin, 4048 .write_end = ext4_da_write_end, 4049 .set_page_dirty = ext4_set_page_dirty, 4050 .bmap = ext4_bmap, 4051 .invalidatepage = ext4_invalidatepage, 4052 .releasepage = ext4_releasepage, 4053 .direct_IO = ext4_direct_IO, 4054 .migratepage = buffer_migrate_page, 4055 .is_partially_uptodate = block_is_partially_uptodate, 4056 .error_remove_page = generic_error_remove_page, 4057 }; 4058 4059 static const struct address_space_operations ext4_dax_aops = { 4060 .writepages = ext4_dax_writepages, 4061 .direct_IO = noop_direct_IO, 4062 .set_page_dirty = noop_set_page_dirty, 4063 .bmap = ext4_bmap, 4064 .invalidatepage = noop_invalidatepage, 4065 }; 4066 4067 void ext4_set_aops(struct inode *inode) 4068 { 4069 switch (ext4_inode_journal_mode(inode)) { 4070 case EXT4_INODE_ORDERED_DATA_MODE: 4071 case EXT4_INODE_WRITEBACK_DATA_MODE: 4072 break; 4073 case EXT4_INODE_JOURNAL_DATA_MODE: 4074 inode->i_mapping->a_ops = &ext4_journalled_aops; 4075 return; 4076 default: 4077 BUG(); 4078 } 4079 if (IS_DAX(inode)) 4080 inode->i_mapping->a_ops = &ext4_dax_aops; 4081 else if (test_opt(inode->i_sb, DELALLOC)) 4082 inode->i_mapping->a_ops = &ext4_da_aops; 4083 else 4084 inode->i_mapping->a_ops = &ext4_aops; 4085 } 4086 4087 static int __ext4_block_zero_page_range(handle_t *handle, 4088 struct address_space *mapping, loff_t from, loff_t length) 4089 { 4090 ext4_fsblk_t index = from >> PAGE_SHIFT; 4091 unsigned offset = from & (PAGE_SIZE-1); 4092 unsigned blocksize, pos; 4093 ext4_lblk_t iblock; 4094 struct inode *inode = mapping->host; 4095 struct buffer_head *bh; 4096 struct page *page; 4097 int err = 0; 4098 4099 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 4100 mapping_gfp_constraint(mapping, ~__GFP_FS)); 4101 if (!page) 4102 return -ENOMEM; 4103 4104 blocksize = inode->i_sb->s_blocksize; 4105 4106 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 4107 4108 if (!page_has_buffers(page)) 4109 create_empty_buffers(page, blocksize, 0); 4110 4111 /* Find the buffer that contains "offset" */ 4112 bh = page_buffers(page); 4113 pos = blocksize; 4114 while (offset >= pos) { 4115 bh = bh->b_this_page; 4116 iblock++; 4117 pos += blocksize; 4118 } 4119 if (buffer_freed(bh)) { 4120 BUFFER_TRACE(bh, "freed: skip"); 4121 goto unlock; 4122 } 4123 if (!buffer_mapped(bh)) { 4124 BUFFER_TRACE(bh, "unmapped"); 4125 ext4_get_block(inode, iblock, bh, 0); 4126 /* unmapped? It's a hole - nothing to do */ 4127 if (!buffer_mapped(bh)) { 4128 BUFFER_TRACE(bh, "still unmapped"); 4129 goto unlock; 4130 } 4131 } 4132 4133 /* Ok, it's mapped. Make sure it's up-to-date */ 4134 if (PageUptodate(page)) 4135 set_buffer_uptodate(bh); 4136 4137 if (!buffer_uptodate(bh)) { 4138 err = -EIO; 4139 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 4140 wait_on_buffer(bh); 4141 /* Uhhuh. Read error. Complain and punt. */ 4142 if (!buffer_uptodate(bh)) 4143 goto unlock; 4144 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) { 4145 /* We expect the key to be set. */ 4146 BUG_ON(!fscrypt_has_encryption_key(inode)); 4147 WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks( 4148 page, blocksize, bh_offset(bh))); 4149 } 4150 } 4151 if (ext4_should_journal_data(inode)) { 4152 BUFFER_TRACE(bh, "get write access"); 4153 err = ext4_journal_get_write_access(handle, bh); 4154 if (err) 4155 goto unlock; 4156 } 4157 zero_user(page, offset, length); 4158 BUFFER_TRACE(bh, "zeroed end of block"); 4159 4160 if (ext4_should_journal_data(inode)) { 4161 err = ext4_handle_dirty_metadata(handle, inode, bh); 4162 } else { 4163 err = 0; 4164 mark_buffer_dirty(bh); 4165 if (ext4_should_order_data(inode)) 4166 err = ext4_jbd2_inode_add_write(handle, inode, from, 4167 length); 4168 } 4169 4170 unlock: 4171 unlock_page(page); 4172 put_page(page); 4173 return err; 4174 } 4175 4176 /* 4177 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 4178 * starting from file offset 'from'. The range to be zero'd must 4179 * be contained with in one block. If the specified range exceeds 4180 * the end of the block it will be shortened to end of the block 4181 * that cooresponds to 'from' 4182 */ 4183 static int ext4_block_zero_page_range(handle_t *handle, 4184 struct address_space *mapping, loff_t from, loff_t length) 4185 { 4186 struct inode *inode = mapping->host; 4187 unsigned offset = from & (PAGE_SIZE-1); 4188 unsigned blocksize = inode->i_sb->s_blocksize; 4189 unsigned max = blocksize - (offset & (blocksize - 1)); 4190 4191 /* 4192 * correct length if it does not fall between 4193 * 'from' and the end of the block 4194 */ 4195 if (length > max || length < 0) 4196 length = max; 4197 4198 if (IS_DAX(inode)) { 4199 return iomap_zero_range(inode, from, length, NULL, 4200 &ext4_iomap_ops); 4201 } 4202 return __ext4_block_zero_page_range(handle, mapping, from, length); 4203 } 4204 4205 /* 4206 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 4207 * up to the end of the block which corresponds to `from'. 4208 * This required during truncate. We need to physically zero the tail end 4209 * of that block so it doesn't yield old data if the file is later grown. 4210 */ 4211 static int ext4_block_truncate_page(handle_t *handle, 4212 struct address_space *mapping, loff_t from) 4213 { 4214 unsigned offset = from & (PAGE_SIZE-1); 4215 unsigned length; 4216 unsigned blocksize; 4217 struct inode *inode = mapping->host; 4218 4219 /* If we are processing an encrypted inode during orphan list handling */ 4220 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 4221 return 0; 4222 4223 blocksize = inode->i_sb->s_blocksize; 4224 length = blocksize - (offset & (blocksize - 1)); 4225 4226 return ext4_block_zero_page_range(handle, mapping, from, length); 4227 } 4228 4229 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 4230 loff_t lstart, loff_t length) 4231 { 4232 struct super_block *sb = inode->i_sb; 4233 struct address_space *mapping = inode->i_mapping; 4234 unsigned partial_start, partial_end; 4235 ext4_fsblk_t start, end; 4236 loff_t byte_end = (lstart + length - 1); 4237 int err = 0; 4238 4239 partial_start = lstart & (sb->s_blocksize - 1); 4240 partial_end = byte_end & (sb->s_blocksize - 1); 4241 4242 start = lstart >> sb->s_blocksize_bits; 4243 end = byte_end >> sb->s_blocksize_bits; 4244 4245 /* Handle partial zero within the single block */ 4246 if (start == end && 4247 (partial_start || (partial_end != sb->s_blocksize - 1))) { 4248 err = ext4_block_zero_page_range(handle, mapping, 4249 lstart, length); 4250 return err; 4251 } 4252 /* Handle partial zero out on the start of the range */ 4253 if (partial_start) { 4254 err = ext4_block_zero_page_range(handle, mapping, 4255 lstart, sb->s_blocksize); 4256 if (err) 4257 return err; 4258 } 4259 /* Handle partial zero out on the end of the range */ 4260 if (partial_end != sb->s_blocksize - 1) 4261 err = ext4_block_zero_page_range(handle, mapping, 4262 byte_end - partial_end, 4263 partial_end + 1); 4264 return err; 4265 } 4266 4267 int ext4_can_truncate(struct inode *inode) 4268 { 4269 if (S_ISREG(inode->i_mode)) 4270 return 1; 4271 if (S_ISDIR(inode->i_mode)) 4272 return 1; 4273 if (S_ISLNK(inode->i_mode)) 4274 return !ext4_inode_is_fast_symlink(inode); 4275 return 0; 4276 } 4277 4278 /* 4279 * We have to make sure i_disksize gets properly updated before we truncate 4280 * page cache due to hole punching or zero range. Otherwise i_disksize update 4281 * can get lost as it may have been postponed to submission of writeback but 4282 * that will never happen after we truncate page cache. 4283 */ 4284 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 4285 loff_t len) 4286 { 4287 handle_t *handle; 4288 loff_t size = i_size_read(inode); 4289 4290 WARN_ON(!inode_is_locked(inode)); 4291 if (offset > size || offset + len < size) 4292 return 0; 4293 4294 if (EXT4_I(inode)->i_disksize >= size) 4295 return 0; 4296 4297 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 4298 if (IS_ERR(handle)) 4299 return PTR_ERR(handle); 4300 ext4_update_i_disksize(inode, size); 4301 ext4_mark_inode_dirty(handle, inode); 4302 ext4_journal_stop(handle); 4303 4304 return 0; 4305 } 4306 4307 static void ext4_wait_dax_page(struct ext4_inode_info *ei) 4308 { 4309 up_write(&ei->i_mmap_sem); 4310 schedule(); 4311 down_write(&ei->i_mmap_sem); 4312 } 4313 4314 int ext4_break_layouts(struct inode *inode) 4315 { 4316 struct ext4_inode_info *ei = EXT4_I(inode); 4317 struct page *page; 4318 int error; 4319 4320 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem))) 4321 return -EINVAL; 4322 4323 do { 4324 page = dax_layout_busy_page(inode->i_mapping); 4325 if (!page) 4326 return 0; 4327 4328 error = ___wait_var_event(&page->_refcount, 4329 atomic_read(&page->_refcount) == 1, 4330 TASK_INTERRUPTIBLE, 0, 0, 4331 ext4_wait_dax_page(ei)); 4332 } while (error == 0); 4333 4334 return error; 4335 } 4336 4337 /* 4338 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4339 * associated with the given offset and length 4340 * 4341 * @inode: File inode 4342 * @offset: The offset where the hole will begin 4343 * @len: The length of the hole 4344 * 4345 * Returns: 0 on success or negative on failure 4346 */ 4347 4348 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 4349 { 4350 struct super_block *sb = inode->i_sb; 4351 ext4_lblk_t first_block, stop_block; 4352 struct address_space *mapping = inode->i_mapping; 4353 loff_t first_block_offset, last_block_offset; 4354 handle_t *handle; 4355 unsigned int credits; 4356 int ret = 0; 4357 4358 if (!S_ISREG(inode->i_mode)) 4359 return -EOPNOTSUPP; 4360 4361 trace_ext4_punch_hole(inode, offset, length, 0); 4362 4363 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 4364 if (ext4_has_inline_data(inode)) { 4365 down_write(&EXT4_I(inode)->i_mmap_sem); 4366 ret = ext4_convert_inline_data(inode); 4367 up_write(&EXT4_I(inode)->i_mmap_sem); 4368 if (ret) 4369 return ret; 4370 } 4371 4372 /* 4373 * Write out all dirty pages to avoid race conditions 4374 * Then release them. 4375 */ 4376 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4377 ret = filemap_write_and_wait_range(mapping, offset, 4378 offset + length - 1); 4379 if (ret) 4380 return ret; 4381 } 4382 4383 inode_lock(inode); 4384 4385 /* No need to punch hole beyond i_size */ 4386 if (offset >= inode->i_size) 4387 goto out_mutex; 4388 4389 /* 4390 * If the hole extends beyond i_size, set the hole 4391 * to end after the page that contains i_size 4392 */ 4393 if (offset + length > inode->i_size) { 4394 length = inode->i_size + 4395 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4396 offset; 4397 } 4398 4399 if (offset & (sb->s_blocksize - 1) || 4400 (offset + length) & (sb->s_blocksize - 1)) { 4401 /* 4402 * Attach jinode to inode for jbd2 if we do any zeroing of 4403 * partial block 4404 */ 4405 ret = ext4_inode_attach_jinode(inode); 4406 if (ret < 0) 4407 goto out_mutex; 4408 4409 } 4410 4411 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4412 inode_dio_wait(inode); 4413 4414 /* 4415 * Prevent page faults from reinstantiating pages we have released from 4416 * page cache. 4417 */ 4418 down_write(&EXT4_I(inode)->i_mmap_sem); 4419 4420 ret = ext4_break_layouts(inode); 4421 if (ret) 4422 goto out_dio; 4423 4424 first_block_offset = round_up(offset, sb->s_blocksize); 4425 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4426 4427 /* Now release the pages and zero block aligned part of pages*/ 4428 if (last_block_offset > first_block_offset) { 4429 ret = ext4_update_disksize_before_punch(inode, offset, length); 4430 if (ret) 4431 goto out_dio; 4432 truncate_pagecache_range(inode, first_block_offset, 4433 last_block_offset); 4434 } 4435 4436 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4437 credits = ext4_writepage_trans_blocks(inode); 4438 else 4439 credits = ext4_blocks_for_truncate(inode); 4440 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4441 if (IS_ERR(handle)) { 4442 ret = PTR_ERR(handle); 4443 ext4_std_error(sb, ret); 4444 goto out_dio; 4445 } 4446 4447 ret = ext4_zero_partial_blocks(handle, inode, offset, 4448 length); 4449 if (ret) 4450 goto out_stop; 4451 4452 first_block = (offset + sb->s_blocksize - 1) >> 4453 EXT4_BLOCK_SIZE_BITS(sb); 4454 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4455 4456 /* If there are blocks to remove, do it */ 4457 if (stop_block > first_block) { 4458 4459 down_write(&EXT4_I(inode)->i_data_sem); 4460 ext4_discard_preallocations(inode); 4461 4462 ret = ext4_es_remove_extent(inode, first_block, 4463 stop_block - first_block); 4464 if (ret) { 4465 up_write(&EXT4_I(inode)->i_data_sem); 4466 goto out_stop; 4467 } 4468 4469 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4470 ret = ext4_ext_remove_space(inode, first_block, 4471 stop_block - 1); 4472 else 4473 ret = ext4_ind_remove_space(handle, inode, first_block, 4474 stop_block); 4475 4476 up_write(&EXT4_I(inode)->i_data_sem); 4477 } 4478 if (IS_SYNC(inode)) 4479 ext4_handle_sync(handle); 4480 4481 inode->i_mtime = inode->i_ctime = current_time(inode); 4482 ext4_mark_inode_dirty(handle, inode); 4483 if (ret >= 0) 4484 ext4_update_inode_fsync_trans(handle, inode, 1); 4485 out_stop: 4486 ext4_journal_stop(handle); 4487 out_dio: 4488 up_write(&EXT4_I(inode)->i_mmap_sem); 4489 out_mutex: 4490 inode_unlock(inode); 4491 return ret; 4492 } 4493 4494 int ext4_inode_attach_jinode(struct inode *inode) 4495 { 4496 struct ext4_inode_info *ei = EXT4_I(inode); 4497 struct jbd2_inode *jinode; 4498 4499 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4500 return 0; 4501 4502 jinode = jbd2_alloc_inode(GFP_KERNEL); 4503 spin_lock(&inode->i_lock); 4504 if (!ei->jinode) { 4505 if (!jinode) { 4506 spin_unlock(&inode->i_lock); 4507 return -ENOMEM; 4508 } 4509 ei->jinode = jinode; 4510 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4511 jinode = NULL; 4512 } 4513 spin_unlock(&inode->i_lock); 4514 if (unlikely(jinode != NULL)) 4515 jbd2_free_inode(jinode); 4516 return 0; 4517 } 4518 4519 /* 4520 * ext4_truncate() 4521 * 4522 * We block out ext4_get_block() block instantiations across the entire 4523 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4524 * simultaneously on behalf of the same inode. 4525 * 4526 * As we work through the truncate and commit bits of it to the journal there 4527 * is one core, guiding principle: the file's tree must always be consistent on 4528 * disk. We must be able to restart the truncate after a crash. 4529 * 4530 * The file's tree may be transiently inconsistent in memory (although it 4531 * probably isn't), but whenever we close off and commit a journal transaction, 4532 * the contents of (the filesystem + the journal) must be consistent and 4533 * restartable. It's pretty simple, really: bottom up, right to left (although 4534 * left-to-right works OK too). 4535 * 4536 * Note that at recovery time, journal replay occurs *before* the restart of 4537 * truncate against the orphan inode list. 4538 * 4539 * The committed inode has the new, desired i_size (which is the same as 4540 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4541 * that this inode's truncate did not complete and it will again call 4542 * ext4_truncate() to have another go. So there will be instantiated blocks 4543 * to the right of the truncation point in a crashed ext4 filesystem. But 4544 * that's fine - as long as they are linked from the inode, the post-crash 4545 * ext4_truncate() run will find them and release them. 4546 */ 4547 int ext4_truncate(struct inode *inode) 4548 { 4549 struct ext4_inode_info *ei = EXT4_I(inode); 4550 unsigned int credits; 4551 int err = 0; 4552 handle_t *handle; 4553 struct address_space *mapping = inode->i_mapping; 4554 4555 /* 4556 * There is a possibility that we're either freeing the inode 4557 * or it's a completely new inode. In those cases we might not 4558 * have i_mutex locked because it's not necessary. 4559 */ 4560 if (!(inode->i_state & (I_NEW|I_FREEING))) 4561 WARN_ON(!inode_is_locked(inode)); 4562 trace_ext4_truncate_enter(inode); 4563 4564 if (!ext4_can_truncate(inode)) 4565 return 0; 4566 4567 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4568 4569 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4570 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4571 4572 if (ext4_has_inline_data(inode)) { 4573 int has_inline = 1; 4574 4575 err = ext4_inline_data_truncate(inode, &has_inline); 4576 if (err) 4577 return err; 4578 if (has_inline) 4579 return 0; 4580 } 4581 4582 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4583 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4584 if (ext4_inode_attach_jinode(inode) < 0) 4585 return 0; 4586 } 4587 4588 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4589 credits = ext4_writepage_trans_blocks(inode); 4590 else 4591 credits = ext4_blocks_for_truncate(inode); 4592 4593 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4594 if (IS_ERR(handle)) 4595 return PTR_ERR(handle); 4596 4597 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4598 ext4_block_truncate_page(handle, mapping, inode->i_size); 4599 4600 /* 4601 * We add the inode to the orphan list, so that if this 4602 * truncate spans multiple transactions, and we crash, we will 4603 * resume the truncate when the filesystem recovers. It also 4604 * marks the inode dirty, to catch the new size. 4605 * 4606 * Implication: the file must always be in a sane, consistent 4607 * truncatable state while each transaction commits. 4608 */ 4609 err = ext4_orphan_add(handle, inode); 4610 if (err) 4611 goto out_stop; 4612 4613 down_write(&EXT4_I(inode)->i_data_sem); 4614 4615 ext4_discard_preallocations(inode); 4616 4617 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4618 err = ext4_ext_truncate(handle, inode); 4619 else 4620 ext4_ind_truncate(handle, inode); 4621 4622 up_write(&ei->i_data_sem); 4623 if (err) 4624 goto out_stop; 4625 4626 if (IS_SYNC(inode)) 4627 ext4_handle_sync(handle); 4628 4629 out_stop: 4630 /* 4631 * If this was a simple ftruncate() and the file will remain alive, 4632 * then we need to clear up the orphan record which we created above. 4633 * However, if this was a real unlink then we were called by 4634 * ext4_evict_inode(), and we allow that function to clean up the 4635 * orphan info for us. 4636 */ 4637 if (inode->i_nlink) 4638 ext4_orphan_del(handle, inode); 4639 4640 inode->i_mtime = inode->i_ctime = current_time(inode); 4641 ext4_mark_inode_dirty(handle, inode); 4642 ext4_journal_stop(handle); 4643 4644 trace_ext4_truncate_exit(inode); 4645 return err; 4646 } 4647 4648 /* 4649 * ext4_get_inode_loc returns with an extra refcount against the inode's 4650 * underlying buffer_head on success. If 'in_mem' is true, we have all 4651 * data in memory that is needed to recreate the on-disk version of this 4652 * inode. 4653 */ 4654 static int __ext4_get_inode_loc(struct inode *inode, 4655 struct ext4_iloc *iloc, int in_mem) 4656 { 4657 struct ext4_group_desc *gdp; 4658 struct buffer_head *bh; 4659 struct super_block *sb = inode->i_sb; 4660 ext4_fsblk_t block; 4661 struct blk_plug plug; 4662 int inodes_per_block, inode_offset; 4663 4664 iloc->bh = NULL; 4665 if (inode->i_ino < EXT4_ROOT_INO || 4666 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4667 return -EFSCORRUPTED; 4668 4669 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4670 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4671 if (!gdp) 4672 return -EIO; 4673 4674 /* 4675 * Figure out the offset within the block group inode table 4676 */ 4677 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4678 inode_offset = ((inode->i_ino - 1) % 4679 EXT4_INODES_PER_GROUP(sb)); 4680 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4681 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4682 4683 bh = sb_getblk(sb, block); 4684 if (unlikely(!bh)) 4685 return -ENOMEM; 4686 if (!buffer_uptodate(bh)) { 4687 lock_buffer(bh); 4688 4689 /* 4690 * If the buffer has the write error flag, we have failed 4691 * to write out another inode in the same block. In this 4692 * case, we don't have to read the block because we may 4693 * read the old inode data successfully. 4694 */ 4695 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4696 set_buffer_uptodate(bh); 4697 4698 if (buffer_uptodate(bh)) { 4699 /* someone brought it uptodate while we waited */ 4700 unlock_buffer(bh); 4701 goto has_buffer; 4702 } 4703 4704 /* 4705 * If we have all information of the inode in memory and this 4706 * is the only valid inode in the block, we need not read the 4707 * block. 4708 */ 4709 if (in_mem) { 4710 struct buffer_head *bitmap_bh; 4711 int i, start; 4712 4713 start = inode_offset & ~(inodes_per_block - 1); 4714 4715 /* Is the inode bitmap in cache? */ 4716 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4717 if (unlikely(!bitmap_bh)) 4718 goto make_io; 4719 4720 /* 4721 * If the inode bitmap isn't in cache then the 4722 * optimisation may end up performing two reads instead 4723 * of one, so skip it. 4724 */ 4725 if (!buffer_uptodate(bitmap_bh)) { 4726 brelse(bitmap_bh); 4727 goto make_io; 4728 } 4729 for (i = start; i < start + inodes_per_block; i++) { 4730 if (i == inode_offset) 4731 continue; 4732 if (ext4_test_bit(i, bitmap_bh->b_data)) 4733 break; 4734 } 4735 brelse(bitmap_bh); 4736 if (i == start + inodes_per_block) { 4737 /* all other inodes are free, so skip I/O */ 4738 memset(bh->b_data, 0, bh->b_size); 4739 set_buffer_uptodate(bh); 4740 unlock_buffer(bh); 4741 goto has_buffer; 4742 } 4743 } 4744 4745 make_io: 4746 /* 4747 * If we need to do any I/O, try to pre-readahead extra 4748 * blocks from the inode table. 4749 */ 4750 blk_start_plug(&plug); 4751 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4752 ext4_fsblk_t b, end, table; 4753 unsigned num; 4754 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4755 4756 table = ext4_inode_table(sb, gdp); 4757 /* s_inode_readahead_blks is always a power of 2 */ 4758 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4759 if (table > b) 4760 b = table; 4761 end = b + ra_blks; 4762 num = EXT4_INODES_PER_GROUP(sb); 4763 if (ext4_has_group_desc_csum(sb)) 4764 num -= ext4_itable_unused_count(sb, gdp); 4765 table += num / inodes_per_block; 4766 if (end > table) 4767 end = table; 4768 while (b <= end) 4769 sb_breadahead(sb, b++); 4770 } 4771 4772 /* 4773 * There are other valid inodes in the buffer, this inode 4774 * has in-inode xattrs, or we don't have this inode in memory. 4775 * Read the block from disk. 4776 */ 4777 trace_ext4_load_inode(inode); 4778 get_bh(bh); 4779 bh->b_end_io = end_buffer_read_sync; 4780 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 4781 blk_finish_plug(&plug); 4782 wait_on_buffer(bh); 4783 if (!buffer_uptodate(bh)) { 4784 EXT4_ERROR_INODE_BLOCK(inode, block, 4785 "unable to read itable block"); 4786 brelse(bh); 4787 return -EIO; 4788 } 4789 } 4790 has_buffer: 4791 iloc->bh = bh; 4792 return 0; 4793 } 4794 4795 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4796 { 4797 /* We have all inode data except xattrs in memory here. */ 4798 return __ext4_get_inode_loc(inode, iloc, 4799 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4800 } 4801 4802 static bool ext4_should_use_dax(struct inode *inode) 4803 { 4804 if (!test_opt(inode->i_sb, DAX)) 4805 return false; 4806 if (!S_ISREG(inode->i_mode)) 4807 return false; 4808 if (ext4_should_journal_data(inode)) 4809 return false; 4810 if (ext4_has_inline_data(inode)) 4811 return false; 4812 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4813 return false; 4814 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4815 return false; 4816 return true; 4817 } 4818 4819 void ext4_set_inode_flags(struct inode *inode) 4820 { 4821 unsigned int flags = EXT4_I(inode)->i_flags; 4822 unsigned int new_fl = 0; 4823 4824 if (flags & EXT4_SYNC_FL) 4825 new_fl |= S_SYNC; 4826 if (flags & EXT4_APPEND_FL) 4827 new_fl |= S_APPEND; 4828 if (flags & EXT4_IMMUTABLE_FL) 4829 new_fl |= S_IMMUTABLE; 4830 if (flags & EXT4_NOATIME_FL) 4831 new_fl |= S_NOATIME; 4832 if (flags & EXT4_DIRSYNC_FL) 4833 new_fl |= S_DIRSYNC; 4834 if (ext4_should_use_dax(inode)) 4835 new_fl |= S_DAX; 4836 if (flags & EXT4_ENCRYPT_FL) 4837 new_fl |= S_ENCRYPTED; 4838 if (flags & EXT4_CASEFOLD_FL) 4839 new_fl |= S_CASEFOLD; 4840 if (flags & EXT4_VERITY_FL) 4841 new_fl |= S_VERITY; 4842 inode_set_flags(inode, new_fl, 4843 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4844 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4845 } 4846 4847 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4848 struct ext4_inode_info *ei) 4849 { 4850 blkcnt_t i_blocks ; 4851 struct inode *inode = &(ei->vfs_inode); 4852 struct super_block *sb = inode->i_sb; 4853 4854 if (ext4_has_feature_huge_file(sb)) { 4855 /* we are using combined 48 bit field */ 4856 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4857 le32_to_cpu(raw_inode->i_blocks_lo); 4858 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4859 /* i_blocks represent file system block size */ 4860 return i_blocks << (inode->i_blkbits - 9); 4861 } else { 4862 return i_blocks; 4863 } 4864 } else { 4865 return le32_to_cpu(raw_inode->i_blocks_lo); 4866 } 4867 } 4868 4869 static inline int ext4_iget_extra_inode(struct inode *inode, 4870 struct ext4_inode *raw_inode, 4871 struct ext4_inode_info *ei) 4872 { 4873 __le32 *magic = (void *)raw_inode + 4874 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4875 4876 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4877 EXT4_INODE_SIZE(inode->i_sb) && 4878 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4879 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4880 return ext4_find_inline_data_nolock(inode); 4881 } else 4882 EXT4_I(inode)->i_inline_off = 0; 4883 return 0; 4884 } 4885 4886 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4887 { 4888 if (!ext4_has_feature_project(inode->i_sb)) 4889 return -EOPNOTSUPP; 4890 *projid = EXT4_I(inode)->i_projid; 4891 return 0; 4892 } 4893 4894 /* 4895 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4896 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4897 * set. 4898 */ 4899 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4900 { 4901 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4902 inode_set_iversion_raw(inode, val); 4903 else 4904 inode_set_iversion_queried(inode, val); 4905 } 4906 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4907 { 4908 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4909 return inode_peek_iversion_raw(inode); 4910 else 4911 return inode_peek_iversion(inode); 4912 } 4913 4914 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4915 ext4_iget_flags flags, const char *function, 4916 unsigned int line) 4917 { 4918 struct ext4_iloc iloc; 4919 struct ext4_inode *raw_inode; 4920 struct ext4_inode_info *ei; 4921 struct inode *inode; 4922 journal_t *journal = EXT4_SB(sb)->s_journal; 4923 long ret; 4924 loff_t size; 4925 int block; 4926 uid_t i_uid; 4927 gid_t i_gid; 4928 projid_t i_projid; 4929 4930 if ((!(flags & EXT4_IGET_SPECIAL) && 4931 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) || 4932 (ino < EXT4_ROOT_INO) || 4933 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) { 4934 if (flags & EXT4_IGET_HANDLE) 4935 return ERR_PTR(-ESTALE); 4936 __ext4_error(sb, function, line, 4937 "inode #%lu: comm %s: iget: illegal inode #", 4938 ino, current->comm); 4939 return ERR_PTR(-EFSCORRUPTED); 4940 } 4941 4942 inode = iget_locked(sb, ino); 4943 if (!inode) 4944 return ERR_PTR(-ENOMEM); 4945 if (!(inode->i_state & I_NEW)) 4946 return inode; 4947 4948 ei = EXT4_I(inode); 4949 iloc.bh = NULL; 4950 4951 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4952 if (ret < 0) 4953 goto bad_inode; 4954 raw_inode = ext4_raw_inode(&iloc); 4955 4956 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4957 ext4_error_inode(inode, function, line, 0, 4958 "iget: root inode unallocated"); 4959 ret = -EFSCORRUPTED; 4960 goto bad_inode; 4961 } 4962 4963 if ((flags & EXT4_IGET_HANDLE) && 4964 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4965 ret = -ESTALE; 4966 goto bad_inode; 4967 } 4968 4969 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4970 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4971 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4972 EXT4_INODE_SIZE(inode->i_sb) || 4973 (ei->i_extra_isize & 3)) { 4974 ext4_error_inode(inode, function, line, 0, 4975 "iget: bad extra_isize %u " 4976 "(inode size %u)", 4977 ei->i_extra_isize, 4978 EXT4_INODE_SIZE(inode->i_sb)); 4979 ret = -EFSCORRUPTED; 4980 goto bad_inode; 4981 } 4982 } else 4983 ei->i_extra_isize = 0; 4984 4985 /* Precompute checksum seed for inode metadata */ 4986 if (ext4_has_metadata_csum(sb)) { 4987 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4988 __u32 csum; 4989 __le32 inum = cpu_to_le32(inode->i_ino); 4990 __le32 gen = raw_inode->i_generation; 4991 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4992 sizeof(inum)); 4993 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4994 sizeof(gen)); 4995 } 4996 4997 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4998 ext4_error_inode(inode, function, line, 0, 4999 "iget: checksum invalid"); 5000 ret = -EFSBADCRC; 5001 goto bad_inode; 5002 } 5003 5004 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 5005 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 5006 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 5007 if (ext4_has_feature_project(sb) && 5008 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 5009 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5010 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 5011 else 5012 i_projid = EXT4_DEF_PROJID; 5013 5014 if (!(test_opt(inode->i_sb, NO_UID32))) { 5015 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 5016 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 5017 } 5018 i_uid_write(inode, i_uid); 5019 i_gid_write(inode, i_gid); 5020 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 5021 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 5022 5023 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 5024 ei->i_inline_off = 0; 5025 ei->i_dir_start_lookup = 0; 5026 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 5027 /* We now have enough fields to check if the inode was active or not. 5028 * This is needed because nfsd might try to access dead inodes 5029 * the test is that same one that e2fsck uses 5030 * NeilBrown 1999oct15 5031 */ 5032 if (inode->i_nlink == 0) { 5033 if ((inode->i_mode == 0 || 5034 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 5035 ino != EXT4_BOOT_LOADER_INO) { 5036 /* this inode is deleted */ 5037 ret = -ESTALE; 5038 goto bad_inode; 5039 } 5040 /* The only unlinked inodes we let through here have 5041 * valid i_mode and are being read by the orphan 5042 * recovery code: that's fine, we're about to complete 5043 * the process of deleting those. 5044 * OR it is the EXT4_BOOT_LOADER_INO which is 5045 * not initialized on a new filesystem. */ 5046 } 5047 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 5048 ext4_set_inode_flags(inode); 5049 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 5050 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 5051 if (ext4_has_feature_64bit(sb)) 5052 ei->i_file_acl |= 5053 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 5054 inode->i_size = ext4_isize(sb, raw_inode); 5055 if ((size = i_size_read(inode)) < 0) { 5056 ext4_error_inode(inode, function, line, 0, 5057 "iget: bad i_size value: %lld", size); 5058 ret = -EFSCORRUPTED; 5059 goto bad_inode; 5060 } 5061 ei->i_disksize = inode->i_size; 5062 #ifdef CONFIG_QUOTA 5063 ei->i_reserved_quota = 0; 5064 #endif 5065 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 5066 ei->i_block_group = iloc.block_group; 5067 ei->i_last_alloc_group = ~0; 5068 /* 5069 * NOTE! The in-memory inode i_data array is in little-endian order 5070 * even on big-endian machines: we do NOT byteswap the block numbers! 5071 */ 5072 for (block = 0; block < EXT4_N_BLOCKS; block++) 5073 ei->i_data[block] = raw_inode->i_block[block]; 5074 INIT_LIST_HEAD(&ei->i_orphan); 5075 5076 /* 5077 * Set transaction id's of transactions that have to be committed 5078 * to finish f[data]sync. We set them to currently running transaction 5079 * as we cannot be sure that the inode or some of its metadata isn't 5080 * part of the transaction - the inode could have been reclaimed and 5081 * now it is reread from disk. 5082 */ 5083 if (journal) { 5084 transaction_t *transaction; 5085 tid_t tid; 5086 5087 read_lock(&journal->j_state_lock); 5088 if (journal->j_running_transaction) 5089 transaction = journal->j_running_transaction; 5090 else 5091 transaction = journal->j_committing_transaction; 5092 if (transaction) 5093 tid = transaction->t_tid; 5094 else 5095 tid = journal->j_commit_sequence; 5096 read_unlock(&journal->j_state_lock); 5097 ei->i_sync_tid = tid; 5098 ei->i_datasync_tid = tid; 5099 } 5100 5101 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5102 if (ei->i_extra_isize == 0) { 5103 /* The extra space is currently unused. Use it. */ 5104 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 5105 ei->i_extra_isize = sizeof(struct ext4_inode) - 5106 EXT4_GOOD_OLD_INODE_SIZE; 5107 } else { 5108 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 5109 if (ret) 5110 goto bad_inode; 5111 } 5112 } 5113 5114 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 5115 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 5116 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 5117 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 5118 5119 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5120 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 5121 5122 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5123 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5124 ivers |= 5125 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 5126 } 5127 ext4_inode_set_iversion_queried(inode, ivers); 5128 } 5129 5130 ret = 0; 5131 if (ei->i_file_acl && 5132 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 5133 ext4_error_inode(inode, function, line, 0, 5134 "iget: bad extended attribute block %llu", 5135 ei->i_file_acl); 5136 ret = -EFSCORRUPTED; 5137 goto bad_inode; 5138 } else if (!ext4_has_inline_data(inode)) { 5139 /* validate the block references in the inode */ 5140 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5141 (S_ISLNK(inode->i_mode) && 5142 !ext4_inode_is_fast_symlink(inode))) { 5143 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5144 ret = ext4_ext_check_inode(inode); 5145 else 5146 ret = ext4_ind_check_inode(inode); 5147 } 5148 } 5149 if (ret) 5150 goto bad_inode; 5151 5152 if (S_ISREG(inode->i_mode)) { 5153 inode->i_op = &ext4_file_inode_operations; 5154 inode->i_fop = &ext4_file_operations; 5155 ext4_set_aops(inode); 5156 } else if (S_ISDIR(inode->i_mode)) { 5157 inode->i_op = &ext4_dir_inode_operations; 5158 inode->i_fop = &ext4_dir_operations; 5159 } else if (S_ISLNK(inode->i_mode)) { 5160 /* VFS does not allow setting these so must be corruption */ 5161 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 5162 ext4_error_inode(inode, function, line, 0, 5163 "iget: immutable or append flags " 5164 "not allowed on symlinks"); 5165 ret = -EFSCORRUPTED; 5166 goto bad_inode; 5167 } 5168 if (IS_ENCRYPTED(inode)) { 5169 inode->i_op = &ext4_encrypted_symlink_inode_operations; 5170 ext4_set_aops(inode); 5171 } else if (ext4_inode_is_fast_symlink(inode)) { 5172 inode->i_link = (char *)ei->i_data; 5173 inode->i_op = &ext4_fast_symlink_inode_operations; 5174 nd_terminate_link(ei->i_data, inode->i_size, 5175 sizeof(ei->i_data) - 1); 5176 } else { 5177 inode->i_op = &ext4_symlink_inode_operations; 5178 ext4_set_aops(inode); 5179 } 5180 inode_nohighmem(inode); 5181 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5182 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5183 inode->i_op = &ext4_special_inode_operations; 5184 if (raw_inode->i_block[0]) 5185 init_special_inode(inode, inode->i_mode, 5186 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5187 else 5188 init_special_inode(inode, inode->i_mode, 5189 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5190 } else if (ino == EXT4_BOOT_LOADER_INO) { 5191 make_bad_inode(inode); 5192 } else { 5193 ret = -EFSCORRUPTED; 5194 ext4_error_inode(inode, function, line, 0, 5195 "iget: bogus i_mode (%o)", inode->i_mode); 5196 goto bad_inode; 5197 } 5198 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) 5199 ext4_error_inode(inode, function, line, 0, 5200 "casefold flag without casefold feature"); 5201 brelse(iloc.bh); 5202 5203 unlock_new_inode(inode); 5204 return inode; 5205 5206 bad_inode: 5207 brelse(iloc.bh); 5208 iget_failed(inode); 5209 return ERR_PTR(ret); 5210 } 5211 5212 static int ext4_inode_blocks_set(handle_t *handle, 5213 struct ext4_inode *raw_inode, 5214 struct ext4_inode_info *ei) 5215 { 5216 struct inode *inode = &(ei->vfs_inode); 5217 u64 i_blocks = inode->i_blocks; 5218 struct super_block *sb = inode->i_sb; 5219 5220 if (i_blocks <= ~0U) { 5221 /* 5222 * i_blocks can be represented in a 32 bit variable 5223 * as multiple of 512 bytes 5224 */ 5225 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5226 raw_inode->i_blocks_high = 0; 5227 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5228 return 0; 5229 } 5230 if (!ext4_has_feature_huge_file(sb)) 5231 return -EFBIG; 5232 5233 if (i_blocks <= 0xffffffffffffULL) { 5234 /* 5235 * i_blocks can be represented in a 48 bit variable 5236 * as multiple of 512 bytes 5237 */ 5238 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5239 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5240 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5241 } else { 5242 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5243 /* i_block is stored in file system block size */ 5244 i_blocks = i_blocks >> (inode->i_blkbits - 9); 5245 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5246 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5247 } 5248 return 0; 5249 } 5250 5251 struct other_inode { 5252 unsigned long orig_ino; 5253 struct ext4_inode *raw_inode; 5254 }; 5255 5256 static int other_inode_match(struct inode * inode, unsigned long ino, 5257 void *data) 5258 { 5259 struct other_inode *oi = (struct other_inode *) data; 5260 5261 if ((inode->i_ino != ino) || 5262 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 5263 I_DIRTY_INODE)) || 5264 ((inode->i_state & I_DIRTY_TIME) == 0)) 5265 return 0; 5266 spin_lock(&inode->i_lock); 5267 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 5268 I_DIRTY_INODE)) == 0) && 5269 (inode->i_state & I_DIRTY_TIME)) { 5270 struct ext4_inode_info *ei = EXT4_I(inode); 5271 5272 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 5273 spin_unlock(&inode->i_lock); 5274 5275 spin_lock(&ei->i_raw_lock); 5276 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 5277 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 5278 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 5279 ext4_inode_csum_set(inode, oi->raw_inode, ei); 5280 spin_unlock(&ei->i_raw_lock); 5281 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 5282 return -1; 5283 } 5284 spin_unlock(&inode->i_lock); 5285 return -1; 5286 } 5287 5288 /* 5289 * Opportunistically update the other time fields for other inodes in 5290 * the same inode table block. 5291 */ 5292 static void ext4_update_other_inodes_time(struct super_block *sb, 5293 unsigned long orig_ino, char *buf) 5294 { 5295 struct other_inode oi; 5296 unsigned long ino; 5297 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5298 int inode_size = EXT4_INODE_SIZE(sb); 5299 5300 oi.orig_ino = orig_ino; 5301 /* 5302 * Calculate the first inode in the inode table block. Inode 5303 * numbers are one-based. That is, the first inode in a block 5304 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5305 */ 5306 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5307 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5308 if (ino == orig_ino) 5309 continue; 5310 oi.raw_inode = (struct ext4_inode *) buf; 5311 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 5312 } 5313 } 5314 5315 /* 5316 * Post the struct inode info into an on-disk inode location in the 5317 * buffer-cache. This gobbles the caller's reference to the 5318 * buffer_head in the inode location struct. 5319 * 5320 * The caller must have write access to iloc->bh. 5321 */ 5322 static int ext4_do_update_inode(handle_t *handle, 5323 struct inode *inode, 5324 struct ext4_iloc *iloc) 5325 { 5326 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5327 struct ext4_inode_info *ei = EXT4_I(inode); 5328 struct buffer_head *bh = iloc->bh; 5329 struct super_block *sb = inode->i_sb; 5330 int err = 0, rc, block; 5331 int need_datasync = 0, set_large_file = 0; 5332 uid_t i_uid; 5333 gid_t i_gid; 5334 projid_t i_projid; 5335 5336 spin_lock(&ei->i_raw_lock); 5337 5338 /* For fields not tracked in the in-memory inode, 5339 * initialise them to zero for new inodes. */ 5340 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5341 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5342 5343 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5344 i_uid = i_uid_read(inode); 5345 i_gid = i_gid_read(inode); 5346 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 5347 if (!(test_opt(inode->i_sb, NO_UID32))) { 5348 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 5349 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 5350 /* 5351 * Fix up interoperability with old kernels. Otherwise, old inodes get 5352 * re-used with the upper 16 bits of the uid/gid intact 5353 */ 5354 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 5355 raw_inode->i_uid_high = 0; 5356 raw_inode->i_gid_high = 0; 5357 } else { 5358 raw_inode->i_uid_high = 5359 cpu_to_le16(high_16_bits(i_uid)); 5360 raw_inode->i_gid_high = 5361 cpu_to_le16(high_16_bits(i_gid)); 5362 } 5363 } else { 5364 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 5365 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 5366 raw_inode->i_uid_high = 0; 5367 raw_inode->i_gid_high = 0; 5368 } 5369 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5370 5371 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5372 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5373 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5374 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5375 5376 err = ext4_inode_blocks_set(handle, raw_inode, ei); 5377 if (err) { 5378 spin_unlock(&ei->i_raw_lock); 5379 goto out_brelse; 5380 } 5381 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5382 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5383 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5384 raw_inode->i_file_acl_high = 5385 cpu_to_le16(ei->i_file_acl >> 32); 5386 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5387 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) { 5388 ext4_isize_set(raw_inode, ei->i_disksize); 5389 need_datasync = 1; 5390 } 5391 if (ei->i_disksize > 0x7fffffffULL) { 5392 if (!ext4_has_feature_large_file(sb) || 5393 EXT4_SB(sb)->s_es->s_rev_level == 5394 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5395 set_large_file = 1; 5396 } 5397 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5398 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5399 if (old_valid_dev(inode->i_rdev)) { 5400 raw_inode->i_block[0] = 5401 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5402 raw_inode->i_block[1] = 0; 5403 } else { 5404 raw_inode->i_block[0] = 0; 5405 raw_inode->i_block[1] = 5406 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5407 raw_inode->i_block[2] = 0; 5408 } 5409 } else if (!ext4_has_inline_data(inode)) { 5410 for (block = 0; block < EXT4_N_BLOCKS; block++) 5411 raw_inode->i_block[block] = ei->i_data[block]; 5412 } 5413 5414 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5415 u64 ivers = ext4_inode_peek_iversion(inode); 5416 5417 raw_inode->i_disk_version = cpu_to_le32(ivers); 5418 if (ei->i_extra_isize) { 5419 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5420 raw_inode->i_version_hi = 5421 cpu_to_le32(ivers >> 32); 5422 raw_inode->i_extra_isize = 5423 cpu_to_le16(ei->i_extra_isize); 5424 } 5425 } 5426 5427 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5428 i_projid != EXT4_DEF_PROJID); 5429 5430 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5431 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5432 raw_inode->i_projid = cpu_to_le32(i_projid); 5433 5434 ext4_inode_csum_set(inode, raw_inode, ei); 5435 spin_unlock(&ei->i_raw_lock); 5436 if (inode->i_sb->s_flags & SB_LAZYTIME) 5437 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5438 bh->b_data); 5439 5440 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5441 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5442 if (!err) 5443 err = rc; 5444 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5445 if (set_large_file) { 5446 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5447 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5448 if (err) 5449 goto out_brelse; 5450 ext4_set_feature_large_file(sb); 5451 ext4_handle_sync(handle); 5452 err = ext4_handle_dirty_super(handle, sb); 5453 } 5454 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5455 out_brelse: 5456 brelse(bh); 5457 ext4_std_error(inode->i_sb, err); 5458 return err; 5459 } 5460 5461 /* 5462 * ext4_write_inode() 5463 * 5464 * We are called from a few places: 5465 * 5466 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5467 * Here, there will be no transaction running. We wait for any running 5468 * transaction to commit. 5469 * 5470 * - Within flush work (sys_sync(), kupdate and such). 5471 * We wait on commit, if told to. 5472 * 5473 * - Within iput_final() -> write_inode_now() 5474 * We wait on commit, if told to. 5475 * 5476 * In all cases it is actually safe for us to return without doing anything, 5477 * because the inode has been copied into a raw inode buffer in 5478 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5479 * writeback. 5480 * 5481 * Note that we are absolutely dependent upon all inode dirtiers doing the 5482 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5483 * which we are interested. 5484 * 5485 * It would be a bug for them to not do this. The code: 5486 * 5487 * mark_inode_dirty(inode) 5488 * stuff(); 5489 * inode->i_size = expr; 5490 * 5491 * is in error because write_inode() could occur while `stuff()' is running, 5492 * and the new i_size will be lost. Plus the inode will no longer be on the 5493 * superblock's dirty inode list. 5494 */ 5495 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5496 { 5497 int err; 5498 5499 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5500 sb_rdonly(inode->i_sb)) 5501 return 0; 5502 5503 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5504 return -EIO; 5505 5506 if (EXT4_SB(inode->i_sb)->s_journal) { 5507 if (ext4_journal_current_handle()) { 5508 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5509 dump_stack(); 5510 return -EIO; 5511 } 5512 5513 /* 5514 * No need to force transaction in WB_SYNC_NONE mode. Also 5515 * ext4_sync_fs() will force the commit after everything is 5516 * written. 5517 */ 5518 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5519 return 0; 5520 5521 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 5522 EXT4_I(inode)->i_sync_tid); 5523 } else { 5524 struct ext4_iloc iloc; 5525 5526 err = __ext4_get_inode_loc(inode, &iloc, 0); 5527 if (err) 5528 return err; 5529 /* 5530 * sync(2) will flush the whole buffer cache. No need to do 5531 * it here separately for each inode. 5532 */ 5533 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5534 sync_dirty_buffer(iloc.bh); 5535 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5536 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5537 "IO error syncing inode"); 5538 err = -EIO; 5539 } 5540 brelse(iloc.bh); 5541 } 5542 return err; 5543 } 5544 5545 /* 5546 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5547 * buffers that are attached to a page stradding i_size and are undergoing 5548 * commit. In that case we have to wait for commit to finish and try again. 5549 */ 5550 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5551 { 5552 struct page *page; 5553 unsigned offset; 5554 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5555 tid_t commit_tid = 0; 5556 int ret; 5557 5558 offset = inode->i_size & (PAGE_SIZE - 1); 5559 /* 5560 * All buffers in the last page remain valid? Then there's nothing to 5561 * do. We do the check mainly to optimize the common PAGE_SIZE == 5562 * blocksize case 5563 */ 5564 if (offset > PAGE_SIZE - i_blocksize(inode)) 5565 return; 5566 while (1) { 5567 page = find_lock_page(inode->i_mapping, 5568 inode->i_size >> PAGE_SHIFT); 5569 if (!page) 5570 return; 5571 ret = __ext4_journalled_invalidatepage(page, offset, 5572 PAGE_SIZE - offset); 5573 unlock_page(page); 5574 put_page(page); 5575 if (ret != -EBUSY) 5576 return; 5577 commit_tid = 0; 5578 read_lock(&journal->j_state_lock); 5579 if (journal->j_committing_transaction) 5580 commit_tid = journal->j_committing_transaction->t_tid; 5581 read_unlock(&journal->j_state_lock); 5582 if (commit_tid) 5583 jbd2_log_wait_commit(journal, commit_tid); 5584 } 5585 } 5586 5587 /* 5588 * ext4_setattr() 5589 * 5590 * Called from notify_change. 5591 * 5592 * We want to trap VFS attempts to truncate the file as soon as 5593 * possible. In particular, we want to make sure that when the VFS 5594 * shrinks i_size, we put the inode on the orphan list and modify 5595 * i_disksize immediately, so that during the subsequent flushing of 5596 * dirty pages and freeing of disk blocks, we can guarantee that any 5597 * commit will leave the blocks being flushed in an unused state on 5598 * disk. (On recovery, the inode will get truncated and the blocks will 5599 * be freed, so we have a strong guarantee that no future commit will 5600 * leave these blocks visible to the user.) 5601 * 5602 * Another thing we have to assure is that if we are in ordered mode 5603 * and inode is still attached to the committing transaction, we must 5604 * we start writeout of all the dirty pages which are being truncated. 5605 * This way we are sure that all the data written in the previous 5606 * transaction are already on disk (truncate waits for pages under 5607 * writeback). 5608 * 5609 * Called with inode->i_mutex down. 5610 */ 5611 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5612 { 5613 struct inode *inode = d_inode(dentry); 5614 int error, rc = 0; 5615 int orphan = 0; 5616 const unsigned int ia_valid = attr->ia_valid; 5617 5618 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5619 return -EIO; 5620 5621 if (unlikely(IS_IMMUTABLE(inode))) 5622 return -EPERM; 5623 5624 if (unlikely(IS_APPEND(inode) && 5625 (ia_valid & (ATTR_MODE | ATTR_UID | 5626 ATTR_GID | ATTR_TIMES_SET)))) 5627 return -EPERM; 5628 5629 error = setattr_prepare(dentry, attr); 5630 if (error) 5631 return error; 5632 5633 error = fscrypt_prepare_setattr(dentry, attr); 5634 if (error) 5635 return error; 5636 5637 error = fsverity_prepare_setattr(dentry, attr); 5638 if (error) 5639 return error; 5640 5641 if (is_quota_modification(inode, attr)) { 5642 error = dquot_initialize(inode); 5643 if (error) 5644 return error; 5645 } 5646 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5647 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5648 handle_t *handle; 5649 5650 /* (user+group)*(old+new) structure, inode write (sb, 5651 * inode block, ? - but truncate inode update has it) */ 5652 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5653 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5654 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5655 if (IS_ERR(handle)) { 5656 error = PTR_ERR(handle); 5657 goto err_out; 5658 } 5659 5660 /* dquot_transfer() calls back ext4_get_inode_usage() which 5661 * counts xattr inode references. 5662 */ 5663 down_read(&EXT4_I(inode)->xattr_sem); 5664 error = dquot_transfer(inode, attr); 5665 up_read(&EXT4_I(inode)->xattr_sem); 5666 5667 if (error) { 5668 ext4_journal_stop(handle); 5669 return error; 5670 } 5671 /* Update corresponding info in inode so that everything is in 5672 * one transaction */ 5673 if (attr->ia_valid & ATTR_UID) 5674 inode->i_uid = attr->ia_uid; 5675 if (attr->ia_valid & ATTR_GID) 5676 inode->i_gid = attr->ia_gid; 5677 error = ext4_mark_inode_dirty(handle, inode); 5678 ext4_journal_stop(handle); 5679 } 5680 5681 if (attr->ia_valid & ATTR_SIZE) { 5682 handle_t *handle; 5683 loff_t oldsize = inode->i_size; 5684 int shrink = (attr->ia_size < inode->i_size); 5685 5686 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5687 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5688 5689 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5690 return -EFBIG; 5691 } 5692 if (!S_ISREG(inode->i_mode)) 5693 return -EINVAL; 5694 5695 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5696 inode_inc_iversion(inode); 5697 5698 if (shrink) { 5699 if (ext4_should_order_data(inode)) { 5700 error = ext4_begin_ordered_truncate(inode, 5701 attr->ia_size); 5702 if (error) 5703 goto err_out; 5704 } 5705 /* 5706 * Blocks are going to be removed from the inode. Wait 5707 * for dio in flight. 5708 */ 5709 inode_dio_wait(inode); 5710 } 5711 5712 down_write(&EXT4_I(inode)->i_mmap_sem); 5713 5714 rc = ext4_break_layouts(inode); 5715 if (rc) { 5716 up_write(&EXT4_I(inode)->i_mmap_sem); 5717 return rc; 5718 } 5719 5720 if (attr->ia_size != inode->i_size) { 5721 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5722 if (IS_ERR(handle)) { 5723 error = PTR_ERR(handle); 5724 goto out_mmap_sem; 5725 } 5726 if (ext4_handle_valid(handle) && shrink) { 5727 error = ext4_orphan_add(handle, inode); 5728 orphan = 1; 5729 } 5730 /* 5731 * Update c/mtime on truncate up, ext4_truncate() will 5732 * update c/mtime in shrink case below 5733 */ 5734 if (!shrink) { 5735 inode->i_mtime = current_time(inode); 5736 inode->i_ctime = inode->i_mtime; 5737 } 5738 down_write(&EXT4_I(inode)->i_data_sem); 5739 EXT4_I(inode)->i_disksize = attr->ia_size; 5740 rc = ext4_mark_inode_dirty(handle, inode); 5741 if (!error) 5742 error = rc; 5743 /* 5744 * We have to update i_size under i_data_sem together 5745 * with i_disksize to avoid races with writeback code 5746 * running ext4_wb_update_i_disksize(). 5747 */ 5748 if (!error) 5749 i_size_write(inode, attr->ia_size); 5750 up_write(&EXT4_I(inode)->i_data_sem); 5751 ext4_journal_stop(handle); 5752 if (error) 5753 goto out_mmap_sem; 5754 if (!shrink) { 5755 pagecache_isize_extended(inode, oldsize, 5756 inode->i_size); 5757 } else if (ext4_should_journal_data(inode)) { 5758 ext4_wait_for_tail_page_commit(inode); 5759 } 5760 } 5761 5762 /* 5763 * Truncate pagecache after we've waited for commit 5764 * in data=journal mode to make pages freeable. 5765 */ 5766 truncate_pagecache(inode, inode->i_size); 5767 /* 5768 * Call ext4_truncate() even if i_size didn't change to 5769 * truncate possible preallocated blocks. 5770 */ 5771 if (attr->ia_size <= oldsize) { 5772 rc = ext4_truncate(inode); 5773 if (rc) 5774 error = rc; 5775 } 5776 out_mmap_sem: 5777 up_write(&EXT4_I(inode)->i_mmap_sem); 5778 } 5779 5780 if (!error) { 5781 setattr_copy(inode, attr); 5782 mark_inode_dirty(inode); 5783 } 5784 5785 /* 5786 * If the call to ext4_truncate failed to get a transaction handle at 5787 * all, we need to clean up the in-core orphan list manually. 5788 */ 5789 if (orphan && inode->i_nlink) 5790 ext4_orphan_del(NULL, inode); 5791 5792 if (!error && (ia_valid & ATTR_MODE)) 5793 rc = posix_acl_chmod(inode, inode->i_mode); 5794 5795 err_out: 5796 ext4_std_error(inode->i_sb, error); 5797 if (!error) 5798 error = rc; 5799 return error; 5800 } 5801 5802 int ext4_getattr(const struct path *path, struct kstat *stat, 5803 u32 request_mask, unsigned int query_flags) 5804 { 5805 struct inode *inode = d_inode(path->dentry); 5806 struct ext4_inode *raw_inode; 5807 struct ext4_inode_info *ei = EXT4_I(inode); 5808 unsigned int flags; 5809 5810 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5811 stat->result_mask |= STATX_BTIME; 5812 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5813 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5814 } 5815 5816 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5817 if (flags & EXT4_APPEND_FL) 5818 stat->attributes |= STATX_ATTR_APPEND; 5819 if (flags & EXT4_COMPR_FL) 5820 stat->attributes |= STATX_ATTR_COMPRESSED; 5821 if (flags & EXT4_ENCRYPT_FL) 5822 stat->attributes |= STATX_ATTR_ENCRYPTED; 5823 if (flags & EXT4_IMMUTABLE_FL) 5824 stat->attributes |= STATX_ATTR_IMMUTABLE; 5825 if (flags & EXT4_NODUMP_FL) 5826 stat->attributes |= STATX_ATTR_NODUMP; 5827 5828 stat->attributes_mask |= (STATX_ATTR_APPEND | 5829 STATX_ATTR_COMPRESSED | 5830 STATX_ATTR_ENCRYPTED | 5831 STATX_ATTR_IMMUTABLE | 5832 STATX_ATTR_NODUMP); 5833 5834 generic_fillattr(inode, stat); 5835 return 0; 5836 } 5837 5838 int ext4_file_getattr(const struct path *path, struct kstat *stat, 5839 u32 request_mask, unsigned int query_flags) 5840 { 5841 struct inode *inode = d_inode(path->dentry); 5842 u64 delalloc_blocks; 5843 5844 ext4_getattr(path, stat, request_mask, query_flags); 5845 5846 /* 5847 * If there is inline data in the inode, the inode will normally not 5848 * have data blocks allocated (it may have an external xattr block). 5849 * Report at least one sector for such files, so tools like tar, rsync, 5850 * others don't incorrectly think the file is completely sparse. 5851 */ 5852 if (unlikely(ext4_has_inline_data(inode))) 5853 stat->blocks += (stat->size + 511) >> 9; 5854 5855 /* 5856 * We can't update i_blocks if the block allocation is delayed 5857 * otherwise in the case of system crash before the real block 5858 * allocation is done, we will have i_blocks inconsistent with 5859 * on-disk file blocks. 5860 * We always keep i_blocks updated together with real 5861 * allocation. But to not confuse with user, stat 5862 * will return the blocks that include the delayed allocation 5863 * blocks for this file. 5864 */ 5865 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5866 EXT4_I(inode)->i_reserved_data_blocks); 5867 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5868 return 0; 5869 } 5870 5871 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5872 int pextents) 5873 { 5874 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5875 return ext4_ind_trans_blocks(inode, lblocks); 5876 return ext4_ext_index_trans_blocks(inode, pextents); 5877 } 5878 5879 /* 5880 * Account for index blocks, block groups bitmaps and block group 5881 * descriptor blocks if modify datablocks and index blocks 5882 * worse case, the indexs blocks spread over different block groups 5883 * 5884 * If datablocks are discontiguous, they are possible to spread over 5885 * different block groups too. If they are contiguous, with flexbg, 5886 * they could still across block group boundary. 5887 * 5888 * Also account for superblock, inode, quota and xattr blocks 5889 */ 5890 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5891 int pextents) 5892 { 5893 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5894 int gdpblocks; 5895 int idxblocks; 5896 int ret = 0; 5897 5898 /* 5899 * How many index blocks need to touch to map @lblocks logical blocks 5900 * to @pextents physical extents? 5901 */ 5902 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5903 5904 ret = idxblocks; 5905 5906 /* 5907 * Now let's see how many group bitmaps and group descriptors need 5908 * to account 5909 */ 5910 groups = idxblocks + pextents; 5911 gdpblocks = groups; 5912 if (groups > ngroups) 5913 groups = ngroups; 5914 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5915 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5916 5917 /* bitmaps and block group descriptor blocks */ 5918 ret += groups + gdpblocks; 5919 5920 /* Blocks for super block, inode, quota and xattr blocks */ 5921 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5922 5923 return ret; 5924 } 5925 5926 /* 5927 * Calculate the total number of credits to reserve to fit 5928 * the modification of a single pages into a single transaction, 5929 * which may include multiple chunks of block allocations. 5930 * 5931 * This could be called via ext4_write_begin() 5932 * 5933 * We need to consider the worse case, when 5934 * one new block per extent. 5935 */ 5936 int ext4_writepage_trans_blocks(struct inode *inode) 5937 { 5938 int bpp = ext4_journal_blocks_per_page(inode); 5939 int ret; 5940 5941 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5942 5943 /* Account for data blocks for journalled mode */ 5944 if (ext4_should_journal_data(inode)) 5945 ret += bpp; 5946 return ret; 5947 } 5948 5949 /* 5950 * Calculate the journal credits for a chunk of data modification. 5951 * 5952 * This is called from DIO, fallocate or whoever calling 5953 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5954 * 5955 * journal buffers for data blocks are not included here, as DIO 5956 * and fallocate do no need to journal data buffers. 5957 */ 5958 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5959 { 5960 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5961 } 5962 5963 /* 5964 * The caller must have previously called ext4_reserve_inode_write(). 5965 * Give this, we know that the caller already has write access to iloc->bh. 5966 */ 5967 int ext4_mark_iloc_dirty(handle_t *handle, 5968 struct inode *inode, struct ext4_iloc *iloc) 5969 { 5970 int err = 0; 5971 5972 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5973 put_bh(iloc->bh); 5974 return -EIO; 5975 } 5976 if (IS_I_VERSION(inode)) 5977 inode_inc_iversion(inode); 5978 5979 /* the do_update_inode consumes one bh->b_count */ 5980 get_bh(iloc->bh); 5981 5982 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5983 err = ext4_do_update_inode(handle, inode, iloc); 5984 put_bh(iloc->bh); 5985 return err; 5986 } 5987 5988 /* 5989 * On success, We end up with an outstanding reference count against 5990 * iloc->bh. This _must_ be cleaned up later. 5991 */ 5992 5993 int 5994 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5995 struct ext4_iloc *iloc) 5996 { 5997 int err; 5998 5999 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 6000 return -EIO; 6001 6002 err = ext4_get_inode_loc(inode, iloc); 6003 if (!err) { 6004 BUFFER_TRACE(iloc->bh, "get_write_access"); 6005 err = ext4_journal_get_write_access(handle, iloc->bh); 6006 if (err) { 6007 brelse(iloc->bh); 6008 iloc->bh = NULL; 6009 } 6010 } 6011 ext4_std_error(inode->i_sb, err); 6012 return err; 6013 } 6014 6015 static int __ext4_expand_extra_isize(struct inode *inode, 6016 unsigned int new_extra_isize, 6017 struct ext4_iloc *iloc, 6018 handle_t *handle, int *no_expand) 6019 { 6020 struct ext4_inode *raw_inode; 6021 struct ext4_xattr_ibody_header *header; 6022 int error; 6023 6024 raw_inode = ext4_raw_inode(iloc); 6025 6026 header = IHDR(inode, raw_inode); 6027 6028 /* No extended attributes present */ 6029 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 6030 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 6031 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 6032 EXT4_I(inode)->i_extra_isize, 0, 6033 new_extra_isize - EXT4_I(inode)->i_extra_isize); 6034 EXT4_I(inode)->i_extra_isize = new_extra_isize; 6035 return 0; 6036 } 6037 6038 /* try to expand with EAs present */ 6039 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 6040 raw_inode, handle); 6041 if (error) { 6042 /* 6043 * Inode size expansion failed; don't try again 6044 */ 6045 *no_expand = 1; 6046 } 6047 6048 return error; 6049 } 6050 6051 /* 6052 * Expand an inode by new_extra_isize bytes. 6053 * Returns 0 on success or negative error number on failure. 6054 */ 6055 static int ext4_try_to_expand_extra_isize(struct inode *inode, 6056 unsigned int new_extra_isize, 6057 struct ext4_iloc iloc, 6058 handle_t *handle) 6059 { 6060 int no_expand; 6061 int error; 6062 6063 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 6064 return -EOVERFLOW; 6065 6066 /* 6067 * In nojournal mode, we can immediately attempt to expand 6068 * the inode. When journaled, we first need to obtain extra 6069 * buffer credits since we may write into the EA block 6070 * with this same handle. If journal_extend fails, then it will 6071 * only result in a minor loss of functionality for that inode. 6072 * If this is felt to be critical, then e2fsck should be run to 6073 * force a large enough s_min_extra_isize. 6074 */ 6075 if (ext4_handle_valid(handle) && 6076 jbd2_journal_extend(handle, 6077 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0) 6078 return -ENOSPC; 6079 6080 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 6081 return -EBUSY; 6082 6083 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 6084 handle, &no_expand); 6085 ext4_write_unlock_xattr(inode, &no_expand); 6086 6087 return error; 6088 } 6089 6090 int ext4_expand_extra_isize(struct inode *inode, 6091 unsigned int new_extra_isize, 6092 struct ext4_iloc *iloc) 6093 { 6094 handle_t *handle; 6095 int no_expand; 6096 int error, rc; 6097 6098 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 6099 brelse(iloc->bh); 6100 return -EOVERFLOW; 6101 } 6102 6103 handle = ext4_journal_start(inode, EXT4_HT_INODE, 6104 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 6105 if (IS_ERR(handle)) { 6106 error = PTR_ERR(handle); 6107 brelse(iloc->bh); 6108 return error; 6109 } 6110 6111 ext4_write_lock_xattr(inode, &no_expand); 6112 6113 BUFFER_TRACE(iloc->bh, "get_write_access"); 6114 error = ext4_journal_get_write_access(handle, iloc->bh); 6115 if (error) { 6116 brelse(iloc->bh); 6117 goto out_stop; 6118 } 6119 6120 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 6121 handle, &no_expand); 6122 6123 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 6124 if (!error) 6125 error = rc; 6126 6127 ext4_write_unlock_xattr(inode, &no_expand); 6128 out_stop: 6129 ext4_journal_stop(handle); 6130 return error; 6131 } 6132 6133 /* 6134 * What we do here is to mark the in-core inode as clean with respect to inode 6135 * dirtiness (it may still be data-dirty). 6136 * This means that the in-core inode may be reaped by prune_icache 6137 * without having to perform any I/O. This is a very good thing, 6138 * because *any* task may call prune_icache - even ones which 6139 * have a transaction open against a different journal. 6140 * 6141 * Is this cheating? Not really. Sure, we haven't written the 6142 * inode out, but prune_icache isn't a user-visible syncing function. 6143 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 6144 * we start and wait on commits. 6145 */ 6146 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 6147 { 6148 struct ext4_iloc iloc; 6149 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6150 int err; 6151 6152 might_sleep(); 6153 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 6154 err = ext4_reserve_inode_write(handle, inode, &iloc); 6155 if (err) 6156 return err; 6157 6158 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 6159 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 6160 iloc, handle); 6161 6162 return ext4_mark_iloc_dirty(handle, inode, &iloc); 6163 } 6164 6165 /* 6166 * ext4_dirty_inode() is called from __mark_inode_dirty() 6167 * 6168 * We're really interested in the case where a file is being extended. 6169 * i_size has been changed by generic_commit_write() and we thus need 6170 * to include the updated inode in the current transaction. 6171 * 6172 * Also, dquot_alloc_block() will always dirty the inode when blocks 6173 * are allocated to the file. 6174 * 6175 * If the inode is marked synchronous, we don't honour that here - doing 6176 * so would cause a commit on atime updates, which we don't bother doing. 6177 * We handle synchronous inodes at the highest possible level. 6178 * 6179 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 6180 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 6181 * to copy into the on-disk inode structure are the timestamp files. 6182 */ 6183 void ext4_dirty_inode(struct inode *inode, int flags) 6184 { 6185 handle_t *handle; 6186 6187 if (flags == I_DIRTY_TIME) 6188 return; 6189 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 6190 if (IS_ERR(handle)) 6191 goto out; 6192 6193 ext4_mark_inode_dirty(handle, inode); 6194 6195 ext4_journal_stop(handle); 6196 out: 6197 return; 6198 } 6199 6200 int ext4_change_inode_journal_flag(struct inode *inode, int val) 6201 { 6202 journal_t *journal; 6203 handle_t *handle; 6204 int err; 6205 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6206 6207 /* 6208 * We have to be very careful here: changing a data block's 6209 * journaling status dynamically is dangerous. If we write a 6210 * data block to the journal, change the status and then delete 6211 * that block, we risk forgetting to revoke the old log record 6212 * from the journal and so a subsequent replay can corrupt data. 6213 * So, first we make sure that the journal is empty and that 6214 * nobody is changing anything. 6215 */ 6216 6217 journal = EXT4_JOURNAL(inode); 6218 if (!journal) 6219 return 0; 6220 if (is_journal_aborted(journal)) 6221 return -EROFS; 6222 6223 /* Wait for all existing dio workers */ 6224 inode_dio_wait(inode); 6225 6226 /* 6227 * Before flushing the journal and switching inode's aops, we have 6228 * to flush all dirty data the inode has. There can be outstanding 6229 * delayed allocations, there can be unwritten extents created by 6230 * fallocate or buffered writes in dioread_nolock mode covered by 6231 * dirty data which can be converted only after flushing the dirty 6232 * data (and journalled aops don't know how to handle these cases). 6233 */ 6234 if (val) { 6235 down_write(&EXT4_I(inode)->i_mmap_sem); 6236 err = filemap_write_and_wait(inode->i_mapping); 6237 if (err < 0) { 6238 up_write(&EXT4_I(inode)->i_mmap_sem); 6239 return err; 6240 } 6241 } 6242 6243 percpu_down_write(&sbi->s_journal_flag_rwsem); 6244 jbd2_journal_lock_updates(journal); 6245 6246 /* 6247 * OK, there are no updates running now, and all cached data is 6248 * synced to disk. We are now in a completely consistent state 6249 * which doesn't have anything in the journal, and we know that 6250 * no filesystem updates are running, so it is safe to modify 6251 * the inode's in-core data-journaling state flag now. 6252 */ 6253 6254 if (val) 6255 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6256 else { 6257 err = jbd2_journal_flush(journal); 6258 if (err < 0) { 6259 jbd2_journal_unlock_updates(journal); 6260 percpu_up_write(&sbi->s_journal_flag_rwsem); 6261 return err; 6262 } 6263 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6264 } 6265 ext4_set_aops(inode); 6266 6267 jbd2_journal_unlock_updates(journal); 6268 percpu_up_write(&sbi->s_journal_flag_rwsem); 6269 6270 if (val) 6271 up_write(&EXT4_I(inode)->i_mmap_sem); 6272 6273 /* Finally we can mark the inode as dirty. */ 6274 6275 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6276 if (IS_ERR(handle)) 6277 return PTR_ERR(handle); 6278 6279 err = ext4_mark_inode_dirty(handle, inode); 6280 ext4_handle_sync(handle); 6281 ext4_journal_stop(handle); 6282 ext4_std_error(inode->i_sb, err); 6283 6284 return err; 6285 } 6286 6287 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 6288 { 6289 return !buffer_mapped(bh); 6290 } 6291 6292 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6293 { 6294 struct vm_area_struct *vma = vmf->vma; 6295 struct page *page = vmf->page; 6296 loff_t size; 6297 unsigned long len; 6298 int err; 6299 vm_fault_t ret; 6300 struct file *file = vma->vm_file; 6301 struct inode *inode = file_inode(file); 6302 struct address_space *mapping = inode->i_mapping; 6303 handle_t *handle; 6304 get_block_t *get_block; 6305 int retries = 0; 6306 6307 if (unlikely(IS_IMMUTABLE(inode))) 6308 return VM_FAULT_SIGBUS; 6309 6310 sb_start_pagefault(inode->i_sb); 6311 file_update_time(vma->vm_file); 6312 6313 down_read(&EXT4_I(inode)->i_mmap_sem); 6314 6315 err = ext4_convert_inline_data(inode); 6316 if (err) 6317 goto out_ret; 6318 6319 /* Delalloc case is easy... */ 6320 if (test_opt(inode->i_sb, DELALLOC) && 6321 !ext4_should_journal_data(inode) && 6322 !ext4_nonda_switch(inode->i_sb)) { 6323 do { 6324 err = block_page_mkwrite(vma, vmf, 6325 ext4_da_get_block_prep); 6326 } while (err == -ENOSPC && 6327 ext4_should_retry_alloc(inode->i_sb, &retries)); 6328 goto out_ret; 6329 } 6330 6331 lock_page(page); 6332 size = i_size_read(inode); 6333 /* Page got truncated from under us? */ 6334 if (page->mapping != mapping || page_offset(page) > size) { 6335 unlock_page(page); 6336 ret = VM_FAULT_NOPAGE; 6337 goto out; 6338 } 6339 6340 if (page->index == size >> PAGE_SHIFT) 6341 len = size & ~PAGE_MASK; 6342 else 6343 len = PAGE_SIZE; 6344 /* 6345 * Return if we have all the buffers mapped. This avoids the need to do 6346 * journal_start/journal_stop which can block and take a long time 6347 */ 6348 if (page_has_buffers(page)) { 6349 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 6350 0, len, NULL, 6351 ext4_bh_unmapped)) { 6352 /* Wait so that we don't change page under IO */ 6353 wait_for_stable_page(page); 6354 ret = VM_FAULT_LOCKED; 6355 goto out; 6356 } 6357 } 6358 unlock_page(page); 6359 /* OK, we need to fill the hole... */ 6360 if (ext4_should_dioread_nolock(inode)) 6361 get_block = ext4_get_block_unwritten; 6362 else 6363 get_block = ext4_get_block; 6364 retry_alloc: 6365 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6366 ext4_writepage_trans_blocks(inode)); 6367 if (IS_ERR(handle)) { 6368 ret = VM_FAULT_SIGBUS; 6369 goto out; 6370 } 6371 err = block_page_mkwrite(vma, vmf, get_block); 6372 if (!err && ext4_should_journal_data(inode)) { 6373 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 6374 PAGE_SIZE, NULL, do_journal_get_write_access)) { 6375 unlock_page(page); 6376 ret = VM_FAULT_SIGBUS; 6377 ext4_journal_stop(handle); 6378 goto out; 6379 } 6380 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6381 } 6382 ext4_journal_stop(handle); 6383 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6384 goto retry_alloc; 6385 out_ret: 6386 ret = block_page_mkwrite_return(err); 6387 out: 6388 up_read(&EXT4_I(inode)->i_mmap_sem); 6389 sb_end_pagefault(inode->i_sb); 6390 return ret; 6391 } 6392 6393 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf) 6394 { 6395 struct inode *inode = file_inode(vmf->vma->vm_file); 6396 vm_fault_t ret; 6397 6398 down_read(&EXT4_I(inode)->i_mmap_sem); 6399 ret = filemap_fault(vmf); 6400 up_read(&EXT4_I(inode)->i_mmap_sem); 6401 6402 return ret; 6403 } 6404