1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/aio.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "truncate.h" 46 47 #include <trace/events/ext4.h> 48 49 #define MPAGE_DA_EXTENT_TAIL 0x01 50 51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 52 struct ext4_inode_info *ei) 53 { 54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 55 __u16 csum_lo; 56 __u16 csum_hi = 0; 57 __u32 csum; 58 59 csum_lo = le16_to_cpu(raw->i_checksum_lo); 60 raw->i_checksum_lo = 0; 61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 63 csum_hi = le16_to_cpu(raw->i_checksum_hi); 64 raw->i_checksum_hi = 0; 65 } 66 67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 68 EXT4_INODE_SIZE(inode->i_sb)); 69 70 raw->i_checksum_lo = cpu_to_le16(csum_lo); 71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 73 raw->i_checksum_hi = cpu_to_le16(csum_hi); 74 75 return csum; 76 } 77 78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 79 struct ext4_inode_info *ei) 80 { 81 __u32 provided, calculated; 82 83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 84 cpu_to_le32(EXT4_OS_LINUX) || 85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 87 return 1; 88 89 provided = le16_to_cpu(raw->i_checksum_lo); 90 calculated = ext4_inode_csum(inode, raw, ei); 91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 94 else 95 calculated &= 0xFFFF; 96 97 return provided == calculated; 98 } 99 100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 101 struct ext4_inode_info *ei) 102 { 103 __u32 csum; 104 105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 106 cpu_to_le32(EXT4_OS_LINUX) || 107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 109 return; 110 111 csum = ext4_inode_csum(inode, raw, ei); 112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 115 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 116 } 117 118 static inline int ext4_begin_ordered_truncate(struct inode *inode, 119 loff_t new_size) 120 { 121 trace_ext4_begin_ordered_truncate(inode, new_size); 122 /* 123 * If jinode is zero, then we never opened the file for 124 * writing, so there's no need to call 125 * jbd2_journal_begin_ordered_truncate() since there's no 126 * outstanding writes we need to flush. 127 */ 128 if (!EXT4_I(inode)->jinode) 129 return 0; 130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 131 EXT4_I(inode)->jinode, 132 new_size); 133 } 134 135 static void ext4_invalidatepage(struct page *page, unsigned int offset, 136 unsigned int length); 137 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 139 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 140 struct inode *inode, struct page *page, loff_t from, 141 loff_t length, int flags); 142 143 /* 144 * Test whether an inode is a fast symlink. 145 */ 146 static int ext4_inode_is_fast_symlink(struct inode *inode) 147 { 148 int ea_blocks = EXT4_I(inode)->i_file_acl ? 149 (inode->i_sb->s_blocksize >> 9) : 0; 150 151 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 152 } 153 154 /* 155 * Restart the transaction associated with *handle. This does a commit, 156 * so before we call here everything must be consistently dirtied against 157 * this transaction. 158 */ 159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 160 int nblocks) 161 { 162 int ret; 163 164 /* 165 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 166 * moment, get_block can be called only for blocks inside i_size since 167 * page cache has been already dropped and writes are blocked by 168 * i_mutex. So we can safely drop the i_data_sem here. 169 */ 170 BUG_ON(EXT4_JOURNAL(inode) == NULL); 171 jbd_debug(2, "restarting handle %p\n", handle); 172 up_write(&EXT4_I(inode)->i_data_sem); 173 ret = ext4_journal_restart(handle, nblocks); 174 down_write(&EXT4_I(inode)->i_data_sem); 175 ext4_discard_preallocations(inode); 176 177 return ret; 178 } 179 180 /* 181 * Called at the last iput() if i_nlink is zero. 182 */ 183 void ext4_evict_inode(struct inode *inode) 184 { 185 handle_t *handle; 186 int err; 187 188 trace_ext4_evict_inode(inode); 189 190 if (inode->i_nlink) { 191 /* 192 * When journalling data dirty buffers are tracked only in the 193 * journal. So although mm thinks everything is clean and 194 * ready for reaping the inode might still have some pages to 195 * write in the running transaction or waiting to be 196 * checkpointed. Thus calling jbd2_journal_invalidatepage() 197 * (via truncate_inode_pages()) to discard these buffers can 198 * cause data loss. Also even if we did not discard these 199 * buffers, we would have no way to find them after the inode 200 * is reaped and thus user could see stale data if he tries to 201 * read them before the transaction is checkpointed. So be 202 * careful and force everything to disk here... We use 203 * ei->i_datasync_tid to store the newest transaction 204 * containing inode's data. 205 * 206 * Note that directories do not have this problem because they 207 * don't use page cache. 208 */ 209 if (ext4_should_journal_data(inode) && 210 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 211 inode->i_ino != EXT4_JOURNAL_INO) { 212 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 213 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 214 215 jbd2_complete_transaction(journal, commit_tid); 216 filemap_write_and_wait(&inode->i_data); 217 } 218 truncate_inode_pages(&inode->i_data, 0); 219 ext4_ioend_shutdown(inode); 220 goto no_delete; 221 } 222 223 if (!is_bad_inode(inode)) 224 dquot_initialize(inode); 225 226 if (ext4_should_order_data(inode)) 227 ext4_begin_ordered_truncate(inode, 0); 228 truncate_inode_pages(&inode->i_data, 0); 229 ext4_ioend_shutdown(inode); 230 231 if (is_bad_inode(inode)) 232 goto no_delete; 233 234 /* 235 * Protect us against freezing - iput() caller didn't have to have any 236 * protection against it 237 */ 238 sb_start_intwrite(inode->i_sb); 239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 240 ext4_blocks_for_truncate(inode)+3); 241 if (IS_ERR(handle)) { 242 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 243 /* 244 * If we're going to skip the normal cleanup, we still need to 245 * make sure that the in-core orphan linked list is properly 246 * cleaned up. 247 */ 248 ext4_orphan_del(NULL, inode); 249 sb_end_intwrite(inode->i_sb); 250 goto no_delete; 251 } 252 253 if (IS_SYNC(inode)) 254 ext4_handle_sync(handle); 255 inode->i_size = 0; 256 err = ext4_mark_inode_dirty(handle, inode); 257 if (err) { 258 ext4_warning(inode->i_sb, 259 "couldn't mark inode dirty (err %d)", err); 260 goto stop_handle; 261 } 262 if (inode->i_blocks) 263 ext4_truncate(inode); 264 265 /* 266 * ext4_ext_truncate() doesn't reserve any slop when it 267 * restarts journal transactions; therefore there may not be 268 * enough credits left in the handle to remove the inode from 269 * the orphan list and set the dtime field. 270 */ 271 if (!ext4_handle_has_enough_credits(handle, 3)) { 272 err = ext4_journal_extend(handle, 3); 273 if (err > 0) 274 err = ext4_journal_restart(handle, 3); 275 if (err != 0) { 276 ext4_warning(inode->i_sb, 277 "couldn't extend journal (err %d)", err); 278 stop_handle: 279 ext4_journal_stop(handle); 280 ext4_orphan_del(NULL, inode); 281 sb_end_intwrite(inode->i_sb); 282 goto no_delete; 283 } 284 } 285 286 /* 287 * Kill off the orphan record which ext4_truncate created. 288 * AKPM: I think this can be inside the above `if'. 289 * Note that ext4_orphan_del() has to be able to cope with the 290 * deletion of a non-existent orphan - this is because we don't 291 * know if ext4_truncate() actually created an orphan record. 292 * (Well, we could do this if we need to, but heck - it works) 293 */ 294 ext4_orphan_del(handle, inode); 295 EXT4_I(inode)->i_dtime = get_seconds(); 296 297 /* 298 * One subtle ordering requirement: if anything has gone wrong 299 * (transaction abort, IO errors, whatever), then we can still 300 * do these next steps (the fs will already have been marked as 301 * having errors), but we can't free the inode if the mark_dirty 302 * fails. 303 */ 304 if (ext4_mark_inode_dirty(handle, inode)) 305 /* If that failed, just do the required in-core inode clear. */ 306 ext4_clear_inode(inode); 307 else 308 ext4_free_inode(handle, inode); 309 ext4_journal_stop(handle); 310 sb_end_intwrite(inode->i_sb); 311 return; 312 no_delete: 313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 314 } 315 316 #ifdef CONFIG_QUOTA 317 qsize_t *ext4_get_reserved_space(struct inode *inode) 318 { 319 return &EXT4_I(inode)->i_reserved_quota; 320 } 321 #endif 322 323 /* 324 * Calculate the number of metadata blocks need to reserve 325 * to allocate a block located at @lblock 326 */ 327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 328 { 329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 330 return ext4_ext_calc_metadata_amount(inode, lblock); 331 332 return ext4_ind_calc_metadata_amount(inode, lblock); 333 } 334 335 /* 336 * Called with i_data_sem down, which is important since we can call 337 * ext4_discard_preallocations() from here. 338 */ 339 void ext4_da_update_reserve_space(struct inode *inode, 340 int used, int quota_claim) 341 { 342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 343 struct ext4_inode_info *ei = EXT4_I(inode); 344 345 spin_lock(&ei->i_block_reservation_lock); 346 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 347 if (unlikely(used > ei->i_reserved_data_blocks)) { 348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 349 "with only %d reserved data blocks", 350 __func__, inode->i_ino, used, 351 ei->i_reserved_data_blocks); 352 WARN_ON(1); 353 used = ei->i_reserved_data_blocks; 354 } 355 356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) { 357 ext4_warning(inode->i_sb, "ino %lu, allocated %d " 358 "with only %d reserved metadata blocks " 359 "(releasing %d blocks with reserved %d data blocks)", 360 inode->i_ino, ei->i_allocated_meta_blocks, 361 ei->i_reserved_meta_blocks, used, 362 ei->i_reserved_data_blocks); 363 WARN_ON(1); 364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks; 365 } 366 367 /* Update per-inode reservations */ 368 ei->i_reserved_data_blocks -= used; 369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 370 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 371 used + ei->i_allocated_meta_blocks); 372 ei->i_allocated_meta_blocks = 0; 373 374 if (ei->i_reserved_data_blocks == 0) { 375 /* 376 * We can release all of the reserved metadata blocks 377 * only when we have written all of the delayed 378 * allocation blocks. 379 */ 380 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 381 ei->i_reserved_meta_blocks); 382 ei->i_reserved_meta_blocks = 0; 383 ei->i_da_metadata_calc_len = 0; 384 } 385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 386 387 /* Update quota subsystem for data blocks */ 388 if (quota_claim) 389 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 390 else { 391 /* 392 * We did fallocate with an offset that is already delayed 393 * allocated. So on delayed allocated writeback we should 394 * not re-claim the quota for fallocated blocks. 395 */ 396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 397 } 398 399 /* 400 * If we have done all the pending block allocations and if 401 * there aren't any writers on the inode, we can discard the 402 * inode's preallocations. 403 */ 404 if ((ei->i_reserved_data_blocks == 0) && 405 (atomic_read(&inode->i_writecount) == 0)) 406 ext4_discard_preallocations(inode); 407 } 408 409 static int __check_block_validity(struct inode *inode, const char *func, 410 unsigned int line, 411 struct ext4_map_blocks *map) 412 { 413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 414 map->m_len)) { 415 ext4_error_inode(inode, func, line, map->m_pblk, 416 "lblock %lu mapped to illegal pblock " 417 "(length %d)", (unsigned long) map->m_lblk, 418 map->m_len); 419 return -EIO; 420 } 421 return 0; 422 } 423 424 #define check_block_validity(inode, map) \ 425 __check_block_validity((inode), __func__, __LINE__, (map)) 426 427 /* 428 * Return the number of contiguous dirty pages in a given inode 429 * starting at page frame idx. 430 */ 431 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 432 unsigned int max_pages) 433 { 434 struct address_space *mapping = inode->i_mapping; 435 pgoff_t index; 436 struct pagevec pvec; 437 pgoff_t num = 0; 438 int i, nr_pages, done = 0; 439 440 if (max_pages == 0) 441 return 0; 442 pagevec_init(&pvec, 0); 443 while (!done) { 444 index = idx; 445 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 446 PAGECACHE_TAG_DIRTY, 447 (pgoff_t)PAGEVEC_SIZE); 448 if (nr_pages == 0) 449 break; 450 for (i = 0; i < nr_pages; i++) { 451 struct page *page = pvec.pages[i]; 452 struct buffer_head *bh, *head; 453 454 lock_page(page); 455 if (unlikely(page->mapping != mapping) || 456 !PageDirty(page) || 457 PageWriteback(page) || 458 page->index != idx) { 459 done = 1; 460 unlock_page(page); 461 break; 462 } 463 if (page_has_buffers(page)) { 464 bh = head = page_buffers(page); 465 do { 466 if (!buffer_delay(bh) && 467 !buffer_unwritten(bh)) 468 done = 1; 469 bh = bh->b_this_page; 470 } while (!done && (bh != head)); 471 } 472 unlock_page(page); 473 if (done) 474 break; 475 idx++; 476 num++; 477 if (num >= max_pages) { 478 done = 1; 479 break; 480 } 481 } 482 pagevec_release(&pvec); 483 } 484 return num; 485 } 486 487 #ifdef ES_AGGRESSIVE_TEST 488 static void ext4_map_blocks_es_recheck(handle_t *handle, 489 struct inode *inode, 490 struct ext4_map_blocks *es_map, 491 struct ext4_map_blocks *map, 492 int flags) 493 { 494 int retval; 495 496 map->m_flags = 0; 497 /* 498 * There is a race window that the result is not the same. 499 * e.g. xfstests #223 when dioread_nolock enables. The reason 500 * is that we lookup a block mapping in extent status tree with 501 * out taking i_data_sem. So at the time the unwritten extent 502 * could be converted. 503 */ 504 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 505 down_read((&EXT4_I(inode)->i_data_sem)); 506 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 507 retval = ext4_ext_map_blocks(handle, inode, map, flags & 508 EXT4_GET_BLOCKS_KEEP_SIZE); 509 } else { 510 retval = ext4_ind_map_blocks(handle, inode, map, flags & 511 EXT4_GET_BLOCKS_KEEP_SIZE); 512 } 513 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 514 up_read((&EXT4_I(inode)->i_data_sem)); 515 /* 516 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag 517 * because it shouldn't be marked in es_map->m_flags. 518 */ 519 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY); 520 521 /* 522 * We don't check m_len because extent will be collpased in status 523 * tree. So the m_len might not equal. 524 */ 525 if (es_map->m_lblk != map->m_lblk || 526 es_map->m_flags != map->m_flags || 527 es_map->m_pblk != map->m_pblk) { 528 printk("ES cache assertation failed for inode: %lu " 529 "es_cached ex [%d/%d/%llu/%x] != " 530 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 531 inode->i_ino, es_map->m_lblk, es_map->m_len, 532 es_map->m_pblk, es_map->m_flags, map->m_lblk, 533 map->m_len, map->m_pblk, map->m_flags, 534 retval, flags); 535 } 536 } 537 #endif /* ES_AGGRESSIVE_TEST */ 538 539 /* 540 * The ext4_map_blocks() function tries to look up the requested blocks, 541 * and returns if the blocks are already mapped. 542 * 543 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 544 * and store the allocated blocks in the result buffer head and mark it 545 * mapped. 546 * 547 * If file type is extents based, it will call ext4_ext_map_blocks(), 548 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 549 * based files 550 * 551 * On success, it returns the number of blocks being mapped or allocate. 552 * if create==0 and the blocks are pre-allocated and uninitialized block, 553 * the result buffer head is unmapped. If the create ==1, it will make sure 554 * the buffer head is mapped. 555 * 556 * It returns 0 if plain look up failed (blocks have not been allocated), in 557 * that case, buffer head is unmapped 558 * 559 * It returns the error in case of allocation failure. 560 */ 561 int ext4_map_blocks(handle_t *handle, struct inode *inode, 562 struct ext4_map_blocks *map, int flags) 563 { 564 struct extent_status es; 565 int retval; 566 #ifdef ES_AGGRESSIVE_TEST 567 struct ext4_map_blocks orig_map; 568 569 memcpy(&orig_map, map, sizeof(*map)); 570 #endif 571 572 map->m_flags = 0; 573 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 574 "logical block %lu\n", inode->i_ino, flags, map->m_len, 575 (unsigned long) map->m_lblk); 576 577 /* Lookup extent status tree firstly */ 578 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 579 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 580 map->m_pblk = ext4_es_pblock(&es) + 581 map->m_lblk - es.es_lblk; 582 map->m_flags |= ext4_es_is_written(&es) ? 583 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 584 retval = es.es_len - (map->m_lblk - es.es_lblk); 585 if (retval > map->m_len) 586 retval = map->m_len; 587 map->m_len = retval; 588 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 589 retval = 0; 590 } else { 591 BUG_ON(1); 592 } 593 #ifdef ES_AGGRESSIVE_TEST 594 ext4_map_blocks_es_recheck(handle, inode, map, 595 &orig_map, flags); 596 #endif 597 goto found; 598 } 599 600 /* 601 * Try to see if we can get the block without requesting a new 602 * file system block. 603 */ 604 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 605 down_read((&EXT4_I(inode)->i_data_sem)); 606 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 607 retval = ext4_ext_map_blocks(handle, inode, map, flags & 608 EXT4_GET_BLOCKS_KEEP_SIZE); 609 } else { 610 retval = ext4_ind_map_blocks(handle, inode, map, flags & 611 EXT4_GET_BLOCKS_KEEP_SIZE); 612 } 613 if (retval > 0) { 614 int ret; 615 unsigned long long status; 616 617 #ifdef ES_AGGRESSIVE_TEST 618 if (retval != map->m_len) { 619 printk("ES len assertation failed for inode: %lu " 620 "retval %d != map->m_len %d " 621 "in %s (lookup)\n", inode->i_ino, retval, 622 map->m_len, __func__); 623 } 624 #endif 625 626 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 627 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 628 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 629 ext4_find_delalloc_range(inode, map->m_lblk, 630 map->m_lblk + map->m_len - 1)) 631 status |= EXTENT_STATUS_DELAYED; 632 ret = ext4_es_insert_extent(inode, map->m_lblk, 633 map->m_len, map->m_pblk, status); 634 if (ret < 0) 635 retval = ret; 636 } 637 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 638 up_read((&EXT4_I(inode)->i_data_sem)); 639 640 found: 641 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 642 int ret = check_block_validity(inode, map); 643 if (ret != 0) 644 return ret; 645 } 646 647 /* If it is only a block(s) look up */ 648 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 649 return retval; 650 651 /* 652 * Returns if the blocks have already allocated 653 * 654 * Note that if blocks have been preallocated 655 * ext4_ext_get_block() returns the create = 0 656 * with buffer head unmapped. 657 */ 658 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 659 return retval; 660 661 /* 662 * Here we clear m_flags because after allocating an new extent, 663 * it will be set again. 664 */ 665 map->m_flags &= ~EXT4_MAP_FLAGS; 666 667 /* 668 * New blocks allocate and/or writing to uninitialized extent 669 * will possibly result in updating i_data, so we take 670 * the write lock of i_data_sem, and call get_blocks() 671 * with create == 1 flag. 672 */ 673 down_write((&EXT4_I(inode)->i_data_sem)); 674 675 /* 676 * if the caller is from delayed allocation writeout path 677 * we have already reserved fs blocks for allocation 678 * let the underlying get_block() function know to 679 * avoid double accounting 680 */ 681 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 682 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 683 /* 684 * We need to check for EXT4 here because migrate 685 * could have changed the inode type in between 686 */ 687 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 688 retval = ext4_ext_map_blocks(handle, inode, map, flags); 689 } else { 690 retval = ext4_ind_map_blocks(handle, inode, map, flags); 691 692 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 693 /* 694 * We allocated new blocks which will result in 695 * i_data's format changing. Force the migrate 696 * to fail by clearing migrate flags 697 */ 698 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 699 } 700 701 /* 702 * Update reserved blocks/metadata blocks after successful 703 * block allocation which had been deferred till now. We don't 704 * support fallocate for non extent files. So we can update 705 * reserve space here. 706 */ 707 if ((retval > 0) && 708 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 709 ext4_da_update_reserve_space(inode, retval, 1); 710 } 711 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 712 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 713 714 if (retval > 0) { 715 int ret; 716 unsigned long long status; 717 718 #ifdef ES_AGGRESSIVE_TEST 719 if (retval != map->m_len) { 720 printk("ES len assertation failed for inode: %lu " 721 "retval %d != map->m_len %d " 722 "in %s (allocation)\n", inode->i_ino, retval, 723 map->m_len, __func__); 724 } 725 #endif 726 727 /* 728 * If the extent has been zeroed out, we don't need to update 729 * extent status tree. 730 */ 731 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 732 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 733 if (ext4_es_is_written(&es)) 734 goto has_zeroout; 735 } 736 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 737 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 738 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 739 ext4_find_delalloc_range(inode, map->m_lblk, 740 map->m_lblk + map->m_len - 1)) 741 status |= EXTENT_STATUS_DELAYED; 742 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 743 map->m_pblk, status); 744 if (ret < 0) 745 retval = ret; 746 } 747 748 has_zeroout: 749 up_write((&EXT4_I(inode)->i_data_sem)); 750 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 751 int ret = check_block_validity(inode, map); 752 if (ret != 0) 753 return ret; 754 } 755 return retval; 756 } 757 758 /* Maximum number of blocks we map for direct IO at once. */ 759 #define DIO_MAX_BLOCKS 4096 760 761 static int _ext4_get_block(struct inode *inode, sector_t iblock, 762 struct buffer_head *bh, int flags) 763 { 764 handle_t *handle = ext4_journal_current_handle(); 765 struct ext4_map_blocks map; 766 int ret = 0, started = 0; 767 int dio_credits; 768 769 if (ext4_has_inline_data(inode)) 770 return -ERANGE; 771 772 map.m_lblk = iblock; 773 map.m_len = bh->b_size >> inode->i_blkbits; 774 775 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 776 /* Direct IO write... */ 777 if (map.m_len > DIO_MAX_BLOCKS) 778 map.m_len = DIO_MAX_BLOCKS; 779 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 780 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 781 dio_credits); 782 if (IS_ERR(handle)) { 783 ret = PTR_ERR(handle); 784 return ret; 785 } 786 started = 1; 787 } 788 789 ret = ext4_map_blocks(handle, inode, &map, flags); 790 if (ret > 0) { 791 map_bh(bh, inode->i_sb, map.m_pblk); 792 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 793 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 794 ret = 0; 795 } 796 if (started) 797 ext4_journal_stop(handle); 798 return ret; 799 } 800 801 int ext4_get_block(struct inode *inode, sector_t iblock, 802 struct buffer_head *bh, int create) 803 { 804 return _ext4_get_block(inode, iblock, bh, 805 create ? EXT4_GET_BLOCKS_CREATE : 0); 806 } 807 808 /* 809 * `handle' can be NULL if create is zero 810 */ 811 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 812 ext4_lblk_t block, int create, int *errp) 813 { 814 struct ext4_map_blocks map; 815 struct buffer_head *bh; 816 int fatal = 0, err; 817 818 J_ASSERT(handle != NULL || create == 0); 819 820 map.m_lblk = block; 821 map.m_len = 1; 822 err = ext4_map_blocks(handle, inode, &map, 823 create ? EXT4_GET_BLOCKS_CREATE : 0); 824 825 /* ensure we send some value back into *errp */ 826 *errp = 0; 827 828 if (create && err == 0) 829 err = -ENOSPC; /* should never happen */ 830 if (err < 0) 831 *errp = err; 832 if (err <= 0) 833 return NULL; 834 835 bh = sb_getblk(inode->i_sb, map.m_pblk); 836 if (unlikely(!bh)) { 837 *errp = -ENOMEM; 838 return NULL; 839 } 840 if (map.m_flags & EXT4_MAP_NEW) { 841 J_ASSERT(create != 0); 842 J_ASSERT(handle != NULL); 843 844 /* 845 * Now that we do not always journal data, we should 846 * keep in mind whether this should always journal the 847 * new buffer as metadata. For now, regular file 848 * writes use ext4_get_block instead, so it's not a 849 * problem. 850 */ 851 lock_buffer(bh); 852 BUFFER_TRACE(bh, "call get_create_access"); 853 fatal = ext4_journal_get_create_access(handle, bh); 854 if (!fatal && !buffer_uptodate(bh)) { 855 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 856 set_buffer_uptodate(bh); 857 } 858 unlock_buffer(bh); 859 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 860 err = ext4_handle_dirty_metadata(handle, inode, bh); 861 if (!fatal) 862 fatal = err; 863 } else { 864 BUFFER_TRACE(bh, "not a new buffer"); 865 } 866 if (fatal) { 867 *errp = fatal; 868 brelse(bh); 869 bh = NULL; 870 } 871 return bh; 872 } 873 874 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 875 ext4_lblk_t block, int create, int *err) 876 { 877 struct buffer_head *bh; 878 879 bh = ext4_getblk(handle, inode, block, create, err); 880 if (!bh) 881 return bh; 882 if (buffer_uptodate(bh)) 883 return bh; 884 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 885 wait_on_buffer(bh); 886 if (buffer_uptodate(bh)) 887 return bh; 888 put_bh(bh); 889 *err = -EIO; 890 return NULL; 891 } 892 893 int ext4_walk_page_buffers(handle_t *handle, 894 struct buffer_head *head, 895 unsigned from, 896 unsigned to, 897 int *partial, 898 int (*fn)(handle_t *handle, 899 struct buffer_head *bh)) 900 { 901 struct buffer_head *bh; 902 unsigned block_start, block_end; 903 unsigned blocksize = head->b_size; 904 int err, ret = 0; 905 struct buffer_head *next; 906 907 for (bh = head, block_start = 0; 908 ret == 0 && (bh != head || !block_start); 909 block_start = block_end, bh = next) { 910 next = bh->b_this_page; 911 block_end = block_start + blocksize; 912 if (block_end <= from || block_start >= to) { 913 if (partial && !buffer_uptodate(bh)) 914 *partial = 1; 915 continue; 916 } 917 err = (*fn)(handle, bh); 918 if (!ret) 919 ret = err; 920 } 921 return ret; 922 } 923 924 /* 925 * To preserve ordering, it is essential that the hole instantiation and 926 * the data write be encapsulated in a single transaction. We cannot 927 * close off a transaction and start a new one between the ext4_get_block() 928 * and the commit_write(). So doing the jbd2_journal_start at the start of 929 * prepare_write() is the right place. 930 * 931 * Also, this function can nest inside ext4_writepage(). In that case, we 932 * *know* that ext4_writepage() has generated enough buffer credits to do the 933 * whole page. So we won't block on the journal in that case, which is good, 934 * because the caller may be PF_MEMALLOC. 935 * 936 * By accident, ext4 can be reentered when a transaction is open via 937 * quota file writes. If we were to commit the transaction while thus 938 * reentered, there can be a deadlock - we would be holding a quota 939 * lock, and the commit would never complete if another thread had a 940 * transaction open and was blocking on the quota lock - a ranking 941 * violation. 942 * 943 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 944 * will _not_ run commit under these circumstances because handle->h_ref 945 * is elevated. We'll still have enough credits for the tiny quotafile 946 * write. 947 */ 948 int do_journal_get_write_access(handle_t *handle, 949 struct buffer_head *bh) 950 { 951 int dirty = buffer_dirty(bh); 952 int ret; 953 954 if (!buffer_mapped(bh) || buffer_freed(bh)) 955 return 0; 956 /* 957 * __block_write_begin() could have dirtied some buffers. Clean 958 * the dirty bit as jbd2_journal_get_write_access() could complain 959 * otherwise about fs integrity issues. Setting of the dirty bit 960 * by __block_write_begin() isn't a real problem here as we clear 961 * the bit before releasing a page lock and thus writeback cannot 962 * ever write the buffer. 963 */ 964 if (dirty) 965 clear_buffer_dirty(bh); 966 ret = ext4_journal_get_write_access(handle, bh); 967 if (!ret && dirty) 968 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 969 return ret; 970 } 971 972 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 973 struct buffer_head *bh_result, int create); 974 static int ext4_write_begin(struct file *file, struct address_space *mapping, 975 loff_t pos, unsigned len, unsigned flags, 976 struct page **pagep, void **fsdata) 977 { 978 struct inode *inode = mapping->host; 979 int ret, needed_blocks; 980 handle_t *handle; 981 int retries = 0; 982 struct page *page; 983 pgoff_t index; 984 unsigned from, to; 985 986 trace_ext4_write_begin(inode, pos, len, flags); 987 /* 988 * Reserve one block more for addition to orphan list in case 989 * we allocate blocks but write fails for some reason 990 */ 991 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 992 index = pos >> PAGE_CACHE_SHIFT; 993 from = pos & (PAGE_CACHE_SIZE - 1); 994 to = from + len; 995 996 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 997 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 998 flags, pagep); 999 if (ret < 0) 1000 return ret; 1001 if (ret == 1) 1002 return 0; 1003 } 1004 1005 /* 1006 * grab_cache_page_write_begin() can take a long time if the 1007 * system is thrashing due to memory pressure, or if the page 1008 * is being written back. So grab it first before we start 1009 * the transaction handle. This also allows us to allocate 1010 * the page (if needed) without using GFP_NOFS. 1011 */ 1012 retry_grab: 1013 page = grab_cache_page_write_begin(mapping, index, flags); 1014 if (!page) 1015 return -ENOMEM; 1016 unlock_page(page); 1017 1018 retry_journal: 1019 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1020 if (IS_ERR(handle)) { 1021 page_cache_release(page); 1022 return PTR_ERR(handle); 1023 } 1024 1025 lock_page(page); 1026 if (page->mapping != mapping) { 1027 /* The page got truncated from under us */ 1028 unlock_page(page); 1029 page_cache_release(page); 1030 ext4_journal_stop(handle); 1031 goto retry_grab; 1032 } 1033 wait_on_page_writeback(page); 1034 1035 if (ext4_should_dioread_nolock(inode)) 1036 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 1037 else 1038 ret = __block_write_begin(page, pos, len, ext4_get_block); 1039 1040 if (!ret && ext4_should_journal_data(inode)) { 1041 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1042 from, to, NULL, 1043 do_journal_get_write_access); 1044 } 1045 1046 if (ret) { 1047 unlock_page(page); 1048 /* 1049 * __block_write_begin may have instantiated a few blocks 1050 * outside i_size. Trim these off again. Don't need 1051 * i_size_read because we hold i_mutex. 1052 * 1053 * Add inode to orphan list in case we crash before 1054 * truncate finishes 1055 */ 1056 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1057 ext4_orphan_add(handle, inode); 1058 1059 ext4_journal_stop(handle); 1060 if (pos + len > inode->i_size) { 1061 ext4_truncate_failed_write(inode); 1062 /* 1063 * If truncate failed early the inode might 1064 * still be on the orphan list; we need to 1065 * make sure the inode is removed from the 1066 * orphan list in that case. 1067 */ 1068 if (inode->i_nlink) 1069 ext4_orphan_del(NULL, inode); 1070 } 1071 1072 if (ret == -ENOSPC && 1073 ext4_should_retry_alloc(inode->i_sb, &retries)) 1074 goto retry_journal; 1075 page_cache_release(page); 1076 return ret; 1077 } 1078 *pagep = page; 1079 return ret; 1080 } 1081 1082 /* For write_end() in data=journal mode */ 1083 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1084 { 1085 int ret; 1086 if (!buffer_mapped(bh) || buffer_freed(bh)) 1087 return 0; 1088 set_buffer_uptodate(bh); 1089 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1090 clear_buffer_meta(bh); 1091 clear_buffer_prio(bh); 1092 return ret; 1093 } 1094 1095 /* 1096 * We need to pick up the new inode size which generic_commit_write gave us 1097 * `file' can be NULL - eg, when called from page_symlink(). 1098 * 1099 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1100 * buffers are managed internally. 1101 */ 1102 static int ext4_write_end(struct file *file, 1103 struct address_space *mapping, 1104 loff_t pos, unsigned len, unsigned copied, 1105 struct page *page, void *fsdata) 1106 { 1107 handle_t *handle = ext4_journal_current_handle(); 1108 struct inode *inode = mapping->host; 1109 int ret = 0, ret2; 1110 int i_size_changed = 0; 1111 1112 trace_ext4_write_end(inode, pos, len, copied); 1113 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1114 ret = ext4_jbd2_file_inode(handle, inode); 1115 if (ret) { 1116 unlock_page(page); 1117 page_cache_release(page); 1118 goto errout; 1119 } 1120 } 1121 1122 if (ext4_has_inline_data(inode)) 1123 copied = ext4_write_inline_data_end(inode, pos, len, 1124 copied, page); 1125 else 1126 copied = block_write_end(file, mapping, pos, 1127 len, copied, page, fsdata); 1128 1129 /* 1130 * No need to use i_size_read() here, the i_size 1131 * cannot change under us because we hole i_mutex. 1132 * 1133 * But it's important to update i_size while still holding page lock: 1134 * page writeout could otherwise come in and zero beyond i_size. 1135 */ 1136 if (pos + copied > inode->i_size) { 1137 i_size_write(inode, pos + copied); 1138 i_size_changed = 1; 1139 } 1140 1141 if (pos + copied > EXT4_I(inode)->i_disksize) { 1142 /* We need to mark inode dirty even if 1143 * new_i_size is less that inode->i_size 1144 * but greater than i_disksize. (hint delalloc) 1145 */ 1146 ext4_update_i_disksize(inode, (pos + copied)); 1147 i_size_changed = 1; 1148 } 1149 unlock_page(page); 1150 page_cache_release(page); 1151 1152 /* 1153 * Don't mark the inode dirty under page lock. First, it unnecessarily 1154 * makes the holding time of page lock longer. Second, it forces lock 1155 * ordering of page lock and transaction start for journaling 1156 * filesystems. 1157 */ 1158 if (i_size_changed) 1159 ext4_mark_inode_dirty(handle, inode); 1160 1161 if (copied < 0) 1162 ret = copied; 1163 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1164 /* if we have allocated more blocks and copied 1165 * less. We will have blocks allocated outside 1166 * inode->i_size. So truncate them 1167 */ 1168 ext4_orphan_add(handle, inode); 1169 errout: 1170 ret2 = ext4_journal_stop(handle); 1171 if (!ret) 1172 ret = ret2; 1173 1174 if (pos + len > inode->i_size) { 1175 ext4_truncate_failed_write(inode); 1176 /* 1177 * If truncate failed early the inode might still be 1178 * on the orphan list; we need to make sure the inode 1179 * is removed from the orphan list in that case. 1180 */ 1181 if (inode->i_nlink) 1182 ext4_orphan_del(NULL, inode); 1183 } 1184 1185 return ret ? ret : copied; 1186 } 1187 1188 static int ext4_journalled_write_end(struct file *file, 1189 struct address_space *mapping, 1190 loff_t pos, unsigned len, unsigned copied, 1191 struct page *page, void *fsdata) 1192 { 1193 handle_t *handle = ext4_journal_current_handle(); 1194 struct inode *inode = mapping->host; 1195 int ret = 0, ret2; 1196 int partial = 0; 1197 unsigned from, to; 1198 loff_t new_i_size; 1199 1200 trace_ext4_journalled_write_end(inode, pos, len, copied); 1201 from = pos & (PAGE_CACHE_SIZE - 1); 1202 to = from + len; 1203 1204 BUG_ON(!ext4_handle_valid(handle)); 1205 1206 if (ext4_has_inline_data(inode)) 1207 copied = ext4_write_inline_data_end(inode, pos, len, 1208 copied, page); 1209 else { 1210 if (copied < len) { 1211 if (!PageUptodate(page)) 1212 copied = 0; 1213 page_zero_new_buffers(page, from+copied, to); 1214 } 1215 1216 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1217 to, &partial, write_end_fn); 1218 if (!partial) 1219 SetPageUptodate(page); 1220 } 1221 new_i_size = pos + copied; 1222 if (new_i_size > inode->i_size) 1223 i_size_write(inode, pos+copied); 1224 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1225 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1226 if (new_i_size > EXT4_I(inode)->i_disksize) { 1227 ext4_update_i_disksize(inode, new_i_size); 1228 ret2 = ext4_mark_inode_dirty(handle, inode); 1229 if (!ret) 1230 ret = ret2; 1231 } 1232 1233 unlock_page(page); 1234 page_cache_release(page); 1235 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1236 /* if we have allocated more blocks and copied 1237 * less. We will have blocks allocated outside 1238 * inode->i_size. So truncate them 1239 */ 1240 ext4_orphan_add(handle, inode); 1241 1242 ret2 = ext4_journal_stop(handle); 1243 if (!ret) 1244 ret = ret2; 1245 if (pos + len > inode->i_size) { 1246 ext4_truncate_failed_write(inode); 1247 /* 1248 * If truncate failed early the inode might still be 1249 * on the orphan list; we need to make sure the inode 1250 * is removed from the orphan list in that case. 1251 */ 1252 if (inode->i_nlink) 1253 ext4_orphan_del(NULL, inode); 1254 } 1255 1256 return ret ? ret : copied; 1257 } 1258 1259 /* 1260 * Reserve a metadata for a single block located at lblock 1261 */ 1262 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock) 1263 { 1264 int retries = 0; 1265 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1266 struct ext4_inode_info *ei = EXT4_I(inode); 1267 unsigned int md_needed; 1268 ext4_lblk_t save_last_lblock; 1269 int save_len; 1270 1271 /* 1272 * recalculate the amount of metadata blocks to reserve 1273 * in order to allocate nrblocks 1274 * worse case is one extent per block 1275 */ 1276 repeat: 1277 spin_lock(&ei->i_block_reservation_lock); 1278 /* 1279 * ext4_calc_metadata_amount() has side effects, which we have 1280 * to be prepared undo if we fail to claim space. 1281 */ 1282 save_len = ei->i_da_metadata_calc_len; 1283 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1284 md_needed = EXT4_NUM_B2C(sbi, 1285 ext4_calc_metadata_amount(inode, lblock)); 1286 trace_ext4_da_reserve_space(inode, md_needed); 1287 1288 /* 1289 * We do still charge estimated metadata to the sb though; 1290 * we cannot afford to run out of free blocks. 1291 */ 1292 if (ext4_claim_free_clusters(sbi, md_needed, 0)) { 1293 ei->i_da_metadata_calc_len = save_len; 1294 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1295 spin_unlock(&ei->i_block_reservation_lock); 1296 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1297 cond_resched(); 1298 goto repeat; 1299 } 1300 return -ENOSPC; 1301 } 1302 ei->i_reserved_meta_blocks += md_needed; 1303 spin_unlock(&ei->i_block_reservation_lock); 1304 1305 return 0; /* success */ 1306 } 1307 1308 /* 1309 * Reserve a single cluster located at lblock 1310 */ 1311 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1312 { 1313 int retries = 0; 1314 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1315 struct ext4_inode_info *ei = EXT4_I(inode); 1316 unsigned int md_needed; 1317 int ret; 1318 ext4_lblk_t save_last_lblock; 1319 int save_len; 1320 1321 /* 1322 * We will charge metadata quota at writeout time; this saves 1323 * us from metadata over-estimation, though we may go over by 1324 * a small amount in the end. Here we just reserve for data. 1325 */ 1326 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1327 if (ret) 1328 return ret; 1329 1330 /* 1331 * recalculate the amount of metadata blocks to reserve 1332 * in order to allocate nrblocks 1333 * worse case is one extent per block 1334 */ 1335 repeat: 1336 spin_lock(&ei->i_block_reservation_lock); 1337 /* 1338 * ext4_calc_metadata_amount() has side effects, which we have 1339 * to be prepared undo if we fail to claim space. 1340 */ 1341 save_len = ei->i_da_metadata_calc_len; 1342 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1343 md_needed = EXT4_NUM_B2C(sbi, 1344 ext4_calc_metadata_amount(inode, lblock)); 1345 trace_ext4_da_reserve_space(inode, md_needed); 1346 1347 /* 1348 * We do still charge estimated metadata to the sb though; 1349 * we cannot afford to run out of free blocks. 1350 */ 1351 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1352 ei->i_da_metadata_calc_len = save_len; 1353 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1354 spin_unlock(&ei->i_block_reservation_lock); 1355 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1356 cond_resched(); 1357 goto repeat; 1358 } 1359 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1360 return -ENOSPC; 1361 } 1362 ei->i_reserved_data_blocks++; 1363 ei->i_reserved_meta_blocks += md_needed; 1364 spin_unlock(&ei->i_block_reservation_lock); 1365 1366 return 0; /* success */ 1367 } 1368 1369 static void ext4_da_release_space(struct inode *inode, int to_free) 1370 { 1371 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1372 struct ext4_inode_info *ei = EXT4_I(inode); 1373 1374 if (!to_free) 1375 return; /* Nothing to release, exit */ 1376 1377 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1378 1379 trace_ext4_da_release_space(inode, to_free); 1380 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1381 /* 1382 * if there aren't enough reserved blocks, then the 1383 * counter is messed up somewhere. Since this 1384 * function is called from invalidate page, it's 1385 * harmless to return without any action. 1386 */ 1387 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1388 "ino %lu, to_free %d with only %d reserved " 1389 "data blocks", inode->i_ino, to_free, 1390 ei->i_reserved_data_blocks); 1391 WARN_ON(1); 1392 to_free = ei->i_reserved_data_blocks; 1393 } 1394 ei->i_reserved_data_blocks -= to_free; 1395 1396 if (ei->i_reserved_data_blocks == 0) { 1397 /* 1398 * We can release all of the reserved metadata blocks 1399 * only when we have written all of the delayed 1400 * allocation blocks. 1401 * Note that in case of bigalloc, i_reserved_meta_blocks, 1402 * i_reserved_data_blocks, etc. refer to number of clusters. 1403 */ 1404 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1405 ei->i_reserved_meta_blocks); 1406 ei->i_reserved_meta_blocks = 0; 1407 ei->i_da_metadata_calc_len = 0; 1408 } 1409 1410 /* update fs dirty data blocks counter */ 1411 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1412 1413 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1414 1415 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1416 } 1417 1418 static void ext4_da_page_release_reservation(struct page *page, 1419 unsigned int offset, 1420 unsigned int length) 1421 { 1422 int to_release = 0; 1423 struct buffer_head *head, *bh; 1424 unsigned int curr_off = 0; 1425 struct inode *inode = page->mapping->host; 1426 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1427 unsigned int stop = offset + length; 1428 int num_clusters; 1429 ext4_fsblk_t lblk; 1430 1431 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1432 1433 head = page_buffers(page); 1434 bh = head; 1435 do { 1436 unsigned int next_off = curr_off + bh->b_size; 1437 1438 if (next_off > stop) 1439 break; 1440 1441 if ((offset <= curr_off) && (buffer_delay(bh))) { 1442 to_release++; 1443 clear_buffer_delay(bh); 1444 } 1445 curr_off = next_off; 1446 } while ((bh = bh->b_this_page) != head); 1447 1448 if (to_release) { 1449 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1450 ext4_es_remove_extent(inode, lblk, to_release); 1451 } 1452 1453 /* If we have released all the blocks belonging to a cluster, then we 1454 * need to release the reserved space for that cluster. */ 1455 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1456 while (num_clusters > 0) { 1457 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1458 ((num_clusters - 1) << sbi->s_cluster_bits); 1459 if (sbi->s_cluster_ratio == 1 || 1460 !ext4_find_delalloc_cluster(inode, lblk)) 1461 ext4_da_release_space(inode, 1); 1462 1463 num_clusters--; 1464 } 1465 } 1466 1467 /* 1468 * Delayed allocation stuff 1469 */ 1470 1471 /* 1472 * mpage_da_submit_io - walks through extent of pages and try to write 1473 * them with writepage() call back 1474 * 1475 * @mpd->inode: inode 1476 * @mpd->first_page: first page of the extent 1477 * @mpd->next_page: page after the last page of the extent 1478 * 1479 * By the time mpage_da_submit_io() is called we expect all blocks 1480 * to be allocated. this may be wrong if allocation failed. 1481 * 1482 * As pages are already locked by write_cache_pages(), we can't use it 1483 */ 1484 static int mpage_da_submit_io(struct mpage_da_data *mpd, 1485 struct ext4_map_blocks *map) 1486 { 1487 struct pagevec pvec; 1488 unsigned long index, end; 1489 int ret = 0, err, nr_pages, i; 1490 struct inode *inode = mpd->inode; 1491 struct address_space *mapping = inode->i_mapping; 1492 loff_t size = i_size_read(inode); 1493 unsigned int len, block_start; 1494 struct buffer_head *bh, *page_bufs = NULL; 1495 sector_t pblock = 0, cur_logical = 0; 1496 struct ext4_io_submit io_submit; 1497 1498 BUG_ON(mpd->next_page <= mpd->first_page); 1499 memset(&io_submit, 0, sizeof(io_submit)); 1500 /* 1501 * We need to start from the first_page to the next_page - 1 1502 * to make sure we also write the mapped dirty buffer_heads. 1503 * If we look at mpd->b_blocknr we would only be looking 1504 * at the currently mapped buffer_heads. 1505 */ 1506 index = mpd->first_page; 1507 end = mpd->next_page - 1; 1508 1509 pagevec_init(&pvec, 0); 1510 while (index <= end) { 1511 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1512 if (nr_pages == 0) 1513 break; 1514 for (i = 0; i < nr_pages; i++) { 1515 int skip_page = 0; 1516 struct page *page = pvec.pages[i]; 1517 1518 index = page->index; 1519 if (index > end) 1520 break; 1521 1522 if (index == size >> PAGE_CACHE_SHIFT) 1523 len = size & ~PAGE_CACHE_MASK; 1524 else 1525 len = PAGE_CACHE_SIZE; 1526 if (map) { 1527 cur_logical = index << (PAGE_CACHE_SHIFT - 1528 inode->i_blkbits); 1529 pblock = map->m_pblk + (cur_logical - 1530 map->m_lblk); 1531 } 1532 index++; 1533 1534 BUG_ON(!PageLocked(page)); 1535 BUG_ON(PageWriteback(page)); 1536 1537 bh = page_bufs = page_buffers(page); 1538 block_start = 0; 1539 do { 1540 if (map && (cur_logical >= map->m_lblk) && 1541 (cur_logical <= (map->m_lblk + 1542 (map->m_len - 1)))) { 1543 if (buffer_delay(bh)) { 1544 clear_buffer_delay(bh); 1545 bh->b_blocknr = pblock; 1546 } 1547 if (buffer_unwritten(bh) || 1548 buffer_mapped(bh)) 1549 BUG_ON(bh->b_blocknr != pblock); 1550 if (map->m_flags & EXT4_MAP_UNINIT) 1551 set_buffer_uninit(bh); 1552 clear_buffer_unwritten(bh); 1553 } 1554 1555 /* 1556 * skip page if block allocation undone and 1557 * block is dirty 1558 */ 1559 if (ext4_bh_delay_or_unwritten(NULL, bh)) 1560 skip_page = 1; 1561 bh = bh->b_this_page; 1562 block_start += bh->b_size; 1563 cur_logical++; 1564 pblock++; 1565 } while (bh != page_bufs); 1566 1567 if (skip_page) { 1568 unlock_page(page); 1569 continue; 1570 } 1571 1572 clear_page_dirty_for_io(page); 1573 err = ext4_bio_write_page(&io_submit, page, len, 1574 mpd->wbc); 1575 if (!err) 1576 mpd->pages_written++; 1577 /* 1578 * In error case, we have to continue because 1579 * remaining pages are still locked 1580 */ 1581 if (ret == 0) 1582 ret = err; 1583 } 1584 pagevec_release(&pvec); 1585 } 1586 ext4_io_submit(&io_submit); 1587 return ret; 1588 } 1589 1590 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd) 1591 { 1592 int nr_pages, i; 1593 pgoff_t index, end; 1594 struct pagevec pvec; 1595 struct inode *inode = mpd->inode; 1596 struct address_space *mapping = inode->i_mapping; 1597 ext4_lblk_t start, last; 1598 1599 index = mpd->first_page; 1600 end = mpd->next_page - 1; 1601 1602 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1603 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1604 ext4_es_remove_extent(inode, start, last - start + 1); 1605 1606 pagevec_init(&pvec, 0); 1607 while (index <= end) { 1608 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1609 if (nr_pages == 0) 1610 break; 1611 for (i = 0; i < nr_pages; i++) { 1612 struct page *page = pvec.pages[i]; 1613 if (page->index > end) 1614 break; 1615 BUG_ON(!PageLocked(page)); 1616 BUG_ON(PageWriteback(page)); 1617 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1618 ClearPageUptodate(page); 1619 unlock_page(page); 1620 } 1621 index = pvec.pages[nr_pages - 1]->index + 1; 1622 pagevec_release(&pvec); 1623 } 1624 return; 1625 } 1626 1627 static void ext4_print_free_blocks(struct inode *inode) 1628 { 1629 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1630 struct super_block *sb = inode->i_sb; 1631 struct ext4_inode_info *ei = EXT4_I(inode); 1632 1633 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1634 EXT4_C2B(EXT4_SB(inode->i_sb), 1635 ext4_count_free_clusters(sb))); 1636 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1637 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1638 (long long) EXT4_C2B(EXT4_SB(sb), 1639 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1640 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1641 (long long) EXT4_C2B(EXT4_SB(sb), 1642 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1643 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1644 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1645 ei->i_reserved_data_blocks); 1646 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u", 1647 ei->i_reserved_meta_blocks); 1648 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u", 1649 ei->i_allocated_meta_blocks); 1650 return; 1651 } 1652 1653 /* 1654 * mpage_da_map_and_submit - go through given space, map them 1655 * if necessary, and then submit them for I/O 1656 * 1657 * @mpd - bh describing space 1658 * 1659 * The function skips space we know is already mapped to disk blocks. 1660 * 1661 */ 1662 static void mpage_da_map_and_submit(struct mpage_da_data *mpd) 1663 { 1664 int err, blks, get_blocks_flags; 1665 struct ext4_map_blocks map, *mapp = NULL; 1666 sector_t next = mpd->b_blocknr; 1667 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 1668 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 1669 handle_t *handle = NULL; 1670 1671 /* 1672 * If the blocks are mapped already, or we couldn't accumulate 1673 * any blocks, then proceed immediately to the submission stage. 1674 */ 1675 if ((mpd->b_size == 0) || 1676 ((mpd->b_state & (1 << BH_Mapped)) && 1677 !(mpd->b_state & (1 << BH_Delay)) && 1678 !(mpd->b_state & (1 << BH_Unwritten)))) 1679 goto submit_io; 1680 1681 handle = ext4_journal_current_handle(); 1682 BUG_ON(!handle); 1683 1684 /* 1685 * Call ext4_map_blocks() to allocate any delayed allocation 1686 * blocks, or to convert an uninitialized extent to be 1687 * initialized (in the case where we have written into 1688 * one or more preallocated blocks). 1689 * 1690 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 1691 * indicate that we are on the delayed allocation path. This 1692 * affects functions in many different parts of the allocation 1693 * call path. This flag exists primarily because we don't 1694 * want to change *many* call functions, so ext4_map_blocks() 1695 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the 1696 * inode's allocation semaphore is taken. 1697 * 1698 * If the blocks in questions were delalloc blocks, set 1699 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 1700 * variables are updated after the blocks have been allocated. 1701 */ 1702 map.m_lblk = next; 1703 map.m_len = max_blocks; 1704 /* 1705 * We're in delalloc path and it is possible that we're going to 1706 * need more metadata blocks than previously reserved. However 1707 * we must not fail because we're in writeback and there is 1708 * nothing we can do about it so it might result in data loss. 1709 * So use reserved blocks to allocate metadata if possible. 1710 */ 1711 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 1712 EXT4_GET_BLOCKS_METADATA_NOFAIL; 1713 if (ext4_should_dioread_nolock(mpd->inode)) 1714 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 1715 if (mpd->b_state & (1 << BH_Delay)) 1716 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 1717 1718 1719 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 1720 if (blks < 0) { 1721 struct super_block *sb = mpd->inode->i_sb; 1722 1723 err = blks; 1724 /* 1725 * If get block returns EAGAIN or ENOSPC and there 1726 * appears to be free blocks we will just let 1727 * mpage_da_submit_io() unlock all of the pages. 1728 */ 1729 if (err == -EAGAIN) 1730 goto submit_io; 1731 1732 if (err == -ENOSPC && ext4_count_free_clusters(sb)) { 1733 mpd->retval = err; 1734 goto submit_io; 1735 } 1736 1737 /* 1738 * get block failure will cause us to loop in 1739 * writepages, because a_ops->writepage won't be able 1740 * to make progress. The page will be redirtied by 1741 * writepage and writepages will again try to write 1742 * the same. 1743 */ 1744 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 1745 ext4_msg(sb, KERN_CRIT, 1746 "delayed block allocation failed for inode %lu " 1747 "at logical offset %llu with max blocks %zd " 1748 "with error %d", mpd->inode->i_ino, 1749 (unsigned long long) next, 1750 mpd->b_size >> mpd->inode->i_blkbits, err); 1751 ext4_msg(sb, KERN_CRIT, 1752 "This should not happen!! Data will be lost"); 1753 if (err == -ENOSPC) 1754 ext4_print_free_blocks(mpd->inode); 1755 } 1756 /* invalidate all the pages */ 1757 ext4_da_block_invalidatepages(mpd); 1758 1759 /* Mark this page range as having been completed */ 1760 mpd->io_done = 1; 1761 return; 1762 } 1763 BUG_ON(blks == 0); 1764 1765 mapp = ↦ 1766 if (map.m_flags & EXT4_MAP_NEW) { 1767 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 1768 int i; 1769 1770 for (i = 0; i < map.m_len; i++) 1771 unmap_underlying_metadata(bdev, map.m_pblk + i); 1772 } 1773 1774 /* 1775 * Update on-disk size along with block allocation. 1776 */ 1777 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 1778 if (disksize > i_size_read(mpd->inode)) 1779 disksize = i_size_read(mpd->inode); 1780 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 1781 ext4_update_i_disksize(mpd->inode, disksize); 1782 err = ext4_mark_inode_dirty(handle, mpd->inode); 1783 if (err) 1784 ext4_error(mpd->inode->i_sb, 1785 "Failed to mark inode %lu dirty", 1786 mpd->inode->i_ino); 1787 } 1788 1789 submit_io: 1790 mpage_da_submit_io(mpd, mapp); 1791 mpd->io_done = 1; 1792 } 1793 1794 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1795 (1 << BH_Delay) | (1 << BH_Unwritten)) 1796 1797 /* 1798 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1799 * 1800 * @mpd->lbh - extent of blocks 1801 * @logical - logical number of the block in the file 1802 * @b_state - b_state of the buffer head added 1803 * 1804 * the function is used to collect contig. blocks in same state 1805 */ 1806 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical, 1807 unsigned long b_state) 1808 { 1809 sector_t next; 1810 int blkbits = mpd->inode->i_blkbits; 1811 int nrblocks = mpd->b_size >> blkbits; 1812 1813 /* 1814 * XXX Don't go larger than mballoc is willing to allocate 1815 * This is a stopgap solution. We eventually need to fold 1816 * mpage_da_submit_io() into this function and then call 1817 * ext4_map_blocks() multiple times in a loop 1818 */ 1819 if (nrblocks >= (8*1024*1024 >> blkbits)) 1820 goto flush_it; 1821 1822 /* check if the reserved journal credits might overflow */ 1823 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) { 1824 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1825 /* 1826 * With non-extent format we are limited by the journal 1827 * credit available. Total credit needed to insert 1828 * nrblocks contiguous blocks is dependent on the 1829 * nrblocks. So limit nrblocks. 1830 */ 1831 goto flush_it; 1832 } 1833 } 1834 /* 1835 * First block in the extent 1836 */ 1837 if (mpd->b_size == 0) { 1838 mpd->b_blocknr = logical; 1839 mpd->b_size = 1 << blkbits; 1840 mpd->b_state = b_state & BH_FLAGS; 1841 return; 1842 } 1843 1844 next = mpd->b_blocknr + nrblocks; 1845 /* 1846 * Can we merge the block to our big extent? 1847 */ 1848 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 1849 mpd->b_size += 1 << blkbits; 1850 return; 1851 } 1852 1853 flush_it: 1854 /* 1855 * We couldn't merge the block to our extent, so we 1856 * need to flush current extent and start new one 1857 */ 1858 mpage_da_map_and_submit(mpd); 1859 return; 1860 } 1861 1862 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1863 { 1864 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1865 } 1866 1867 /* 1868 * This function is grabs code from the very beginning of 1869 * ext4_map_blocks, but assumes that the caller is from delayed write 1870 * time. This function looks up the requested blocks and sets the 1871 * buffer delay bit under the protection of i_data_sem. 1872 */ 1873 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1874 struct ext4_map_blocks *map, 1875 struct buffer_head *bh) 1876 { 1877 struct extent_status es; 1878 int retval; 1879 sector_t invalid_block = ~((sector_t) 0xffff); 1880 #ifdef ES_AGGRESSIVE_TEST 1881 struct ext4_map_blocks orig_map; 1882 1883 memcpy(&orig_map, map, sizeof(*map)); 1884 #endif 1885 1886 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1887 invalid_block = ~0; 1888 1889 map->m_flags = 0; 1890 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1891 "logical block %lu\n", inode->i_ino, map->m_len, 1892 (unsigned long) map->m_lblk); 1893 1894 /* Lookup extent status tree firstly */ 1895 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1896 1897 if (ext4_es_is_hole(&es)) { 1898 retval = 0; 1899 down_read((&EXT4_I(inode)->i_data_sem)); 1900 goto add_delayed; 1901 } 1902 1903 /* 1904 * Delayed extent could be allocated by fallocate. 1905 * So we need to check it. 1906 */ 1907 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1908 map_bh(bh, inode->i_sb, invalid_block); 1909 set_buffer_new(bh); 1910 set_buffer_delay(bh); 1911 return 0; 1912 } 1913 1914 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1915 retval = es.es_len - (iblock - es.es_lblk); 1916 if (retval > map->m_len) 1917 retval = map->m_len; 1918 map->m_len = retval; 1919 if (ext4_es_is_written(&es)) 1920 map->m_flags |= EXT4_MAP_MAPPED; 1921 else if (ext4_es_is_unwritten(&es)) 1922 map->m_flags |= EXT4_MAP_UNWRITTEN; 1923 else 1924 BUG_ON(1); 1925 1926 #ifdef ES_AGGRESSIVE_TEST 1927 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1928 #endif 1929 return retval; 1930 } 1931 1932 /* 1933 * Try to see if we can get the block without requesting a new 1934 * file system block. 1935 */ 1936 down_read((&EXT4_I(inode)->i_data_sem)); 1937 if (ext4_has_inline_data(inode)) { 1938 /* 1939 * We will soon create blocks for this page, and let 1940 * us pretend as if the blocks aren't allocated yet. 1941 * In case of clusters, we have to handle the work 1942 * of mapping from cluster so that the reserved space 1943 * is calculated properly. 1944 */ 1945 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) && 1946 ext4_find_delalloc_cluster(inode, map->m_lblk)) 1947 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 1948 retval = 0; 1949 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1950 retval = ext4_ext_map_blocks(NULL, inode, map, 1951 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1952 else 1953 retval = ext4_ind_map_blocks(NULL, inode, map, 1954 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1955 1956 add_delayed: 1957 if (retval == 0) { 1958 int ret; 1959 /* 1960 * XXX: __block_prepare_write() unmaps passed block, 1961 * is it OK? 1962 */ 1963 /* 1964 * If the block was allocated from previously allocated cluster, 1965 * then we don't need to reserve it again. However we still need 1966 * to reserve metadata for every block we're going to write. 1967 */ 1968 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1969 ret = ext4_da_reserve_space(inode, iblock); 1970 if (ret) { 1971 /* not enough space to reserve */ 1972 retval = ret; 1973 goto out_unlock; 1974 } 1975 } else { 1976 ret = ext4_da_reserve_metadata(inode, iblock); 1977 if (ret) { 1978 /* not enough space to reserve */ 1979 retval = ret; 1980 goto out_unlock; 1981 } 1982 } 1983 1984 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1985 ~0, EXTENT_STATUS_DELAYED); 1986 if (ret) { 1987 retval = ret; 1988 goto out_unlock; 1989 } 1990 1991 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1992 * and it should not appear on the bh->b_state. 1993 */ 1994 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1995 1996 map_bh(bh, inode->i_sb, invalid_block); 1997 set_buffer_new(bh); 1998 set_buffer_delay(bh); 1999 } else if (retval > 0) { 2000 int ret; 2001 unsigned long long status; 2002 2003 #ifdef ES_AGGRESSIVE_TEST 2004 if (retval != map->m_len) { 2005 printk("ES len assertation failed for inode: %lu " 2006 "retval %d != map->m_len %d " 2007 "in %s (lookup)\n", inode->i_ino, retval, 2008 map->m_len, __func__); 2009 } 2010 #endif 2011 2012 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 2013 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 2014 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 2015 map->m_pblk, status); 2016 if (ret != 0) 2017 retval = ret; 2018 } 2019 2020 out_unlock: 2021 up_read((&EXT4_I(inode)->i_data_sem)); 2022 2023 return retval; 2024 } 2025 2026 /* 2027 * This is a special get_blocks_t callback which is used by 2028 * ext4_da_write_begin(). It will either return mapped block or 2029 * reserve space for a single block. 2030 * 2031 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 2032 * We also have b_blocknr = -1 and b_bdev initialized properly 2033 * 2034 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 2035 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 2036 * initialized properly. 2037 */ 2038 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2039 struct buffer_head *bh, int create) 2040 { 2041 struct ext4_map_blocks map; 2042 int ret = 0; 2043 2044 BUG_ON(create == 0); 2045 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 2046 2047 map.m_lblk = iblock; 2048 map.m_len = 1; 2049 2050 /* 2051 * first, we need to know whether the block is allocated already 2052 * preallocated blocks are unmapped but should treated 2053 * the same as allocated blocks. 2054 */ 2055 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 2056 if (ret <= 0) 2057 return ret; 2058 2059 map_bh(bh, inode->i_sb, map.m_pblk); 2060 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 2061 2062 if (buffer_unwritten(bh)) { 2063 /* A delayed write to unwritten bh should be marked 2064 * new and mapped. Mapped ensures that we don't do 2065 * get_block multiple times when we write to the same 2066 * offset and new ensures that we do proper zero out 2067 * for partial write. 2068 */ 2069 set_buffer_new(bh); 2070 set_buffer_mapped(bh); 2071 } 2072 return 0; 2073 } 2074 2075 static int bget_one(handle_t *handle, struct buffer_head *bh) 2076 { 2077 get_bh(bh); 2078 return 0; 2079 } 2080 2081 static int bput_one(handle_t *handle, struct buffer_head *bh) 2082 { 2083 put_bh(bh); 2084 return 0; 2085 } 2086 2087 static int __ext4_journalled_writepage(struct page *page, 2088 unsigned int len) 2089 { 2090 struct address_space *mapping = page->mapping; 2091 struct inode *inode = mapping->host; 2092 struct buffer_head *page_bufs = NULL; 2093 handle_t *handle = NULL; 2094 int ret = 0, err = 0; 2095 int inline_data = ext4_has_inline_data(inode); 2096 struct buffer_head *inode_bh = NULL; 2097 2098 ClearPageChecked(page); 2099 2100 if (inline_data) { 2101 BUG_ON(page->index != 0); 2102 BUG_ON(len > ext4_get_max_inline_size(inode)); 2103 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 2104 if (inode_bh == NULL) 2105 goto out; 2106 } else { 2107 page_bufs = page_buffers(page); 2108 if (!page_bufs) { 2109 BUG(); 2110 goto out; 2111 } 2112 ext4_walk_page_buffers(handle, page_bufs, 0, len, 2113 NULL, bget_one); 2114 } 2115 /* As soon as we unlock the page, it can go away, but we have 2116 * references to buffers so we are safe */ 2117 unlock_page(page); 2118 2119 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2120 ext4_writepage_trans_blocks(inode)); 2121 if (IS_ERR(handle)) { 2122 ret = PTR_ERR(handle); 2123 goto out; 2124 } 2125 2126 BUG_ON(!ext4_handle_valid(handle)); 2127 2128 if (inline_data) { 2129 ret = ext4_journal_get_write_access(handle, inode_bh); 2130 2131 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 2132 2133 } else { 2134 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2135 do_journal_get_write_access); 2136 2137 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2138 write_end_fn); 2139 } 2140 if (ret == 0) 2141 ret = err; 2142 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2143 err = ext4_journal_stop(handle); 2144 if (!ret) 2145 ret = err; 2146 2147 if (!ext4_has_inline_data(inode)) 2148 ext4_walk_page_buffers(handle, page_bufs, 0, len, 2149 NULL, bput_one); 2150 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2151 out: 2152 brelse(inode_bh); 2153 return ret; 2154 } 2155 2156 /* 2157 * Note that we don't need to start a transaction unless we're journaling data 2158 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2159 * need to file the inode to the transaction's list in ordered mode because if 2160 * we are writing back data added by write(), the inode is already there and if 2161 * we are writing back data modified via mmap(), no one guarantees in which 2162 * transaction the data will hit the disk. In case we are journaling data, we 2163 * cannot start transaction directly because transaction start ranks above page 2164 * lock so we have to do some magic. 2165 * 2166 * This function can get called via... 2167 * - ext4_da_writepages after taking page lock (have journal handle) 2168 * - journal_submit_inode_data_buffers (no journal handle) 2169 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 2170 * - grab_page_cache when doing write_begin (have journal handle) 2171 * 2172 * We don't do any block allocation in this function. If we have page with 2173 * multiple blocks we need to write those buffer_heads that are mapped. This 2174 * is important for mmaped based write. So if we do with blocksize 1K 2175 * truncate(f, 1024); 2176 * a = mmap(f, 0, 4096); 2177 * a[0] = 'a'; 2178 * truncate(f, 4096); 2179 * we have in the page first buffer_head mapped via page_mkwrite call back 2180 * but other buffer_heads would be unmapped but dirty (dirty done via the 2181 * do_wp_page). So writepage should write the first block. If we modify 2182 * the mmap area beyond 1024 we will again get a page_fault and the 2183 * page_mkwrite callback will do the block allocation and mark the 2184 * buffer_heads mapped. 2185 * 2186 * We redirty the page if we have any buffer_heads that is either delay or 2187 * unwritten in the page. 2188 * 2189 * We can get recursively called as show below. 2190 * 2191 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2192 * ext4_writepage() 2193 * 2194 * But since we don't do any block allocation we should not deadlock. 2195 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2196 */ 2197 static int ext4_writepage(struct page *page, 2198 struct writeback_control *wbc) 2199 { 2200 int ret = 0; 2201 loff_t size; 2202 unsigned int len; 2203 struct buffer_head *page_bufs = NULL; 2204 struct inode *inode = page->mapping->host; 2205 struct ext4_io_submit io_submit; 2206 2207 trace_ext4_writepage(page); 2208 size = i_size_read(inode); 2209 if (page->index == size >> PAGE_CACHE_SHIFT) 2210 len = size & ~PAGE_CACHE_MASK; 2211 else 2212 len = PAGE_CACHE_SIZE; 2213 2214 page_bufs = page_buffers(page); 2215 /* 2216 * We cannot do block allocation or other extent handling in this 2217 * function. If there are buffers needing that, we have to redirty 2218 * the page. But we may reach here when we do a journal commit via 2219 * journal_submit_inode_data_buffers() and in that case we must write 2220 * allocated buffers to achieve data=ordered mode guarantees. 2221 */ 2222 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2223 ext4_bh_delay_or_unwritten)) { 2224 redirty_page_for_writepage(wbc, page); 2225 if (current->flags & PF_MEMALLOC) { 2226 /* 2227 * For memory cleaning there's no point in writing only 2228 * some buffers. So just bail out. Warn if we came here 2229 * from direct reclaim. 2230 */ 2231 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2232 == PF_MEMALLOC); 2233 unlock_page(page); 2234 return 0; 2235 } 2236 } 2237 2238 if (PageChecked(page) && ext4_should_journal_data(inode)) 2239 /* 2240 * It's mmapped pagecache. Add buffers and journal it. There 2241 * doesn't seem much point in redirtying the page here. 2242 */ 2243 return __ext4_journalled_writepage(page, len); 2244 2245 memset(&io_submit, 0, sizeof(io_submit)); 2246 ret = ext4_bio_write_page(&io_submit, page, len, wbc); 2247 ext4_io_submit(&io_submit); 2248 return ret; 2249 } 2250 2251 /* 2252 * This is called via ext4_da_writepages() to 2253 * calculate the total number of credits to reserve to fit 2254 * a single extent allocation into a single transaction, 2255 * ext4_da_writpeages() will loop calling this before 2256 * the block allocation. 2257 */ 2258 2259 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2260 { 2261 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2262 2263 /* 2264 * With non-extent format the journal credit needed to 2265 * insert nrblocks contiguous block is dependent on 2266 * number of contiguous block. So we will limit 2267 * number of contiguous block to a sane value 2268 */ 2269 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 2270 (max_blocks > EXT4_MAX_TRANS_DATA)) 2271 max_blocks = EXT4_MAX_TRANS_DATA; 2272 2273 return ext4_chunk_trans_blocks(inode, max_blocks); 2274 } 2275 2276 /* 2277 * write_cache_pages_da - walk the list of dirty pages of the given 2278 * address space and accumulate pages that need writing, and call 2279 * mpage_da_map_and_submit to map a single contiguous memory region 2280 * and then write them. 2281 */ 2282 static int write_cache_pages_da(handle_t *handle, 2283 struct address_space *mapping, 2284 struct writeback_control *wbc, 2285 struct mpage_da_data *mpd, 2286 pgoff_t *done_index) 2287 { 2288 struct buffer_head *bh, *head; 2289 struct inode *inode = mapping->host; 2290 struct pagevec pvec; 2291 unsigned int nr_pages; 2292 sector_t logical; 2293 pgoff_t index, end; 2294 long nr_to_write = wbc->nr_to_write; 2295 int i, tag, ret = 0; 2296 2297 memset(mpd, 0, sizeof(struct mpage_da_data)); 2298 mpd->wbc = wbc; 2299 mpd->inode = inode; 2300 pagevec_init(&pvec, 0); 2301 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2302 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2303 2304 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2305 tag = PAGECACHE_TAG_TOWRITE; 2306 else 2307 tag = PAGECACHE_TAG_DIRTY; 2308 2309 *done_index = index; 2310 while (index <= end) { 2311 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2312 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2313 if (nr_pages == 0) 2314 return 0; 2315 2316 for (i = 0; i < nr_pages; i++) { 2317 struct page *page = pvec.pages[i]; 2318 2319 /* 2320 * At this point, the page may be truncated or 2321 * invalidated (changing page->mapping to NULL), or 2322 * even swizzled back from swapper_space to tmpfs file 2323 * mapping. However, page->index will not change 2324 * because we have a reference on the page. 2325 */ 2326 if (page->index > end) 2327 goto out; 2328 2329 *done_index = page->index + 1; 2330 2331 /* 2332 * If we can't merge this page, and we have 2333 * accumulated an contiguous region, write it 2334 */ 2335 if ((mpd->next_page != page->index) && 2336 (mpd->next_page != mpd->first_page)) { 2337 mpage_da_map_and_submit(mpd); 2338 goto ret_extent_tail; 2339 } 2340 2341 lock_page(page); 2342 2343 /* 2344 * If the page is no longer dirty, or its 2345 * mapping no longer corresponds to inode we 2346 * are writing (which means it has been 2347 * truncated or invalidated), or the page is 2348 * already under writeback and we are not 2349 * doing a data integrity writeback, skip the page 2350 */ 2351 if (!PageDirty(page) || 2352 (PageWriteback(page) && 2353 (wbc->sync_mode == WB_SYNC_NONE)) || 2354 unlikely(page->mapping != mapping)) { 2355 unlock_page(page); 2356 continue; 2357 } 2358 2359 wait_on_page_writeback(page); 2360 BUG_ON(PageWriteback(page)); 2361 2362 /* 2363 * If we have inline data and arrive here, it means that 2364 * we will soon create the block for the 1st page, so 2365 * we'd better clear the inline data here. 2366 */ 2367 if (ext4_has_inline_data(inode)) { 2368 BUG_ON(ext4_test_inode_state(inode, 2369 EXT4_STATE_MAY_INLINE_DATA)); 2370 ext4_destroy_inline_data(handle, inode); 2371 } 2372 2373 if (mpd->next_page != page->index) 2374 mpd->first_page = page->index; 2375 mpd->next_page = page->index + 1; 2376 logical = (sector_t) page->index << 2377 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2378 2379 /* Add all dirty buffers to mpd */ 2380 head = page_buffers(page); 2381 bh = head; 2382 do { 2383 BUG_ON(buffer_locked(bh)); 2384 /* 2385 * We need to try to allocate unmapped blocks 2386 * in the same page. Otherwise we won't make 2387 * progress with the page in ext4_writepage 2388 */ 2389 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2390 mpage_add_bh_to_extent(mpd, logical, 2391 bh->b_state); 2392 if (mpd->io_done) 2393 goto ret_extent_tail; 2394 } else if (buffer_dirty(bh) && 2395 buffer_mapped(bh)) { 2396 /* 2397 * mapped dirty buffer. We need to 2398 * update the b_state because we look 2399 * at b_state in mpage_da_map_blocks. 2400 * We don't update b_size because if we 2401 * find an unmapped buffer_head later 2402 * we need to use the b_state flag of 2403 * that buffer_head. 2404 */ 2405 if (mpd->b_size == 0) 2406 mpd->b_state = 2407 bh->b_state & BH_FLAGS; 2408 } 2409 logical++; 2410 } while ((bh = bh->b_this_page) != head); 2411 2412 if (nr_to_write > 0) { 2413 nr_to_write--; 2414 if (nr_to_write == 0 && 2415 wbc->sync_mode == WB_SYNC_NONE) 2416 /* 2417 * We stop writing back only if we are 2418 * not doing integrity sync. In case of 2419 * integrity sync we have to keep going 2420 * because someone may be concurrently 2421 * dirtying pages, and we might have 2422 * synced a lot of newly appeared dirty 2423 * pages, but have not synced all of the 2424 * old dirty pages. 2425 */ 2426 goto out; 2427 } 2428 } 2429 pagevec_release(&pvec); 2430 cond_resched(); 2431 } 2432 return 0; 2433 ret_extent_tail: 2434 ret = MPAGE_DA_EXTENT_TAIL; 2435 out: 2436 pagevec_release(&pvec); 2437 cond_resched(); 2438 return ret; 2439 } 2440 2441 2442 static int ext4_da_writepages(struct address_space *mapping, 2443 struct writeback_control *wbc) 2444 { 2445 pgoff_t index; 2446 int range_whole = 0; 2447 handle_t *handle = NULL; 2448 struct mpage_da_data mpd; 2449 struct inode *inode = mapping->host; 2450 int pages_written = 0; 2451 unsigned int max_pages; 2452 int range_cyclic, cycled = 1, io_done = 0; 2453 int needed_blocks, ret = 0; 2454 long desired_nr_to_write, nr_to_writebump = 0; 2455 loff_t range_start = wbc->range_start; 2456 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2457 pgoff_t done_index = 0; 2458 pgoff_t end; 2459 struct blk_plug plug; 2460 2461 trace_ext4_da_writepages(inode, wbc); 2462 2463 /* 2464 * No pages to write? This is mainly a kludge to avoid starting 2465 * a transaction for special inodes like journal inode on last iput() 2466 * because that could violate lock ordering on umount 2467 */ 2468 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2469 return 0; 2470 2471 /* 2472 * If the filesystem has aborted, it is read-only, so return 2473 * right away instead of dumping stack traces later on that 2474 * will obscure the real source of the problem. We test 2475 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2476 * the latter could be true if the filesystem is mounted 2477 * read-only, and in that case, ext4_da_writepages should 2478 * *never* be called, so if that ever happens, we would want 2479 * the stack trace. 2480 */ 2481 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2482 return -EROFS; 2483 2484 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2485 range_whole = 1; 2486 2487 range_cyclic = wbc->range_cyclic; 2488 if (wbc->range_cyclic) { 2489 index = mapping->writeback_index; 2490 if (index) 2491 cycled = 0; 2492 wbc->range_start = index << PAGE_CACHE_SHIFT; 2493 wbc->range_end = LLONG_MAX; 2494 wbc->range_cyclic = 0; 2495 end = -1; 2496 } else { 2497 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2498 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2499 } 2500 2501 /* 2502 * This works around two forms of stupidity. The first is in 2503 * the writeback code, which caps the maximum number of pages 2504 * written to be 1024 pages. This is wrong on multiple 2505 * levels; different architectues have a different page size, 2506 * which changes the maximum amount of data which gets 2507 * written. Secondly, 4 megabytes is way too small. XFS 2508 * forces this value to be 16 megabytes by multiplying 2509 * nr_to_write parameter by four, and then relies on its 2510 * allocator to allocate larger extents to make them 2511 * contiguous. Unfortunately this brings us to the second 2512 * stupidity, which is that ext4's mballoc code only allocates 2513 * at most 2048 blocks. So we force contiguous writes up to 2514 * the number of dirty blocks in the inode, or 2515 * sbi->max_writeback_mb_bump whichever is smaller. 2516 */ 2517 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2518 if (!range_cyclic && range_whole) { 2519 if (wbc->nr_to_write == LONG_MAX) 2520 desired_nr_to_write = wbc->nr_to_write; 2521 else 2522 desired_nr_to_write = wbc->nr_to_write * 8; 2523 } else 2524 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2525 max_pages); 2526 if (desired_nr_to_write > max_pages) 2527 desired_nr_to_write = max_pages; 2528 2529 if (wbc->nr_to_write < desired_nr_to_write) { 2530 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2531 wbc->nr_to_write = desired_nr_to_write; 2532 } 2533 2534 retry: 2535 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2536 tag_pages_for_writeback(mapping, index, end); 2537 2538 blk_start_plug(&plug); 2539 while (!ret && wbc->nr_to_write > 0) { 2540 2541 /* 2542 * we insert one extent at a time. So we need 2543 * credit needed for single extent allocation. 2544 * journalled mode is currently not supported 2545 * by delalloc 2546 */ 2547 BUG_ON(ext4_should_journal_data(inode)); 2548 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2549 2550 /* start a new transaction*/ 2551 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2552 needed_blocks); 2553 if (IS_ERR(handle)) { 2554 ret = PTR_ERR(handle); 2555 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2556 "%ld pages, ino %lu; err %d", __func__, 2557 wbc->nr_to_write, inode->i_ino, ret); 2558 blk_finish_plug(&plug); 2559 goto out_writepages; 2560 } 2561 2562 /* 2563 * Now call write_cache_pages_da() to find the next 2564 * contiguous region of logical blocks that need 2565 * blocks to be allocated by ext4 and submit them. 2566 */ 2567 ret = write_cache_pages_da(handle, mapping, 2568 wbc, &mpd, &done_index); 2569 /* 2570 * If we have a contiguous extent of pages and we 2571 * haven't done the I/O yet, map the blocks and submit 2572 * them for I/O. 2573 */ 2574 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2575 mpage_da_map_and_submit(&mpd); 2576 ret = MPAGE_DA_EXTENT_TAIL; 2577 } 2578 trace_ext4_da_write_pages(inode, &mpd); 2579 wbc->nr_to_write -= mpd.pages_written; 2580 2581 ext4_journal_stop(handle); 2582 2583 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2584 /* commit the transaction which would 2585 * free blocks released in the transaction 2586 * and try again 2587 */ 2588 jbd2_journal_force_commit_nested(sbi->s_journal); 2589 ret = 0; 2590 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2591 /* 2592 * Got one extent now try with rest of the pages. 2593 * If mpd.retval is set -EIO, journal is aborted. 2594 * So we don't need to write any more. 2595 */ 2596 pages_written += mpd.pages_written; 2597 ret = mpd.retval; 2598 io_done = 1; 2599 } else if (wbc->nr_to_write) 2600 /* 2601 * There is no more writeout needed 2602 * or we requested for a noblocking writeout 2603 * and we found the device congested 2604 */ 2605 break; 2606 } 2607 blk_finish_plug(&plug); 2608 if (!io_done && !cycled) { 2609 cycled = 1; 2610 index = 0; 2611 wbc->range_start = index << PAGE_CACHE_SHIFT; 2612 wbc->range_end = mapping->writeback_index - 1; 2613 goto retry; 2614 } 2615 2616 /* Update index */ 2617 wbc->range_cyclic = range_cyclic; 2618 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2619 /* 2620 * set the writeback_index so that range_cyclic 2621 * mode will write it back later 2622 */ 2623 mapping->writeback_index = done_index; 2624 2625 out_writepages: 2626 wbc->nr_to_write -= nr_to_writebump; 2627 wbc->range_start = range_start; 2628 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 2629 return ret; 2630 } 2631 2632 static int ext4_nonda_switch(struct super_block *sb) 2633 { 2634 s64 free_clusters, dirty_clusters; 2635 struct ext4_sb_info *sbi = EXT4_SB(sb); 2636 2637 /* 2638 * switch to non delalloc mode if we are running low 2639 * on free block. The free block accounting via percpu 2640 * counters can get slightly wrong with percpu_counter_batch getting 2641 * accumulated on each CPU without updating global counters 2642 * Delalloc need an accurate free block accounting. So switch 2643 * to non delalloc when we are near to error range. 2644 */ 2645 free_clusters = 2646 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2647 dirty_clusters = 2648 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2649 /* 2650 * Start pushing delalloc when 1/2 of free blocks are dirty. 2651 */ 2652 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2653 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2654 2655 if (2 * free_clusters < 3 * dirty_clusters || 2656 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2657 /* 2658 * free block count is less than 150% of dirty blocks 2659 * or free blocks is less than watermark 2660 */ 2661 return 1; 2662 } 2663 return 0; 2664 } 2665 2666 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2667 loff_t pos, unsigned len, unsigned flags, 2668 struct page **pagep, void **fsdata) 2669 { 2670 int ret, retries = 0; 2671 struct page *page; 2672 pgoff_t index; 2673 struct inode *inode = mapping->host; 2674 handle_t *handle; 2675 2676 index = pos >> PAGE_CACHE_SHIFT; 2677 2678 if (ext4_nonda_switch(inode->i_sb)) { 2679 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2680 return ext4_write_begin(file, mapping, pos, 2681 len, flags, pagep, fsdata); 2682 } 2683 *fsdata = (void *)0; 2684 trace_ext4_da_write_begin(inode, pos, len, flags); 2685 2686 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2687 ret = ext4_da_write_inline_data_begin(mapping, inode, 2688 pos, len, flags, 2689 pagep, fsdata); 2690 if (ret < 0) 2691 return ret; 2692 if (ret == 1) 2693 return 0; 2694 } 2695 2696 /* 2697 * grab_cache_page_write_begin() can take a long time if the 2698 * system is thrashing due to memory pressure, or if the page 2699 * is being written back. So grab it first before we start 2700 * the transaction handle. This also allows us to allocate 2701 * the page (if needed) without using GFP_NOFS. 2702 */ 2703 retry_grab: 2704 page = grab_cache_page_write_begin(mapping, index, flags); 2705 if (!page) 2706 return -ENOMEM; 2707 unlock_page(page); 2708 2709 /* 2710 * With delayed allocation, we don't log the i_disksize update 2711 * if there is delayed block allocation. But we still need 2712 * to journalling the i_disksize update if writes to the end 2713 * of file which has an already mapped buffer. 2714 */ 2715 retry_journal: 2716 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1); 2717 if (IS_ERR(handle)) { 2718 page_cache_release(page); 2719 return PTR_ERR(handle); 2720 } 2721 2722 lock_page(page); 2723 if (page->mapping != mapping) { 2724 /* The page got truncated from under us */ 2725 unlock_page(page); 2726 page_cache_release(page); 2727 ext4_journal_stop(handle); 2728 goto retry_grab; 2729 } 2730 /* In case writeback began while the page was unlocked */ 2731 wait_on_page_writeback(page); 2732 2733 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2734 if (ret < 0) { 2735 unlock_page(page); 2736 ext4_journal_stop(handle); 2737 /* 2738 * block_write_begin may have instantiated a few blocks 2739 * outside i_size. Trim these off again. Don't need 2740 * i_size_read because we hold i_mutex. 2741 */ 2742 if (pos + len > inode->i_size) 2743 ext4_truncate_failed_write(inode); 2744 2745 if (ret == -ENOSPC && 2746 ext4_should_retry_alloc(inode->i_sb, &retries)) 2747 goto retry_journal; 2748 2749 page_cache_release(page); 2750 return ret; 2751 } 2752 2753 *pagep = page; 2754 return ret; 2755 } 2756 2757 /* 2758 * Check if we should update i_disksize 2759 * when write to the end of file but not require block allocation 2760 */ 2761 static int ext4_da_should_update_i_disksize(struct page *page, 2762 unsigned long offset) 2763 { 2764 struct buffer_head *bh; 2765 struct inode *inode = page->mapping->host; 2766 unsigned int idx; 2767 int i; 2768 2769 bh = page_buffers(page); 2770 idx = offset >> inode->i_blkbits; 2771 2772 for (i = 0; i < idx; i++) 2773 bh = bh->b_this_page; 2774 2775 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2776 return 0; 2777 return 1; 2778 } 2779 2780 static int ext4_da_write_end(struct file *file, 2781 struct address_space *mapping, 2782 loff_t pos, unsigned len, unsigned copied, 2783 struct page *page, void *fsdata) 2784 { 2785 struct inode *inode = mapping->host; 2786 int ret = 0, ret2; 2787 handle_t *handle = ext4_journal_current_handle(); 2788 loff_t new_i_size; 2789 unsigned long start, end; 2790 int write_mode = (int)(unsigned long)fsdata; 2791 2792 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2793 return ext4_write_end(file, mapping, pos, 2794 len, copied, page, fsdata); 2795 2796 trace_ext4_da_write_end(inode, pos, len, copied); 2797 start = pos & (PAGE_CACHE_SIZE - 1); 2798 end = start + copied - 1; 2799 2800 /* 2801 * generic_write_end() will run mark_inode_dirty() if i_size 2802 * changes. So let's piggyback the i_disksize mark_inode_dirty 2803 * into that. 2804 */ 2805 new_i_size = pos + copied; 2806 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2807 if (ext4_has_inline_data(inode) || 2808 ext4_da_should_update_i_disksize(page, end)) { 2809 down_write(&EXT4_I(inode)->i_data_sem); 2810 if (new_i_size > EXT4_I(inode)->i_disksize) 2811 EXT4_I(inode)->i_disksize = new_i_size; 2812 up_write(&EXT4_I(inode)->i_data_sem); 2813 /* We need to mark inode dirty even if 2814 * new_i_size is less that inode->i_size 2815 * bu greater than i_disksize.(hint delalloc) 2816 */ 2817 ext4_mark_inode_dirty(handle, inode); 2818 } 2819 } 2820 2821 if (write_mode != CONVERT_INLINE_DATA && 2822 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2823 ext4_has_inline_data(inode)) 2824 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2825 page); 2826 else 2827 ret2 = generic_write_end(file, mapping, pos, len, copied, 2828 page, fsdata); 2829 2830 copied = ret2; 2831 if (ret2 < 0) 2832 ret = ret2; 2833 ret2 = ext4_journal_stop(handle); 2834 if (!ret) 2835 ret = ret2; 2836 2837 return ret ? ret : copied; 2838 } 2839 2840 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 2841 unsigned int length) 2842 { 2843 /* 2844 * Drop reserved blocks 2845 */ 2846 BUG_ON(!PageLocked(page)); 2847 if (!page_has_buffers(page)) 2848 goto out; 2849 2850 ext4_da_page_release_reservation(page, offset, length); 2851 2852 out: 2853 ext4_invalidatepage(page, offset, length); 2854 2855 return; 2856 } 2857 2858 /* 2859 * Force all delayed allocation blocks to be allocated for a given inode. 2860 */ 2861 int ext4_alloc_da_blocks(struct inode *inode) 2862 { 2863 trace_ext4_alloc_da_blocks(inode); 2864 2865 if (!EXT4_I(inode)->i_reserved_data_blocks && 2866 !EXT4_I(inode)->i_reserved_meta_blocks) 2867 return 0; 2868 2869 /* 2870 * We do something simple for now. The filemap_flush() will 2871 * also start triggering a write of the data blocks, which is 2872 * not strictly speaking necessary (and for users of 2873 * laptop_mode, not even desirable). However, to do otherwise 2874 * would require replicating code paths in: 2875 * 2876 * ext4_da_writepages() -> 2877 * write_cache_pages() ---> (via passed in callback function) 2878 * __mpage_da_writepage() --> 2879 * mpage_add_bh_to_extent() 2880 * mpage_da_map_blocks() 2881 * 2882 * The problem is that write_cache_pages(), located in 2883 * mm/page-writeback.c, marks pages clean in preparation for 2884 * doing I/O, which is not desirable if we're not planning on 2885 * doing I/O at all. 2886 * 2887 * We could call write_cache_pages(), and then redirty all of 2888 * the pages by calling redirty_page_for_writepage() but that 2889 * would be ugly in the extreme. So instead we would need to 2890 * replicate parts of the code in the above functions, 2891 * simplifying them because we wouldn't actually intend to 2892 * write out the pages, but rather only collect contiguous 2893 * logical block extents, call the multi-block allocator, and 2894 * then update the buffer heads with the block allocations. 2895 * 2896 * For now, though, we'll cheat by calling filemap_flush(), 2897 * which will map the blocks, and start the I/O, but not 2898 * actually wait for the I/O to complete. 2899 */ 2900 return filemap_flush(inode->i_mapping); 2901 } 2902 2903 /* 2904 * bmap() is special. It gets used by applications such as lilo and by 2905 * the swapper to find the on-disk block of a specific piece of data. 2906 * 2907 * Naturally, this is dangerous if the block concerned is still in the 2908 * journal. If somebody makes a swapfile on an ext4 data-journaling 2909 * filesystem and enables swap, then they may get a nasty shock when the 2910 * data getting swapped to that swapfile suddenly gets overwritten by 2911 * the original zero's written out previously to the journal and 2912 * awaiting writeback in the kernel's buffer cache. 2913 * 2914 * So, if we see any bmap calls here on a modified, data-journaled file, 2915 * take extra steps to flush any blocks which might be in the cache. 2916 */ 2917 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2918 { 2919 struct inode *inode = mapping->host; 2920 journal_t *journal; 2921 int err; 2922 2923 /* 2924 * We can get here for an inline file via the FIBMAP ioctl 2925 */ 2926 if (ext4_has_inline_data(inode)) 2927 return 0; 2928 2929 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2930 test_opt(inode->i_sb, DELALLOC)) { 2931 /* 2932 * With delalloc we want to sync the file 2933 * so that we can make sure we allocate 2934 * blocks for file 2935 */ 2936 filemap_write_and_wait(mapping); 2937 } 2938 2939 if (EXT4_JOURNAL(inode) && 2940 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2941 /* 2942 * This is a REALLY heavyweight approach, but the use of 2943 * bmap on dirty files is expected to be extremely rare: 2944 * only if we run lilo or swapon on a freshly made file 2945 * do we expect this to happen. 2946 * 2947 * (bmap requires CAP_SYS_RAWIO so this does not 2948 * represent an unprivileged user DOS attack --- we'd be 2949 * in trouble if mortal users could trigger this path at 2950 * will.) 2951 * 2952 * NB. EXT4_STATE_JDATA is not set on files other than 2953 * regular files. If somebody wants to bmap a directory 2954 * or symlink and gets confused because the buffer 2955 * hasn't yet been flushed to disk, they deserve 2956 * everything they get. 2957 */ 2958 2959 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2960 journal = EXT4_JOURNAL(inode); 2961 jbd2_journal_lock_updates(journal); 2962 err = jbd2_journal_flush(journal); 2963 jbd2_journal_unlock_updates(journal); 2964 2965 if (err) 2966 return 0; 2967 } 2968 2969 return generic_block_bmap(mapping, block, ext4_get_block); 2970 } 2971 2972 static int ext4_readpage(struct file *file, struct page *page) 2973 { 2974 int ret = -EAGAIN; 2975 struct inode *inode = page->mapping->host; 2976 2977 trace_ext4_readpage(page); 2978 2979 if (ext4_has_inline_data(inode)) 2980 ret = ext4_readpage_inline(inode, page); 2981 2982 if (ret == -EAGAIN) 2983 return mpage_readpage(page, ext4_get_block); 2984 2985 return ret; 2986 } 2987 2988 static int 2989 ext4_readpages(struct file *file, struct address_space *mapping, 2990 struct list_head *pages, unsigned nr_pages) 2991 { 2992 struct inode *inode = mapping->host; 2993 2994 /* If the file has inline data, no need to do readpages. */ 2995 if (ext4_has_inline_data(inode)) 2996 return 0; 2997 2998 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2999 } 3000 3001 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3002 unsigned int length) 3003 { 3004 trace_ext4_invalidatepage(page, offset, length); 3005 3006 /* No journalling happens on data buffers when this function is used */ 3007 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3008 3009 block_invalidatepage(page, offset, length); 3010 } 3011 3012 static int __ext4_journalled_invalidatepage(struct page *page, 3013 unsigned int offset, 3014 unsigned int length) 3015 { 3016 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3017 3018 trace_ext4_journalled_invalidatepage(page, offset, length); 3019 3020 /* 3021 * If it's a full truncate we just forget about the pending dirtying 3022 */ 3023 if (offset == 0 && length == PAGE_CACHE_SIZE) 3024 ClearPageChecked(page); 3025 3026 return jbd2_journal_invalidatepage(journal, page, offset, length); 3027 } 3028 3029 /* Wrapper for aops... */ 3030 static void ext4_journalled_invalidatepage(struct page *page, 3031 unsigned int offset, 3032 unsigned int length) 3033 { 3034 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3035 } 3036 3037 static int ext4_releasepage(struct page *page, gfp_t wait) 3038 { 3039 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3040 3041 trace_ext4_releasepage(page); 3042 3043 /* Page has dirty journalled data -> cannot release */ 3044 if (PageChecked(page)) 3045 return 0; 3046 if (journal) 3047 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3048 else 3049 return try_to_free_buffers(page); 3050 } 3051 3052 /* 3053 * ext4_get_block used when preparing for a DIO write or buffer write. 3054 * We allocate an uinitialized extent if blocks haven't been allocated. 3055 * The extent will be converted to initialized after the IO is complete. 3056 */ 3057 int ext4_get_block_write(struct inode *inode, sector_t iblock, 3058 struct buffer_head *bh_result, int create) 3059 { 3060 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3061 inode->i_ino, create); 3062 return _ext4_get_block(inode, iblock, bh_result, 3063 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3064 } 3065 3066 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 3067 struct buffer_head *bh_result, int create) 3068 { 3069 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 3070 inode->i_ino, create); 3071 return _ext4_get_block(inode, iblock, bh_result, 3072 EXT4_GET_BLOCKS_NO_LOCK); 3073 } 3074 3075 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3076 ssize_t size, void *private, int ret, 3077 bool is_async) 3078 { 3079 struct inode *inode = file_inode(iocb->ki_filp); 3080 ext4_io_end_t *io_end = iocb->private; 3081 3082 /* if not async direct IO or dio with 0 bytes write, just return */ 3083 if (!io_end || !size) 3084 goto out; 3085 3086 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3087 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3088 iocb->private, io_end->inode->i_ino, iocb, offset, 3089 size); 3090 3091 iocb->private = NULL; 3092 3093 /* if not aio dio with unwritten extents, just free io and return */ 3094 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { 3095 ext4_free_io_end(io_end); 3096 out: 3097 inode_dio_done(inode); 3098 if (is_async) 3099 aio_complete(iocb, ret, 0); 3100 return; 3101 } 3102 3103 io_end->offset = offset; 3104 io_end->size = size; 3105 if (is_async) { 3106 io_end->iocb = iocb; 3107 io_end->result = ret; 3108 } 3109 3110 ext4_add_complete_io(io_end); 3111 } 3112 3113 /* 3114 * For ext4 extent files, ext4 will do direct-io write to holes, 3115 * preallocated extents, and those write extend the file, no need to 3116 * fall back to buffered IO. 3117 * 3118 * For holes, we fallocate those blocks, mark them as uninitialized 3119 * If those blocks were preallocated, we mark sure they are split, but 3120 * still keep the range to write as uninitialized. 3121 * 3122 * The unwritten extents will be converted to written when DIO is completed. 3123 * For async direct IO, since the IO may still pending when return, we 3124 * set up an end_io call back function, which will do the conversion 3125 * when async direct IO completed. 3126 * 3127 * If the O_DIRECT write will extend the file then add this inode to the 3128 * orphan list. So recovery will truncate it back to the original size 3129 * if the machine crashes during the write. 3130 * 3131 */ 3132 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3133 const struct iovec *iov, loff_t offset, 3134 unsigned long nr_segs) 3135 { 3136 struct file *file = iocb->ki_filp; 3137 struct inode *inode = file->f_mapping->host; 3138 ssize_t ret; 3139 size_t count = iov_length(iov, nr_segs); 3140 int overwrite = 0; 3141 get_block_t *get_block_func = NULL; 3142 int dio_flags = 0; 3143 loff_t final_size = offset + count; 3144 3145 /* Use the old path for reads and writes beyond i_size. */ 3146 if (rw != WRITE || final_size > inode->i_size) 3147 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3148 3149 BUG_ON(iocb->private == NULL); 3150 3151 /* If we do a overwrite dio, i_mutex locking can be released */ 3152 overwrite = *((int *)iocb->private); 3153 3154 if (overwrite) { 3155 atomic_inc(&inode->i_dio_count); 3156 down_read(&EXT4_I(inode)->i_data_sem); 3157 mutex_unlock(&inode->i_mutex); 3158 } 3159 3160 /* 3161 * We could direct write to holes and fallocate. 3162 * 3163 * Allocated blocks to fill the hole are marked as 3164 * uninitialized to prevent parallel buffered read to expose 3165 * the stale data before DIO complete the data IO. 3166 * 3167 * As to previously fallocated extents, ext4 get_block will 3168 * just simply mark the buffer mapped but still keep the 3169 * extents uninitialized. 3170 * 3171 * For non AIO case, we will convert those unwritten extents 3172 * to written after return back from blockdev_direct_IO. 3173 * 3174 * For async DIO, the conversion needs to be deferred when the 3175 * IO is completed. The ext4 end_io callback function will be 3176 * called to take care of the conversion work. Here for async 3177 * case, we allocate an io_end structure to hook to the iocb. 3178 */ 3179 iocb->private = NULL; 3180 ext4_inode_aio_set(inode, NULL); 3181 if (!is_sync_kiocb(iocb)) { 3182 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS); 3183 if (!io_end) { 3184 ret = -ENOMEM; 3185 goto retake_lock; 3186 } 3187 io_end->flag |= EXT4_IO_END_DIRECT; 3188 iocb->private = io_end; 3189 /* 3190 * we save the io structure for current async direct 3191 * IO, so that later ext4_map_blocks() could flag the 3192 * io structure whether there is a unwritten extents 3193 * needs to be converted when IO is completed. 3194 */ 3195 ext4_inode_aio_set(inode, io_end); 3196 } 3197 3198 if (overwrite) { 3199 get_block_func = ext4_get_block_write_nolock; 3200 } else { 3201 get_block_func = ext4_get_block_write; 3202 dio_flags = DIO_LOCKING; 3203 } 3204 ret = __blockdev_direct_IO(rw, iocb, inode, 3205 inode->i_sb->s_bdev, iov, 3206 offset, nr_segs, 3207 get_block_func, 3208 ext4_end_io_dio, 3209 NULL, 3210 dio_flags); 3211 3212 if (iocb->private) 3213 ext4_inode_aio_set(inode, NULL); 3214 /* 3215 * The io_end structure takes a reference to the inode, that 3216 * structure needs to be destroyed and the reference to the 3217 * inode need to be dropped, when IO is complete, even with 0 3218 * byte write, or failed. 3219 * 3220 * In the successful AIO DIO case, the io_end structure will 3221 * be destroyed and the reference to the inode will be dropped 3222 * after the end_io call back function is called. 3223 * 3224 * In the case there is 0 byte write, or error case, since VFS 3225 * direct IO won't invoke the end_io call back function, we 3226 * need to free the end_io structure here. 3227 */ 3228 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 3229 ext4_free_io_end(iocb->private); 3230 iocb->private = NULL; 3231 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3232 EXT4_STATE_DIO_UNWRITTEN)) { 3233 int err; 3234 /* 3235 * for non AIO case, since the IO is already 3236 * completed, we could do the conversion right here 3237 */ 3238 err = ext4_convert_unwritten_extents(inode, 3239 offset, ret); 3240 if (err < 0) 3241 ret = err; 3242 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3243 } 3244 3245 retake_lock: 3246 /* take i_mutex locking again if we do a ovewrite dio */ 3247 if (overwrite) { 3248 inode_dio_done(inode); 3249 up_read(&EXT4_I(inode)->i_data_sem); 3250 mutex_lock(&inode->i_mutex); 3251 } 3252 3253 return ret; 3254 } 3255 3256 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3257 const struct iovec *iov, loff_t offset, 3258 unsigned long nr_segs) 3259 { 3260 struct file *file = iocb->ki_filp; 3261 struct inode *inode = file->f_mapping->host; 3262 ssize_t ret; 3263 3264 /* 3265 * If we are doing data journalling we don't support O_DIRECT 3266 */ 3267 if (ext4_should_journal_data(inode)) 3268 return 0; 3269 3270 /* Let buffer I/O handle the inline data case. */ 3271 if (ext4_has_inline_data(inode)) 3272 return 0; 3273 3274 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 3275 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3276 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3277 else 3278 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3279 trace_ext4_direct_IO_exit(inode, offset, 3280 iov_length(iov, nr_segs), rw, ret); 3281 return ret; 3282 } 3283 3284 /* 3285 * Pages can be marked dirty completely asynchronously from ext4's journalling 3286 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3287 * much here because ->set_page_dirty is called under VFS locks. The page is 3288 * not necessarily locked. 3289 * 3290 * We cannot just dirty the page and leave attached buffers clean, because the 3291 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3292 * or jbddirty because all the journalling code will explode. 3293 * 3294 * So what we do is to mark the page "pending dirty" and next time writepage 3295 * is called, propagate that into the buffers appropriately. 3296 */ 3297 static int ext4_journalled_set_page_dirty(struct page *page) 3298 { 3299 SetPageChecked(page); 3300 return __set_page_dirty_nobuffers(page); 3301 } 3302 3303 static const struct address_space_operations ext4_aops = { 3304 .readpage = ext4_readpage, 3305 .readpages = ext4_readpages, 3306 .writepage = ext4_writepage, 3307 .write_begin = ext4_write_begin, 3308 .write_end = ext4_write_end, 3309 .bmap = ext4_bmap, 3310 .invalidatepage = ext4_invalidatepage, 3311 .releasepage = ext4_releasepage, 3312 .direct_IO = ext4_direct_IO, 3313 .migratepage = buffer_migrate_page, 3314 .is_partially_uptodate = block_is_partially_uptodate, 3315 .error_remove_page = generic_error_remove_page, 3316 }; 3317 3318 static const struct address_space_operations ext4_journalled_aops = { 3319 .readpage = ext4_readpage, 3320 .readpages = ext4_readpages, 3321 .writepage = ext4_writepage, 3322 .write_begin = ext4_write_begin, 3323 .write_end = ext4_journalled_write_end, 3324 .set_page_dirty = ext4_journalled_set_page_dirty, 3325 .bmap = ext4_bmap, 3326 .invalidatepage = ext4_journalled_invalidatepage, 3327 .releasepage = ext4_releasepage, 3328 .direct_IO = ext4_direct_IO, 3329 .is_partially_uptodate = block_is_partially_uptodate, 3330 .error_remove_page = generic_error_remove_page, 3331 }; 3332 3333 static const struct address_space_operations ext4_da_aops = { 3334 .readpage = ext4_readpage, 3335 .readpages = ext4_readpages, 3336 .writepage = ext4_writepage, 3337 .writepages = ext4_da_writepages, 3338 .write_begin = ext4_da_write_begin, 3339 .write_end = ext4_da_write_end, 3340 .bmap = ext4_bmap, 3341 .invalidatepage = ext4_da_invalidatepage, 3342 .releasepage = ext4_releasepage, 3343 .direct_IO = ext4_direct_IO, 3344 .migratepage = buffer_migrate_page, 3345 .is_partially_uptodate = block_is_partially_uptodate, 3346 .error_remove_page = generic_error_remove_page, 3347 }; 3348 3349 void ext4_set_aops(struct inode *inode) 3350 { 3351 switch (ext4_inode_journal_mode(inode)) { 3352 case EXT4_INODE_ORDERED_DATA_MODE: 3353 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3354 break; 3355 case EXT4_INODE_WRITEBACK_DATA_MODE: 3356 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3357 break; 3358 case EXT4_INODE_JOURNAL_DATA_MODE: 3359 inode->i_mapping->a_ops = &ext4_journalled_aops; 3360 return; 3361 default: 3362 BUG(); 3363 } 3364 if (test_opt(inode->i_sb, DELALLOC)) 3365 inode->i_mapping->a_ops = &ext4_da_aops; 3366 else 3367 inode->i_mapping->a_ops = &ext4_aops; 3368 } 3369 3370 3371 /* 3372 * ext4_discard_partial_page_buffers() 3373 * Wrapper function for ext4_discard_partial_page_buffers_no_lock. 3374 * This function finds and locks the page containing the offset 3375 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock. 3376 * Calling functions that already have the page locked should call 3377 * ext4_discard_partial_page_buffers_no_lock directly. 3378 */ 3379 int ext4_discard_partial_page_buffers(handle_t *handle, 3380 struct address_space *mapping, loff_t from, 3381 loff_t length, int flags) 3382 { 3383 struct inode *inode = mapping->host; 3384 struct page *page; 3385 int err = 0; 3386 3387 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3388 mapping_gfp_mask(mapping) & ~__GFP_FS); 3389 if (!page) 3390 return -ENOMEM; 3391 3392 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page, 3393 from, length, flags); 3394 3395 unlock_page(page); 3396 page_cache_release(page); 3397 return err; 3398 } 3399 3400 /* 3401 * ext4_discard_partial_page_buffers_no_lock() 3402 * Zeros a page range of length 'length' starting from offset 'from'. 3403 * Buffer heads that correspond to the block aligned regions of the 3404 * zeroed range will be unmapped. Unblock aligned regions 3405 * will have the corresponding buffer head mapped if needed so that 3406 * that region of the page can be updated with the partial zero out. 3407 * 3408 * This function assumes that the page has already been locked. The 3409 * The range to be discarded must be contained with in the given page. 3410 * If the specified range exceeds the end of the page it will be shortened 3411 * to the end of the page that corresponds to 'from'. This function is 3412 * appropriate for updating a page and it buffer heads to be unmapped and 3413 * zeroed for blocks that have been either released, or are going to be 3414 * released. 3415 * 3416 * handle: The journal handle 3417 * inode: The files inode 3418 * page: A locked page that contains the offset "from" 3419 * from: The starting byte offset (from the beginning of the file) 3420 * to begin discarding 3421 * len: The length of bytes to discard 3422 * flags: Optional flags that may be used: 3423 * 3424 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED 3425 * Only zero the regions of the page whose buffer heads 3426 * have already been unmapped. This flag is appropriate 3427 * for updating the contents of a page whose blocks may 3428 * have already been released, and we only want to zero 3429 * out the regions that correspond to those released blocks. 3430 * 3431 * Returns zero on success or negative on failure. 3432 */ 3433 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 3434 struct inode *inode, struct page *page, loff_t from, 3435 loff_t length, int flags) 3436 { 3437 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3438 unsigned int offset = from & (PAGE_CACHE_SIZE-1); 3439 unsigned int blocksize, max, pos; 3440 ext4_lblk_t iblock; 3441 struct buffer_head *bh; 3442 int err = 0; 3443 3444 blocksize = inode->i_sb->s_blocksize; 3445 max = PAGE_CACHE_SIZE - offset; 3446 3447 if (index != page->index) 3448 return -EINVAL; 3449 3450 /* 3451 * correct length if it does not fall between 3452 * 'from' and the end of the page 3453 */ 3454 if (length > max || length < 0) 3455 length = max; 3456 3457 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3458 3459 if (!page_has_buffers(page)) 3460 create_empty_buffers(page, blocksize, 0); 3461 3462 /* Find the buffer that contains "offset" */ 3463 bh = page_buffers(page); 3464 pos = blocksize; 3465 while (offset >= pos) { 3466 bh = bh->b_this_page; 3467 iblock++; 3468 pos += blocksize; 3469 } 3470 3471 pos = offset; 3472 while (pos < offset + length) { 3473 unsigned int end_of_block, range_to_discard; 3474 3475 err = 0; 3476 3477 /* The length of space left to zero and unmap */ 3478 range_to_discard = offset + length - pos; 3479 3480 /* The length of space until the end of the block */ 3481 end_of_block = blocksize - (pos & (blocksize-1)); 3482 3483 /* 3484 * Do not unmap or zero past end of block 3485 * for this buffer head 3486 */ 3487 if (range_to_discard > end_of_block) 3488 range_to_discard = end_of_block; 3489 3490 3491 /* 3492 * Skip this buffer head if we are only zeroing unampped 3493 * regions of the page 3494 */ 3495 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED && 3496 buffer_mapped(bh)) 3497 goto next; 3498 3499 /* If the range is block aligned, unmap */ 3500 if (range_to_discard == blocksize) { 3501 clear_buffer_dirty(bh); 3502 bh->b_bdev = NULL; 3503 clear_buffer_mapped(bh); 3504 clear_buffer_req(bh); 3505 clear_buffer_new(bh); 3506 clear_buffer_delay(bh); 3507 clear_buffer_unwritten(bh); 3508 clear_buffer_uptodate(bh); 3509 zero_user(page, pos, range_to_discard); 3510 BUFFER_TRACE(bh, "Buffer discarded"); 3511 goto next; 3512 } 3513 3514 /* 3515 * If this block is not completely contained in the range 3516 * to be discarded, then it is not going to be released. Because 3517 * we need to keep this block, we need to make sure this part 3518 * of the page is uptodate before we modify it by writeing 3519 * partial zeros on it. 3520 */ 3521 if (!buffer_mapped(bh)) { 3522 /* 3523 * Buffer head must be mapped before we can read 3524 * from the block 3525 */ 3526 BUFFER_TRACE(bh, "unmapped"); 3527 ext4_get_block(inode, iblock, bh, 0); 3528 /* unmapped? It's a hole - nothing to do */ 3529 if (!buffer_mapped(bh)) { 3530 BUFFER_TRACE(bh, "still unmapped"); 3531 goto next; 3532 } 3533 } 3534 3535 /* Ok, it's mapped. Make sure it's up-to-date */ 3536 if (PageUptodate(page)) 3537 set_buffer_uptodate(bh); 3538 3539 if (!buffer_uptodate(bh)) { 3540 err = -EIO; 3541 ll_rw_block(READ, 1, &bh); 3542 wait_on_buffer(bh); 3543 /* Uhhuh. Read error. Complain and punt.*/ 3544 if (!buffer_uptodate(bh)) 3545 goto next; 3546 } 3547 3548 if (ext4_should_journal_data(inode)) { 3549 BUFFER_TRACE(bh, "get write access"); 3550 err = ext4_journal_get_write_access(handle, bh); 3551 if (err) 3552 goto next; 3553 } 3554 3555 zero_user(page, pos, range_to_discard); 3556 3557 err = 0; 3558 if (ext4_should_journal_data(inode)) { 3559 err = ext4_handle_dirty_metadata(handle, inode, bh); 3560 } else 3561 mark_buffer_dirty(bh); 3562 3563 BUFFER_TRACE(bh, "Partial buffer zeroed"); 3564 next: 3565 bh = bh->b_this_page; 3566 iblock++; 3567 pos += range_to_discard; 3568 } 3569 3570 return err; 3571 } 3572 3573 /* 3574 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3575 * up to the end of the block which corresponds to `from'. 3576 * This required during truncate. We need to physically zero the tail end 3577 * of that block so it doesn't yield old data if the file is later grown. 3578 */ 3579 int ext4_block_truncate_page(handle_t *handle, 3580 struct address_space *mapping, loff_t from) 3581 { 3582 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3583 unsigned length; 3584 unsigned blocksize; 3585 struct inode *inode = mapping->host; 3586 3587 blocksize = inode->i_sb->s_blocksize; 3588 length = blocksize - (offset & (blocksize - 1)); 3589 3590 return ext4_block_zero_page_range(handle, mapping, from, length); 3591 } 3592 3593 /* 3594 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3595 * starting from file offset 'from'. The range to be zero'd must 3596 * be contained with in one block. If the specified range exceeds 3597 * the end of the block it will be shortened to end of the block 3598 * that cooresponds to 'from' 3599 */ 3600 int ext4_block_zero_page_range(handle_t *handle, 3601 struct address_space *mapping, loff_t from, loff_t length) 3602 { 3603 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3604 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3605 unsigned blocksize, max, pos; 3606 ext4_lblk_t iblock; 3607 struct inode *inode = mapping->host; 3608 struct buffer_head *bh; 3609 struct page *page; 3610 int err = 0; 3611 3612 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3613 mapping_gfp_mask(mapping) & ~__GFP_FS); 3614 if (!page) 3615 return -ENOMEM; 3616 3617 blocksize = inode->i_sb->s_blocksize; 3618 max = blocksize - (offset & (blocksize - 1)); 3619 3620 /* 3621 * correct length if it does not fall between 3622 * 'from' and the end of the block 3623 */ 3624 if (length > max || length < 0) 3625 length = max; 3626 3627 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3628 3629 if (!page_has_buffers(page)) 3630 create_empty_buffers(page, blocksize, 0); 3631 3632 /* Find the buffer that contains "offset" */ 3633 bh = page_buffers(page); 3634 pos = blocksize; 3635 while (offset >= pos) { 3636 bh = bh->b_this_page; 3637 iblock++; 3638 pos += blocksize; 3639 } 3640 3641 err = 0; 3642 if (buffer_freed(bh)) { 3643 BUFFER_TRACE(bh, "freed: skip"); 3644 goto unlock; 3645 } 3646 3647 if (!buffer_mapped(bh)) { 3648 BUFFER_TRACE(bh, "unmapped"); 3649 ext4_get_block(inode, iblock, bh, 0); 3650 /* unmapped? It's a hole - nothing to do */ 3651 if (!buffer_mapped(bh)) { 3652 BUFFER_TRACE(bh, "still unmapped"); 3653 goto unlock; 3654 } 3655 } 3656 3657 /* Ok, it's mapped. Make sure it's up-to-date */ 3658 if (PageUptodate(page)) 3659 set_buffer_uptodate(bh); 3660 3661 if (!buffer_uptodate(bh)) { 3662 err = -EIO; 3663 ll_rw_block(READ, 1, &bh); 3664 wait_on_buffer(bh); 3665 /* Uhhuh. Read error. Complain and punt. */ 3666 if (!buffer_uptodate(bh)) 3667 goto unlock; 3668 } 3669 3670 if (ext4_should_journal_data(inode)) { 3671 BUFFER_TRACE(bh, "get write access"); 3672 err = ext4_journal_get_write_access(handle, bh); 3673 if (err) 3674 goto unlock; 3675 } 3676 3677 zero_user(page, offset, length); 3678 3679 BUFFER_TRACE(bh, "zeroed end of block"); 3680 3681 err = 0; 3682 if (ext4_should_journal_data(inode)) { 3683 err = ext4_handle_dirty_metadata(handle, inode, bh); 3684 } else { 3685 mark_buffer_dirty(bh); 3686 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3687 err = ext4_jbd2_file_inode(handle, inode); 3688 } 3689 3690 unlock: 3691 unlock_page(page); 3692 page_cache_release(page); 3693 return err; 3694 } 3695 3696 int ext4_can_truncate(struct inode *inode) 3697 { 3698 if (S_ISREG(inode->i_mode)) 3699 return 1; 3700 if (S_ISDIR(inode->i_mode)) 3701 return 1; 3702 if (S_ISLNK(inode->i_mode)) 3703 return !ext4_inode_is_fast_symlink(inode); 3704 return 0; 3705 } 3706 3707 /* 3708 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3709 * associated with the given offset and length 3710 * 3711 * @inode: File inode 3712 * @offset: The offset where the hole will begin 3713 * @len: The length of the hole 3714 * 3715 * Returns: 0 on success or negative on failure 3716 */ 3717 3718 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3719 { 3720 struct inode *inode = file_inode(file); 3721 struct super_block *sb = inode->i_sb; 3722 ext4_lblk_t first_block, stop_block; 3723 struct address_space *mapping = inode->i_mapping; 3724 loff_t first_page, last_page, page_len; 3725 loff_t first_page_offset, last_page_offset; 3726 handle_t *handle; 3727 unsigned int credits; 3728 int ret = 0; 3729 3730 if (!S_ISREG(inode->i_mode)) 3731 return -EOPNOTSUPP; 3732 3733 if (EXT4_SB(sb)->s_cluster_ratio > 1) { 3734 /* TODO: Add support for bigalloc file systems */ 3735 return -EOPNOTSUPP; 3736 } 3737 3738 trace_ext4_punch_hole(inode, offset, length); 3739 3740 /* 3741 * Write out all dirty pages to avoid race conditions 3742 * Then release them. 3743 */ 3744 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3745 ret = filemap_write_and_wait_range(mapping, offset, 3746 offset + length - 1); 3747 if (ret) 3748 return ret; 3749 } 3750 3751 mutex_lock(&inode->i_mutex); 3752 /* It's not possible punch hole on append only file */ 3753 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 3754 ret = -EPERM; 3755 goto out_mutex; 3756 } 3757 if (IS_SWAPFILE(inode)) { 3758 ret = -ETXTBSY; 3759 goto out_mutex; 3760 } 3761 3762 /* No need to punch hole beyond i_size */ 3763 if (offset >= inode->i_size) 3764 goto out_mutex; 3765 3766 /* 3767 * If the hole extends beyond i_size, set the hole 3768 * to end after the page that contains i_size 3769 */ 3770 if (offset + length > inode->i_size) { 3771 length = inode->i_size + 3772 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3773 offset; 3774 } 3775 3776 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 3777 last_page = (offset + length) >> PAGE_CACHE_SHIFT; 3778 3779 first_page_offset = first_page << PAGE_CACHE_SHIFT; 3780 last_page_offset = last_page << PAGE_CACHE_SHIFT; 3781 3782 /* Now release the pages */ 3783 if (last_page_offset > first_page_offset) { 3784 truncate_pagecache_range(inode, first_page_offset, 3785 last_page_offset - 1); 3786 } 3787 3788 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3789 ext4_inode_block_unlocked_dio(inode); 3790 ret = ext4_flush_unwritten_io(inode); 3791 if (ret) 3792 goto out_dio; 3793 inode_dio_wait(inode); 3794 3795 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3796 credits = ext4_writepage_trans_blocks(inode); 3797 else 3798 credits = ext4_blocks_for_truncate(inode); 3799 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3800 if (IS_ERR(handle)) { 3801 ret = PTR_ERR(handle); 3802 ext4_std_error(sb, ret); 3803 goto out_dio; 3804 } 3805 3806 /* 3807 * Now we need to zero out the non-page-aligned data in the 3808 * pages at the start and tail of the hole, and unmap the 3809 * buffer heads for the block aligned regions of the page that 3810 * were completely zeroed. 3811 */ 3812 if (first_page > last_page) { 3813 /* 3814 * If the file space being truncated is contained 3815 * within a page just zero out and unmap the middle of 3816 * that page 3817 */ 3818 ret = ext4_discard_partial_page_buffers(handle, 3819 mapping, offset, length, 0); 3820 3821 if (ret) 3822 goto out_stop; 3823 } else { 3824 /* 3825 * zero out and unmap the partial page that contains 3826 * the start of the hole 3827 */ 3828 page_len = first_page_offset - offset; 3829 if (page_len > 0) { 3830 ret = ext4_discard_partial_page_buffers(handle, mapping, 3831 offset, page_len, 0); 3832 if (ret) 3833 goto out_stop; 3834 } 3835 3836 /* 3837 * zero out and unmap the partial page that contains 3838 * the end of the hole 3839 */ 3840 page_len = offset + length - last_page_offset; 3841 if (page_len > 0) { 3842 ret = ext4_discard_partial_page_buffers(handle, mapping, 3843 last_page_offset, page_len, 0); 3844 if (ret) 3845 goto out_stop; 3846 } 3847 } 3848 3849 /* 3850 * If i_size is contained in the last page, we need to 3851 * unmap and zero the partial page after i_size 3852 */ 3853 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page && 3854 inode->i_size % PAGE_CACHE_SIZE != 0) { 3855 page_len = PAGE_CACHE_SIZE - 3856 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 3857 3858 if (page_len > 0) { 3859 ret = ext4_discard_partial_page_buffers(handle, 3860 mapping, inode->i_size, page_len, 0); 3861 3862 if (ret) 3863 goto out_stop; 3864 } 3865 } 3866 3867 first_block = (offset + sb->s_blocksize - 1) >> 3868 EXT4_BLOCK_SIZE_BITS(sb); 3869 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3870 3871 /* If there are no blocks to remove, return now */ 3872 if (first_block >= stop_block) 3873 goto out_stop; 3874 3875 down_write(&EXT4_I(inode)->i_data_sem); 3876 ext4_discard_preallocations(inode); 3877 3878 ret = ext4_es_remove_extent(inode, first_block, 3879 stop_block - first_block); 3880 if (ret) { 3881 up_write(&EXT4_I(inode)->i_data_sem); 3882 goto out_stop; 3883 } 3884 3885 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3886 ret = ext4_ext_remove_space(inode, first_block, 3887 stop_block - 1); 3888 else 3889 ret = ext4_free_hole_blocks(handle, inode, first_block, 3890 stop_block); 3891 3892 ext4_discard_preallocations(inode); 3893 up_write(&EXT4_I(inode)->i_data_sem); 3894 if (IS_SYNC(inode)) 3895 ext4_handle_sync(handle); 3896 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3897 ext4_mark_inode_dirty(handle, inode); 3898 out_stop: 3899 ext4_journal_stop(handle); 3900 out_dio: 3901 ext4_inode_resume_unlocked_dio(inode); 3902 out_mutex: 3903 mutex_unlock(&inode->i_mutex); 3904 return ret; 3905 } 3906 3907 /* 3908 * ext4_truncate() 3909 * 3910 * We block out ext4_get_block() block instantiations across the entire 3911 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3912 * simultaneously on behalf of the same inode. 3913 * 3914 * As we work through the truncate and commit bits of it to the journal there 3915 * is one core, guiding principle: the file's tree must always be consistent on 3916 * disk. We must be able to restart the truncate after a crash. 3917 * 3918 * The file's tree may be transiently inconsistent in memory (although it 3919 * probably isn't), but whenever we close off and commit a journal transaction, 3920 * the contents of (the filesystem + the journal) must be consistent and 3921 * restartable. It's pretty simple, really: bottom up, right to left (although 3922 * left-to-right works OK too). 3923 * 3924 * Note that at recovery time, journal replay occurs *before* the restart of 3925 * truncate against the orphan inode list. 3926 * 3927 * The committed inode has the new, desired i_size (which is the same as 3928 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3929 * that this inode's truncate did not complete and it will again call 3930 * ext4_truncate() to have another go. So there will be instantiated blocks 3931 * to the right of the truncation point in a crashed ext4 filesystem. But 3932 * that's fine - as long as they are linked from the inode, the post-crash 3933 * ext4_truncate() run will find them and release them. 3934 */ 3935 void ext4_truncate(struct inode *inode) 3936 { 3937 struct ext4_inode_info *ei = EXT4_I(inode); 3938 unsigned int credits; 3939 handle_t *handle; 3940 struct address_space *mapping = inode->i_mapping; 3941 loff_t page_len; 3942 3943 /* 3944 * There is a possibility that we're either freeing the inode 3945 * or it completely new indode. In those cases we might not 3946 * have i_mutex locked because it's not necessary. 3947 */ 3948 if (!(inode->i_state & (I_NEW|I_FREEING))) 3949 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3950 trace_ext4_truncate_enter(inode); 3951 3952 if (!ext4_can_truncate(inode)) 3953 return; 3954 3955 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3956 3957 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3958 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3959 3960 if (ext4_has_inline_data(inode)) { 3961 int has_inline = 1; 3962 3963 ext4_inline_data_truncate(inode, &has_inline); 3964 if (has_inline) 3965 return; 3966 } 3967 3968 /* 3969 * finish any pending end_io work so we won't run the risk of 3970 * converting any truncated blocks to initialized later 3971 */ 3972 ext4_flush_unwritten_io(inode); 3973 3974 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3975 credits = ext4_writepage_trans_blocks(inode); 3976 else 3977 credits = ext4_blocks_for_truncate(inode); 3978 3979 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3980 if (IS_ERR(handle)) { 3981 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3982 return; 3983 } 3984 3985 if (inode->i_size % PAGE_CACHE_SIZE != 0) { 3986 page_len = PAGE_CACHE_SIZE - 3987 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 3988 3989 if (ext4_discard_partial_page_buffers(handle, 3990 mapping, inode->i_size, page_len, 0)) 3991 goto out_stop; 3992 } 3993 3994 /* 3995 * We add the inode to the orphan list, so that if this 3996 * truncate spans multiple transactions, and we crash, we will 3997 * resume the truncate when the filesystem recovers. It also 3998 * marks the inode dirty, to catch the new size. 3999 * 4000 * Implication: the file must always be in a sane, consistent 4001 * truncatable state while each transaction commits. 4002 */ 4003 if (ext4_orphan_add(handle, inode)) 4004 goto out_stop; 4005 4006 down_write(&EXT4_I(inode)->i_data_sem); 4007 4008 ext4_discard_preallocations(inode); 4009 4010 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4011 ext4_ext_truncate(handle, inode); 4012 else 4013 ext4_ind_truncate(handle, inode); 4014 4015 up_write(&ei->i_data_sem); 4016 4017 if (IS_SYNC(inode)) 4018 ext4_handle_sync(handle); 4019 4020 out_stop: 4021 /* 4022 * If this was a simple ftruncate() and the file will remain alive, 4023 * then we need to clear up the orphan record which we created above. 4024 * However, if this was a real unlink then we were called by 4025 * ext4_delete_inode(), and we allow that function to clean up the 4026 * orphan info for us. 4027 */ 4028 if (inode->i_nlink) 4029 ext4_orphan_del(handle, inode); 4030 4031 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4032 ext4_mark_inode_dirty(handle, inode); 4033 ext4_journal_stop(handle); 4034 4035 trace_ext4_truncate_exit(inode); 4036 } 4037 4038 /* 4039 * ext4_get_inode_loc returns with an extra refcount against the inode's 4040 * underlying buffer_head on success. If 'in_mem' is true, we have all 4041 * data in memory that is needed to recreate the on-disk version of this 4042 * inode. 4043 */ 4044 static int __ext4_get_inode_loc(struct inode *inode, 4045 struct ext4_iloc *iloc, int in_mem) 4046 { 4047 struct ext4_group_desc *gdp; 4048 struct buffer_head *bh; 4049 struct super_block *sb = inode->i_sb; 4050 ext4_fsblk_t block; 4051 int inodes_per_block, inode_offset; 4052 4053 iloc->bh = NULL; 4054 if (!ext4_valid_inum(sb, inode->i_ino)) 4055 return -EIO; 4056 4057 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4058 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4059 if (!gdp) 4060 return -EIO; 4061 4062 /* 4063 * Figure out the offset within the block group inode table 4064 */ 4065 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4066 inode_offset = ((inode->i_ino - 1) % 4067 EXT4_INODES_PER_GROUP(sb)); 4068 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4069 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4070 4071 bh = sb_getblk(sb, block); 4072 if (unlikely(!bh)) 4073 return -ENOMEM; 4074 if (!buffer_uptodate(bh)) { 4075 lock_buffer(bh); 4076 4077 /* 4078 * If the buffer has the write error flag, we have failed 4079 * to write out another inode in the same block. In this 4080 * case, we don't have to read the block because we may 4081 * read the old inode data successfully. 4082 */ 4083 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4084 set_buffer_uptodate(bh); 4085 4086 if (buffer_uptodate(bh)) { 4087 /* someone brought it uptodate while we waited */ 4088 unlock_buffer(bh); 4089 goto has_buffer; 4090 } 4091 4092 /* 4093 * If we have all information of the inode in memory and this 4094 * is the only valid inode in the block, we need not read the 4095 * block. 4096 */ 4097 if (in_mem) { 4098 struct buffer_head *bitmap_bh; 4099 int i, start; 4100 4101 start = inode_offset & ~(inodes_per_block - 1); 4102 4103 /* Is the inode bitmap in cache? */ 4104 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4105 if (unlikely(!bitmap_bh)) 4106 goto make_io; 4107 4108 /* 4109 * If the inode bitmap isn't in cache then the 4110 * optimisation may end up performing two reads instead 4111 * of one, so skip it. 4112 */ 4113 if (!buffer_uptodate(bitmap_bh)) { 4114 brelse(bitmap_bh); 4115 goto make_io; 4116 } 4117 for (i = start; i < start + inodes_per_block; i++) { 4118 if (i == inode_offset) 4119 continue; 4120 if (ext4_test_bit(i, bitmap_bh->b_data)) 4121 break; 4122 } 4123 brelse(bitmap_bh); 4124 if (i == start + inodes_per_block) { 4125 /* all other inodes are free, so skip I/O */ 4126 memset(bh->b_data, 0, bh->b_size); 4127 set_buffer_uptodate(bh); 4128 unlock_buffer(bh); 4129 goto has_buffer; 4130 } 4131 } 4132 4133 make_io: 4134 /* 4135 * If we need to do any I/O, try to pre-readahead extra 4136 * blocks from the inode table. 4137 */ 4138 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4139 ext4_fsblk_t b, end, table; 4140 unsigned num; 4141 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4142 4143 table = ext4_inode_table(sb, gdp); 4144 /* s_inode_readahead_blks is always a power of 2 */ 4145 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4146 if (table > b) 4147 b = table; 4148 end = b + ra_blks; 4149 num = EXT4_INODES_PER_GROUP(sb); 4150 if (ext4_has_group_desc_csum(sb)) 4151 num -= ext4_itable_unused_count(sb, gdp); 4152 table += num / inodes_per_block; 4153 if (end > table) 4154 end = table; 4155 while (b <= end) 4156 sb_breadahead(sb, b++); 4157 } 4158 4159 /* 4160 * There are other valid inodes in the buffer, this inode 4161 * has in-inode xattrs, or we don't have this inode in memory. 4162 * Read the block from disk. 4163 */ 4164 trace_ext4_load_inode(inode); 4165 get_bh(bh); 4166 bh->b_end_io = end_buffer_read_sync; 4167 submit_bh(READ | REQ_META | REQ_PRIO, bh); 4168 wait_on_buffer(bh); 4169 if (!buffer_uptodate(bh)) { 4170 EXT4_ERROR_INODE_BLOCK(inode, block, 4171 "unable to read itable block"); 4172 brelse(bh); 4173 return -EIO; 4174 } 4175 } 4176 has_buffer: 4177 iloc->bh = bh; 4178 return 0; 4179 } 4180 4181 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4182 { 4183 /* We have all inode data except xattrs in memory here. */ 4184 return __ext4_get_inode_loc(inode, iloc, 4185 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4186 } 4187 4188 void ext4_set_inode_flags(struct inode *inode) 4189 { 4190 unsigned int flags = EXT4_I(inode)->i_flags; 4191 4192 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 4193 if (flags & EXT4_SYNC_FL) 4194 inode->i_flags |= S_SYNC; 4195 if (flags & EXT4_APPEND_FL) 4196 inode->i_flags |= S_APPEND; 4197 if (flags & EXT4_IMMUTABLE_FL) 4198 inode->i_flags |= S_IMMUTABLE; 4199 if (flags & EXT4_NOATIME_FL) 4200 inode->i_flags |= S_NOATIME; 4201 if (flags & EXT4_DIRSYNC_FL) 4202 inode->i_flags |= S_DIRSYNC; 4203 } 4204 4205 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4206 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4207 { 4208 unsigned int vfs_fl; 4209 unsigned long old_fl, new_fl; 4210 4211 do { 4212 vfs_fl = ei->vfs_inode.i_flags; 4213 old_fl = ei->i_flags; 4214 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4215 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 4216 EXT4_DIRSYNC_FL); 4217 if (vfs_fl & S_SYNC) 4218 new_fl |= EXT4_SYNC_FL; 4219 if (vfs_fl & S_APPEND) 4220 new_fl |= EXT4_APPEND_FL; 4221 if (vfs_fl & S_IMMUTABLE) 4222 new_fl |= EXT4_IMMUTABLE_FL; 4223 if (vfs_fl & S_NOATIME) 4224 new_fl |= EXT4_NOATIME_FL; 4225 if (vfs_fl & S_DIRSYNC) 4226 new_fl |= EXT4_DIRSYNC_FL; 4227 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 4228 } 4229 4230 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4231 struct ext4_inode_info *ei) 4232 { 4233 blkcnt_t i_blocks ; 4234 struct inode *inode = &(ei->vfs_inode); 4235 struct super_block *sb = inode->i_sb; 4236 4237 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4238 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 4239 /* we are using combined 48 bit field */ 4240 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4241 le32_to_cpu(raw_inode->i_blocks_lo); 4242 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4243 /* i_blocks represent file system block size */ 4244 return i_blocks << (inode->i_blkbits - 9); 4245 } else { 4246 return i_blocks; 4247 } 4248 } else { 4249 return le32_to_cpu(raw_inode->i_blocks_lo); 4250 } 4251 } 4252 4253 static inline void ext4_iget_extra_inode(struct inode *inode, 4254 struct ext4_inode *raw_inode, 4255 struct ext4_inode_info *ei) 4256 { 4257 __le32 *magic = (void *)raw_inode + 4258 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4259 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4260 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4261 ext4_find_inline_data_nolock(inode); 4262 } else 4263 EXT4_I(inode)->i_inline_off = 0; 4264 } 4265 4266 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4267 { 4268 struct ext4_iloc iloc; 4269 struct ext4_inode *raw_inode; 4270 struct ext4_inode_info *ei; 4271 struct inode *inode; 4272 journal_t *journal = EXT4_SB(sb)->s_journal; 4273 long ret; 4274 int block; 4275 uid_t i_uid; 4276 gid_t i_gid; 4277 4278 inode = iget_locked(sb, ino); 4279 if (!inode) 4280 return ERR_PTR(-ENOMEM); 4281 if (!(inode->i_state & I_NEW)) 4282 return inode; 4283 4284 ei = EXT4_I(inode); 4285 iloc.bh = NULL; 4286 4287 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4288 if (ret < 0) 4289 goto bad_inode; 4290 raw_inode = ext4_raw_inode(&iloc); 4291 4292 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4293 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4294 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4295 EXT4_INODE_SIZE(inode->i_sb)) { 4296 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 4297 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 4298 EXT4_INODE_SIZE(inode->i_sb)); 4299 ret = -EIO; 4300 goto bad_inode; 4301 } 4302 } else 4303 ei->i_extra_isize = 0; 4304 4305 /* Precompute checksum seed for inode metadata */ 4306 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4307 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 4308 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4309 __u32 csum; 4310 __le32 inum = cpu_to_le32(inode->i_ino); 4311 __le32 gen = raw_inode->i_generation; 4312 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4313 sizeof(inum)); 4314 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4315 sizeof(gen)); 4316 } 4317 4318 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4319 EXT4_ERROR_INODE(inode, "checksum invalid"); 4320 ret = -EIO; 4321 goto bad_inode; 4322 } 4323 4324 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4325 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4326 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4327 if (!(test_opt(inode->i_sb, NO_UID32))) { 4328 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4329 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4330 } 4331 i_uid_write(inode, i_uid); 4332 i_gid_write(inode, i_gid); 4333 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4334 4335 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4336 ei->i_inline_off = 0; 4337 ei->i_dir_start_lookup = 0; 4338 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4339 /* We now have enough fields to check if the inode was active or not. 4340 * This is needed because nfsd might try to access dead inodes 4341 * the test is that same one that e2fsck uses 4342 * NeilBrown 1999oct15 4343 */ 4344 if (inode->i_nlink == 0) { 4345 if ((inode->i_mode == 0 || 4346 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4347 ino != EXT4_BOOT_LOADER_INO) { 4348 /* this inode is deleted */ 4349 ret = -ESTALE; 4350 goto bad_inode; 4351 } 4352 /* The only unlinked inodes we let through here have 4353 * valid i_mode and are being read by the orphan 4354 * recovery code: that's fine, we're about to complete 4355 * the process of deleting those. 4356 * OR it is the EXT4_BOOT_LOADER_INO which is 4357 * not initialized on a new filesystem. */ 4358 } 4359 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4360 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4361 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4362 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4363 ei->i_file_acl |= 4364 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4365 inode->i_size = ext4_isize(raw_inode); 4366 ei->i_disksize = inode->i_size; 4367 #ifdef CONFIG_QUOTA 4368 ei->i_reserved_quota = 0; 4369 #endif 4370 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4371 ei->i_block_group = iloc.block_group; 4372 ei->i_last_alloc_group = ~0; 4373 /* 4374 * NOTE! The in-memory inode i_data array is in little-endian order 4375 * even on big-endian machines: we do NOT byteswap the block numbers! 4376 */ 4377 for (block = 0; block < EXT4_N_BLOCKS; block++) 4378 ei->i_data[block] = raw_inode->i_block[block]; 4379 INIT_LIST_HEAD(&ei->i_orphan); 4380 4381 /* 4382 * Set transaction id's of transactions that have to be committed 4383 * to finish f[data]sync. We set them to currently running transaction 4384 * as we cannot be sure that the inode or some of its metadata isn't 4385 * part of the transaction - the inode could have been reclaimed and 4386 * now it is reread from disk. 4387 */ 4388 if (journal) { 4389 transaction_t *transaction; 4390 tid_t tid; 4391 4392 read_lock(&journal->j_state_lock); 4393 if (journal->j_running_transaction) 4394 transaction = journal->j_running_transaction; 4395 else 4396 transaction = journal->j_committing_transaction; 4397 if (transaction) 4398 tid = transaction->t_tid; 4399 else 4400 tid = journal->j_commit_sequence; 4401 read_unlock(&journal->j_state_lock); 4402 ei->i_sync_tid = tid; 4403 ei->i_datasync_tid = tid; 4404 } 4405 4406 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4407 if (ei->i_extra_isize == 0) { 4408 /* The extra space is currently unused. Use it. */ 4409 ei->i_extra_isize = sizeof(struct ext4_inode) - 4410 EXT4_GOOD_OLD_INODE_SIZE; 4411 } else { 4412 ext4_iget_extra_inode(inode, raw_inode, ei); 4413 } 4414 } 4415 4416 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4417 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4418 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4419 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4420 4421 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4422 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4423 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4424 inode->i_version |= 4425 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4426 } 4427 4428 ret = 0; 4429 if (ei->i_file_acl && 4430 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4431 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4432 ei->i_file_acl); 4433 ret = -EIO; 4434 goto bad_inode; 4435 } else if (!ext4_has_inline_data(inode)) { 4436 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4437 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4438 (S_ISLNK(inode->i_mode) && 4439 !ext4_inode_is_fast_symlink(inode)))) 4440 /* Validate extent which is part of inode */ 4441 ret = ext4_ext_check_inode(inode); 4442 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4443 (S_ISLNK(inode->i_mode) && 4444 !ext4_inode_is_fast_symlink(inode))) { 4445 /* Validate block references which are part of inode */ 4446 ret = ext4_ind_check_inode(inode); 4447 } 4448 } 4449 if (ret) 4450 goto bad_inode; 4451 4452 if (S_ISREG(inode->i_mode)) { 4453 inode->i_op = &ext4_file_inode_operations; 4454 inode->i_fop = &ext4_file_operations; 4455 ext4_set_aops(inode); 4456 } else if (S_ISDIR(inode->i_mode)) { 4457 inode->i_op = &ext4_dir_inode_operations; 4458 inode->i_fop = &ext4_dir_operations; 4459 } else if (S_ISLNK(inode->i_mode)) { 4460 if (ext4_inode_is_fast_symlink(inode)) { 4461 inode->i_op = &ext4_fast_symlink_inode_operations; 4462 nd_terminate_link(ei->i_data, inode->i_size, 4463 sizeof(ei->i_data) - 1); 4464 } else { 4465 inode->i_op = &ext4_symlink_inode_operations; 4466 ext4_set_aops(inode); 4467 } 4468 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4469 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4470 inode->i_op = &ext4_special_inode_operations; 4471 if (raw_inode->i_block[0]) 4472 init_special_inode(inode, inode->i_mode, 4473 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4474 else 4475 init_special_inode(inode, inode->i_mode, 4476 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4477 } else if (ino == EXT4_BOOT_LOADER_INO) { 4478 make_bad_inode(inode); 4479 } else { 4480 ret = -EIO; 4481 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4482 goto bad_inode; 4483 } 4484 brelse(iloc.bh); 4485 ext4_set_inode_flags(inode); 4486 unlock_new_inode(inode); 4487 return inode; 4488 4489 bad_inode: 4490 brelse(iloc.bh); 4491 iget_failed(inode); 4492 return ERR_PTR(ret); 4493 } 4494 4495 static int ext4_inode_blocks_set(handle_t *handle, 4496 struct ext4_inode *raw_inode, 4497 struct ext4_inode_info *ei) 4498 { 4499 struct inode *inode = &(ei->vfs_inode); 4500 u64 i_blocks = inode->i_blocks; 4501 struct super_block *sb = inode->i_sb; 4502 4503 if (i_blocks <= ~0U) { 4504 /* 4505 * i_blocks can be represented in a 32 bit variable 4506 * as multiple of 512 bytes 4507 */ 4508 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4509 raw_inode->i_blocks_high = 0; 4510 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4511 return 0; 4512 } 4513 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4514 return -EFBIG; 4515 4516 if (i_blocks <= 0xffffffffffffULL) { 4517 /* 4518 * i_blocks can be represented in a 48 bit variable 4519 * as multiple of 512 bytes 4520 */ 4521 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4522 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4523 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4524 } else { 4525 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4526 /* i_block is stored in file system block size */ 4527 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4528 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4529 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4530 } 4531 return 0; 4532 } 4533 4534 /* 4535 * Post the struct inode info into an on-disk inode location in the 4536 * buffer-cache. This gobbles the caller's reference to the 4537 * buffer_head in the inode location struct. 4538 * 4539 * The caller must have write access to iloc->bh. 4540 */ 4541 static int ext4_do_update_inode(handle_t *handle, 4542 struct inode *inode, 4543 struct ext4_iloc *iloc) 4544 { 4545 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4546 struct ext4_inode_info *ei = EXT4_I(inode); 4547 struct buffer_head *bh = iloc->bh; 4548 int err = 0, rc, block; 4549 int need_datasync = 0; 4550 uid_t i_uid; 4551 gid_t i_gid; 4552 4553 /* For fields not not tracking in the in-memory inode, 4554 * initialise them to zero for new inodes. */ 4555 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4556 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4557 4558 ext4_get_inode_flags(ei); 4559 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4560 i_uid = i_uid_read(inode); 4561 i_gid = i_gid_read(inode); 4562 if (!(test_opt(inode->i_sb, NO_UID32))) { 4563 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4564 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4565 /* 4566 * Fix up interoperability with old kernels. Otherwise, old inodes get 4567 * re-used with the upper 16 bits of the uid/gid intact 4568 */ 4569 if (!ei->i_dtime) { 4570 raw_inode->i_uid_high = 4571 cpu_to_le16(high_16_bits(i_uid)); 4572 raw_inode->i_gid_high = 4573 cpu_to_le16(high_16_bits(i_gid)); 4574 } else { 4575 raw_inode->i_uid_high = 0; 4576 raw_inode->i_gid_high = 0; 4577 } 4578 } else { 4579 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4580 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4581 raw_inode->i_uid_high = 0; 4582 raw_inode->i_gid_high = 0; 4583 } 4584 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4585 4586 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4587 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4588 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4589 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4590 4591 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4592 goto out_brelse; 4593 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4594 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4595 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4596 cpu_to_le32(EXT4_OS_HURD)) 4597 raw_inode->i_file_acl_high = 4598 cpu_to_le16(ei->i_file_acl >> 32); 4599 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4600 if (ei->i_disksize != ext4_isize(raw_inode)) { 4601 ext4_isize_set(raw_inode, ei->i_disksize); 4602 need_datasync = 1; 4603 } 4604 if (ei->i_disksize > 0x7fffffffULL) { 4605 struct super_block *sb = inode->i_sb; 4606 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4607 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4608 EXT4_SB(sb)->s_es->s_rev_level == 4609 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4610 /* If this is the first large file 4611 * created, add a flag to the superblock. 4612 */ 4613 err = ext4_journal_get_write_access(handle, 4614 EXT4_SB(sb)->s_sbh); 4615 if (err) 4616 goto out_brelse; 4617 ext4_update_dynamic_rev(sb); 4618 EXT4_SET_RO_COMPAT_FEATURE(sb, 4619 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4620 ext4_handle_sync(handle); 4621 err = ext4_handle_dirty_super(handle, sb); 4622 } 4623 } 4624 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4625 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4626 if (old_valid_dev(inode->i_rdev)) { 4627 raw_inode->i_block[0] = 4628 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4629 raw_inode->i_block[1] = 0; 4630 } else { 4631 raw_inode->i_block[0] = 0; 4632 raw_inode->i_block[1] = 4633 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4634 raw_inode->i_block[2] = 0; 4635 } 4636 } else if (!ext4_has_inline_data(inode)) { 4637 for (block = 0; block < EXT4_N_BLOCKS; block++) 4638 raw_inode->i_block[block] = ei->i_data[block]; 4639 } 4640 4641 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4642 if (ei->i_extra_isize) { 4643 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4644 raw_inode->i_version_hi = 4645 cpu_to_le32(inode->i_version >> 32); 4646 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4647 } 4648 4649 ext4_inode_csum_set(inode, raw_inode, ei); 4650 4651 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4652 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4653 if (!err) 4654 err = rc; 4655 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4656 4657 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4658 out_brelse: 4659 brelse(bh); 4660 ext4_std_error(inode->i_sb, err); 4661 return err; 4662 } 4663 4664 /* 4665 * ext4_write_inode() 4666 * 4667 * We are called from a few places: 4668 * 4669 * - Within generic_file_write() for O_SYNC files. 4670 * Here, there will be no transaction running. We wait for any running 4671 * transaction to commit. 4672 * 4673 * - Within sys_sync(), kupdate and such. 4674 * We wait on commit, if tol to. 4675 * 4676 * - Within prune_icache() (PF_MEMALLOC == true) 4677 * Here we simply return. We can't afford to block kswapd on the 4678 * journal commit. 4679 * 4680 * In all cases it is actually safe for us to return without doing anything, 4681 * because the inode has been copied into a raw inode buffer in 4682 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4683 * knfsd. 4684 * 4685 * Note that we are absolutely dependent upon all inode dirtiers doing the 4686 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4687 * which we are interested. 4688 * 4689 * It would be a bug for them to not do this. The code: 4690 * 4691 * mark_inode_dirty(inode) 4692 * stuff(); 4693 * inode->i_size = expr; 4694 * 4695 * is in error because a kswapd-driven write_inode() could occur while 4696 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4697 * will no longer be on the superblock's dirty inode list. 4698 */ 4699 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4700 { 4701 int err; 4702 4703 if (current->flags & PF_MEMALLOC) 4704 return 0; 4705 4706 if (EXT4_SB(inode->i_sb)->s_journal) { 4707 if (ext4_journal_current_handle()) { 4708 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4709 dump_stack(); 4710 return -EIO; 4711 } 4712 4713 if (wbc->sync_mode != WB_SYNC_ALL) 4714 return 0; 4715 4716 err = ext4_force_commit(inode->i_sb); 4717 } else { 4718 struct ext4_iloc iloc; 4719 4720 err = __ext4_get_inode_loc(inode, &iloc, 0); 4721 if (err) 4722 return err; 4723 if (wbc->sync_mode == WB_SYNC_ALL) 4724 sync_dirty_buffer(iloc.bh); 4725 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4726 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4727 "IO error syncing inode"); 4728 err = -EIO; 4729 } 4730 brelse(iloc.bh); 4731 } 4732 return err; 4733 } 4734 4735 /* 4736 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4737 * buffers that are attached to a page stradding i_size and are undergoing 4738 * commit. In that case we have to wait for commit to finish and try again. 4739 */ 4740 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4741 { 4742 struct page *page; 4743 unsigned offset; 4744 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4745 tid_t commit_tid = 0; 4746 int ret; 4747 4748 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4749 /* 4750 * All buffers in the last page remain valid? Then there's nothing to 4751 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4752 * blocksize case 4753 */ 4754 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4755 return; 4756 while (1) { 4757 page = find_lock_page(inode->i_mapping, 4758 inode->i_size >> PAGE_CACHE_SHIFT); 4759 if (!page) 4760 return; 4761 ret = __ext4_journalled_invalidatepage(page, offset, 4762 PAGE_CACHE_SIZE - offset); 4763 unlock_page(page); 4764 page_cache_release(page); 4765 if (ret != -EBUSY) 4766 return; 4767 commit_tid = 0; 4768 read_lock(&journal->j_state_lock); 4769 if (journal->j_committing_transaction) 4770 commit_tid = journal->j_committing_transaction->t_tid; 4771 read_unlock(&journal->j_state_lock); 4772 if (commit_tid) 4773 jbd2_log_wait_commit(journal, commit_tid); 4774 } 4775 } 4776 4777 /* 4778 * ext4_setattr() 4779 * 4780 * Called from notify_change. 4781 * 4782 * We want to trap VFS attempts to truncate the file as soon as 4783 * possible. In particular, we want to make sure that when the VFS 4784 * shrinks i_size, we put the inode on the orphan list and modify 4785 * i_disksize immediately, so that during the subsequent flushing of 4786 * dirty pages and freeing of disk blocks, we can guarantee that any 4787 * commit will leave the blocks being flushed in an unused state on 4788 * disk. (On recovery, the inode will get truncated and the blocks will 4789 * be freed, so we have a strong guarantee that no future commit will 4790 * leave these blocks visible to the user.) 4791 * 4792 * Another thing we have to assure is that if we are in ordered mode 4793 * and inode is still attached to the committing transaction, we must 4794 * we start writeout of all the dirty pages which are being truncated. 4795 * This way we are sure that all the data written in the previous 4796 * transaction are already on disk (truncate waits for pages under 4797 * writeback). 4798 * 4799 * Called with inode->i_mutex down. 4800 */ 4801 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4802 { 4803 struct inode *inode = dentry->d_inode; 4804 int error, rc = 0; 4805 int orphan = 0; 4806 const unsigned int ia_valid = attr->ia_valid; 4807 4808 error = inode_change_ok(inode, attr); 4809 if (error) 4810 return error; 4811 4812 if (is_quota_modification(inode, attr)) 4813 dquot_initialize(inode); 4814 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4815 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4816 handle_t *handle; 4817 4818 /* (user+group)*(old+new) structure, inode write (sb, 4819 * inode block, ? - but truncate inode update has it) */ 4820 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4821 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4822 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4823 if (IS_ERR(handle)) { 4824 error = PTR_ERR(handle); 4825 goto err_out; 4826 } 4827 error = dquot_transfer(inode, attr); 4828 if (error) { 4829 ext4_journal_stop(handle); 4830 return error; 4831 } 4832 /* Update corresponding info in inode so that everything is in 4833 * one transaction */ 4834 if (attr->ia_valid & ATTR_UID) 4835 inode->i_uid = attr->ia_uid; 4836 if (attr->ia_valid & ATTR_GID) 4837 inode->i_gid = attr->ia_gid; 4838 error = ext4_mark_inode_dirty(handle, inode); 4839 ext4_journal_stop(handle); 4840 } 4841 4842 if (attr->ia_valid & ATTR_SIZE) { 4843 4844 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4845 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4846 4847 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4848 return -EFBIG; 4849 } 4850 } 4851 4852 if (S_ISREG(inode->i_mode) && 4853 attr->ia_valid & ATTR_SIZE && 4854 (attr->ia_size < inode->i_size)) { 4855 handle_t *handle; 4856 4857 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4858 if (IS_ERR(handle)) { 4859 error = PTR_ERR(handle); 4860 goto err_out; 4861 } 4862 if (ext4_handle_valid(handle)) { 4863 error = ext4_orphan_add(handle, inode); 4864 orphan = 1; 4865 } 4866 EXT4_I(inode)->i_disksize = attr->ia_size; 4867 rc = ext4_mark_inode_dirty(handle, inode); 4868 if (!error) 4869 error = rc; 4870 ext4_journal_stop(handle); 4871 4872 if (ext4_should_order_data(inode)) { 4873 error = ext4_begin_ordered_truncate(inode, 4874 attr->ia_size); 4875 if (error) { 4876 /* Do as much error cleanup as possible */ 4877 handle = ext4_journal_start(inode, 4878 EXT4_HT_INODE, 3); 4879 if (IS_ERR(handle)) { 4880 ext4_orphan_del(NULL, inode); 4881 goto err_out; 4882 } 4883 ext4_orphan_del(handle, inode); 4884 orphan = 0; 4885 ext4_journal_stop(handle); 4886 goto err_out; 4887 } 4888 } 4889 } 4890 4891 if (attr->ia_valid & ATTR_SIZE) { 4892 if (attr->ia_size != inode->i_size) { 4893 loff_t oldsize = inode->i_size; 4894 4895 i_size_write(inode, attr->ia_size); 4896 /* 4897 * Blocks are going to be removed from the inode. Wait 4898 * for dio in flight. Temporarily disable 4899 * dioread_nolock to prevent livelock. 4900 */ 4901 if (orphan) { 4902 if (!ext4_should_journal_data(inode)) { 4903 ext4_inode_block_unlocked_dio(inode); 4904 inode_dio_wait(inode); 4905 ext4_inode_resume_unlocked_dio(inode); 4906 } else 4907 ext4_wait_for_tail_page_commit(inode); 4908 } 4909 /* 4910 * Truncate pagecache after we've waited for commit 4911 * in data=journal mode to make pages freeable. 4912 */ 4913 truncate_pagecache(inode, oldsize, inode->i_size); 4914 } 4915 ext4_truncate(inode); 4916 } 4917 4918 if (!rc) { 4919 setattr_copy(inode, attr); 4920 mark_inode_dirty(inode); 4921 } 4922 4923 /* 4924 * If the call to ext4_truncate failed to get a transaction handle at 4925 * all, we need to clean up the in-core orphan list manually. 4926 */ 4927 if (orphan && inode->i_nlink) 4928 ext4_orphan_del(NULL, inode); 4929 4930 if (!rc && (ia_valid & ATTR_MODE)) 4931 rc = ext4_acl_chmod(inode); 4932 4933 err_out: 4934 ext4_std_error(inode->i_sb, error); 4935 if (!error) 4936 error = rc; 4937 return error; 4938 } 4939 4940 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4941 struct kstat *stat) 4942 { 4943 struct inode *inode; 4944 unsigned long delalloc_blocks; 4945 4946 inode = dentry->d_inode; 4947 generic_fillattr(inode, stat); 4948 4949 /* 4950 * We can't update i_blocks if the block allocation is delayed 4951 * otherwise in the case of system crash before the real block 4952 * allocation is done, we will have i_blocks inconsistent with 4953 * on-disk file blocks. 4954 * We always keep i_blocks updated together with real 4955 * allocation. But to not confuse with user, stat 4956 * will return the blocks that include the delayed allocation 4957 * blocks for this file. 4958 */ 4959 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4960 EXT4_I(inode)->i_reserved_data_blocks); 4961 4962 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4963 return 0; 4964 } 4965 4966 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4967 { 4968 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4969 return ext4_ind_trans_blocks(inode, nrblocks, chunk); 4970 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 4971 } 4972 4973 /* 4974 * Account for index blocks, block groups bitmaps and block group 4975 * descriptor blocks if modify datablocks and index blocks 4976 * worse case, the indexs blocks spread over different block groups 4977 * 4978 * If datablocks are discontiguous, they are possible to spread over 4979 * different block groups too. If they are contiguous, with flexbg, 4980 * they could still across block group boundary. 4981 * 4982 * Also account for superblock, inode, quota and xattr blocks 4983 */ 4984 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4985 { 4986 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4987 int gdpblocks; 4988 int idxblocks; 4989 int ret = 0; 4990 4991 /* 4992 * How many index blocks need to touch to modify nrblocks? 4993 * The "Chunk" flag indicating whether the nrblocks is 4994 * physically contiguous on disk 4995 * 4996 * For Direct IO and fallocate, they calls get_block to allocate 4997 * one single extent at a time, so they could set the "Chunk" flag 4998 */ 4999 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 5000 5001 ret = idxblocks; 5002 5003 /* 5004 * Now let's see how many group bitmaps and group descriptors need 5005 * to account 5006 */ 5007 groups = idxblocks; 5008 if (chunk) 5009 groups += 1; 5010 else 5011 groups += nrblocks; 5012 5013 gdpblocks = groups; 5014 if (groups > ngroups) 5015 groups = ngroups; 5016 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5017 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5018 5019 /* bitmaps and block group descriptor blocks */ 5020 ret += groups + gdpblocks; 5021 5022 /* Blocks for super block, inode, quota and xattr blocks */ 5023 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5024 5025 return ret; 5026 } 5027 5028 /* 5029 * Calculate the total number of credits to reserve to fit 5030 * the modification of a single pages into a single transaction, 5031 * which may include multiple chunks of block allocations. 5032 * 5033 * This could be called via ext4_write_begin() 5034 * 5035 * We need to consider the worse case, when 5036 * one new block per extent. 5037 */ 5038 int ext4_writepage_trans_blocks(struct inode *inode) 5039 { 5040 int bpp = ext4_journal_blocks_per_page(inode); 5041 int ret; 5042 5043 ret = ext4_meta_trans_blocks(inode, bpp, 0); 5044 5045 /* Account for data blocks for journalled mode */ 5046 if (ext4_should_journal_data(inode)) 5047 ret += bpp; 5048 return ret; 5049 } 5050 5051 /* 5052 * Calculate the journal credits for a chunk of data modification. 5053 * 5054 * This is called from DIO, fallocate or whoever calling 5055 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5056 * 5057 * journal buffers for data blocks are not included here, as DIO 5058 * and fallocate do no need to journal data buffers. 5059 */ 5060 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5061 { 5062 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5063 } 5064 5065 /* 5066 * The caller must have previously called ext4_reserve_inode_write(). 5067 * Give this, we know that the caller already has write access to iloc->bh. 5068 */ 5069 int ext4_mark_iloc_dirty(handle_t *handle, 5070 struct inode *inode, struct ext4_iloc *iloc) 5071 { 5072 int err = 0; 5073 5074 if (IS_I_VERSION(inode)) 5075 inode_inc_iversion(inode); 5076 5077 /* the do_update_inode consumes one bh->b_count */ 5078 get_bh(iloc->bh); 5079 5080 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5081 err = ext4_do_update_inode(handle, inode, iloc); 5082 put_bh(iloc->bh); 5083 return err; 5084 } 5085 5086 /* 5087 * On success, We end up with an outstanding reference count against 5088 * iloc->bh. This _must_ be cleaned up later. 5089 */ 5090 5091 int 5092 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5093 struct ext4_iloc *iloc) 5094 { 5095 int err; 5096 5097 err = ext4_get_inode_loc(inode, iloc); 5098 if (!err) { 5099 BUFFER_TRACE(iloc->bh, "get_write_access"); 5100 err = ext4_journal_get_write_access(handle, iloc->bh); 5101 if (err) { 5102 brelse(iloc->bh); 5103 iloc->bh = NULL; 5104 } 5105 } 5106 ext4_std_error(inode->i_sb, err); 5107 return err; 5108 } 5109 5110 /* 5111 * Expand an inode by new_extra_isize bytes. 5112 * Returns 0 on success or negative error number on failure. 5113 */ 5114 static int ext4_expand_extra_isize(struct inode *inode, 5115 unsigned int new_extra_isize, 5116 struct ext4_iloc iloc, 5117 handle_t *handle) 5118 { 5119 struct ext4_inode *raw_inode; 5120 struct ext4_xattr_ibody_header *header; 5121 5122 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5123 return 0; 5124 5125 raw_inode = ext4_raw_inode(&iloc); 5126 5127 header = IHDR(inode, raw_inode); 5128 5129 /* No extended attributes present */ 5130 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5131 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5132 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5133 new_extra_isize); 5134 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5135 return 0; 5136 } 5137 5138 /* try to expand with EAs present */ 5139 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5140 raw_inode, handle); 5141 } 5142 5143 /* 5144 * What we do here is to mark the in-core inode as clean with respect to inode 5145 * dirtiness (it may still be data-dirty). 5146 * This means that the in-core inode may be reaped by prune_icache 5147 * without having to perform any I/O. This is a very good thing, 5148 * because *any* task may call prune_icache - even ones which 5149 * have a transaction open against a different journal. 5150 * 5151 * Is this cheating? Not really. Sure, we haven't written the 5152 * inode out, but prune_icache isn't a user-visible syncing function. 5153 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5154 * we start and wait on commits. 5155 */ 5156 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5157 { 5158 struct ext4_iloc iloc; 5159 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5160 static unsigned int mnt_count; 5161 int err, ret; 5162 5163 might_sleep(); 5164 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5165 err = ext4_reserve_inode_write(handle, inode, &iloc); 5166 if (ext4_handle_valid(handle) && 5167 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5168 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5169 /* 5170 * We need extra buffer credits since we may write into EA block 5171 * with this same handle. If journal_extend fails, then it will 5172 * only result in a minor loss of functionality for that inode. 5173 * If this is felt to be critical, then e2fsck should be run to 5174 * force a large enough s_min_extra_isize. 5175 */ 5176 if ((jbd2_journal_extend(handle, 5177 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5178 ret = ext4_expand_extra_isize(inode, 5179 sbi->s_want_extra_isize, 5180 iloc, handle); 5181 if (ret) { 5182 ext4_set_inode_state(inode, 5183 EXT4_STATE_NO_EXPAND); 5184 if (mnt_count != 5185 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5186 ext4_warning(inode->i_sb, 5187 "Unable to expand inode %lu. Delete" 5188 " some EAs or run e2fsck.", 5189 inode->i_ino); 5190 mnt_count = 5191 le16_to_cpu(sbi->s_es->s_mnt_count); 5192 } 5193 } 5194 } 5195 } 5196 if (!err) 5197 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5198 return err; 5199 } 5200 5201 /* 5202 * ext4_dirty_inode() is called from __mark_inode_dirty() 5203 * 5204 * We're really interested in the case where a file is being extended. 5205 * i_size has been changed by generic_commit_write() and we thus need 5206 * to include the updated inode in the current transaction. 5207 * 5208 * Also, dquot_alloc_block() will always dirty the inode when blocks 5209 * are allocated to the file. 5210 * 5211 * If the inode is marked synchronous, we don't honour that here - doing 5212 * so would cause a commit on atime updates, which we don't bother doing. 5213 * We handle synchronous inodes at the highest possible level. 5214 */ 5215 void ext4_dirty_inode(struct inode *inode, int flags) 5216 { 5217 handle_t *handle; 5218 5219 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5220 if (IS_ERR(handle)) 5221 goto out; 5222 5223 ext4_mark_inode_dirty(handle, inode); 5224 5225 ext4_journal_stop(handle); 5226 out: 5227 return; 5228 } 5229 5230 #if 0 5231 /* 5232 * Bind an inode's backing buffer_head into this transaction, to prevent 5233 * it from being flushed to disk early. Unlike 5234 * ext4_reserve_inode_write, this leaves behind no bh reference and 5235 * returns no iloc structure, so the caller needs to repeat the iloc 5236 * lookup to mark the inode dirty later. 5237 */ 5238 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5239 { 5240 struct ext4_iloc iloc; 5241 5242 int err = 0; 5243 if (handle) { 5244 err = ext4_get_inode_loc(inode, &iloc); 5245 if (!err) { 5246 BUFFER_TRACE(iloc.bh, "get_write_access"); 5247 err = jbd2_journal_get_write_access(handle, iloc.bh); 5248 if (!err) 5249 err = ext4_handle_dirty_metadata(handle, 5250 NULL, 5251 iloc.bh); 5252 brelse(iloc.bh); 5253 } 5254 } 5255 ext4_std_error(inode->i_sb, err); 5256 return err; 5257 } 5258 #endif 5259 5260 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5261 { 5262 journal_t *journal; 5263 handle_t *handle; 5264 int err; 5265 5266 /* 5267 * We have to be very careful here: changing a data block's 5268 * journaling status dynamically is dangerous. If we write a 5269 * data block to the journal, change the status and then delete 5270 * that block, we risk forgetting to revoke the old log record 5271 * from the journal and so a subsequent replay can corrupt data. 5272 * So, first we make sure that the journal is empty and that 5273 * nobody is changing anything. 5274 */ 5275 5276 journal = EXT4_JOURNAL(inode); 5277 if (!journal) 5278 return 0; 5279 if (is_journal_aborted(journal)) 5280 return -EROFS; 5281 /* We have to allocate physical blocks for delalloc blocks 5282 * before flushing journal. otherwise delalloc blocks can not 5283 * be allocated any more. even more truncate on delalloc blocks 5284 * could trigger BUG by flushing delalloc blocks in journal. 5285 * There is no delalloc block in non-journal data mode. 5286 */ 5287 if (val && test_opt(inode->i_sb, DELALLOC)) { 5288 err = ext4_alloc_da_blocks(inode); 5289 if (err < 0) 5290 return err; 5291 } 5292 5293 /* Wait for all existing dio workers */ 5294 ext4_inode_block_unlocked_dio(inode); 5295 inode_dio_wait(inode); 5296 5297 jbd2_journal_lock_updates(journal); 5298 5299 /* 5300 * OK, there are no updates running now, and all cached data is 5301 * synced to disk. We are now in a completely consistent state 5302 * which doesn't have anything in the journal, and we know that 5303 * no filesystem updates are running, so it is safe to modify 5304 * the inode's in-core data-journaling state flag now. 5305 */ 5306 5307 if (val) 5308 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5309 else { 5310 jbd2_journal_flush(journal); 5311 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5312 } 5313 ext4_set_aops(inode); 5314 5315 jbd2_journal_unlock_updates(journal); 5316 ext4_inode_resume_unlocked_dio(inode); 5317 5318 /* Finally we can mark the inode as dirty. */ 5319 5320 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5321 if (IS_ERR(handle)) 5322 return PTR_ERR(handle); 5323 5324 err = ext4_mark_inode_dirty(handle, inode); 5325 ext4_handle_sync(handle); 5326 ext4_journal_stop(handle); 5327 ext4_std_error(inode->i_sb, err); 5328 5329 return err; 5330 } 5331 5332 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5333 { 5334 return !buffer_mapped(bh); 5335 } 5336 5337 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5338 { 5339 struct page *page = vmf->page; 5340 loff_t size; 5341 unsigned long len; 5342 int ret; 5343 struct file *file = vma->vm_file; 5344 struct inode *inode = file_inode(file); 5345 struct address_space *mapping = inode->i_mapping; 5346 handle_t *handle; 5347 get_block_t *get_block; 5348 int retries = 0; 5349 5350 sb_start_pagefault(inode->i_sb); 5351 file_update_time(vma->vm_file); 5352 /* Delalloc case is easy... */ 5353 if (test_opt(inode->i_sb, DELALLOC) && 5354 !ext4_should_journal_data(inode) && 5355 !ext4_nonda_switch(inode->i_sb)) { 5356 do { 5357 ret = __block_page_mkwrite(vma, vmf, 5358 ext4_da_get_block_prep); 5359 } while (ret == -ENOSPC && 5360 ext4_should_retry_alloc(inode->i_sb, &retries)); 5361 goto out_ret; 5362 } 5363 5364 lock_page(page); 5365 size = i_size_read(inode); 5366 /* Page got truncated from under us? */ 5367 if (page->mapping != mapping || page_offset(page) > size) { 5368 unlock_page(page); 5369 ret = VM_FAULT_NOPAGE; 5370 goto out; 5371 } 5372 5373 if (page->index == size >> PAGE_CACHE_SHIFT) 5374 len = size & ~PAGE_CACHE_MASK; 5375 else 5376 len = PAGE_CACHE_SIZE; 5377 /* 5378 * Return if we have all the buffers mapped. This avoids the need to do 5379 * journal_start/journal_stop which can block and take a long time 5380 */ 5381 if (page_has_buffers(page)) { 5382 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5383 0, len, NULL, 5384 ext4_bh_unmapped)) { 5385 /* Wait so that we don't change page under IO */ 5386 wait_for_stable_page(page); 5387 ret = VM_FAULT_LOCKED; 5388 goto out; 5389 } 5390 } 5391 unlock_page(page); 5392 /* OK, we need to fill the hole... */ 5393 if (ext4_should_dioread_nolock(inode)) 5394 get_block = ext4_get_block_write; 5395 else 5396 get_block = ext4_get_block; 5397 retry_alloc: 5398 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5399 ext4_writepage_trans_blocks(inode)); 5400 if (IS_ERR(handle)) { 5401 ret = VM_FAULT_SIGBUS; 5402 goto out; 5403 } 5404 ret = __block_page_mkwrite(vma, vmf, get_block); 5405 if (!ret && ext4_should_journal_data(inode)) { 5406 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5407 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5408 unlock_page(page); 5409 ret = VM_FAULT_SIGBUS; 5410 ext4_journal_stop(handle); 5411 goto out; 5412 } 5413 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5414 } 5415 ext4_journal_stop(handle); 5416 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5417 goto retry_alloc; 5418 out_ret: 5419 ret = block_page_mkwrite_return(ret); 5420 out: 5421 sb_end_pagefault(inode->i_sb); 5422 return ret; 5423 } 5424