xref: /openbmc/linux/fs/ext4/inode.c (revision 0713ed0cde76438d05849f1537d3aab46e099475)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u16 csum_lo;
56 	__u16 csum_hi = 0;
57 	__u32 csum;
58 
59 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
60 	raw->i_checksum_lo = 0;
61 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
64 		raw->i_checksum_hi = 0;
65 	}
66 
67 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 			   EXT4_INODE_SIZE(inode->i_sb));
69 
70 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
71 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
74 
75 	return csum;
76 }
77 
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 				  struct ext4_inode_info *ei)
80 {
81 	__u32 provided, calculated;
82 
83 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 	    cpu_to_le32(EXT4_OS_LINUX) ||
85 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 		return 1;
88 
89 	provided = le16_to_cpu(raw->i_checksum_lo);
90 	calculated = ext4_inode_csum(inode, raw, ei);
91 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 	else
95 		calculated &= 0xFFFF;
96 
97 	return provided == calculated;
98 }
99 
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 				struct ext4_inode_info *ei)
102 {
103 	__u32 csum;
104 
105 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 	    cpu_to_le32(EXT4_OS_LINUX) ||
107 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 		return;
110 
111 	csum = ext4_inode_csum(inode, raw, ei);
112 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117 
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 					      loff_t new_size)
120 {
121 	trace_ext4_begin_ordered_truncate(inode, new_size);
122 	/*
123 	 * If jinode is zero, then we never opened the file for
124 	 * writing, so there's no need to call
125 	 * jbd2_journal_begin_ordered_truncate() since there's no
126 	 * outstanding writes we need to flush.
127 	 */
128 	if (!EXT4_I(inode)->jinode)
129 		return 0;
130 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 						   EXT4_I(inode)->jinode,
132 						   new_size);
133 }
134 
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 				unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
140 		struct inode *inode, struct page *page, loff_t from,
141 		loff_t length, int flags);
142 
143 /*
144  * Test whether an inode is a fast symlink.
145  */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
149 		(inode->i_sb->s_blocksize >> 9) : 0;
150 
151 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152 }
153 
154 /*
155  * Restart the transaction associated with *handle.  This does a commit,
156  * so before we call here everything must be consistently dirtied against
157  * this transaction.
158  */
159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
160 				 int nblocks)
161 {
162 	int ret;
163 
164 	/*
165 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
166 	 * moment, get_block can be called only for blocks inside i_size since
167 	 * page cache has been already dropped and writes are blocked by
168 	 * i_mutex. So we can safely drop the i_data_sem here.
169 	 */
170 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
171 	jbd_debug(2, "restarting handle %p\n", handle);
172 	up_write(&EXT4_I(inode)->i_data_sem);
173 	ret = ext4_journal_restart(handle, nblocks);
174 	down_write(&EXT4_I(inode)->i_data_sem);
175 	ext4_discard_preallocations(inode);
176 
177 	return ret;
178 }
179 
180 /*
181  * Called at the last iput() if i_nlink is zero.
182  */
183 void ext4_evict_inode(struct inode *inode)
184 {
185 	handle_t *handle;
186 	int err;
187 
188 	trace_ext4_evict_inode(inode);
189 
190 	if (inode->i_nlink) {
191 		/*
192 		 * When journalling data dirty buffers are tracked only in the
193 		 * journal. So although mm thinks everything is clean and
194 		 * ready for reaping the inode might still have some pages to
195 		 * write in the running transaction or waiting to be
196 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
197 		 * (via truncate_inode_pages()) to discard these buffers can
198 		 * cause data loss. Also even if we did not discard these
199 		 * buffers, we would have no way to find them after the inode
200 		 * is reaped and thus user could see stale data if he tries to
201 		 * read them before the transaction is checkpointed. So be
202 		 * careful and force everything to disk here... We use
203 		 * ei->i_datasync_tid to store the newest transaction
204 		 * containing inode's data.
205 		 *
206 		 * Note that directories do not have this problem because they
207 		 * don't use page cache.
208 		 */
209 		if (ext4_should_journal_data(inode) &&
210 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211 		    inode->i_ino != EXT4_JOURNAL_INO) {
212 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214 
215 			jbd2_complete_transaction(journal, commit_tid);
216 			filemap_write_and_wait(&inode->i_data);
217 		}
218 		truncate_inode_pages(&inode->i_data, 0);
219 		ext4_ioend_shutdown(inode);
220 		goto no_delete;
221 	}
222 
223 	if (!is_bad_inode(inode))
224 		dquot_initialize(inode);
225 
226 	if (ext4_should_order_data(inode))
227 		ext4_begin_ordered_truncate(inode, 0);
228 	truncate_inode_pages(&inode->i_data, 0);
229 	ext4_ioend_shutdown(inode);
230 
231 	if (is_bad_inode(inode))
232 		goto no_delete;
233 
234 	/*
235 	 * Protect us against freezing - iput() caller didn't have to have any
236 	 * protection against it
237 	 */
238 	sb_start_intwrite(inode->i_sb);
239 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 				    ext4_blocks_for_truncate(inode)+3);
241 	if (IS_ERR(handle)) {
242 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
243 		/*
244 		 * If we're going to skip the normal cleanup, we still need to
245 		 * make sure that the in-core orphan linked list is properly
246 		 * cleaned up.
247 		 */
248 		ext4_orphan_del(NULL, inode);
249 		sb_end_intwrite(inode->i_sb);
250 		goto no_delete;
251 	}
252 
253 	if (IS_SYNC(inode))
254 		ext4_handle_sync(handle);
255 	inode->i_size = 0;
256 	err = ext4_mark_inode_dirty(handle, inode);
257 	if (err) {
258 		ext4_warning(inode->i_sb,
259 			     "couldn't mark inode dirty (err %d)", err);
260 		goto stop_handle;
261 	}
262 	if (inode->i_blocks)
263 		ext4_truncate(inode);
264 
265 	/*
266 	 * ext4_ext_truncate() doesn't reserve any slop when it
267 	 * restarts journal transactions; therefore there may not be
268 	 * enough credits left in the handle to remove the inode from
269 	 * the orphan list and set the dtime field.
270 	 */
271 	if (!ext4_handle_has_enough_credits(handle, 3)) {
272 		err = ext4_journal_extend(handle, 3);
273 		if (err > 0)
274 			err = ext4_journal_restart(handle, 3);
275 		if (err != 0) {
276 			ext4_warning(inode->i_sb,
277 				     "couldn't extend journal (err %d)", err);
278 		stop_handle:
279 			ext4_journal_stop(handle);
280 			ext4_orphan_del(NULL, inode);
281 			sb_end_intwrite(inode->i_sb);
282 			goto no_delete;
283 		}
284 	}
285 
286 	/*
287 	 * Kill off the orphan record which ext4_truncate created.
288 	 * AKPM: I think this can be inside the above `if'.
289 	 * Note that ext4_orphan_del() has to be able to cope with the
290 	 * deletion of a non-existent orphan - this is because we don't
291 	 * know if ext4_truncate() actually created an orphan record.
292 	 * (Well, we could do this if we need to, but heck - it works)
293 	 */
294 	ext4_orphan_del(handle, inode);
295 	EXT4_I(inode)->i_dtime	= get_seconds();
296 
297 	/*
298 	 * One subtle ordering requirement: if anything has gone wrong
299 	 * (transaction abort, IO errors, whatever), then we can still
300 	 * do these next steps (the fs will already have been marked as
301 	 * having errors), but we can't free the inode if the mark_dirty
302 	 * fails.
303 	 */
304 	if (ext4_mark_inode_dirty(handle, inode))
305 		/* If that failed, just do the required in-core inode clear. */
306 		ext4_clear_inode(inode);
307 	else
308 		ext4_free_inode(handle, inode);
309 	ext4_journal_stop(handle);
310 	sb_end_intwrite(inode->i_sb);
311 	return;
312 no_delete:
313 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
314 }
315 
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319 	return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322 
323 /*
324  * Calculate the number of metadata blocks need to reserve
325  * to allocate a block located at @lblock
326  */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330 		return ext4_ext_calc_metadata_amount(inode, lblock);
331 
332 	return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334 
335 /*
336  * Called with i_data_sem down, which is important since we can call
337  * ext4_discard_preallocations() from here.
338  */
339 void ext4_da_update_reserve_space(struct inode *inode,
340 					int used, int quota_claim)
341 {
342 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343 	struct ext4_inode_info *ei = EXT4_I(inode);
344 
345 	spin_lock(&ei->i_block_reservation_lock);
346 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347 	if (unlikely(used > ei->i_reserved_data_blocks)) {
348 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349 			 "with only %d reserved data blocks",
350 			 __func__, inode->i_ino, used,
351 			 ei->i_reserved_data_blocks);
352 		WARN_ON(1);
353 		used = ei->i_reserved_data_blocks;
354 	}
355 
356 	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357 		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 			"with only %d reserved metadata blocks "
359 			"(releasing %d blocks with reserved %d data blocks)",
360 			inode->i_ino, ei->i_allocated_meta_blocks,
361 			     ei->i_reserved_meta_blocks, used,
362 			     ei->i_reserved_data_blocks);
363 		WARN_ON(1);
364 		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365 	}
366 
367 	/* Update per-inode reservations */
368 	ei->i_reserved_data_blocks -= used;
369 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370 	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371 			   used + ei->i_allocated_meta_blocks);
372 	ei->i_allocated_meta_blocks = 0;
373 
374 	if (ei->i_reserved_data_blocks == 0) {
375 		/*
376 		 * We can release all of the reserved metadata blocks
377 		 * only when we have written all of the delayed
378 		 * allocation blocks.
379 		 */
380 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381 				   ei->i_reserved_meta_blocks);
382 		ei->i_reserved_meta_blocks = 0;
383 		ei->i_da_metadata_calc_len = 0;
384 	}
385 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386 
387 	/* Update quota subsystem for data blocks */
388 	if (quota_claim)
389 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
390 	else {
391 		/*
392 		 * We did fallocate with an offset that is already delayed
393 		 * allocated. So on delayed allocated writeback we should
394 		 * not re-claim the quota for fallocated blocks.
395 		 */
396 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397 	}
398 
399 	/*
400 	 * If we have done all the pending block allocations and if
401 	 * there aren't any writers on the inode, we can discard the
402 	 * inode's preallocations.
403 	 */
404 	if ((ei->i_reserved_data_blocks == 0) &&
405 	    (atomic_read(&inode->i_writecount) == 0))
406 		ext4_discard_preallocations(inode);
407 }
408 
409 static int __check_block_validity(struct inode *inode, const char *func,
410 				unsigned int line,
411 				struct ext4_map_blocks *map)
412 {
413 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414 				   map->m_len)) {
415 		ext4_error_inode(inode, func, line, map->m_pblk,
416 				 "lblock %lu mapped to illegal pblock "
417 				 "(length %d)", (unsigned long) map->m_lblk,
418 				 map->m_len);
419 		return -EIO;
420 	}
421 	return 0;
422 }
423 
424 #define check_block_validity(inode, map)	\
425 	__check_block_validity((inode), __func__, __LINE__, (map))
426 
427 /*
428  * Return the number of contiguous dirty pages in a given inode
429  * starting at page frame idx.
430  */
431 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
432 				    unsigned int max_pages)
433 {
434 	struct address_space *mapping = inode->i_mapping;
435 	pgoff_t	index;
436 	struct pagevec pvec;
437 	pgoff_t num = 0;
438 	int i, nr_pages, done = 0;
439 
440 	if (max_pages == 0)
441 		return 0;
442 	pagevec_init(&pvec, 0);
443 	while (!done) {
444 		index = idx;
445 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
446 					      PAGECACHE_TAG_DIRTY,
447 					      (pgoff_t)PAGEVEC_SIZE);
448 		if (nr_pages == 0)
449 			break;
450 		for (i = 0; i < nr_pages; i++) {
451 			struct page *page = pvec.pages[i];
452 			struct buffer_head *bh, *head;
453 
454 			lock_page(page);
455 			if (unlikely(page->mapping != mapping) ||
456 			    !PageDirty(page) ||
457 			    PageWriteback(page) ||
458 			    page->index != idx) {
459 				done = 1;
460 				unlock_page(page);
461 				break;
462 			}
463 			if (page_has_buffers(page)) {
464 				bh = head = page_buffers(page);
465 				do {
466 					if (!buffer_delay(bh) &&
467 					    !buffer_unwritten(bh))
468 						done = 1;
469 					bh = bh->b_this_page;
470 				} while (!done && (bh != head));
471 			}
472 			unlock_page(page);
473 			if (done)
474 				break;
475 			idx++;
476 			num++;
477 			if (num >= max_pages) {
478 				done = 1;
479 				break;
480 			}
481 		}
482 		pagevec_release(&pvec);
483 	}
484 	return num;
485 }
486 
487 #ifdef ES_AGGRESSIVE_TEST
488 static void ext4_map_blocks_es_recheck(handle_t *handle,
489 				       struct inode *inode,
490 				       struct ext4_map_blocks *es_map,
491 				       struct ext4_map_blocks *map,
492 				       int flags)
493 {
494 	int retval;
495 
496 	map->m_flags = 0;
497 	/*
498 	 * There is a race window that the result is not the same.
499 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
500 	 * is that we lookup a block mapping in extent status tree with
501 	 * out taking i_data_sem.  So at the time the unwritten extent
502 	 * could be converted.
503 	 */
504 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
505 		down_read((&EXT4_I(inode)->i_data_sem));
506 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
507 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
508 					     EXT4_GET_BLOCKS_KEEP_SIZE);
509 	} else {
510 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
511 					     EXT4_GET_BLOCKS_KEEP_SIZE);
512 	}
513 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
514 		up_read((&EXT4_I(inode)->i_data_sem));
515 	/*
516 	 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
517 	 * because it shouldn't be marked in es_map->m_flags.
518 	 */
519 	map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
520 
521 	/*
522 	 * We don't check m_len because extent will be collpased in status
523 	 * tree.  So the m_len might not equal.
524 	 */
525 	if (es_map->m_lblk != map->m_lblk ||
526 	    es_map->m_flags != map->m_flags ||
527 	    es_map->m_pblk != map->m_pblk) {
528 		printk("ES cache assertation failed for inode: %lu "
529 		       "es_cached ex [%d/%d/%llu/%x] != "
530 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
531 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
532 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
533 		       map->m_len, map->m_pblk, map->m_flags,
534 		       retval, flags);
535 	}
536 }
537 #endif /* ES_AGGRESSIVE_TEST */
538 
539 /*
540  * The ext4_map_blocks() function tries to look up the requested blocks,
541  * and returns if the blocks are already mapped.
542  *
543  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
544  * and store the allocated blocks in the result buffer head and mark it
545  * mapped.
546  *
547  * If file type is extents based, it will call ext4_ext_map_blocks(),
548  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
549  * based files
550  *
551  * On success, it returns the number of blocks being mapped or allocate.
552  * if create==0 and the blocks are pre-allocated and uninitialized block,
553  * the result buffer head is unmapped. If the create ==1, it will make sure
554  * the buffer head is mapped.
555  *
556  * It returns 0 if plain look up failed (blocks have not been allocated), in
557  * that case, buffer head is unmapped
558  *
559  * It returns the error in case of allocation failure.
560  */
561 int ext4_map_blocks(handle_t *handle, struct inode *inode,
562 		    struct ext4_map_blocks *map, int flags)
563 {
564 	struct extent_status es;
565 	int retval;
566 #ifdef ES_AGGRESSIVE_TEST
567 	struct ext4_map_blocks orig_map;
568 
569 	memcpy(&orig_map, map, sizeof(*map));
570 #endif
571 
572 	map->m_flags = 0;
573 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
574 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
575 		  (unsigned long) map->m_lblk);
576 
577 	/* Lookup extent status tree firstly */
578 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
579 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
580 			map->m_pblk = ext4_es_pblock(&es) +
581 					map->m_lblk - es.es_lblk;
582 			map->m_flags |= ext4_es_is_written(&es) ?
583 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
584 			retval = es.es_len - (map->m_lblk - es.es_lblk);
585 			if (retval > map->m_len)
586 				retval = map->m_len;
587 			map->m_len = retval;
588 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
589 			retval = 0;
590 		} else {
591 			BUG_ON(1);
592 		}
593 #ifdef ES_AGGRESSIVE_TEST
594 		ext4_map_blocks_es_recheck(handle, inode, map,
595 					   &orig_map, flags);
596 #endif
597 		goto found;
598 	}
599 
600 	/*
601 	 * Try to see if we can get the block without requesting a new
602 	 * file system block.
603 	 */
604 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
605 		down_read((&EXT4_I(inode)->i_data_sem));
606 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
607 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
608 					     EXT4_GET_BLOCKS_KEEP_SIZE);
609 	} else {
610 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
611 					     EXT4_GET_BLOCKS_KEEP_SIZE);
612 	}
613 	if (retval > 0) {
614 		int ret;
615 		unsigned long long status;
616 
617 #ifdef ES_AGGRESSIVE_TEST
618 		if (retval != map->m_len) {
619 			printk("ES len assertation failed for inode: %lu "
620 			       "retval %d != map->m_len %d "
621 			       "in %s (lookup)\n", inode->i_ino, retval,
622 			       map->m_len, __func__);
623 		}
624 #endif
625 
626 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
627 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
628 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
629 		    ext4_find_delalloc_range(inode, map->m_lblk,
630 					     map->m_lblk + map->m_len - 1))
631 			status |= EXTENT_STATUS_DELAYED;
632 		ret = ext4_es_insert_extent(inode, map->m_lblk,
633 					    map->m_len, map->m_pblk, status);
634 		if (ret < 0)
635 			retval = ret;
636 	}
637 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
638 		up_read((&EXT4_I(inode)->i_data_sem));
639 
640 found:
641 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
642 		int ret = check_block_validity(inode, map);
643 		if (ret != 0)
644 			return ret;
645 	}
646 
647 	/* If it is only a block(s) look up */
648 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
649 		return retval;
650 
651 	/*
652 	 * Returns if the blocks have already allocated
653 	 *
654 	 * Note that if blocks have been preallocated
655 	 * ext4_ext_get_block() returns the create = 0
656 	 * with buffer head unmapped.
657 	 */
658 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
659 		return retval;
660 
661 	/*
662 	 * Here we clear m_flags because after allocating an new extent,
663 	 * it will be set again.
664 	 */
665 	map->m_flags &= ~EXT4_MAP_FLAGS;
666 
667 	/*
668 	 * New blocks allocate and/or writing to uninitialized extent
669 	 * will possibly result in updating i_data, so we take
670 	 * the write lock of i_data_sem, and call get_blocks()
671 	 * with create == 1 flag.
672 	 */
673 	down_write((&EXT4_I(inode)->i_data_sem));
674 
675 	/*
676 	 * if the caller is from delayed allocation writeout path
677 	 * we have already reserved fs blocks for allocation
678 	 * let the underlying get_block() function know to
679 	 * avoid double accounting
680 	 */
681 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
682 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
683 	/*
684 	 * We need to check for EXT4 here because migrate
685 	 * could have changed the inode type in between
686 	 */
687 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
688 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
689 	} else {
690 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
691 
692 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
693 			/*
694 			 * We allocated new blocks which will result in
695 			 * i_data's format changing.  Force the migrate
696 			 * to fail by clearing migrate flags
697 			 */
698 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
699 		}
700 
701 		/*
702 		 * Update reserved blocks/metadata blocks after successful
703 		 * block allocation which had been deferred till now. We don't
704 		 * support fallocate for non extent files. So we can update
705 		 * reserve space here.
706 		 */
707 		if ((retval > 0) &&
708 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
709 			ext4_da_update_reserve_space(inode, retval, 1);
710 	}
711 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
712 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
713 
714 	if (retval > 0) {
715 		int ret;
716 		unsigned long long status;
717 
718 #ifdef ES_AGGRESSIVE_TEST
719 		if (retval != map->m_len) {
720 			printk("ES len assertation failed for inode: %lu "
721 			       "retval %d != map->m_len %d "
722 			       "in %s (allocation)\n", inode->i_ino, retval,
723 			       map->m_len, __func__);
724 		}
725 #endif
726 
727 		/*
728 		 * If the extent has been zeroed out, we don't need to update
729 		 * extent status tree.
730 		 */
731 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
732 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
733 			if (ext4_es_is_written(&es))
734 				goto has_zeroout;
735 		}
736 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
737 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
738 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
739 		    ext4_find_delalloc_range(inode, map->m_lblk,
740 					     map->m_lblk + map->m_len - 1))
741 			status |= EXTENT_STATUS_DELAYED;
742 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
743 					    map->m_pblk, status);
744 		if (ret < 0)
745 			retval = ret;
746 	}
747 
748 has_zeroout:
749 	up_write((&EXT4_I(inode)->i_data_sem));
750 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
751 		int ret = check_block_validity(inode, map);
752 		if (ret != 0)
753 			return ret;
754 	}
755 	return retval;
756 }
757 
758 /* Maximum number of blocks we map for direct IO at once. */
759 #define DIO_MAX_BLOCKS 4096
760 
761 static int _ext4_get_block(struct inode *inode, sector_t iblock,
762 			   struct buffer_head *bh, int flags)
763 {
764 	handle_t *handle = ext4_journal_current_handle();
765 	struct ext4_map_blocks map;
766 	int ret = 0, started = 0;
767 	int dio_credits;
768 
769 	if (ext4_has_inline_data(inode))
770 		return -ERANGE;
771 
772 	map.m_lblk = iblock;
773 	map.m_len = bh->b_size >> inode->i_blkbits;
774 
775 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
776 		/* Direct IO write... */
777 		if (map.m_len > DIO_MAX_BLOCKS)
778 			map.m_len = DIO_MAX_BLOCKS;
779 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
780 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
781 					    dio_credits);
782 		if (IS_ERR(handle)) {
783 			ret = PTR_ERR(handle);
784 			return ret;
785 		}
786 		started = 1;
787 	}
788 
789 	ret = ext4_map_blocks(handle, inode, &map, flags);
790 	if (ret > 0) {
791 		map_bh(bh, inode->i_sb, map.m_pblk);
792 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
793 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
794 		ret = 0;
795 	}
796 	if (started)
797 		ext4_journal_stop(handle);
798 	return ret;
799 }
800 
801 int ext4_get_block(struct inode *inode, sector_t iblock,
802 		   struct buffer_head *bh, int create)
803 {
804 	return _ext4_get_block(inode, iblock, bh,
805 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
806 }
807 
808 /*
809  * `handle' can be NULL if create is zero
810  */
811 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
812 				ext4_lblk_t block, int create, int *errp)
813 {
814 	struct ext4_map_blocks map;
815 	struct buffer_head *bh;
816 	int fatal = 0, err;
817 
818 	J_ASSERT(handle != NULL || create == 0);
819 
820 	map.m_lblk = block;
821 	map.m_len = 1;
822 	err = ext4_map_blocks(handle, inode, &map,
823 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
824 
825 	/* ensure we send some value back into *errp */
826 	*errp = 0;
827 
828 	if (create && err == 0)
829 		err = -ENOSPC;	/* should never happen */
830 	if (err < 0)
831 		*errp = err;
832 	if (err <= 0)
833 		return NULL;
834 
835 	bh = sb_getblk(inode->i_sb, map.m_pblk);
836 	if (unlikely(!bh)) {
837 		*errp = -ENOMEM;
838 		return NULL;
839 	}
840 	if (map.m_flags & EXT4_MAP_NEW) {
841 		J_ASSERT(create != 0);
842 		J_ASSERT(handle != NULL);
843 
844 		/*
845 		 * Now that we do not always journal data, we should
846 		 * keep in mind whether this should always journal the
847 		 * new buffer as metadata.  For now, regular file
848 		 * writes use ext4_get_block instead, so it's not a
849 		 * problem.
850 		 */
851 		lock_buffer(bh);
852 		BUFFER_TRACE(bh, "call get_create_access");
853 		fatal = ext4_journal_get_create_access(handle, bh);
854 		if (!fatal && !buffer_uptodate(bh)) {
855 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
856 			set_buffer_uptodate(bh);
857 		}
858 		unlock_buffer(bh);
859 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
860 		err = ext4_handle_dirty_metadata(handle, inode, bh);
861 		if (!fatal)
862 			fatal = err;
863 	} else {
864 		BUFFER_TRACE(bh, "not a new buffer");
865 	}
866 	if (fatal) {
867 		*errp = fatal;
868 		brelse(bh);
869 		bh = NULL;
870 	}
871 	return bh;
872 }
873 
874 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
875 			       ext4_lblk_t block, int create, int *err)
876 {
877 	struct buffer_head *bh;
878 
879 	bh = ext4_getblk(handle, inode, block, create, err);
880 	if (!bh)
881 		return bh;
882 	if (buffer_uptodate(bh))
883 		return bh;
884 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
885 	wait_on_buffer(bh);
886 	if (buffer_uptodate(bh))
887 		return bh;
888 	put_bh(bh);
889 	*err = -EIO;
890 	return NULL;
891 }
892 
893 int ext4_walk_page_buffers(handle_t *handle,
894 			   struct buffer_head *head,
895 			   unsigned from,
896 			   unsigned to,
897 			   int *partial,
898 			   int (*fn)(handle_t *handle,
899 				     struct buffer_head *bh))
900 {
901 	struct buffer_head *bh;
902 	unsigned block_start, block_end;
903 	unsigned blocksize = head->b_size;
904 	int err, ret = 0;
905 	struct buffer_head *next;
906 
907 	for (bh = head, block_start = 0;
908 	     ret == 0 && (bh != head || !block_start);
909 	     block_start = block_end, bh = next) {
910 		next = bh->b_this_page;
911 		block_end = block_start + blocksize;
912 		if (block_end <= from || block_start >= to) {
913 			if (partial && !buffer_uptodate(bh))
914 				*partial = 1;
915 			continue;
916 		}
917 		err = (*fn)(handle, bh);
918 		if (!ret)
919 			ret = err;
920 	}
921 	return ret;
922 }
923 
924 /*
925  * To preserve ordering, it is essential that the hole instantiation and
926  * the data write be encapsulated in a single transaction.  We cannot
927  * close off a transaction and start a new one between the ext4_get_block()
928  * and the commit_write().  So doing the jbd2_journal_start at the start of
929  * prepare_write() is the right place.
930  *
931  * Also, this function can nest inside ext4_writepage().  In that case, we
932  * *know* that ext4_writepage() has generated enough buffer credits to do the
933  * whole page.  So we won't block on the journal in that case, which is good,
934  * because the caller may be PF_MEMALLOC.
935  *
936  * By accident, ext4 can be reentered when a transaction is open via
937  * quota file writes.  If we were to commit the transaction while thus
938  * reentered, there can be a deadlock - we would be holding a quota
939  * lock, and the commit would never complete if another thread had a
940  * transaction open and was blocking on the quota lock - a ranking
941  * violation.
942  *
943  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
944  * will _not_ run commit under these circumstances because handle->h_ref
945  * is elevated.  We'll still have enough credits for the tiny quotafile
946  * write.
947  */
948 int do_journal_get_write_access(handle_t *handle,
949 				struct buffer_head *bh)
950 {
951 	int dirty = buffer_dirty(bh);
952 	int ret;
953 
954 	if (!buffer_mapped(bh) || buffer_freed(bh))
955 		return 0;
956 	/*
957 	 * __block_write_begin() could have dirtied some buffers. Clean
958 	 * the dirty bit as jbd2_journal_get_write_access() could complain
959 	 * otherwise about fs integrity issues. Setting of the dirty bit
960 	 * by __block_write_begin() isn't a real problem here as we clear
961 	 * the bit before releasing a page lock and thus writeback cannot
962 	 * ever write the buffer.
963 	 */
964 	if (dirty)
965 		clear_buffer_dirty(bh);
966 	ret = ext4_journal_get_write_access(handle, bh);
967 	if (!ret && dirty)
968 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
969 	return ret;
970 }
971 
972 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
973 		   struct buffer_head *bh_result, int create);
974 static int ext4_write_begin(struct file *file, struct address_space *mapping,
975 			    loff_t pos, unsigned len, unsigned flags,
976 			    struct page **pagep, void **fsdata)
977 {
978 	struct inode *inode = mapping->host;
979 	int ret, needed_blocks;
980 	handle_t *handle;
981 	int retries = 0;
982 	struct page *page;
983 	pgoff_t index;
984 	unsigned from, to;
985 
986 	trace_ext4_write_begin(inode, pos, len, flags);
987 	/*
988 	 * Reserve one block more for addition to orphan list in case
989 	 * we allocate blocks but write fails for some reason
990 	 */
991 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
992 	index = pos >> PAGE_CACHE_SHIFT;
993 	from = pos & (PAGE_CACHE_SIZE - 1);
994 	to = from + len;
995 
996 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
997 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
998 						    flags, pagep);
999 		if (ret < 0)
1000 			return ret;
1001 		if (ret == 1)
1002 			return 0;
1003 	}
1004 
1005 	/*
1006 	 * grab_cache_page_write_begin() can take a long time if the
1007 	 * system is thrashing due to memory pressure, or if the page
1008 	 * is being written back.  So grab it first before we start
1009 	 * the transaction handle.  This also allows us to allocate
1010 	 * the page (if needed) without using GFP_NOFS.
1011 	 */
1012 retry_grab:
1013 	page = grab_cache_page_write_begin(mapping, index, flags);
1014 	if (!page)
1015 		return -ENOMEM;
1016 	unlock_page(page);
1017 
1018 retry_journal:
1019 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1020 	if (IS_ERR(handle)) {
1021 		page_cache_release(page);
1022 		return PTR_ERR(handle);
1023 	}
1024 
1025 	lock_page(page);
1026 	if (page->mapping != mapping) {
1027 		/* The page got truncated from under us */
1028 		unlock_page(page);
1029 		page_cache_release(page);
1030 		ext4_journal_stop(handle);
1031 		goto retry_grab;
1032 	}
1033 	wait_on_page_writeback(page);
1034 
1035 	if (ext4_should_dioread_nolock(inode))
1036 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1037 	else
1038 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1039 
1040 	if (!ret && ext4_should_journal_data(inode)) {
1041 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1042 					     from, to, NULL,
1043 					     do_journal_get_write_access);
1044 	}
1045 
1046 	if (ret) {
1047 		unlock_page(page);
1048 		/*
1049 		 * __block_write_begin may have instantiated a few blocks
1050 		 * outside i_size.  Trim these off again. Don't need
1051 		 * i_size_read because we hold i_mutex.
1052 		 *
1053 		 * Add inode to orphan list in case we crash before
1054 		 * truncate finishes
1055 		 */
1056 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1057 			ext4_orphan_add(handle, inode);
1058 
1059 		ext4_journal_stop(handle);
1060 		if (pos + len > inode->i_size) {
1061 			ext4_truncate_failed_write(inode);
1062 			/*
1063 			 * If truncate failed early the inode might
1064 			 * still be on the orphan list; we need to
1065 			 * make sure the inode is removed from the
1066 			 * orphan list in that case.
1067 			 */
1068 			if (inode->i_nlink)
1069 				ext4_orphan_del(NULL, inode);
1070 		}
1071 
1072 		if (ret == -ENOSPC &&
1073 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1074 			goto retry_journal;
1075 		page_cache_release(page);
1076 		return ret;
1077 	}
1078 	*pagep = page;
1079 	return ret;
1080 }
1081 
1082 /* For write_end() in data=journal mode */
1083 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1084 {
1085 	int ret;
1086 	if (!buffer_mapped(bh) || buffer_freed(bh))
1087 		return 0;
1088 	set_buffer_uptodate(bh);
1089 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1090 	clear_buffer_meta(bh);
1091 	clear_buffer_prio(bh);
1092 	return ret;
1093 }
1094 
1095 /*
1096  * We need to pick up the new inode size which generic_commit_write gave us
1097  * `file' can be NULL - eg, when called from page_symlink().
1098  *
1099  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1100  * buffers are managed internally.
1101  */
1102 static int ext4_write_end(struct file *file,
1103 			  struct address_space *mapping,
1104 			  loff_t pos, unsigned len, unsigned copied,
1105 			  struct page *page, void *fsdata)
1106 {
1107 	handle_t *handle = ext4_journal_current_handle();
1108 	struct inode *inode = mapping->host;
1109 	int ret = 0, ret2;
1110 	int i_size_changed = 0;
1111 
1112 	trace_ext4_write_end(inode, pos, len, copied);
1113 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1114 		ret = ext4_jbd2_file_inode(handle, inode);
1115 		if (ret) {
1116 			unlock_page(page);
1117 			page_cache_release(page);
1118 			goto errout;
1119 		}
1120 	}
1121 
1122 	if (ext4_has_inline_data(inode))
1123 		copied = ext4_write_inline_data_end(inode, pos, len,
1124 						    copied, page);
1125 	else
1126 		copied = block_write_end(file, mapping, pos,
1127 					 len, copied, page, fsdata);
1128 
1129 	/*
1130 	 * No need to use i_size_read() here, the i_size
1131 	 * cannot change under us because we hole i_mutex.
1132 	 *
1133 	 * But it's important to update i_size while still holding page lock:
1134 	 * page writeout could otherwise come in and zero beyond i_size.
1135 	 */
1136 	if (pos + copied > inode->i_size) {
1137 		i_size_write(inode, pos + copied);
1138 		i_size_changed = 1;
1139 	}
1140 
1141 	if (pos + copied > EXT4_I(inode)->i_disksize) {
1142 		/* We need to mark inode dirty even if
1143 		 * new_i_size is less that inode->i_size
1144 		 * but greater than i_disksize. (hint delalloc)
1145 		 */
1146 		ext4_update_i_disksize(inode, (pos + copied));
1147 		i_size_changed = 1;
1148 	}
1149 	unlock_page(page);
1150 	page_cache_release(page);
1151 
1152 	/*
1153 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1154 	 * makes the holding time of page lock longer. Second, it forces lock
1155 	 * ordering of page lock and transaction start for journaling
1156 	 * filesystems.
1157 	 */
1158 	if (i_size_changed)
1159 		ext4_mark_inode_dirty(handle, inode);
1160 
1161 	if (copied < 0)
1162 		ret = copied;
1163 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1164 		/* if we have allocated more blocks and copied
1165 		 * less. We will have blocks allocated outside
1166 		 * inode->i_size. So truncate them
1167 		 */
1168 		ext4_orphan_add(handle, inode);
1169 errout:
1170 	ret2 = ext4_journal_stop(handle);
1171 	if (!ret)
1172 		ret = ret2;
1173 
1174 	if (pos + len > inode->i_size) {
1175 		ext4_truncate_failed_write(inode);
1176 		/*
1177 		 * If truncate failed early the inode might still be
1178 		 * on the orphan list; we need to make sure the inode
1179 		 * is removed from the orphan list in that case.
1180 		 */
1181 		if (inode->i_nlink)
1182 			ext4_orphan_del(NULL, inode);
1183 	}
1184 
1185 	return ret ? ret : copied;
1186 }
1187 
1188 static int ext4_journalled_write_end(struct file *file,
1189 				     struct address_space *mapping,
1190 				     loff_t pos, unsigned len, unsigned copied,
1191 				     struct page *page, void *fsdata)
1192 {
1193 	handle_t *handle = ext4_journal_current_handle();
1194 	struct inode *inode = mapping->host;
1195 	int ret = 0, ret2;
1196 	int partial = 0;
1197 	unsigned from, to;
1198 	loff_t new_i_size;
1199 
1200 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1201 	from = pos & (PAGE_CACHE_SIZE - 1);
1202 	to = from + len;
1203 
1204 	BUG_ON(!ext4_handle_valid(handle));
1205 
1206 	if (ext4_has_inline_data(inode))
1207 		copied = ext4_write_inline_data_end(inode, pos, len,
1208 						    copied, page);
1209 	else {
1210 		if (copied < len) {
1211 			if (!PageUptodate(page))
1212 				copied = 0;
1213 			page_zero_new_buffers(page, from+copied, to);
1214 		}
1215 
1216 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1217 					     to, &partial, write_end_fn);
1218 		if (!partial)
1219 			SetPageUptodate(page);
1220 	}
1221 	new_i_size = pos + copied;
1222 	if (new_i_size > inode->i_size)
1223 		i_size_write(inode, pos+copied);
1224 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1225 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1226 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1227 		ext4_update_i_disksize(inode, new_i_size);
1228 		ret2 = ext4_mark_inode_dirty(handle, inode);
1229 		if (!ret)
1230 			ret = ret2;
1231 	}
1232 
1233 	unlock_page(page);
1234 	page_cache_release(page);
1235 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1236 		/* if we have allocated more blocks and copied
1237 		 * less. We will have blocks allocated outside
1238 		 * inode->i_size. So truncate them
1239 		 */
1240 		ext4_orphan_add(handle, inode);
1241 
1242 	ret2 = ext4_journal_stop(handle);
1243 	if (!ret)
1244 		ret = ret2;
1245 	if (pos + len > inode->i_size) {
1246 		ext4_truncate_failed_write(inode);
1247 		/*
1248 		 * If truncate failed early the inode might still be
1249 		 * on the orphan list; we need to make sure the inode
1250 		 * is removed from the orphan list in that case.
1251 		 */
1252 		if (inode->i_nlink)
1253 			ext4_orphan_del(NULL, inode);
1254 	}
1255 
1256 	return ret ? ret : copied;
1257 }
1258 
1259 /*
1260  * Reserve a metadata for a single block located at lblock
1261  */
1262 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1263 {
1264 	int retries = 0;
1265 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1266 	struct ext4_inode_info *ei = EXT4_I(inode);
1267 	unsigned int md_needed;
1268 	ext4_lblk_t save_last_lblock;
1269 	int save_len;
1270 
1271 	/*
1272 	 * recalculate the amount of metadata blocks to reserve
1273 	 * in order to allocate nrblocks
1274 	 * worse case is one extent per block
1275 	 */
1276 repeat:
1277 	spin_lock(&ei->i_block_reservation_lock);
1278 	/*
1279 	 * ext4_calc_metadata_amount() has side effects, which we have
1280 	 * to be prepared undo if we fail to claim space.
1281 	 */
1282 	save_len = ei->i_da_metadata_calc_len;
1283 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1284 	md_needed = EXT4_NUM_B2C(sbi,
1285 				 ext4_calc_metadata_amount(inode, lblock));
1286 	trace_ext4_da_reserve_space(inode, md_needed);
1287 
1288 	/*
1289 	 * We do still charge estimated metadata to the sb though;
1290 	 * we cannot afford to run out of free blocks.
1291 	 */
1292 	if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1293 		ei->i_da_metadata_calc_len = save_len;
1294 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1295 		spin_unlock(&ei->i_block_reservation_lock);
1296 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1297 			cond_resched();
1298 			goto repeat;
1299 		}
1300 		return -ENOSPC;
1301 	}
1302 	ei->i_reserved_meta_blocks += md_needed;
1303 	spin_unlock(&ei->i_block_reservation_lock);
1304 
1305 	return 0;       /* success */
1306 }
1307 
1308 /*
1309  * Reserve a single cluster located at lblock
1310  */
1311 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1312 {
1313 	int retries = 0;
1314 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1315 	struct ext4_inode_info *ei = EXT4_I(inode);
1316 	unsigned int md_needed;
1317 	int ret;
1318 	ext4_lblk_t save_last_lblock;
1319 	int save_len;
1320 
1321 	/*
1322 	 * We will charge metadata quota at writeout time; this saves
1323 	 * us from metadata over-estimation, though we may go over by
1324 	 * a small amount in the end.  Here we just reserve for data.
1325 	 */
1326 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1327 	if (ret)
1328 		return ret;
1329 
1330 	/*
1331 	 * recalculate the amount of metadata blocks to reserve
1332 	 * in order to allocate nrblocks
1333 	 * worse case is one extent per block
1334 	 */
1335 repeat:
1336 	spin_lock(&ei->i_block_reservation_lock);
1337 	/*
1338 	 * ext4_calc_metadata_amount() has side effects, which we have
1339 	 * to be prepared undo if we fail to claim space.
1340 	 */
1341 	save_len = ei->i_da_metadata_calc_len;
1342 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1343 	md_needed = EXT4_NUM_B2C(sbi,
1344 				 ext4_calc_metadata_amount(inode, lblock));
1345 	trace_ext4_da_reserve_space(inode, md_needed);
1346 
1347 	/*
1348 	 * We do still charge estimated metadata to the sb though;
1349 	 * we cannot afford to run out of free blocks.
1350 	 */
1351 	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1352 		ei->i_da_metadata_calc_len = save_len;
1353 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1354 		spin_unlock(&ei->i_block_reservation_lock);
1355 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1356 			cond_resched();
1357 			goto repeat;
1358 		}
1359 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1360 		return -ENOSPC;
1361 	}
1362 	ei->i_reserved_data_blocks++;
1363 	ei->i_reserved_meta_blocks += md_needed;
1364 	spin_unlock(&ei->i_block_reservation_lock);
1365 
1366 	return 0;       /* success */
1367 }
1368 
1369 static void ext4_da_release_space(struct inode *inode, int to_free)
1370 {
1371 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1372 	struct ext4_inode_info *ei = EXT4_I(inode);
1373 
1374 	if (!to_free)
1375 		return;		/* Nothing to release, exit */
1376 
1377 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1378 
1379 	trace_ext4_da_release_space(inode, to_free);
1380 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1381 		/*
1382 		 * if there aren't enough reserved blocks, then the
1383 		 * counter is messed up somewhere.  Since this
1384 		 * function is called from invalidate page, it's
1385 		 * harmless to return without any action.
1386 		 */
1387 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1388 			 "ino %lu, to_free %d with only %d reserved "
1389 			 "data blocks", inode->i_ino, to_free,
1390 			 ei->i_reserved_data_blocks);
1391 		WARN_ON(1);
1392 		to_free = ei->i_reserved_data_blocks;
1393 	}
1394 	ei->i_reserved_data_blocks -= to_free;
1395 
1396 	if (ei->i_reserved_data_blocks == 0) {
1397 		/*
1398 		 * We can release all of the reserved metadata blocks
1399 		 * only when we have written all of the delayed
1400 		 * allocation blocks.
1401 		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1402 		 * i_reserved_data_blocks, etc. refer to number of clusters.
1403 		 */
1404 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1405 				   ei->i_reserved_meta_blocks);
1406 		ei->i_reserved_meta_blocks = 0;
1407 		ei->i_da_metadata_calc_len = 0;
1408 	}
1409 
1410 	/* update fs dirty data blocks counter */
1411 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1412 
1413 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1414 
1415 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1416 }
1417 
1418 static void ext4_da_page_release_reservation(struct page *page,
1419 					     unsigned int offset,
1420 					     unsigned int length)
1421 {
1422 	int to_release = 0;
1423 	struct buffer_head *head, *bh;
1424 	unsigned int curr_off = 0;
1425 	struct inode *inode = page->mapping->host;
1426 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1427 	unsigned int stop = offset + length;
1428 	int num_clusters;
1429 	ext4_fsblk_t lblk;
1430 
1431 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1432 
1433 	head = page_buffers(page);
1434 	bh = head;
1435 	do {
1436 		unsigned int next_off = curr_off + bh->b_size;
1437 
1438 		if (next_off > stop)
1439 			break;
1440 
1441 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1442 			to_release++;
1443 			clear_buffer_delay(bh);
1444 		}
1445 		curr_off = next_off;
1446 	} while ((bh = bh->b_this_page) != head);
1447 
1448 	if (to_release) {
1449 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1450 		ext4_es_remove_extent(inode, lblk, to_release);
1451 	}
1452 
1453 	/* If we have released all the blocks belonging to a cluster, then we
1454 	 * need to release the reserved space for that cluster. */
1455 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1456 	while (num_clusters > 0) {
1457 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1458 			((num_clusters - 1) << sbi->s_cluster_bits);
1459 		if (sbi->s_cluster_ratio == 1 ||
1460 		    !ext4_find_delalloc_cluster(inode, lblk))
1461 			ext4_da_release_space(inode, 1);
1462 
1463 		num_clusters--;
1464 	}
1465 }
1466 
1467 /*
1468  * Delayed allocation stuff
1469  */
1470 
1471 /*
1472  * mpage_da_submit_io - walks through extent of pages and try to write
1473  * them with writepage() call back
1474  *
1475  * @mpd->inode: inode
1476  * @mpd->first_page: first page of the extent
1477  * @mpd->next_page: page after the last page of the extent
1478  *
1479  * By the time mpage_da_submit_io() is called we expect all blocks
1480  * to be allocated. this may be wrong if allocation failed.
1481  *
1482  * As pages are already locked by write_cache_pages(), we can't use it
1483  */
1484 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1485 			      struct ext4_map_blocks *map)
1486 {
1487 	struct pagevec pvec;
1488 	unsigned long index, end;
1489 	int ret = 0, err, nr_pages, i;
1490 	struct inode *inode = mpd->inode;
1491 	struct address_space *mapping = inode->i_mapping;
1492 	loff_t size = i_size_read(inode);
1493 	unsigned int len, block_start;
1494 	struct buffer_head *bh, *page_bufs = NULL;
1495 	sector_t pblock = 0, cur_logical = 0;
1496 	struct ext4_io_submit io_submit;
1497 
1498 	BUG_ON(mpd->next_page <= mpd->first_page);
1499 	memset(&io_submit, 0, sizeof(io_submit));
1500 	/*
1501 	 * We need to start from the first_page to the next_page - 1
1502 	 * to make sure we also write the mapped dirty buffer_heads.
1503 	 * If we look at mpd->b_blocknr we would only be looking
1504 	 * at the currently mapped buffer_heads.
1505 	 */
1506 	index = mpd->first_page;
1507 	end = mpd->next_page - 1;
1508 
1509 	pagevec_init(&pvec, 0);
1510 	while (index <= end) {
1511 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1512 		if (nr_pages == 0)
1513 			break;
1514 		for (i = 0; i < nr_pages; i++) {
1515 			int skip_page = 0;
1516 			struct page *page = pvec.pages[i];
1517 
1518 			index = page->index;
1519 			if (index > end)
1520 				break;
1521 
1522 			if (index == size >> PAGE_CACHE_SHIFT)
1523 				len = size & ~PAGE_CACHE_MASK;
1524 			else
1525 				len = PAGE_CACHE_SIZE;
1526 			if (map) {
1527 				cur_logical = index << (PAGE_CACHE_SHIFT -
1528 							inode->i_blkbits);
1529 				pblock = map->m_pblk + (cur_logical -
1530 							map->m_lblk);
1531 			}
1532 			index++;
1533 
1534 			BUG_ON(!PageLocked(page));
1535 			BUG_ON(PageWriteback(page));
1536 
1537 			bh = page_bufs = page_buffers(page);
1538 			block_start = 0;
1539 			do {
1540 				if (map && (cur_logical >= map->m_lblk) &&
1541 				    (cur_logical <= (map->m_lblk +
1542 						     (map->m_len - 1)))) {
1543 					if (buffer_delay(bh)) {
1544 						clear_buffer_delay(bh);
1545 						bh->b_blocknr = pblock;
1546 					}
1547 					if (buffer_unwritten(bh) ||
1548 					    buffer_mapped(bh))
1549 						BUG_ON(bh->b_blocknr != pblock);
1550 					if (map->m_flags & EXT4_MAP_UNINIT)
1551 						set_buffer_uninit(bh);
1552 					clear_buffer_unwritten(bh);
1553 				}
1554 
1555 				/*
1556 				 * skip page if block allocation undone and
1557 				 * block is dirty
1558 				 */
1559 				if (ext4_bh_delay_or_unwritten(NULL, bh))
1560 					skip_page = 1;
1561 				bh = bh->b_this_page;
1562 				block_start += bh->b_size;
1563 				cur_logical++;
1564 				pblock++;
1565 			} while (bh != page_bufs);
1566 
1567 			if (skip_page) {
1568 				unlock_page(page);
1569 				continue;
1570 			}
1571 
1572 			clear_page_dirty_for_io(page);
1573 			err = ext4_bio_write_page(&io_submit, page, len,
1574 						  mpd->wbc);
1575 			if (!err)
1576 				mpd->pages_written++;
1577 			/*
1578 			 * In error case, we have to continue because
1579 			 * remaining pages are still locked
1580 			 */
1581 			if (ret == 0)
1582 				ret = err;
1583 		}
1584 		pagevec_release(&pvec);
1585 	}
1586 	ext4_io_submit(&io_submit);
1587 	return ret;
1588 }
1589 
1590 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1591 {
1592 	int nr_pages, i;
1593 	pgoff_t index, end;
1594 	struct pagevec pvec;
1595 	struct inode *inode = mpd->inode;
1596 	struct address_space *mapping = inode->i_mapping;
1597 	ext4_lblk_t start, last;
1598 
1599 	index = mpd->first_page;
1600 	end   = mpd->next_page - 1;
1601 
1602 	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1603 	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1604 	ext4_es_remove_extent(inode, start, last - start + 1);
1605 
1606 	pagevec_init(&pvec, 0);
1607 	while (index <= end) {
1608 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1609 		if (nr_pages == 0)
1610 			break;
1611 		for (i = 0; i < nr_pages; i++) {
1612 			struct page *page = pvec.pages[i];
1613 			if (page->index > end)
1614 				break;
1615 			BUG_ON(!PageLocked(page));
1616 			BUG_ON(PageWriteback(page));
1617 			block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1618 			ClearPageUptodate(page);
1619 			unlock_page(page);
1620 		}
1621 		index = pvec.pages[nr_pages - 1]->index + 1;
1622 		pagevec_release(&pvec);
1623 	}
1624 	return;
1625 }
1626 
1627 static void ext4_print_free_blocks(struct inode *inode)
1628 {
1629 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1630 	struct super_block *sb = inode->i_sb;
1631 	struct ext4_inode_info *ei = EXT4_I(inode);
1632 
1633 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1634 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1635 			ext4_count_free_clusters(sb)));
1636 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1637 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1638 	       (long long) EXT4_C2B(EXT4_SB(sb),
1639 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1640 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1641 	       (long long) EXT4_C2B(EXT4_SB(sb),
1642 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1643 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1644 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1645 		 ei->i_reserved_data_blocks);
1646 	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1647 	       ei->i_reserved_meta_blocks);
1648 	ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1649 	       ei->i_allocated_meta_blocks);
1650 	return;
1651 }
1652 
1653 /*
1654  * mpage_da_map_and_submit - go through given space, map them
1655  *       if necessary, and then submit them for I/O
1656  *
1657  * @mpd - bh describing space
1658  *
1659  * The function skips space we know is already mapped to disk blocks.
1660  *
1661  */
1662 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1663 {
1664 	int err, blks, get_blocks_flags;
1665 	struct ext4_map_blocks map, *mapp = NULL;
1666 	sector_t next = mpd->b_blocknr;
1667 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1668 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1669 	handle_t *handle = NULL;
1670 
1671 	/*
1672 	 * If the blocks are mapped already, or we couldn't accumulate
1673 	 * any blocks, then proceed immediately to the submission stage.
1674 	 */
1675 	if ((mpd->b_size == 0) ||
1676 	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1677 	     !(mpd->b_state & (1 << BH_Delay)) &&
1678 	     !(mpd->b_state & (1 << BH_Unwritten))))
1679 		goto submit_io;
1680 
1681 	handle = ext4_journal_current_handle();
1682 	BUG_ON(!handle);
1683 
1684 	/*
1685 	 * Call ext4_map_blocks() to allocate any delayed allocation
1686 	 * blocks, or to convert an uninitialized extent to be
1687 	 * initialized (in the case where we have written into
1688 	 * one or more preallocated blocks).
1689 	 *
1690 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1691 	 * indicate that we are on the delayed allocation path.  This
1692 	 * affects functions in many different parts of the allocation
1693 	 * call path.  This flag exists primarily because we don't
1694 	 * want to change *many* call functions, so ext4_map_blocks()
1695 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1696 	 * inode's allocation semaphore is taken.
1697 	 *
1698 	 * If the blocks in questions were delalloc blocks, set
1699 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1700 	 * variables are updated after the blocks have been allocated.
1701 	 */
1702 	map.m_lblk = next;
1703 	map.m_len = max_blocks;
1704 	/*
1705 	 * We're in delalloc path and it is possible that we're going to
1706 	 * need more metadata blocks than previously reserved. However
1707 	 * we must not fail because we're in writeback and there is
1708 	 * nothing we can do about it so it might result in data loss.
1709 	 * So use reserved blocks to allocate metadata if possible.
1710 	 */
1711 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1712 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
1713 	if (ext4_should_dioread_nolock(mpd->inode))
1714 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1715 	if (mpd->b_state & (1 << BH_Delay))
1716 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1717 
1718 
1719 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1720 	if (blks < 0) {
1721 		struct super_block *sb = mpd->inode->i_sb;
1722 
1723 		err = blks;
1724 		/*
1725 		 * If get block returns EAGAIN or ENOSPC and there
1726 		 * appears to be free blocks we will just let
1727 		 * mpage_da_submit_io() unlock all of the pages.
1728 		 */
1729 		if (err == -EAGAIN)
1730 			goto submit_io;
1731 
1732 		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1733 			mpd->retval = err;
1734 			goto submit_io;
1735 		}
1736 
1737 		/*
1738 		 * get block failure will cause us to loop in
1739 		 * writepages, because a_ops->writepage won't be able
1740 		 * to make progress. The page will be redirtied by
1741 		 * writepage and writepages will again try to write
1742 		 * the same.
1743 		 */
1744 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1745 			ext4_msg(sb, KERN_CRIT,
1746 				 "delayed block allocation failed for inode %lu "
1747 				 "at logical offset %llu with max blocks %zd "
1748 				 "with error %d", mpd->inode->i_ino,
1749 				 (unsigned long long) next,
1750 				 mpd->b_size >> mpd->inode->i_blkbits, err);
1751 			ext4_msg(sb, KERN_CRIT,
1752 				"This should not happen!! Data will be lost");
1753 			if (err == -ENOSPC)
1754 				ext4_print_free_blocks(mpd->inode);
1755 		}
1756 		/* invalidate all the pages */
1757 		ext4_da_block_invalidatepages(mpd);
1758 
1759 		/* Mark this page range as having been completed */
1760 		mpd->io_done = 1;
1761 		return;
1762 	}
1763 	BUG_ON(blks == 0);
1764 
1765 	mapp = &map;
1766 	if (map.m_flags & EXT4_MAP_NEW) {
1767 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1768 		int i;
1769 
1770 		for (i = 0; i < map.m_len; i++)
1771 			unmap_underlying_metadata(bdev, map.m_pblk + i);
1772 	}
1773 
1774 	/*
1775 	 * Update on-disk size along with block allocation.
1776 	 */
1777 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1778 	if (disksize > i_size_read(mpd->inode))
1779 		disksize = i_size_read(mpd->inode);
1780 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1781 		ext4_update_i_disksize(mpd->inode, disksize);
1782 		err = ext4_mark_inode_dirty(handle, mpd->inode);
1783 		if (err)
1784 			ext4_error(mpd->inode->i_sb,
1785 				   "Failed to mark inode %lu dirty",
1786 				   mpd->inode->i_ino);
1787 	}
1788 
1789 submit_io:
1790 	mpage_da_submit_io(mpd, mapp);
1791 	mpd->io_done = 1;
1792 }
1793 
1794 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1795 		(1 << BH_Delay) | (1 << BH_Unwritten))
1796 
1797 /*
1798  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1799  *
1800  * @mpd->lbh - extent of blocks
1801  * @logical - logical number of the block in the file
1802  * @b_state - b_state of the buffer head added
1803  *
1804  * the function is used to collect contig. blocks in same state
1805  */
1806 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1807 				   unsigned long b_state)
1808 {
1809 	sector_t next;
1810 	int blkbits = mpd->inode->i_blkbits;
1811 	int nrblocks = mpd->b_size >> blkbits;
1812 
1813 	/*
1814 	 * XXX Don't go larger than mballoc is willing to allocate
1815 	 * This is a stopgap solution.  We eventually need to fold
1816 	 * mpage_da_submit_io() into this function and then call
1817 	 * ext4_map_blocks() multiple times in a loop
1818 	 */
1819 	if (nrblocks >= (8*1024*1024 >> blkbits))
1820 		goto flush_it;
1821 
1822 	/* check if the reserved journal credits might overflow */
1823 	if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1824 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1825 			/*
1826 			 * With non-extent format we are limited by the journal
1827 			 * credit available.  Total credit needed to insert
1828 			 * nrblocks contiguous blocks is dependent on the
1829 			 * nrblocks.  So limit nrblocks.
1830 			 */
1831 			goto flush_it;
1832 		}
1833 	}
1834 	/*
1835 	 * First block in the extent
1836 	 */
1837 	if (mpd->b_size == 0) {
1838 		mpd->b_blocknr = logical;
1839 		mpd->b_size = 1 << blkbits;
1840 		mpd->b_state = b_state & BH_FLAGS;
1841 		return;
1842 	}
1843 
1844 	next = mpd->b_blocknr + nrblocks;
1845 	/*
1846 	 * Can we merge the block to our big extent?
1847 	 */
1848 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1849 		mpd->b_size += 1 << blkbits;
1850 		return;
1851 	}
1852 
1853 flush_it:
1854 	/*
1855 	 * We couldn't merge the block to our extent, so we
1856 	 * need to flush current  extent and start new one
1857 	 */
1858 	mpage_da_map_and_submit(mpd);
1859 	return;
1860 }
1861 
1862 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1863 {
1864 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1865 }
1866 
1867 /*
1868  * This function is grabs code from the very beginning of
1869  * ext4_map_blocks, but assumes that the caller is from delayed write
1870  * time. This function looks up the requested blocks and sets the
1871  * buffer delay bit under the protection of i_data_sem.
1872  */
1873 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1874 			      struct ext4_map_blocks *map,
1875 			      struct buffer_head *bh)
1876 {
1877 	struct extent_status es;
1878 	int retval;
1879 	sector_t invalid_block = ~((sector_t) 0xffff);
1880 #ifdef ES_AGGRESSIVE_TEST
1881 	struct ext4_map_blocks orig_map;
1882 
1883 	memcpy(&orig_map, map, sizeof(*map));
1884 #endif
1885 
1886 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1887 		invalid_block = ~0;
1888 
1889 	map->m_flags = 0;
1890 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1891 		  "logical block %lu\n", inode->i_ino, map->m_len,
1892 		  (unsigned long) map->m_lblk);
1893 
1894 	/* Lookup extent status tree firstly */
1895 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1896 
1897 		if (ext4_es_is_hole(&es)) {
1898 			retval = 0;
1899 			down_read((&EXT4_I(inode)->i_data_sem));
1900 			goto add_delayed;
1901 		}
1902 
1903 		/*
1904 		 * Delayed extent could be allocated by fallocate.
1905 		 * So we need to check it.
1906 		 */
1907 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1908 			map_bh(bh, inode->i_sb, invalid_block);
1909 			set_buffer_new(bh);
1910 			set_buffer_delay(bh);
1911 			return 0;
1912 		}
1913 
1914 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1915 		retval = es.es_len - (iblock - es.es_lblk);
1916 		if (retval > map->m_len)
1917 			retval = map->m_len;
1918 		map->m_len = retval;
1919 		if (ext4_es_is_written(&es))
1920 			map->m_flags |= EXT4_MAP_MAPPED;
1921 		else if (ext4_es_is_unwritten(&es))
1922 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1923 		else
1924 			BUG_ON(1);
1925 
1926 #ifdef ES_AGGRESSIVE_TEST
1927 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1928 #endif
1929 		return retval;
1930 	}
1931 
1932 	/*
1933 	 * Try to see if we can get the block without requesting a new
1934 	 * file system block.
1935 	 */
1936 	down_read((&EXT4_I(inode)->i_data_sem));
1937 	if (ext4_has_inline_data(inode)) {
1938 		/*
1939 		 * We will soon create blocks for this page, and let
1940 		 * us pretend as if the blocks aren't allocated yet.
1941 		 * In case of clusters, we have to handle the work
1942 		 * of mapping from cluster so that the reserved space
1943 		 * is calculated properly.
1944 		 */
1945 		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1946 		    ext4_find_delalloc_cluster(inode, map->m_lblk))
1947 			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1948 		retval = 0;
1949 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1950 		retval = ext4_ext_map_blocks(NULL, inode, map,
1951 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1952 	else
1953 		retval = ext4_ind_map_blocks(NULL, inode, map,
1954 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1955 
1956 add_delayed:
1957 	if (retval == 0) {
1958 		int ret;
1959 		/*
1960 		 * XXX: __block_prepare_write() unmaps passed block,
1961 		 * is it OK?
1962 		 */
1963 		/*
1964 		 * If the block was allocated from previously allocated cluster,
1965 		 * then we don't need to reserve it again. However we still need
1966 		 * to reserve metadata for every block we're going to write.
1967 		 */
1968 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1969 			ret = ext4_da_reserve_space(inode, iblock);
1970 			if (ret) {
1971 				/* not enough space to reserve */
1972 				retval = ret;
1973 				goto out_unlock;
1974 			}
1975 		} else {
1976 			ret = ext4_da_reserve_metadata(inode, iblock);
1977 			if (ret) {
1978 				/* not enough space to reserve */
1979 				retval = ret;
1980 				goto out_unlock;
1981 			}
1982 		}
1983 
1984 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1985 					    ~0, EXTENT_STATUS_DELAYED);
1986 		if (ret) {
1987 			retval = ret;
1988 			goto out_unlock;
1989 		}
1990 
1991 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1992 		 * and it should not appear on the bh->b_state.
1993 		 */
1994 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1995 
1996 		map_bh(bh, inode->i_sb, invalid_block);
1997 		set_buffer_new(bh);
1998 		set_buffer_delay(bh);
1999 	} else if (retval > 0) {
2000 		int ret;
2001 		unsigned long long status;
2002 
2003 #ifdef ES_AGGRESSIVE_TEST
2004 		if (retval != map->m_len) {
2005 			printk("ES len assertation failed for inode: %lu "
2006 			       "retval %d != map->m_len %d "
2007 			       "in %s (lookup)\n", inode->i_ino, retval,
2008 			       map->m_len, __func__);
2009 		}
2010 #endif
2011 
2012 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2013 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2014 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2015 					    map->m_pblk, status);
2016 		if (ret != 0)
2017 			retval = ret;
2018 	}
2019 
2020 out_unlock:
2021 	up_read((&EXT4_I(inode)->i_data_sem));
2022 
2023 	return retval;
2024 }
2025 
2026 /*
2027  * This is a special get_blocks_t callback which is used by
2028  * ext4_da_write_begin().  It will either return mapped block or
2029  * reserve space for a single block.
2030  *
2031  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2032  * We also have b_blocknr = -1 and b_bdev initialized properly
2033  *
2034  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2035  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2036  * initialized properly.
2037  */
2038 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2039 			   struct buffer_head *bh, int create)
2040 {
2041 	struct ext4_map_blocks map;
2042 	int ret = 0;
2043 
2044 	BUG_ON(create == 0);
2045 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2046 
2047 	map.m_lblk = iblock;
2048 	map.m_len = 1;
2049 
2050 	/*
2051 	 * first, we need to know whether the block is allocated already
2052 	 * preallocated blocks are unmapped but should treated
2053 	 * the same as allocated blocks.
2054 	 */
2055 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2056 	if (ret <= 0)
2057 		return ret;
2058 
2059 	map_bh(bh, inode->i_sb, map.m_pblk);
2060 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2061 
2062 	if (buffer_unwritten(bh)) {
2063 		/* A delayed write to unwritten bh should be marked
2064 		 * new and mapped.  Mapped ensures that we don't do
2065 		 * get_block multiple times when we write to the same
2066 		 * offset and new ensures that we do proper zero out
2067 		 * for partial write.
2068 		 */
2069 		set_buffer_new(bh);
2070 		set_buffer_mapped(bh);
2071 	}
2072 	return 0;
2073 }
2074 
2075 static int bget_one(handle_t *handle, struct buffer_head *bh)
2076 {
2077 	get_bh(bh);
2078 	return 0;
2079 }
2080 
2081 static int bput_one(handle_t *handle, struct buffer_head *bh)
2082 {
2083 	put_bh(bh);
2084 	return 0;
2085 }
2086 
2087 static int __ext4_journalled_writepage(struct page *page,
2088 				       unsigned int len)
2089 {
2090 	struct address_space *mapping = page->mapping;
2091 	struct inode *inode = mapping->host;
2092 	struct buffer_head *page_bufs = NULL;
2093 	handle_t *handle = NULL;
2094 	int ret = 0, err = 0;
2095 	int inline_data = ext4_has_inline_data(inode);
2096 	struct buffer_head *inode_bh = NULL;
2097 
2098 	ClearPageChecked(page);
2099 
2100 	if (inline_data) {
2101 		BUG_ON(page->index != 0);
2102 		BUG_ON(len > ext4_get_max_inline_size(inode));
2103 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2104 		if (inode_bh == NULL)
2105 			goto out;
2106 	} else {
2107 		page_bufs = page_buffers(page);
2108 		if (!page_bufs) {
2109 			BUG();
2110 			goto out;
2111 		}
2112 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2113 				       NULL, bget_one);
2114 	}
2115 	/* As soon as we unlock the page, it can go away, but we have
2116 	 * references to buffers so we are safe */
2117 	unlock_page(page);
2118 
2119 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2120 				    ext4_writepage_trans_blocks(inode));
2121 	if (IS_ERR(handle)) {
2122 		ret = PTR_ERR(handle);
2123 		goto out;
2124 	}
2125 
2126 	BUG_ON(!ext4_handle_valid(handle));
2127 
2128 	if (inline_data) {
2129 		ret = ext4_journal_get_write_access(handle, inode_bh);
2130 
2131 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2132 
2133 	} else {
2134 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2135 					     do_journal_get_write_access);
2136 
2137 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2138 					     write_end_fn);
2139 	}
2140 	if (ret == 0)
2141 		ret = err;
2142 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2143 	err = ext4_journal_stop(handle);
2144 	if (!ret)
2145 		ret = err;
2146 
2147 	if (!ext4_has_inline_data(inode))
2148 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2149 				       NULL, bput_one);
2150 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2151 out:
2152 	brelse(inode_bh);
2153 	return ret;
2154 }
2155 
2156 /*
2157  * Note that we don't need to start a transaction unless we're journaling data
2158  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2159  * need to file the inode to the transaction's list in ordered mode because if
2160  * we are writing back data added by write(), the inode is already there and if
2161  * we are writing back data modified via mmap(), no one guarantees in which
2162  * transaction the data will hit the disk. In case we are journaling data, we
2163  * cannot start transaction directly because transaction start ranks above page
2164  * lock so we have to do some magic.
2165  *
2166  * This function can get called via...
2167  *   - ext4_da_writepages after taking page lock (have journal handle)
2168  *   - journal_submit_inode_data_buffers (no journal handle)
2169  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2170  *   - grab_page_cache when doing write_begin (have journal handle)
2171  *
2172  * We don't do any block allocation in this function. If we have page with
2173  * multiple blocks we need to write those buffer_heads that are mapped. This
2174  * is important for mmaped based write. So if we do with blocksize 1K
2175  * truncate(f, 1024);
2176  * a = mmap(f, 0, 4096);
2177  * a[0] = 'a';
2178  * truncate(f, 4096);
2179  * we have in the page first buffer_head mapped via page_mkwrite call back
2180  * but other buffer_heads would be unmapped but dirty (dirty done via the
2181  * do_wp_page). So writepage should write the first block. If we modify
2182  * the mmap area beyond 1024 we will again get a page_fault and the
2183  * page_mkwrite callback will do the block allocation and mark the
2184  * buffer_heads mapped.
2185  *
2186  * We redirty the page if we have any buffer_heads that is either delay or
2187  * unwritten in the page.
2188  *
2189  * We can get recursively called as show below.
2190  *
2191  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2192  *		ext4_writepage()
2193  *
2194  * But since we don't do any block allocation we should not deadlock.
2195  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2196  */
2197 static int ext4_writepage(struct page *page,
2198 			  struct writeback_control *wbc)
2199 {
2200 	int ret = 0;
2201 	loff_t size;
2202 	unsigned int len;
2203 	struct buffer_head *page_bufs = NULL;
2204 	struct inode *inode = page->mapping->host;
2205 	struct ext4_io_submit io_submit;
2206 
2207 	trace_ext4_writepage(page);
2208 	size = i_size_read(inode);
2209 	if (page->index == size >> PAGE_CACHE_SHIFT)
2210 		len = size & ~PAGE_CACHE_MASK;
2211 	else
2212 		len = PAGE_CACHE_SIZE;
2213 
2214 	page_bufs = page_buffers(page);
2215 	/*
2216 	 * We cannot do block allocation or other extent handling in this
2217 	 * function. If there are buffers needing that, we have to redirty
2218 	 * the page. But we may reach here when we do a journal commit via
2219 	 * journal_submit_inode_data_buffers() and in that case we must write
2220 	 * allocated buffers to achieve data=ordered mode guarantees.
2221 	 */
2222 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2223 				   ext4_bh_delay_or_unwritten)) {
2224 		redirty_page_for_writepage(wbc, page);
2225 		if (current->flags & PF_MEMALLOC) {
2226 			/*
2227 			 * For memory cleaning there's no point in writing only
2228 			 * some buffers. So just bail out. Warn if we came here
2229 			 * from direct reclaim.
2230 			 */
2231 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2232 							== PF_MEMALLOC);
2233 			unlock_page(page);
2234 			return 0;
2235 		}
2236 	}
2237 
2238 	if (PageChecked(page) && ext4_should_journal_data(inode))
2239 		/*
2240 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2241 		 * doesn't seem much point in redirtying the page here.
2242 		 */
2243 		return __ext4_journalled_writepage(page, len);
2244 
2245 	memset(&io_submit, 0, sizeof(io_submit));
2246 	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2247 	ext4_io_submit(&io_submit);
2248 	return ret;
2249 }
2250 
2251 /*
2252  * This is called via ext4_da_writepages() to
2253  * calculate the total number of credits to reserve to fit
2254  * a single extent allocation into a single transaction,
2255  * ext4_da_writpeages() will loop calling this before
2256  * the block allocation.
2257  */
2258 
2259 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2260 {
2261 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2262 
2263 	/*
2264 	 * With non-extent format the journal credit needed to
2265 	 * insert nrblocks contiguous block is dependent on
2266 	 * number of contiguous block. So we will limit
2267 	 * number of contiguous block to a sane value
2268 	 */
2269 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2270 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2271 		max_blocks = EXT4_MAX_TRANS_DATA;
2272 
2273 	return ext4_chunk_trans_blocks(inode, max_blocks);
2274 }
2275 
2276 /*
2277  * write_cache_pages_da - walk the list of dirty pages of the given
2278  * address space and accumulate pages that need writing, and call
2279  * mpage_da_map_and_submit to map a single contiguous memory region
2280  * and then write them.
2281  */
2282 static int write_cache_pages_da(handle_t *handle,
2283 				struct address_space *mapping,
2284 				struct writeback_control *wbc,
2285 				struct mpage_da_data *mpd,
2286 				pgoff_t *done_index)
2287 {
2288 	struct buffer_head	*bh, *head;
2289 	struct inode		*inode = mapping->host;
2290 	struct pagevec		pvec;
2291 	unsigned int		nr_pages;
2292 	sector_t		logical;
2293 	pgoff_t			index, end;
2294 	long			nr_to_write = wbc->nr_to_write;
2295 	int			i, tag, ret = 0;
2296 
2297 	memset(mpd, 0, sizeof(struct mpage_da_data));
2298 	mpd->wbc = wbc;
2299 	mpd->inode = inode;
2300 	pagevec_init(&pvec, 0);
2301 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2302 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2303 
2304 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2305 		tag = PAGECACHE_TAG_TOWRITE;
2306 	else
2307 		tag = PAGECACHE_TAG_DIRTY;
2308 
2309 	*done_index = index;
2310 	while (index <= end) {
2311 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2312 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2313 		if (nr_pages == 0)
2314 			return 0;
2315 
2316 		for (i = 0; i < nr_pages; i++) {
2317 			struct page *page = pvec.pages[i];
2318 
2319 			/*
2320 			 * At this point, the page may be truncated or
2321 			 * invalidated (changing page->mapping to NULL), or
2322 			 * even swizzled back from swapper_space to tmpfs file
2323 			 * mapping. However, page->index will not change
2324 			 * because we have a reference on the page.
2325 			 */
2326 			if (page->index > end)
2327 				goto out;
2328 
2329 			*done_index = page->index + 1;
2330 
2331 			/*
2332 			 * If we can't merge this page, and we have
2333 			 * accumulated an contiguous region, write it
2334 			 */
2335 			if ((mpd->next_page != page->index) &&
2336 			    (mpd->next_page != mpd->first_page)) {
2337 				mpage_da_map_and_submit(mpd);
2338 				goto ret_extent_tail;
2339 			}
2340 
2341 			lock_page(page);
2342 
2343 			/*
2344 			 * If the page is no longer dirty, or its
2345 			 * mapping no longer corresponds to inode we
2346 			 * are writing (which means it has been
2347 			 * truncated or invalidated), or the page is
2348 			 * already under writeback and we are not
2349 			 * doing a data integrity writeback, skip the page
2350 			 */
2351 			if (!PageDirty(page) ||
2352 			    (PageWriteback(page) &&
2353 			     (wbc->sync_mode == WB_SYNC_NONE)) ||
2354 			    unlikely(page->mapping != mapping)) {
2355 				unlock_page(page);
2356 				continue;
2357 			}
2358 
2359 			wait_on_page_writeback(page);
2360 			BUG_ON(PageWriteback(page));
2361 
2362 			/*
2363 			 * If we have inline data and arrive here, it means that
2364 			 * we will soon create the block for the 1st page, so
2365 			 * we'd better clear the inline data here.
2366 			 */
2367 			if (ext4_has_inline_data(inode)) {
2368 				BUG_ON(ext4_test_inode_state(inode,
2369 						EXT4_STATE_MAY_INLINE_DATA));
2370 				ext4_destroy_inline_data(handle, inode);
2371 			}
2372 
2373 			if (mpd->next_page != page->index)
2374 				mpd->first_page = page->index;
2375 			mpd->next_page = page->index + 1;
2376 			logical = (sector_t) page->index <<
2377 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2378 
2379 			/* Add all dirty buffers to mpd */
2380 			head = page_buffers(page);
2381 			bh = head;
2382 			do {
2383 				BUG_ON(buffer_locked(bh));
2384 				/*
2385 				 * We need to try to allocate unmapped blocks
2386 				 * in the same page.  Otherwise we won't make
2387 				 * progress with the page in ext4_writepage
2388 				 */
2389 				if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2390 					mpage_add_bh_to_extent(mpd, logical,
2391 							       bh->b_state);
2392 					if (mpd->io_done)
2393 						goto ret_extent_tail;
2394 				} else if (buffer_dirty(bh) &&
2395 					   buffer_mapped(bh)) {
2396 					/*
2397 					 * mapped dirty buffer. We need to
2398 					 * update the b_state because we look
2399 					 * at b_state in mpage_da_map_blocks.
2400 					 * We don't update b_size because if we
2401 					 * find an unmapped buffer_head later
2402 					 * we need to use the b_state flag of
2403 					 * that buffer_head.
2404 					 */
2405 					if (mpd->b_size == 0)
2406 						mpd->b_state =
2407 							bh->b_state & BH_FLAGS;
2408 				}
2409 				logical++;
2410 			} while ((bh = bh->b_this_page) != head);
2411 
2412 			if (nr_to_write > 0) {
2413 				nr_to_write--;
2414 				if (nr_to_write == 0 &&
2415 				    wbc->sync_mode == WB_SYNC_NONE)
2416 					/*
2417 					 * We stop writing back only if we are
2418 					 * not doing integrity sync. In case of
2419 					 * integrity sync we have to keep going
2420 					 * because someone may be concurrently
2421 					 * dirtying pages, and we might have
2422 					 * synced a lot of newly appeared dirty
2423 					 * pages, but have not synced all of the
2424 					 * old dirty pages.
2425 					 */
2426 					goto out;
2427 			}
2428 		}
2429 		pagevec_release(&pvec);
2430 		cond_resched();
2431 	}
2432 	return 0;
2433 ret_extent_tail:
2434 	ret = MPAGE_DA_EXTENT_TAIL;
2435 out:
2436 	pagevec_release(&pvec);
2437 	cond_resched();
2438 	return ret;
2439 }
2440 
2441 
2442 static int ext4_da_writepages(struct address_space *mapping,
2443 			      struct writeback_control *wbc)
2444 {
2445 	pgoff_t	index;
2446 	int range_whole = 0;
2447 	handle_t *handle = NULL;
2448 	struct mpage_da_data mpd;
2449 	struct inode *inode = mapping->host;
2450 	int pages_written = 0;
2451 	unsigned int max_pages;
2452 	int range_cyclic, cycled = 1, io_done = 0;
2453 	int needed_blocks, ret = 0;
2454 	long desired_nr_to_write, nr_to_writebump = 0;
2455 	loff_t range_start = wbc->range_start;
2456 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2457 	pgoff_t done_index = 0;
2458 	pgoff_t end;
2459 	struct blk_plug plug;
2460 
2461 	trace_ext4_da_writepages(inode, wbc);
2462 
2463 	/*
2464 	 * No pages to write? This is mainly a kludge to avoid starting
2465 	 * a transaction for special inodes like journal inode on last iput()
2466 	 * because that could violate lock ordering on umount
2467 	 */
2468 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2469 		return 0;
2470 
2471 	/*
2472 	 * If the filesystem has aborted, it is read-only, so return
2473 	 * right away instead of dumping stack traces later on that
2474 	 * will obscure the real source of the problem.  We test
2475 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2476 	 * the latter could be true if the filesystem is mounted
2477 	 * read-only, and in that case, ext4_da_writepages should
2478 	 * *never* be called, so if that ever happens, we would want
2479 	 * the stack trace.
2480 	 */
2481 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2482 		return -EROFS;
2483 
2484 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2485 		range_whole = 1;
2486 
2487 	range_cyclic = wbc->range_cyclic;
2488 	if (wbc->range_cyclic) {
2489 		index = mapping->writeback_index;
2490 		if (index)
2491 			cycled = 0;
2492 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2493 		wbc->range_end  = LLONG_MAX;
2494 		wbc->range_cyclic = 0;
2495 		end = -1;
2496 	} else {
2497 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2498 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2499 	}
2500 
2501 	/*
2502 	 * This works around two forms of stupidity.  The first is in
2503 	 * the writeback code, which caps the maximum number of pages
2504 	 * written to be 1024 pages.  This is wrong on multiple
2505 	 * levels; different architectues have a different page size,
2506 	 * which changes the maximum amount of data which gets
2507 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2508 	 * forces this value to be 16 megabytes by multiplying
2509 	 * nr_to_write parameter by four, and then relies on its
2510 	 * allocator to allocate larger extents to make them
2511 	 * contiguous.  Unfortunately this brings us to the second
2512 	 * stupidity, which is that ext4's mballoc code only allocates
2513 	 * at most 2048 blocks.  So we force contiguous writes up to
2514 	 * the number of dirty blocks in the inode, or
2515 	 * sbi->max_writeback_mb_bump whichever is smaller.
2516 	 */
2517 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2518 	if (!range_cyclic && range_whole) {
2519 		if (wbc->nr_to_write == LONG_MAX)
2520 			desired_nr_to_write = wbc->nr_to_write;
2521 		else
2522 			desired_nr_to_write = wbc->nr_to_write * 8;
2523 	} else
2524 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2525 							   max_pages);
2526 	if (desired_nr_to_write > max_pages)
2527 		desired_nr_to_write = max_pages;
2528 
2529 	if (wbc->nr_to_write < desired_nr_to_write) {
2530 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2531 		wbc->nr_to_write = desired_nr_to_write;
2532 	}
2533 
2534 retry:
2535 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2536 		tag_pages_for_writeback(mapping, index, end);
2537 
2538 	blk_start_plug(&plug);
2539 	while (!ret && wbc->nr_to_write > 0) {
2540 
2541 		/*
2542 		 * we  insert one extent at a time. So we need
2543 		 * credit needed for single extent allocation.
2544 		 * journalled mode is currently not supported
2545 		 * by delalloc
2546 		 */
2547 		BUG_ON(ext4_should_journal_data(inode));
2548 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2549 
2550 		/* start a new transaction*/
2551 		handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2552 					    needed_blocks);
2553 		if (IS_ERR(handle)) {
2554 			ret = PTR_ERR(handle);
2555 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2556 			       "%ld pages, ino %lu; err %d", __func__,
2557 				wbc->nr_to_write, inode->i_ino, ret);
2558 			blk_finish_plug(&plug);
2559 			goto out_writepages;
2560 		}
2561 
2562 		/*
2563 		 * Now call write_cache_pages_da() to find the next
2564 		 * contiguous region of logical blocks that need
2565 		 * blocks to be allocated by ext4 and submit them.
2566 		 */
2567 		ret = write_cache_pages_da(handle, mapping,
2568 					   wbc, &mpd, &done_index);
2569 		/*
2570 		 * If we have a contiguous extent of pages and we
2571 		 * haven't done the I/O yet, map the blocks and submit
2572 		 * them for I/O.
2573 		 */
2574 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2575 			mpage_da_map_and_submit(&mpd);
2576 			ret = MPAGE_DA_EXTENT_TAIL;
2577 		}
2578 		trace_ext4_da_write_pages(inode, &mpd);
2579 		wbc->nr_to_write -= mpd.pages_written;
2580 
2581 		ext4_journal_stop(handle);
2582 
2583 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2584 			/* commit the transaction which would
2585 			 * free blocks released in the transaction
2586 			 * and try again
2587 			 */
2588 			jbd2_journal_force_commit_nested(sbi->s_journal);
2589 			ret = 0;
2590 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2591 			/*
2592 			 * Got one extent now try with rest of the pages.
2593 			 * If mpd.retval is set -EIO, journal is aborted.
2594 			 * So we don't need to write any more.
2595 			 */
2596 			pages_written += mpd.pages_written;
2597 			ret = mpd.retval;
2598 			io_done = 1;
2599 		} else if (wbc->nr_to_write)
2600 			/*
2601 			 * There is no more writeout needed
2602 			 * or we requested for a noblocking writeout
2603 			 * and we found the device congested
2604 			 */
2605 			break;
2606 	}
2607 	blk_finish_plug(&plug);
2608 	if (!io_done && !cycled) {
2609 		cycled = 1;
2610 		index = 0;
2611 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2612 		wbc->range_end  = mapping->writeback_index - 1;
2613 		goto retry;
2614 	}
2615 
2616 	/* Update index */
2617 	wbc->range_cyclic = range_cyclic;
2618 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2619 		/*
2620 		 * set the writeback_index so that range_cyclic
2621 		 * mode will write it back later
2622 		 */
2623 		mapping->writeback_index = done_index;
2624 
2625 out_writepages:
2626 	wbc->nr_to_write -= nr_to_writebump;
2627 	wbc->range_start = range_start;
2628 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2629 	return ret;
2630 }
2631 
2632 static int ext4_nonda_switch(struct super_block *sb)
2633 {
2634 	s64 free_clusters, dirty_clusters;
2635 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2636 
2637 	/*
2638 	 * switch to non delalloc mode if we are running low
2639 	 * on free block. The free block accounting via percpu
2640 	 * counters can get slightly wrong with percpu_counter_batch getting
2641 	 * accumulated on each CPU without updating global counters
2642 	 * Delalloc need an accurate free block accounting. So switch
2643 	 * to non delalloc when we are near to error range.
2644 	 */
2645 	free_clusters =
2646 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2647 	dirty_clusters =
2648 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2649 	/*
2650 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2651 	 */
2652 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2653 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2654 
2655 	if (2 * free_clusters < 3 * dirty_clusters ||
2656 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2657 		/*
2658 		 * free block count is less than 150% of dirty blocks
2659 		 * or free blocks is less than watermark
2660 		 */
2661 		return 1;
2662 	}
2663 	return 0;
2664 }
2665 
2666 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2667 			       loff_t pos, unsigned len, unsigned flags,
2668 			       struct page **pagep, void **fsdata)
2669 {
2670 	int ret, retries = 0;
2671 	struct page *page;
2672 	pgoff_t index;
2673 	struct inode *inode = mapping->host;
2674 	handle_t *handle;
2675 
2676 	index = pos >> PAGE_CACHE_SHIFT;
2677 
2678 	if (ext4_nonda_switch(inode->i_sb)) {
2679 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2680 		return ext4_write_begin(file, mapping, pos,
2681 					len, flags, pagep, fsdata);
2682 	}
2683 	*fsdata = (void *)0;
2684 	trace_ext4_da_write_begin(inode, pos, len, flags);
2685 
2686 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2687 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2688 						      pos, len, flags,
2689 						      pagep, fsdata);
2690 		if (ret < 0)
2691 			return ret;
2692 		if (ret == 1)
2693 			return 0;
2694 	}
2695 
2696 	/*
2697 	 * grab_cache_page_write_begin() can take a long time if the
2698 	 * system is thrashing due to memory pressure, or if the page
2699 	 * is being written back.  So grab it first before we start
2700 	 * the transaction handle.  This also allows us to allocate
2701 	 * the page (if needed) without using GFP_NOFS.
2702 	 */
2703 retry_grab:
2704 	page = grab_cache_page_write_begin(mapping, index, flags);
2705 	if (!page)
2706 		return -ENOMEM;
2707 	unlock_page(page);
2708 
2709 	/*
2710 	 * With delayed allocation, we don't log the i_disksize update
2711 	 * if there is delayed block allocation. But we still need
2712 	 * to journalling the i_disksize update if writes to the end
2713 	 * of file which has an already mapped buffer.
2714 	 */
2715 retry_journal:
2716 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2717 	if (IS_ERR(handle)) {
2718 		page_cache_release(page);
2719 		return PTR_ERR(handle);
2720 	}
2721 
2722 	lock_page(page);
2723 	if (page->mapping != mapping) {
2724 		/* The page got truncated from under us */
2725 		unlock_page(page);
2726 		page_cache_release(page);
2727 		ext4_journal_stop(handle);
2728 		goto retry_grab;
2729 	}
2730 	/* In case writeback began while the page was unlocked */
2731 	wait_on_page_writeback(page);
2732 
2733 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2734 	if (ret < 0) {
2735 		unlock_page(page);
2736 		ext4_journal_stop(handle);
2737 		/*
2738 		 * block_write_begin may have instantiated a few blocks
2739 		 * outside i_size.  Trim these off again. Don't need
2740 		 * i_size_read because we hold i_mutex.
2741 		 */
2742 		if (pos + len > inode->i_size)
2743 			ext4_truncate_failed_write(inode);
2744 
2745 		if (ret == -ENOSPC &&
2746 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2747 			goto retry_journal;
2748 
2749 		page_cache_release(page);
2750 		return ret;
2751 	}
2752 
2753 	*pagep = page;
2754 	return ret;
2755 }
2756 
2757 /*
2758  * Check if we should update i_disksize
2759  * when write to the end of file but not require block allocation
2760  */
2761 static int ext4_da_should_update_i_disksize(struct page *page,
2762 					    unsigned long offset)
2763 {
2764 	struct buffer_head *bh;
2765 	struct inode *inode = page->mapping->host;
2766 	unsigned int idx;
2767 	int i;
2768 
2769 	bh = page_buffers(page);
2770 	idx = offset >> inode->i_blkbits;
2771 
2772 	for (i = 0; i < idx; i++)
2773 		bh = bh->b_this_page;
2774 
2775 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2776 		return 0;
2777 	return 1;
2778 }
2779 
2780 static int ext4_da_write_end(struct file *file,
2781 			     struct address_space *mapping,
2782 			     loff_t pos, unsigned len, unsigned copied,
2783 			     struct page *page, void *fsdata)
2784 {
2785 	struct inode *inode = mapping->host;
2786 	int ret = 0, ret2;
2787 	handle_t *handle = ext4_journal_current_handle();
2788 	loff_t new_i_size;
2789 	unsigned long start, end;
2790 	int write_mode = (int)(unsigned long)fsdata;
2791 
2792 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2793 		return ext4_write_end(file, mapping, pos,
2794 				      len, copied, page, fsdata);
2795 
2796 	trace_ext4_da_write_end(inode, pos, len, copied);
2797 	start = pos & (PAGE_CACHE_SIZE - 1);
2798 	end = start + copied - 1;
2799 
2800 	/*
2801 	 * generic_write_end() will run mark_inode_dirty() if i_size
2802 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2803 	 * into that.
2804 	 */
2805 	new_i_size = pos + copied;
2806 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2807 		if (ext4_has_inline_data(inode) ||
2808 		    ext4_da_should_update_i_disksize(page, end)) {
2809 			down_write(&EXT4_I(inode)->i_data_sem);
2810 			if (new_i_size > EXT4_I(inode)->i_disksize)
2811 				EXT4_I(inode)->i_disksize = new_i_size;
2812 			up_write(&EXT4_I(inode)->i_data_sem);
2813 			/* We need to mark inode dirty even if
2814 			 * new_i_size is less that inode->i_size
2815 			 * bu greater than i_disksize.(hint delalloc)
2816 			 */
2817 			ext4_mark_inode_dirty(handle, inode);
2818 		}
2819 	}
2820 
2821 	if (write_mode != CONVERT_INLINE_DATA &&
2822 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2823 	    ext4_has_inline_data(inode))
2824 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2825 						     page);
2826 	else
2827 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2828 							page, fsdata);
2829 
2830 	copied = ret2;
2831 	if (ret2 < 0)
2832 		ret = ret2;
2833 	ret2 = ext4_journal_stop(handle);
2834 	if (!ret)
2835 		ret = ret2;
2836 
2837 	return ret ? ret : copied;
2838 }
2839 
2840 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2841 				   unsigned int length)
2842 {
2843 	/*
2844 	 * Drop reserved blocks
2845 	 */
2846 	BUG_ON(!PageLocked(page));
2847 	if (!page_has_buffers(page))
2848 		goto out;
2849 
2850 	ext4_da_page_release_reservation(page, offset, length);
2851 
2852 out:
2853 	ext4_invalidatepage(page, offset, length);
2854 
2855 	return;
2856 }
2857 
2858 /*
2859  * Force all delayed allocation blocks to be allocated for a given inode.
2860  */
2861 int ext4_alloc_da_blocks(struct inode *inode)
2862 {
2863 	trace_ext4_alloc_da_blocks(inode);
2864 
2865 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2866 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2867 		return 0;
2868 
2869 	/*
2870 	 * We do something simple for now.  The filemap_flush() will
2871 	 * also start triggering a write of the data blocks, which is
2872 	 * not strictly speaking necessary (and for users of
2873 	 * laptop_mode, not even desirable).  However, to do otherwise
2874 	 * would require replicating code paths in:
2875 	 *
2876 	 * ext4_da_writepages() ->
2877 	 *    write_cache_pages() ---> (via passed in callback function)
2878 	 *        __mpage_da_writepage() -->
2879 	 *           mpage_add_bh_to_extent()
2880 	 *           mpage_da_map_blocks()
2881 	 *
2882 	 * The problem is that write_cache_pages(), located in
2883 	 * mm/page-writeback.c, marks pages clean in preparation for
2884 	 * doing I/O, which is not desirable if we're not planning on
2885 	 * doing I/O at all.
2886 	 *
2887 	 * We could call write_cache_pages(), and then redirty all of
2888 	 * the pages by calling redirty_page_for_writepage() but that
2889 	 * would be ugly in the extreme.  So instead we would need to
2890 	 * replicate parts of the code in the above functions,
2891 	 * simplifying them because we wouldn't actually intend to
2892 	 * write out the pages, but rather only collect contiguous
2893 	 * logical block extents, call the multi-block allocator, and
2894 	 * then update the buffer heads with the block allocations.
2895 	 *
2896 	 * For now, though, we'll cheat by calling filemap_flush(),
2897 	 * which will map the blocks, and start the I/O, but not
2898 	 * actually wait for the I/O to complete.
2899 	 */
2900 	return filemap_flush(inode->i_mapping);
2901 }
2902 
2903 /*
2904  * bmap() is special.  It gets used by applications such as lilo and by
2905  * the swapper to find the on-disk block of a specific piece of data.
2906  *
2907  * Naturally, this is dangerous if the block concerned is still in the
2908  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2909  * filesystem and enables swap, then they may get a nasty shock when the
2910  * data getting swapped to that swapfile suddenly gets overwritten by
2911  * the original zero's written out previously to the journal and
2912  * awaiting writeback in the kernel's buffer cache.
2913  *
2914  * So, if we see any bmap calls here on a modified, data-journaled file,
2915  * take extra steps to flush any blocks which might be in the cache.
2916  */
2917 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2918 {
2919 	struct inode *inode = mapping->host;
2920 	journal_t *journal;
2921 	int err;
2922 
2923 	/*
2924 	 * We can get here for an inline file via the FIBMAP ioctl
2925 	 */
2926 	if (ext4_has_inline_data(inode))
2927 		return 0;
2928 
2929 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2930 			test_opt(inode->i_sb, DELALLOC)) {
2931 		/*
2932 		 * With delalloc we want to sync the file
2933 		 * so that we can make sure we allocate
2934 		 * blocks for file
2935 		 */
2936 		filemap_write_and_wait(mapping);
2937 	}
2938 
2939 	if (EXT4_JOURNAL(inode) &&
2940 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2941 		/*
2942 		 * This is a REALLY heavyweight approach, but the use of
2943 		 * bmap on dirty files is expected to be extremely rare:
2944 		 * only if we run lilo or swapon on a freshly made file
2945 		 * do we expect this to happen.
2946 		 *
2947 		 * (bmap requires CAP_SYS_RAWIO so this does not
2948 		 * represent an unprivileged user DOS attack --- we'd be
2949 		 * in trouble if mortal users could trigger this path at
2950 		 * will.)
2951 		 *
2952 		 * NB. EXT4_STATE_JDATA is not set on files other than
2953 		 * regular files.  If somebody wants to bmap a directory
2954 		 * or symlink and gets confused because the buffer
2955 		 * hasn't yet been flushed to disk, they deserve
2956 		 * everything they get.
2957 		 */
2958 
2959 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2960 		journal = EXT4_JOURNAL(inode);
2961 		jbd2_journal_lock_updates(journal);
2962 		err = jbd2_journal_flush(journal);
2963 		jbd2_journal_unlock_updates(journal);
2964 
2965 		if (err)
2966 			return 0;
2967 	}
2968 
2969 	return generic_block_bmap(mapping, block, ext4_get_block);
2970 }
2971 
2972 static int ext4_readpage(struct file *file, struct page *page)
2973 {
2974 	int ret = -EAGAIN;
2975 	struct inode *inode = page->mapping->host;
2976 
2977 	trace_ext4_readpage(page);
2978 
2979 	if (ext4_has_inline_data(inode))
2980 		ret = ext4_readpage_inline(inode, page);
2981 
2982 	if (ret == -EAGAIN)
2983 		return mpage_readpage(page, ext4_get_block);
2984 
2985 	return ret;
2986 }
2987 
2988 static int
2989 ext4_readpages(struct file *file, struct address_space *mapping,
2990 		struct list_head *pages, unsigned nr_pages)
2991 {
2992 	struct inode *inode = mapping->host;
2993 
2994 	/* If the file has inline data, no need to do readpages. */
2995 	if (ext4_has_inline_data(inode))
2996 		return 0;
2997 
2998 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2999 }
3000 
3001 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3002 				unsigned int length)
3003 {
3004 	trace_ext4_invalidatepage(page, offset, length);
3005 
3006 	/* No journalling happens on data buffers when this function is used */
3007 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3008 
3009 	block_invalidatepage(page, offset, length);
3010 }
3011 
3012 static int __ext4_journalled_invalidatepage(struct page *page,
3013 					    unsigned int offset,
3014 					    unsigned int length)
3015 {
3016 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3017 
3018 	trace_ext4_journalled_invalidatepage(page, offset, length);
3019 
3020 	/*
3021 	 * If it's a full truncate we just forget about the pending dirtying
3022 	 */
3023 	if (offset == 0 && length == PAGE_CACHE_SIZE)
3024 		ClearPageChecked(page);
3025 
3026 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3027 }
3028 
3029 /* Wrapper for aops... */
3030 static void ext4_journalled_invalidatepage(struct page *page,
3031 					   unsigned int offset,
3032 					   unsigned int length)
3033 {
3034 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3035 }
3036 
3037 static int ext4_releasepage(struct page *page, gfp_t wait)
3038 {
3039 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3040 
3041 	trace_ext4_releasepage(page);
3042 
3043 	/* Page has dirty journalled data -> cannot release */
3044 	if (PageChecked(page))
3045 		return 0;
3046 	if (journal)
3047 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3048 	else
3049 		return try_to_free_buffers(page);
3050 }
3051 
3052 /*
3053  * ext4_get_block used when preparing for a DIO write or buffer write.
3054  * We allocate an uinitialized extent if blocks haven't been allocated.
3055  * The extent will be converted to initialized after the IO is complete.
3056  */
3057 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3058 		   struct buffer_head *bh_result, int create)
3059 {
3060 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3061 		   inode->i_ino, create);
3062 	return _ext4_get_block(inode, iblock, bh_result,
3063 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3064 }
3065 
3066 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3067 		   struct buffer_head *bh_result, int create)
3068 {
3069 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3070 		   inode->i_ino, create);
3071 	return _ext4_get_block(inode, iblock, bh_result,
3072 			       EXT4_GET_BLOCKS_NO_LOCK);
3073 }
3074 
3075 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3076 			    ssize_t size, void *private, int ret,
3077 			    bool is_async)
3078 {
3079 	struct inode *inode = file_inode(iocb->ki_filp);
3080         ext4_io_end_t *io_end = iocb->private;
3081 
3082 	/* if not async direct IO or dio with 0 bytes write, just return */
3083 	if (!io_end || !size)
3084 		goto out;
3085 
3086 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3087 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3088  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3089 		  size);
3090 
3091 	iocb->private = NULL;
3092 
3093 	/* if not aio dio with unwritten extents, just free io and return */
3094 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3095 		ext4_free_io_end(io_end);
3096 out:
3097 		inode_dio_done(inode);
3098 		if (is_async)
3099 			aio_complete(iocb, ret, 0);
3100 		return;
3101 	}
3102 
3103 	io_end->offset = offset;
3104 	io_end->size = size;
3105 	if (is_async) {
3106 		io_end->iocb = iocb;
3107 		io_end->result = ret;
3108 	}
3109 
3110 	ext4_add_complete_io(io_end);
3111 }
3112 
3113 /*
3114  * For ext4 extent files, ext4 will do direct-io write to holes,
3115  * preallocated extents, and those write extend the file, no need to
3116  * fall back to buffered IO.
3117  *
3118  * For holes, we fallocate those blocks, mark them as uninitialized
3119  * If those blocks were preallocated, we mark sure they are split, but
3120  * still keep the range to write as uninitialized.
3121  *
3122  * The unwritten extents will be converted to written when DIO is completed.
3123  * For async direct IO, since the IO may still pending when return, we
3124  * set up an end_io call back function, which will do the conversion
3125  * when async direct IO completed.
3126  *
3127  * If the O_DIRECT write will extend the file then add this inode to the
3128  * orphan list.  So recovery will truncate it back to the original size
3129  * if the machine crashes during the write.
3130  *
3131  */
3132 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3133 			      const struct iovec *iov, loff_t offset,
3134 			      unsigned long nr_segs)
3135 {
3136 	struct file *file = iocb->ki_filp;
3137 	struct inode *inode = file->f_mapping->host;
3138 	ssize_t ret;
3139 	size_t count = iov_length(iov, nr_segs);
3140 	int overwrite = 0;
3141 	get_block_t *get_block_func = NULL;
3142 	int dio_flags = 0;
3143 	loff_t final_size = offset + count;
3144 
3145 	/* Use the old path for reads and writes beyond i_size. */
3146 	if (rw != WRITE || final_size > inode->i_size)
3147 		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3148 
3149 	BUG_ON(iocb->private == NULL);
3150 
3151 	/* If we do a overwrite dio, i_mutex locking can be released */
3152 	overwrite = *((int *)iocb->private);
3153 
3154 	if (overwrite) {
3155 		atomic_inc(&inode->i_dio_count);
3156 		down_read(&EXT4_I(inode)->i_data_sem);
3157 		mutex_unlock(&inode->i_mutex);
3158 	}
3159 
3160 	/*
3161 	 * We could direct write to holes and fallocate.
3162 	 *
3163 	 * Allocated blocks to fill the hole are marked as
3164 	 * uninitialized to prevent parallel buffered read to expose
3165 	 * the stale data before DIO complete the data IO.
3166 	 *
3167 	 * As to previously fallocated extents, ext4 get_block will
3168 	 * just simply mark the buffer mapped but still keep the
3169 	 * extents uninitialized.
3170 	 *
3171 	 * For non AIO case, we will convert those unwritten extents
3172 	 * to written after return back from blockdev_direct_IO.
3173 	 *
3174 	 * For async DIO, the conversion needs to be deferred when the
3175 	 * IO is completed. The ext4 end_io callback function will be
3176 	 * called to take care of the conversion work.  Here for async
3177 	 * case, we allocate an io_end structure to hook to the iocb.
3178 	 */
3179 	iocb->private = NULL;
3180 	ext4_inode_aio_set(inode, NULL);
3181 	if (!is_sync_kiocb(iocb)) {
3182 		ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3183 		if (!io_end) {
3184 			ret = -ENOMEM;
3185 			goto retake_lock;
3186 		}
3187 		io_end->flag |= EXT4_IO_END_DIRECT;
3188 		iocb->private = io_end;
3189 		/*
3190 		 * we save the io structure for current async direct
3191 		 * IO, so that later ext4_map_blocks() could flag the
3192 		 * io structure whether there is a unwritten extents
3193 		 * needs to be converted when IO is completed.
3194 		 */
3195 		ext4_inode_aio_set(inode, io_end);
3196 	}
3197 
3198 	if (overwrite) {
3199 		get_block_func = ext4_get_block_write_nolock;
3200 	} else {
3201 		get_block_func = ext4_get_block_write;
3202 		dio_flags = DIO_LOCKING;
3203 	}
3204 	ret = __blockdev_direct_IO(rw, iocb, inode,
3205 				   inode->i_sb->s_bdev, iov,
3206 				   offset, nr_segs,
3207 				   get_block_func,
3208 				   ext4_end_io_dio,
3209 				   NULL,
3210 				   dio_flags);
3211 
3212 	if (iocb->private)
3213 		ext4_inode_aio_set(inode, NULL);
3214 	/*
3215 	 * The io_end structure takes a reference to the inode, that
3216 	 * structure needs to be destroyed and the reference to the
3217 	 * inode need to be dropped, when IO is complete, even with 0
3218 	 * byte write, or failed.
3219 	 *
3220 	 * In the successful AIO DIO case, the io_end structure will
3221 	 * be destroyed and the reference to the inode will be dropped
3222 	 * after the end_io call back function is called.
3223 	 *
3224 	 * In the case there is 0 byte write, or error case, since VFS
3225 	 * direct IO won't invoke the end_io call back function, we
3226 	 * need to free the end_io structure here.
3227 	 */
3228 	if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3229 		ext4_free_io_end(iocb->private);
3230 		iocb->private = NULL;
3231 	} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3232 						EXT4_STATE_DIO_UNWRITTEN)) {
3233 		int err;
3234 		/*
3235 		 * for non AIO case, since the IO is already
3236 		 * completed, we could do the conversion right here
3237 		 */
3238 		err = ext4_convert_unwritten_extents(inode,
3239 						     offset, ret);
3240 		if (err < 0)
3241 			ret = err;
3242 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3243 	}
3244 
3245 retake_lock:
3246 	/* take i_mutex locking again if we do a ovewrite dio */
3247 	if (overwrite) {
3248 		inode_dio_done(inode);
3249 		up_read(&EXT4_I(inode)->i_data_sem);
3250 		mutex_lock(&inode->i_mutex);
3251 	}
3252 
3253 	return ret;
3254 }
3255 
3256 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3257 			      const struct iovec *iov, loff_t offset,
3258 			      unsigned long nr_segs)
3259 {
3260 	struct file *file = iocb->ki_filp;
3261 	struct inode *inode = file->f_mapping->host;
3262 	ssize_t ret;
3263 
3264 	/*
3265 	 * If we are doing data journalling we don't support O_DIRECT
3266 	 */
3267 	if (ext4_should_journal_data(inode))
3268 		return 0;
3269 
3270 	/* Let buffer I/O handle the inline data case. */
3271 	if (ext4_has_inline_data(inode))
3272 		return 0;
3273 
3274 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3275 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3276 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3277 	else
3278 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3279 	trace_ext4_direct_IO_exit(inode, offset,
3280 				iov_length(iov, nr_segs), rw, ret);
3281 	return ret;
3282 }
3283 
3284 /*
3285  * Pages can be marked dirty completely asynchronously from ext4's journalling
3286  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3287  * much here because ->set_page_dirty is called under VFS locks.  The page is
3288  * not necessarily locked.
3289  *
3290  * We cannot just dirty the page and leave attached buffers clean, because the
3291  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3292  * or jbddirty because all the journalling code will explode.
3293  *
3294  * So what we do is to mark the page "pending dirty" and next time writepage
3295  * is called, propagate that into the buffers appropriately.
3296  */
3297 static int ext4_journalled_set_page_dirty(struct page *page)
3298 {
3299 	SetPageChecked(page);
3300 	return __set_page_dirty_nobuffers(page);
3301 }
3302 
3303 static const struct address_space_operations ext4_aops = {
3304 	.readpage		= ext4_readpage,
3305 	.readpages		= ext4_readpages,
3306 	.writepage		= ext4_writepage,
3307 	.write_begin		= ext4_write_begin,
3308 	.write_end		= ext4_write_end,
3309 	.bmap			= ext4_bmap,
3310 	.invalidatepage		= ext4_invalidatepage,
3311 	.releasepage		= ext4_releasepage,
3312 	.direct_IO		= ext4_direct_IO,
3313 	.migratepage		= buffer_migrate_page,
3314 	.is_partially_uptodate  = block_is_partially_uptodate,
3315 	.error_remove_page	= generic_error_remove_page,
3316 };
3317 
3318 static const struct address_space_operations ext4_journalled_aops = {
3319 	.readpage		= ext4_readpage,
3320 	.readpages		= ext4_readpages,
3321 	.writepage		= ext4_writepage,
3322 	.write_begin		= ext4_write_begin,
3323 	.write_end		= ext4_journalled_write_end,
3324 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3325 	.bmap			= ext4_bmap,
3326 	.invalidatepage		= ext4_journalled_invalidatepage,
3327 	.releasepage		= ext4_releasepage,
3328 	.direct_IO		= ext4_direct_IO,
3329 	.is_partially_uptodate  = block_is_partially_uptodate,
3330 	.error_remove_page	= generic_error_remove_page,
3331 };
3332 
3333 static const struct address_space_operations ext4_da_aops = {
3334 	.readpage		= ext4_readpage,
3335 	.readpages		= ext4_readpages,
3336 	.writepage		= ext4_writepage,
3337 	.writepages		= ext4_da_writepages,
3338 	.write_begin		= ext4_da_write_begin,
3339 	.write_end		= ext4_da_write_end,
3340 	.bmap			= ext4_bmap,
3341 	.invalidatepage		= ext4_da_invalidatepage,
3342 	.releasepage		= ext4_releasepage,
3343 	.direct_IO		= ext4_direct_IO,
3344 	.migratepage		= buffer_migrate_page,
3345 	.is_partially_uptodate  = block_is_partially_uptodate,
3346 	.error_remove_page	= generic_error_remove_page,
3347 };
3348 
3349 void ext4_set_aops(struct inode *inode)
3350 {
3351 	switch (ext4_inode_journal_mode(inode)) {
3352 	case EXT4_INODE_ORDERED_DATA_MODE:
3353 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3354 		break;
3355 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3356 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3357 		break;
3358 	case EXT4_INODE_JOURNAL_DATA_MODE:
3359 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3360 		return;
3361 	default:
3362 		BUG();
3363 	}
3364 	if (test_opt(inode->i_sb, DELALLOC))
3365 		inode->i_mapping->a_ops = &ext4_da_aops;
3366 	else
3367 		inode->i_mapping->a_ops = &ext4_aops;
3368 }
3369 
3370 
3371 /*
3372  * ext4_discard_partial_page_buffers()
3373  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3374  * This function finds and locks the page containing the offset
3375  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3376  * Calling functions that already have the page locked should call
3377  * ext4_discard_partial_page_buffers_no_lock directly.
3378  */
3379 int ext4_discard_partial_page_buffers(handle_t *handle,
3380 		struct address_space *mapping, loff_t from,
3381 		loff_t length, int flags)
3382 {
3383 	struct inode *inode = mapping->host;
3384 	struct page *page;
3385 	int err = 0;
3386 
3387 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3388 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3389 	if (!page)
3390 		return -ENOMEM;
3391 
3392 	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3393 		from, length, flags);
3394 
3395 	unlock_page(page);
3396 	page_cache_release(page);
3397 	return err;
3398 }
3399 
3400 /*
3401  * ext4_discard_partial_page_buffers_no_lock()
3402  * Zeros a page range of length 'length' starting from offset 'from'.
3403  * Buffer heads that correspond to the block aligned regions of the
3404  * zeroed range will be unmapped.  Unblock aligned regions
3405  * will have the corresponding buffer head mapped if needed so that
3406  * that region of the page can be updated with the partial zero out.
3407  *
3408  * This function assumes that the page has already been  locked.  The
3409  * The range to be discarded must be contained with in the given page.
3410  * If the specified range exceeds the end of the page it will be shortened
3411  * to the end of the page that corresponds to 'from'.  This function is
3412  * appropriate for updating a page and it buffer heads to be unmapped and
3413  * zeroed for blocks that have been either released, or are going to be
3414  * released.
3415  *
3416  * handle: The journal handle
3417  * inode:  The files inode
3418  * page:   A locked page that contains the offset "from"
3419  * from:   The starting byte offset (from the beginning of the file)
3420  *         to begin discarding
3421  * len:    The length of bytes to discard
3422  * flags:  Optional flags that may be used:
3423  *
3424  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3425  *         Only zero the regions of the page whose buffer heads
3426  *         have already been unmapped.  This flag is appropriate
3427  *         for updating the contents of a page whose blocks may
3428  *         have already been released, and we only want to zero
3429  *         out the regions that correspond to those released blocks.
3430  *
3431  * Returns zero on success or negative on failure.
3432  */
3433 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3434 		struct inode *inode, struct page *page, loff_t from,
3435 		loff_t length, int flags)
3436 {
3437 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3438 	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3439 	unsigned int blocksize, max, pos;
3440 	ext4_lblk_t iblock;
3441 	struct buffer_head *bh;
3442 	int err = 0;
3443 
3444 	blocksize = inode->i_sb->s_blocksize;
3445 	max = PAGE_CACHE_SIZE - offset;
3446 
3447 	if (index != page->index)
3448 		return -EINVAL;
3449 
3450 	/*
3451 	 * correct length if it does not fall between
3452 	 * 'from' and the end of the page
3453 	 */
3454 	if (length > max || length < 0)
3455 		length = max;
3456 
3457 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3458 
3459 	if (!page_has_buffers(page))
3460 		create_empty_buffers(page, blocksize, 0);
3461 
3462 	/* Find the buffer that contains "offset" */
3463 	bh = page_buffers(page);
3464 	pos = blocksize;
3465 	while (offset >= pos) {
3466 		bh = bh->b_this_page;
3467 		iblock++;
3468 		pos += blocksize;
3469 	}
3470 
3471 	pos = offset;
3472 	while (pos < offset + length) {
3473 		unsigned int end_of_block, range_to_discard;
3474 
3475 		err = 0;
3476 
3477 		/* The length of space left to zero and unmap */
3478 		range_to_discard = offset + length - pos;
3479 
3480 		/* The length of space until the end of the block */
3481 		end_of_block = blocksize - (pos & (blocksize-1));
3482 
3483 		/*
3484 		 * Do not unmap or zero past end of block
3485 		 * for this buffer head
3486 		 */
3487 		if (range_to_discard > end_of_block)
3488 			range_to_discard = end_of_block;
3489 
3490 
3491 		/*
3492 		 * Skip this buffer head if we are only zeroing unampped
3493 		 * regions of the page
3494 		 */
3495 		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3496 			buffer_mapped(bh))
3497 				goto next;
3498 
3499 		/* If the range is block aligned, unmap */
3500 		if (range_to_discard == blocksize) {
3501 			clear_buffer_dirty(bh);
3502 			bh->b_bdev = NULL;
3503 			clear_buffer_mapped(bh);
3504 			clear_buffer_req(bh);
3505 			clear_buffer_new(bh);
3506 			clear_buffer_delay(bh);
3507 			clear_buffer_unwritten(bh);
3508 			clear_buffer_uptodate(bh);
3509 			zero_user(page, pos, range_to_discard);
3510 			BUFFER_TRACE(bh, "Buffer discarded");
3511 			goto next;
3512 		}
3513 
3514 		/*
3515 		 * If this block is not completely contained in the range
3516 		 * to be discarded, then it is not going to be released. Because
3517 		 * we need to keep this block, we need to make sure this part
3518 		 * of the page is uptodate before we modify it by writeing
3519 		 * partial zeros on it.
3520 		 */
3521 		if (!buffer_mapped(bh)) {
3522 			/*
3523 			 * Buffer head must be mapped before we can read
3524 			 * from the block
3525 			 */
3526 			BUFFER_TRACE(bh, "unmapped");
3527 			ext4_get_block(inode, iblock, bh, 0);
3528 			/* unmapped? It's a hole - nothing to do */
3529 			if (!buffer_mapped(bh)) {
3530 				BUFFER_TRACE(bh, "still unmapped");
3531 				goto next;
3532 			}
3533 		}
3534 
3535 		/* Ok, it's mapped. Make sure it's up-to-date */
3536 		if (PageUptodate(page))
3537 			set_buffer_uptodate(bh);
3538 
3539 		if (!buffer_uptodate(bh)) {
3540 			err = -EIO;
3541 			ll_rw_block(READ, 1, &bh);
3542 			wait_on_buffer(bh);
3543 			/* Uhhuh. Read error. Complain and punt.*/
3544 			if (!buffer_uptodate(bh))
3545 				goto next;
3546 		}
3547 
3548 		if (ext4_should_journal_data(inode)) {
3549 			BUFFER_TRACE(bh, "get write access");
3550 			err = ext4_journal_get_write_access(handle, bh);
3551 			if (err)
3552 				goto next;
3553 		}
3554 
3555 		zero_user(page, pos, range_to_discard);
3556 
3557 		err = 0;
3558 		if (ext4_should_journal_data(inode)) {
3559 			err = ext4_handle_dirty_metadata(handle, inode, bh);
3560 		} else
3561 			mark_buffer_dirty(bh);
3562 
3563 		BUFFER_TRACE(bh, "Partial buffer zeroed");
3564 next:
3565 		bh = bh->b_this_page;
3566 		iblock++;
3567 		pos += range_to_discard;
3568 	}
3569 
3570 	return err;
3571 }
3572 
3573 /*
3574  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3575  * up to the end of the block which corresponds to `from'.
3576  * This required during truncate. We need to physically zero the tail end
3577  * of that block so it doesn't yield old data if the file is later grown.
3578  */
3579 int ext4_block_truncate_page(handle_t *handle,
3580 		struct address_space *mapping, loff_t from)
3581 {
3582 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3583 	unsigned length;
3584 	unsigned blocksize;
3585 	struct inode *inode = mapping->host;
3586 
3587 	blocksize = inode->i_sb->s_blocksize;
3588 	length = blocksize - (offset & (blocksize - 1));
3589 
3590 	return ext4_block_zero_page_range(handle, mapping, from, length);
3591 }
3592 
3593 /*
3594  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3595  * starting from file offset 'from'.  The range to be zero'd must
3596  * be contained with in one block.  If the specified range exceeds
3597  * the end of the block it will be shortened to end of the block
3598  * that cooresponds to 'from'
3599  */
3600 int ext4_block_zero_page_range(handle_t *handle,
3601 		struct address_space *mapping, loff_t from, loff_t length)
3602 {
3603 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3604 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3605 	unsigned blocksize, max, pos;
3606 	ext4_lblk_t iblock;
3607 	struct inode *inode = mapping->host;
3608 	struct buffer_head *bh;
3609 	struct page *page;
3610 	int err = 0;
3611 
3612 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3613 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3614 	if (!page)
3615 		return -ENOMEM;
3616 
3617 	blocksize = inode->i_sb->s_blocksize;
3618 	max = blocksize - (offset & (blocksize - 1));
3619 
3620 	/*
3621 	 * correct length if it does not fall between
3622 	 * 'from' and the end of the block
3623 	 */
3624 	if (length > max || length < 0)
3625 		length = max;
3626 
3627 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3628 
3629 	if (!page_has_buffers(page))
3630 		create_empty_buffers(page, blocksize, 0);
3631 
3632 	/* Find the buffer that contains "offset" */
3633 	bh = page_buffers(page);
3634 	pos = blocksize;
3635 	while (offset >= pos) {
3636 		bh = bh->b_this_page;
3637 		iblock++;
3638 		pos += blocksize;
3639 	}
3640 
3641 	err = 0;
3642 	if (buffer_freed(bh)) {
3643 		BUFFER_TRACE(bh, "freed: skip");
3644 		goto unlock;
3645 	}
3646 
3647 	if (!buffer_mapped(bh)) {
3648 		BUFFER_TRACE(bh, "unmapped");
3649 		ext4_get_block(inode, iblock, bh, 0);
3650 		/* unmapped? It's a hole - nothing to do */
3651 		if (!buffer_mapped(bh)) {
3652 			BUFFER_TRACE(bh, "still unmapped");
3653 			goto unlock;
3654 		}
3655 	}
3656 
3657 	/* Ok, it's mapped. Make sure it's up-to-date */
3658 	if (PageUptodate(page))
3659 		set_buffer_uptodate(bh);
3660 
3661 	if (!buffer_uptodate(bh)) {
3662 		err = -EIO;
3663 		ll_rw_block(READ, 1, &bh);
3664 		wait_on_buffer(bh);
3665 		/* Uhhuh. Read error. Complain and punt. */
3666 		if (!buffer_uptodate(bh))
3667 			goto unlock;
3668 	}
3669 
3670 	if (ext4_should_journal_data(inode)) {
3671 		BUFFER_TRACE(bh, "get write access");
3672 		err = ext4_journal_get_write_access(handle, bh);
3673 		if (err)
3674 			goto unlock;
3675 	}
3676 
3677 	zero_user(page, offset, length);
3678 
3679 	BUFFER_TRACE(bh, "zeroed end of block");
3680 
3681 	err = 0;
3682 	if (ext4_should_journal_data(inode)) {
3683 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3684 	} else {
3685 		mark_buffer_dirty(bh);
3686 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3687 			err = ext4_jbd2_file_inode(handle, inode);
3688 	}
3689 
3690 unlock:
3691 	unlock_page(page);
3692 	page_cache_release(page);
3693 	return err;
3694 }
3695 
3696 int ext4_can_truncate(struct inode *inode)
3697 {
3698 	if (S_ISREG(inode->i_mode))
3699 		return 1;
3700 	if (S_ISDIR(inode->i_mode))
3701 		return 1;
3702 	if (S_ISLNK(inode->i_mode))
3703 		return !ext4_inode_is_fast_symlink(inode);
3704 	return 0;
3705 }
3706 
3707 /*
3708  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3709  * associated with the given offset and length
3710  *
3711  * @inode:  File inode
3712  * @offset: The offset where the hole will begin
3713  * @len:    The length of the hole
3714  *
3715  * Returns: 0 on success or negative on failure
3716  */
3717 
3718 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3719 {
3720 	struct inode *inode = file_inode(file);
3721 	struct super_block *sb = inode->i_sb;
3722 	ext4_lblk_t first_block, stop_block;
3723 	struct address_space *mapping = inode->i_mapping;
3724 	loff_t first_page, last_page, page_len;
3725 	loff_t first_page_offset, last_page_offset;
3726 	handle_t *handle;
3727 	unsigned int credits;
3728 	int ret = 0;
3729 
3730 	if (!S_ISREG(inode->i_mode))
3731 		return -EOPNOTSUPP;
3732 
3733 	if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3734 		/* TODO: Add support for bigalloc file systems */
3735 		return -EOPNOTSUPP;
3736 	}
3737 
3738 	trace_ext4_punch_hole(inode, offset, length);
3739 
3740 	/*
3741 	 * Write out all dirty pages to avoid race conditions
3742 	 * Then release them.
3743 	 */
3744 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3745 		ret = filemap_write_and_wait_range(mapping, offset,
3746 						   offset + length - 1);
3747 		if (ret)
3748 			return ret;
3749 	}
3750 
3751 	mutex_lock(&inode->i_mutex);
3752 	/* It's not possible punch hole on append only file */
3753 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3754 		ret = -EPERM;
3755 		goto out_mutex;
3756 	}
3757 	if (IS_SWAPFILE(inode)) {
3758 		ret = -ETXTBSY;
3759 		goto out_mutex;
3760 	}
3761 
3762 	/* No need to punch hole beyond i_size */
3763 	if (offset >= inode->i_size)
3764 		goto out_mutex;
3765 
3766 	/*
3767 	 * If the hole extends beyond i_size, set the hole
3768 	 * to end after the page that contains i_size
3769 	 */
3770 	if (offset + length > inode->i_size) {
3771 		length = inode->i_size +
3772 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3773 		   offset;
3774 	}
3775 
3776 	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3777 	last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3778 
3779 	first_page_offset = first_page << PAGE_CACHE_SHIFT;
3780 	last_page_offset = last_page << PAGE_CACHE_SHIFT;
3781 
3782 	/* Now release the pages */
3783 	if (last_page_offset > first_page_offset) {
3784 		truncate_pagecache_range(inode, first_page_offset,
3785 					 last_page_offset - 1);
3786 	}
3787 
3788 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3789 	ext4_inode_block_unlocked_dio(inode);
3790 	ret = ext4_flush_unwritten_io(inode);
3791 	if (ret)
3792 		goto out_dio;
3793 	inode_dio_wait(inode);
3794 
3795 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3796 		credits = ext4_writepage_trans_blocks(inode);
3797 	else
3798 		credits = ext4_blocks_for_truncate(inode);
3799 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3800 	if (IS_ERR(handle)) {
3801 		ret = PTR_ERR(handle);
3802 		ext4_std_error(sb, ret);
3803 		goto out_dio;
3804 	}
3805 
3806 	/*
3807 	 * Now we need to zero out the non-page-aligned data in the
3808 	 * pages at the start and tail of the hole, and unmap the
3809 	 * buffer heads for the block aligned regions of the page that
3810 	 * were completely zeroed.
3811 	 */
3812 	if (first_page > last_page) {
3813 		/*
3814 		 * If the file space being truncated is contained
3815 		 * within a page just zero out and unmap the middle of
3816 		 * that page
3817 		 */
3818 		ret = ext4_discard_partial_page_buffers(handle,
3819 			mapping, offset, length, 0);
3820 
3821 		if (ret)
3822 			goto out_stop;
3823 	} else {
3824 		/*
3825 		 * zero out and unmap the partial page that contains
3826 		 * the start of the hole
3827 		 */
3828 		page_len = first_page_offset - offset;
3829 		if (page_len > 0) {
3830 			ret = ext4_discard_partial_page_buffers(handle, mapping,
3831 						offset, page_len, 0);
3832 			if (ret)
3833 				goto out_stop;
3834 		}
3835 
3836 		/*
3837 		 * zero out and unmap the partial page that contains
3838 		 * the end of the hole
3839 		 */
3840 		page_len = offset + length - last_page_offset;
3841 		if (page_len > 0) {
3842 			ret = ext4_discard_partial_page_buffers(handle, mapping,
3843 					last_page_offset, page_len, 0);
3844 			if (ret)
3845 				goto out_stop;
3846 		}
3847 	}
3848 
3849 	/*
3850 	 * If i_size is contained in the last page, we need to
3851 	 * unmap and zero the partial page after i_size
3852 	 */
3853 	if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3854 	   inode->i_size % PAGE_CACHE_SIZE != 0) {
3855 		page_len = PAGE_CACHE_SIZE -
3856 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
3857 
3858 		if (page_len > 0) {
3859 			ret = ext4_discard_partial_page_buffers(handle,
3860 					mapping, inode->i_size, page_len, 0);
3861 
3862 			if (ret)
3863 				goto out_stop;
3864 		}
3865 	}
3866 
3867 	first_block = (offset + sb->s_blocksize - 1) >>
3868 		EXT4_BLOCK_SIZE_BITS(sb);
3869 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3870 
3871 	/* If there are no blocks to remove, return now */
3872 	if (first_block >= stop_block)
3873 		goto out_stop;
3874 
3875 	down_write(&EXT4_I(inode)->i_data_sem);
3876 	ext4_discard_preallocations(inode);
3877 
3878 	ret = ext4_es_remove_extent(inode, first_block,
3879 				    stop_block - first_block);
3880 	if (ret) {
3881 		up_write(&EXT4_I(inode)->i_data_sem);
3882 		goto out_stop;
3883 	}
3884 
3885 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3886 		ret = ext4_ext_remove_space(inode, first_block,
3887 					    stop_block - 1);
3888 	else
3889 		ret = ext4_free_hole_blocks(handle, inode, first_block,
3890 					    stop_block);
3891 
3892 	ext4_discard_preallocations(inode);
3893 	up_write(&EXT4_I(inode)->i_data_sem);
3894 	if (IS_SYNC(inode))
3895 		ext4_handle_sync(handle);
3896 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3897 	ext4_mark_inode_dirty(handle, inode);
3898 out_stop:
3899 	ext4_journal_stop(handle);
3900 out_dio:
3901 	ext4_inode_resume_unlocked_dio(inode);
3902 out_mutex:
3903 	mutex_unlock(&inode->i_mutex);
3904 	return ret;
3905 }
3906 
3907 /*
3908  * ext4_truncate()
3909  *
3910  * We block out ext4_get_block() block instantiations across the entire
3911  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3912  * simultaneously on behalf of the same inode.
3913  *
3914  * As we work through the truncate and commit bits of it to the journal there
3915  * is one core, guiding principle: the file's tree must always be consistent on
3916  * disk.  We must be able to restart the truncate after a crash.
3917  *
3918  * The file's tree may be transiently inconsistent in memory (although it
3919  * probably isn't), but whenever we close off and commit a journal transaction,
3920  * the contents of (the filesystem + the journal) must be consistent and
3921  * restartable.  It's pretty simple, really: bottom up, right to left (although
3922  * left-to-right works OK too).
3923  *
3924  * Note that at recovery time, journal replay occurs *before* the restart of
3925  * truncate against the orphan inode list.
3926  *
3927  * The committed inode has the new, desired i_size (which is the same as
3928  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3929  * that this inode's truncate did not complete and it will again call
3930  * ext4_truncate() to have another go.  So there will be instantiated blocks
3931  * to the right of the truncation point in a crashed ext4 filesystem.  But
3932  * that's fine - as long as they are linked from the inode, the post-crash
3933  * ext4_truncate() run will find them and release them.
3934  */
3935 void ext4_truncate(struct inode *inode)
3936 {
3937 	struct ext4_inode_info *ei = EXT4_I(inode);
3938 	unsigned int credits;
3939 	handle_t *handle;
3940 	struct address_space *mapping = inode->i_mapping;
3941 	loff_t page_len;
3942 
3943 	/*
3944 	 * There is a possibility that we're either freeing the inode
3945 	 * or it completely new indode. In those cases we might not
3946 	 * have i_mutex locked because it's not necessary.
3947 	 */
3948 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3949 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3950 	trace_ext4_truncate_enter(inode);
3951 
3952 	if (!ext4_can_truncate(inode))
3953 		return;
3954 
3955 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3956 
3957 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3958 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3959 
3960 	if (ext4_has_inline_data(inode)) {
3961 		int has_inline = 1;
3962 
3963 		ext4_inline_data_truncate(inode, &has_inline);
3964 		if (has_inline)
3965 			return;
3966 	}
3967 
3968 	/*
3969 	 * finish any pending end_io work so we won't run the risk of
3970 	 * converting any truncated blocks to initialized later
3971 	 */
3972 	ext4_flush_unwritten_io(inode);
3973 
3974 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3975 		credits = ext4_writepage_trans_blocks(inode);
3976 	else
3977 		credits = ext4_blocks_for_truncate(inode);
3978 
3979 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3980 	if (IS_ERR(handle)) {
3981 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3982 		return;
3983 	}
3984 
3985 	if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3986 		page_len = PAGE_CACHE_SIZE -
3987 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
3988 
3989 		if (ext4_discard_partial_page_buffers(handle,
3990 				mapping, inode->i_size, page_len, 0))
3991 			goto out_stop;
3992 	}
3993 
3994 	/*
3995 	 * We add the inode to the orphan list, so that if this
3996 	 * truncate spans multiple transactions, and we crash, we will
3997 	 * resume the truncate when the filesystem recovers.  It also
3998 	 * marks the inode dirty, to catch the new size.
3999 	 *
4000 	 * Implication: the file must always be in a sane, consistent
4001 	 * truncatable state while each transaction commits.
4002 	 */
4003 	if (ext4_orphan_add(handle, inode))
4004 		goto out_stop;
4005 
4006 	down_write(&EXT4_I(inode)->i_data_sem);
4007 
4008 	ext4_discard_preallocations(inode);
4009 
4010 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4011 		ext4_ext_truncate(handle, inode);
4012 	else
4013 		ext4_ind_truncate(handle, inode);
4014 
4015 	up_write(&ei->i_data_sem);
4016 
4017 	if (IS_SYNC(inode))
4018 		ext4_handle_sync(handle);
4019 
4020 out_stop:
4021 	/*
4022 	 * If this was a simple ftruncate() and the file will remain alive,
4023 	 * then we need to clear up the orphan record which we created above.
4024 	 * However, if this was a real unlink then we were called by
4025 	 * ext4_delete_inode(), and we allow that function to clean up the
4026 	 * orphan info for us.
4027 	 */
4028 	if (inode->i_nlink)
4029 		ext4_orphan_del(handle, inode);
4030 
4031 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4032 	ext4_mark_inode_dirty(handle, inode);
4033 	ext4_journal_stop(handle);
4034 
4035 	trace_ext4_truncate_exit(inode);
4036 }
4037 
4038 /*
4039  * ext4_get_inode_loc returns with an extra refcount against the inode's
4040  * underlying buffer_head on success. If 'in_mem' is true, we have all
4041  * data in memory that is needed to recreate the on-disk version of this
4042  * inode.
4043  */
4044 static int __ext4_get_inode_loc(struct inode *inode,
4045 				struct ext4_iloc *iloc, int in_mem)
4046 {
4047 	struct ext4_group_desc	*gdp;
4048 	struct buffer_head	*bh;
4049 	struct super_block	*sb = inode->i_sb;
4050 	ext4_fsblk_t		block;
4051 	int			inodes_per_block, inode_offset;
4052 
4053 	iloc->bh = NULL;
4054 	if (!ext4_valid_inum(sb, inode->i_ino))
4055 		return -EIO;
4056 
4057 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4058 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4059 	if (!gdp)
4060 		return -EIO;
4061 
4062 	/*
4063 	 * Figure out the offset within the block group inode table
4064 	 */
4065 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4066 	inode_offset = ((inode->i_ino - 1) %
4067 			EXT4_INODES_PER_GROUP(sb));
4068 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4069 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4070 
4071 	bh = sb_getblk(sb, block);
4072 	if (unlikely(!bh))
4073 		return -ENOMEM;
4074 	if (!buffer_uptodate(bh)) {
4075 		lock_buffer(bh);
4076 
4077 		/*
4078 		 * If the buffer has the write error flag, we have failed
4079 		 * to write out another inode in the same block.  In this
4080 		 * case, we don't have to read the block because we may
4081 		 * read the old inode data successfully.
4082 		 */
4083 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4084 			set_buffer_uptodate(bh);
4085 
4086 		if (buffer_uptodate(bh)) {
4087 			/* someone brought it uptodate while we waited */
4088 			unlock_buffer(bh);
4089 			goto has_buffer;
4090 		}
4091 
4092 		/*
4093 		 * If we have all information of the inode in memory and this
4094 		 * is the only valid inode in the block, we need not read the
4095 		 * block.
4096 		 */
4097 		if (in_mem) {
4098 			struct buffer_head *bitmap_bh;
4099 			int i, start;
4100 
4101 			start = inode_offset & ~(inodes_per_block - 1);
4102 
4103 			/* Is the inode bitmap in cache? */
4104 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4105 			if (unlikely(!bitmap_bh))
4106 				goto make_io;
4107 
4108 			/*
4109 			 * If the inode bitmap isn't in cache then the
4110 			 * optimisation may end up performing two reads instead
4111 			 * of one, so skip it.
4112 			 */
4113 			if (!buffer_uptodate(bitmap_bh)) {
4114 				brelse(bitmap_bh);
4115 				goto make_io;
4116 			}
4117 			for (i = start; i < start + inodes_per_block; i++) {
4118 				if (i == inode_offset)
4119 					continue;
4120 				if (ext4_test_bit(i, bitmap_bh->b_data))
4121 					break;
4122 			}
4123 			brelse(bitmap_bh);
4124 			if (i == start + inodes_per_block) {
4125 				/* all other inodes are free, so skip I/O */
4126 				memset(bh->b_data, 0, bh->b_size);
4127 				set_buffer_uptodate(bh);
4128 				unlock_buffer(bh);
4129 				goto has_buffer;
4130 			}
4131 		}
4132 
4133 make_io:
4134 		/*
4135 		 * If we need to do any I/O, try to pre-readahead extra
4136 		 * blocks from the inode table.
4137 		 */
4138 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4139 			ext4_fsblk_t b, end, table;
4140 			unsigned num;
4141 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4142 
4143 			table = ext4_inode_table(sb, gdp);
4144 			/* s_inode_readahead_blks is always a power of 2 */
4145 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4146 			if (table > b)
4147 				b = table;
4148 			end = b + ra_blks;
4149 			num = EXT4_INODES_PER_GROUP(sb);
4150 			if (ext4_has_group_desc_csum(sb))
4151 				num -= ext4_itable_unused_count(sb, gdp);
4152 			table += num / inodes_per_block;
4153 			if (end > table)
4154 				end = table;
4155 			while (b <= end)
4156 				sb_breadahead(sb, b++);
4157 		}
4158 
4159 		/*
4160 		 * There are other valid inodes in the buffer, this inode
4161 		 * has in-inode xattrs, or we don't have this inode in memory.
4162 		 * Read the block from disk.
4163 		 */
4164 		trace_ext4_load_inode(inode);
4165 		get_bh(bh);
4166 		bh->b_end_io = end_buffer_read_sync;
4167 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
4168 		wait_on_buffer(bh);
4169 		if (!buffer_uptodate(bh)) {
4170 			EXT4_ERROR_INODE_BLOCK(inode, block,
4171 					       "unable to read itable block");
4172 			brelse(bh);
4173 			return -EIO;
4174 		}
4175 	}
4176 has_buffer:
4177 	iloc->bh = bh;
4178 	return 0;
4179 }
4180 
4181 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4182 {
4183 	/* We have all inode data except xattrs in memory here. */
4184 	return __ext4_get_inode_loc(inode, iloc,
4185 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4186 }
4187 
4188 void ext4_set_inode_flags(struct inode *inode)
4189 {
4190 	unsigned int flags = EXT4_I(inode)->i_flags;
4191 
4192 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4193 	if (flags & EXT4_SYNC_FL)
4194 		inode->i_flags |= S_SYNC;
4195 	if (flags & EXT4_APPEND_FL)
4196 		inode->i_flags |= S_APPEND;
4197 	if (flags & EXT4_IMMUTABLE_FL)
4198 		inode->i_flags |= S_IMMUTABLE;
4199 	if (flags & EXT4_NOATIME_FL)
4200 		inode->i_flags |= S_NOATIME;
4201 	if (flags & EXT4_DIRSYNC_FL)
4202 		inode->i_flags |= S_DIRSYNC;
4203 }
4204 
4205 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4206 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4207 {
4208 	unsigned int vfs_fl;
4209 	unsigned long old_fl, new_fl;
4210 
4211 	do {
4212 		vfs_fl = ei->vfs_inode.i_flags;
4213 		old_fl = ei->i_flags;
4214 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4215 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4216 				EXT4_DIRSYNC_FL);
4217 		if (vfs_fl & S_SYNC)
4218 			new_fl |= EXT4_SYNC_FL;
4219 		if (vfs_fl & S_APPEND)
4220 			new_fl |= EXT4_APPEND_FL;
4221 		if (vfs_fl & S_IMMUTABLE)
4222 			new_fl |= EXT4_IMMUTABLE_FL;
4223 		if (vfs_fl & S_NOATIME)
4224 			new_fl |= EXT4_NOATIME_FL;
4225 		if (vfs_fl & S_DIRSYNC)
4226 			new_fl |= EXT4_DIRSYNC_FL;
4227 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4228 }
4229 
4230 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4231 				  struct ext4_inode_info *ei)
4232 {
4233 	blkcnt_t i_blocks ;
4234 	struct inode *inode = &(ei->vfs_inode);
4235 	struct super_block *sb = inode->i_sb;
4236 
4237 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4238 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4239 		/* we are using combined 48 bit field */
4240 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4241 					le32_to_cpu(raw_inode->i_blocks_lo);
4242 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4243 			/* i_blocks represent file system block size */
4244 			return i_blocks  << (inode->i_blkbits - 9);
4245 		} else {
4246 			return i_blocks;
4247 		}
4248 	} else {
4249 		return le32_to_cpu(raw_inode->i_blocks_lo);
4250 	}
4251 }
4252 
4253 static inline void ext4_iget_extra_inode(struct inode *inode,
4254 					 struct ext4_inode *raw_inode,
4255 					 struct ext4_inode_info *ei)
4256 {
4257 	__le32 *magic = (void *)raw_inode +
4258 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4259 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4260 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4261 		ext4_find_inline_data_nolock(inode);
4262 	} else
4263 		EXT4_I(inode)->i_inline_off = 0;
4264 }
4265 
4266 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4267 {
4268 	struct ext4_iloc iloc;
4269 	struct ext4_inode *raw_inode;
4270 	struct ext4_inode_info *ei;
4271 	struct inode *inode;
4272 	journal_t *journal = EXT4_SB(sb)->s_journal;
4273 	long ret;
4274 	int block;
4275 	uid_t i_uid;
4276 	gid_t i_gid;
4277 
4278 	inode = iget_locked(sb, ino);
4279 	if (!inode)
4280 		return ERR_PTR(-ENOMEM);
4281 	if (!(inode->i_state & I_NEW))
4282 		return inode;
4283 
4284 	ei = EXT4_I(inode);
4285 	iloc.bh = NULL;
4286 
4287 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4288 	if (ret < 0)
4289 		goto bad_inode;
4290 	raw_inode = ext4_raw_inode(&iloc);
4291 
4292 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4293 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4294 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4295 		    EXT4_INODE_SIZE(inode->i_sb)) {
4296 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4297 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4298 				EXT4_INODE_SIZE(inode->i_sb));
4299 			ret = -EIO;
4300 			goto bad_inode;
4301 		}
4302 	} else
4303 		ei->i_extra_isize = 0;
4304 
4305 	/* Precompute checksum seed for inode metadata */
4306 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4307 			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4308 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4309 		__u32 csum;
4310 		__le32 inum = cpu_to_le32(inode->i_ino);
4311 		__le32 gen = raw_inode->i_generation;
4312 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4313 				   sizeof(inum));
4314 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4315 					      sizeof(gen));
4316 	}
4317 
4318 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4319 		EXT4_ERROR_INODE(inode, "checksum invalid");
4320 		ret = -EIO;
4321 		goto bad_inode;
4322 	}
4323 
4324 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4325 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4326 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4327 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4328 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4329 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4330 	}
4331 	i_uid_write(inode, i_uid);
4332 	i_gid_write(inode, i_gid);
4333 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4334 
4335 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4336 	ei->i_inline_off = 0;
4337 	ei->i_dir_start_lookup = 0;
4338 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4339 	/* We now have enough fields to check if the inode was active or not.
4340 	 * This is needed because nfsd might try to access dead inodes
4341 	 * the test is that same one that e2fsck uses
4342 	 * NeilBrown 1999oct15
4343 	 */
4344 	if (inode->i_nlink == 0) {
4345 		if ((inode->i_mode == 0 ||
4346 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4347 		    ino != EXT4_BOOT_LOADER_INO) {
4348 			/* this inode is deleted */
4349 			ret = -ESTALE;
4350 			goto bad_inode;
4351 		}
4352 		/* The only unlinked inodes we let through here have
4353 		 * valid i_mode and are being read by the orphan
4354 		 * recovery code: that's fine, we're about to complete
4355 		 * the process of deleting those.
4356 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4357 		 * not initialized on a new filesystem. */
4358 	}
4359 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4360 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4361 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4362 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4363 		ei->i_file_acl |=
4364 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4365 	inode->i_size = ext4_isize(raw_inode);
4366 	ei->i_disksize = inode->i_size;
4367 #ifdef CONFIG_QUOTA
4368 	ei->i_reserved_quota = 0;
4369 #endif
4370 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4371 	ei->i_block_group = iloc.block_group;
4372 	ei->i_last_alloc_group = ~0;
4373 	/*
4374 	 * NOTE! The in-memory inode i_data array is in little-endian order
4375 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4376 	 */
4377 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4378 		ei->i_data[block] = raw_inode->i_block[block];
4379 	INIT_LIST_HEAD(&ei->i_orphan);
4380 
4381 	/*
4382 	 * Set transaction id's of transactions that have to be committed
4383 	 * to finish f[data]sync. We set them to currently running transaction
4384 	 * as we cannot be sure that the inode or some of its metadata isn't
4385 	 * part of the transaction - the inode could have been reclaimed and
4386 	 * now it is reread from disk.
4387 	 */
4388 	if (journal) {
4389 		transaction_t *transaction;
4390 		tid_t tid;
4391 
4392 		read_lock(&journal->j_state_lock);
4393 		if (journal->j_running_transaction)
4394 			transaction = journal->j_running_transaction;
4395 		else
4396 			transaction = journal->j_committing_transaction;
4397 		if (transaction)
4398 			tid = transaction->t_tid;
4399 		else
4400 			tid = journal->j_commit_sequence;
4401 		read_unlock(&journal->j_state_lock);
4402 		ei->i_sync_tid = tid;
4403 		ei->i_datasync_tid = tid;
4404 	}
4405 
4406 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4407 		if (ei->i_extra_isize == 0) {
4408 			/* The extra space is currently unused. Use it. */
4409 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4410 					    EXT4_GOOD_OLD_INODE_SIZE;
4411 		} else {
4412 			ext4_iget_extra_inode(inode, raw_inode, ei);
4413 		}
4414 	}
4415 
4416 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4417 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4418 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4419 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4420 
4421 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4422 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4423 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4424 			inode->i_version |=
4425 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4426 	}
4427 
4428 	ret = 0;
4429 	if (ei->i_file_acl &&
4430 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4431 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4432 				 ei->i_file_acl);
4433 		ret = -EIO;
4434 		goto bad_inode;
4435 	} else if (!ext4_has_inline_data(inode)) {
4436 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4437 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4438 			    (S_ISLNK(inode->i_mode) &&
4439 			     !ext4_inode_is_fast_symlink(inode))))
4440 				/* Validate extent which is part of inode */
4441 				ret = ext4_ext_check_inode(inode);
4442 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4443 			   (S_ISLNK(inode->i_mode) &&
4444 			    !ext4_inode_is_fast_symlink(inode))) {
4445 			/* Validate block references which are part of inode */
4446 			ret = ext4_ind_check_inode(inode);
4447 		}
4448 	}
4449 	if (ret)
4450 		goto bad_inode;
4451 
4452 	if (S_ISREG(inode->i_mode)) {
4453 		inode->i_op = &ext4_file_inode_operations;
4454 		inode->i_fop = &ext4_file_operations;
4455 		ext4_set_aops(inode);
4456 	} else if (S_ISDIR(inode->i_mode)) {
4457 		inode->i_op = &ext4_dir_inode_operations;
4458 		inode->i_fop = &ext4_dir_operations;
4459 	} else if (S_ISLNK(inode->i_mode)) {
4460 		if (ext4_inode_is_fast_symlink(inode)) {
4461 			inode->i_op = &ext4_fast_symlink_inode_operations;
4462 			nd_terminate_link(ei->i_data, inode->i_size,
4463 				sizeof(ei->i_data) - 1);
4464 		} else {
4465 			inode->i_op = &ext4_symlink_inode_operations;
4466 			ext4_set_aops(inode);
4467 		}
4468 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4469 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4470 		inode->i_op = &ext4_special_inode_operations;
4471 		if (raw_inode->i_block[0])
4472 			init_special_inode(inode, inode->i_mode,
4473 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4474 		else
4475 			init_special_inode(inode, inode->i_mode,
4476 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4477 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4478 		make_bad_inode(inode);
4479 	} else {
4480 		ret = -EIO;
4481 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4482 		goto bad_inode;
4483 	}
4484 	brelse(iloc.bh);
4485 	ext4_set_inode_flags(inode);
4486 	unlock_new_inode(inode);
4487 	return inode;
4488 
4489 bad_inode:
4490 	brelse(iloc.bh);
4491 	iget_failed(inode);
4492 	return ERR_PTR(ret);
4493 }
4494 
4495 static int ext4_inode_blocks_set(handle_t *handle,
4496 				struct ext4_inode *raw_inode,
4497 				struct ext4_inode_info *ei)
4498 {
4499 	struct inode *inode = &(ei->vfs_inode);
4500 	u64 i_blocks = inode->i_blocks;
4501 	struct super_block *sb = inode->i_sb;
4502 
4503 	if (i_blocks <= ~0U) {
4504 		/*
4505 		 * i_blocks can be represented in a 32 bit variable
4506 		 * as multiple of 512 bytes
4507 		 */
4508 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4509 		raw_inode->i_blocks_high = 0;
4510 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4511 		return 0;
4512 	}
4513 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4514 		return -EFBIG;
4515 
4516 	if (i_blocks <= 0xffffffffffffULL) {
4517 		/*
4518 		 * i_blocks can be represented in a 48 bit variable
4519 		 * as multiple of 512 bytes
4520 		 */
4521 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4522 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4523 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4524 	} else {
4525 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4526 		/* i_block is stored in file system block size */
4527 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4528 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4529 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4530 	}
4531 	return 0;
4532 }
4533 
4534 /*
4535  * Post the struct inode info into an on-disk inode location in the
4536  * buffer-cache.  This gobbles the caller's reference to the
4537  * buffer_head in the inode location struct.
4538  *
4539  * The caller must have write access to iloc->bh.
4540  */
4541 static int ext4_do_update_inode(handle_t *handle,
4542 				struct inode *inode,
4543 				struct ext4_iloc *iloc)
4544 {
4545 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4546 	struct ext4_inode_info *ei = EXT4_I(inode);
4547 	struct buffer_head *bh = iloc->bh;
4548 	int err = 0, rc, block;
4549 	int need_datasync = 0;
4550 	uid_t i_uid;
4551 	gid_t i_gid;
4552 
4553 	/* For fields not not tracking in the in-memory inode,
4554 	 * initialise them to zero for new inodes. */
4555 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4556 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4557 
4558 	ext4_get_inode_flags(ei);
4559 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4560 	i_uid = i_uid_read(inode);
4561 	i_gid = i_gid_read(inode);
4562 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4563 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4564 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4565 /*
4566  * Fix up interoperability with old kernels. Otherwise, old inodes get
4567  * re-used with the upper 16 bits of the uid/gid intact
4568  */
4569 		if (!ei->i_dtime) {
4570 			raw_inode->i_uid_high =
4571 				cpu_to_le16(high_16_bits(i_uid));
4572 			raw_inode->i_gid_high =
4573 				cpu_to_le16(high_16_bits(i_gid));
4574 		} else {
4575 			raw_inode->i_uid_high = 0;
4576 			raw_inode->i_gid_high = 0;
4577 		}
4578 	} else {
4579 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4580 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4581 		raw_inode->i_uid_high = 0;
4582 		raw_inode->i_gid_high = 0;
4583 	}
4584 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4585 
4586 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4587 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4588 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4589 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4590 
4591 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4592 		goto out_brelse;
4593 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4594 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4595 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4596 	    cpu_to_le32(EXT4_OS_HURD))
4597 		raw_inode->i_file_acl_high =
4598 			cpu_to_le16(ei->i_file_acl >> 32);
4599 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4600 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4601 		ext4_isize_set(raw_inode, ei->i_disksize);
4602 		need_datasync = 1;
4603 	}
4604 	if (ei->i_disksize > 0x7fffffffULL) {
4605 		struct super_block *sb = inode->i_sb;
4606 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4607 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4608 				EXT4_SB(sb)->s_es->s_rev_level ==
4609 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4610 			/* If this is the first large file
4611 			 * created, add a flag to the superblock.
4612 			 */
4613 			err = ext4_journal_get_write_access(handle,
4614 					EXT4_SB(sb)->s_sbh);
4615 			if (err)
4616 				goto out_brelse;
4617 			ext4_update_dynamic_rev(sb);
4618 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4619 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4620 			ext4_handle_sync(handle);
4621 			err = ext4_handle_dirty_super(handle, sb);
4622 		}
4623 	}
4624 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4625 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4626 		if (old_valid_dev(inode->i_rdev)) {
4627 			raw_inode->i_block[0] =
4628 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4629 			raw_inode->i_block[1] = 0;
4630 		} else {
4631 			raw_inode->i_block[0] = 0;
4632 			raw_inode->i_block[1] =
4633 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4634 			raw_inode->i_block[2] = 0;
4635 		}
4636 	} else if (!ext4_has_inline_data(inode)) {
4637 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4638 			raw_inode->i_block[block] = ei->i_data[block];
4639 	}
4640 
4641 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4642 	if (ei->i_extra_isize) {
4643 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4644 			raw_inode->i_version_hi =
4645 			cpu_to_le32(inode->i_version >> 32);
4646 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4647 	}
4648 
4649 	ext4_inode_csum_set(inode, raw_inode, ei);
4650 
4651 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4652 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4653 	if (!err)
4654 		err = rc;
4655 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4656 
4657 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4658 out_brelse:
4659 	brelse(bh);
4660 	ext4_std_error(inode->i_sb, err);
4661 	return err;
4662 }
4663 
4664 /*
4665  * ext4_write_inode()
4666  *
4667  * We are called from a few places:
4668  *
4669  * - Within generic_file_write() for O_SYNC files.
4670  *   Here, there will be no transaction running. We wait for any running
4671  *   transaction to commit.
4672  *
4673  * - Within sys_sync(), kupdate and such.
4674  *   We wait on commit, if tol to.
4675  *
4676  * - Within prune_icache() (PF_MEMALLOC == true)
4677  *   Here we simply return.  We can't afford to block kswapd on the
4678  *   journal commit.
4679  *
4680  * In all cases it is actually safe for us to return without doing anything,
4681  * because the inode has been copied into a raw inode buffer in
4682  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4683  * knfsd.
4684  *
4685  * Note that we are absolutely dependent upon all inode dirtiers doing the
4686  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4687  * which we are interested.
4688  *
4689  * It would be a bug for them to not do this.  The code:
4690  *
4691  *	mark_inode_dirty(inode)
4692  *	stuff();
4693  *	inode->i_size = expr;
4694  *
4695  * is in error because a kswapd-driven write_inode() could occur while
4696  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4697  * will no longer be on the superblock's dirty inode list.
4698  */
4699 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4700 {
4701 	int err;
4702 
4703 	if (current->flags & PF_MEMALLOC)
4704 		return 0;
4705 
4706 	if (EXT4_SB(inode->i_sb)->s_journal) {
4707 		if (ext4_journal_current_handle()) {
4708 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4709 			dump_stack();
4710 			return -EIO;
4711 		}
4712 
4713 		if (wbc->sync_mode != WB_SYNC_ALL)
4714 			return 0;
4715 
4716 		err = ext4_force_commit(inode->i_sb);
4717 	} else {
4718 		struct ext4_iloc iloc;
4719 
4720 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4721 		if (err)
4722 			return err;
4723 		if (wbc->sync_mode == WB_SYNC_ALL)
4724 			sync_dirty_buffer(iloc.bh);
4725 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4726 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4727 					 "IO error syncing inode");
4728 			err = -EIO;
4729 		}
4730 		brelse(iloc.bh);
4731 	}
4732 	return err;
4733 }
4734 
4735 /*
4736  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4737  * buffers that are attached to a page stradding i_size and are undergoing
4738  * commit. In that case we have to wait for commit to finish and try again.
4739  */
4740 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4741 {
4742 	struct page *page;
4743 	unsigned offset;
4744 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4745 	tid_t commit_tid = 0;
4746 	int ret;
4747 
4748 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4749 	/*
4750 	 * All buffers in the last page remain valid? Then there's nothing to
4751 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4752 	 * blocksize case
4753 	 */
4754 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4755 		return;
4756 	while (1) {
4757 		page = find_lock_page(inode->i_mapping,
4758 				      inode->i_size >> PAGE_CACHE_SHIFT);
4759 		if (!page)
4760 			return;
4761 		ret = __ext4_journalled_invalidatepage(page, offset,
4762 						PAGE_CACHE_SIZE - offset);
4763 		unlock_page(page);
4764 		page_cache_release(page);
4765 		if (ret != -EBUSY)
4766 			return;
4767 		commit_tid = 0;
4768 		read_lock(&journal->j_state_lock);
4769 		if (journal->j_committing_transaction)
4770 			commit_tid = journal->j_committing_transaction->t_tid;
4771 		read_unlock(&journal->j_state_lock);
4772 		if (commit_tid)
4773 			jbd2_log_wait_commit(journal, commit_tid);
4774 	}
4775 }
4776 
4777 /*
4778  * ext4_setattr()
4779  *
4780  * Called from notify_change.
4781  *
4782  * We want to trap VFS attempts to truncate the file as soon as
4783  * possible.  In particular, we want to make sure that when the VFS
4784  * shrinks i_size, we put the inode on the orphan list and modify
4785  * i_disksize immediately, so that during the subsequent flushing of
4786  * dirty pages and freeing of disk blocks, we can guarantee that any
4787  * commit will leave the blocks being flushed in an unused state on
4788  * disk.  (On recovery, the inode will get truncated and the blocks will
4789  * be freed, so we have a strong guarantee that no future commit will
4790  * leave these blocks visible to the user.)
4791  *
4792  * Another thing we have to assure is that if we are in ordered mode
4793  * and inode is still attached to the committing transaction, we must
4794  * we start writeout of all the dirty pages which are being truncated.
4795  * This way we are sure that all the data written in the previous
4796  * transaction are already on disk (truncate waits for pages under
4797  * writeback).
4798  *
4799  * Called with inode->i_mutex down.
4800  */
4801 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4802 {
4803 	struct inode *inode = dentry->d_inode;
4804 	int error, rc = 0;
4805 	int orphan = 0;
4806 	const unsigned int ia_valid = attr->ia_valid;
4807 
4808 	error = inode_change_ok(inode, attr);
4809 	if (error)
4810 		return error;
4811 
4812 	if (is_quota_modification(inode, attr))
4813 		dquot_initialize(inode);
4814 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4815 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4816 		handle_t *handle;
4817 
4818 		/* (user+group)*(old+new) structure, inode write (sb,
4819 		 * inode block, ? - but truncate inode update has it) */
4820 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4821 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4822 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4823 		if (IS_ERR(handle)) {
4824 			error = PTR_ERR(handle);
4825 			goto err_out;
4826 		}
4827 		error = dquot_transfer(inode, attr);
4828 		if (error) {
4829 			ext4_journal_stop(handle);
4830 			return error;
4831 		}
4832 		/* Update corresponding info in inode so that everything is in
4833 		 * one transaction */
4834 		if (attr->ia_valid & ATTR_UID)
4835 			inode->i_uid = attr->ia_uid;
4836 		if (attr->ia_valid & ATTR_GID)
4837 			inode->i_gid = attr->ia_gid;
4838 		error = ext4_mark_inode_dirty(handle, inode);
4839 		ext4_journal_stop(handle);
4840 	}
4841 
4842 	if (attr->ia_valid & ATTR_SIZE) {
4843 
4844 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4845 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4846 
4847 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4848 				return -EFBIG;
4849 		}
4850 	}
4851 
4852 	if (S_ISREG(inode->i_mode) &&
4853 	    attr->ia_valid & ATTR_SIZE &&
4854 	    (attr->ia_size < inode->i_size)) {
4855 		handle_t *handle;
4856 
4857 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4858 		if (IS_ERR(handle)) {
4859 			error = PTR_ERR(handle);
4860 			goto err_out;
4861 		}
4862 		if (ext4_handle_valid(handle)) {
4863 			error = ext4_orphan_add(handle, inode);
4864 			orphan = 1;
4865 		}
4866 		EXT4_I(inode)->i_disksize = attr->ia_size;
4867 		rc = ext4_mark_inode_dirty(handle, inode);
4868 		if (!error)
4869 			error = rc;
4870 		ext4_journal_stop(handle);
4871 
4872 		if (ext4_should_order_data(inode)) {
4873 			error = ext4_begin_ordered_truncate(inode,
4874 							    attr->ia_size);
4875 			if (error) {
4876 				/* Do as much error cleanup as possible */
4877 				handle = ext4_journal_start(inode,
4878 							    EXT4_HT_INODE, 3);
4879 				if (IS_ERR(handle)) {
4880 					ext4_orphan_del(NULL, inode);
4881 					goto err_out;
4882 				}
4883 				ext4_orphan_del(handle, inode);
4884 				orphan = 0;
4885 				ext4_journal_stop(handle);
4886 				goto err_out;
4887 			}
4888 		}
4889 	}
4890 
4891 	if (attr->ia_valid & ATTR_SIZE) {
4892 		if (attr->ia_size != inode->i_size) {
4893 			loff_t oldsize = inode->i_size;
4894 
4895 			i_size_write(inode, attr->ia_size);
4896 			/*
4897 			 * Blocks are going to be removed from the inode. Wait
4898 			 * for dio in flight.  Temporarily disable
4899 			 * dioread_nolock to prevent livelock.
4900 			 */
4901 			if (orphan) {
4902 				if (!ext4_should_journal_data(inode)) {
4903 					ext4_inode_block_unlocked_dio(inode);
4904 					inode_dio_wait(inode);
4905 					ext4_inode_resume_unlocked_dio(inode);
4906 				} else
4907 					ext4_wait_for_tail_page_commit(inode);
4908 			}
4909 			/*
4910 			 * Truncate pagecache after we've waited for commit
4911 			 * in data=journal mode to make pages freeable.
4912 			 */
4913 			truncate_pagecache(inode, oldsize, inode->i_size);
4914 		}
4915 		ext4_truncate(inode);
4916 	}
4917 
4918 	if (!rc) {
4919 		setattr_copy(inode, attr);
4920 		mark_inode_dirty(inode);
4921 	}
4922 
4923 	/*
4924 	 * If the call to ext4_truncate failed to get a transaction handle at
4925 	 * all, we need to clean up the in-core orphan list manually.
4926 	 */
4927 	if (orphan && inode->i_nlink)
4928 		ext4_orphan_del(NULL, inode);
4929 
4930 	if (!rc && (ia_valid & ATTR_MODE))
4931 		rc = ext4_acl_chmod(inode);
4932 
4933 err_out:
4934 	ext4_std_error(inode->i_sb, error);
4935 	if (!error)
4936 		error = rc;
4937 	return error;
4938 }
4939 
4940 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4941 		 struct kstat *stat)
4942 {
4943 	struct inode *inode;
4944 	unsigned long delalloc_blocks;
4945 
4946 	inode = dentry->d_inode;
4947 	generic_fillattr(inode, stat);
4948 
4949 	/*
4950 	 * We can't update i_blocks if the block allocation is delayed
4951 	 * otherwise in the case of system crash before the real block
4952 	 * allocation is done, we will have i_blocks inconsistent with
4953 	 * on-disk file blocks.
4954 	 * We always keep i_blocks updated together with real
4955 	 * allocation. But to not confuse with user, stat
4956 	 * will return the blocks that include the delayed allocation
4957 	 * blocks for this file.
4958 	 */
4959 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4960 				EXT4_I(inode)->i_reserved_data_blocks);
4961 
4962 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4963 	return 0;
4964 }
4965 
4966 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4967 {
4968 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4969 		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4970 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4971 }
4972 
4973 /*
4974  * Account for index blocks, block groups bitmaps and block group
4975  * descriptor blocks if modify datablocks and index blocks
4976  * worse case, the indexs blocks spread over different block groups
4977  *
4978  * If datablocks are discontiguous, they are possible to spread over
4979  * different block groups too. If they are contiguous, with flexbg,
4980  * they could still across block group boundary.
4981  *
4982  * Also account for superblock, inode, quota and xattr blocks
4983  */
4984 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4985 {
4986 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4987 	int gdpblocks;
4988 	int idxblocks;
4989 	int ret = 0;
4990 
4991 	/*
4992 	 * How many index blocks need to touch to modify nrblocks?
4993 	 * The "Chunk" flag indicating whether the nrblocks is
4994 	 * physically contiguous on disk
4995 	 *
4996 	 * For Direct IO and fallocate, they calls get_block to allocate
4997 	 * one single extent at a time, so they could set the "Chunk" flag
4998 	 */
4999 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5000 
5001 	ret = idxblocks;
5002 
5003 	/*
5004 	 * Now let's see how many group bitmaps and group descriptors need
5005 	 * to account
5006 	 */
5007 	groups = idxblocks;
5008 	if (chunk)
5009 		groups += 1;
5010 	else
5011 		groups += nrblocks;
5012 
5013 	gdpblocks = groups;
5014 	if (groups > ngroups)
5015 		groups = ngroups;
5016 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5017 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5018 
5019 	/* bitmaps and block group descriptor blocks */
5020 	ret += groups + gdpblocks;
5021 
5022 	/* Blocks for super block, inode, quota and xattr blocks */
5023 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5024 
5025 	return ret;
5026 }
5027 
5028 /*
5029  * Calculate the total number of credits to reserve to fit
5030  * the modification of a single pages into a single transaction,
5031  * which may include multiple chunks of block allocations.
5032  *
5033  * This could be called via ext4_write_begin()
5034  *
5035  * We need to consider the worse case, when
5036  * one new block per extent.
5037  */
5038 int ext4_writepage_trans_blocks(struct inode *inode)
5039 {
5040 	int bpp = ext4_journal_blocks_per_page(inode);
5041 	int ret;
5042 
5043 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
5044 
5045 	/* Account for data blocks for journalled mode */
5046 	if (ext4_should_journal_data(inode))
5047 		ret += bpp;
5048 	return ret;
5049 }
5050 
5051 /*
5052  * Calculate the journal credits for a chunk of data modification.
5053  *
5054  * This is called from DIO, fallocate or whoever calling
5055  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5056  *
5057  * journal buffers for data blocks are not included here, as DIO
5058  * and fallocate do no need to journal data buffers.
5059  */
5060 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5061 {
5062 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5063 }
5064 
5065 /*
5066  * The caller must have previously called ext4_reserve_inode_write().
5067  * Give this, we know that the caller already has write access to iloc->bh.
5068  */
5069 int ext4_mark_iloc_dirty(handle_t *handle,
5070 			 struct inode *inode, struct ext4_iloc *iloc)
5071 {
5072 	int err = 0;
5073 
5074 	if (IS_I_VERSION(inode))
5075 		inode_inc_iversion(inode);
5076 
5077 	/* the do_update_inode consumes one bh->b_count */
5078 	get_bh(iloc->bh);
5079 
5080 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5081 	err = ext4_do_update_inode(handle, inode, iloc);
5082 	put_bh(iloc->bh);
5083 	return err;
5084 }
5085 
5086 /*
5087  * On success, We end up with an outstanding reference count against
5088  * iloc->bh.  This _must_ be cleaned up later.
5089  */
5090 
5091 int
5092 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5093 			 struct ext4_iloc *iloc)
5094 {
5095 	int err;
5096 
5097 	err = ext4_get_inode_loc(inode, iloc);
5098 	if (!err) {
5099 		BUFFER_TRACE(iloc->bh, "get_write_access");
5100 		err = ext4_journal_get_write_access(handle, iloc->bh);
5101 		if (err) {
5102 			brelse(iloc->bh);
5103 			iloc->bh = NULL;
5104 		}
5105 	}
5106 	ext4_std_error(inode->i_sb, err);
5107 	return err;
5108 }
5109 
5110 /*
5111  * Expand an inode by new_extra_isize bytes.
5112  * Returns 0 on success or negative error number on failure.
5113  */
5114 static int ext4_expand_extra_isize(struct inode *inode,
5115 				   unsigned int new_extra_isize,
5116 				   struct ext4_iloc iloc,
5117 				   handle_t *handle)
5118 {
5119 	struct ext4_inode *raw_inode;
5120 	struct ext4_xattr_ibody_header *header;
5121 
5122 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5123 		return 0;
5124 
5125 	raw_inode = ext4_raw_inode(&iloc);
5126 
5127 	header = IHDR(inode, raw_inode);
5128 
5129 	/* No extended attributes present */
5130 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5131 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5132 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5133 			new_extra_isize);
5134 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5135 		return 0;
5136 	}
5137 
5138 	/* try to expand with EAs present */
5139 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5140 					  raw_inode, handle);
5141 }
5142 
5143 /*
5144  * What we do here is to mark the in-core inode as clean with respect to inode
5145  * dirtiness (it may still be data-dirty).
5146  * This means that the in-core inode may be reaped by prune_icache
5147  * without having to perform any I/O.  This is a very good thing,
5148  * because *any* task may call prune_icache - even ones which
5149  * have a transaction open against a different journal.
5150  *
5151  * Is this cheating?  Not really.  Sure, we haven't written the
5152  * inode out, but prune_icache isn't a user-visible syncing function.
5153  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5154  * we start and wait on commits.
5155  */
5156 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5157 {
5158 	struct ext4_iloc iloc;
5159 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5160 	static unsigned int mnt_count;
5161 	int err, ret;
5162 
5163 	might_sleep();
5164 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5165 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5166 	if (ext4_handle_valid(handle) &&
5167 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5168 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5169 		/*
5170 		 * We need extra buffer credits since we may write into EA block
5171 		 * with this same handle. If journal_extend fails, then it will
5172 		 * only result in a minor loss of functionality for that inode.
5173 		 * If this is felt to be critical, then e2fsck should be run to
5174 		 * force a large enough s_min_extra_isize.
5175 		 */
5176 		if ((jbd2_journal_extend(handle,
5177 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5178 			ret = ext4_expand_extra_isize(inode,
5179 						      sbi->s_want_extra_isize,
5180 						      iloc, handle);
5181 			if (ret) {
5182 				ext4_set_inode_state(inode,
5183 						     EXT4_STATE_NO_EXPAND);
5184 				if (mnt_count !=
5185 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5186 					ext4_warning(inode->i_sb,
5187 					"Unable to expand inode %lu. Delete"
5188 					" some EAs or run e2fsck.",
5189 					inode->i_ino);
5190 					mnt_count =
5191 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5192 				}
5193 			}
5194 		}
5195 	}
5196 	if (!err)
5197 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5198 	return err;
5199 }
5200 
5201 /*
5202  * ext4_dirty_inode() is called from __mark_inode_dirty()
5203  *
5204  * We're really interested in the case where a file is being extended.
5205  * i_size has been changed by generic_commit_write() and we thus need
5206  * to include the updated inode in the current transaction.
5207  *
5208  * Also, dquot_alloc_block() will always dirty the inode when blocks
5209  * are allocated to the file.
5210  *
5211  * If the inode is marked synchronous, we don't honour that here - doing
5212  * so would cause a commit on atime updates, which we don't bother doing.
5213  * We handle synchronous inodes at the highest possible level.
5214  */
5215 void ext4_dirty_inode(struct inode *inode, int flags)
5216 {
5217 	handle_t *handle;
5218 
5219 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5220 	if (IS_ERR(handle))
5221 		goto out;
5222 
5223 	ext4_mark_inode_dirty(handle, inode);
5224 
5225 	ext4_journal_stop(handle);
5226 out:
5227 	return;
5228 }
5229 
5230 #if 0
5231 /*
5232  * Bind an inode's backing buffer_head into this transaction, to prevent
5233  * it from being flushed to disk early.  Unlike
5234  * ext4_reserve_inode_write, this leaves behind no bh reference and
5235  * returns no iloc structure, so the caller needs to repeat the iloc
5236  * lookup to mark the inode dirty later.
5237  */
5238 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5239 {
5240 	struct ext4_iloc iloc;
5241 
5242 	int err = 0;
5243 	if (handle) {
5244 		err = ext4_get_inode_loc(inode, &iloc);
5245 		if (!err) {
5246 			BUFFER_TRACE(iloc.bh, "get_write_access");
5247 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5248 			if (!err)
5249 				err = ext4_handle_dirty_metadata(handle,
5250 								 NULL,
5251 								 iloc.bh);
5252 			brelse(iloc.bh);
5253 		}
5254 	}
5255 	ext4_std_error(inode->i_sb, err);
5256 	return err;
5257 }
5258 #endif
5259 
5260 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5261 {
5262 	journal_t *journal;
5263 	handle_t *handle;
5264 	int err;
5265 
5266 	/*
5267 	 * We have to be very careful here: changing a data block's
5268 	 * journaling status dynamically is dangerous.  If we write a
5269 	 * data block to the journal, change the status and then delete
5270 	 * that block, we risk forgetting to revoke the old log record
5271 	 * from the journal and so a subsequent replay can corrupt data.
5272 	 * So, first we make sure that the journal is empty and that
5273 	 * nobody is changing anything.
5274 	 */
5275 
5276 	journal = EXT4_JOURNAL(inode);
5277 	if (!journal)
5278 		return 0;
5279 	if (is_journal_aborted(journal))
5280 		return -EROFS;
5281 	/* We have to allocate physical blocks for delalloc blocks
5282 	 * before flushing journal. otherwise delalloc blocks can not
5283 	 * be allocated any more. even more truncate on delalloc blocks
5284 	 * could trigger BUG by flushing delalloc blocks in journal.
5285 	 * There is no delalloc block in non-journal data mode.
5286 	 */
5287 	if (val && test_opt(inode->i_sb, DELALLOC)) {
5288 		err = ext4_alloc_da_blocks(inode);
5289 		if (err < 0)
5290 			return err;
5291 	}
5292 
5293 	/* Wait for all existing dio workers */
5294 	ext4_inode_block_unlocked_dio(inode);
5295 	inode_dio_wait(inode);
5296 
5297 	jbd2_journal_lock_updates(journal);
5298 
5299 	/*
5300 	 * OK, there are no updates running now, and all cached data is
5301 	 * synced to disk.  We are now in a completely consistent state
5302 	 * which doesn't have anything in the journal, and we know that
5303 	 * no filesystem updates are running, so it is safe to modify
5304 	 * the inode's in-core data-journaling state flag now.
5305 	 */
5306 
5307 	if (val)
5308 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5309 	else {
5310 		jbd2_journal_flush(journal);
5311 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5312 	}
5313 	ext4_set_aops(inode);
5314 
5315 	jbd2_journal_unlock_updates(journal);
5316 	ext4_inode_resume_unlocked_dio(inode);
5317 
5318 	/* Finally we can mark the inode as dirty. */
5319 
5320 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5321 	if (IS_ERR(handle))
5322 		return PTR_ERR(handle);
5323 
5324 	err = ext4_mark_inode_dirty(handle, inode);
5325 	ext4_handle_sync(handle);
5326 	ext4_journal_stop(handle);
5327 	ext4_std_error(inode->i_sb, err);
5328 
5329 	return err;
5330 }
5331 
5332 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5333 {
5334 	return !buffer_mapped(bh);
5335 }
5336 
5337 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5338 {
5339 	struct page *page = vmf->page;
5340 	loff_t size;
5341 	unsigned long len;
5342 	int ret;
5343 	struct file *file = vma->vm_file;
5344 	struct inode *inode = file_inode(file);
5345 	struct address_space *mapping = inode->i_mapping;
5346 	handle_t *handle;
5347 	get_block_t *get_block;
5348 	int retries = 0;
5349 
5350 	sb_start_pagefault(inode->i_sb);
5351 	file_update_time(vma->vm_file);
5352 	/* Delalloc case is easy... */
5353 	if (test_opt(inode->i_sb, DELALLOC) &&
5354 	    !ext4_should_journal_data(inode) &&
5355 	    !ext4_nonda_switch(inode->i_sb)) {
5356 		do {
5357 			ret = __block_page_mkwrite(vma, vmf,
5358 						   ext4_da_get_block_prep);
5359 		} while (ret == -ENOSPC &&
5360 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5361 		goto out_ret;
5362 	}
5363 
5364 	lock_page(page);
5365 	size = i_size_read(inode);
5366 	/* Page got truncated from under us? */
5367 	if (page->mapping != mapping || page_offset(page) > size) {
5368 		unlock_page(page);
5369 		ret = VM_FAULT_NOPAGE;
5370 		goto out;
5371 	}
5372 
5373 	if (page->index == size >> PAGE_CACHE_SHIFT)
5374 		len = size & ~PAGE_CACHE_MASK;
5375 	else
5376 		len = PAGE_CACHE_SIZE;
5377 	/*
5378 	 * Return if we have all the buffers mapped. This avoids the need to do
5379 	 * journal_start/journal_stop which can block and take a long time
5380 	 */
5381 	if (page_has_buffers(page)) {
5382 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5383 					    0, len, NULL,
5384 					    ext4_bh_unmapped)) {
5385 			/* Wait so that we don't change page under IO */
5386 			wait_for_stable_page(page);
5387 			ret = VM_FAULT_LOCKED;
5388 			goto out;
5389 		}
5390 	}
5391 	unlock_page(page);
5392 	/* OK, we need to fill the hole... */
5393 	if (ext4_should_dioread_nolock(inode))
5394 		get_block = ext4_get_block_write;
5395 	else
5396 		get_block = ext4_get_block;
5397 retry_alloc:
5398 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5399 				    ext4_writepage_trans_blocks(inode));
5400 	if (IS_ERR(handle)) {
5401 		ret = VM_FAULT_SIGBUS;
5402 		goto out;
5403 	}
5404 	ret = __block_page_mkwrite(vma, vmf, get_block);
5405 	if (!ret && ext4_should_journal_data(inode)) {
5406 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5407 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5408 			unlock_page(page);
5409 			ret = VM_FAULT_SIGBUS;
5410 			ext4_journal_stop(handle);
5411 			goto out;
5412 		}
5413 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5414 	}
5415 	ext4_journal_stop(handle);
5416 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5417 		goto retry_alloc;
5418 out_ret:
5419 	ret = block_page_mkwrite_return(ret);
5420 out:
5421 	sb_end_pagefault(inode->i_sb);
5422 	return ret;
5423 }
5424