1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "truncate.h" 49 50 #include <trace/events/ext4.h> 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 140 int pextents); 141 142 /* 143 * Test whether an inode is a fast symlink. 144 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 145 */ 146 int ext4_inode_is_fast_symlink(struct inode *inode) 147 { 148 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 149 int ea_blocks = EXT4_I(inode)->i_file_acl ? 150 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 151 152 if (ext4_has_inline_data(inode)) 153 return 0; 154 155 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 156 } 157 return S_ISLNK(inode->i_mode) && inode->i_size && 158 (inode->i_size < EXT4_N_BLOCKS * 4); 159 } 160 161 /* 162 * Called at the last iput() if i_nlink is zero. 163 */ 164 void ext4_evict_inode(struct inode *inode) 165 { 166 handle_t *handle; 167 int err; 168 /* 169 * Credits for final inode cleanup and freeing: 170 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 171 * (xattr block freeing), bitmap, group descriptor (inode freeing) 172 */ 173 int extra_credits = 6; 174 struct ext4_xattr_inode_array *ea_inode_array = NULL; 175 bool freeze_protected = false; 176 177 trace_ext4_evict_inode(inode); 178 179 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 180 ext4_evict_ea_inode(inode); 181 if (inode->i_nlink) { 182 truncate_inode_pages_final(&inode->i_data); 183 184 goto no_delete; 185 } 186 187 if (is_bad_inode(inode)) 188 goto no_delete; 189 dquot_initialize(inode); 190 191 if (ext4_should_order_data(inode)) 192 ext4_begin_ordered_truncate(inode, 0); 193 truncate_inode_pages_final(&inode->i_data); 194 195 /* 196 * For inodes with journalled data, transaction commit could have 197 * dirtied the inode. And for inodes with dioread_nolock, unwritten 198 * extents converting worker could merge extents and also have dirtied 199 * the inode. Flush worker is ignoring it because of I_FREEING flag but 200 * we still need to remove the inode from the writeback lists. 201 */ 202 if (!list_empty_careful(&inode->i_io_list)) 203 inode_io_list_del(inode); 204 205 /* 206 * Protect us against freezing - iput() caller didn't have to have any 207 * protection against it. When we are in a running transaction though, 208 * we are already protected against freezing and we cannot grab further 209 * protection due to lock ordering constraints. 210 */ 211 if (!ext4_journal_current_handle()) { 212 sb_start_intwrite(inode->i_sb); 213 freeze_protected = true; 214 } 215 216 if (!IS_NOQUOTA(inode)) 217 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 218 219 /* 220 * Block bitmap, group descriptor, and inode are accounted in both 221 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 222 */ 223 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 224 ext4_blocks_for_truncate(inode) + extra_credits - 3); 225 if (IS_ERR(handle)) { 226 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 227 /* 228 * If we're going to skip the normal cleanup, we still need to 229 * make sure that the in-core orphan linked list is properly 230 * cleaned up. 231 */ 232 ext4_orphan_del(NULL, inode); 233 if (freeze_protected) 234 sb_end_intwrite(inode->i_sb); 235 goto no_delete; 236 } 237 238 if (IS_SYNC(inode)) 239 ext4_handle_sync(handle); 240 241 /* 242 * Set inode->i_size to 0 before calling ext4_truncate(). We need 243 * special handling of symlinks here because i_size is used to 244 * determine whether ext4_inode_info->i_data contains symlink data or 245 * block mappings. Setting i_size to 0 will remove its fast symlink 246 * status. Erase i_data so that it becomes a valid empty block map. 247 */ 248 if (ext4_inode_is_fast_symlink(inode)) 249 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 250 inode->i_size = 0; 251 err = ext4_mark_inode_dirty(handle, inode); 252 if (err) { 253 ext4_warning(inode->i_sb, 254 "couldn't mark inode dirty (err %d)", err); 255 goto stop_handle; 256 } 257 if (inode->i_blocks) { 258 err = ext4_truncate(inode); 259 if (err) { 260 ext4_error_err(inode->i_sb, -err, 261 "couldn't truncate inode %lu (err %d)", 262 inode->i_ino, err); 263 goto stop_handle; 264 } 265 } 266 267 /* Remove xattr references. */ 268 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 269 extra_credits); 270 if (err) { 271 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 272 stop_handle: 273 ext4_journal_stop(handle); 274 ext4_orphan_del(NULL, inode); 275 if (freeze_protected) 276 sb_end_intwrite(inode->i_sb); 277 ext4_xattr_inode_array_free(ea_inode_array); 278 goto no_delete; 279 } 280 281 /* 282 * Kill off the orphan record which ext4_truncate created. 283 * AKPM: I think this can be inside the above `if'. 284 * Note that ext4_orphan_del() has to be able to cope with the 285 * deletion of a non-existent orphan - this is because we don't 286 * know if ext4_truncate() actually created an orphan record. 287 * (Well, we could do this if we need to, but heck - it works) 288 */ 289 ext4_orphan_del(handle, inode); 290 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 291 292 /* 293 * One subtle ordering requirement: if anything has gone wrong 294 * (transaction abort, IO errors, whatever), then we can still 295 * do these next steps (the fs will already have been marked as 296 * having errors), but we can't free the inode if the mark_dirty 297 * fails. 298 */ 299 if (ext4_mark_inode_dirty(handle, inode)) 300 /* If that failed, just do the required in-core inode clear. */ 301 ext4_clear_inode(inode); 302 else 303 ext4_free_inode(handle, inode); 304 ext4_journal_stop(handle); 305 if (freeze_protected) 306 sb_end_intwrite(inode->i_sb); 307 ext4_xattr_inode_array_free(ea_inode_array); 308 return; 309 no_delete: 310 /* 311 * Check out some where else accidentally dirty the evicting inode, 312 * which may probably cause inode use-after-free issues later. 313 */ 314 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); 315 316 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 317 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 318 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 319 } 320 321 #ifdef CONFIG_QUOTA 322 qsize_t *ext4_get_reserved_space(struct inode *inode) 323 { 324 return &EXT4_I(inode)->i_reserved_quota; 325 } 326 #endif 327 328 /* 329 * Called with i_data_sem down, which is important since we can call 330 * ext4_discard_preallocations() from here. 331 */ 332 void ext4_da_update_reserve_space(struct inode *inode, 333 int used, int quota_claim) 334 { 335 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 336 struct ext4_inode_info *ei = EXT4_I(inode); 337 338 spin_lock(&ei->i_block_reservation_lock); 339 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 340 if (unlikely(used > ei->i_reserved_data_blocks)) { 341 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 342 "with only %d reserved data blocks", 343 __func__, inode->i_ino, used, 344 ei->i_reserved_data_blocks); 345 WARN_ON(1); 346 used = ei->i_reserved_data_blocks; 347 } 348 349 /* Update per-inode reservations */ 350 ei->i_reserved_data_blocks -= used; 351 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 352 353 spin_unlock(&ei->i_block_reservation_lock); 354 355 /* Update quota subsystem for data blocks */ 356 if (quota_claim) 357 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 358 else { 359 /* 360 * We did fallocate with an offset that is already delayed 361 * allocated. So on delayed allocated writeback we should 362 * not re-claim the quota for fallocated blocks. 363 */ 364 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 365 } 366 367 /* 368 * If we have done all the pending block allocations and if 369 * there aren't any writers on the inode, we can discard the 370 * inode's preallocations. 371 */ 372 if ((ei->i_reserved_data_blocks == 0) && 373 !inode_is_open_for_write(inode)) 374 ext4_discard_preallocations(inode, 0); 375 } 376 377 static int __check_block_validity(struct inode *inode, const char *func, 378 unsigned int line, 379 struct ext4_map_blocks *map) 380 { 381 if (ext4_has_feature_journal(inode->i_sb) && 382 (inode->i_ino == 383 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 384 return 0; 385 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 386 ext4_error_inode(inode, func, line, map->m_pblk, 387 "lblock %lu mapped to illegal pblock %llu " 388 "(length %d)", (unsigned long) map->m_lblk, 389 map->m_pblk, map->m_len); 390 return -EFSCORRUPTED; 391 } 392 return 0; 393 } 394 395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 396 ext4_lblk_t len) 397 { 398 int ret; 399 400 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 401 return fscrypt_zeroout_range(inode, lblk, pblk, len); 402 403 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 404 if (ret > 0) 405 ret = 0; 406 407 return ret; 408 } 409 410 #define check_block_validity(inode, map) \ 411 __check_block_validity((inode), __func__, __LINE__, (map)) 412 413 #ifdef ES_AGGRESSIVE_TEST 414 static void ext4_map_blocks_es_recheck(handle_t *handle, 415 struct inode *inode, 416 struct ext4_map_blocks *es_map, 417 struct ext4_map_blocks *map, 418 int flags) 419 { 420 int retval; 421 422 map->m_flags = 0; 423 /* 424 * There is a race window that the result is not the same. 425 * e.g. xfstests #223 when dioread_nolock enables. The reason 426 * is that we lookup a block mapping in extent status tree with 427 * out taking i_data_sem. So at the time the unwritten extent 428 * could be converted. 429 */ 430 down_read(&EXT4_I(inode)->i_data_sem); 431 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 432 retval = ext4_ext_map_blocks(handle, inode, map, 0); 433 } else { 434 retval = ext4_ind_map_blocks(handle, inode, map, 0); 435 } 436 up_read((&EXT4_I(inode)->i_data_sem)); 437 438 /* 439 * We don't check m_len because extent will be collpased in status 440 * tree. So the m_len might not equal. 441 */ 442 if (es_map->m_lblk != map->m_lblk || 443 es_map->m_flags != map->m_flags || 444 es_map->m_pblk != map->m_pblk) { 445 printk("ES cache assertion failed for inode: %lu " 446 "es_cached ex [%d/%d/%llu/%x] != " 447 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 448 inode->i_ino, es_map->m_lblk, es_map->m_len, 449 es_map->m_pblk, es_map->m_flags, map->m_lblk, 450 map->m_len, map->m_pblk, map->m_flags, 451 retval, flags); 452 } 453 } 454 #endif /* ES_AGGRESSIVE_TEST */ 455 456 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode, 457 struct ext4_map_blocks *map) 458 { 459 unsigned int status; 460 int retval; 461 462 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 463 retval = ext4_ext_map_blocks(handle, inode, map, 0); 464 else 465 retval = ext4_ind_map_blocks(handle, inode, map, 0); 466 467 if (retval <= 0) 468 return retval; 469 470 if (unlikely(retval != map->m_len)) { 471 ext4_warning(inode->i_sb, 472 "ES len assertion failed for inode " 473 "%lu: retval %d != map->m_len %d", 474 inode->i_ino, retval, map->m_len); 475 WARN_ON(1); 476 } 477 478 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 479 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 480 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 481 map->m_pblk, status); 482 return retval; 483 } 484 485 /* 486 * The ext4_map_blocks() function tries to look up the requested blocks, 487 * and returns if the blocks are already mapped. 488 * 489 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 490 * and store the allocated blocks in the result buffer head and mark it 491 * mapped. 492 * 493 * If file type is extents based, it will call ext4_ext_map_blocks(), 494 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 495 * based files 496 * 497 * On success, it returns the number of blocks being mapped or allocated. if 498 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 499 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 500 * 501 * It returns 0 if plain look up failed (blocks have not been allocated), in 502 * that case, @map is returned as unmapped but we still do fill map->m_len to 503 * indicate the length of a hole starting at map->m_lblk. 504 * 505 * It returns the error in case of allocation failure. 506 */ 507 int ext4_map_blocks(handle_t *handle, struct inode *inode, 508 struct ext4_map_blocks *map, int flags) 509 { 510 struct extent_status es; 511 int retval; 512 int ret = 0; 513 #ifdef ES_AGGRESSIVE_TEST 514 struct ext4_map_blocks orig_map; 515 516 memcpy(&orig_map, map, sizeof(*map)); 517 #endif 518 519 map->m_flags = 0; 520 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 521 flags, map->m_len, (unsigned long) map->m_lblk); 522 523 /* 524 * ext4_map_blocks returns an int, and m_len is an unsigned int 525 */ 526 if (unlikely(map->m_len > INT_MAX)) 527 map->m_len = INT_MAX; 528 529 /* We can handle the block number less than EXT_MAX_BLOCKS */ 530 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 531 return -EFSCORRUPTED; 532 533 /* Lookup extent status tree firstly */ 534 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 535 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 536 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 537 map->m_pblk = ext4_es_pblock(&es) + 538 map->m_lblk - es.es_lblk; 539 map->m_flags |= ext4_es_is_written(&es) ? 540 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 541 retval = es.es_len - (map->m_lblk - es.es_lblk); 542 if (retval > map->m_len) 543 retval = map->m_len; 544 map->m_len = retval; 545 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 546 map->m_pblk = 0; 547 retval = es.es_len - (map->m_lblk - es.es_lblk); 548 if (retval > map->m_len) 549 retval = map->m_len; 550 map->m_len = retval; 551 retval = 0; 552 } else { 553 BUG(); 554 } 555 556 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 557 return retval; 558 #ifdef ES_AGGRESSIVE_TEST 559 ext4_map_blocks_es_recheck(handle, inode, map, 560 &orig_map, flags); 561 #endif 562 goto found; 563 } 564 /* 565 * In the query cache no-wait mode, nothing we can do more if we 566 * cannot find extent in the cache. 567 */ 568 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 569 return 0; 570 571 /* 572 * Try to see if we can get the block without requesting a new 573 * file system block. 574 */ 575 down_read(&EXT4_I(inode)->i_data_sem); 576 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 577 retval = ext4_ext_map_blocks(handle, inode, map, 0); 578 } else { 579 retval = ext4_ind_map_blocks(handle, inode, map, 0); 580 } 581 if (retval > 0) { 582 unsigned int status; 583 584 if (unlikely(retval != map->m_len)) { 585 ext4_warning(inode->i_sb, 586 "ES len assertion failed for inode " 587 "%lu: retval %d != map->m_len %d", 588 inode->i_ino, retval, map->m_len); 589 WARN_ON(1); 590 } 591 592 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 593 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 594 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 595 !(status & EXTENT_STATUS_WRITTEN) && 596 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 597 map->m_lblk + map->m_len - 1)) 598 status |= EXTENT_STATUS_DELAYED; 599 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 600 map->m_pblk, status); 601 } 602 up_read((&EXT4_I(inode)->i_data_sem)); 603 604 found: 605 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 606 ret = check_block_validity(inode, map); 607 if (ret != 0) 608 return ret; 609 } 610 611 /* If it is only a block(s) look up */ 612 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 613 return retval; 614 615 /* 616 * Returns if the blocks have already allocated 617 * 618 * Note that if blocks have been preallocated 619 * ext4_ext_get_block() returns the create = 0 620 * with buffer head unmapped. 621 */ 622 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 623 /* 624 * If we need to convert extent to unwritten 625 * we continue and do the actual work in 626 * ext4_ext_map_blocks() 627 */ 628 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 629 return retval; 630 631 /* 632 * Here we clear m_flags because after allocating an new extent, 633 * it will be set again. 634 */ 635 map->m_flags &= ~EXT4_MAP_FLAGS; 636 637 /* 638 * New blocks allocate and/or writing to unwritten extent 639 * will possibly result in updating i_data, so we take 640 * the write lock of i_data_sem, and call get_block() 641 * with create == 1 flag. 642 */ 643 down_write(&EXT4_I(inode)->i_data_sem); 644 645 /* 646 * We need to check for EXT4 here because migrate 647 * could have changed the inode type in between 648 */ 649 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 650 retval = ext4_ext_map_blocks(handle, inode, map, flags); 651 } else { 652 retval = ext4_ind_map_blocks(handle, inode, map, flags); 653 654 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 655 /* 656 * We allocated new blocks which will result in 657 * i_data's format changing. Force the migrate 658 * to fail by clearing migrate flags 659 */ 660 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 661 } 662 } 663 664 if (retval > 0) { 665 unsigned int status; 666 667 if (unlikely(retval != map->m_len)) { 668 ext4_warning(inode->i_sb, 669 "ES len assertion failed for inode " 670 "%lu: retval %d != map->m_len %d", 671 inode->i_ino, retval, map->m_len); 672 WARN_ON(1); 673 } 674 675 /* 676 * We have to zeroout blocks before inserting them into extent 677 * status tree. Otherwise someone could look them up there and 678 * use them before they are really zeroed. We also have to 679 * unmap metadata before zeroing as otherwise writeback can 680 * overwrite zeros with stale data from block device. 681 */ 682 if (flags & EXT4_GET_BLOCKS_ZERO && 683 map->m_flags & EXT4_MAP_MAPPED && 684 map->m_flags & EXT4_MAP_NEW) { 685 ret = ext4_issue_zeroout(inode, map->m_lblk, 686 map->m_pblk, map->m_len); 687 if (ret) { 688 retval = ret; 689 goto out_sem; 690 } 691 } 692 693 /* 694 * If the extent has been zeroed out, we don't need to update 695 * extent status tree. 696 */ 697 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 698 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 699 if (ext4_es_is_written(&es)) 700 goto out_sem; 701 } 702 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 703 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 704 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 705 !(status & EXTENT_STATUS_WRITTEN) && 706 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 707 map->m_lblk + map->m_len - 1)) 708 status |= EXTENT_STATUS_DELAYED; 709 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 710 map->m_pblk, status); 711 } 712 713 out_sem: 714 up_write((&EXT4_I(inode)->i_data_sem)); 715 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 716 ret = check_block_validity(inode, map); 717 if (ret != 0) 718 return ret; 719 720 /* 721 * Inodes with freshly allocated blocks where contents will be 722 * visible after transaction commit must be on transaction's 723 * ordered data list. 724 */ 725 if (map->m_flags & EXT4_MAP_NEW && 726 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 727 !(flags & EXT4_GET_BLOCKS_ZERO) && 728 !ext4_is_quota_file(inode) && 729 ext4_should_order_data(inode)) { 730 loff_t start_byte = 731 (loff_t)map->m_lblk << inode->i_blkbits; 732 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 733 734 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 735 ret = ext4_jbd2_inode_add_wait(handle, inode, 736 start_byte, length); 737 else 738 ret = ext4_jbd2_inode_add_write(handle, inode, 739 start_byte, length); 740 if (ret) 741 return ret; 742 } 743 } 744 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 745 map->m_flags & EXT4_MAP_MAPPED)) 746 ext4_fc_track_range(handle, inode, map->m_lblk, 747 map->m_lblk + map->m_len - 1); 748 if (retval < 0) 749 ext_debug(inode, "failed with err %d\n", retval); 750 return retval; 751 } 752 753 /* 754 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 755 * we have to be careful as someone else may be manipulating b_state as well. 756 */ 757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 758 { 759 unsigned long old_state; 760 unsigned long new_state; 761 762 flags &= EXT4_MAP_FLAGS; 763 764 /* Dummy buffer_head? Set non-atomically. */ 765 if (!bh->b_page) { 766 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 767 return; 768 } 769 /* 770 * Someone else may be modifying b_state. Be careful! This is ugly but 771 * once we get rid of using bh as a container for mapping information 772 * to pass to / from get_block functions, this can go away. 773 */ 774 old_state = READ_ONCE(bh->b_state); 775 do { 776 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 777 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state))); 778 } 779 780 static int _ext4_get_block(struct inode *inode, sector_t iblock, 781 struct buffer_head *bh, int flags) 782 { 783 struct ext4_map_blocks map; 784 int ret = 0; 785 786 if (ext4_has_inline_data(inode)) 787 return -ERANGE; 788 789 map.m_lblk = iblock; 790 map.m_len = bh->b_size >> inode->i_blkbits; 791 792 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 793 flags); 794 if (ret > 0) { 795 map_bh(bh, inode->i_sb, map.m_pblk); 796 ext4_update_bh_state(bh, map.m_flags); 797 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 798 ret = 0; 799 } else if (ret == 0) { 800 /* hole case, need to fill in bh->b_size */ 801 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 802 } 803 return ret; 804 } 805 806 int ext4_get_block(struct inode *inode, sector_t iblock, 807 struct buffer_head *bh, int create) 808 { 809 return _ext4_get_block(inode, iblock, bh, 810 create ? EXT4_GET_BLOCKS_CREATE : 0); 811 } 812 813 /* 814 * Get block function used when preparing for buffered write if we require 815 * creating an unwritten extent if blocks haven't been allocated. The extent 816 * will be converted to written after the IO is complete. 817 */ 818 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 819 struct buffer_head *bh_result, int create) 820 { 821 int ret = 0; 822 823 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 824 inode->i_ino, create); 825 ret = _ext4_get_block(inode, iblock, bh_result, 826 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 827 828 /* 829 * If the buffer is marked unwritten, mark it as new to make sure it is 830 * zeroed out correctly in case of partial writes. Otherwise, there is 831 * a chance of stale data getting exposed. 832 */ 833 if (ret == 0 && buffer_unwritten(bh_result)) 834 set_buffer_new(bh_result); 835 836 return ret; 837 } 838 839 /* Maximum number of blocks we map for direct IO at once. */ 840 #define DIO_MAX_BLOCKS 4096 841 842 /* 843 * `handle' can be NULL if create is zero 844 */ 845 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 846 ext4_lblk_t block, int map_flags) 847 { 848 struct ext4_map_blocks map; 849 struct buffer_head *bh; 850 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 851 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 852 int err; 853 854 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 855 || handle != NULL || create == 0); 856 ASSERT(create == 0 || !nowait); 857 858 map.m_lblk = block; 859 map.m_len = 1; 860 err = ext4_map_blocks(handle, inode, &map, map_flags); 861 862 if (err == 0) 863 return create ? ERR_PTR(-ENOSPC) : NULL; 864 if (err < 0) 865 return ERR_PTR(err); 866 867 if (nowait) 868 return sb_find_get_block(inode->i_sb, map.m_pblk); 869 870 bh = sb_getblk(inode->i_sb, map.m_pblk); 871 if (unlikely(!bh)) 872 return ERR_PTR(-ENOMEM); 873 if (map.m_flags & EXT4_MAP_NEW) { 874 ASSERT(create != 0); 875 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 876 || (handle != NULL)); 877 878 /* 879 * Now that we do not always journal data, we should 880 * keep in mind whether this should always journal the 881 * new buffer as metadata. For now, regular file 882 * writes use ext4_get_block instead, so it's not a 883 * problem. 884 */ 885 lock_buffer(bh); 886 BUFFER_TRACE(bh, "call get_create_access"); 887 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 888 EXT4_JTR_NONE); 889 if (unlikely(err)) { 890 unlock_buffer(bh); 891 goto errout; 892 } 893 if (!buffer_uptodate(bh)) { 894 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 895 set_buffer_uptodate(bh); 896 } 897 unlock_buffer(bh); 898 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 899 err = ext4_handle_dirty_metadata(handle, inode, bh); 900 if (unlikely(err)) 901 goto errout; 902 } else 903 BUFFER_TRACE(bh, "not a new buffer"); 904 return bh; 905 errout: 906 brelse(bh); 907 return ERR_PTR(err); 908 } 909 910 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 911 ext4_lblk_t block, int map_flags) 912 { 913 struct buffer_head *bh; 914 int ret; 915 916 bh = ext4_getblk(handle, inode, block, map_flags); 917 if (IS_ERR(bh)) 918 return bh; 919 if (!bh || ext4_buffer_uptodate(bh)) 920 return bh; 921 922 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 923 if (ret) { 924 put_bh(bh); 925 return ERR_PTR(ret); 926 } 927 return bh; 928 } 929 930 /* Read a contiguous batch of blocks. */ 931 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 932 bool wait, struct buffer_head **bhs) 933 { 934 int i, err; 935 936 for (i = 0; i < bh_count; i++) { 937 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 938 if (IS_ERR(bhs[i])) { 939 err = PTR_ERR(bhs[i]); 940 bh_count = i; 941 goto out_brelse; 942 } 943 } 944 945 for (i = 0; i < bh_count; i++) 946 /* Note that NULL bhs[i] is valid because of holes. */ 947 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 948 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 949 950 if (!wait) 951 return 0; 952 953 for (i = 0; i < bh_count; i++) 954 if (bhs[i]) 955 wait_on_buffer(bhs[i]); 956 957 for (i = 0; i < bh_count; i++) { 958 if (bhs[i] && !buffer_uptodate(bhs[i])) { 959 err = -EIO; 960 goto out_brelse; 961 } 962 } 963 return 0; 964 965 out_brelse: 966 for (i = 0; i < bh_count; i++) { 967 brelse(bhs[i]); 968 bhs[i] = NULL; 969 } 970 return err; 971 } 972 973 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 974 struct buffer_head *head, 975 unsigned from, 976 unsigned to, 977 int *partial, 978 int (*fn)(handle_t *handle, struct inode *inode, 979 struct buffer_head *bh)) 980 { 981 struct buffer_head *bh; 982 unsigned block_start, block_end; 983 unsigned blocksize = head->b_size; 984 int err, ret = 0; 985 struct buffer_head *next; 986 987 for (bh = head, block_start = 0; 988 ret == 0 && (bh != head || !block_start); 989 block_start = block_end, bh = next) { 990 next = bh->b_this_page; 991 block_end = block_start + blocksize; 992 if (block_end <= from || block_start >= to) { 993 if (partial && !buffer_uptodate(bh)) 994 *partial = 1; 995 continue; 996 } 997 err = (*fn)(handle, inode, bh); 998 if (!ret) 999 ret = err; 1000 } 1001 return ret; 1002 } 1003 1004 /* 1005 * Helper for handling dirtying of journalled data. We also mark the folio as 1006 * dirty so that writeback code knows about this page (and inode) contains 1007 * dirty data. ext4_writepages() then commits appropriate transaction to 1008 * make data stable. 1009 */ 1010 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh) 1011 { 1012 folio_mark_dirty(bh->b_folio); 1013 return ext4_handle_dirty_metadata(handle, NULL, bh); 1014 } 1015 1016 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 1017 struct buffer_head *bh) 1018 { 1019 int dirty = buffer_dirty(bh); 1020 int ret; 1021 1022 if (!buffer_mapped(bh) || buffer_freed(bh)) 1023 return 0; 1024 /* 1025 * __block_write_begin() could have dirtied some buffers. Clean 1026 * the dirty bit as jbd2_journal_get_write_access() could complain 1027 * otherwise about fs integrity issues. Setting of the dirty bit 1028 * by __block_write_begin() isn't a real problem here as we clear 1029 * the bit before releasing a page lock and thus writeback cannot 1030 * ever write the buffer. 1031 */ 1032 if (dirty) 1033 clear_buffer_dirty(bh); 1034 BUFFER_TRACE(bh, "get write access"); 1035 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh, 1036 EXT4_JTR_NONE); 1037 if (!ret && dirty) 1038 ret = ext4_dirty_journalled_data(handle, bh); 1039 return ret; 1040 } 1041 1042 #ifdef CONFIG_FS_ENCRYPTION 1043 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len, 1044 get_block_t *get_block) 1045 { 1046 unsigned from = pos & (PAGE_SIZE - 1); 1047 unsigned to = from + len; 1048 struct inode *inode = folio->mapping->host; 1049 unsigned block_start, block_end; 1050 sector_t block; 1051 int err = 0; 1052 unsigned blocksize = inode->i_sb->s_blocksize; 1053 unsigned bbits; 1054 struct buffer_head *bh, *head, *wait[2]; 1055 int nr_wait = 0; 1056 int i; 1057 1058 BUG_ON(!folio_test_locked(folio)); 1059 BUG_ON(from > PAGE_SIZE); 1060 BUG_ON(to > PAGE_SIZE); 1061 BUG_ON(from > to); 1062 1063 head = folio_buffers(folio); 1064 if (!head) { 1065 create_empty_buffers(&folio->page, blocksize, 0); 1066 head = folio_buffers(folio); 1067 } 1068 bbits = ilog2(blocksize); 1069 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1070 1071 for (bh = head, block_start = 0; bh != head || !block_start; 1072 block++, block_start = block_end, bh = bh->b_this_page) { 1073 block_end = block_start + blocksize; 1074 if (block_end <= from || block_start >= to) { 1075 if (folio_test_uptodate(folio)) { 1076 set_buffer_uptodate(bh); 1077 } 1078 continue; 1079 } 1080 if (buffer_new(bh)) 1081 clear_buffer_new(bh); 1082 if (!buffer_mapped(bh)) { 1083 WARN_ON(bh->b_size != blocksize); 1084 err = get_block(inode, block, bh, 1); 1085 if (err) 1086 break; 1087 if (buffer_new(bh)) { 1088 if (folio_test_uptodate(folio)) { 1089 clear_buffer_new(bh); 1090 set_buffer_uptodate(bh); 1091 mark_buffer_dirty(bh); 1092 continue; 1093 } 1094 if (block_end > to || block_start < from) 1095 folio_zero_segments(folio, to, 1096 block_end, 1097 block_start, from); 1098 continue; 1099 } 1100 } 1101 if (folio_test_uptodate(folio)) { 1102 set_buffer_uptodate(bh); 1103 continue; 1104 } 1105 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1106 !buffer_unwritten(bh) && 1107 (block_start < from || block_end > to)) { 1108 ext4_read_bh_lock(bh, 0, false); 1109 wait[nr_wait++] = bh; 1110 } 1111 } 1112 /* 1113 * If we issued read requests, let them complete. 1114 */ 1115 for (i = 0; i < nr_wait; i++) { 1116 wait_on_buffer(wait[i]); 1117 if (!buffer_uptodate(wait[i])) 1118 err = -EIO; 1119 } 1120 if (unlikely(err)) { 1121 folio_zero_new_buffers(folio, from, to); 1122 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1123 for (i = 0; i < nr_wait; i++) { 1124 int err2; 1125 1126 err2 = fscrypt_decrypt_pagecache_blocks(folio, 1127 blocksize, bh_offset(wait[i])); 1128 if (err2) { 1129 clear_buffer_uptodate(wait[i]); 1130 err = err2; 1131 } 1132 } 1133 } 1134 1135 return err; 1136 } 1137 #endif 1138 1139 /* 1140 * To preserve ordering, it is essential that the hole instantiation and 1141 * the data write be encapsulated in a single transaction. We cannot 1142 * close off a transaction and start a new one between the ext4_get_block() 1143 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of 1144 * ext4_write_begin() is the right place. 1145 */ 1146 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1147 loff_t pos, unsigned len, 1148 struct page **pagep, void **fsdata) 1149 { 1150 struct inode *inode = mapping->host; 1151 int ret, needed_blocks; 1152 handle_t *handle; 1153 int retries = 0; 1154 struct folio *folio; 1155 pgoff_t index; 1156 unsigned from, to; 1157 1158 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 1159 return -EIO; 1160 1161 trace_ext4_write_begin(inode, pos, len); 1162 /* 1163 * Reserve one block more for addition to orphan list in case 1164 * we allocate blocks but write fails for some reason 1165 */ 1166 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1167 index = pos >> PAGE_SHIFT; 1168 from = pos & (PAGE_SIZE - 1); 1169 to = from + len; 1170 1171 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1172 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1173 pagep); 1174 if (ret < 0) 1175 return ret; 1176 if (ret == 1) 1177 return 0; 1178 } 1179 1180 /* 1181 * __filemap_get_folio() can take a long time if the 1182 * system is thrashing due to memory pressure, or if the folio 1183 * is being written back. So grab it first before we start 1184 * the transaction handle. This also allows us to allocate 1185 * the folio (if needed) without using GFP_NOFS. 1186 */ 1187 retry_grab: 1188 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 1189 mapping_gfp_mask(mapping)); 1190 if (IS_ERR(folio)) 1191 return PTR_ERR(folio); 1192 /* 1193 * The same as page allocation, we prealloc buffer heads before 1194 * starting the handle. 1195 */ 1196 if (!folio_buffers(folio)) 1197 create_empty_buffers(&folio->page, inode->i_sb->s_blocksize, 0); 1198 1199 folio_unlock(folio); 1200 1201 retry_journal: 1202 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1203 if (IS_ERR(handle)) { 1204 folio_put(folio); 1205 return PTR_ERR(handle); 1206 } 1207 1208 folio_lock(folio); 1209 if (folio->mapping != mapping) { 1210 /* The folio got truncated from under us */ 1211 folio_unlock(folio); 1212 folio_put(folio); 1213 ext4_journal_stop(handle); 1214 goto retry_grab; 1215 } 1216 /* In case writeback began while the folio was unlocked */ 1217 folio_wait_stable(folio); 1218 1219 #ifdef CONFIG_FS_ENCRYPTION 1220 if (ext4_should_dioread_nolock(inode)) 1221 ret = ext4_block_write_begin(folio, pos, len, 1222 ext4_get_block_unwritten); 1223 else 1224 ret = ext4_block_write_begin(folio, pos, len, ext4_get_block); 1225 #else 1226 if (ext4_should_dioread_nolock(inode)) 1227 ret = __block_write_begin(&folio->page, pos, len, 1228 ext4_get_block_unwritten); 1229 else 1230 ret = __block_write_begin(&folio->page, pos, len, ext4_get_block); 1231 #endif 1232 if (!ret && ext4_should_journal_data(inode)) { 1233 ret = ext4_walk_page_buffers(handle, inode, 1234 folio_buffers(folio), from, to, 1235 NULL, do_journal_get_write_access); 1236 } 1237 1238 if (ret) { 1239 bool extended = (pos + len > inode->i_size) && 1240 !ext4_verity_in_progress(inode); 1241 1242 folio_unlock(folio); 1243 /* 1244 * __block_write_begin may have instantiated a few blocks 1245 * outside i_size. Trim these off again. Don't need 1246 * i_size_read because we hold i_rwsem. 1247 * 1248 * Add inode to orphan list in case we crash before 1249 * truncate finishes 1250 */ 1251 if (extended && ext4_can_truncate(inode)) 1252 ext4_orphan_add(handle, inode); 1253 1254 ext4_journal_stop(handle); 1255 if (extended) { 1256 ext4_truncate_failed_write(inode); 1257 /* 1258 * If truncate failed early the inode might 1259 * still be on the orphan list; we need to 1260 * make sure the inode is removed from the 1261 * orphan list in that case. 1262 */ 1263 if (inode->i_nlink) 1264 ext4_orphan_del(NULL, inode); 1265 } 1266 1267 if (ret == -ENOSPC && 1268 ext4_should_retry_alloc(inode->i_sb, &retries)) 1269 goto retry_journal; 1270 folio_put(folio); 1271 return ret; 1272 } 1273 *pagep = &folio->page; 1274 return ret; 1275 } 1276 1277 /* For write_end() in data=journal mode */ 1278 static int write_end_fn(handle_t *handle, struct inode *inode, 1279 struct buffer_head *bh) 1280 { 1281 int ret; 1282 if (!buffer_mapped(bh) || buffer_freed(bh)) 1283 return 0; 1284 set_buffer_uptodate(bh); 1285 ret = ext4_dirty_journalled_data(handle, bh); 1286 clear_buffer_meta(bh); 1287 clear_buffer_prio(bh); 1288 return ret; 1289 } 1290 1291 /* 1292 * We need to pick up the new inode size which generic_commit_write gave us 1293 * `file' can be NULL - eg, when called from page_symlink(). 1294 * 1295 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1296 * buffers are managed internally. 1297 */ 1298 static int ext4_write_end(struct file *file, 1299 struct address_space *mapping, 1300 loff_t pos, unsigned len, unsigned copied, 1301 struct page *page, void *fsdata) 1302 { 1303 struct folio *folio = page_folio(page); 1304 handle_t *handle = ext4_journal_current_handle(); 1305 struct inode *inode = mapping->host; 1306 loff_t old_size = inode->i_size; 1307 int ret = 0, ret2; 1308 int i_size_changed = 0; 1309 bool verity = ext4_verity_in_progress(inode); 1310 1311 trace_ext4_write_end(inode, pos, len, copied); 1312 1313 if (ext4_has_inline_data(inode) && 1314 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) 1315 return ext4_write_inline_data_end(inode, pos, len, copied, 1316 folio); 1317 1318 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1319 /* 1320 * it's important to update i_size while still holding folio lock: 1321 * page writeout could otherwise come in and zero beyond i_size. 1322 * 1323 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1324 * blocks are being written past EOF, so skip the i_size update. 1325 */ 1326 if (!verity) 1327 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1328 folio_unlock(folio); 1329 folio_put(folio); 1330 1331 if (old_size < pos && !verity) { 1332 pagecache_isize_extended(inode, old_size, pos); 1333 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size); 1334 } 1335 /* 1336 * Don't mark the inode dirty under folio lock. First, it unnecessarily 1337 * makes the holding time of folio lock longer. Second, it forces lock 1338 * ordering of folio lock and transaction start for journaling 1339 * filesystems. 1340 */ 1341 if (i_size_changed) 1342 ret = ext4_mark_inode_dirty(handle, inode); 1343 1344 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1345 /* if we have allocated more blocks and copied 1346 * less. We will have blocks allocated outside 1347 * inode->i_size. So truncate them 1348 */ 1349 ext4_orphan_add(handle, inode); 1350 1351 ret2 = ext4_journal_stop(handle); 1352 if (!ret) 1353 ret = ret2; 1354 1355 if (pos + len > inode->i_size && !verity) { 1356 ext4_truncate_failed_write(inode); 1357 /* 1358 * If truncate failed early the inode might still be 1359 * on the orphan list; we need to make sure the inode 1360 * is removed from the orphan list in that case. 1361 */ 1362 if (inode->i_nlink) 1363 ext4_orphan_del(NULL, inode); 1364 } 1365 1366 return ret ? ret : copied; 1367 } 1368 1369 /* 1370 * This is a private version of folio_zero_new_buffers() which doesn't 1371 * set the buffer to be dirty, since in data=journalled mode we need 1372 * to call ext4_dirty_journalled_data() instead. 1373 */ 1374 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1375 struct inode *inode, 1376 struct folio *folio, 1377 unsigned from, unsigned to) 1378 { 1379 unsigned int block_start = 0, block_end; 1380 struct buffer_head *head, *bh; 1381 1382 bh = head = folio_buffers(folio); 1383 do { 1384 block_end = block_start + bh->b_size; 1385 if (buffer_new(bh)) { 1386 if (block_end > from && block_start < to) { 1387 if (!folio_test_uptodate(folio)) { 1388 unsigned start, size; 1389 1390 start = max(from, block_start); 1391 size = min(to, block_end) - start; 1392 1393 folio_zero_range(folio, start, size); 1394 write_end_fn(handle, inode, bh); 1395 } 1396 clear_buffer_new(bh); 1397 } 1398 } 1399 block_start = block_end; 1400 bh = bh->b_this_page; 1401 } while (bh != head); 1402 } 1403 1404 static int ext4_journalled_write_end(struct file *file, 1405 struct address_space *mapping, 1406 loff_t pos, unsigned len, unsigned copied, 1407 struct page *page, void *fsdata) 1408 { 1409 struct folio *folio = page_folio(page); 1410 handle_t *handle = ext4_journal_current_handle(); 1411 struct inode *inode = mapping->host; 1412 loff_t old_size = inode->i_size; 1413 int ret = 0, ret2; 1414 int partial = 0; 1415 unsigned from, to; 1416 int size_changed = 0; 1417 bool verity = ext4_verity_in_progress(inode); 1418 1419 trace_ext4_journalled_write_end(inode, pos, len, copied); 1420 from = pos & (PAGE_SIZE - 1); 1421 to = from + len; 1422 1423 BUG_ON(!ext4_handle_valid(handle)); 1424 1425 if (ext4_has_inline_data(inode)) 1426 return ext4_write_inline_data_end(inode, pos, len, copied, 1427 folio); 1428 1429 if (unlikely(copied < len) && !folio_test_uptodate(folio)) { 1430 copied = 0; 1431 ext4_journalled_zero_new_buffers(handle, inode, folio, 1432 from, to); 1433 } else { 1434 if (unlikely(copied < len)) 1435 ext4_journalled_zero_new_buffers(handle, inode, folio, 1436 from + copied, to); 1437 ret = ext4_walk_page_buffers(handle, inode, 1438 folio_buffers(folio), 1439 from, from + copied, &partial, 1440 write_end_fn); 1441 if (!partial) 1442 folio_mark_uptodate(folio); 1443 } 1444 if (!verity) 1445 size_changed = ext4_update_inode_size(inode, pos + copied); 1446 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1447 folio_unlock(folio); 1448 folio_put(folio); 1449 1450 if (old_size < pos && !verity) { 1451 pagecache_isize_extended(inode, old_size, pos); 1452 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size); 1453 } 1454 1455 if (size_changed) { 1456 ret2 = ext4_mark_inode_dirty(handle, inode); 1457 if (!ret) 1458 ret = ret2; 1459 } 1460 1461 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1462 /* if we have allocated more blocks and copied 1463 * less. We will have blocks allocated outside 1464 * inode->i_size. So truncate them 1465 */ 1466 ext4_orphan_add(handle, inode); 1467 1468 ret2 = ext4_journal_stop(handle); 1469 if (!ret) 1470 ret = ret2; 1471 if (pos + len > inode->i_size && !verity) { 1472 ext4_truncate_failed_write(inode); 1473 /* 1474 * If truncate failed early the inode might still be 1475 * on the orphan list; we need to make sure the inode 1476 * is removed from the orphan list in that case. 1477 */ 1478 if (inode->i_nlink) 1479 ext4_orphan_del(NULL, inode); 1480 } 1481 1482 return ret ? ret : copied; 1483 } 1484 1485 /* 1486 * Reserve space for a single cluster 1487 */ 1488 static int ext4_da_reserve_space(struct inode *inode) 1489 { 1490 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1491 struct ext4_inode_info *ei = EXT4_I(inode); 1492 int ret; 1493 1494 /* 1495 * We will charge metadata quota at writeout time; this saves 1496 * us from metadata over-estimation, though we may go over by 1497 * a small amount in the end. Here we just reserve for data. 1498 */ 1499 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1500 if (ret) 1501 return ret; 1502 1503 spin_lock(&ei->i_block_reservation_lock); 1504 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1505 spin_unlock(&ei->i_block_reservation_lock); 1506 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1507 return -ENOSPC; 1508 } 1509 ei->i_reserved_data_blocks++; 1510 trace_ext4_da_reserve_space(inode); 1511 spin_unlock(&ei->i_block_reservation_lock); 1512 1513 return 0; /* success */ 1514 } 1515 1516 void ext4_da_release_space(struct inode *inode, int to_free) 1517 { 1518 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1519 struct ext4_inode_info *ei = EXT4_I(inode); 1520 1521 if (!to_free) 1522 return; /* Nothing to release, exit */ 1523 1524 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1525 1526 trace_ext4_da_release_space(inode, to_free); 1527 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1528 /* 1529 * if there aren't enough reserved blocks, then the 1530 * counter is messed up somewhere. Since this 1531 * function is called from invalidate page, it's 1532 * harmless to return without any action. 1533 */ 1534 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1535 "ino %lu, to_free %d with only %d reserved " 1536 "data blocks", inode->i_ino, to_free, 1537 ei->i_reserved_data_blocks); 1538 WARN_ON(1); 1539 to_free = ei->i_reserved_data_blocks; 1540 } 1541 ei->i_reserved_data_blocks -= to_free; 1542 1543 /* update fs dirty data blocks counter */ 1544 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1545 1546 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1547 1548 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1549 } 1550 1551 /* 1552 * Delayed allocation stuff 1553 */ 1554 1555 struct mpage_da_data { 1556 /* These are input fields for ext4_do_writepages() */ 1557 struct inode *inode; 1558 struct writeback_control *wbc; 1559 unsigned int can_map:1; /* Can writepages call map blocks? */ 1560 1561 /* These are internal state of ext4_do_writepages() */ 1562 pgoff_t first_page; /* The first page to write */ 1563 pgoff_t next_page; /* Current page to examine */ 1564 pgoff_t last_page; /* Last page to examine */ 1565 /* 1566 * Extent to map - this can be after first_page because that can be 1567 * fully mapped. We somewhat abuse m_flags to store whether the extent 1568 * is delalloc or unwritten. 1569 */ 1570 struct ext4_map_blocks map; 1571 struct ext4_io_submit io_submit; /* IO submission data */ 1572 unsigned int do_map:1; 1573 unsigned int scanned_until_end:1; 1574 unsigned int journalled_more_data:1; 1575 }; 1576 1577 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1578 bool invalidate) 1579 { 1580 unsigned nr, i; 1581 pgoff_t index, end; 1582 struct folio_batch fbatch; 1583 struct inode *inode = mpd->inode; 1584 struct address_space *mapping = inode->i_mapping; 1585 1586 /* This is necessary when next_page == 0. */ 1587 if (mpd->first_page >= mpd->next_page) 1588 return; 1589 1590 mpd->scanned_until_end = 0; 1591 index = mpd->first_page; 1592 end = mpd->next_page - 1; 1593 if (invalidate) { 1594 ext4_lblk_t start, last; 1595 start = index << (PAGE_SHIFT - inode->i_blkbits); 1596 last = end << (PAGE_SHIFT - inode->i_blkbits); 1597 1598 /* 1599 * avoid racing with extent status tree scans made by 1600 * ext4_insert_delayed_block() 1601 */ 1602 down_write(&EXT4_I(inode)->i_data_sem); 1603 ext4_es_remove_extent(inode, start, last - start + 1); 1604 up_write(&EXT4_I(inode)->i_data_sem); 1605 } 1606 1607 folio_batch_init(&fbatch); 1608 while (index <= end) { 1609 nr = filemap_get_folios(mapping, &index, end, &fbatch); 1610 if (nr == 0) 1611 break; 1612 for (i = 0; i < nr; i++) { 1613 struct folio *folio = fbatch.folios[i]; 1614 1615 if (folio->index < mpd->first_page) 1616 continue; 1617 if (folio_next_index(folio) - 1 > end) 1618 continue; 1619 BUG_ON(!folio_test_locked(folio)); 1620 BUG_ON(folio_test_writeback(folio)); 1621 if (invalidate) { 1622 if (folio_mapped(folio)) 1623 folio_clear_dirty_for_io(folio); 1624 block_invalidate_folio(folio, 0, 1625 folio_size(folio)); 1626 folio_clear_uptodate(folio); 1627 } 1628 folio_unlock(folio); 1629 } 1630 folio_batch_release(&fbatch); 1631 } 1632 } 1633 1634 static void ext4_print_free_blocks(struct inode *inode) 1635 { 1636 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1637 struct super_block *sb = inode->i_sb; 1638 struct ext4_inode_info *ei = EXT4_I(inode); 1639 1640 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1641 EXT4_C2B(EXT4_SB(inode->i_sb), 1642 ext4_count_free_clusters(sb))); 1643 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1644 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1645 (long long) EXT4_C2B(EXT4_SB(sb), 1646 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1647 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1648 (long long) EXT4_C2B(EXT4_SB(sb), 1649 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1650 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1651 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1652 ei->i_reserved_data_blocks); 1653 return; 1654 } 1655 1656 /* 1657 * ext4_insert_delayed_block - adds a delayed block to the extents status 1658 * tree, incrementing the reserved cluster/block 1659 * count or making a pending reservation 1660 * where needed 1661 * 1662 * @inode - file containing the newly added block 1663 * @lblk - logical block to be added 1664 * 1665 * Returns 0 on success, negative error code on failure. 1666 */ 1667 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1668 { 1669 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1670 int ret; 1671 bool allocated = false; 1672 1673 /* 1674 * If the cluster containing lblk is shared with a delayed, 1675 * written, or unwritten extent in a bigalloc file system, it's 1676 * already been accounted for and does not need to be reserved. 1677 * A pending reservation must be made for the cluster if it's 1678 * shared with a written or unwritten extent and doesn't already 1679 * have one. Written and unwritten extents can be purged from the 1680 * extents status tree if the system is under memory pressure, so 1681 * it's necessary to examine the extent tree if a search of the 1682 * extents status tree doesn't get a match. 1683 */ 1684 if (sbi->s_cluster_ratio == 1) { 1685 ret = ext4_da_reserve_space(inode); 1686 if (ret != 0) /* ENOSPC */ 1687 return ret; 1688 } else { /* bigalloc */ 1689 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1690 if (!ext4_es_scan_clu(inode, 1691 &ext4_es_is_mapped, lblk)) { 1692 ret = ext4_clu_mapped(inode, 1693 EXT4_B2C(sbi, lblk)); 1694 if (ret < 0) 1695 return ret; 1696 if (ret == 0) { 1697 ret = ext4_da_reserve_space(inode); 1698 if (ret != 0) /* ENOSPC */ 1699 return ret; 1700 } else { 1701 allocated = true; 1702 } 1703 } else { 1704 allocated = true; 1705 } 1706 } 1707 } 1708 1709 ext4_es_insert_delayed_block(inode, lblk, allocated); 1710 return 0; 1711 } 1712 1713 /* 1714 * This function is grabs code from the very beginning of 1715 * ext4_map_blocks, but assumes that the caller is from delayed write 1716 * time. This function looks up the requested blocks and sets the 1717 * buffer delay bit under the protection of i_data_sem. 1718 */ 1719 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1720 struct ext4_map_blocks *map, 1721 struct buffer_head *bh) 1722 { 1723 struct extent_status es; 1724 int retval; 1725 sector_t invalid_block = ~((sector_t) 0xffff); 1726 #ifdef ES_AGGRESSIVE_TEST 1727 struct ext4_map_blocks orig_map; 1728 1729 memcpy(&orig_map, map, sizeof(*map)); 1730 #endif 1731 1732 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1733 invalid_block = ~0; 1734 1735 map->m_flags = 0; 1736 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1737 (unsigned long) map->m_lblk); 1738 1739 /* Lookup extent status tree firstly */ 1740 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1741 if (ext4_es_is_hole(&es)) 1742 goto add_delayed; 1743 1744 found: 1745 /* 1746 * Delayed extent could be allocated by fallocate. 1747 * So we need to check it. 1748 */ 1749 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1750 map_bh(bh, inode->i_sb, invalid_block); 1751 set_buffer_new(bh); 1752 set_buffer_delay(bh); 1753 return 0; 1754 } 1755 1756 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1757 retval = es.es_len - (iblock - es.es_lblk); 1758 if (retval > map->m_len) 1759 retval = map->m_len; 1760 map->m_len = retval; 1761 if (ext4_es_is_written(&es)) 1762 map->m_flags |= EXT4_MAP_MAPPED; 1763 else if (ext4_es_is_unwritten(&es)) 1764 map->m_flags |= EXT4_MAP_UNWRITTEN; 1765 else 1766 BUG(); 1767 1768 #ifdef ES_AGGRESSIVE_TEST 1769 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1770 #endif 1771 return retval; 1772 } 1773 1774 /* 1775 * Try to see if we can get the block without requesting a new 1776 * file system block. 1777 */ 1778 down_read(&EXT4_I(inode)->i_data_sem); 1779 if (ext4_has_inline_data(inode)) 1780 retval = 0; 1781 else 1782 retval = ext4_map_query_blocks(NULL, inode, map); 1783 up_read(&EXT4_I(inode)->i_data_sem); 1784 if (retval) 1785 return retval; 1786 1787 add_delayed: 1788 down_write(&EXT4_I(inode)->i_data_sem); 1789 /* 1790 * Page fault path (ext4_page_mkwrite does not take i_rwsem) 1791 * and fallocate path (no folio lock) can race. Make sure we 1792 * lookup the extent status tree here again while i_data_sem 1793 * is held in write mode, before inserting a new da entry in 1794 * the extent status tree. 1795 */ 1796 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1797 if (!ext4_es_is_hole(&es)) { 1798 up_write(&EXT4_I(inode)->i_data_sem); 1799 goto found; 1800 } 1801 } else if (!ext4_has_inline_data(inode)) { 1802 retval = ext4_map_query_blocks(NULL, inode, map); 1803 if (retval) { 1804 up_write(&EXT4_I(inode)->i_data_sem); 1805 return retval; 1806 } 1807 } 1808 1809 retval = ext4_insert_delayed_block(inode, map->m_lblk); 1810 up_write(&EXT4_I(inode)->i_data_sem); 1811 if (retval) 1812 return retval; 1813 1814 map_bh(bh, inode->i_sb, invalid_block); 1815 set_buffer_new(bh); 1816 set_buffer_delay(bh); 1817 return retval; 1818 } 1819 1820 /* 1821 * This is a special get_block_t callback which is used by 1822 * ext4_da_write_begin(). It will either return mapped block or 1823 * reserve space for a single block. 1824 * 1825 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1826 * We also have b_blocknr = -1 and b_bdev initialized properly 1827 * 1828 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1829 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1830 * initialized properly. 1831 */ 1832 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1833 struct buffer_head *bh, int create) 1834 { 1835 struct ext4_map_blocks map; 1836 int ret = 0; 1837 1838 BUG_ON(create == 0); 1839 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1840 1841 map.m_lblk = iblock; 1842 map.m_len = 1; 1843 1844 /* 1845 * first, we need to know whether the block is allocated already 1846 * preallocated blocks are unmapped but should treated 1847 * the same as allocated blocks. 1848 */ 1849 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1850 if (ret <= 0) 1851 return ret; 1852 1853 map_bh(bh, inode->i_sb, map.m_pblk); 1854 ext4_update_bh_state(bh, map.m_flags); 1855 1856 if (buffer_unwritten(bh)) { 1857 /* A delayed write to unwritten bh should be marked 1858 * new and mapped. Mapped ensures that we don't do 1859 * get_block multiple times when we write to the same 1860 * offset and new ensures that we do proper zero out 1861 * for partial write. 1862 */ 1863 set_buffer_new(bh); 1864 set_buffer_mapped(bh); 1865 } 1866 return 0; 1867 } 1868 1869 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio) 1870 { 1871 mpd->first_page += folio_nr_pages(folio); 1872 folio_unlock(folio); 1873 } 1874 1875 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio) 1876 { 1877 size_t len; 1878 loff_t size; 1879 int err; 1880 1881 BUG_ON(folio->index != mpd->first_page); 1882 folio_clear_dirty_for_io(folio); 1883 /* 1884 * We have to be very careful here! Nothing protects writeback path 1885 * against i_size changes and the page can be writeably mapped into 1886 * page tables. So an application can be growing i_size and writing 1887 * data through mmap while writeback runs. folio_clear_dirty_for_io() 1888 * write-protects our page in page tables and the page cannot get 1889 * written to again until we release folio lock. So only after 1890 * folio_clear_dirty_for_io() we are safe to sample i_size for 1891 * ext4_bio_write_folio() to zero-out tail of the written page. We rely 1892 * on the barrier provided by folio_test_clear_dirty() in 1893 * folio_clear_dirty_for_io() to make sure i_size is really sampled only 1894 * after page tables are updated. 1895 */ 1896 size = i_size_read(mpd->inode); 1897 len = folio_size(folio); 1898 if (folio_pos(folio) + len > size && 1899 !ext4_verity_in_progress(mpd->inode)) 1900 len = size & ~PAGE_MASK; 1901 err = ext4_bio_write_folio(&mpd->io_submit, folio, len); 1902 if (!err) 1903 mpd->wbc->nr_to_write--; 1904 1905 return err; 1906 } 1907 1908 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 1909 1910 /* 1911 * mballoc gives us at most this number of blocks... 1912 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1913 * The rest of mballoc seems to handle chunks up to full group size. 1914 */ 1915 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1916 1917 /* 1918 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1919 * 1920 * @mpd - extent of blocks 1921 * @lblk - logical number of the block in the file 1922 * @bh - buffer head we want to add to the extent 1923 * 1924 * The function is used to collect contig. blocks in the same state. If the 1925 * buffer doesn't require mapping for writeback and we haven't started the 1926 * extent of buffers to map yet, the function returns 'true' immediately - the 1927 * caller can write the buffer right away. Otherwise the function returns true 1928 * if the block has been added to the extent, false if the block couldn't be 1929 * added. 1930 */ 1931 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1932 struct buffer_head *bh) 1933 { 1934 struct ext4_map_blocks *map = &mpd->map; 1935 1936 /* Buffer that doesn't need mapping for writeback? */ 1937 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1938 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1939 /* So far no extent to map => we write the buffer right away */ 1940 if (map->m_len == 0) 1941 return true; 1942 return false; 1943 } 1944 1945 /* First block in the extent? */ 1946 if (map->m_len == 0) { 1947 /* We cannot map unless handle is started... */ 1948 if (!mpd->do_map) 1949 return false; 1950 map->m_lblk = lblk; 1951 map->m_len = 1; 1952 map->m_flags = bh->b_state & BH_FLAGS; 1953 return true; 1954 } 1955 1956 /* Don't go larger than mballoc is willing to allocate */ 1957 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1958 return false; 1959 1960 /* Can we merge the block to our big extent? */ 1961 if (lblk == map->m_lblk + map->m_len && 1962 (bh->b_state & BH_FLAGS) == map->m_flags) { 1963 map->m_len++; 1964 return true; 1965 } 1966 return false; 1967 } 1968 1969 /* 1970 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1971 * 1972 * @mpd - extent of blocks for mapping 1973 * @head - the first buffer in the page 1974 * @bh - buffer we should start processing from 1975 * @lblk - logical number of the block in the file corresponding to @bh 1976 * 1977 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1978 * the page for IO if all buffers in this page were mapped and there's no 1979 * accumulated extent of buffers to map or add buffers in the page to the 1980 * extent of buffers to map. The function returns 1 if the caller can continue 1981 * by processing the next page, 0 if it should stop adding buffers to the 1982 * extent to map because we cannot extend it anymore. It can also return value 1983 * < 0 in case of error during IO submission. 1984 */ 1985 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1986 struct buffer_head *head, 1987 struct buffer_head *bh, 1988 ext4_lblk_t lblk) 1989 { 1990 struct inode *inode = mpd->inode; 1991 int err; 1992 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 1993 >> inode->i_blkbits; 1994 1995 if (ext4_verity_in_progress(inode)) 1996 blocks = EXT_MAX_BLOCKS; 1997 1998 do { 1999 BUG_ON(buffer_locked(bh)); 2000 2001 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2002 /* Found extent to map? */ 2003 if (mpd->map.m_len) 2004 return 0; 2005 /* Buffer needs mapping and handle is not started? */ 2006 if (!mpd->do_map) 2007 return 0; 2008 /* Everything mapped so far and we hit EOF */ 2009 break; 2010 } 2011 } while (lblk++, (bh = bh->b_this_page) != head); 2012 /* So far everything mapped? Submit the page for IO. */ 2013 if (mpd->map.m_len == 0) { 2014 err = mpage_submit_folio(mpd, head->b_folio); 2015 if (err < 0) 2016 return err; 2017 mpage_folio_done(mpd, head->b_folio); 2018 } 2019 if (lblk >= blocks) { 2020 mpd->scanned_until_end = 1; 2021 return 0; 2022 } 2023 return 1; 2024 } 2025 2026 /* 2027 * mpage_process_folio - update folio buffers corresponding to changed extent 2028 * and may submit fully mapped page for IO 2029 * @mpd: description of extent to map, on return next extent to map 2030 * @folio: Contains these buffers. 2031 * @m_lblk: logical block mapping. 2032 * @m_pblk: corresponding physical mapping. 2033 * @map_bh: determines on return whether this page requires any further 2034 * mapping or not. 2035 * 2036 * Scan given folio buffers corresponding to changed extent and update buffer 2037 * state according to new extent state. 2038 * We map delalloc buffers to their physical location, clear unwritten bits. 2039 * If the given folio is not fully mapped, we update @mpd to the next extent in 2040 * the given folio that needs mapping & return @map_bh as true. 2041 */ 2042 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio, 2043 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2044 bool *map_bh) 2045 { 2046 struct buffer_head *head, *bh; 2047 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2048 ext4_lblk_t lblk = *m_lblk; 2049 ext4_fsblk_t pblock = *m_pblk; 2050 int err = 0; 2051 int blkbits = mpd->inode->i_blkbits; 2052 ssize_t io_end_size = 0; 2053 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2054 2055 bh = head = folio_buffers(folio); 2056 do { 2057 if (lblk < mpd->map.m_lblk) 2058 continue; 2059 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2060 /* 2061 * Buffer after end of mapped extent. 2062 * Find next buffer in the folio to map. 2063 */ 2064 mpd->map.m_len = 0; 2065 mpd->map.m_flags = 0; 2066 io_end_vec->size += io_end_size; 2067 2068 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2069 if (err > 0) 2070 err = 0; 2071 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2072 io_end_vec = ext4_alloc_io_end_vec(io_end); 2073 if (IS_ERR(io_end_vec)) { 2074 err = PTR_ERR(io_end_vec); 2075 goto out; 2076 } 2077 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2078 } 2079 *map_bh = true; 2080 goto out; 2081 } 2082 if (buffer_delay(bh)) { 2083 clear_buffer_delay(bh); 2084 bh->b_blocknr = pblock++; 2085 } 2086 clear_buffer_unwritten(bh); 2087 io_end_size += (1 << blkbits); 2088 } while (lblk++, (bh = bh->b_this_page) != head); 2089 2090 io_end_vec->size += io_end_size; 2091 *map_bh = false; 2092 out: 2093 *m_lblk = lblk; 2094 *m_pblk = pblock; 2095 return err; 2096 } 2097 2098 /* 2099 * mpage_map_buffers - update buffers corresponding to changed extent and 2100 * submit fully mapped pages for IO 2101 * 2102 * @mpd - description of extent to map, on return next extent to map 2103 * 2104 * Scan buffers corresponding to changed extent (we expect corresponding pages 2105 * to be already locked) and update buffer state according to new extent state. 2106 * We map delalloc buffers to their physical location, clear unwritten bits, 2107 * and mark buffers as uninit when we perform writes to unwritten extents 2108 * and do extent conversion after IO is finished. If the last page is not fully 2109 * mapped, we update @map to the next extent in the last page that needs 2110 * mapping. Otherwise we submit the page for IO. 2111 */ 2112 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2113 { 2114 struct folio_batch fbatch; 2115 unsigned nr, i; 2116 struct inode *inode = mpd->inode; 2117 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2118 pgoff_t start, end; 2119 ext4_lblk_t lblk; 2120 ext4_fsblk_t pblock; 2121 int err; 2122 bool map_bh = false; 2123 2124 start = mpd->map.m_lblk >> bpp_bits; 2125 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2126 lblk = start << bpp_bits; 2127 pblock = mpd->map.m_pblk; 2128 2129 folio_batch_init(&fbatch); 2130 while (start <= end) { 2131 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2132 if (nr == 0) 2133 break; 2134 for (i = 0; i < nr; i++) { 2135 struct folio *folio = fbatch.folios[i]; 2136 2137 err = mpage_process_folio(mpd, folio, &lblk, &pblock, 2138 &map_bh); 2139 /* 2140 * If map_bh is true, means page may require further bh 2141 * mapping, or maybe the page was submitted for IO. 2142 * So we return to call further extent mapping. 2143 */ 2144 if (err < 0 || map_bh) 2145 goto out; 2146 /* Page fully mapped - let IO run! */ 2147 err = mpage_submit_folio(mpd, folio); 2148 if (err < 0) 2149 goto out; 2150 mpage_folio_done(mpd, folio); 2151 } 2152 folio_batch_release(&fbatch); 2153 } 2154 /* Extent fully mapped and matches with page boundary. We are done. */ 2155 mpd->map.m_len = 0; 2156 mpd->map.m_flags = 0; 2157 return 0; 2158 out: 2159 folio_batch_release(&fbatch); 2160 return err; 2161 } 2162 2163 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2164 { 2165 struct inode *inode = mpd->inode; 2166 struct ext4_map_blocks *map = &mpd->map; 2167 int get_blocks_flags; 2168 int err, dioread_nolock; 2169 2170 trace_ext4_da_write_pages_extent(inode, map); 2171 /* 2172 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2173 * to convert an unwritten extent to be initialized (in the case 2174 * where we have written into one or more preallocated blocks). It is 2175 * possible that we're going to need more metadata blocks than 2176 * previously reserved. However we must not fail because we're in 2177 * writeback and there is nothing we can do about it so it might result 2178 * in data loss. So use reserved blocks to allocate metadata if 2179 * possible. 2180 * 2181 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2182 * the blocks in question are delalloc blocks. This indicates 2183 * that the blocks and quotas has already been checked when 2184 * the data was copied into the page cache. 2185 */ 2186 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2187 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2188 EXT4_GET_BLOCKS_IO_SUBMIT; 2189 dioread_nolock = ext4_should_dioread_nolock(inode); 2190 if (dioread_nolock) 2191 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2192 if (map->m_flags & BIT(BH_Delay)) 2193 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2194 2195 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2196 if (err < 0) 2197 return err; 2198 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2199 if (!mpd->io_submit.io_end->handle && 2200 ext4_handle_valid(handle)) { 2201 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2202 handle->h_rsv_handle = NULL; 2203 } 2204 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2205 } 2206 2207 BUG_ON(map->m_len == 0); 2208 return 0; 2209 } 2210 2211 /* 2212 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2213 * mpd->len and submit pages underlying it for IO 2214 * 2215 * @handle - handle for journal operations 2216 * @mpd - extent to map 2217 * @give_up_on_write - we set this to true iff there is a fatal error and there 2218 * is no hope of writing the data. The caller should discard 2219 * dirty pages to avoid infinite loops. 2220 * 2221 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2222 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2223 * them to initialized or split the described range from larger unwritten 2224 * extent. Note that we need not map all the described range since allocation 2225 * can return less blocks or the range is covered by more unwritten extents. We 2226 * cannot map more because we are limited by reserved transaction credits. On 2227 * the other hand we always make sure that the last touched page is fully 2228 * mapped so that it can be written out (and thus forward progress is 2229 * guaranteed). After mapping we submit all mapped pages for IO. 2230 */ 2231 static int mpage_map_and_submit_extent(handle_t *handle, 2232 struct mpage_da_data *mpd, 2233 bool *give_up_on_write) 2234 { 2235 struct inode *inode = mpd->inode; 2236 struct ext4_map_blocks *map = &mpd->map; 2237 int err; 2238 loff_t disksize; 2239 int progress = 0; 2240 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2241 struct ext4_io_end_vec *io_end_vec; 2242 2243 io_end_vec = ext4_alloc_io_end_vec(io_end); 2244 if (IS_ERR(io_end_vec)) 2245 return PTR_ERR(io_end_vec); 2246 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2247 do { 2248 err = mpage_map_one_extent(handle, mpd); 2249 if (err < 0) { 2250 struct super_block *sb = inode->i_sb; 2251 2252 if (ext4_forced_shutdown(sb)) 2253 goto invalidate_dirty_pages; 2254 /* 2255 * Let the uper layers retry transient errors. 2256 * In the case of ENOSPC, if ext4_count_free_blocks() 2257 * is non-zero, a commit should free up blocks. 2258 */ 2259 if ((err == -ENOMEM) || 2260 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2261 if (progress) 2262 goto update_disksize; 2263 return err; 2264 } 2265 ext4_msg(sb, KERN_CRIT, 2266 "Delayed block allocation failed for " 2267 "inode %lu at logical offset %llu with" 2268 " max blocks %u with error %d", 2269 inode->i_ino, 2270 (unsigned long long)map->m_lblk, 2271 (unsigned)map->m_len, -err); 2272 ext4_msg(sb, KERN_CRIT, 2273 "This should not happen!! Data will " 2274 "be lost\n"); 2275 if (err == -ENOSPC) 2276 ext4_print_free_blocks(inode); 2277 invalidate_dirty_pages: 2278 *give_up_on_write = true; 2279 return err; 2280 } 2281 progress = 1; 2282 /* 2283 * Update buffer state, submit mapped pages, and get us new 2284 * extent to map 2285 */ 2286 err = mpage_map_and_submit_buffers(mpd); 2287 if (err < 0) 2288 goto update_disksize; 2289 } while (map->m_len); 2290 2291 update_disksize: 2292 /* 2293 * Update on-disk size after IO is submitted. Races with 2294 * truncate are avoided by checking i_size under i_data_sem. 2295 */ 2296 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2297 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2298 int err2; 2299 loff_t i_size; 2300 2301 down_write(&EXT4_I(inode)->i_data_sem); 2302 i_size = i_size_read(inode); 2303 if (disksize > i_size) 2304 disksize = i_size; 2305 if (disksize > EXT4_I(inode)->i_disksize) 2306 EXT4_I(inode)->i_disksize = disksize; 2307 up_write(&EXT4_I(inode)->i_data_sem); 2308 err2 = ext4_mark_inode_dirty(handle, inode); 2309 if (err2) { 2310 ext4_error_err(inode->i_sb, -err2, 2311 "Failed to mark inode %lu dirty", 2312 inode->i_ino); 2313 } 2314 if (!err) 2315 err = err2; 2316 } 2317 return err; 2318 } 2319 2320 /* 2321 * Calculate the total number of credits to reserve for one writepages 2322 * iteration. This is called from ext4_writepages(). We map an extent of 2323 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2324 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2325 * bpp - 1 blocks in bpp different extents. 2326 */ 2327 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2328 { 2329 int bpp = ext4_journal_blocks_per_page(inode); 2330 2331 return ext4_meta_trans_blocks(inode, 2332 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2333 } 2334 2335 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio, 2336 size_t len) 2337 { 2338 struct buffer_head *page_bufs = folio_buffers(folio); 2339 struct inode *inode = folio->mapping->host; 2340 int ret, err; 2341 2342 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2343 NULL, do_journal_get_write_access); 2344 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2345 NULL, write_end_fn); 2346 if (ret == 0) 2347 ret = err; 2348 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len); 2349 if (ret == 0) 2350 ret = err; 2351 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2352 2353 return ret; 2354 } 2355 2356 static int mpage_journal_page_buffers(handle_t *handle, 2357 struct mpage_da_data *mpd, 2358 struct folio *folio) 2359 { 2360 struct inode *inode = mpd->inode; 2361 loff_t size = i_size_read(inode); 2362 size_t len = folio_size(folio); 2363 2364 folio_clear_checked(folio); 2365 mpd->wbc->nr_to_write--; 2366 2367 if (folio_pos(folio) + len > size && 2368 !ext4_verity_in_progress(inode)) 2369 len = size & (len - 1); 2370 2371 return ext4_journal_folio_buffers(handle, folio, len); 2372 } 2373 2374 /* 2375 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2376 * needing mapping, submit mapped pages 2377 * 2378 * @mpd - where to look for pages 2379 * 2380 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2381 * IO immediately. If we cannot map blocks, we submit just already mapped 2382 * buffers in the page for IO and keep page dirty. When we can map blocks and 2383 * we find a page which isn't mapped we start accumulating extent of buffers 2384 * underlying these pages that needs mapping (formed by either delayed or 2385 * unwritten buffers). We also lock the pages containing these buffers. The 2386 * extent found is returned in @mpd structure (starting at mpd->lblk with 2387 * length mpd->len blocks). 2388 * 2389 * Note that this function can attach bios to one io_end structure which are 2390 * neither logically nor physically contiguous. Although it may seem as an 2391 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2392 * case as we need to track IO to all buffers underlying a page in one io_end. 2393 */ 2394 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2395 { 2396 struct address_space *mapping = mpd->inode->i_mapping; 2397 struct folio_batch fbatch; 2398 unsigned int nr_folios; 2399 pgoff_t index = mpd->first_page; 2400 pgoff_t end = mpd->last_page; 2401 xa_mark_t tag; 2402 int i, err = 0; 2403 int blkbits = mpd->inode->i_blkbits; 2404 ext4_lblk_t lblk; 2405 struct buffer_head *head; 2406 handle_t *handle = NULL; 2407 int bpp = ext4_journal_blocks_per_page(mpd->inode); 2408 2409 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2410 tag = PAGECACHE_TAG_TOWRITE; 2411 else 2412 tag = PAGECACHE_TAG_DIRTY; 2413 2414 mpd->map.m_len = 0; 2415 mpd->next_page = index; 2416 if (ext4_should_journal_data(mpd->inode)) { 2417 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE, 2418 bpp); 2419 if (IS_ERR(handle)) 2420 return PTR_ERR(handle); 2421 } 2422 folio_batch_init(&fbatch); 2423 while (index <= end) { 2424 nr_folios = filemap_get_folios_tag(mapping, &index, end, 2425 tag, &fbatch); 2426 if (nr_folios == 0) 2427 break; 2428 2429 for (i = 0; i < nr_folios; i++) { 2430 struct folio *folio = fbatch.folios[i]; 2431 2432 /* 2433 * Accumulated enough dirty pages? This doesn't apply 2434 * to WB_SYNC_ALL mode. For integrity sync we have to 2435 * keep going because someone may be concurrently 2436 * dirtying pages, and we might have synced a lot of 2437 * newly appeared dirty pages, but have not synced all 2438 * of the old dirty pages. 2439 */ 2440 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2441 mpd->wbc->nr_to_write <= 2442 mpd->map.m_len >> (PAGE_SHIFT - blkbits)) 2443 goto out; 2444 2445 /* If we can't merge this page, we are done. */ 2446 if (mpd->map.m_len > 0 && mpd->next_page != folio->index) 2447 goto out; 2448 2449 if (handle) { 2450 err = ext4_journal_ensure_credits(handle, bpp, 2451 0); 2452 if (err < 0) 2453 goto out; 2454 } 2455 2456 folio_lock(folio); 2457 /* 2458 * If the page is no longer dirty, or its mapping no 2459 * longer corresponds to inode we are writing (which 2460 * means it has been truncated or invalidated), or the 2461 * page is already under writeback and we are not doing 2462 * a data integrity writeback, skip the page 2463 */ 2464 if (!folio_test_dirty(folio) || 2465 (folio_test_writeback(folio) && 2466 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2467 unlikely(folio->mapping != mapping)) { 2468 folio_unlock(folio); 2469 continue; 2470 } 2471 2472 folio_wait_writeback(folio); 2473 BUG_ON(folio_test_writeback(folio)); 2474 2475 /* 2476 * Should never happen but for buggy code in 2477 * other subsystems that call 2478 * set_page_dirty() without properly warning 2479 * the file system first. See [1] for more 2480 * information. 2481 * 2482 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2483 */ 2484 if (!folio_buffers(folio)) { 2485 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index); 2486 folio_clear_dirty(folio); 2487 folio_unlock(folio); 2488 continue; 2489 } 2490 2491 if (mpd->map.m_len == 0) 2492 mpd->first_page = folio->index; 2493 mpd->next_page = folio_next_index(folio); 2494 /* 2495 * Writeout when we cannot modify metadata is simple. 2496 * Just submit the page. For data=journal mode we 2497 * first handle writeout of the page for checkpoint and 2498 * only after that handle delayed page dirtying. This 2499 * makes sure current data is checkpointed to the final 2500 * location before possibly journalling it again which 2501 * is desirable when the page is frequently dirtied 2502 * through a pin. 2503 */ 2504 if (!mpd->can_map) { 2505 err = mpage_submit_folio(mpd, folio); 2506 if (err < 0) 2507 goto out; 2508 /* Pending dirtying of journalled data? */ 2509 if (folio_test_checked(folio)) { 2510 err = mpage_journal_page_buffers(handle, 2511 mpd, folio); 2512 if (err < 0) 2513 goto out; 2514 mpd->journalled_more_data = 1; 2515 } 2516 mpage_folio_done(mpd, folio); 2517 } else { 2518 /* Add all dirty buffers to mpd */ 2519 lblk = ((ext4_lblk_t)folio->index) << 2520 (PAGE_SHIFT - blkbits); 2521 head = folio_buffers(folio); 2522 err = mpage_process_page_bufs(mpd, head, head, 2523 lblk); 2524 if (err <= 0) 2525 goto out; 2526 err = 0; 2527 } 2528 } 2529 folio_batch_release(&fbatch); 2530 cond_resched(); 2531 } 2532 mpd->scanned_until_end = 1; 2533 if (handle) 2534 ext4_journal_stop(handle); 2535 return 0; 2536 out: 2537 folio_batch_release(&fbatch); 2538 if (handle) 2539 ext4_journal_stop(handle); 2540 return err; 2541 } 2542 2543 static int ext4_do_writepages(struct mpage_da_data *mpd) 2544 { 2545 struct writeback_control *wbc = mpd->wbc; 2546 pgoff_t writeback_index = 0; 2547 long nr_to_write = wbc->nr_to_write; 2548 int range_whole = 0; 2549 int cycled = 1; 2550 handle_t *handle = NULL; 2551 struct inode *inode = mpd->inode; 2552 struct address_space *mapping = inode->i_mapping; 2553 int needed_blocks, rsv_blocks = 0, ret = 0; 2554 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2555 struct blk_plug plug; 2556 bool give_up_on_write = false; 2557 2558 trace_ext4_writepages(inode, wbc); 2559 2560 /* 2561 * No pages to write? This is mainly a kludge to avoid starting 2562 * a transaction for special inodes like journal inode on last iput() 2563 * because that could violate lock ordering on umount 2564 */ 2565 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2566 goto out_writepages; 2567 2568 /* 2569 * If the filesystem has aborted, it is read-only, so return 2570 * right away instead of dumping stack traces later on that 2571 * will obscure the real source of the problem. We test 2572 * fs shutdown state instead of sb->s_flag's SB_RDONLY because 2573 * the latter could be true if the filesystem is mounted 2574 * read-only, and in that case, ext4_writepages should 2575 * *never* be called, so if that ever happens, we would want 2576 * the stack trace. 2577 */ 2578 if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) { 2579 ret = -EROFS; 2580 goto out_writepages; 2581 } 2582 2583 /* 2584 * If we have inline data and arrive here, it means that 2585 * we will soon create the block for the 1st page, so 2586 * we'd better clear the inline data here. 2587 */ 2588 if (ext4_has_inline_data(inode)) { 2589 /* Just inode will be modified... */ 2590 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2591 if (IS_ERR(handle)) { 2592 ret = PTR_ERR(handle); 2593 goto out_writepages; 2594 } 2595 BUG_ON(ext4_test_inode_state(inode, 2596 EXT4_STATE_MAY_INLINE_DATA)); 2597 ext4_destroy_inline_data(handle, inode); 2598 ext4_journal_stop(handle); 2599 } 2600 2601 /* 2602 * data=journal mode does not do delalloc so we just need to writeout / 2603 * journal already mapped buffers. On the other hand we need to commit 2604 * transaction to make data stable. We expect all the data to be 2605 * already in the journal (the only exception are DMA pinned pages 2606 * dirtied behind our back) so we commit transaction here and run the 2607 * writeback loop to checkpoint them. The checkpointing is not actually 2608 * necessary to make data persistent *but* quite a few places (extent 2609 * shifting operations, fsverity, ...) depend on being able to drop 2610 * pagecache pages after calling filemap_write_and_wait() and for that 2611 * checkpointing needs to happen. 2612 */ 2613 if (ext4_should_journal_data(inode)) { 2614 mpd->can_map = 0; 2615 if (wbc->sync_mode == WB_SYNC_ALL) 2616 ext4_fc_commit(sbi->s_journal, 2617 EXT4_I(inode)->i_datasync_tid); 2618 } 2619 mpd->journalled_more_data = 0; 2620 2621 if (ext4_should_dioread_nolock(inode)) { 2622 /* 2623 * We may need to convert up to one extent per block in 2624 * the page and we may dirty the inode. 2625 */ 2626 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2627 PAGE_SIZE >> inode->i_blkbits); 2628 } 2629 2630 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2631 range_whole = 1; 2632 2633 if (wbc->range_cyclic) { 2634 writeback_index = mapping->writeback_index; 2635 if (writeback_index) 2636 cycled = 0; 2637 mpd->first_page = writeback_index; 2638 mpd->last_page = -1; 2639 } else { 2640 mpd->first_page = wbc->range_start >> PAGE_SHIFT; 2641 mpd->last_page = wbc->range_end >> PAGE_SHIFT; 2642 } 2643 2644 ext4_io_submit_init(&mpd->io_submit, wbc); 2645 retry: 2646 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2647 tag_pages_for_writeback(mapping, mpd->first_page, 2648 mpd->last_page); 2649 blk_start_plug(&plug); 2650 2651 /* 2652 * First writeback pages that don't need mapping - we can avoid 2653 * starting a transaction unnecessarily and also avoid being blocked 2654 * in the block layer on device congestion while having transaction 2655 * started. 2656 */ 2657 mpd->do_map = 0; 2658 mpd->scanned_until_end = 0; 2659 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2660 if (!mpd->io_submit.io_end) { 2661 ret = -ENOMEM; 2662 goto unplug; 2663 } 2664 ret = mpage_prepare_extent_to_map(mpd); 2665 /* Unlock pages we didn't use */ 2666 mpage_release_unused_pages(mpd, false); 2667 /* Submit prepared bio */ 2668 ext4_io_submit(&mpd->io_submit); 2669 ext4_put_io_end_defer(mpd->io_submit.io_end); 2670 mpd->io_submit.io_end = NULL; 2671 if (ret < 0) 2672 goto unplug; 2673 2674 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { 2675 /* For each extent of pages we use new io_end */ 2676 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2677 if (!mpd->io_submit.io_end) { 2678 ret = -ENOMEM; 2679 break; 2680 } 2681 2682 WARN_ON_ONCE(!mpd->can_map); 2683 /* 2684 * We have two constraints: We find one extent to map and we 2685 * must always write out whole page (makes a difference when 2686 * blocksize < pagesize) so that we don't block on IO when we 2687 * try to write out the rest of the page. Journalled mode is 2688 * not supported by delalloc. 2689 */ 2690 BUG_ON(ext4_should_journal_data(inode)); 2691 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2692 2693 /* start a new transaction */ 2694 handle = ext4_journal_start_with_reserve(inode, 2695 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2696 if (IS_ERR(handle)) { 2697 ret = PTR_ERR(handle); 2698 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2699 "%ld pages, ino %lu; err %d", __func__, 2700 wbc->nr_to_write, inode->i_ino, ret); 2701 /* Release allocated io_end */ 2702 ext4_put_io_end(mpd->io_submit.io_end); 2703 mpd->io_submit.io_end = NULL; 2704 break; 2705 } 2706 mpd->do_map = 1; 2707 2708 trace_ext4_da_write_pages(inode, mpd->first_page, wbc); 2709 ret = mpage_prepare_extent_to_map(mpd); 2710 if (!ret && mpd->map.m_len) 2711 ret = mpage_map_and_submit_extent(handle, mpd, 2712 &give_up_on_write); 2713 /* 2714 * Caution: If the handle is synchronous, 2715 * ext4_journal_stop() can wait for transaction commit 2716 * to finish which may depend on writeback of pages to 2717 * complete or on page lock to be released. In that 2718 * case, we have to wait until after we have 2719 * submitted all the IO, released page locks we hold, 2720 * and dropped io_end reference (for extent conversion 2721 * to be able to complete) before stopping the handle. 2722 */ 2723 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2724 ext4_journal_stop(handle); 2725 handle = NULL; 2726 mpd->do_map = 0; 2727 } 2728 /* Unlock pages we didn't use */ 2729 mpage_release_unused_pages(mpd, give_up_on_write); 2730 /* Submit prepared bio */ 2731 ext4_io_submit(&mpd->io_submit); 2732 2733 /* 2734 * Drop our io_end reference we got from init. We have 2735 * to be careful and use deferred io_end finishing if 2736 * we are still holding the transaction as we can 2737 * release the last reference to io_end which may end 2738 * up doing unwritten extent conversion. 2739 */ 2740 if (handle) { 2741 ext4_put_io_end_defer(mpd->io_submit.io_end); 2742 ext4_journal_stop(handle); 2743 } else 2744 ext4_put_io_end(mpd->io_submit.io_end); 2745 mpd->io_submit.io_end = NULL; 2746 2747 if (ret == -ENOSPC && sbi->s_journal) { 2748 /* 2749 * Commit the transaction which would 2750 * free blocks released in the transaction 2751 * and try again 2752 */ 2753 jbd2_journal_force_commit_nested(sbi->s_journal); 2754 ret = 0; 2755 continue; 2756 } 2757 /* Fatal error - ENOMEM, EIO... */ 2758 if (ret) 2759 break; 2760 } 2761 unplug: 2762 blk_finish_plug(&plug); 2763 if (!ret && !cycled && wbc->nr_to_write > 0) { 2764 cycled = 1; 2765 mpd->last_page = writeback_index - 1; 2766 mpd->first_page = 0; 2767 goto retry; 2768 } 2769 2770 /* Update index */ 2771 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2772 /* 2773 * Set the writeback_index so that range_cyclic 2774 * mode will write it back later 2775 */ 2776 mapping->writeback_index = mpd->first_page; 2777 2778 out_writepages: 2779 trace_ext4_writepages_result(inode, wbc, ret, 2780 nr_to_write - wbc->nr_to_write); 2781 return ret; 2782 } 2783 2784 static int ext4_writepages(struct address_space *mapping, 2785 struct writeback_control *wbc) 2786 { 2787 struct super_block *sb = mapping->host->i_sb; 2788 struct mpage_da_data mpd = { 2789 .inode = mapping->host, 2790 .wbc = wbc, 2791 .can_map = 1, 2792 }; 2793 int ret; 2794 int alloc_ctx; 2795 2796 if (unlikely(ext4_forced_shutdown(sb))) 2797 return -EIO; 2798 2799 alloc_ctx = ext4_writepages_down_read(sb); 2800 ret = ext4_do_writepages(&mpd); 2801 /* 2802 * For data=journal writeback we could have come across pages marked 2803 * for delayed dirtying (PageChecked) which were just added to the 2804 * running transaction. Try once more to get them to stable storage. 2805 */ 2806 if (!ret && mpd.journalled_more_data) 2807 ret = ext4_do_writepages(&mpd); 2808 ext4_writepages_up_read(sb, alloc_ctx); 2809 2810 return ret; 2811 } 2812 2813 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) 2814 { 2815 struct writeback_control wbc = { 2816 .sync_mode = WB_SYNC_ALL, 2817 .nr_to_write = LONG_MAX, 2818 .range_start = jinode->i_dirty_start, 2819 .range_end = jinode->i_dirty_end, 2820 }; 2821 struct mpage_da_data mpd = { 2822 .inode = jinode->i_vfs_inode, 2823 .wbc = &wbc, 2824 .can_map = 0, 2825 }; 2826 return ext4_do_writepages(&mpd); 2827 } 2828 2829 static int ext4_dax_writepages(struct address_space *mapping, 2830 struct writeback_control *wbc) 2831 { 2832 int ret; 2833 long nr_to_write = wbc->nr_to_write; 2834 struct inode *inode = mapping->host; 2835 int alloc_ctx; 2836 2837 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 2838 return -EIO; 2839 2840 alloc_ctx = ext4_writepages_down_read(inode->i_sb); 2841 trace_ext4_writepages(inode, wbc); 2842 2843 ret = dax_writeback_mapping_range(mapping, 2844 EXT4_SB(inode->i_sb)->s_daxdev, wbc); 2845 trace_ext4_writepages_result(inode, wbc, ret, 2846 nr_to_write - wbc->nr_to_write); 2847 ext4_writepages_up_read(inode->i_sb, alloc_ctx); 2848 return ret; 2849 } 2850 2851 static int ext4_nonda_switch(struct super_block *sb) 2852 { 2853 s64 free_clusters, dirty_clusters; 2854 struct ext4_sb_info *sbi = EXT4_SB(sb); 2855 2856 /* 2857 * switch to non delalloc mode if we are running low 2858 * on free block. The free block accounting via percpu 2859 * counters can get slightly wrong with percpu_counter_batch getting 2860 * accumulated on each CPU without updating global counters 2861 * Delalloc need an accurate free block accounting. So switch 2862 * to non delalloc when we are near to error range. 2863 */ 2864 free_clusters = 2865 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2866 dirty_clusters = 2867 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2868 /* 2869 * Start pushing delalloc when 1/2 of free blocks are dirty. 2870 */ 2871 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2872 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2873 2874 if (2 * free_clusters < 3 * dirty_clusters || 2875 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2876 /* 2877 * free block count is less than 150% of dirty blocks 2878 * or free blocks is less than watermark 2879 */ 2880 return 1; 2881 } 2882 return 0; 2883 } 2884 2885 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2886 loff_t pos, unsigned len, 2887 struct page **pagep, void **fsdata) 2888 { 2889 int ret, retries = 0; 2890 struct folio *folio; 2891 pgoff_t index; 2892 struct inode *inode = mapping->host; 2893 2894 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 2895 return -EIO; 2896 2897 index = pos >> PAGE_SHIFT; 2898 2899 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 2900 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2901 return ext4_write_begin(file, mapping, pos, 2902 len, pagep, fsdata); 2903 } 2904 *fsdata = (void *)0; 2905 trace_ext4_da_write_begin(inode, pos, len); 2906 2907 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2908 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len, 2909 pagep, fsdata); 2910 if (ret < 0) 2911 return ret; 2912 if (ret == 1) 2913 return 0; 2914 } 2915 2916 retry: 2917 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 2918 mapping_gfp_mask(mapping)); 2919 if (IS_ERR(folio)) 2920 return PTR_ERR(folio); 2921 2922 #ifdef CONFIG_FS_ENCRYPTION 2923 ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep); 2924 #else 2925 ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep); 2926 #endif 2927 if (ret < 0) { 2928 folio_unlock(folio); 2929 folio_put(folio); 2930 /* 2931 * block_write_begin may have instantiated a few blocks 2932 * outside i_size. Trim these off again. Don't need 2933 * i_size_read because we hold inode lock. 2934 */ 2935 if (pos + len > inode->i_size) 2936 ext4_truncate_failed_write(inode); 2937 2938 if (ret == -ENOSPC && 2939 ext4_should_retry_alloc(inode->i_sb, &retries)) 2940 goto retry; 2941 return ret; 2942 } 2943 2944 *pagep = &folio->page; 2945 return ret; 2946 } 2947 2948 /* 2949 * Check if we should update i_disksize 2950 * when write to the end of file but not require block allocation 2951 */ 2952 static int ext4_da_should_update_i_disksize(struct folio *folio, 2953 unsigned long offset) 2954 { 2955 struct buffer_head *bh; 2956 struct inode *inode = folio->mapping->host; 2957 unsigned int idx; 2958 int i; 2959 2960 bh = folio_buffers(folio); 2961 idx = offset >> inode->i_blkbits; 2962 2963 for (i = 0; i < idx; i++) 2964 bh = bh->b_this_page; 2965 2966 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2967 return 0; 2968 return 1; 2969 } 2970 2971 static int ext4_da_do_write_end(struct address_space *mapping, 2972 loff_t pos, unsigned len, unsigned copied, 2973 struct folio *folio) 2974 { 2975 struct inode *inode = mapping->host; 2976 loff_t old_size = inode->i_size; 2977 bool disksize_changed = false; 2978 loff_t new_i_size, zero_len = 0; 2979 handle_t *handle; 2980 2981 if (unlikely(!folio_buffers(folio))) { 2982 folio_unlock(folio); 2983 folio_put(folio); 2984 return -EIO; 2985 } 2986 /* 2987 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES 2988 * flag, which all that's needed to trigger page writeback. 2989 */ 2990 copied = block_write_end(NULL, mapping, pos, len, copied, 2991 &folio->page, NULL); 2992 new_i_size = pos + copied; 2993 2994 /* 2995 * It's important to update i_size while still holding folio lock, 2996 * because folio writeout could otherwise come in and zero beyond 2997 * i_size. 2998 * 2999 * Since we are holding inode lock, we are sure i_disksize <= 3000 * i_size. We also know that if i_disksize < i_size, there are 3001 * delalloc writes pending in the range up to i_size. If the end of 3002 * the current write is <= i_size, there's no need to touch 3003 * i_disksize since writeback will push i_disksize up to i_size 3004 * eventually. If the end of the current write is > i_size and 3005 * inside an allocated block which ext4_da_should_update_i_disksize() 3006 * checked, we need to update i_disksize here as certain 3007 * ext4_writepages() paths not allocating blocks and update i_disksize. 3008 */ 3009 if (new_i_size > inode->i_size) { 3010 unsigned long end; 3011 3012 i_size_write(inode, new_i_size); 3013 end = (new_i_size - 1) & (PAGE_SIZE - 1); 3014 if (copied && ext4_da_should_update_i_disksize(folio, end)) { 3015 ext4_update_i_disksize(inode, new_i_size); 3016 disksize_changed = true; 3017 } 3018 } 3019 3020 folio_unlock(folio); 3021 folio_put(folio); 3022 3023 if (pos > old_size) { 3024 pagecache_isize_extended(inode, old_size, pos); 3025 zero_len = pos - old_size; 3026 } 3027 3028 if (!disksize_changed && !zero_len) 3029 return copied; 3030 3031 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3032 if (IS_ERR(handle)) 3033 return PTR_ERR(handle); 3034 if (zero_len) 3035 ext4_zero_partial_blocks(handle, inode, old_size, zero_len); 3036 ext4_mark_inode_dirty(handle, inode); 3037 ext4_journal_stop(handle); 3038 3039 return copied; 3040 } 3041 3042 static int ext4_da_write_end(struct file *file, 3043 struct address_space *mapping, 3044 loff_t pos, unsigned len, unsigned copied, 3045 struct page *page, void *fsdata) 3046 { 3047 struct inode *inode = mapping->host; 3048 int write_mode = (int)(unsigned long)fsdata; 3049 struct folio *folio = page_folio(page); 3050 3051 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3052 return ext4_write_end(file, mapping, pos, 3053 len, copied, &folio->page, fsdata); 3054 3055 trace_ext4_da_write_end(inode, pos, len, copied); 3056 3057 if (write_mode != CONVERT_INLINE_DATA && 3058 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3059 ext4_has_inline_data(inode)) 3060 return ext4_write_inline_data_end(inode, pos, len, copied, 3061 folio); 3062 3063 if (unlikely(copied < len) && !folio_test_uptodate(folio)) 3064 copied = 0; 3065 3066 return ext4_da_do_write_end(mapping, pos, len, copied, folio); 3067 } 3068 3069 /* 3070 * Force all delayed allocation blocks to be allocated for a given inode. 3071 */ 3072 int ext4_alloc_da_blocks(struct inode *inode) 3073 { 3074 trace_ext4_alloc_da_blocks(inode); 3075 3076 if (!EXT4_I(inode)->i_reserved_data_blocks) 3077 return 0; 3078 3079 /* 3080 * We do something simple for now. The filemap_flush() will 3081 * also start triggering a write of the data blocks, which is 3082 * not strictly speaking necessary (and for users of 3083 * laptop_mode, not even desirable). However, to do otherwise 3084 * would require replicating code paths in: 3085 * 3086 * ext4_writepages() -> 3087 * write_cache_pages() ---> (via passed in callback function) 3088 * __mpage_da_writepage() --> 3089 * mpage_add_bh_to_extent() 3090 * mpage_da_map_blocks() 3091 * 3092 * The problem is that write_cache_pages(), located in 3093 * mm/page-writeback.c, marks pages clean in preparation for 3094 * doing I/O, which is not desirable if we're not planning on 3095 * doing I/O at all. 3096 * 3097 * We could call write_cache_pages(), and then redirty all of 3098 * the pages by calling redirty_page_for_writepage() but that 3099 * would be ugly in the extreme. So instead we would need to 3100 * replicate parts of the code in the above functions, 3101 * simplifying them because we wouldn't actually intend to 3102 * write out the pages, but rather only collect contiguous 3103 * logical block extents, call the multi-block allocator, and 3104 * then update the buffer heads with the block allocations. 3105 * 3106 * For now, though, we'll cheat by calling filemap_flush(), 3107 * which will map the blocks, and start the I/O, but not 3108 * actually wait for the I/O to complete. 3109 */ 3110 return filemap_flush(inode->i_mapping); 3111 } 3112 3113 /* 3114 * bmap() is special. It gets used by applications such as lilo and by 3115 * the swapper to find the on-disk block of a specific piece of data. 3116 * 3117 * Naturally, this is dangerous if the block concerned is still in the 3118 * journal. If somebody makes a swapfile on an ext4 data-journaling 3119 * filesystem and enables swap, then they may get a nasty shock when the 3120 * data getting swapped to that swapfile suddenly gets overwritten by 3121 * the original zero's written out previously to the journal and 3122 * awaiting writeback in the kernel's buffer cache. 3123 * 3124 * So, if we see any bmap calls here on a modified, data-journaled file, 3125 * take extra steps to flush any blocks which might be in the cache. 3126 */ 3127 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3128 { 3129 struct inode *inode = mapping->host; 3130 sector_t ret = 0; 3131 3132 inode_lock_shared(inode); 3133 /* 3134 * We can get here for an inline file via the FIBMAP ioctl 3135 */ 3136 if (ext4_has_inline_data(inode)) 3137 goto out; 3138 3139 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3140 (test_opt(inode->i_sb, DELALLOC) || 3141 ext4_should_journal_data(inode))) { 3142 /* 3143 * With delalloc or journalled data we want to sync the file so 3144 * that we can make sure we allocate blocks for file and data 3145 * is in place for the user to see it 3146 */ 3147 filemap_write_and_wait(mapping); 3148 } 3149 3150 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3151 3152 out: 3153 inode_unlock_shared(inode); 3154 return ret; 3155 } 3156 3157 static int ext4_read_folio(struct file *file, struct folio *folio) 3158 { 3159 int ret = -EAGAIN; 3160 struct inode *inode = folio->mapping->host; 3161 3162 trace_ext4_read_folio(inode, folio); 3163 3164 if (ext4_has_inline_data(inode)) 3165 ret = ext4_readpage_inline(inode, folio); 3166 3167 if (ret == -EAGAIN) 3168 return ext4_mpage_readpages(inode, NULL, folio); 3169 3170 return ret; 3171 } 3172 3173 static void ext4_readahead(struct readahead_control *rac) 3174 { 3175 struct inode *inode = rac->mapping->host; 3176 3177 /* If the file has inline data, no need to do readahead. */ 3178 if (ext4_has_inline_data(inode)) 3179 return; 3180 3181 ext4_mpage_readpages(inode, rac, NULL); 3182 } 3183 3184 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3185 size_t length) 3186 { 3187 trace_ext4_invalidate_folio(folio, offset, length); 3188 3189 /* No journalling happens on data buffers when this function is used */ 3190 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3191 3192 block_invalidate_folio(folio, offset, length); 3193 } 3194 3195 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3196 size_t offset, size_t length) 3197 { 3198 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3199 3200 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3201 3202 /* 3203 * If it's a full truncate we just forget about the pending dirtying 3204 */ 3205 if (offset == 0 && length == folio_size(folio)) 3206 folio_clear_checked(folio); 3207 3208 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3209 } 3210 3211 /* Wrapper for aops... */ 3212 static void ext4_journalled_invalidate_folio(struct folio *folio, 3213 size_t offset, 3214 size_t length) 3215 { 3216 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3217 } 3218 3219 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3220 { 3221 struct inode *inode = folio->mapping->host; 3222 journal_t *journal = EXT4_JOURNAL(inode); 3223 3224 trace_ext4_release_folio(inode, folio); 3225 3226 /* Page has dirty journalled data -> cannot release */ 3227 if (folio_test_checked(folio)) 3228 return false; 3229 if (journal) 3230 return jbd2_journal_try_to_free_buffers(journal, folio); 3231 else 3232 return try_to_free_buffers(folio); 3233 } 3234 3235 static bool ext4_inode_datasync_dirty(struct inode *inode) 3236 { 3237 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3238 3239 if (journal) { 3240 if (jbd2_transaction_committed(journal, 3241 EXT4_I(inode)->i_datasync_tid)) 3242 return false; 3243 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3244 return !list_empty(&EXT4_I(inode)->i_fc_list); 3245 return true; 3246 } 3247 3248 /* Any metadata buffers to write? */ 3249 if (!list_empty(&inode->i_mapping->private_list)) 3250 return true; 3251 return inode->i_state & I_DIRTY_DATASYNC; 3252 } 3253 3254 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3255 struct ext4_map_blocks *map, loff_t offset, 3256 loff_t length, unsigned int flags) 3257 { 3258 u8 blkbits = inode->i_blkbits; 3259 3260 /* 3261 * Writes that span EOF might trigger an I/O size update on completion, 3262 * so consider them to be dirty for the purpose of O_DSYNC, even if 3263 * there is no other metadata changes being made or are pending. 3264 */ 3265 iomap->flags = 0; 3266 if (ext4_inode_datasync_dirty(inode) || 3267 offset + length > i_size_read(inode)) 3268 iomap->flags |= IOMAP_F_DIRTY; 3269 3270 if (map->m_flags & EXT4_MAP_NEW) 3271 iomap->flags |= IOMAP_F_NEW; 3272 3273 if (flags & IOMAP_DAX) 3274 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3275 else 3276 iomap->bdev = inode->i_sb->s_bdev; 3277 iomap->offset = (u64) map->m_lblk << blkbits; 3278 iomap->length = (u64) map->m_len << blkbits; 3279 3280 if ((map->m_flags & EXT4_MAP_MAPPED) && 3281 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3282 iomap->flags |= IOMAP_F_MERGED; 3283 3284 /* 3285 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3286 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3287 * set. In order for any allocated unwritten extents to be converted 3288 * into written extents correctly within the ->end_io() handler, we 3289 * need to ensure that the iomap->type is set appropriately. Hence, the 3290 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3291 * been set first. 3292 */ 3293 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3294 iomap->type = IOMAP_UNWRITTEN; 3295 iomap->addr = (u64) map->m_pblk << blkbits; 3296 if (flags & IOMAP_DAX) 3297 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3298 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3299 iomap->type = IOMAP_MAPPED; 3300 iomap->addr = (u64) map->m_pblk << blkbits; 3301 if (flags & IOMAP_DAX) 3302 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3303 } else { 3304 iomap->type = IOMAP_HOLE; 3305 iomap->addr = IOMAP_NULL_ADDR; 3306 } 3307 } 3308 3309 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3310 unsigned int flags) 3311 { 3312 handle_t *handle; 3313 u8 blkbits = inode->i_blkbits; 3314 int ret, dio_credits, m_flags = 0, retries = 0; 3315 3316 /* 3317 * Trim the mapping request to the maximum value that we can map at 3318 * once for direct I/O. 3319 */ 3320 if (map->m_len > DIO_MAX_BLOCKS) 3321 map->m_len = DIO_MAX_BLOCKS; 3322 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3323 3324 retry: 3325 /* 3326 * Either we allocate blocks and then don't get an unwritten extent, so 3327 * in that case we have reserved enough credits. Or, the blocks are 3328 * already allocated and unwritten. In that case, the extent conversion 3329 * fits into the credits as well. 3330 */ 3331 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3332 if (IS_ERR(handle)) 3333 return PTR_ERR(handle); 3334 3335 /* 3336 * DAX and direct I/O are the only two operations that are currently 3337 * supported with IOMAP_WRITE. 3338 */ 3339 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3340 if (flags & IOMAP_DAX) 3341 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3342 /* 3343 * We use i_size instead of i_disksize here because delalloc writeback 3344 * can complete at any point during the I/O and subsequently push the 3345 * i_disksize out to i_size. This could be beyond where direct I/O is 3346 * happening and thus expose allocated blocks to direct I/O reads. 3347 */ 3348 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3349 m_flags = EXT4_GET_BLOCKS_CREATE; 3350 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3351 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3352 3353 ret = ext4_map_blocks(handle, inode, map, m_flags); 3354 3355 /* 3356 * We cannot fill holes in indirect tree based inodes as that could 3357 * expose stale data in the case of a crash. Use the magic error code 3358 * to fallback to buffered I/O. 3359 */ 3360 if (!m_flags && !ret) 3361 ret = -ENOTBLK; 3362 3363 ext4_journal_stop(handle); 3364 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3365 goto retry; 3366 3367 return ret; 3368 } 3369 3370 3371 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3372 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3373 { 3374 int ret; 3375 struct ext4_map_blocks map; 3376 u8 blkbits = inode->i_blkbits; 3377 3378 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3379 return -EINVAL; 3380 3381 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3382 return -ERANGE; 3383 3384 /* 3385 * Calculate the first and last logical blocks respectively. 3386 */ 3387 map.m_lblk = offset >> blkbits; 3388 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3389 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3390 3391 if (flags & IOMAP_WRITE) { 3392 /* 3393 * We check here if the blocks are already allocated, then we 3394 * don't need to start a journal txn and we can directly return 3395 * the mapping information. This could boost performance 3396 * especially in multi-threaded overwrite requests. 3397 */ 3398 if (offset + length <= i_size_read(inode)) { 3399 ret = ext4_map_blocks(NULL, inode, &map, 0); 3400 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3401 goto out; 3402 } 3403 ret = ext4_iomap_alloc(inode, &map, flags); 3404 } else { 3405 ret = ext4_map_blocks(NULL, inode, &map, 0); 3406 } 3407 3408 if (ret < 0) 3409 return ret; 3410 out: 3411 /* 3412 * When inline encryption is enabled, sometimes I/O to an encrypted file 3413 * has to be broken up to guarantee DUN contiguity. Handle this by 3414 * limiting the length of the mapping returned. 3415 */ 3416 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3417 3418 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3419 3420 return 0; 3421 } 3422 3423 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3424 loff_t length, unsigned flags, struct iomap *iomap, 3425 struct iomap *srcmap) 3426 { 3427 int ret; 3428 3429 /* 3430 * Even for writes we don't need to allocate blocks, so just pretend 3431 * we are reading to save overhead of starting a transaction. 3432 */ 3433 flags &= ~IOMAP_WRITE; 3434 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3435 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED); 3436 return ret; 3437 } 3438 3439 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3440 ssize_t written, unsigned flags, struct iomap *iomap) 3441 { 3442 /* 3443 * Check to see whether an error occurred while writing out the data to 3444 * the allocated blocks. If so, return the magic error code so that we 3445 * fallback to buffered I/O and attempt to complete the remainder of 3446 * the I/O. Any blocks that may have been allocated in preparation for 3447 * the direct I/O will be reused during buffered I/O. 3448 */ 3449 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3450 return -ENOTBLK; 3451 3452 return 0; 3453 } 3454 3455 const struct iomap_ops ext4_iomap_ops = { 3456 .iomap_begin = ext4_iomap_begin, 3457 .iomap_end = ext4_iomap_end, 3458 }; 3459 3460 const struct iomap_ops ext4_iomap_overwrite_ops = { 3461 .iomap_begin = ext4_iomap_overwrite_begin, 3462 .iomap_end = ext4_iomap_end, 3463 }; 3464 3465 static bool ext4_iomap_is_delalloc(struct inode *inode, 3466 struct ext4_map_blocks *map) 3467 { 3468 struct extent_status es; 3469 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3470 3471 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3472 map->m_lblk, end, &es); 3473 3474 if (!es.es_len || es.es_lblk > end) 3475 return false; 3476 3477 if (es.es_lblk > map->m_lblk) { 3478 map->m_len = es.es_lblk - map->m_lblk; 3479 return false; 3480 } 3481 3482 offset = map->m_lblk - es.es_lblk; 3483 map->m_len = es.es_len - offset; 3484 3485 return true; 3486 } 3487 3488 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3489 loff_t length, unsigned int flags, 3490 struct iomap *iomap, struct iomap *srcmap) 3491 { 3492 int ret; 3493 bool delalloc = false; 3494 struct ext4_map_blocks map; 3495 u8 blkbits = inode->i_blkbits; 3496 3497 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3498 return -EINVAL; 3499 3500 if (ext4_has_inline_data(inode)) { 3501 ret = ext4_inline_data_iomap(inode, iomap); 3502 if (ret != -EAGAIN) { 3503 if (ret == 0 && offset >= iomap->length) 3504 ret = -ENOENT; 3505 return ret; 3506 } 3507 } 3508 3509 /* 3510 * Calculate the first and last logical block respectively. 3511 */ 3512 map.m_lblk = offset >> blkbits; 3513 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3514 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3515 3516 /* 3517 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3518 * So handle it here itself instead of querying ext4_map_blocks(). 3519 * Since ext4_map_blocks() will warn about it and will return 3520 * -EIO error. 3521 */ 3522 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3523 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3524 3525 if (offset >= sbi->s_bitmap_maxbytes) { 3526 map.m_flags = 0; 3527 goto set_iomap; 3528 } 3529 } 3530 3531 ret = ext4_map_blocks(NULL, inode, &map, 0); 3532 if (ret < 0) 3533 return ret; 3534 if (ret == 0) 3535 delalloc = ext4_iomap_is_delalloc(inode, &map); 3536 3537 set_iomap: 3538 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3539 if (delalloc && iomap->type == IOMAP_HOLE) 3540 iomap->type = IOMAP_DELALLOC; 3541 3542 return 0; 3543 } 3544 3545 const struct iomap_ops ext4_iomap_report_ops = { 3546 .iomap_begin = ext4_iomap_begin_report, 3547 }; 3548 3549 /* 3550 * For data=journal mode, folio should be marked dirty only when it was 3551 * writeably mapped. When that happens, it was already attached to the 3552 * transaction and marked as jbddirty (we take care of this in 3553 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings 3554 * so we should have nothing to do here, except for the case when someone 3555 * had the page pinned and dirtied the page through this pin (e.g. by doing 3556 * direct IO to it). In that case we'd need to attach buffers here to the 3557 * transaction but we cannot due to lock ordering. We cannot just dirty the 3558 * folio and leave attached buffers clean, because the buffers' dirty state is 3559 * "definitive". We cannot just set the buffers dirty or jbddirty because all 3560 * the journalling code will explode. So what we do is to mark the folio 3561 * "pending dirty" and next time ext4_writepages() is called, attach buffers 3562 * to the transaction appropriately. 3563 */ 3564 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3565 struct folio *folio) 3566 { 3567 WARN_ON_ONCE(!folio_buffers(folio)); 3568 if (folio_maybe_dma_pinned(folio)) 3569 folio_set_checked(folio); 3570 return filemap_dirty_folio(mapping, folio); 3571 } 3572 3573 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3574 { 3575 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3576 WARN_ON_ONCE(!folio_buffers(folio)); 3577 return block_dirty_folio(mapping, folio); 3578 } 3579 3580 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3581 struct file *file, sector_t *span) 3582 { 3583 return iomap_swapfile_activate(sis, file, span, 3584 &ext4_iomap_report_ops); 3585 } 3586 3587 static const struct address_space_operations ext4_aops = { 3588 .read_folio = ext4_read_folio, 3589 .readahead = ext4_readahead, 3590 .writepages = ext4_writepages, 3591 .write_begin = ext4_write_begin, 3592 .write_end = ext4_write_end, 3593 .dirty_folio = ext4_dirty_folio, 3594 .bmap = ext4_bmap, 3595 .invalidate_folio = ext4_invalidate_folio, 3596 .release_folio = ext4_release_folio, 3597 .direct_IO = noop_direct_IO, 3598 .migrate_folio = buffer_migrate_folio, 3599 .is_partially_uptodate = block_is_partially_uptodate, 3600 .error_remove_page = generic_error_remove_page, 3601 .swap_activate = ext4_iomap_swap_activate, 3602 }; 3603 3604 static const struct address_space_operations ext4_journalled_aops = { 3605 .read_folio = ext4_read_folio, 3606 .readahead = ext4_readahead, 3607 .writepages = ext4_writepages, 3608 .write_begin = ext4_write_begin, 3609 .write_end = ext4_journalled_write_end, 3610 .dirty_folio = ext4_journalled_dirty_folio, 3611 .bmap = ext4_bmap, 3612 .invalidate_folio = ext4_journalled_invalidate_folio, 3613 .release_folio = ext4_release_folio, 3614 .direct_IO = noop_direct_IO, 3615 .migrate_folio = buffer_migrate_folio_norefs, 3616 .is_partially_uptodate = block_is_partially_uptodate, 3617 .error_remove_page = generic_error_remove_page, 3618 .swap_activate = ext4_iomap_swap_activate, 3619 }; 3620 3621 static const struct address_space_operations ext4_da_aops = { 3622 .read_folio = ext4_read_folio, 3623 .readahead = ext4_readahead, 3624 .writepages = ext4_writepages, 3625 .write_begin = ext4_da_write_begin, 3626 .write_end = ext4_da_write_end, 3627 .dirty_folio = ext4_dirty_folio, 3628 .bmap = ext4_bmap, 3629 .invalidate_folio = ext4_invalidate_folio, 3630 .release_folio = ext4_release_folio, 3631 .direct_IO = noop_direct_IO, 3632 .migrate_folio = buffer_migrate_folio, 3633 .is_partially_uptodate = block_is_partially_uptodate, 3634 .error_remove_page = generic_error_remove_page, 3635 .swap_activate = ext4_iomap_swap_activate, 3636 }; 3637 3638 static const struct address_space_operations ext4_dax_aops = { 3639 .writepages = ext4_dax_writepages, 3640 .direct_IO = noop_direct_IO, 3641 .dirty_folio = noop_dirty_folio, 3642 .bmap = ext4_bmap, 3643 .swap_activate = ext4_iomap_swap_activate, 3644 }; 3645 3646 void ext4_set_aops(struct inode *inode) 3647 { 3648 switch (ext4_inode_journal_mode(inode)) { 3649 case EXT4_INODE_ORDERED_DATA_MODE: 3650 case EXT4_INODE_WRITEBACK_DATA_MODE: 3651 break; 3652 case EXT4_INODE_JOURNAL_DATA_MODE: 3653 inode->i_mapping->a_ops = &ext4_journalled_aops; 3654 return; 3655 default: 3656 BUG(); 3657 } 3658 if (IS_DAX(inode)) 3659 inode->i_mapping->a_ops = &ext4_dax_aops; 3660 else if (test_opt(inode->i_sb, DELALLOC)) 3661 inode->i_mapping->a_ops = &ext4_da_aops; 3662 else 3663 inode->i_mapping->a_ops = &ext4_aops; 3664 } 3665 3666 static int __ext4_block_zero_page_range(handle_t *handle, 3667 struct address_space *mapping, loff_t from, loff_t length) 3668 { 3669 ext4_fsblk_t index = from >> PAGE_SHIFT; 3670 unsigned offset = from & (PAGE_SIZE-1); 3671 unsigned blocksize, pos; 3672 ext4_lblk_t iblock; 3673 struct inode *inode = mapping->host; 3674 struct buffer_head *bh; 3675 struct folio *folio; 3676 int err = 0; 3677 3678 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT, 3679 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3680 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3681 if (IS_ERR(folio)) 3682 return PTR_ERR(folio); 3683 3684 blocksize = inode->i_sb->s_blocksize; 3685 3686 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3687 3688 bh = folio_buffers(folio); 3689 if (!bh) { 3690 create_empty_buffers(&folio->page, blocksize, 0); 3691 bh = folio_buffers(folio); 3692 } 3693 3694 /* Find the buffer that contains "offset" */ 3695 pos = blocksize; 3696 while (offset >= pos) { 3697 bh = bh->b_this_page; 3698 iblock++; 3699 pos += blocksize; 3700 } 3701 if (buffer_freed(bh)) { 3702 BUFFER_TRACE(bh, "freed: skip"); 3703 goto unlock; 3704 } 3705 if (!buffer_mapped(bh)) { 3706 BUFFER_TRACE(bh, "unmapped"); 3707 ext4_get_block(inode, iblock, bh, 0); 3708 /* unmapped? It's a hole - nothing to do */ 3709 if (!buffer_mapped(bh)) { 3710 BUFFER_TRACE(bh, "still unmapped"); 3711 goto unlock; 3712 } 3713 } 3714 3715 /* Ok, it's mapped. Make sure it's up-to-date */ 3716 if (folio_test_uptodate(folio)) 3717 set_buffer_uptodate(bh); 3718 3719 if (!buffer_uptodate(bh)) { 3720 err = ext4_read_bh_lock(bh, 0, true); 3721 if (err) 3722 goto unlock; 3723 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3724 /* We expect the key to be set. */ 3725 BUG_ON(!fscrypt_has_encryption_key(inode)); 3726 err = fscrypt_decrypt_pagecache_blocks(folio, 3727 blocksize, 3728 bh_offset(bh)); 3729 if (err) { 3730 clear_buffer_uptodate(bh); 3731 goto unlock; 3732 } 3733 } 3734 } 3735 if (ext4_should_journal_data(inode)) { 3736 BUFFER_TRACE(bh, "get write access"); 3737 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3738 EXT4_JTR_NONE); 3739 if (err) 3740 goto unlock; 3741 } 3742 folio_zero_range(folio, offset, length); 3743 BUFFER_TRACE(bh, "zeroed end of block"); 3744 3745 if (ext4_should_journal_data(inode)) { 3746 err = ext4_dirty_journalled_data(handle, bh); 3747 } else { 3748 err = 0; 3749 mark_buffer_dirty(bh); 3750 if (ext4_should_order_data(inode)) 3751 err = ext4_jbd2_inode_add_write(handle, inode, from, 3752 length); 3753 } 3754 3755 unlock: 3756 folio_unlock(folio); 3757 folio_put(folio); 3758 return err; 3759 } 3760 3761 /* 3762 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3763 * starting from file offset 'from'. The range to be zero'd must 3764 * be contained with in one block. If the specified range exceeds 3765 * the end of the block it will be shortened to end of the block 3766 * that corresponds to 'from' 3767 */ 3768 static int ext4_block_zero_page_range(handle_t *handle, 3769 struct address_space *mapping, loff_t from, loff_t length) 3770 { 3771 struct inode *inode = mapping->host; 3772 unsigned offset = from & (PAGE_SIZE-1); 3773 unsigned blocksize = inode->i_sb->s_blocksize; 3774 unsigned max = blocksize - (offset & (blocksize - 1)); 3775 3776 /* 3777 * correct length if it does not fall between 3778 * 'from' and the end of the block 3779 */ 3780 if (length > max || length < 0) 3781 length = max; 3782 3783 if (IS_DAX(inode)) { 3784 return dax_zero_range(inode, from, length, NULL, 3785 &ext4_iomap_ops); 3786 } 3787 return __ext4_block_zero_page_range(handle, mapping, from, length); 3788 } 3789 3790 /* 3791 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3792 * up to the end of the block which corresponds to `from'. 3793 * This required during truncate. We need to physically zero the tail end 3794 * of that block so it doesn't yield old data if the file is later grown. 3795 */ 3796 static int ext4_block_truncate_page(handle_t *handle, 3797 struct address_space *mapping, loff_t from) 3798 { 3799 unsigned offset = from & (PAGE_SIZE-1); 3800 unsigned length; 3801 unsigned blocksize; 3802 struct inode *inode = mapping->host; 3803 3804 /* If we are processing an encrypted inode during orphan list handling */ 3805 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3806 return 0; 3807 3808 blocksize = inode->i_sb->s_blocksize; 3809 length = blocksize - (offset & (blocksize - 1)); 3810 3811 return ext4_block_zero_page_range(handle, mapping, from, length); 3812 } 3813 3814 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3815 loff_t lstart, loff_t length) 3816 { 3817 struct super_block *sb = inode->i_sb; 3818 struct address_space *mapping = inode->i_mapping; 3819 unsigned partial_start, partial_end; 3820 ext4_fsblk_t start, end; 3821 loff_t byte_end = (lstart + length - 1); 3822 int err = 0; 3823 3824 partial_start = lstart & (sb->s_blocksize - 1); 3825 partial_end = byte_end & (sb->s_blocksize - 1); 3826 3827 start = lstart >> sb->s_blocksize_bits; 3828 end = byte_end >> sb->s_blocksize_bits; 3829 3830 /* Handle partial zero within the single block */ 3831 if (start == end && 3832 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3833 err = ext4_block_zero_page_range(handle, mapping, 3834 lstart, length); 3835 return err; 3836 } 3837 /* Handle partial zero out on the start of the range */ 3838 if (partial_start) { 3839 err = ext4_block_zero_page_range(handle, mapping, 3840 lstart, sb->s_blocksize); 3841 if (err) 3842 return err; 3843 } 3844 /* Handle partial zero out on the end of the range */ 3845 if (partial_end != sb->s_blocksize - 1) 3846 err = ext4_block_zero_page_range(handle, mapping, 3847 byte_end - partial_end, 3848 partial_end + 1); 3849 return err; 3850 } 3851 3852 int ext4_can_truncate(struct inode *inode) 3853 { 3854 if (S_ISREG(inode->i_mode)) 3855 return 1; 3856 if (S_ISDIR(inode->i_mode)) 3857 return 1; 3858 if (S_ISLNK(inode->i_mode)) 3859 return !ext4_inode_is_fast_symlink(inode); 3860 return 0; 3861 } 3862 3863 /* 3864 * We have to make sure i_disksize gets properly updated before we truncate 3865 * page cache due to hole punching or zero range. Otherwise i_disksize update 3866 * can get lost as it may have been postponed to submission of writeback but 3867 * that will never happen after we truncate page cache. 3868 */ 3869 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3870 loff_t len) 3871 { 3872 handle_t *handle; 3873 int ret; 3874 3875 loff_t size = i_size_read(inode); 3876 3877 WARN_ON(!inode_is_locked(inode)); 3878 if (offset > size || offset + len < size) 3879 return 0; 3880 3881 if (EXT4_I(inode)->i_disksize >= size) 3882 return 0; 3883 3884 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3885 if (IS_ERR(handle)) 3886 return PTR_ERR(handle); 3887 ext4_update_i_disksize(inode, size); 3888 ret = ext4_mark_inode_dirty(handle, inode); 3889 ext4_journal_stop(handle); 3890 3891 return ret; 3892 } 3893 3894 static void ext4_wait_dax_page(struct inode *inode) 3895 { 3896 filemap_invalidate_unlock(inode->i_mapping); 3897 schedule(); 3898 filemap_invalidate_lock(inode->i_mapping); 3899 } 3900 3901 int ext4_break_layouts(struct inode *inode) 3902 { 3903 struct page *page; 3904 int error; 3905 3906 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 3907 return -EINVAL; 3908 3909 do { 3910 page = dax_layout_busy_page(inode->i_mapping); 3911 if (!page) 3912 return 0; 3913 3914 error = ___wait_var_event(&page->_refcount, 3915 atomic_read(&page->_refcount) == 1, 3916 TASK_INTERRUPTIBLE, 0, 0, 3917 ext4_wait_dax_page(inode)); 3918 } while (error == 0); 3919 3920 return error; 3921 } 3922 3923 /* 3924 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3925 * associated with the given offset and length 3926 * 3927 * @inode: File inode 3928 * @offset: The offset where the hole will begin 3929 * @len: The length of the hole 3930 * 3931 * Returns: 0 on success or negative on failure 3932 */ 3933 3934 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3935 { 3936 struct inode *inode = file_inode(file); 3937 struct super_block *sb = inode->i_sb; 3938 ext4_lblk_t first_block, stop_block; 3939 struct address_space *mapping = inode->i_mapping; 3940 loff_t first_block_offset, last_block_offset, max_length; 3941 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3942 handle_t *handle; 3943 unsigned int credits; 3944 int ret = 0, ret2 = 0; 3945 3946 trace_ext4_punch_hole(inode, offset, length, 0); 3947 3948 /* 3949 * Write out all dirty pages to avoid race conditions 3950 * Then release them. 3951 */ 3952 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3953 ret = filemap_write_and_wait_range(mapping, offset, 3954 offset + length - 1); 3955 if (ret) 3956 return ret; 3957 } 3958 3959 inode_lock(inode); 3960 3961 /* No need to punch hole beyond i_size */ 3962 if (offset >= inode->i_size) 3963 goto out_mutex; 3964 3965 /* 3966 * If the hole extends beyond i_size, set the hole 3967 * to end after the page that contains i_size 3968 */ 3969 if (offset + length > inode->i_size) { 3970 length = inode->i_size + 3971 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3972 offset; 3973 } 3974 3975 /* 3976 * For punch hole the length + offset needs to be within one block 3977 * before last range. Adjust the length if it goes beyond that limit. 3978 */ 3979 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize; 3980 if (offset + length > max_length) 3981 length = max_length - offset; 3982 3983 if (offset & (sb->s_blocksize - 1) || 3984 (offset + length) & (sb->s_blocksize - 1)) { 3985 /* 3986 * Attach jinode to inode for jbd2 if we do any zeroing of 3987 * partial block 3988 */ 3989 ret = ext4_inode_attach_jinode(inode); 3990 if (ret < 0) 3991 goto out_mutex; 3992 3993 } 3994 3995 /* Wait all existing dio workers, newcomers will block on i_rwsem */ 3996 inode_dio_wait(inode); 3997 3998 ret = file_modified(file); 3999 if (ret) 4000 goto out_mutex; 4001 4002 /* 4003 * Prevent page faults from reinstantiating pages we have released from 4004 * page cache. 4005 */ 4006 filemap_invalidate_lock(mapping); 4007 4008 ret = ext4_break_layouts(inode); 4009 if (ret) 4010 goto out_dio; 4011 4012 first_block_offset = round_up(offset, sb->s_blocksize); 4013 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4014 4015 /* Now release the pages and zero block aligned part of pages*/ 4016 if (last_block_offset > first_block_offset) { 4017 ret = ext4_update_disksize_before_punch(inode, offset, length); 4018 if (ret) 4019 goto out_dio; 4020 truncate_pagecache_range(inode, first_block_offset, 4021 last_block_offset); 4022 } 4023 4024 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4025 credits = ext4_writepage_trans_blocks(inode); 4026 else 4027 credits = ext4_blocks_for_truncate(inode); 4028 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4029 if (IS_ERR(handle)) { 4030 ret = PTR_ERR(handle); 4031 ext4_std_error(sb, ret); 4032 goto out_dio; 4033 } 4034 4035 ret = ext4_zero_partial_blocks(handle, inode, offset, 4036 length); 4037 if (ret) 4038 goto out_stop; 4039 4040 first_block = (offset + sb->s_blocksize - 1) >> 4041 EXT4_BLOCK_SIZE_BITS(sb); 4042 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4043 4044 /* If there are blocks to remove, do it */ 4045 if (stop_block > first_block) { 4046 4047 down_write(&EXT4_I(inode)->i_data_sem); 4048 ext4_discard_preallocations(inode, 0); 4049 4050 ext4_es_remove_extent(inode, first_block, 4051 stop_block - first_block); 4052 4053 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4054 ret = ext4_ext_remove_space(inode, first_block, 4055 stop_block - 1); 4056 else 4057 ret = ext4_ind_remove_space(handle, inode, first_block, 4058 stop_block); 4059 4060 up_write(&EXT4_I(inode)->i_data_sem); 4061 } 4062 ext4_fc_track_range(handle, inode, first_block, stop_block); 4063 if (IS_SYNC(inode)) 4064 ext4_handle_sync(handle); 4065 4066 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 4067 ret2 = ext4_mark_inode_dirty(handle, inode); 4068 if (unlikely(ret2)) 4069 ret = ret2; 4070 if (ret >= 0) 4071 ext4_update_inode_fsync_trans(handle, inode, 1); 4072 out_stop: 4073 ext4_journal_stop(handle); 4074 out_dio: 4075 filemap_invalidate_unlock(mapping); 4076 out_mutex: 4077 inode_unlock(inode); 4078 return ret; 4079 } 4080 4081 int ext4_inode_attach_jinode(struct inode *inode) 4082 { 4083 struct ext4_inode_info *ei = EXT4_I(inode); 4084 struct jbd2_inode *jinode; 4085 4086 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4087 return 0; 4088 4089 jinode = jbd2_alloc_inode(GFP_KERNEL); 4090 spin_lock(&inode->i_lock); 4091 if (!ei->jinode) { 4092 if (!jinode) { 4093 spin_unlock(&inode->i_lock); 4094 return -ENOMEM; 4095 } 4096 ei->jinode = jinode; 4097 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4098 jinode = NULL; 4099 } 4100 spin_unlock(&inode->i_lock); 4101 if (unlikely(jinode != NULL)) 4102 jbd2_free_inode(jinode); 4103 return 0; 4104 } 4105 4106 /* 4107 * ext4_truncate() 4108 * 4109 * We block out ext4_get_block() block instantiations across the entire 4110 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4111 * simultaneously on behalf of the same inode. 4112 * 4113 * As we work through the truncate and commit bits of it to the journal there 4114 * is one core, guiding principle: the file's tree must always be consistent on 4115 * disk. We must be able to restart the truncate after a crash. 4116 * 4117 * The file's tree may be transiently inconsistent in memory (although it 4118 * probably isn't), but whenever we close off and commit a journal transaction, 4119 * the contents of (the filesystem + the journal) must be consistent and 4120 * restartable. It's pretty simple, really: bottom up, right to left (although 4121 * left-to-right works OK too). 4122 * 4123 * Note that at recovery time, journal replay occurs *before* the restart of 4124 * truncate against the orphan inode list. 4125 * 4126 * The committed inode has the new, desired i_size (which is the same as 4127 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4128 * that this inode's truncate did not complete and it will again call 4129 * ext4_truncate() to have another go. So there will be instantiated blocks 4130 * to the right of the truncation point in a crashed ext4 filesystem. But 4131 * that's fine - as long as they are linked from the inode, the post-crash 4132 * ext4_truncate() run will find them and release them. 4133 */ 4134 int ext4_truncate(struct inode *inode) 4135 { 4136 struct ext4_inode_info *ei = EXT4_I(inode); 4137 unsigned int credits; 4138 int err = 0, err2; 4139 handle_t *handle; 4140 struct address_space *mapping = inode->i_mapping; 4141 4142 /* 4143 * There is a possibility that we're either freeing the inode 4144 * or it's a completely new inode. In those cases we might not 4145 * have i_rwsem locked because it's not necessary. 4146 */ 4147 if (!(inode->i_state & (I_NEW|I_FREEING))) 4148 WARN_ON(!inode_is_locked(inode)); 4149 trace_ext4_truncate_enter(inode); 4150 4151 if (!ext4_can_truncate(inode)) 4152 goto out_trace; 4153 4154 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4155 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4156 4157 if (ext4_has_inline_data(inode)) { 4158 int has_inline = 1; 4159 4160 err = ext4_inline_data_truncate(inode, &has_inline); 4161 if (err || has_inline) 4162 goto out_trace; 4163 } 4164 4165 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4166 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4167 err = ext4_inode_attach_jinode(inode); 4168 if (err) 4169 goto out_trace; 4170 } 4171 4172 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4173 credits = ext4_writepage_trans_blocks(inode); 4174 else 4175 credits = ext4_blocks_for_truncate(inode); 4176 4177 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4178 if (IS_ERR(handle)) { 4179 err = PTR_ERR(handle); 4180 goto out_trace; 4181 } 4182 4183 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4184 ext4_block_truncate_page(handle, mapping, inode->i_size); 4185 4186 /* 4187 * We add the inode to the orphan list, so that if this 4188 * truncate spans multiple transactions, and we crash, we will 4189 * resume the truncate when the filesystem recovers. It also 4190 * marks the inode dirty, to catch the new size. 4191 * 4192 * Implication: the file must always be in a sane, consistent 4193 * truncatable state while each transaction commits. 4194 */ 4195 err = ext4_orphan_add(handle, inode); 4196 if (err) 4197 goto out_stop; 4198 4199 down_write(&EXT4_I(inode)->i_data_sem); 4200 4201 ext4_discard_preallocations(inode, 0); 4202 4203 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4204 err = ext4_ext_truncate(handle, inode); 4205 else 4206 ext4_ind_truncate(handle, inode); 4207 4208 up_write(&ei->i_data_sem); 4209 if (err) 4210 goto out_stop; 4211 4212 if (IS_SYNC(inode)) 4213 ext4_handle_sync(handle); 4214 4215 out_stop: 4216 /* 4217 * If this was a simple ftruncate() and the file will remain alive, 4218 * then we need to clear up the orphan record which we created above. 4219 * However, if this was a real unlink then we were called by 4220 * ext4_evict_inode(), and we allow that function to clean up the 4221 * orphan info for us. 4222 */ 4223 if (inode->i_nlink) 4224 ext4_orphan_del(handle, inode); 4225 4226 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 4227 err2 = ext4_mark_inode_dirty(handle, inode); 4228 if (unlikely(err2 && !err)) 4229 err = err2; 4230 ext4_journal_stop(handle); 4231 4232 out_trace: 4233 trace_ext4_truncate_exit(inode); 4234 return err; 4235 } 4236 4237 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4238 { 4239 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4240 return inode_peek_iversion_raw(inode); 4241 else 4242 return inode_peek_iversion(inode); 4243 } 4244 4245 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4246 struct ext4_inode_info *ei) 4247 { 4248 struct inode *inode = &(ei->vfs_inode); 4249 u64 i_blocks = READ_ONCE(inode->i_blocks); 4250 struct super_block *sb = inode->i_sb; 4251 4252 if (i_blocks <= ~0U) { 4253 /* 4254 * i_blocks can be represented in a 32 bit variable 4255 * as multiple of 512 bytes 4256 */ 4257 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4258 raw_inode->i_blocks_high = 0; 4259 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4260 return 0; 4261 } 4262 4263 /* 4264 * This should never happen since sb->s_maxbytes should not have 4265 * allowed this, sb->s_maxbytes was set according to the huge_file 4266 * feature in ext4_fill_super(). 4267 */ 4268 if (!ext4_has_feature_huge_file(sb)) 4269 return -EFSCORRUPTED; 4270 4271 if (i_blocks <= 0xffffffffffffULL) { 4272 /* 4273 * i_blocks can be represented in a 48 bit variable 4274 * as multiple of 512 bytes 4275 */ 4276 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4277 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4278 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4279 } else { 4280 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4281 /* i_block is stored in file system block size */ 4282 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4283 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4284 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4285 } 4286 return 0; 4287 } 4288 4289 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4290 { 4291 struct ext4_inode_info *ei = EXT4_I(inode); 4292 uid_t i_uid; 4293 gid_t i_gid; 4294 projid_t i_projid; 4295 int block; 4296 int err; 4297 4298 err = ext4_inode_blocks_set(raw_inode, ei); 4299 4300 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4301 i_uid = i_uid_read(inode); 4302 i_gid = i_gid_read(inode); 4303 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4304 if (!(test_opt(inode->i_sb, NO_UID32))) { 4305 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4306 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4307 /* 4308 * Fix up interoperability with old kernels. Otherwise, 4309 * old inodes get re-used with the upper 16 bits of the 4310 * uid/gid intact. 4311 */ 4312 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4313 raw_inode->i_uid_high = 0; 4314 raw_inode->i_gid_high = 0; 4315 } else { 4316 raw_inode->i_uid_high = 4317 cpu_to_le16(high_16_bits(i_uid)); 4318 raw_inode->i_gid_high = 4319 cpu_to_le16(high_16_bits(i_gid)); 4320 } 4321 } else { 4322 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4323 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4324 raw_inode->i_uid_high = 0; 4325 raw_inode->i_gid_high = 0; 4326 } 4327 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4328 4329 EXT4_INODE_SET_CTIME(inode, raw_inode); 4330 EXT4_INODE_SET_MTIME(inode, raw_inode); 4331 EXT4_INODE_SET_ATIME(inode, raw_inode); 4332 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4333 4334 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4335 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4336 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4337 raw_inode->i_file_acl_high = 4338 cpu_to_le16(ei->i_file_acl >> 32); 4339 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4340 ext4_isize_set(raw_inode, ei->i_disksize); 4341 4342 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4343 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4344 if (old_valid_dev(inode->i_rdev)) { 4345 raw_inode->i_block[0] = 4346 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4347 raw_inode->i_block[1] = 0; 4348 } else { 4349 raw_inode->i_block[0] = 0; 4350 raw_inode->i_block[1] = 4351 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4352 raw_inode->i_block[2] = 0; 4353 } 4354 } else if (!ext4_has_inline_data(inode)) { 4355 for (block = 0; block < EXT4_N_BLOCKS; block++) 4356 raw_inode->i_block[block] = ei->i_data[block]; 4357 } 4358 4359 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4360 u64 ivers = ext4_inode_peek_iversion(inode); 4361 4362 raw_inode->i_disk_version = cpu_to_le32(ivers); 4363 if (ei->i_extra_isize) { 4364 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4365 raw_inode->i_version_hi = 4366 cpu_to_le32(ivers >> 32); 4367 raw_inode->i_extra_isize = 4368 cpu_to_le16(ei->i_extra_isize); 4369 } 4370 } 4371 4372 if (i_projid != EXT4_DEF_PROJID && 4373 !ext4_has_feature_project(inode->i_sb)) 4374 err = err ?: -EFSCORRUPTED; 4375 4376 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4377 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4378 raw_inode->i_projid = cpu_to_le32(i_projid); 4379 4380 ext4_inode_csum_set(inode, raw_inode, ei); 4381 return err; 4382 } 4383 4384 /* 4385 * ext4_get_inode_loc returns with an extra refcount against the inode's 4386 * underlying buffer_head on success. If we pass 'inode' and it does not 4387 * have in-inode xattr, we have all inode data in memory that is needed 4388 * to recreate the on-disk version of this inode. 4389 */ 4390 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4391 struct inode *inode, struct ext4_iloc *iloc, 4392 ext4_fsblk_t *ret_block) 4393 { 4394 struct ext4_group_desc *gdp; 4395 struct buffer_head *bh; 4396 ext4_fsblk_t block; 4397 struct blk_plug plug; 4398 int inodes_per_block, inode_offset; 4399 4400 iloc->bh = NULL; 4401 if (ino < EXT4_ROOT_INO || 4402 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4403 return -EFSCORRUPTED; 4404 4405 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4406 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4407 if (!gdp) 4408 return -EIO; 4409 4410 /* 4411 * Figure out the offset within the block group inode table 4412 */ 4413 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4414 inode_offset = ((ino - 1) % 4415 EXT4_INODES_PER_GROUP(sb)); 4416 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4417 4418 block = ext4_inode_table(sb, gdp); 4419 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || 4420 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) { 4421 ext4_error(sb, "Invalid inode table block %llu in " 4422 "block_group %u", block, iloc->block_group); 4423 return -EFSCORRUPTED; 4424 } 4425 block += (inode_offset / inodes_per_block); 4426 4427 bh = sb_getblk(sb, block); 4428 if (unlikely(!bh)) 4429 return -ENOMEM; 4430 if (ext4_buffer_uptodate(bh)) 4431 goto has_buffer; 4432 4433 lock_buffer(bh); 4434 if (ext4_buffer_uptodate(bh)) { 4435 /* Someone brought it uptodate while we waited */ 4436 unlock_buffer(bh); 4437 goto has_buffer; 4438 } 4439 4440 /* 4441 * If we have all information of the inode in memory and this 4442 * is the only valid inode in the block, we need not read the 4443 * block. 4444 */ 4445 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4446 struct buffer_head *bitmap_bh; 4447 int i, start; 4448 4449 start = inode_offset & ~(inodes_per_block - 1); 4450 4451 /* Is the inode bitmap in cache? */ 4452 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4453 if (unlikely(!bitmap_bh)) 4454 goto make_io; 4455 4456 /* 4457 * If the inode bitmap isn't in cache then the 4458 * optimisation may end up performing two reads instead 4459 * of one, so skip it. 4460 */ 4461 if (!buffer_uptodate(bitmap_bh)) { 4462 brelse(bitmap_bh); 4463 goto make_io; 4464 } 4465 for (i = start; i < start + inodes_per_block; i++) { 4466 if (i == inode_offset) 4467 continue; 4468 if (ext4_test_bit(i, bitmap_bh->b_data)) 4469 break; 4470 } 4471 brelse(bitmap_bh); 4472 if (i == start + inodes_per_block) { 4473 struct ext4_inode *raw_inode = 4474 (struct ext4_inode *) (bh->b_data + iloc->offset); 4475 4476 /* all other inodes are free, so skip I/O */ 4477 memset(bh->b_data, 0, bh->b_size); 4478 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4479 ext4_fill_raw_inode(inode, raw_inode); 4480 set_buffer_uptodate(bh); 4481 unlock_buffer(bh); 4482 goto has_buffer; 4483 } 4484 } 4485 4486 make_io: 4487 /* 4488 * If we need to do any I/O, try to pre-readahead extra 4489 * blocks from the inode table. 4490 */ 4491 blk_start_plug(&plug); 4492 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4493 ext4_fsblk_t b, end, table; 4494 unsigned num; 4495 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4496 4497 table = ext4_inode_table(sb, gdp); 4498 /* s_inode_readahead_blks is always a power of 2 */ 4499 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4500 if (table > b) 4501 b = table; 4502 end = b + ra_blks; 4503 num = EXT4_INODES_PER_GROUP(sb); 4504 if (ext4_has_group_desc_csum(sb)) 4505 num -= ext4_itable_unused_count(sb, gdp); 4506 table += num / inodes_per_block; 4507 if (end > table) 4508 end = table; 4509 while (b <= end) 4510 ext4_sb_breadahead_unmovable(sb, b++); 4511 } 4512 4513 /* 4514 * There are other valid inodes in the buffer, this inode 4515 * has in-inode xattrs, or we don't have this inode in memory. 4516 * Read the block from disk. 4517 */ 4518 trace_ext4_load_inode(sb, ino); 4519 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL, 4520 ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO)); 4521 blk_finish_plug(&plug); 4522 wait_on_buffer(bh); 4523 if (!buffer_uptodate(bh)) { 4524 if (ret_block) 4525 *ret_block = block; 4526 brelse(bh); 4527 return -EIO; 4528 } 4529 has_buffer: 4530 iloc->bh = bh; 4531 return 0; 4532 } 4533 4534 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4535 struct ext4_iloc *iloc) 4536 { 4537 ext4_fsblk_t err_blk = 0; 4538 int ret; 4539 4540 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4541 &err_blk); 4542 4543 if (ret == -EIO) 4544 ext4_error_inode_block(inode, err_blk, EIO, 4545 "unable to read itable block"); 4546 4547 return ret; 4548 } 4549 4550 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4551 { 4552 ext4_fsblk_t err_blk = 0; 4553 int ret; 4554 4555 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4556 &err_blk); 4557 4558 if (ret == -EIO) 4559 ext4_error_inode_block(inode, err_blk, EIO, 4560 "unable to read itable block"); 4561 4562 return ret; 4563 } 4564 4565 4566 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4567 struct ext4_iloc *iloc) 4568 { 4569 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4570 } 4571 4572 static bool ext4_should_enable_dax(struct inode *inode) 4573 { 4574 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4575 4576 if (test_opt2(inode->i_sb, DAX_NEVER)) 4577 return false; 4578 if (!S_ISREG(inode->i_mode)) 4579 return false; 4580 if (ext4_should_journal_data(inode)) 4581 return false; 4582 if (ext4_has_inline_data(inode)) 4583 return false; 4584 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4585 return false; 4586 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4587 return false; 4588 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4589 return false; 4590 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4591 return true; 4592 4593 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4594 } 4595 4596 void ext4_set_inode_flags(struct inode *inode, bool init) 4597 { 4598 unsigned int flags = EXT4_I(inode)->i_flags; 4599 unsigned int new_fl = 0; 4600 4601 WARN_ON_ONCE(IS_DAX(inode) && init); 4602 4603 if (flags & EXT4_SYNC_FL) 4604 new_fl |= S_SYNC; 4605 if (flags & EXT4_APPEND_FL) 4606 new_fl |= S_APPEND; 4607 if (flags & EXT4_IMMUTABLE_FL) 4608 new_fl |= S_IMMUTABLE; 4609 if (flags & EXT4_NOATIME_FL) 4610 new_fl |= S_NOATIME; 4611 if (flags & EXT4_DIRSYNC_FL) 4612 new_fl |= S_DIRSYNC; 4613 4614 /* Because of the way inode_set_flags() works we must preserve S_DAX 4615 * here if already set. */ 4616 new_fl |= (inode->i_flags & S_DAX); 4617 if (init && ext4_should_enable_dax(inode)) 4618 new_fl |= S_DAX; 4619 4620 if (flags & EXT4_ENCRYPT_FL) 4621 new_fl |= S_ENCRYPTED; 4622 if (flags & EXT4_CASEFOLD_FL) 4623 new_fl |= S_CASEFOLD; 4624 if (flags & EXT4_VERITY_FL) 4625 new_fl |= S_VERITY; 4626 inode_set_flags(inode, new_fl, 4627 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4628 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4629 } 4630 4631 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4632 struct ext4_inode_info *ei) 4633 { 4634 blkcnt_t i_blocks ; 4635 struct inode *inode = &(ei->vfs_inode); 4636 struct super_block *sb = inode->i_sb; 4637 4638 if (ext4_has_feature_huge_file(sb)) { 4639 /* we are using combined 48 bit field */ 4640 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4641 le32_to_cpu(raw_inode->i_blocks_lo); 4642 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4643 /* i_blocks represent file system block size */ 4644 return i_blocks << (inode->i_blkbits - 9); 4645 } else { 4646 return i_blocks; 4647 } 4648 } else { 4649 return le32_to_cpu(raw_inode->i_blocks_lo); 4650 } 4651 } 4652 4653 static inline int ext4_iget_extra_inode(struct inode *inode, 4654 struct ext4_inode *raw_inode, 4655 struct ext4_inode_info *ei) 4656 { 4657 __le32 *magic = (void *)raw_inode + 4658 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4659 4660 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 4661 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4662 int err; 4663 4664 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4665 err = ext4_find_inline_data_nolock(inode); 4666 if (!err && ext4_has_inline_data(inode)) 4667 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 4668 return err; 4669 } else 4670 EXT4_I(inode)->i_inline_off = 0; 4671 return 0; 4672 } 4673 4674 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4675 { 4676 if (!ext4_has_feature_project(inode->i_sb)) 4677 return -EOPNOTSUPP; 4678 *projid = EXT4_I(inode)->i_projid; 4679 return 0; 4680 } 4681 4682 /* 4683 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4684 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4685 * set. 4686 */ 4687 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4688 { 4689 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4690 inode_set_iversion_raw(inode, val); 4691 else 4692 inode_set_iversion_queried(inode, val); 4693 } 4694 4695 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags) 4696 4697 { 4698 if (flags & EXT4_IGET_EA_INODE) { 4699 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4700 return "missing EA_INODE flag"; 4701 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4702 EXT4_I(inode)->i_file_acl) 4703 return "ea_inode with extended attributes"; 4704 } else { 4705 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4706 return "unexpected EA_INODE flag"; 4707 } 4708 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) 4709 return "unexpected bad inode w/o EXT4_IGET_BAD"; 4710 return NULL; 4711 } 4712 4713 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4714 ext4_iget_flags flags, const char *function, 4715 unsigned int line) 4716 { 4717 struct ext4_iloc iloc; 4718 struct ext4_inode *raw_inode; 4719 struct ext4_inode_info *ei; 4720 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4721 struct inode *inode; 4722 const char *err_str; 4723 journal_t *journal = EXT4_SB(sb)->s_journal; 4724 long ret; 4725 loff_t size; 4726 int block; 4727 uid_t i_uid; 4728 gid_t i_gid; 4729 projid_t i_projid; 4730 4731 if ((!(flags & EXT4_IGET_SPECIAL) && 4732 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4733 ino == le32_to_cpu(es->s_usr_quota_inum) || 4734 ino == le32_to_cpu(es->s_grp_quota_inum) || 4735 ino == le32_to_cpu(es->s_prj_quota_inum) || 4736 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4737 (ino < EXT4_ROOT_INO) || 4738 (ino > le32_to_cpu(es->s_inodes_count))) { 4739 if (flags & EXT4_IGET_HANDLE) 4740 return ERR_PTR(-ESTALE); 4741 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4742 "inode #%lu: comm %s: iget: illegal inode #", 4743 ino, current->comm); 4744 return ERR_PTR(-EFSCORRUPTED); 4745 } 4746 4747 inode = iget_locked(sb, ino); 4748 if (!inode) 4749 return ERR_PTR(-ENOMEM); 4750 if (!(inode->i_state & I_NEW)) { 4751 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 4752 ext4_error_inode(inode, function, line, 0, err_str); 4753 iput(inode); 4754 return ERR_PTR(-EFSCORRUPTED); 4755 } 4756 return inode; 4757 } 4758 4759 ei = EXT4_I(inode); 4760 iloc.bh = NULL; 4761 4762 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4763 if (ret < 0) 4764 goto bad_inode; 4765 raw_inode = ext4_raw_inode(&iloc); 4766 4767 if ((flags & EXT4_IGET_HANDLE) && 4768 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4769 ret = -ESTALE; 4770 goto bad_inode; 4771 } 4772 4773 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4774 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4775 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4776 EXT4_INODE_SIZE(inode->i_sb) || 4777 (ei->i_extra_isize & 3)) { 4778 ext4_error_inode(inode, function, line, 0, 4779 "iget: bad extra_isize %u " 4780 "(inode size %u)", 4781 ei->i_extra_isize, 4782 EXT4_INODE_SIZE(inode->i_sb)); 4783 ret = -EFSCORRUPTED; 4784 goto bad_inode; 4785 } 4786 } else 4787 ei->i_extra_isize = 0; 4788 4789 /* Precompute checksum seed for inode metadata */ 4790 if (ext4_has_metadata_csum(sb)) { 4791 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4792 __u32 csum; 4793 __le32 inum = cpu_to_le32(inode->i_ino); 4794 __le32 gen = raw_inode->i_generation; 4795 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4796 sizeof(inum)); 4797 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4798 sizeof(gen)); 4799 } 4800 4801 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4802 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4803 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4804 ext4_error_inode_err(inode, function, line, 0, 4805 EFSBADCRC, "iget: checksum invalid"); 4806 ret = -EFSBADCRC; 4807 goto bad_inode; 4808 } 4809 4810 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4811 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4812 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4813 if (ext4_has_feature_project(sb) && 4814 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4815 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4816 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4817 else 4818 i_projid = EXT4_DEF_PROJID; 4819 4820 if (!(test_opt(inode->i_sb, NO_UID32))) { 4821 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4822 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4823 } 4824 i_uid_write(inode, i_uid); 4825 i_gid_write(inode, i_gid); 4826 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4827 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4828 4829 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4830 ei->i_inline_off = 0; 4831 ei->i_dir_start_lookup = 0; 4832 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4833 /* We now have enough fields to check if the inode was active or not. 4834 * This is needed because nfsd might try to access dead inodes 4835 * the test is that same one that e2fsck uses 4836 * NeilBrown 1999oct15 4837 */ 4838 if (inode->i_nlink == 0) { 4839 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL || 4840 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4841 ino != EXT4_BOOT_LOADER_INO) { 4842 /* this inode is deleted or unallocated */ 4843 if (flags & EXT4_IGET_SPECIAL) { 4844 ext4_error_inode(inode, function, line, 0, 4845 "iget: special inode unallocated"); 4846 ret = -EFSCORRUPTED; 4847 } else 4848 ret = -ESTALE; 4849 goto bad_inode; 4850 } 4851 /* The only unlinked inodes we let through here have 4852 * valid i_mode and are being read by the orphan 4853 * recovery code: that's fine, we're about to complete 4854 * the process of deleting those. 4855 * OR it is the EXT4_BOOT_LOADER_INO which is 4856 * not initialized on a new filesystem. */ 4857 } 4858 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4859 ext4_set_inode_flags(inode, true); 4860 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4861 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4862 if (ext4_has_feature_64bit(sb)) 4863 ei->i_file_acl |= 4864 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4865 inode->i_size = ext4_isize(sb, raw_inode); 4866 if ((size = i_size_read(inode)) < 0) { 4867 ext4_error_inode(inode, function, line, 0, 4868 "iget: bad i_size value: %lld", size); 4869 ret = -EFSCORRUPTED; 4870 goto bad_inode; 4871 } 4872 /* 4873 * If dir_index is not enabled but there's dir with INDEX flag set, 4874 * we'd normally treat htree data as empty space. But with metadata 4875 * checksumming that corrupts checksums so forbid that. 4876 */ 4877 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4878 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4879 ext4_error_inode(inode, function, line, 0, 4880 "iget: Dir with htree data on filesystem without dir_index feature."); 4881 ret = -EFSCORRUPTED; 4882 goto bad_inode; 4883 } 4884 ei->i_disksize = inode->i_size; 4885 #ifdef CONFIG_QUOTA 4886 ei->i_reserved_quota = 0; 4887 #endif 4888 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4889 ei->i_block_group = iloc.block_group; 4890 ei->i_last_alloc_group = ~0; 4891 /* 4892 * NOTE! The in-memory inode i_data array is in little-endian order 4893 * even on big-endian machines: we do NOT byteswap the block numbers! 4894 */ 4895 for (block = 0; block < EXT4_N_BLOCKS; block++) 4896 ei->i_data[block] = raw_inode->i_block[block]; 4897 INIT_LIST_HEAD(&ei->i_orphan); 4898 ext4_fc_init_inode(&ei->vfs_inode); 4899 4900 /* 4901 * Set transaction id's of transactions that have to be committed 4902 * to finish f[data]sync. We set them to currently running transaction 4903 * as we cannot be sure that the inode or some of its metadata isn't 4904 * part of the transaction - the inode could have been reclaimed and 4905 * now it is reread from disk. 4906 */ 4907 if (journal) { 4908 transaction_t *transaction; 4909 tid_t tid; 4910 4911 read_lock(&journal->j_state_lock); 4912 if (journal->j_running_transaction) 4913 transaction = journal->j_running_transaction; 4914 else 4915 transaction = journal->j_committing_transaction; 4916 if (transaction) 4917 tid = transaction->t_tid; 4918 else 4919 tid = journal->j_commit_sequence; 4920 read_unlock(&journal->j_state_lock); 4921 ei->i_sync_tid = tid; 4922 ei->i_datasync_tid = tid; 4923 } 4924 4925 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4926 if (ei->i_extra_isize == 0) { 4927 /* The extra space is currently unused. Use it. */ 4928 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4929 ei->i_extra_isize = sizeof(struct ext4_inode) - 4930 EXT4_GOOD_OLD_INODE_SIZE; 4931 } else { 4932 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4933 if (ret) 4934 goto bad_inode; 4935 } 4936 } 4937 4938 EXT4_INODE_GET_CTIME(inode, raw_inode); 4939 EXT4_INODE_GET_ATIME(inode, raw_inode); 4940 EXT4_INODE_GET_MTIME(inode, raw_inode); 4941 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4942 4943 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4944 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4945 4946 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4947 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4948 ivers |= 4949 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4950 } 4951 ext4_inode_set_iversion_queried(inode, ivers); 4952 } 4953 4954 ret = 0; 4955 if (ei->i_file_acl && 4956 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4957 ext4_error_inode(inode, function, line, 0, 4958 "iget: bad extended attribute block %llu", 4959 ei->i_file_acl); 4960 ret = -EFSCORRUPTED; 4961 goto bad_inode; 4962 } else if (!ext4_has_inline_data(inode)) { 4963 /* validate the block references in the inode */ 4964 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4965 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4966 (S_ISLNK(inode->i_mode) && 4967 !ext4_inode_is_fast_symlink(inode)))) { 4968 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4969 ret = ext4_ext_check_inode(inode); 4970 else 4971 ret = ext4_ind_check_inode(inode); 4972 } 4973 } 4974 if (ret) 4975 goto bad_inode; 4976 4977 if (S_ISREG(inode->i_mode)) { 4978 inode->i_op = &ext4_file_inode_operations; 4979 inode->i_fop = &ext4_file_operations; 4980 ext4_set_aops(inode); 4981 } else if (S_ISDIR(inode->i_mode)) { 4982 inode->i_op = &ext4_dir_inode_operations; 4983 inode->i_fop = &ext4_dir_operations; 4984 } else if (S_ISLNK(inode->i_mode)) { 4985 /* VFS does not allow setting these so must be corruption */ 4986 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4987 ext4_error_inode(inode, function, line, 0, 4988 "iget: immutable or append flags " 4989 "not allowed on symlinks"); 4990 ret = -EFSCORRUPTED; 4991 goto bad_inode; 4992 } 4993 if (IS_ENCRYPTED(inode)) { 4994 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4995 } else if (ext4_inode_is_fast_symlink(inode)) { 4996 inode->i_link = (char *)ei->i_data; 4997 inode->i_op = &ext4_fast_symlink_inode_operations; 4998 nd_terminate_link(ei->i_data, inode->i_size, 4999 sizeof(ei->i_data) - 1); 5000 } else { 5001 inode->i_op = &ext4_symlink_inode_operations; 5002 } 5003 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5004 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5005 inode->i_op = &ext4_special_inode_operations; 5006 if (raw_inode->i_block[0]) 5007 init_special_inode(inode, inode->i_mode, 5008 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5009 else 5010 init_special_inode(inode, inode->i_mode, 5011 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5012 } else if (ino == EXT4_BOOT_LOADER_INO) { 5013 make_bad_inode(inode); 5014 } else { 5015 ret = -EFSCORRUPTED; 5016 ext4_error_inode(inode, function, line, 0, 5017 "iget: bogus i_mode (%o)", inode->i_mode); 5018 goto bad_inode; 5019 } 5020 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) { 5021 ext4_error_inode(inode, function, line, 0, 5022 "casefold flag without casefold feature"); 5023 ret = -EFSCORRUPTED; 5024 goto bad_inode; 5025 } 5026 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 5027 ext4_error_inode(inode, function, line, 0, err_str); 5028 ret = -EFSCORRUPTED; 5029 goto bad_inode; 5030 } 5031 5032 brelse(iloc.bh); 5033 unlock_new_inode(inode); 5034 return inode; 5035 5036 bad_inode: 5037 brelse(iloc.bh); 5038 iget_failed(inode); 5039 return ERR_PTR(ret); 5040 } 5041 5042 static void __ext4_update_other_inode_time(struct super_block *sb, 5043 unsigned long orig_ino, 5044 unsigned long ino, 5045 struct ext4_inode *raw_inode) 5046 { 5047 struct inode *inode; 5048 5049 inode = find_inode_by_ino_rcu(sb, ino); 5050 if (!inode) 5051 return; 5052 5053 if (!inode_is_dirtytime_only(inode)) 5054 return; 5055 5056 spin_lock(&inode->i_lock); 5057 if (inode_is_dirtytime_only(inode)) { 5058 struct ext4_inode_info *ei = EXT4_I(inode); 5059 5060 inode->i_state &= ~I_DIRTY_TIME; 5061 spin_unlock(&inode->i_lock); 5062 5063 spin_lock(&ei->i_raw_lock); 5064 EXT4_INODE_SET_CTIME(inode, raw_inode); 5065 EXT4_INODE_SET_MTIME(inode, raw_inode); 5066 EXT4_INODE_SET_ATIME(inode, raw_inode); 5067 ext4_inode_csum_set(inode, raw_inode, ei); 5068 spin_unlock(&ei->i_raw_lock); 5069 trace_ext4_other_inode_update_time(inode, orig_ino); 5070 return; 5071 } 5072 spin_unlock(&inode->i_lock); 5073 } 5074 5075 /* 5076 * Opportunistically update the other time fields for other inodes in 5077 * the same inode table block. 5078 */ 5079 static void ext4_update_other_inodes_time(struct super_block *sb, 5080 unsigned long orig_ino, char *buf) 5081 { 5082 unsigned long ino; 5083 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5084 int inode_size = EXT4_INODE_SIZE(sb); 5085 5086 /* 5087 * Calculate the first inode in the inode table block. Inode 5088 * numbers are one-based. That is, the first inode in a block 5089 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5090 */ 5091 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5092 rcu_read_lock(); 5093 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5094 if (ino == orig_ino) 5095 continue; 5096 __ext4_update_other_inode_time(sb, orig_ino, ino, 5097 (struct ext4_inode *)buf); 5098 } 5099 rcu_read_unlock(); 5100 } 5101 5102 /* 5103 * Post the struct inode info into an on-disk inode location in the 5104 * buffer-cache. This gobbles the caller's reference to the 5105 * buffer_head in the inode location struct. 5106 * 5107 * The caller must have write access to iloc->bh. 5108 */ 5109 static int ext4_do_update_inode(handle_t *handle, 5110 struct inode *inode, 5111 struct ext4_iloc *iloc) 5112 { 5113 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5114 struct ext4_inode_info *ei = EXT4_I(inode); 5115 struct buffer_head *bh = iloc->bh; 5116 struct super_block *sb = inode->i_sb; 5117 int err; 5118 int need_datasync = 0, set_large_file = 0; 5119 5120 spin_lock(&ei->i_raw_lock); 5121 5122 /* 5123 * For fields not tracked in the in-memory inode, initialise them 5124 * to zero for new inodes. 5125 */ 5126 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5127 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5128 5129 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5130 need_datasync = 1; 5131 if (ei->i_disksize > 0x7fffffffULL) { 5132 if (!ext4_has_feature_large_file(sb) || 5133 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5134 set_large_file = 1; 5135 } 5136 5137 err = ext4_fill_raw_inode(inode, raw_inode); 5138 spin_unlock(&ei->i_raw_lock); 5139 if (err) { 5140 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5141 goto out_brelse; 5142 } 5143 5144 if (inode->i_sb->s_flags & SB_LAZYTIME) 5145 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5146 bh->b_data); 5147 5148 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5149 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5150 if (err) 5151 goto out_error; 5152 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5153 if (set_large_file) { 5154 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5155 err = ext4_journal_get_write_access(handle, sb, 5156 EXT4_SB(sb)->s_sbh, 5157 EXT4_JTR_NONE); 5158 if (err) 5159 goto out_error; 5160 lock_buffer(EXT4_SB(sb)->s_sbh); 5161 ext4_set_feature_large_file(sb); 5162 ext4_superblock_csum_set(sb); 5163 unlock_buffer(EXT4_SB(sb)->s_sbh); 5164 ext4_handle_sync(handle); 5165 err = ext4_handle_dirty_metadata(handle, NULL, 5166 EXT4_SB(sb)->s_sbh); 5167 } 5168 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5169 out_error: 5170 ext4_std_error(inode->i_sb, err); 5171 out_brelse: 5172 brelse(bh); 5173 return err; 5174 } 5175 5176 /* 5177 * ext4_write_inode() 5178 * 5179 * We are called from a few places: 5180 * 5181 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5182 * Here, there will be no transaction running. We wait for any running 5183 * transaction to commit. 5184 * 5185 * - Within flush work (sys_sync(), kupdate and such). 5186 * We wait on commit, if told to. 5187 * 5188 * - Within iput_final() -> write_inode_now() 5189 * We wait on commit, if told to. 5190 * 5191 * In all cases it is actually safe for us to return without doing anything, 5192 * because the inode has been copied into a raw inode buffer in 5193 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5194 * writeback. 5195 * 5196 * Note that we are absolutely dependent upon all inode dirtiers doing the 5197 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5198 * which we are interested. 5199 * 5200 * It would be a bug for them to not do this. The code: 5201 * 5202 * mark_inode_dirty(inode) 5203 * stuff(); 5204 * inode->i_size = expr; 5205 * 5206 * is in error because write_inode() could occur while `stuff()' is running, 5207 * and the new i_size will be lost. Plus the inode will no longer be on the 5208 * superblock's dirty inode list. 5209 */ 5210 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5211 { 5212 int err; 5213 5214 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5215 return 0; 5216 5217 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5218 return -EIO; 5219 5220 if (EXT4_SB(inode->i_sb)->s_journal) { 5221 if (ext4_journal_current_handle()) { 5222 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5223 dump_stack(); 5224 return -EIO; 5225 } 5226 5227 /* 5228 * No need to force transaction in WB_SYNC_NONE mode. Also 5229 * ext4_sync_fs() will force the commit after everything is 5230 * written. 5231 */ 5232 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5233 return 0; 5234 5235 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5236 EXT4_I(inode)->i_sync_tid); 5237 } else { 5238 struct ext4_iloc iloc; 5239 5240 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5241 if (err) 5242 return err; 5243 /* 5244 * sync(2) will flush the whole buffer cache. No need to do 5245 * it here separately for each inode. 5246 */ 5247 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5248 sync_dirty_buffer(iloc.bh); 5249 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5250 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5251 "IO error syncing inode"); 5252 err = -EIO; 5253 } 5254 brelse(iloc.bh); 5255 } 5256 return err; 5257 } 5258 5259 /* 5260 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5261 * buffers that are attached to a folio straddling i_size and are undergoing 5262 * commit. In that case we have to wait for commit to finish and try again. 5263 */ 5264 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5265 { 5266 unsigned offset; 5267 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5268 tid_t commit_tid; 5269 int ret; 5270 bool has_transaction; 5271 5272 offset = inode->i_size & (PAGE_SIZE - 1); 5273 /* 5274 * If the folio is fully truncated, we don't need to wait for any commit 5275 * (and we even should not as __ext4_journalled_invalidate_folio() may 5276 * strip all buffers from the folio but keep the folio dirty which can then 5277 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without 5278 * buffers). Also we don't need to wait for any commit if all buffers in 5279 * the folio remain valid. This is most beneficial for the common case of 5280 * blocksize == PAGESIZE. 5281 */ 5282 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5283 return; 5284 while (1) { 5285 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5286 inode->i_size >> PAGE_SHIFT); 5287 if (IS_ERR(folio)) 5288 return; 5289 ret = __ext4_journalled_invalidate_folio(folio, offset, 5290 folio_size(folio) - offset); 5291 folio_unlock(folio); 5292 folio_put(folio); 5293 if (ret != -EBUSY) 5294 return; 5295 has_transaction = false; 5296 read_lock(&journal->j_state_lock); 5297 if (journal->j_committing_transaction) { 5298 commit_tid = journal->j_committing_transaction->t_tid; 5299 has_transaction = true; 5300 } 5301 read_unlock(&journal->j_state_lock); 5302 if (has_transaction) 5303 jbd2_log_wait_commit(journal, commit_tid); 5304 } 5305 } 5306 5307 /* 5308 * ext4_setattr() 5309 * 5310 * Called from notify_change. 5311 * 5312 * We want to trap VFS attempts to truncate the file as soon as 5313 * possible. In particular, we want to make sure that when the VFS 5314 * shrinks i_size, we put the inode on the orphan list and modify 5315 * i_disksize immediately, so that during the subsequent flushing of 5316 * dirty pages and freeing of disk blocks, we can guarantee that any 5317 * commit will leave the blocks being flushed in an unused state on 5318 * disk. (On recovery, the inode will get truncated and the blocks will 5319 * be freed, so we have a strong guarantee that no future commit will 5320 * leave these blocks visible to the user.) 5321 * 5322 * Another thing we have to assure is that if we are in ordered mode 5323 * and inode is still attached to the committing transaction, we must 5324 * we start writeout of all the dirty pages which are being truncated. 5325 * This way we are sure that all the data written in the previous 5326 * transaction are already on disk (truncate waits for pages under 5327 * writeback). 5328 * 5329 * Called with inode->i_rwsem down. 5330 */ 5331 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5332 struct iattr *attr) 5333 { 5334 struct inode *inode = d_inode(dentry); 5335 int error, rc = 0; 5336 int orphan = 0; 5337 const unsigned int ia_valid = attr->ia_valid; 5338 bool inc_ivers = true; 5339 5340 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5341 return -EIO; 5342 5343 if (unlikely(IS_IMMUTABLE(inode))) 5344 return -EPERM; 5345 5346 if (unlikely(IS_APPEND(inode) && 5347 (ia_valid & (ATTR_MODE | ATTR_UID | 5348 ATTR_GID | ATTR_TIMES_SET)))) 5349 return -EPERM; 5350 5351 error = setattr_prepare(idmap, dentry, attr); 5352 if (error) 5353 return error; 5354 5355 error = fscrypt_prepare_setattr(dentry, attr); 5356 if (error) 5357 return error; 5358 5359 error = fsverity_prepare_setattr(dentry, attr); 5360 if (error) 5361 return error; 5362 5363 if (is_quota_modification(idmap, inode, attr)) { 5364 error = dquot_initialize(inode); 5365 if (error) 5366 return error; 5367 } 5368 5369 if (i_uid_needs_update(idmap, attr, inode) || 5370 i_gid_needs_update(idmap, attr, inode)) { 5371 handle_t *handle; 5372 5373 /* (user+group)*(old+new) structure, inode write (sb, 5374 * inode block, ? - but truncate inode update has it) */ 5375 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5376 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5377 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5378 if (IS_ERR(handle)) { 5379 error = PTR_ERR(handle); 5380 goto err_out; 5381 } 5382 5383 /* dquot_transfer() calls back ext4_get_inode_usage() which 5384 * counts xattr inode references. 5385 */ 5386 down_read(&EXT4_I(inode)->xattr_sem); 5387 error = dquot_transfer(idmap, inode, attr); 5388 up_read(&EXT4_I(inode)->xattr_sem); 5389 5390 if (error) { 5391 ext4_journal_stop(handle); 5392 return error; 5393 } 5394 /* Update corresponding info in inode so that everything is in 5395 * one transaction */ 5396 i_uid_update(idmap, attr, inode); 5397 i_gid_update(idmap, attr, inode); 5398 error = ext4_mark_inode_dirty(handle, inode); 5399 ext4_journal_stop(handle); 5400 if (unlikely(error)) { 5401 return error; 5402 } 5403 } 5404 5405 if (attr->ia_valid & ATTR_SIZE) { 5406 handle_t *handle; 5407 loff_t oldsize = inode->i_size; 5408 loff_t old_disksize; 5409 int shrink = (attr->ia_size < inode->i_size); 5410 5411 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5412 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5413 5414 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5415 return -EFBIG; 5416 } 5417 } 5418 if (!S_ISREG(inode->i_mode)) { 5419 return -EINVAL; 5420 } 5421 5422 if (attr->ia_size == inode->i_size) 5423 inc_ivers = false; 5424 5425 if (shrink) { 5426 if (ext4_should_order_data(inode)) { 5427 error = ext4_begin_ordered_truncate(inode, 5428 attr->ia_size); 5429 if (error) 5430 goto err_out; 5431 } 5432 /* 5433 * Blocks are going to be removed from the inode. Wait 5434 * for dio in flight. 5435 */ 5436 inode_dio_wait(inode); 5437 } 5438 5439 filemap_invalidate_lock(inode->i_mapping); 5440 5441 rc = ext4_break_layouts(inode); 5442 if (rc) { 5443 filemap_invalidate_unlock(inode->i_mapping); 5444 goto err_out; 5445 } 5446 5447 if (attr->ia_size != inode->i_size) { 5448 /* attach jbd2 jinode for EOF folio tail zeroing */ 5449 if (attr->ia_size & (inode->i_sb->s_blocksize - 1) || 5450 oldsize & (inode->i_sb->s_blocksize - 1)) { 5451 error = ext4_inode_attach_jinode(inode); 5452 if (error) 5453 goto err_out; 5454 } 5455 5456 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5457 if (IS_ERR(handle)) { 5458 error = PTR_ERR(handle); 5459 goto out_mmap_sem; 5460 } 5461 if (ext4_handle_valid(handle) && shrink) { 5462 error = ext4_orphan_add(handle, inode); 5463 orphan = 1; 5464 } 5465 /* 5466 * Update c/mtime and tail zero the EOF folio on 5467 * truncate up. ext4_truncate() handles the shrink case 5468 * below. 5469 */ 5470 if (!shrink) { 5471 inode_set_mtime_to_ts(inode, 5472 inode_set_ctime_current(inode)); 5473 if (oldsize & (inode->i_sb->s_blocksize - 1)) 5474 ext4_block_truncate_page(handle, 5475 inode->i_mapping, oldsize); 5476 } 5477 5478 if (shrink) 5479 ext4_fc_track_range(handle, inode, 5480 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5481 inode->i_sb->s_blocksize_bits, 5482 EXT_MAX_BLOCKS - 1); 5483 else 5484 ext4_fc_track_range( 5485 handle, inode, 5486 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5487 inode->i_sb->s_blocksize_bits, 5488 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5489 inode->i_sb->s_blocksize_bits); 5490 5491 down_write(&EXT4_I(inode)->i_data_sem); 5492 old_disksize = EXT4_I(inode)->i_disksize; 5493 EXT4_I(inode)->i_disksize = attr->ia_size; 5494 rc = ext4_mark_inode_dirty(handle, inode); 5495 if (!error) 5496 error = rc; 5497 /* 5498 * We have to update i_size under i_data_sem together 5499 * with i_disksize to avoid races with writeback code 5500 * running ext4_wb_update_i_disksize(). 5501 */ 5502 if (!error) 5503 i_size_write(inode, attr->ia_size); 5504 else 5505 EXT4_I(inode)->i_disksize = old_disksize; 5506 up_write(&EXT4_I(inode)->i_data_sem); 5507 ext4_journal_stop(handle); 5508 if (error) 5509 goto out_mmap_sem; 5510 if (!shrink) { 5511 pagecache_isize_extended(inode, oldsize, 5512 inode->i_size); 5513 } else if (ext4_should_journal_data(inode)) { 5514 ext4_wait_for_tail_page_commit(inode); 5515 } 5516 } 5517 5518 /* 5519 * Truncate pagecache after we've waited for commit 5520 * in data=journal mode to make pages freeable. 5521 */ 5522 truncate_pagecache(inode, inode->i_size); 5523 /* 5524 * Call ext4_truncate() even if i_size didn't change to 5525 * truncate possible preallocated blocks. 5526 */ 5527 if (attr->ia_size <= oldsize) { 5528 rc = ext4_truncate(inode); 5529 if (rc) 5530 error = rc; 5531 } 5532 out_mmap_sem: 5533 filemap_invalidate_unlock(inode->i_mapping); 5534 } 5535 5536 if (!error) { 5537 if (inc_ivers) 5538 inode_inc_iversion(inode); 5539 setattr_copy(idmap, inode, attr); 5540 mark_inode_dirty(inode); 5541 } 5542 5543 /* 5544 * If the call to ext4_truncate failed to get a transaction handle at 5545 * all, we need to clean up the in-core orphan list manually. 5546 */ 5547 if (orphan && inode->i_nlink) 5548 ext4_orphan_del(NULL, inode); 5549 5550 if (!error && (ia_valid & ATTR_MODE)) 5551 rc = posix_acl_chmod(idmap, dentry, inode->i_mode); 5552 5553 err_out: 5554 if (error) 5555 ext4_std_error(inode->i_sb, error); 5556 if (!error) 5557 error = rc; 5558 return error; 5559 } 5560 5561 u32 ext4_dio_alignment(struct inode *inode) 5562 { 5563 if (fsverity_active(inode)) 5564 return 0; 5565 if (ext4_should_journal_data(inode)) 5566 return 0; 5567 if (ext4_has_inline_data(inode)) 5568 return 0; 5569 if (IS_ENCRYPTED(inode)) { 5570 if (!fscrypt_dio_supported(inode)) 5571 return 0; 5572 return i_blocksize(inode); 5573 } 5574 return 1; /* use the iomap defaults */ 5575 } 5576 5577 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path, 5578 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5579 { 5580 struct inode *inode = d_inode(path->dentry); 5581 struct ext4_inode *raw_inode; 5582 struct ext4_inode_info *ei = EXT4_I(inode); 5583 unsigned int flags; 5584 5585 if ((request_mask & STATX_BTIME) && 5586 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5587 stat->result_mask |= STATX_BTIME; 5588 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5589 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5590 } 5591 5592 /* 5593 * Return the DIO alignment restrictions if requested. We only return 5594 * this information when requested, since on encrypted files it might 5595 * take a fair bit of work to get if the file wasn't opened recently. 5596 */ 5597 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 5598 u32 dio_align = ext4_dio_alignment(inode); 5599 5600 stat->result_mask |= STATX_DIOALIGN; 5601 if (dio_align == 1) { 5602 struct block_device *bdev = inode->i_sb->s_bdev; 5603 5604 /* iomap defaults */ 5605 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 5606 stat->dio_offset_align = bdev_logical_block_size(bdev); 5607 } else { 5608 stat->dio_mem_align = dio_align; 5609 stat->dio_offset_align = dio_align; 5610 } 5611 } 5612 5613 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5614 if (flags & EXT4_APPEND_FL) 5615 stat->attributes |= STATX_ATTR_APPEND; 5616 if (flags & EXT4_COMPR_FL) 5617 stat->attributes |= STATX_ATTR_COMPRESSED; 5618 if (flags & EXT4_ENCRYPT_FL) 5619 stat->attributes |= STATX_ATTR_ENCRYPTED; 5620 if (flags & EXT4_IMMUTABLE_FL) 5621 stat->attributes |= STATX_ATTR_IMMUTABLE; 5622 if (flags & EXT4_NODUMP_FL) 5623 stat->attributes |= STATX_ATTR_NODUMP; 5624 if (flags & EXT4_VERITY_FL) 5625 stat->attributes |= STATX_ATTR_VERITY; 5626 5627 stat->attributes_mask |= (STATX_ATTR_APPEND | 5628 STATX_ATTR_COMPRESSED | 5629 STATX_ATTR_ENCRYPTED | 5630 STATX_ATTR_IMMUTABLE | 5631 STATX_ATTR_NODUMP | 5632 STATX_ATTR_VERITY); 5633 5634 generic_fillattr(idmap, request_mask, inode, stat); 5635 return 0; 5636 } 5637 5638 int ext4_file_getattr(struct mnt_idmap *idmap, 5639 const struct path *path, struct kstat *stat, 5640 u32 request_mask, unsigned int query_flags) 5641 { 5642 struct inode *inode = d_inode(path->dentry); 5643 u64 delalloc_blocks; 5644 5645 ext4_getattr(idmap, path, stat, request_mask, query_flags); 5646 5647 /* 5648 * If there is inline data in the inode, the inode will normally not 5649 * have data blocks allocated (it may have an external xattr block). 5650 * Report at least one sector for such files, so tools like tar, rsync, 5651 * others don't incorrectly think the file is completely sparse. 5652 */ 5653 if (unlikely(ext4_has_inline_data(inode))) 5654 stat->blocks += (stat->size + 511) >> 9; 5655 5656 /* 5657 * We can't update i_blocks if the block allocation is delayed 5658 * otherwise in the case of system crash before the real block 5659 * allocation is done, we will have i_blocks inconsistent with 5660 * on-disk file blocks. 5661 * We always keep i_blocks updated together with real 5662 * allocation. But to not confuse with user, stat 5663 * will return the blocks that include the delayed allocation 5664 * blocks for this file. 5665 */ 5666 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5667 EXT4_I(inode)->i_reserved_data_blocks); 5668 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5669 return 0; 5670 } 5671 5672 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5673 int pextents) 5674 { 5675 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5676 return ext4_ind_trans_blocks(inode, lblocks); 5677 return ext4_ext_index_trans_blocks(inode, pextents); 5678 } 5679 5680 /* 5681 * Account for index blocks, block groups bitmaps and block group 5682 * descriptor blocks if modify datablocks and index blocks 5683 * worse case, the indexs blocks spread over different block groups 5684 * 5685 * If datablocks are discontiguous, they are possible to spread over 5686 * different block groups too. If they are contiguous, with flexbg, 5687 * they could still across block group boundary. 5688 * 5689 * Also account for superblock, inode, quota and xattr blocks 5690 */ 5691 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5692 int pextents) 5693 { 5694 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5695 int gdpblocks; 5696 int idxblocks; 5697 int ret; 5698 5699 /* 5700 * How many index blocks need to touch to map @lblocks logical blocks 5701 * to @pextents physical extents? 5702 */ 5703 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5704 5705 ret = idxblocks; 5706 5707 /* 5708 * Now let's see how many group bitmaps and group descriptors need 5709 * to account 5710 */ 5711 groups = idxblocks + pextents; 5712 gdpblocks = groups; 5713 if (groups > ngroups) 5714 groups = ngroups; 5715 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5716 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5717 5718 /* bitmaps and block group descriptor blocks */ 5719 ret += groups + gdpblocks; 5720 5721 /* Blocks for super block, inode, quota and xattr blocks */ 5722 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5723 5724 return ret; 5725 } 5726 5727 /* 5728 * Calculate the total number of credits to reserve to fit 5729 * the modification of a single pages into a single transaction, 5730 * which may include multiple chunks of block allocations. 5731 * 5732 * This could be called via ext4_write_begin() 5733 * 5734 * We need to consider the worse case, when 5735 * one new block per extent. 5736 */ 5737 int ext4_writepage_trans_blocks(struct inode *inode) 5738 { 5739 int bpp = ext4_journal_blocks_per_page(inode); 5740 int ret; 5741 5742 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5743 5744 /* Account for data blocks for journalled mode */ 5745 if (ext4_should_journal_data(inode)) 5746 ret += bpp; 5747 return ret; 5748 } 5749 5750 /* 5751 * Calculate the journal credits for a chunk of data modification. 5752 * 5753 * This is called from DIO, fallocate or whoever calling 5754 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5755 * 5756 * journal buffers for data blocks are not included here, as DIO 5757 * and fallocate do no need to journal data buffers. 5758 */ 5759 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5760 { 5761 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5762 } 5763 5764 /* 5765 * The caller must have previously called ext4_reserve_inode_write(). 5766 * Give this, we know that the caller already has write access to iloc->bh. 5767 */ 5768 int ext4_mark_iloc_dirty(handle_t *handle, 5769 struct inode *inode, struct ext4_iloc *iloc) 5770 { 5771 int err = 0; 5772 5773 if (unlikely(ext4_forced_shutdown(inode->i_sb))) { 5774 put_bh(iloc->bh); 5775 return -EIO; 5776 } 5777 ext4_fc_track_inode(handle, inode); 5778 5779 /* the do_update_inode consumes one bh->b_count */ 5780 get_bh(iloc->bh); 5781 5782 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5783 err = ext4_do_update_inode(handle, inode, iloc); 5784 put_bh(iloc->bh); 5785 return err; 5786 } 5787 5788 /* 5789 * On success, We end up with an outstanding reference count against 5790 * iloc->bh. This _must_ be cleaned up later. 5791 */ 5792 5793 int 5794 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5795 struct ext4_iloc *iloc) 5796 { 5797 int err; 5798 5799 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5800 return -EIO; 5801 5802 err = ext4_get_inode_loc(inode, iloc); 5803 if (!err) { 5804 BUFFER_TRACE(iloc->bh, "get_write_access"); 5805 err = ext4_journal_get_write_access(handle, inode->i_sb, 5806 iloc->bh, EXT4_JTR_NONE); 5807 if (err) { 5808 brelse(iloc->bh); 5809 iloc->bh = NULL; 5810 } 5811 } 5812 ext4_std_error(inode->i_sb, err); 5813 return err; 5814 } 5815 5816 static int __ext4_expand_extra_isize(struct inode *inode, 5817 unsigned int new_extra_isize, 5818 struct ext4_iloc *iloc, 5819 handle_t *handle, int *no_expand) 5820 { 5821 struct ext4_inode *raw_inode; 5822 struct ext4_xattr_ibody_header *header; 5823 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5824 struct ext4_inode_info *ei = EXT4_I(inode); 5825 int error; 5826 5827 /* this was checked at iget time, but double check for good measure */ 5828 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5829 (ei->i_extra_isize & 3)) { 5830 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5831 ei->i_extra_isize, 5832 EXT4_INODE_SIZE(inode->i_sb)); 5833 return -EFSCORRUPTED; 5834 } 5835 if ((new_extra_isize < ei->i_extra_isize) || 5836 (new_extra_isize < 4) || 5837 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5838 return -EINVAL; /* Should never happen */ 5839 5840 raw_inode = ext4_raw_inode(iloc); 5841 5842 header = IHDR(inode, raw_inode); 5843 5844 /* No extended attributes present */ 5845 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5846 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5847 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5848 EXT4_I(inode)->i_extra_isize, 0, 5849 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5850 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5851 return 0; 5852 } 5853 5854 /* 5855 * We may need to allocate external xattr block so we need quotas 5856 * initialized. Here we can be called with various locks held so we 5857 * cannot affort to initialize quotas ourselves. So just bail. 5858 */ 5859 if (dquot_initialize_needed(inode)) 5860 return -EAGAIN; 5861 5862 /* try to expand with EAs present */ 5863 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5864 raw_inode, handle); 5865 if (error) { 5866 /* 5867 * Inode size expansion failed; don't try again 5868 */ 5869 *no_expand = 1; 5870 } 5871 5872 return error; 5873 } 5874 5875 /* 5876 * Expand an inode by new_extra_isize bytes. 5877 * Returns 0 on success or negative error number on failure. 5878 */ 5879 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5880 unsigned int new_extra_isize, 5881 struct ext4_iloc iloc, 5882 handle_t *handle) 5883 { 5884 int no_expand; 5885 int error; 5886 5887 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5888 return -EOVERFLOW; 5889 5890 /* 5891 * In nojournal mode, we can immediately attempt to expand 5892 * the inode. When journaled, we first need to obtain extra 5893 * buffer credits since we may write into the EA block 5894 * with this same handle. If journal_extend fails, then it will 5895 * only result in a minor loss of functionality for that inode. 5896 * If this is felt to be critical, then e2fsck should be run to 5897 * force a large enough s_min_extra_isize. 5898 */ 5899 if (ext4_journal_extend(handle, 5900 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5901 return -ENOSPC; 5902 5903 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5904 return -EBUSY; 5905 5906 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5907 handle, &no_expand); 5908 ext4_write_unlock_xattr(inode, &no_expand); 5909 5910 return error; 5911 } 5912 5913 int ext4_expand_extra_isize(struct inode *inode, 5914 unsigned int new_extra_isize, 5915 struct ext4_iloc *iloc) 5916 { 5917 handle_t *handle; 5918 int no_expand; 5919 int error, rc; 5920 5921 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5922 brelse(iloc->bh); 5923 return -EOVERFLOW; 5924 } 5925 5926 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5927 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5928 if (IS_ERR(handle)) { 5929 error = PTR_ERR(handle); 5930 brelse(iloc->bh); 5931 return error; 5932 } 5933 5934 ext4_write_lock_xattr(inode, &no_expand); 5935 5936 BUFFER_TRACE(iloc->bh, "get_write_access"); 5937 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 5938 EXT4_JTR_NONE); 5939 if (error) { 5940 brelse(iloc->bh); 5941 goto out_unlock; 5942 } 5943 5944 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5945 handle, &no_expand); 5946 5947 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5948 if (!error) 5949 error = rc; 5950 5951 out_unlock: 5952 ext4_write_unlock_xattr(inode, &no_expand); 5953 ext4_journal_stop(handle); 5954 return error; 5955 } 5956 5957 /* 5958 * What we do here is to mark the in-core inode as clean with respect to inode 5959 * dirtiness (it may still be data-dirty). 5960 * This means that the in-core inode may be reaped by prune_icache 5961 * without having to perform any I/O. This is a very good thing, 5962 * because *any* task may call prune_icache - even ones which 5963 * have a transaction open against a different journal. 5964 * 5965 * Is this cheating? Not really. Sure, we haven't written the 5966 * inode out, but prune_icache isn't a user-visible syncing function. 5967 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5968 * we start and wait on commits. 5969 */ 5970 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5971 const char *func, unsigned int line) 5972 { 5973 struct ext4_iloc iloc; 5974 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5975 int err; 5976 5977 might_sleep(); 5978 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5979 err = ext4_reserve_inode_write(handle, inode, &iloc); 5980 if (err) 5981 goto out; 5982 5983 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5984 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5985 iloc, handle); 5986 5987 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5988 out: 5989 if (unlikely(err)) 5990 ext4_error_inode_err(inode, func, line, 0, err, 5991 "mark_inode_dirty error"); 5992 return err; 5993 } 5994 5995 /* 5996 * ext4_dirty_inode() is called from __mark_inode_dirty() 5997 * 5998 * We're really interested in the case where a file is being extended. 5999 * i_size has been changed by generic_commit_write() and we thus need 6000 * to include the updated inode in the current transaction. 6001 * 6002 * Also, dquot_alloc_block() will always dirty the inode when blocks 6003 * are allocated to the file. 6004 * 6005 * If the inode is marked synchronous, we don't honour that here - doing 6006 * so would cause a commit on atime updates, which we don't bother doing. 6007 * We handle synchronous inodes at the highest possible level. 6008 */ 6009 void ext4_dirty_inode(struct inode *inode, int flags) 6010 { 6011 handle_t *handle; 6012 6013 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 6014 if (IS_ERR(handle)) 6015 return; 6016 ext4_mark_inode_dirty(handle, inode); 6017 ext4_journal_stop(handle); 6018 } 6019 6020 int ext4_change_inode_journal_flag(struct inode *inode, int val) 6021 { 6022 journal_t *journal; 6023 handle_t *handle; 6024 int err; 6025 int alloc_ctx; 6026 6027 /* 6028 * We have to be very careful here: changing a data block's 6029 * journaling status dynamically is dangerous. If we write a 6030 * data block to the journal, change the status and then delete 6031 * that block, we risk forgetting to revoke the old log record 6032 * from the journal and so a subsequent replay can corrupt data. 6033 * So, first we make sure that the journal is empty and that 6034 * nobody is changing anything. 6035 */ 6036 6037 journal = EXT4_JOURNAL(inode); 6038 if (!journal) 6039 return 0; 6040 if (is_journal_aborted(journal)) 6041 return -EROFS; 6042 6043 /* Wait for all existing dio workers */ 6044 inode_dio_wait(inode); 6045 6046 /* 6047 * Before flushing the journal and switching inode's aops, we have 6048 * to flush all dirty data the inode has. There can be outstanding 6049 * delayed allocations, there can be unwritten extents created by 6050 * fallocate or buffered writes in dioread_nolock mode covered by 6051 * dirty data which can be converted only after flushing the dirty 6052 * data (and journalled aops don't know how to handle these cases). 6053 */ 6054 if (val) { 6055 filemap_invalidate_lock(inode->i_mapping); 6056 err = filemap_write_and_wait(inode->i_mapping); 6057 if (err < 0) { 6058 filemap_invalidate_unlock(inode->i_mapping); 6059 return err; 6060 } 6061 } 6062 6063 alloc_ctx = ext4_writepages_down_write(inode->i_sb); 6064 jbd2_journal_lock_updates(journal); 6065 6066 /* 6067 * OK, there are no updates running now, and all cached data is 6068 * synced to disk. We are now in a completely consistent state 6069 * which doesn't have anything in the journal, and we know that 6070 * no filesystem updates are running, so it is safe to modify 6071 * the inode's in-core data-journaling state flag now. 6072 */ 6073 6074 if (val) 6075 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6076 else { 6077 err = jbd2_journal_flush(journal, 0); 6078 if (err < 0) { 6079 jbd2_journal_unlock_updates(journal); 6080 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6081 return err; 6082 } 6083 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6084 } 6085 ext4_set_aops(inode); 6086 6087 jbd2_journal_unlock_updates(journal); 6088 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6089 6090 if (val) 6091 filemap_invalidate_unlock(inode->i_mapping); 6092 6093 /* Finally we can mark the inode as dirty. */ 6094 6095 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6096 if (IS_ERR(handle)) 6097 return PTR_ERR(handle); 6098 6099 ext4_fc_mark_ineligible(inode->i_sb, 6100 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6101 err = ext4_mark_inode_dirty(handle, inode); 6102 ext4_handle_sync(handle); 6103 ext4_journal_stop(handle); 6104 ext4_std_error(inode->i_sb, err); 6105 6106 return err; 6107 } 6108 6109 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6110 struct buffer_head *bh) 6111 { 6112 return !buffer_mapped(bh); 6113 } 6114 6115 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6116 { 6117 struct vm_area_struct *vma = vmf->vma; 6118 struct folio *folio = page_folio(vmf->page); 6119 loff_t size; 6120 unsigned long len; 6121 int err; 6122 vm_fault_t ret; 6123 struct file *file = vma->vm_file; 6124 struct inode *inode = file_inode(file); 6125 struct address_space *mapping = inode->i_mapping; 6126 handle_t *handle; 6127 get_block_t *get_block; 6128 int retries = 0; 6129 6130 if (unlikely(IS_IMMUTABLE(inode))) 6131 return VM_FAULT_SIGBUS; 6132 6133 sb_start_pagefault(inode->i_sb); 6134 file_update_time(vma->vm_file); 6135 6136 filemap_invalidate_lock_shared(mapping); 6137 6138 err = ext4_convert_inline_data(inode); 6139 if (err) 6140 goto out_ret; 6141 6142 /* 6143 * On data journalling we skip straight to the transaction handle: 6144 * there's no delalloc; page truncated will be checked later; the 6145 * early return w/ all buffers mapped (calculates size/len) can't 6146 * be used; and there's no dioread_nolock, so only ext4_get_block. 6147 */ 6148 if (ext4_should_journal_data(inode)) 6149 goto retry_alloc; 6150 6151 /* Delalloc case is easy... */ 6152 if (test_opt(inode->i_sb, DELALLOC) && 6153 !ext4_nonda_switch(inode->i_sb)) { 6154 do { 6155 err = block_page_mkwrite(vma, vmf, 6156 ext4_da_get_block_prep); 6157 } while (err == -ENOSPC && 6158 ext4_should_retry_alloc(inode->i_sb, &retries)); 6159 goto out_ret; 6160 } 6161 6162 folio_lock(folio); 6163 size = i_size_read(inode); 6164 /* Page got truncated from under us? */ 6165 if (folio->mapping != mapping || folio_pos(folio) > size) { 6166 folio_unlock(folio); 6167 ret = VM_FAULT_NOPAGE; 6168 goto out; 6169 } 6170 6171 len = folio_size(folio); 6172 if (folio_pos(folio) + len > size) 6173 len = size - folio_pos(folio); 6174 /* 6175 * Return if we have all the buffers mapped. This avoids the need to do 6176 * journal_start/journal_stop which can block and take a long time 6177 * 6178 * This cannot be done for data journalling, as we have to add the 6179 * inode to the transaction's list to writeprotect pages on commit. 6180 */ 6181 if (folio_buffers(folio)) { 6182 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio), 6183 0, len, NULL, 6184 ext4_bh_unmapped)) { 6185 /* Wait so that we don't change page under IO */ 6186 folio_wait_stable(folio); 6187 ret = VM_FAULT_LOCKED; 6188 goto out; 6189 } 6190 } 6191 folio_unlock(folio); 6192 /* OK, we need to fill the hole... */ 6193 if (ext4_should_dioread_nolock(inode)) 6194 get_block = ext4_get_block_unwritten; 6195 else 6196 get_block = ext4_get_block; 6197 retry_alloc: 6198 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6199 ext4_writepage_trans_blocks(inode)); 6200 if (IS_ERR(handle)) { 6201 ret = VM_FAULT_SIGBUS; 6202 goto out; 6203 } 6204 /* 6205 * Data journalling can't use block_page_mkwrite() because it 6206 * will set_buffer_dirty() before do_journal_get_write_access() 6207 * thus might hit warning messages for dirty metadata buffers. 6208 */ 6209 if (!ext4_should_journal_data(inode)) { 6210 err = block_page_mkwrite(vma, vmf, get_block); 6211 } else { 6212 folio_lock(folio); 6213 size = i_size_read(inode); 6214 /* Page got truncated from under us? */ 6215 if (folio->mapping != mapping || folio_pos(folio) > size) { 6216 ret = VM_FAULT_NOPAGE; 6217 goto out_error; 6218 } 6219 6220 len = folio_size(folio); 6221 if (folio_pos(folio) + len > size) 6222 len = size - folio_pos(folio); 6223 6224 err = __block_write_begin(&folio->page, 0, len, ext4_get_block); 6225 if (!err) { 6226 ret = VM_FAULT_SIGBUS; 6227 if (ext4_journal_folio_buffers(handle, folio, len)) 6228 goto out_error; 6229 } else { 6230 folio_unlock(folio); 6231 } 6232 } 6233 ext4_journal_stop(handle); 6234 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6235 goto retry_alloc; 6236 out_ret: 6237 ret = vmf_fs_error(err); 6238 out: 6239 filemap_invalidate_unlock_shared(mapping); 6240 sb_end_pagefault(inode->i_sb); 6241 return ret; 6242 out_error: 6243 folio_unlock(folio); 6244 ext4_journal_stop(handle); 6245 goto out; 6246 } 6247