1 /* 2 * linux/fs/ext4/indirect.c 3 * 4 * from 5 * 6 * linux/fs/ext4/inode.c 7 * 8 * Copyright (C) 1992, 1993, 1994, 1995 9 * Remy Card (card@masi.ibp.fr) 10 * Laboratoire MASI - Institut Blaise Pascal 11 * Universite Pierre et Marie Curie (Paris VI) 12 * 13 * from 14 * 15 * linux/fs/minix/inode.c 16 * 17 * Copyright (C) 1991, 1992 Linus Torvalds 18 * 19 * Goal-directed block allocation by Stephen Tweedie 20 * (sct@redhat.com), 1993, 1998 21 */ 22 23 #include <linux/module.h> 24 #include "ext4_jbd2.h" 25 #include "truncate.h" 26 27 #include <trace/events/ext4.h> 28 29 typedef struct { 30 __le32 *p; 31 __le32 key; 32 struct buffer_head *bh; 33 } Indirect; 34 35 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 36 { 37 p->key = *(p->p = v); 38 p->bh = bh; 39 } 40 41 /** 42 * ext4_block_to_path - parse the block number into array of offsets 43 * @inode: inode in question (we are only interested in its superblock) 44 * @i_block: block number to be parsed 45 * @offsets: array to store the offsets in 46 * @boundary: set this non-zero if the referred-to block is likely to be 47 * followed (on disk) by an indirect block. 48 * 49 * To store the locations of file's data ext4 uses a data structure common 50 * for UNIX filesystems - tree of pointers anchored in the inode, with 51 * data blocks at leaves and indirect blocks in intermediate nodes. 52 * This function translates the block number into path in that tree - 53 * return value is the path length and @offsets[n] is the offset of 54 * pointer to (n+1)th node in the nth one. If @block is out of range 55 * (negative or too large) warning is printed and zero returned. 56 * 57 * Note: function doesn't find node addresses, so no IO is needed. All 58 * we need to know is the capacity of indirect blocks (taken from the 59 * inode->i_sb). 60 */ 61 62 /* 63 * Portability note: the last comparison (check that we fit into triple 64 * indirect block) is spelled differently, because otherwise on an 65 * architecture with 32-bit longs and 8Kb pages we might get into trouble 66 * if our filesystem had 8Kb blocks. We might use long long, but that would 67 * kill us on x86. Oh, well, at least the sign propagation does not matter - 68 * i_block would have to be negative in the very beginning, so we would not 69 * get there at all. 70 */ 71 72 static int ext4_block_to_path(struct inode *inode, 73 ext4_lblk_t i_block, 74 ext4_lblk_t offsets[4], int *boundary) 75 { 76 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 77 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 78 const long direct_blocks = EXT4_NDIR_BLOCKS, 79 indirect_blocks = ptrs, 80 double_blocks = (1 << (ptrs_bits * 2)); 81 int n = 0; 82 int final = 0; 83 84 if (i_block < direct_blocks) { 85 offsets[n++] = i_block; 86 final = direct_blocks; 87 } else if ((i_block -= direct_blocks) < indirect_blocks) { 88 offsets[n++] = EXT4_IND_BLOCK; 89 offsets[n++] = i_block; 90 final = ptrs; 91 } else if ((i_block -= indirect_blocks) < double_blocks) { 92 offsets[n++] = EXT4_DIND_BLOCK; 93 offsets[n++] = i_block >> ptrs_bits; 94 offsets[n++] = i_block & (ptrs - 1); 95 final = ptrs; 96 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 97 offsets[n++] = EXT4_TIND_BLOCK; 98 offsets[n++] = i_block >> (ptrs_bits * 2); 99 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 100 offsets[n++] = i_block & (ptrs - 1); 101 final = ptrs; 102 } else { 103 ext4_warning(inode->i_sb, "block %lu > max in inode %lu", 104 i_block + direct_blocks + 105 indirect_blocks + double_blocks, inode->i_ino); 106 } 107 if (boundary) 108 *boundary = final - 1 - (i_block & (ptrs - 1)); 109 return n; 110 } 111 112 /** 113 * ext4_get_branch - read the chain of indirect blocks leading to data 114 * @inode: inode in question 115 * @depth: depth of the chain (1 - direct pointer, etc.) 116 * @offsets: offsets of pointers in inode/indirect blocks 117 * @chain: place to store the result 118 * @err: here we store the error value 119 * 120 * Function fills the array of triples <key, p, bh> and returns %NULL 121 * if everything went OK or the pointer to the last filled triple 122 * (incomplete one) otherwise. Upon the return chain[i].key contains 123 * the number of (i+1)-th block in the chain (as it is stored in memory, 124 * i.e. little-endian 32-bit), chain[i].p contains the address of that 125 * number (it points into struct inode for i==0 and into the bh->b_data 126 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 127 * block for i>0 and NULL for i==0. In other words, it holds the block 128 * numbers of the chain, addresses they were taken from (and where we can 129 * verify that chain did not change) and buffer_heads hosting these 130 * numbers. 131 * 132 * Function stops when it stumbles upon zero pointer (absent block) 133 * (pointer to last triple returned, *@err == 0) 134 * or when it gets an IO error reading an indirect block 135 * (ditto, *@err == -EIO) 136 * or when it reads all @depth-1 indirect blocks successfully and finds 137 * the whole chain, all way to the data (returns %NULL, *err == 0). 138 * 139 * Need to be called with 140 * down_read(&EXT4_I(inode)->i_data_sem) 141 */ 142 static Indirect *ext4_get_branch(struct inode *inode, int depth, 143 ext4_lblk_t *offsets, 144 Indirect chain[4], int *err) 145 { 146 struct super_block *sb = inode->i_sb; 147 Indirect *p = chain; 148 struct buffer_head *bh; 149 150 *err = 0; 151 /* i_data is not going away, no lock needed */ 152 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 153 if (!p->key) 154 goto no_block; 155 while (--depth) { 156 bh = sb_getblk(sb, le32_to_cpu(p->key)); 157 if (unlikely(!bh)) 158 goto failure; 159 160 if (!bh_uptodate_or_lock(bh)) { 161 if (bh_submit_read(bh) < 0) { 162 put_bh(bh); 163 goto failure; 164 } 165 /* validate block references */ 166 if (ext4_check_indirect_blockref(inode, bh)) { 167 put_bh(bh); 168 goto failure; 169 } 170 } 171 172 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 173 /* Reader: end */ 174 if (!p->key) 175 goto no_block; 176 } 177 return NULL; 178 179 failure: 180 *err = -EIO; 181 no_block: 182 return p; 183 } 184 185 /** 186 * ext4_find_near - find a place for allocation with sufficient locality 187 * @inode: owner 188 * @ind: descriptor of indirect block. 189 * 190 * This function returns the preferred place for block allocation. 191 * It is used when heuristic for sequential allocation fails. 192 * Rules are: 193 * + if there is a block to the left of our position - allocate near it. 194 * + if pointer will live in indirect block - allocate near that block. 195 * + if pointer will live in inode - allocate in the same 196 * cylinder group. 197 * 198 * In the latter case we colour the starting block by the callers PID to 199 * prevent it from clashing with concurrent allocations for a different inode 200 * in the same block group. The PID is used here so that functionally related 201 * files will be close-by on-disk. 202 * 203 * Caller must make sure that @ind is valid and will stay that way. 204 */ 205 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 206 { 207 struct ext4_inode_info *ei = EXT4_I(inode); 208 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 209 __le32 *p; 210 ext4_fsblk_t bg_start; 211 ext4_fsblk_t last_block; 212 ext4_grpblk_t colour; 213 ext4_group_t block_group; 214 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb)); 215 216 /* Try to find previous block */ 217 for (p = ind->p - 1; p >= start; p--) { 218 if (*p) 219 return le32_to_cpu(*p); 220 } 221 222 /* No such thing, so let's try location of indirect block */ 223 if (ind->bh) 224 return ind->bh->b_blocknr; 225 226 /* 227 * It is going to be referred to from the inode itself? OK, just put it 228 * into the same cylinder group then. 229 */ 230 block_group = ei->i_block_group; 231 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) { 232 block_group &= ~(flex_size-1); 233 if (S_ISREG(inode->i_mode)) 234 block_group++; 235 } 236 bg_start = ext4_group_first_block_no(inode->i_sb, block_group); 237 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 238 239 /* 240 * If we are doing delayed allocation, we don't need take 241 * colour into account. 242 */ 243 if (test_opt(inode->i_sb, DELALLOC)) 244 return bg_start; 245 246 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 247 colour = (current->pid % 16) * 248 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 249 else 250 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 251 return bg_start + colour; 252 } 253 254 /** 255 * ext4_find_goal - find a preferred place for allocation. 256 * @inode: owner 257 * @block: block we want 258 * @partial: pointer to the last triple within a chain 259 * 260 * Normally this function find the preferred place for block allocation, 261 * returns it. 262 * Because this is only used for non-extent files, we limit the block nr 263 * to 32 bits. 264 */ 265 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 266 Indirect *partial) 267 { 268 ext4_fsblk_t goal; 269 270 /* 271 * XXX need to get goal block from mballoc's data structures 272 */ 273 274 goal = ext4_find_near(inode, partial); 275 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 276 return goal; 277 } 278 279 /** 280 * ext4_blks_to_allocate - Look up the block map and count the number 281 * of direct blocks need to be allocated for the given branch. 282 * 283 * @branch: chain of indirect blocks 284 * @k: number of blocks need for indirect blocks 285 * @blks: number of data blocks to be mapped. 286 * @blocks_to_boundary: the offset in the indirect block 287 * 288 * return the total number of blocks to be allocate, including the 289 * direct and indirect blocks. 290 */ 291 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 292 int blocks_to_boundary) 293 { 294 unsigned int count = 0; 295 296 /* 297 * Simple case, [t,d]Indirect block(s) has not allocated yet 298 * then it's clear blocks on that path have not allocated 299 */ 300 if (k > 0) { 301 /* right now we don't handle cross boundary allocation */ 302 if (blks < blocks_to_boundary + 1) 303 count += blks; 304 else 305 count += blocks_to_boundary + 1; 306 return count; 307 } 308 309 count++; 310 while (count < blks && count <= blocks_to_boundary && 311 le32_to_cpu(*(branch[0].p + count)) == 0) { 312 count++; 313 } 314 return count; 315 } 316 317 /** 318 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 319 * @handle: handle for this transaction 320 * @inode: inode which needs allocated blocks 321 * @iblock: the logical block to start allocated at 322 * @goal: preferred physical block of allocation 323 * @indirect_blks: the number of blocks need to allocate for indirect 324 * blocks 325 * @blks: number of desired blocks 326 * @new_blocks: on return it will store the new block numbers for 327 * the indirect blocks(if needed) and the first direct block, 328 * @err: on return it will store the error code 329 * 330 * This function will return the number of blocks allocated as 331 * requested by the passed-in parameters. 332 */ 333 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 334 ext4_lblk_t iblock, ext4_fsblk_t goal, 335 int indirect_blks, int blks, 336 ext4_fsblk_t new_blocks[4], int *err) 337 { 338 struct ext4_allocation_request ar; 339 int target, i; 340 unsigned long count = 0, blk_allocated = 0; 341 int index = 0; 342 ext4_fsblk_t current_block = 0; 343 int ret = 0; 344 345 /* 346 * Here we try to allocate the requested multiple blocks at once, 347 * on a best-effort basis. 348 * To build a branch, we should allocate blocks for 349 * the indirect blocks(if not allocated yet), and at least 350 * the first direct block of this branch. That's the 351 * minimum number of blocks need to allocate(required) 352 */ 353 /* first we try to allocate the indirect blocks */ 354 target = indirect_blks; 355 while (target > 0) { 356 count = target; 357 /* allocating blocks for indirect blocks and direct blocks */ 358 current_block = ext4_new_meta_blocks(handle, inode, goal, 359 0, &count, err); 360 if (*err) 361 goto failed_out; 362 363 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) { 364 EXT4_ERROR_INODE(inode, 365 "current_block %llu + count %lu > %d!", 366 current_block, count, 367 EXT4_MAX_BLOCK_FILE_PHYS); 368 *err = -EIO; 369 goto failed_out; 370 } 371 372 target -= count; 373 /* allocate blocks for indirect blocks */ 374 while (index < indirect_blks && count) { 375 new_blocks[index++] = current_block++; 376 count--; 377 } 378 if (count > 0) { 379 /* 380 * save the new block number 381 * for the first direct block 382 */ 383 new_blocks[index] = current_block; 384 printk(KERN_INFO "%s returned more blocks than " 385 "requested\n", __func__); 386 WARN_ON(1); 387 break; 388 } 389 } 390 391 target = blks - count ; 392 blk_allocated = count; 393 if (!target) 394 goto allocated; 395 /* Now allocate data blocks */ 396 memset(&ar, 0, sizeof(ar)); 397 ar.inode = inode; 398 ar.goal = goal; 399 ar.len = target; 400 ar.logical = iblock; 401 if (S_ISREG(inode->i_mode)) 402 /* enable in-core preallocation only for regular files */ 403 ar.flags = EXT4_MB_HINT_DATA; 404 405 current_block = ext4_mb_new_blocks(handle, &ar, err); 406 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) { 407 EXT4_ERROR_INODE(inode, 408 "current_block %llu + ar.len %d > %d!", 409 current_block, ar.len, 410 EXT4_MAX_BLOCK_FILE_PHYS); 411 *err = -EIO; 412 goto failed_out; 413 } 414 415 if (*err && (target == blks)) { 416 /* 417 * if the allocation failed and we didn't allocate 418 * any blocks before 419 */ 420 goto failed_out; 421 } 422 if (!*err) { 423 if (target == blks) { 424 /* 425 * save the new block number 426 * for the first direct block 427 */ 428 new_blocks[index] = current_block; 429 } 430 blk_allocated += ar.len; 431 } 432 allocated: 433 /* total number of blocks allocated for direct blocks */ 434 ret = blk_allocated; 435 *err = 0; 436 return ret; 437 failed_out: 438 for (i = 0; i < index; i++) 439 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0); 440 return ret; 441 } 442 443 /** 444 * ext4_alloc_branch - allocate and set up a chain of blocks. 445 * @handle: handle for this transaction 446 * @inode: owner 447 * @indirect_blks: number of allocated indirect blocks 448 * @blks: number of allocated direct blocks 449 * @goal: preferred place for allocation 450 * @offsets: offsets (in the blocks) to store the pointers to next. 451 * @branch: place to store the chain in. 452 * 453 * This function allocates blocks, zeroes out all but the last one, 454 * links them into chain and (if we are synchronous) writes them to disk. 455 * In other words, it prepares a branch that can be spliced onto the 456 * inode. It stores the information about that chain in the branch[], in 457 * the same format as ext4_get_branch() would do. We are calling it after 458 * we had read the existing part of chain and partial points to the last 459 * triple of that (one with zero ->key). Upon the exit we have the same 460 * picture as after the successful ext4_get_block(), except that in one 461 * place chain is disconnected - *branch->p is still zero (we did not 462 * set the last link), but branch->key contains the number that should 463 * be placed into *branch->p to fill that gap. 464 * 465 * If allocation fails we free all blocks we've allocated (and forget 466 * their buffer_heads) and return the error value the from failed 467 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 468 * as described above and return 0. 469 */ 470 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 471 ext4_lblk_t iblock, int indirect_blks, 472 int *blks, ext4_fsblk_t goal, 473 ext4_lblk_t *offsets, Indirect *branch) 474 { 475 int blocksize = inode->i_sb->s_blocksize; 476 int i, n = 0; 477 int err = 0; 478 struct buffer_head *bh; 479 int num; 480 ext4_fsblk_t new_blocks[4]; 481 ext4_fsblk_t current_block; 482 483 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 484 *blks, new_blocks, &err); 485 if (err) 486 return err; 487 488 branch[0].key = cpu_to_le32(new_blocks[0]); 489 /* 490 * metadata blocks and data blocks are allocated. 491 */ 492 for (n = 1; n <= indirect_blks; n++) { 493 /* 494 * Get buffer_head for parent block, zero it out 495 * and set the pointer to new one, then send 496 * parent to disk. 497 */ 498 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 499 if (unlikely(!bh)) { 500 err = -EIO; 501 goto failed; 502 } 503 504 branch[n].bh = bh; 505 lock_buffer(bh); 506 BUFFER_TRACE(bh, "call get_create_access"); 507 err = ext4_journal_get_create_access(handle, bh); 508 if (err) { 509 /* Don't brelse(bh) here; it's done in 510 * ext4_journal_forget() below */ 511 unlock_buffer(bh); 512 goto failed; 513 } 514 515 memset(bh->b_data, 0, blocksize); 516 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 517 branch[n].key = cpu_to_le32(new_blocks[n]); 518 *branch[n].p = branch[n].key; 519 if (n == indirect_blks) { 520 current_block = new_blocks[n]; 521 /* 522 * End of chain, update the last new metablock of 523 * the chain to point to the new allocated 524 * data blocks numbers 525 */ 526 for (i = 1; i < num; i++) 527 *(branch[n].p + i) = cpu_to_le32(++current_block); 528 } 529 BUFFER_TRACE(bh, "marking uptodate"); 530 set_buffer_uptodate(bh); 531 unlock_buffer(bh); 532 533 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 534 err = ext4_handle_dirty_metadata(handle, inode, bh); 535 if (err) 536 goto failed; 537 } 538 *blks = num; 539 return err; 540 failed: 541 /* Allocation failed, free what we already allocated */ 542 ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0); 543 for (i = 1; i <= n ; i++) { 544 /* 545 * branch[i].bh is newly allocated, so there is no 546 * need to revoke the block, which is why we don't 547 * need to set EXT4_FREE_BLOCKS_METADATA. 548 */ 549 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 550 EXT4_FREE_BLOCKS_FORGET); 551 } 552 for (i = n+1; i < indirect_blks; i++) 553 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0); 554 555 ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0); 556 557 return err; 558 } 559 560 /** 561 * ext4_splice_branch - splice the allocated branch onto inode. 562 * @handle: handle for this transaction 563 * @inode: owner 564 * @block: (logical) number of block we are adding 565 * @chain: chain of indirect blocks (with a missing link - see 566 * ext4_alloc_branch) 567 * @where: location of missing link 568 * @num: number of indirect blocks we are adding 569 * @blks: number of direct blocks we are adding 570 * 571 * This function fills the missing link and does all housekeeping needed in 572 * inode (->i_blocks, etc.). In case of success we end up with the full 573 * chain to new block and return 0. 574 */ 575 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 576 ext4_lblk_t block, Indirect *where, int num, 577 int blks) 578 { 579 int i; 580 int err = 0; 581 ext4_fsblk_t current_block; 582 583 /* 584 * If we're splicing into a [td]indirect block (as opposed to the 585 * inode) then we need to get write access to the [td]indirect block 586 * before the splice. 587 */ 588 if (where->bh) { 589 BUFFER_TRACE(where->bh, "get_write_access"); 590 err = ext4_journal_get_write_access(handle, where->bh); 591 if (err) 592 goto err_out; 593 } 594 /* That's it */ 595 596 *where->p = where->key; 597 598 /* 599 * Update the host buffer_head or inode to point to more just allocated 600 * direct blocks blocks 601 */ 602 if (num == 0 && blks > 1) { 603 current_block = le32_to_cpu(where->key) + 1; 604 for (i = 1; i < blks; i++) 605 *(where->p + i) = cpu_to_le32(current_block++); 606 } 607 608 /* We are done with atomic stuff, now do the rest of housekeeping */ 609 /* had we spliced it onto indirect block? */ 610 if (where->bh) { 611 /* 612 * If we spliced it onto an indirect block, we haven't 613 * altered the inode. Note however that if it is being spliced 614 * onto an indirect block at the very end of the file (the 615 * file is growing) then we *will* alter the inode to reflect 616 * the new i_size. But that is not done here - it is done in 617 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 618 */ 619 jbd_debug(5, "splicing indirect only\n"); 620 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 621 err = ext4_handle_dirty_metadata(handle, inode, where->bh); 622 if (err) 623 goto err_out; 624 } else { 625 /* 626 * OK, we spliced it into the inode itself on a direct block. 627 */ 628 ext4_mark_inode_dirty(handle, inode); 629 jbd_debug(5, "splicing direct\n"); 630 } 631 return err; 632 633 err_out: 634 for (i = 1; i <= num; i++) { 635 /* 636 * branch[i].bh is newly allocated, so there is no 637 * need to revoke the block, which is why we don't 638 * need to set EXT4_FREE_BLOCKS_METADATA. 639 */ 640 ext4_free_blocks(handle, inode, where[i].bh, 0, 1, 641 EXT4_FREE_BLOCKS_FORGET); 642 } 643 ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key), 644 blks, 0); 645 646 return err; 647 } 648 649 /* 650 * The ext4_ind_map_blocks() function handles non-extents inodes 651 * (i.e., using the traditional indirect/double-indirect i_blocks 652 * scheme) for ext4_map_blocks(). 653 * 654 * Allocation strategy is simple: if we have to allocate something, we will 655 * have to go the whole way to leaf. So let's do it before attaching anything 656 * to tree, set linkage between the newborn blocks, write them if sync is 657 * required, recheck the path, free and repeat if check fails, otherwise 658 * set the last missing link (that will protect us from any truncate-generated 659 * removals - all blocks on the path are immune now) and possibly force the 660 * write on the parent block. 661 * That has a nice additional property: no special recovery from the failed 662 * allocations is needed - we simply release blocks and do not touch anything 663 * reachable from inode. 664 * 665 * `handle' can be NULL if create == 0. 666 * 667 * return > 0, # of blocks mapped or allocated. 668 * return = 0, if plain lookup failed. 669 * return < 0, error case. 670 * 671 * The ext4_ind_get_blocks() function should be called with 672 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 673 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 674 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 675 * blocks. 676 */ 677 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode, 678 struct ext4_map_blocks *map, 679 int flags) 680 { 681 int err = -EIO; 682 ext4_lblk_t offsets[4]; 683 Indirect chain[4]; 684 Indirect *partial; 685 ext4_fsblk_t goal; 686 int indirect_blks; 687 int blocks_to_boundary = 0; 688 int depth; 689 int count = 0; 690 ext4_fsblk_t first_block = 0; 691 692 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 693 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))); 694 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 695 depth = ext4_block_to_path(inode, map->m_lblk, offsets, 696 &blocks_to_boundary); 697 698 if (depth == 0) 699 goto out; 700 701 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 702 703 /* Simplest case - block found, no allocation needed */ 704 if (!partial) { 705 first_block = le32_to_cpu(chain[depth - 1].key); 706 count++; 707 /*map more blocks*/ 708 while (count < map->m_len && count <= blocks_to_boundary) { 709 ext4_fsblk_t blk; 710 711 blk = le32_to_cpu(*(chain[depth-1].p + count)); 712 713 if (blk == first_block + count) 714 count++; 715 else 716 break; 717 } 718 goto got_it; 719 } 720 721 /* Next simple case - plain lookup or failed read of indirect block */ 722 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO) 723 goto cleanup; 724 725 /* 726 * Okay, we need to do block allocation. 727 */ 728 goal = ext4_find_goal(inode, map->m_lblk, partial); 729 730 /* the number of blocks need to allocate for [d,t]indirect blocks */ 731 indirect_blks = (chain + depth) - partial - 1; 732 733 /* 734 * Next look up the indirect map to count the totoal number of 735 * direct blocks to allocate for this branch. 736 */ 737 count = ext4_blks_to_allocate(partial, indirect_blks, 738 map->m_len, blocks_to_boundary); 739 /* 740 * Block out ext4_truncate while we alter the tree 741 */ 742 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks, 743 &count, goal, 744 offsets + (partial - chain), partial); 745 746 /* 747 * The ext4_splice_branch call will free and forget any buffers 748 * on the new chain if there is a failure, but that risks using 749 * up transaction credits, especially for bitmaps where the 750 * credits cannot be returned. Can we handle this somehow? We 751 * may need to return -EAGAIN upwards in the worst case. --sct 752 */ 753 if (!err) 754 err = ext4_splice_branch(handle, inode, map->m_lblk, 755 partial, indirect_blks, count); 756 if (err) 757 goto cleanup; 758 759 map->m_flags |= EXT4_MAP_NEW; 760 761 ext4_update_inode_fsync_trans(handle, inode, 1); 762 got_it: 763 map->m_flags |= EXT4_MAP_MAPPED; 764 map->m_pblk = le32_to_cpu(chain[depth-1].key); 765 map->m_len = count; 766 if (count > blocks_to_boundary) 767 map->m_flags |= EXT4_MAP_BOUNDARY; 768 err = count; 769 /* Clean up and exit */ 770 partial = chain + depth - 1; /* the whole chain */ 771 cleanup: 772 while (partial > chain) { 773 BUFFER_TRACE(partial->bh, "call brelse"); 774 brelse(partial->bh); 775 partial--; 776 } 777 out: 778 trace_ext4_ind_map_blocks_exit(inode, map->m_lblk, 779 map->m_pblk, map->m_len, err); 780 return err; 781 } 782 783 /* 784 * O_DIRECT for ext3 (or indirect map) based files 785 * 786 * If the O_DIRECT write will extend the file then add this inode to the 787 * orphan list. So recovery will truncate it back to the original size 788 * if the machine crashes during the write. 789 * 790 * If the O_DIRECT write is intantiating holes inside i_size and the machine 791 * crashes then stale disk data _may_ be exposed inside the file. But current 792 * VFS code falls back into buffered path in that case so we are safe. 793 */ 794 ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb, 795 const struct iovec *iov, loff_t offset, 796 unsigned long nr_segs) 797 { 798 struct file *file = iocb->ki_filp; 799 struct inode *inode = file->f_mapping->host; 800 struct ext4_inode_info *ei = EXT4_I(inode); 801 handle_t *handle; 802 ssize_t ret; 803 int orphan = 0; 804 size_t count = iov_length(iov, nr_segs); 805 int retries = 0; 806 807 if (rw == WRITE) { 808 loff_t final_size = offset + count; 809 810 if (final_size > inode->i_size) { 811 /* Credits for sb + inode write */ 812 handle = ext4_journal_start(inode, 2); 813 if (IS_ERR(handle)) { 814 ret = PTR_ERR(handle); 815 goto out; 816 } 817 ret = ext4_orphan_add(handle, inode); 818 if (ret) { 819 ext4_journal_stop(handle); 820 goto out; 821 } 822 orphan = 1; 823 ei->i_disksize = inode->i_size; 824 ext4_journal_stop(handle); 825 } 826 } 827 828 retry: 829 if (rw == READ && ext4_should_dioread_nolock(inode)) 830 ret = __blockdev_direct_IO(rw, iocb, inode, 831 inode->i_sb->s_bdev, iov, 832 offset, nr_segs, 833 ext4_get_block, NULL, NULL, 0); 834 else { 835 ret = blockdev_direct_IO(rw, iocb, inode, 836 inode->i_sb->s_bdev, iov, 837 offset, nr_segs, 838 ext4_get_block, NULL); 839 840 if (unlikely((rw & WRITE) && ret < 0)) { 841 loff_t isize = i_size_read(inode); 842 loff_t end = offset + iov_length(iov, nr_segs); 843 844 if (end > isize) 845 ext4_truncate_failed_write(inode); 846 } 847 } 848 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 849 goto retry; 850 851 if (orphan) { 852 int err; 853 854 /* Credits for sb + inode write */ 855 handle = ext4_journal_start(inode, 2); 856 if (IS_ERR(handle)) { 857 /* This is really bad luck. We've written the data 858 * but cannot extend i_size. Bail out and pretend 859 * the write failed... */ 860 ret = PTR_ERR(handle); 861 if (inode->i_nlink) 862 ext4_orphan_del(NULL, inode); 863 864 goto out; 865 } 866 if (inode->i_nlink) 867 ext4_orphan_del(handle, inode); 868 if (ret > 0) { 869 loff_t end = offset + ret; 870 if (end > inode->i_size) { 871 ei->i_disksize = end; 872 i_size_write(inode, end); 873 /* 874 * We're going to return a positive `ret' 875 * here due to non-zero-length I/O, so there's 876 * no way of reporting error returns from 877 * ext4_mark_inode_dirty() to userspace. So 878 * ignore it. 879 */ 880 ext4_mark_inode_dirty(handle, inode); 881 } 882 } 883 err = ext4_journal_stop(handle); 884 if (ret == 0) 885 ret = err; 886 } 887 out: 888 return ret; 889 } 890 891 /* 892 * Calculate the number of metadata blocks need to reserve 893 * to allocate a new block at @lblocks for non extent file based file 894 */ 895 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock) 896 { 897 struct ext4_inode_info *ei = EXT4_I(inode); 898 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1); 899 int blk_bits; 900 901 if (lblock < EXT4_NDIR_BLOCKS) 902 return 0; 903 904 lblock -= EXT4_NDIR_BLOCKS; 905 906 if (ei->i_da_metadata_calc_len && 907 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) { 908 ei->i_da_metadata_calc_len++; 909 return 0; 910 } 911 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask; 912 ei->i_da_metadata_calc_len = 1; 913 blk_bits = order_base_2(lblock); 914 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1; 915 } 916 917 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk) 918 { 919 int indirects; 920 921 /* if nrblocks are contiguous */ 922 if (chunk) { 923 /* 924 * With N contiguous data blocks, we need at most 925 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks, 926 * 2 dindirect blocks, and 1 tindirect block 927 */ 928 return DIV_ROUND_UP(nrblocks, 929 EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4; 930 } 931 /* 932 * if nrblocks are not contiguous, worse case, each block touch 933 * a indirect block, and each indirect block touch a double indirect 934 * block, plus a triple indirect block 935 */ 936 indirects = nrblocks * 2 + 1; 937 return indirects; 938 } 939 940 /* 941 * Truncate transactions can be complex and absolutely huge. So we need to 942 * be able to restart the transaction at a conventient checkpoint to make 943 * sure we don't overflow the journal. 944 * 945 * start_transaction gets us a new handle for a truncate transaction, 946 * and extend_transaction tries to extend the existing one a bit. If 947 * extend fails, we need to propagate the failure up and restart the 948 * transaction in the top-level truncate loop. --sct 949 */ 950 static handle_t *start_transaction(struct inode *inode) 951 { 952 handle_t *result; 953 954 result = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)); 955 if (!IS_ERR(result)) 956 return result; 957 958 ext4_std_error(inode->i_sb, PTR_ERR(result)); 959 return result; 960 } 961 962 /* 963 * Try to extend this transaction for the purposes of truncation. 964 * 965 * Returns 0 if we managed to create more room. If we can't create more 966 * room, and the transaction must be restarted we return 1. 967 */ 968 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 969 { 970 if (!ext4_handle_valid(handle)) 971 return 0; 972 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 973 return 0; 974 if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode))) 975 return 0; 976 return 1; 977 } 978 979 /* 980 * Probably it should be a library function... search for first non-zero word 981 * or memcmp with zero_page, whatever is better for particular architecture. 982 * Linus? 983 */ 984 static inline int all_zeroes(__le32 *p, __le32 *q) 985 { 986 while (p < q) 987 if (*p++) 988 return 0; 989 return 1; 990 } 991 992 /** 993 * ext4_find_shared - find the indirect blocks for partial truncation. 994 * @inode: inode in question 995 * @depth: depth of the affected branch 996 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 997 * @chain: place to store the pointers to partial indirect blocks 998 * @top: place to the (detached) top of branch 999 * 1000 * This is a helper function used by ext4_truncate(). 1001 * 1002 * When we do truncate() we may have to clean the ends of several 1003 * indirect blocks but leave the blocks themselves alive. Block is 1004 * partially truncated if some data below the new i_size is referred 1005 * from it (and it is on the path to the first completely truncated 1006 * data block, indeed). We have to free the top of that path along 1007 * with everything to the right of the path. Since no allocation 1008 * past the truncation point is possible until ext4_truncate() 1009 * finishes, we may safely do the latter, but top of branch may 1010 * require special attention - pageout below the truncation point 1011 * might try to populate it. 1012 * 1013 * We atomically detach the top of branch from the tree, store the 1014 * block number of its root in *@top, pointers to buffer_heads of 1015 * partially truncated blocks - in @chain[].bh and pointers to 1016 * their last elements that should not be removed - in 1017 * @chain[].p. Return value is the pointer to last filled element 1018 * of @chain. 1019 * 1020 * The work left to caller to do the actual freeing of subtrees: 1021 * a) free the subtree starting from *@top 1022 * b) free the subtrees whose roots are stored in 1023 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 1024 * c) free the subtrees growing from the inode past the @chain[0]. 1025 * (no partially truncated stuff there). */ 1026 1027 static Indirect *ext4_find_shared(struct inode *inode, int depth, 1028 ext4_lblk_t offsets[4], Indirect chain[4], 1029 __le32 *top) 1030 { 1031 Indirect *partial, *p; 1032 int k, err; 1033 1034 *top = 0; 1035 /* Make k index the deepest non-null offset + 1 */ 1036 for (k = depth; k > 1 && !offsets[k-1]; k--) 1037 ; 1038 partial = ext4_get_branch(inode, k, offsets, chain, &err); 1039 /* Writer: pointers */ 1040 if (!partial) 1041 partial = chain + k-1; 1042 /* 1043 * If the branch acquired continuation since we've looked at it - 1044 * fine, it should all survive and (new) top doesn't belong to us. 1045 */ 1046 if (!partial->key && *partial->p) 1047 /* Writer: end */ 1048 goto no_top; 1049 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 1050 ; 1051 /* 1052 * OK, we've found the last block that must survive. The rest of our 1053 * branch should be detached before unlocking. However, if that rest 1054 * of branch is all ours and does not grow immediately from the inode 1055 * it's easier to cheat and just decrement partial->p. 1056 */ 1057 if (p == chain + k - 1 && p > chain) { 1058 p->p--; 1059 } else { 1060 *top = *p->p; 1061 /* Nope, don't do this in ext4. Must leave the tree intact */ 1062 #if 0 1063 *p->p = 0; 1064 #endif 1065 } 1066 /* Writer: end */ 1067 1068 while (partial > p) { 1069 brelse(partial->bh); 1070 partial--; 1071 } 1072 no_top: 1073 return partial; 1074 } 1075 1076 /* 1077 * Zero a number of block pointers in either an inode or an indirect block. 1078 * If we restart the transaction we must again get write access to the 1079 * indirect block for further modification. 1080 * 1081 * We release `count' blocks on disk, but (last - first) may be greater 1082 * than `count' because there can be holes in there. 1083 * 1084 * Return 0 on success, 1 on invalid block range 1085 * and < 0 on fatal error. 1086 */ 1087 static int ext4_clear_blocks(handle_t *handle, struct inode *inode, 1088 struct buffer_head *bh, 1089 ext4_fsblk_t block_to_free, 1090 unsigned long count, __le32 *first, 1091 __le32 *last) 1092 { 1093 __le32 *p; 1094 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED; 1095 int err; 1096 1097 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 1098 flags |= EXT4_FREE_BLOCKS_METADATA; 1099 1100 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free, 1101 count)) { 1102 EXT4_ERROR_INODE(inode, "attempt to clear invalid " 1103 "blocks %llu len %lu", 1104 (unsigned long long) block_to_free, count); 1105 return 1; 1106 } 1107 1108 if (try_to_extend_transaction(handle, inode)) { 1109 if (bh) { 1110 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1111 err = ext4_handle_dirty_metadata(handle, inode, bh); 1112 if (unlikely(err)) 1113 goto out_err; 1114 } 1115 err = ext4_mark_inode_dirty(handle, inode); 1116 if (unlikely(err)) 1117 goto out_err; 1118 err = ext4_truncate_restart_trans(handle, inode, 1119 ext4_blocks_for_truncate(inode)); 1120 if (unlikely(err)) 1121 goto out_err; 1122 if (bh) { 1123 BUFFER_TRACE(bh, "retaking write access"); 1124 err = ext4_journal_get_write_access(handle, bh); 1125 if (unlikely(err)) 1126 goto out_err; 1127 } 1128 } 1129 1130 for (p = first; p < last; p++) 1131 *p = 0; 1132 1133 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags); 1134 return 0; 1135 out_err: 1136 ext4_std_error(inode->i_sb, err); 1137 return err; 1138 } 1139 1140 /** 1141 * ext4_free_data - free a list of data blocks 1142 * @handle: handle for this transaction 1143 * @inode: inode we are dealing with 1144 * @this_bh: indirect buffer_head which contains *@first and *@last 1145 * @first: array of block numbers 1146 * @last: points immediately past the end of array 1147 * 1148 * We are freeing all blocks referred from that array (numbers are stored as 1149 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 1150 * 1151 * We accumulate contiguous runs of blocks to free. Conveniently, if these 1152 * blocks are contiguous then releasing them at one time will only affect one 1153 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 1154 * actually use a lot of journal space. 1155 * 1156 * @this_bh will be %NULL if @first and @last point into the inode's direct 1157 * block pointers. 1158 */ 1159 static void ext4_free_data(handle_t *handle, struct inode *inode, 1160 struct buffer_head *this_bh, 1161 __le32 *first, __le32 *last) 1162 { 1163 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 1164 unsigned long count = 0; /* Number of blocks in the run */ 1165 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 1166 corresponding to 1167 block_to_free */ 1168 ext4_fsblk_t nr; /* Current block # */ 1169 __le32 *p; /* Pointer into inode/ind 1170 for current block */ 1171 int err = 0; 1172 1173 if (this_bh) { /* For indirect block */ 1174 BUFFER_TRACE(this_bh, "get_write_access"); 1175 err = ext4_journal_get_write_access(handle, this_bh); 1176 /* Important: if we can't update the indirect pointers 1177 * to the blocks, we can't free them. */ 1178 if (err) 1179 return; 1180 } 1181 1182 for (p = first; p < last; p++) { 1183 nr = le32_to_cpu(*p); 1184 if (nr) { 1185 /* accumulate blocks to free if they're contiguous */ 1186 if (count == 0) { 1187 block_to_free = nr; 1188 block_to_free_p = p; 1189 count = 1; 1190 } else if (nr == block_to_free + count) { 1191 count++; 1192 } else { 1193 err = ext4_clear_blocks(handle, inode, this_bh, 1194 block_to_free, count, 1195 block_to_free_p, p); 1196 if (err) 1197 break; 1198 block_to_free = nr; 1199 block_to_free_p = p; 1200 count = 1; 1201 } 1202 } 1203 } 1204 1205 if (!err && count > 0) 1206 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free, 1207 count, block_to_free_p, p); 1208 if (err < 0) 1209 /* fatal error */ 1210 return; 1211 1212 if (this_bh) { 1213 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 1214 1215 /* 1216 * The buffer head should have an attached journal head at this 1217 * point. However, if the data is corrupted and an indirect 1218 * block pointed to itself, it would have been detached when 1219 * the block was cleared. Check for this instead of OOPSing. 1220 */ 1221 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 1222 ext4_handle_dirty_metadata(handle, inode, this_bh); 1223 else 1224 EXT4_ERROR_INODE(inode, 1225 "circular indirect block detected at " 1226 "block %llu", 1227 (unsigned long long) this_bh->b_blocknr); 1228 } 1229 } 1230 1231 /** 1232 * ext4_free_branches - free an array of branches 1233 * @handle: JBD handle for this transaction 1234 * @inode: inode we are dealing with 1235 * @parent_bh: the buffer_head which contains *@first and *@last 1236 * @first: array of block numbers 1237 * @last: pointer immediately past the end of array 1238 * @depth: depth of the branches to free 1239 * 1240 * We are freeing all blocks referred from these branches (numbers are 1241 * stored as little-endian 32-bit) and updating @inode->i_blocks 1242 * appropriately. 1243 */ 1244 static void ext4_free_branches(handle_t *handle, struct inode *inode, 1245 struct buffer_head *parent_bh, 1246 __le32 *first, __le32 *last, int depth) 1247 { 1248 ext4_fsblk_t nr; 1249 __le32 *p; 1250 1251 if (ext4_handle_is_aborted(handle)) 1252 return; 1253 1254 if (depth--) { 1255 struct buffer_head *bh; 1256 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1257 p = last; 1258 while (--p >= first) { 1259 nr = le32_to_cpu(*p); 1260 if (!nr) 1261 continue; /* A hole */ 1262 1263 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), 1264 nr, 1)) { 1265 EXT4_ERROR_INODE(inode, 1266 "invalid indirect mapped " 1267 "block %lu (level %d)", 1268 (unsigned long) nr, depth); 1269 break; 1270 } 1271 1272 /* Go read the buffer for the next level down */ 1273 bh = sb_bread(inode->i_sb, nr); 1274 1275 /* 1276 * A read failure? Report error and clear slot 1277 * (should be rare). 1278 */ 1279 if (!bh) { 1280 EXT4_ERROR_INODE_BLOCK(inode, nr, 1281 "Read failure"); 1282 continue; 1283 } 1284 1285 /* This zaps the entire block. Bottom up. */ 1286 BUFFER_TRACE(bh, "free child branches"); 1287 ext4_free_branches(handle, inode, bh, 1288 (__le32 *) bh->b_data, 1289 (__le32 *) bh->b_data + addr_per_block, 1290 depth); 1291 brelse(bh); 1292 1293 /* 1294 * Everything below this this pointer has been 1295 * released. Now let this top-of-subtree go. 1296 * 1297 * We want the freeing of this indirect block to be 1298 * atomic in the journal with the updating of the 1299 * bitmap block which owns it. So make some room in 1300 * the journal. 1301 * 1302 * We zero the parent pointer *after* freeing its 1303 * pointee in the bitmaps, so if extend_transaction() 1304 * for some reason fails to put the bitmap changes and 1305 * the release into the same transaction, recovery 1306 * will merely complain about releasing a free block, 1307 * rather than leaking blocks. 1308 */ 1309 if (ext4_handle_is_aborted(handle)) 1310 return; 1311 if (try_to_extend_transaction(handle, inode)) { 1312 ext4_mark_inode_dirty(handle, inode); 1313 ext4_truncate_restart_trans(handle, inode, 1314 ext4_blocks_for_truncate(inode)); 1315 } 1316 1317 /* 1318 * The forget flag here is critical because if 1319 * we are journaling (and not doing data 1320 * journaling), we have to make sure a revoke 1321 * record is written to prevent the journal 1322 * replay from overwriting the (former) 1323 * indirect block if it gets reallocated as a 1324 * data block. This must happen in the same 1325 * transaction where the data blocks are 1326 * actually freed. 1327 */ 1328 ext4_free_blocks(handle, inode, NULL, nr, 1, 1329 EXT4_FREE_BLOCKS_METADATA| 1330 EXT4_FREE_BLOCKS_FORGET); 1331 1332 if (parent_bh) { 1333 /* 1334 * The block which we have just freed is 1335 * pointed to by an indirect block: journal it 1336 */ 1337 BUFFER_TRACE(parent_bh, "get_write_access"); 1338 if (!ext4_journal_get_write_access(handle, 1339 parent_bh)){ 1340 *p = 0; 1341 BUFFER_TRACE(parent_bh, 1342 "call ext4_handle_dirty_metadata"); 1343 ext4_handle_dirty_metadata(handle, 1344 inode, 1345 parent_bh); 1346 } 1347 } 1348 } 1349 } else { 1350 /* We have reached the bottom of the tree. */ 1351 BUFFER_TRACE(parent_bh, "free data blocks"); 1352 ext4_free_data(handle, inode, parent_bh, first, last); 1353 } 1354 } 1355 1356 void ext4_ind_truncate(struct inode *inode) 1357 { 1358 handle_t *handle; 1359 struct ext4_inode_info *ei = EXT4_I(inode); 1360 __le32 *i_data = ei->i_data; 1361 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1362 struct address_space *mapping = inode->i_mapping; 1363 ext4_lblk_t offsets[4]; 1364 Indirect chain[4]; 1365 Indirect *partial; 1366 __le32 nr = 0; 1367 int n = 0; 1368 ext4_lblk_t last_block, max_block; 1369 unsigned blocksize = inode->i_sb->s_blocksize; 1370 1371 handle = start_transaction(inode); 1372 if (IS_ERR(handle)) 1373 return; /* AKPM: return what? */ 1374 1375 last_block = (inode->i_size + blocksize-1) 1376 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1377 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 1378 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1379 1380 if (inode->i_size & (blocksize - 1)) 1381 if (ext4_block_truncate_page(handle, mapping, inode->i_size)) 1382 goto out_stop; 1383 1384 if (last_block != max_block) { 1385 n = ext4_block_to_path(inode, last_block, offsets, NULL); 1386 if (n == 0) 1387 goto out_stop; /* error */ 1388 } 1389 1390 /* 1391 * OK. This truncate is going to happen. We add the inode to the 1392 * orphan list, so that if this truncate spans multiple transactions, 1393 * and we crash, we will resume the truncate when the filesystem 1394 * recovers. It also marks the inode dirty, to catch the new size. 1395 * 1396 * Implication: the file must always be in a sane, consistent 1397 * truncatable state while each transaction commits. 1398 */ 1399 if (ext4_orphan_add(handle, inode)) 1400 goto out_stop; 1401 1402 /* 1403 * From here we block out all ext4_get_block() callers who want to 1404 * modify the block allocation tree. 1405 */ 1406 down_write(&ei->i_data_sem); 1407 1408 ext4_discard_preallocations(inode); 1409 1410 /* 1411 * The orphan list entry will now protect us from any crash which 1412 * occurs before the truncate completes, so it is now safe to propagate 1413 * the new, shorter inode size (held for now in i_size) into the 1414 * on-disk inode. We do this via i_disksize, which is the value which 1415 * ext4 *really* writes onto the disk inode. 1416 */ 1417 ei->i_disksize = inode->i_size; 1418 1419 if (last_block == max_block) { 1420 /* 1421 * It is unnecessary to free any data blocks if last_block is 1422 * equal to the indirect block limit. 1423 */ 1424 goto out_unlock; 1425 } else if (n == 1) { /* direct blocks */ 1426 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 1427 i_data + EXT4_NDIR_BLOCKS); 1428 goto do_indirects; 1429 } 1430 1431 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1432 /* Kill the top of shared branch (not detached) */ 1433 if (nr) { 1434 if (partial == chain) { 1435 /* Shared branch grows from the inode */ 1436 ext4_free_branches(handle, inode, NULL, 1437 &nr, &nr+1, (chain+n-1) - partial); 1438 *partial->p = 0; 1439 /* 1440 * We mark the inode dirty prior to restart, 1441 * and prior to stop. No need for it here. 1442 */ 1443 } else { 1444 /* Shared branch grows from an indirect block */ 1445 BUFFER_TRACE(partial->bh, "get_write_access"); 1446 ext4_free_branches(handle, inode, partial->bh, 1447 partial->p, 1448 partial->p+1, (chain+n-1) - partial); 1449 } 1450 } 1451 /* Clear the ends of indirect blocks on the shared branch */ 1452 while (partial > chain) { 1453 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 1454 (__le32*)partial->bh->b_data+addr_per_block, 1455 (chain+n-1) - partial); 1456 BUFFER_TRACE(partial->bh, "call brelse"); 1457 brelse(partial->bh); 1458 partial--; 1459 } 1460 do_indirects: 1461 /* Kill the remaining (whole) subtrees */ 1462 switch (offsets[0]) { 1463 default: 1464 nr = i_data[EXT4_IND_BLOCK]; 1465 if (nr) { 1466 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 1467 i_data[EXT4_IND_BLOCK] = 0; 1468 } 1469 case EXT4_IND_BLOCK: 1470 nr = i_data[EXT4_DIND_BLOCK]; 1471 if (nr) { 1472 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 1473 i_data[EXT4_DIND_BLOCK] = 0; 1474 } 1475 case EXT4_DIND_BLOCK: 1476 nr = i_data[EXT4_TIND_BLOCK]; 1477 if (nr) { 1478 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 1479 i_data[EXT4_TIND_BLOCK] = 0; 1480 } 1481 case EXT4_TIND_BLOCK: 1482 ; 1483 } 1484 1485 out_unlock: 1486 up_write(&ei->i_data_sem); 1487 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 1488 ext4_mark_inode_dirty(handle, inode); 1489 1490 /* 1491 * In a multi-transaction truncate, we only make the final transaction 1492 * synchronous 1493 */ 1494 if (IS_SYNC(inode)) 1495 ext4_handle_sync(handle); 1496 out_stop: 1497 /* 1498 * If this was a simple ftruncate(), and the file will remain alive 1499 * then we need to clear up the orphan record which we created above. 1500 * However, if this was a real unlink then we were called by 1501 * ext4_delete_inode(), and we allow that function to clean up the 1502 * orphan info for us. 1503 */ 1504 if (inode->i_nlink) 1505 ext4_orphan_del(handle, inode); 1506 1507 ext4_journal_stop(handle); 1508 trace_ext4_truncate_exit(inode); 1509 } 1510 1511