1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * fs/ext4/fast_commit.c 5 * 6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com> 7 * 8 * Ext4 fast commits routines. 9 */ 10 #include "ext4.h" 11 #include "ext4_jbd2.h" 12 #include "ext4_extents.h" 13 #include "mballoc.h" 14 15 /* 16 * Ext4 Fast Commits 17 * ----------------- 18 * 19 * Ext4 fast commits implement fine grained journalling for Ext4. 20 * 21 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See 22 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by 23 * TLV during the recovery phase. For the scenarios for which we currently 24 * don't have replay code, fast commit falls back to full commits. 25 * Fast commits record delta in one of the following three categories. 26 * 27 * (A) Directory entry updates: 28 * 29 * - EXT4_FC_TAG_UNLINK - records directory entry unlink 30 * - EXT4_FC_TAG_LINK - records directory entry link 31 * - EXT4_FC_TAG_CREAT - records inode and directory entry creation 32 * 33 * (B) File specific data range updates: 34 * 35 * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode 36 * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode 37 * 38 * (C) Inode metadata (mtime / ctime etc): 39 * 40 * - EXT4_FC_TAG_INODE - record the inode that should be replayed 41 * during recovery. Note that iblocks field is 42 * not replayed and instead derived during 43 * replay. 44 * Commit Operation 45 * ---------------- 46 * With fast commits, we maintain all the directory entry operations in the 47 * order in which they are issued in an in-memory queue. This queue is flushed 48 * to disk during the commit operation. We also maintain a list of inodes 49 * that need to be committed during a fast commit in another in memory queue of 50 * inodes. During the commit operation, we commit in the following order: 51 * 52 * [1] Lock inodes for any further data updates by setting COMMITTING state 53 * [2] Submit data buffers of all the inodes 54 * [3] Wait for [2] to complete 55 * [4] Commit all the directory entry updates in the fast commit space 56 * [5] Commit all the changed inode structures 57 * [6] Write tail tag (this tag ensures the atomicity, please read the following 58 * section for more details). 59 * [7] Wait for [4], [5] and [6] to complete. 60 * 61 * All the inode updates must call ext4_fc_start_update() before starting an 62 * update. If such an ongoing update is present, fast commit waits for it to 63 * complete. The completion of such an update is marked by 64 * ext4_fc_stop_update(). 65 * 66 * Fast Commit Ineligibility 67 * ------------------------- 68 * 69 * Not all operations are supported by fast commits today (e.g extended 70 * attributes). Fast commit ineligibility is marked by calling 71 * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back 72 * to full commit. 73 * 74 * Atomicity of commits 75 * -------------------- 76 * In order to guarantee atomicity during the commit operation, fast commit 77 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail 78 * tag contains CRC of the contents and TID of the transaction after which 79 * this fast commit should be applied. Recovery code replays fast commit 80 * logs only if there's at least 1 valid tail present. For every fast commit 81 * operation, there is 1 tail. This means, we may end up with multiple tails 82 * in the fast commit space. Here's an example: 83 * 84 * - Create a new file A and remove existing file B 85 * - fsync() 86 * - Append contents to file A 87 * - Truncate file A 88 * - fsync() 89 * 90 * The fast commit space at the end of above operations would look like this: 91 * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL] 92 * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->| 93 * 94 * Replay code should thus check for all the valid tails in the FC area. 95 * 96 * Fast Commit Replay Idempotence 97 * ------------------------------ 98 * 99 * Fast commits tags are idempotent in nature provided the recovery code follows 100 * certain rules. The guiding principle that the commit path follows while 101 * committing is that it stores the result of a particular operation instead of 102 * storing the procedure. 103 * 104 * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a' 105 * was associated with inode 10. During fast commit, instead of storing this 106 * operation as a procedure "rename a to b", we store the resulting file system 107 * state as a "series" of outcomes: 108 * 109 * - Link dirent b to inode 10 110 * - Unlink dirent a 111 * - Inode <10> with valid refcount 112 * 113 * Now when recovery code runs, it needs "enforce" this state on the file 114 * system. This is what guarantees idempotence of fast commit replay. 115 * 116 * Let's take an example of a procedure that is not idempotent and see how fast 117 * commits make it idempotent. Consider following sequence of operations: 118 * 119 * rm A; mv B A; read A 120 * (x) (y) (z) 121 * 122 * (x), (y) and (z) are the points at which we can crash. If we store this 123 * sequence of operations as is then the replay is not idempotent. Let's say 124 * while in replay, we crash at (z). During the second replay, file A (which was 125 * actually created as a result of "mv B A" operation) would get deleted. Thus, 126 * file named A would be absent when we try to read A. So, this sequence of 127 * operations is not idempotent. However, as mentioned above, instead of storing 128 * the procedure fast commits store the outcome of each procedure. Thus the fast 129 * commit log for above procedure would be as follows: 130 * 131 * (Let's assume dirent A was linked to inode 10 and dirent B was linked to 132 * inode 11 before the replay) 133 * 134 * [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11] 135 * (w) (x) (y) (z) 136 * 137 * If we crash at (z), we will have file A linked to inode 11. During the second 138 * replay, we will remove file A (inode 11). But we will create it back and make 139 * it point to inode 11. We won't find B, so we'll just skip that step. At this 140 * point, the refcount for inode 11 is not reliable, but that gets fixed by the 141 * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled 142 * similarly. Thus, by converting a non-idempotent procedure into a series of 143 * idempotent outcomes, fast commits ensured idempotence during the replay. 144 * 145 * TODOs 146 * ----- 147 * 148 * 0) Fast commit replay path hardening: Fast commit replay code should use 149 * journal handles to make sure all the updates it does during the replay 150 * path are atomic. With that if we crash during fast commit replay, after 151 * trying to do recovery again, we will find a file system where fast commit 152 * area is invalid (because new full commit would be found). In order to deal 153 * with that, fast commit replay code should ensure that the "FC_REPLAY" 154 * superblock state is persisted before starting the replay, so that after 155 * the crash, fast commit recovery code can look at that flag and perform 156 * fast commit recovery even if that area is invalidated by later full 157 * commits. 158 * 159 * 1) Fast commit's commit path locks the entire file system during fast 160 * commit. This has significant performance penalty. Instead of that, we 161 * should use ext4_fc_start/stop_update functions to start inode level 162 * updates from ext4_journal_start/stop. Once we do that we can drop file 163 * system locking during commit path. 164 * 165 * 2) Handle more ineligible cases. 166 */ 167 168 #include <trace/events/ext4.h> 169 static struct kmem_cache *ext4_fc_dentry_cachep; 170 171 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate) 172 { 173 BUFFER_TRACE(bh, ""); 174 if (uptodate) { 175 ext4_debug("%s: Block %lld up-to-date", 176 __func__, bh->b_blocknr); 177 set_buffer_uptodate(bh); 178 } else { 179 ext4_debug("%s: Block %lld not up-to-date", 180 __func__, bh->b_blocknr); 181 clear_buffer_uptodate(bh); 182 } 183 184 unlock_buffer(bh); 185 } 186 187 static inline void ext4_fc_reset_inode(struct inode *inode) 188 { 189 struct ext4_inode_info *ei = EXT4_I(inode); 190 191 ei->i_fc_lblk_start = 0; 192 ei->i_fc_lblk_len = 0; 193 } 194 195 void ext4_fc_init_inode(struct inode *inode) 196 { 197 struct ext4_inode_info *ei = EXT4_I(inode); 198 199 ext4_fc_reset_inode(inode); 200 ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING); 201 INIT_LIST_HEAD(&ei->i_fc_list); 202 INIT_LIST_HEAD(&ei->i_fc_dilist); 203 init_waitqueue_head(&ei->i_fc_wait); 204 atomic_set(&ei->i_fc_updates, 0); 205 } 206 207 /* This function must be called with sbi->s_fc_lock held. */ 208 static void ext4_fc_wait_committing_inode(struct inode *inode) 209 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock) 210 { 211 wait_queue_head_t *wq; 212 struct ext4_inode_info *ei = EXT4_I(inode); 213 214 #if (BITS_PER_LONG < 64) 215 DEFINE_WAIT_BIT(wait, &ei->i_state_flags, 216 EXT4_STATE_FC_COMMITTING); 217 wq = bit_waitqueue(&ei->i_state_flags, 218 EXT4_STATE_FC_COMMITTING); 219 #else 220 DEFINE_WAIT_BIT(wait, &ei->i_flags, 221 EXT4_STATE_FC_COMMITTING); 222 wq = bit_waitqueue(&ei->i_flags, 223 EXT4_STATE_FC_COMMITTING); 224 #endif 225 lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock); 226 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 227 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); 228 schedule(); 229 finish_wait(wq, &wait.wq_entry); 230 } 231 232 static bool ext4_fc_disabled(struct super_block *sb) 233 { 234 return (!test_opt2(sb, JOURNAL_FAST_COMMIT) || 235 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)); 236 } 237 238 /* 239 * Inform Ext4's fast about start of an inode update 240 * 241 * This function is called by the high level call VFS callbacks before 242 * performing any inode update. This function blocks if there's an ongoing 243 * fast commit on the inode in question. 244 */ 245 void ext4_fc_start_update(struct inode *inode) 246 { 247 struct ext4_inode_info *ei = EXT4_I(inode); 248 249 if (ext4_fc_disabled(inode->i_sb)) 250 return; 251 252 restart: 253 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock); 254 if (list_empty(&ei->i_fc_list)) 255 goto out; 256 257 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) { 258 ext4_fc_wait_committing_inode(inode); 259 goto restart; 260 } 261 out: 262 atomic_inc(&ei->i_fc_updates); 263 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); 264 } 265 266 /* 267 * Stop inode update and wake up waiting fast commits if any. 268 */ 269 void ext4_fc_stop_update(struct inode *inode) 270 { 271 struct ext4_inode_info *ei = EXT4_I(inode); 272 273 if (ext4_fc_disabled(inode->i_sb)) 274 return; 275 276 if (atomic_dec_and_test(&ei->i_fc_updates)) 277 wake_up_all(&ei->i_fc_wait); 278 } 279 280 /* 281 * Remove inode from fast commit list. If the inode is being committed 282 * we wait until inode commit is done. 283 */ 284 void ext4_fc_del(struct inode *inode) 285 { 286 struct ext4_inode_info *ei = EXT4_I(inode); 287 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 288 struct ext4_fc_dentry_update *fc_dentry; 289 290 if (ext4_fc_disabled(inode->i_sb)) 291 return; 292 293 restart: 294 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock); 295 if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) { 296 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); 297 return; 298 } 299 300 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) { 301 ext4_fc_wait_committing_inode(inode); 302 goto restart; 303 } 304 305 if (!list_empty(&ei->i_fc_list)) 306 list_del_init(&ei->i_fc_list); 307 308 /* 309 * Since this inode is getting removed, let's also remove all FC 310 * dentry create references, since it is not needed to log it anyways. 311 */ 312 if (list_empty(&ei->i_fc_dilist)) { 313 spin_unlock(&sbi->s_fc_lock); 314 return; 315 } 316 317 fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist); 318 WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT); 319 list_del_init(&fc_dentry->fcd_list); 320 list_del_init(&fc_dentry->fcd_dilist); 321 322 WARN_ON(!list_empty(&ei->i_fc_dilist)); 323 spin_unlock(&sbi->s_fc_lock); 324 325 if (fc_dentry->fcd_name.name && 326 fc_dentry->fcd_name.len > DNAME_INLINE_LEN) 327 kfree(fc_dentry->fcd_name.name); 328 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); 329 330 return; 331 } 332 333 /* 334 * Mark file system as fast commit ineligible, and record latest 335 * ineligible transaction tid. This means until the recorded 336 * transaction, commit operation would result in a full jbd2 commit. 337 */ 338 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle) 339 { 340 struct ext4_sb_info *sbi = EXT4_SB(sb); 341 tid_t tid; 342 343 if (ext4_fc_disabled(sb)) 344 return; 345 346 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 347 if (handle && !IS_ERR(handle)) 348 tid = handle->h_transaction->t_tid; 349 else { 350 read_lock(&sbi->s_journal->j_state_lock); 351 tid = sbi->s_journal->j_running_transaction ? 352 sbi->s_journal->j_running_transaction->t_tid : 0; 353 read_unlock(&sbi->s_journal->j_state_lock); 354 } 355 spin_lock(&sbi->s_fc_lock); 356 if (sbi->s_fc_ineligible_tid < tid) 357 sbi->s_fc_ineligible_tid = tid; 358 spin_unlock(&sbi->s_fc_lock); 359 WARN_ON(reason >= EXT4_FC_REASON_MAX); 360 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++; 361 } 362 363 /* 364 * Generic fast commit tracking function. If this is the first time this we are 365 * called after a full commit, we initialize fast commit fields and then call 366 * __fc_track_fn() with update = 0. If we have already been called after a full 367 * commit, we pass update = 1. Based on that, the track function can determine 368 * if it needs to track a field for the first time or if it needs to just 369 * update the previously tracked value. 370 * 371 * If enqueue is set, this function enqueues the inode in fast commit list. 372 */ 373 static int ext4_fc_track_template( 374 handle_t *handle, struct inode *inode, 375 int (*__fc_track_fn)(struct inode *, void *, bool), 376 void *args, int enqueue) 377 { 378 bool update = false; 379 struct ext4_inode_info *ei = EXT4_I(inode); 380 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 381 tid_t tid = 0; 382 int ret; 383 384 tid = handle->h_transaction->t_tid; 385 mutex_lock(&ei->i_fc_lock); 386 if (tid == ei->i_sync_tid) { 387 update = true; 388 } else { 389 ext4_fc_reset_inode(inode); 390 ei->i_sync_tid = tid; 391 } 392 ret = __fc_track_fn(inode, args, update); 393 mutex_unlock(&ei->i_fc_lock); 394 395 if (!enqueue) 396 return ret; 397 398 spin_lock(&sbi->s_fc_lock); 399 if (list_empty(&EXT4_I(inode)->i_fc_list)) 400 list_add_tail(&EXT4_I(inode)->i_fc_list, 401 (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 402 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ? 403 &sbi->s_fc_q[FC_Q_STAGING] : 404 &sbi->s_fc_q[FC_Q_MAIN]); 405 spin_unlock(&sbi->s_fc_lock); 406 407 return ret; 408 } 409 410 struct __track_dentry_update_args { 411 struct dentry *dentry; 412 int op; 413 }; 414 415 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */ 416 static int __track_dentry_update(struct inode *inode, void *arg, bool update) 417 { 418 struct ext4_fc_dentry_update *node; 419 struct ext4_inode_info *ei = EXT4_I(inode); 420 struct __track_dentry_update_args *dentry_update = 421 (struct __track_dentry_update_args *)arg; 422 struct dentry *dentry = dentry_update->dentry; 423 struct inode *dir = dentry->d_parent->d_inode; 424 struct super_block *sb = inode->i_sb; 425 struct ext4_sb_info *sbi = EXT4_SB(sb); 426 427 mutex_unlock(&ei->i_fc_lock); 428 429 if (IS_ENCRYPTED(dir)) { 430 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME, 431 NULL); 432 mutex_lock(&ei->i_fc_lock); 433 return -EOPNOTSUPP; 434 } 435 436 node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS); 437 if (!node) { 438 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL); 439 mutex_lock(&ei->i_fc_lock); 440 return -ENOMEM; 441 } 442 443 node->fcd_op = dentry_update->op; 444 node->fcd_parent = dir->i_ino; 445 node->fcd_ino = inode->i_ino; 446 if (dentry->d_name.len > DNAME_INLINE_LEN) { 447 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS); 448 if (!node->fcd_name.name) { 449 kmem_cache_free(ext4_fc_dentry_cachep, node); 450 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL); 451 mutex_lock(&ei->i_fc_lock); 452 return -ENOMEM; 453 } 454 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name, 455 dentry->d_name.len); 456 } else { 457 memcpy(node->fcd_iname, dentry->d_name.name, 458 dentry->d_name.len); 459 node->fcd_name.name = node->fcd_iname; 460 } 461 node->fcd_name.len = dentry->d_name.len; 462 INIT_LIST_HEAD(&node->fcd_dilist); 463 spin_lock(&sbi->s_fc_lock); 464 if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 465 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) 466 list_add_tail(&node->fcd_list, 467 &sbi->s_fc_dentry_q[FC_Q_STAGING]); 468 else 469 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]); 470 471 /* 472 * This helps us keep a track of all fc_dentry updates which is part of 473 * this ext4 inode. So in case the inode is getting unlinked, before 474 * even we get a chance to fsync, we could remove all fc_dentry 475 * references while evicting the inode in ext4_fc_del(). 476 * Also with this, we don't need to loop over all the inodes in 477 * sbi->s_fc_q to get the corresponding inode in 478 * ext4_fc_commit_dentry_updates(). 479 */ 480 if (dentry_update->op == EXT4_FC_TAG_CREAT) { 481 WARN_ON(!list_empty(&ei->i_fc_dilist)); 482 list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist); 483 } 484 spin_unlock(&sbi->s_fc_lock); 485 mutex_lock(&ei->i_fc_lock); 486 487 return 0; 488 } 489 490 void __ext4_fc_track_unlink(handle_t *handle, 491 struct inode *inode, struct dentry *dentry) 492 { 493 struct __track_dentry_update_args args; 494 int ret; 495 496 args.dentry = dentry; 497 args.op = EXT4_FC_TAG_UNLINK; 498 499 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 500 (void *)&args, 0); 501 trace_ext4_fc_track_unlink(handle, inode, dentry, ret); 502 } 503 504 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry) 505 { 506 struct inode *inode = d_inode(dentry); 507 508 if (ext4_fc_disabled(inode->i_sb)) 509 return; 510 511 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 512 return; 513 514 __ext4_fc_track_unlink(handle, inode, dentry); 515 } 516 517 void __ext4_fc_track_link(handle_t *handle, 518 struct inode *inode, struct dentry *dentry) 519 { 520 struct __track_dentry_update_args args; 521 int ret; 522 523 args.dentry = dentry; 524 args.op = EXT4_FC_TAG_LINK; 525 526 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 527 (void *)&args, 0); 528 trace_ext4_fc_track_link(handle, inode, dentry, ret); 529 } 530 531 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry) 532 { 533 struct inode *inode = d_inode(dentry); 534 535 if (ext4_fc_disabled(inode->i_sb)) 536 return; 537 538 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 539 return; 540 541 __ext4_fc_track_link(handle, inode, dentry); 542 } 543 544 void __ext4_fc_track_create(handle_t *handle, struct inode *inode, 545 struct dentry *dentry) 546 { 547 struct __track_dentry_update_args args; 548 int ret; 549 550 args.dentry = dentry; 551 args.op = EXT4_FC_TAG_CREAT; 552 553 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 554 (void *)&args, 0); 555 trace_ext4_fc_track_create(handle, inode, dentry, ret); 556 } 557 558 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry) 559 { 560 struct inode *inode = d_inode(dentry); 561 562 if (ext4_fc_disabled(inode->i_sb)) 563 return; 564 565 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 566 return; 567 568 __ext4_fc_track_create(handle, inode, dentry); 569 } 570 571 /* __track_fn for inode tracking */ 572 static int __track_inode(struct inode *inode, void *arg, bool update) 573 { 574 if (update) 575 return -EEXIST; 576 577 EXT4_I(inode)->i_fc_lblk_len = 0; 578 579 return 0; 580 } 581 582 void ext4_fc_track_inode(handle_t *handle, struct inode *inode) 583 { 584 int ret; 585 586 if (S_ISDIR(inode->i_mode)) 587 return; 588 589 if (ext4_fc_disabled(inode->i_sb)) 590 return; 591 592 if (ext4_should_journal_data(inode)) { 593 ext4_fc_mark_ineligible(inode->i_sb, 594 EXT4_FC_REASON_INODE_JOURNAL_DATA, handle); 595 return; 596 } 597 598 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 599 return; 600 601 ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1); 602 trace_ext4_fc_track_inode(handle, inode, ret); 603 } 604 605 struct __track_range_args { 606 ext4_lblk_t start, end; 607 }; 608 609 /* __track_fn for tracking data updates */ 610 static int __track_range(struct inode *inode, void *arg, bool update) 611 { 612 struct ext4_inode_info *ei = EXT4_I(inode); 613 ext4_lblk_t oldstart; 614 struct __track_range_args *__arg = 615 (struct __track_range_args *)arg; 616 617 if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) { 618 ext4_debug("Special inode %ld being modified\n", inode->i_ino); 619 return -ECANCELED; 620 } 621 622 oldstart = ei->i_fc_lblk_start; 623 624 if (update && ei->i_fc_lblk_len > 0) { 625 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start); 626 ei->i_fc_lblk_len = 627 max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) - 628 ei->i_fc_lblk_start + 1; 629 } else { 630 ei->i_fc_lblk_start = __arg->start; 631 ei->i_fc_lblk_len = __arg->end - __arg->start + 1; 632 } 633 634 return 0; 635 } 636 637 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start, 638 ext4_lblk_t end) 639 { 640 struct __track_range_args args; 641 int ret; 642 643 if (S_ISDIR(inode->i_mode)) 644 return; 645 646 if (ext4_fc_disabled(inode->i_sb)) 647 return; 648 649 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 650 return; 651 652 args.start = start; 653 args.end = end; 654 655 ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1); 656 657 trace_ext4_fc_track_range(handle, inode, start, end, ret); 658 } 659 660 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail) 661 { 662 blk_opf_t write_flags = REQ_SYNC; 663 struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh; 664 665 /* Add REQ_FUA | REQ_PREFLUSH only its tail */ 666 if (test_opt(sb, BARRIER) && is_tail) 667 write_flags |= REQ_FUA | REQ_PREFLUSH; 668 lock_buffer(bh); 669 set_buffer_dirty(bh); 670 set_buffer_uptodate(bh); 671 bh->b_end_io = ext4_end_buffer_io_sync; 672 submit_bh(REQ_OP_WRITE | write_flags, bh); 673 EXT4_SB(sb)->s_fc_bh = NULL; 674 } 675 676 /* Ext4 commit path routines */ 677 678 /* memcpy to fc reserved space and update CRC */ 679 static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src, 680 int len, u32 *crc) 681 { 682 if (crc) 683 *crc = ext4_chksum(EXT4_SB(sb), *crc, src, len); 684 return memcpy(dst, src, len); 685 } 686 687 /* memzero and update CRC */ 688 static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len, 689 u32 *crc) 690 { 691 void *ret; 692 693 ret = memset(dst, 0, len); 694 if (crc) 695 *crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len); 696 return ret; 697 } 698 699 /* 700 * Allocate len bytes on a fast commit buffer. 701 * 702 * During the commit time this function is used to manage fast commit 703 * block space. We don't split a fast commit log onto different 704 * blocks. So this function makes sure that if there's not enough space 705 * on the current block, the remaining space in the current block is 706 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case, 707 * new block is from jbd2 and CRC is updated to reflect the padding 708 * we added. 709 */ 710 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc) 711 { 712 struct ext4_fc_tl tl; 713 struct ext4_sb_info *sbi = EXT4_SB(sb); 714 struct buffer_head *bh; 715 int bsize = sbi->s_journal->j_blocksize; 716 int ret, off = sbi->s_fc_bytes % bsize; 717 int pad_len; 718 u8 *dst; 719 720 /* 721 * After allocating len, we should have space at least for a 0 byte 722 * padding. 723 */ 724 if (len + EXT4_FC_TAG_BASE_LEN > bsize) 725 return NULL; 726 727 if (bsize - off - 1 > len + EXT4_FC_TAG_BASE_LEN) { 728 /* 729 * Only allocate from current buffer if we have enough space for 730 * this request AND we have space to add a zero byte padding. 731 */ 732 if (!sbi->s_fc_bh) { 733 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); 734 if (ret) 735 return NULL; 736 sbi->s_fc_bh = bh; 737 } 738 sbi->s_fc_bytes += len; 739 return sbi->s_fc_bh->b_data + off; 740 } 741 /* Need to add PAD tag */ 742 dst = sbi->s_fc_bh->b_data + off; 743 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD); 744 pad_len = bsize - off - 1 - EXT4_FC_TAG_BASE_LEN; 745 tl.fc_len = cpu_to_le16(pad_len); 746 ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc); 747 dst += EXT4_FC_TAG_BASE_LEN; 748 if (pad_len > 0) { 749 ext4_fc_memzero(sb, dst, pad_len, crc); 750 dst += pad_len; 751 } 752 /* Don't leak uninitialized memory in the unused last byte. */ 753 *dst = 0; 754 755 ext4_fc_submit_bh(sb, false); 756 757 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); 758 if (ret) 759 return NULL; 760 sbi->s_fc_bh = bh; 761 sbi->s_fc_bytes = (sbi->s_fc_bytes / bsize + 1) * bsize + len; 762 return sbi->s_fc_bh->b_data; 763 } 764 765 /* 766 * Complete a fast commit by writing tail tag. 767 * 768 * Writing tail tag marks the end of a fast commit. In order to guarantee 769 * atomicity, after writing tail tag, even if there's space remaining 770 * in the block, next commit shouldn't use it. That's why tail tag 771 * has the length as that of the remaining space on the block. 772 */ 773 static int ext4_fc_write_tail(struct super_block *sb, u32 crc) 774 { 775 struct ext4_sb_info *sbi = EXT4_SB(sb); 776 struct ext4_fc_tl tl; 777 struct ext4_fc_tail tail; 778 int off, bsize = sbi->s_journal->j_blocksize; 779 u8 *dst; 780 781 /* 782 * ext4_fc_reserve_space takes care of allocating an extra block if 783 * there's no enough space on this block for accommodating this tail. 784 */ 785 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc); 786 if (!dst) 787 return -ENOSPC; 788 789 off = sbi->s_fc_bytes % bsize; 790 791 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL); 792 tl.fc_len = cpu_to_le16(bsize - off - 1 + sizeof(struct ext4_fc_tail)); 793 sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize); 794 795 ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, &crc); 796 dst += EXT4_FC_TAG_BASE_LEN; 797 tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid); 798 ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc); 799 dst += sizeof(tail.fc_tid); 800 tail.fc_crc = cpu_to_le32(crc); 801 ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL); 802 dst += sizeof(tail.fc_crc); 803 memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */ 804 805 ext4_fc_submit_bh(sb, true); 806 807 return 0; 808 } 809 810 /* 811 * Adds tag, length, value and updates CRC. Returns true if tlv was added. 812 * Returns false if there's not enough space. 813 */ 814 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val, 815 u32 *crc) 816 { 817 struct ext4_fc_tl tl; 818 u8 *dst; 819 820 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc); 821 if (!dst) 822 return false; 823 824 tl.fc_tag = cpu_to_le16(tag); 825 tl.fc_len = cpu_to_le16(len); 826 827 ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc); 828 ext4_fc_memcpy(sb, dst + EXT4_FC_TAG_BASE_LEN, val, len, crc); 829 830 return true; 831 } 832 833 /* Same as above, but adds dentry tlv. */ 834 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc, 835 struct ext4_fc_dentry_update *fc_dentry) 836 { 837 struct ext4_fc_dentry_info fcd; 838 struct ext4_fc_tl tl; 839 int dlen = fc_dentry->fcd_name.len; 840 u8 *dst = ext4_fc_reserve_space(sb, 841 EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc); 842 843 if (!dst) 844 return false; 845 846 fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent); 847 fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino); 848 tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op); 849 tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen); 850 ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc); 851 dst += EXT4_FC_TAG_BASE_LEN; 852 ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc); 853 dst += sizeof(fcd); 854 ext4_fc_memcpy(sb, dst, fc_dentry->fcd_name.name, dlen, crc); 855 856 return true; 857 } 858 859 /* 860 * Writes inode in the fast commit space under TLV with tag @tag. 861 * Returns 0 on success, error on failure. 862 */ 863 static int ext4_fc_write_inode(struct inode *inode, u32 *crc) 864 { 865 struct ext4_inode_info *ei = EXT4_I(inode); 866 int inode_len = EXT4_GOOD_OLD_INODE_SIZE; 867 int ret; 868 struct ext4_iloc iloc; 869 struct ext4_fc_inode fc_inode; 870 struct ext4_fc_tl tl; 871 u8 *dst; 872 873 ret = ext4_get_inode_loc(inode, &iloc); 874 if (ret) 875 return ret; 876 877 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) 878 inode_len = EXT4_INODE_SIZE(inode->i_sb); 879 else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) 880 inode_len += ei->i_extra_isize; 881 882 fc_inode.fc_ino = cpu_to_le32(inode->i_ino); 883 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE); 884 tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino)); 885 886 ret = -ECANCELED; 887 dst = ext4_fc_reserve_space(inode->i_sb, 888 EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc); 889 if (!dst) 890 goto err; 891 892 if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc)) 893 goto err; 894 dst += EXT4_FC_TAG_BASE_LEN; 895 if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc)) 896 goto err; 897 dst += sizeof(fc_inode); 898 if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc), 899 inode_len, crc)) 900 goto err; 901 ret = 0; 902 err: 903 brelse(iloc.bh); 904 return ret; 905 } 906 907 /* 908 * Writes updated data ranges for the inode in question. Updates CRC. 909 * Returns 0 on success, error otherwise. 910 */ 911 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc) 912 { 913 ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size; 914 struct ext4_inode_info *ei = EXT4_I(inode); 915 struct ext4_map_blocks map; 916 struct ext4_fc_add_range fc_ext; 917 struct ext4_fc_del_range lrange; 918 struct ext4_extent *ex; 919 int ret; 920 921 mutex_lock(&ei->i_fc_lock); 922 if (ei->i_fc_lblk_len == 0) { 923 mutex_unlock(&ei->i_fc_lock); 924 return 0; 925 } 926 old_blk_size = ei->i_fc_lblk_start; 927 new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1; 928 ei->i_fc_lblk_len = 0; 929 mutex_unlock(&ei->i_fc_lock); 930 931 cur_lblk_off = old_blk_size; 932 ext4_debug("will try writing %d to %d for inode %ld\n", 933 cur_lblk_off, new_blk_size, inode->i_ino); 934 935 while (cur_lblk_off <= new_blk_size) { 936 map.m_lblk = cur_lblk_off; 937 map.m_len = new_blk_size - cur_lblk_off + 1; 938 ret = ext4_map_blocks(NULL, inode, &map, 0); 939 if (ret < 0) 940 return -ECANCELED; 941 942 if (map.m_len == 0) { 943 cur_lblk_off++; 944 continue; 945 } 946 947 if (ret == 0) { 948 lrange.fc_ino = cpu_to_le32(inode->i_ino); 949 lrange.fc_lblk = cpu_to_le32(map.m_lblk); 950 lrange.fc_len = cpu_to_le32(map.m_len); 951 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE, 952 sizeof(lrange), (u8 *)&lrange, crc)) 953 return -ENOSPC; 954 } else { 955 unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ? 956 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN; 957 958 /* Limit the number of blocks in one extent */ 959 map.m_len = min(max, map.m_len); 960 961 fc_ext.fc_ino = cpu_to_le32(inode->i_ino); 962 ex = (struct ext4_extent *)&fc_ext.fc_ex; 963 ex->ee_block = cpu_to_le32(map.m_lblk); 964 ex->ee_len = cpu_to_le16(map.m_len); 965 ext4_ext_store_pblock(ex, map.m_pblk); 966 if (map.m_flags & EXT4_MAP_UNWRITTEN) 967 ext4_ext_mark_unwritten(ex); 968 else 969 ext4_ext_mark_initialized(ex); 970 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE, 971 sizeof(fc_ext), (u8 *)&fc_ext, crc)) 972 return -ENOSPC; 973 } 974 975 cur_lblk_off += map.m_len; 976 } 977 978 return 0; 979 } 980 981 982 /* Submit data for all the fast commit inodes */ 983 static int ext4_fc_submit_inode_data_all(journal_t *journal) 984 { 985 struct super_block *sb = journal->j_private; 986 struct ext4_sb_info *sbi = EXT4_SB(sb); 987 struct ext4_inode_info *ei; 988 int ret = 0; 989 990 spin_lock(&sbi->s_fc_lock); 991 list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 992 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING); 993 while (atomic_read(&ei->i_fc_updates)) { 994 DEFINE_WAIT(wait); 995 996 prepare_to_wait(&ei->i_fc_wait, &wait, 997 TASK_UNINTERRUPTIBLE); 998 if (atomic_read(&ei->i_fc_updates)) { 999 spin_unlock(&sbi->s_fc_lock); 1000 schedule(); 1001 spin_lock(&sbi->s_fc_lock); 1002 } 1003 finish_wait(&ei->i_fc_wait, &wait); 1004 } 1005 spin_unlock(&sbi->s_fc_lock); 1006 ret = jbd2_submit_inode_data(ei->jinode); 1007 if (ret) 1008 return ret; 1009 spin_lock(&sbi->s_fc_lock); 1010 } 1011 spin_unlock(&sbi->s_fc_lock); 1012 1013 return ret; 1014 } 1015 1016 /* Wait for completion of data for all the fast commit inodes */ 1017 static int ext4_fc_wait_inode_data_all(journal_t *journal) 1018 { 1019 struct super_block *sb = journal->j_private; 1020 struct ext4_sb_info *sbi = EXT4_SB(sb); 1021 struct ext4_inode_info *pos, *n; 1022 int ret = 0; 1023 1024 spin_lock(&sbi->s_fc_lock); 1025 list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 1026 if (!ext4_test_inode_state(&pos->vfs_inode, 1027 EXT4_STATE_FC_COMMITTING)) 1028 continue; 1029 spin_unlock(&sbi->s_fc_lock); 1030 1031 ret = jbd2_wait_inode_data(journal, pos->jinode); 1032 if (ret) 1033 return ret; 1034 spin_lock(&sbi->s_fc_lock); 1035 } 1036 spin_unlock(&sbi->s_fc_lock); 1037 1038 return 0; 1039 } 1040 1041 /* Commit all the directory entry updates */ 1042 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc) 1043 __acquires(&sbi->s_fc_lock) 1044 __releases(&sbi->s_fc_lock) 1045 { 1046 struct super_block *sb = journal->j_private; 1047 struct ext4_sb_info *sbi = EXT4_SB(sb); 1048 struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n; 1049 struct inode *inode; 1050 struct ext4_inode_info *ei; 1051 int ret; 1052 1053 if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) 1054 return 0; 1055 list_for_each_entry_safe(fc_dentry, fc_dentry_n, 1056 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) { 1057 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) { 1058 spin_unlock(&sbi->s_fc_lock); 1059 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) { 1060 ret = -ENOSPC; 1061 goto lock_and_exit; 1062 } 1063 spin_lock(&sbi->s_fc_lock); 1064 continue; 1065 } 1066 /* 1067 * With fcd_dilist we need not loop in sbi->s_fc_q to get the 1068 * corresponding inode pointer 1069 */ 1070 WARN_ON(list_empty(&fc_dentry->fcd_dilist)); 1071 ei = list_first_entry(&fc_dentry->fcd_dilist, 1072 struct ext4_inode_info, i_fc_dilist); 1073 inode = &ei->vfs_inode; 1074 WARN_ON(inode->i_ino != fc_dentry->fcd_ino); 1075 1076 spin_unlock(&sbi->s_fc_lock); 1077 1078 /* 1079 * We first write the inode and then the create dirent. This 1080 * allows the recovery code to create an unnamed inode first 1081 * and then link it to a directory entry. This allows us 1082 * to use namei.c routines almost as is and simplifies 1083 * the recovery code. 1084 */ 1085 ret = ext4_fc_write_inode(inode, crc); 1086 if (ret) 1087 goto lock_and_exit; 1088 1089 ret = ext4_fc_write_inode_data(inode, crc); 1090 if (ret) 1091 goto lock_and_exit; 1092 1093 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) { 1094 ret = -ENOSPC; 1095 goto lock_and_exit; 1096 } 1097 1098 spin_lock(&sbi->s_fc_lock); 1099 } 1100 return 0; 1101 lock_and_exit: 1102 spin_lock(&sbi->s_fc_lock); 1103 return ret; 1104 } 1105 1106 static int ext4_fc_perform_commit(journal_t *journal) 1107 { 1108 struct super_block *sb = journal->j_private; 1109 struct ext4_sb_info *sbi = EXT4_SB(sb); 1110 struct ext4_inode_info *iter; 1111 struct ext4_fc_head head; 1112 struct inode *inode; 1113 struct blk_plug plug; 1114 int ret = 0; 1115 u32 crc = 0; 1116 1117 ret = ext4_fc_submit_inode_data_all(journal); 1118 if (ret) 1119 return ret; 1120 1121 ret = ext4_fc_wait_inode_data_all(journal); 1122 if (ret) 1123 return ret; 1124 1125 /* 1126 * If file system device is different from journal device, issue a cache 1127 * flush before we start writing fast commit blocks. 1128 */ 1129 if (journal->j_fs_dev != journal->j_dev) 1130 blkdev_issue_flush(journal->j_fs_dev); 1131 1132 blk_start_plug(&plug); 1133 if (sbi->s_fc_bytes == 0) { 1134 /* 1135 * Add a head tag only if this is the first fast commit 1136 * in this TID. 1137 */ 1138 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES); 1139 head.fc_tid = cpu_to_le32( 1140 sbi->s_journal->j_running_transaction->t_tid); 1141 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head), 1142 (u8 *)&head, &crc)) { 1143 ret = -ENOSPC; 1144 goto out; 1145 } 1146 } 1147 1148 spin_lock(&sbi->s_fc_lock); 1149 ret = ext4_fc_commit_dentry_updates(journal, &crc); 1150 if (ret) { 1151 spin_unlock(&sbi->s_fc_lock); 1152 goto out; 1153 } 1154 1155 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 1156 inode = &iter->vfs_inode; 1157 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) 1158 continue; 1159 1160 spin_unlock(&sbi->s_fc_lock); 1161 ret = ext4_fc_write_inode_data(inode, &crc); 1162 if (ret) 1163 goto out; 1164 ret = ext4_fc_write_inode(inode, &crc); 1165 if (ret) 1166 goto out; 1167 spin_lock(&sbi->s_fc_lock); 1168 } 1169 spin_unlock(&sbi->s_fc_lock); 1170 1171 ret = ext4_fc_write_tail(sb, crc); 1172 1173 out: 1174 blk_finish_plug(&plug); 1175 return ret; 1176 } 1177 1178 static void ext4_fc_update_stats(struct super_block *sb, int status, 1179 u64 commit_time, int nblks, tid_t commit_tid) 1180 { 1181 struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats; 1182 1183 ext4_debug("Fast commit ended with status = %d for tid %u", 1184 status, commit_tid); 1185 if (status == EXT4_FC_STATUS_OK) { 1186 stats->fc_num_commits++; 1187 stats->fc_numblks += nblks; 1188 if (likely(stats->s_fc_avg_commit_time)) 1189 stats->s_fc_avg_commit_time = 1190 (commit_time + 1191 stats->s_fc_avg_commit_time * 3) / 4; 1192 else 1193 stats->s_fc_avg_commit_time = commit_time; 1194 } else if (status == EXT4_FC_STATUS_FAILED || 1195 status == EXT4_FC_STATUS_INELIGIBLE) { 1196 if (status == EXT4_FC_STATUS_FAILED) 1197 stats->fc_failed_commits++; 1198 stats->fc_ineligible_commits++; 1199 } else { 1200 stats->fc_skipped_commits++; 1201 } 1202 trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid); 1203 } 1204 1205 /* 1206 * The main commit entry point. Performs a fast commit for transaction 1207 * commit_tid if needed. If it's not possible to perform a fast commit 1208 * due to various reasons, we fall back to full commit. Returns 0 1209 * on success, error otherwise. 1210 */ 1211 int ext4_fc_commit(journal_t *journal, tid_t commit_tid) 1212 { 1213 struct super_block *sb = journal->j_private; 1214 struct ext4_sb_info *sbi = EXT4_SB(sb); 1215 int nblks = 0, ret, bsize = journal->j_blocksize; 1216 int subtid = atomic_read(&sbi->s_fc_subtid); 1217 int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0; 1218 ktime_t start_time, commit_time; 1219 1220 if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) 1221 return jbd2_complete_transaction(journal, commit_tid); 1222 1223 trace_ext4_fc_commit_start(sb, commit_tid); 1224 1225 start_time = ktime_get(); 1226 1227 restart_fc: 1228 ret = jbd2_fc_begin_commit(journal, commit_tid); 1229 if (ret == -EALREADY) { 1230 /* There was an ongoing commit, check if we need to restart */ 1231 if (atomic_read(&sbi->s_fc_subtid) <= subtid && 1232 commit_tid > journal->j_commit_sequence) 1233 goto restart_fc; 1234 ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0, 1235 commit_tid); 1236 return 0; 1237 } else if (ret) { 1238 /* 1239 * Commit couldn't start. Just update stats and perform a 1240 * full commit. 1241 */ 1242 ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0, 1243 commit_tid); 1244 return jbd2_complete_transaction(journal, commit_tid); 1245 } 1246 1247 /* 1248 * After establishing journal barrier via jbd2_fc_begin_commit(), check 1249 * if we are fast commit ineligible. 1250 */ 1251 if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) { 1252 status = EXT4_FC_STATUS_INELIGIBLE; 1253 goto fallback; 1254 } 1255 1256 fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize; 1257 ret = ext4_fc_perform_commit(journal); 1258 if (ret < 0) { 1259 status = EXT4_FC_STATUS_FAILED; 1260 goto fallback; 1261 } 1262 nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before; 1263 ret = jbd2_fc_wait_bufs(journal, nblks); 1264 if (ret < 0) { 1265 status = EXT4_FC_STATUS_FAILED; 1266 goto fallback; 1267 } 1268 atomic_inc(&sbi->s_fc_subtid); 1269 ret = jbd2_fc_end_commit(journal); 1270 /* 1271 * weight the commit time higher than the average time so we 1272 * don't react too strongly to vast changes in the commit time 1273 */ 1274 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time)); 1275 ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid); 1276 return ret; 1277 1278 fallback: 1279 ret = jbd2_fc_end_commit_fallback(journal); 1280 ext4_fc_update_stats(sb, status, 0, 0, commit_tid); 1281 return ret; 1282 } 1283 1284 /* 1285 * Fast commit cleanup routine. This is called after every fast commit and 1286 * full commit. full is true if we are called after a full commit. 1287 */ 1288 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid) 1289 { 1290 struct super_block *sb = journal->j_private; 1291 struct ext4_sb_info *sbi = EXT4_SB(sb); 1292 struct ext4_inode_info *iter, *iter_n; 1293 struct ext4_fc_dentry_update *fc_dentry; 1294 1295 if (full && sbi->s_fc_bh) 1296 sbi->s_fc_bh = NULL; 1297 1298 trace_ext4_fc_cleanup(journal, full, tid); 1299 jbd2_fc_release_bufs(journal); 1300 1301 spin_lock(&sbi->s_fc_lock); 1302 list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN], 1303 i_fc_list) { 1304 list_del_init(&iter->i_fc_list); 1305 ext4_clear_inode_state(&iter->vfs_inode, 1306 EXT4_STATE_FC_COMMITTING); 1307 if (iter->i_sync_tid <= tid) 1308 ext4_fc_reset_inode(&iter->vfs_inode); 1309 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */ 1310 smp_mb(); 1311 #if (BITS_PER_LONG < 64) 1312 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING); 1313 #else 1314 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING); 1315 #endif 1316 } 1317 1318 while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) { 1319 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN], 1320 struct ext4_fc_dentry_update, 1321 fcd_list); 1322 list_del_init(&fc_dentry->fcd_list); 1323 list_del_init(&fc_dentry->fcd_dilist); 1324 spin_unlock(&sbi->s_fc_lock); 1325 1326 if (fc_dentry->fcd_name.name && 1327 fc_dentry->fcd_name.len > DNAME_INLINE_LEN) 1328 kfree(fc_dentry->fcd_name.name); 1329 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); 1330 spin_lock(&sbi->s_fc_lock); 1331 } 1332 1333 list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING], 1334 &sbi->s_fc_dentry_q[FC_Q_MAIN]); 1335 list_splice_init(&sbi->s_fc_q[FC_Q_STAGING], 1336 &sbi->s_fc_q[FC_Q_MAIN]); 1337 1338 if (tid >= sbi->s_fc_ineligible_tid) { 1339 sbi->s_fc_ineligible_tid = 0; 1340 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 1341 } 1342 1343 if (full) 1344 sbi->s_fc_bytes = 0; 1345 spin_unlock(&sbi->s_fc_lock); 1346 trace_ext4_fc_stats(sb); 1347 } 1348 1349 /* Ext4 Replay Path Routines */ 1350 1351 /* Helper struct for dentry replay routines */ 1352 struct dentry_info_args { 1353 int parent_ino, dname_len, ino, inode_len; 1354 char *dname; 1355 }; 1356 1357 static inline void tl_to_darg(struct dentry_info_args *darg, 1358 struct ext4_fc_tl *tl, u8 *val) 1359 { 1360 struct ext4_fc_dentry_info fcd; 1361 1362 memcpy(&fcd, val, sizeof(fcd)); 1363 1364 darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino); 1365 darg->ino = le32_to_cpu(fcd.fc_ino); 1366 darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname); 1367 darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info); 1368 } 1369 1370 static inline void ext4_fc_get_tl(struct ext4_fc_tl *tl, u8 *val) 1371 { 1372 memcpy(tl, val, EXT4_FC_TAG_BASE_LEN); 1373 tl->fc_len = le16_to_cpu(tl->fc_len); 1374 tl->fc_tag = le16_to_cpu(tl->fc_tag); 1375 } 1376 1377 /* Unlink replay function */ 1378 static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl *tl, 1379 u8 *val) 1380 { 1381 struct inode *inode, *old_parent; 1382 struct qstr entry; 1383 struct dentry_info_args darg; 1384 int ret = 0; 1385 1386 tl_to_darg(&darg, tl, val); 1387 1388 trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino, 1389 darg.parent_ino, darg.dname_len); 1390 1391 entry.name = darg.dname; 1392 entry.len = darg.dname_len; 1393 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1394 1395 if (IS_ERR(inode)) { 1396 ext4_debug("Inode %d not found", darg.ino); 1397 return 0; 1398 } 1399 1400 old_parent = ext4_iget(sb, darg.parent_ino, 1401 EXT4_IGET_NORMAL); 1402 if (IS_ERR(old_parent)) { 1403 ext4_debug("Dir with inode %d not found", darg.parent_ino); 1404 iput(inode); 1405 return 0; 1406 } 1407 1408 ret = __ext4_unlink(old_parent, &entry, inode, NULL); 1409 /* -ENOENT ok coz it might not exist anymore. */ 1410 if (ret == -ENOENT) 1411 ret = 0; 1412 iput(old_parent); 1413 iput(inode); 1414 return ret; 1415 } 1416 1417 static int ext4_fc_replay_link_internal(struct super_block *sb, 1418 struct dentry_info_args *darg, 1419 struct inode *inode) 1420 { 1421 struct inode *dir = NULL; 1422 struct dentry *dentry_dir = NULL, *dentry_inode = NULL; 1423 struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len); 1424 int ret = 0; 1425 1426 dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL); 1427 if (IS_ERR(dir)) { 1428 ext4_debug("Dir with inode %d not found.", darg->parent_ino); 1429 dir = NULL; 1430 goto out; 1431 } 1432 1433 dentry_dir = d_obtain_alias(dir); 1434 if (IS_ERR(dentry_dir)) { 1435 ext4_debug("Failed to obtain dentry"); 1436 dentry_dir = NULL; 1437 goto out; 1438 } 1439 1440 dentry_inode = d_alloc(dentry_dir, &qstr_dname); 1441 if (!dentry_inode) { 1442 ext4_debug("Inode dentry not created."); 1443 ret = -ENOMEM; 1444 goto out; 1445 } 1446 1447 ret = __ext4_link(dir, inode, dentry_inode); 1448 /* 1449 * It's possible that link already existed since data blocks 1450 * for the dir in question got persisted before we crashed OR 1451 * we replayed this tag and crashed before the entire replay 1452 * could complete. 1453 */ 1454 if (ret && ret != -EEXIST) { 1455 ext4_debug("Failed to link\n"); 1456 goto out; 1457 } 1458 1459 ret = 0; 1460 out: 1461 if (dentry_dir) { 1462 d_drop(dentry_dir); 1463 dput(dentry_dir); 1464 } else if (dir) { 1465 iput(dir); 1466 } 1467 if (dentry_inode) { 1468 d_drop(dentry_inode); 1469 dput(dentry_inode); 1470 } 1471 1472 return ret; 1473 } 1474 1475 /* Link replay function */ 1476 static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl *tl, 1477 u8 *val) 1478 { 1479 struct inode *inode; 1480 struct dentry_info_args darg; 1481 int ret = 0; 1482 1483 tl_to_darg(&darg, tl, val); 1484 trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino, 1485 darg.parent_ino, darg.dname_len); 1486 1487 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1488 if (IS_ERR(inode)) { 1489 ext4_debug("Inode not found."); 1490 return 0; 1491 } 1492 1493 ret = ext4_fc_replay_link_internal(sb, &darg, inode); 1494 iput(inode); 1495 return ret; 1496 } 1497 1498 /* 1499 * Record all the modified inodes during replay. We use this later to setup 1500 * block bitmaps correctly. 1501 */ 1502 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino) 1503 { 1504 struct ext4_fc_replay_state *state; 1505 int i; 1506 1507 state = &EXT4_SB(sb)->s_fc_replay_state; 1508 for (i = 0; i < state->fc_modified_inodes_used; i++) 1509 if (state->fc_modified_inodes[i] == ino) 1510 return 0; 1511 if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) { 1512 int *fc_modified_inodes; 1513 1514 fc_modified_inodes = krealloc(state->fc_modified_inodes, 1515 sizeof(int) * (state->fc_modified_inodes_size + 1516 EXT4_FC_REPLAY_REALLOC_INCREMENT), 1517 GFP_KERNEL); 1518 if (!fc_modified_inodes) 1519 return -ENOMEM; 1520 state->fc_modified_inodes = fc_modified_inodes; 1521 state->fc_modified_inodes_size += 1522 EXT4_FC_REPLAY_REALLOC_INCREMENT; 1523 } 1524 state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino; 1525 return 0; 1526 } 1527 1528 /* 1529 * Inode replay function 1530 */ 1531 static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl *tl, 1532 u8 *val) 1533 { 1534 struct ext4_fc_inode fc_inode; 1535 struct ext4_inode *raw_inode; 1536 struct ext4_inode *raw_fc_inode; 1537 struct inode *inode = NULL; 1538 struct ext4_iloc iloc; 1539 int inode_len, ino, ret, tag = tl->fc_tag; 1540 struct ext4_extent_header *eh; 1541 size_t off_gen = offsetof(struct ext4_inode, i_generation); 1542 1543 memcpy(&fc_inode, val, sizeof(fc_inode)); 1544 1545 ino = le32_to_cpu(fc_inode.fc_ino); 1546 trace_ext4_fc_replay(sb, tag, ino, 0, 0); 1547 1548 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1549 if (!IS_ERR(inode)) { 1550 ext4_ext_clear_bb(inode); 1551 iput(inode); 1552 } 1553 inode = NULL; 1554 1555 ret = ext4_fc_record_modified_inode(sb, ino); 1556 if (ret) 1557 goto out; 1558 1559 raw_fc_inode = (struct ext4_inode *) 1560 (val + offsetof(struct ext4_fc_inode, fc_raw_inode)); 1561 ret = ext4_get_fc_inode_loc(sb, ino, &iloc); 1562 if (ret) 1563 goto out; 1564 1565 inode_len = tl->fc_len - sizeof(struct ext4_fc_inode); 1566 raw_inode = ext4_raw_inode(&iloc); 1567 1568 memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block)); 1569 memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen, 1570 inode_len - off_gen); 1571 if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) { 1572 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]); 1573 if (eh->eh_magic != EXT4_EXT_MAGIC) { 1574 memset(eh, 0, sizeof(*eh)); 1575 eh->eh_magic = EXT4_EXT_MAGIC; 1576 eh->eh_max = cpu_to_le16( 1577 (sizeof(raw_inode->i_block) - 1578 sizeof(struct ext4_extent_header)) 1579 / sizeof(struct ext4_extent)); 1580 } 1581 } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) { 1582 memcpy(raw_inode->i_block, raw_fc_inode->i_block, 1583 sizeof(raw_inode->i_block)); 1584 } 1585 1586 /* Immediately update the inode on disk. */ 1587 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); 1588 if (ret) 1589 goto out; 1590 ret = sync_dirty_buffer(iloc.bh); 1591 if (ret) 1592 goto out; 1593 ret = ext4_mark_inode_used(sb, ino); 1594 if (ret) 1595 goto out; 1596 1597 /* Given that we just wrote the inode on disk, this SHOULD succeed. */ 1598 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1599 if (IS_ERR(inode)) { 1600 ext4_debug("Inode not found."); 1601 return -EFSCORRUPTED; 1602 } 1603 1604 /* 1605 * Our allocator could have made different decisions than before 1606 * crashing. This should be fixed but until then, we calculate 1607 * the number of blocks the inode. 1608 */ 1609 if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) 1610 ext4_ext_replay_set_iblocks(inode); 1611 1612 inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation); 1613 ext4_reset_inode_seed(inode); 1614 1615 ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode)); 1616 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); 1617 sync_dirty_buffer(iloc.bh); 1618 brelse(iloc.bh); 1619 out: 1620 iput(inode); 1621 if (!ret) 1622 blkdev_issue_flush(sb->s_bdev); 1623 1624 return 0; 1625 } 1626 1627 /* 1628 * Dentry create replay function. 1629 * 1630 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the 1631 * inode for which we are trying to create a dentry here, should already have 1632 * been replayed before we start here. 1633 */ 1634 static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl *tl, 1635 u8 *val) 1636 { 1637 int ret = 0; 1638 struct inode *inode = NULL; 1639 struct inode *dir = NULL; 1640 struct dentry_info_args darg; 1641 1642 tl_to_darg(&darg, tl, val); 1643 1644 trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino, 1645 darg.parent_ino, darg.dname_len); 1646 1647 /* This takes care of update group descriptor and other metadata */ 1648 ret = ext4_mark_inode_used(sb, darg.ino); 1649 if (ret) 1650 goto out; 1651 1652 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1653 if (IS_ERR(inode)) { 1654 ext4_debug("inode %d not found.", darg.ino); 1655 inode = NULL; 1656 ret = -EINVAL; 1657 goto out; 1658 } 1659 1660 if (S_ISDIR(inode->i_mode)) { 1661 /* 1662 * If we are creating a directory, we need to make sure that the 1663 * dot and dot dot dirents are setup properly. 1664 */ 1665 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL); 1666 if (IS_ERR(dir)) { 1667 ext4_debug("Dir %d not found.", darg.ino); 1668 goto out; 1669 } 1670 ret = ext4_init_new_dir(NULL, dir, inode); 1671 iput(dir); 1672 if (ret) { 1673 ret = 0; 1674 goto out; 1675 } 1676 } 1677 ret = ext4_fc_replay_link_internal(sb, &darg, inode); 1678 if (ret) 1679 goto out; 1680 set_nlink(inode, 1); 1681 ext4_mark_inode_dirty(NULL, inode); 1682 out: 1683 iput(inode); 1684 return ret; 1685 } 1686 1687 /* 1688 * Record physical disk regions which are in use as per fast commit area, 1689 * and used by inodes during replay phase. Our simple replay phase 1690 * allocator excludes these regions from allocation. 1691 */ 1692 int ext4_fc_record_regions(struct super_block *sb, int ino, 1693 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay) 1694 { 1695 struct ext4_fc_replay_state *state; 1696 struct ext4_fc_alloc_region *region; 1697 1698 state = &EXT4_SB(sb)->s_fc_replay_state; 1699 /* 1700 * during replay phase, the fc_regions_valid may not same as 1701 * fc_regions_used, update it when do new additions. 1702 */ 1703 if (replay && state->fc_regions_used != state->fc_regions_valid) 1704 state->fc_regions_used = state->fc_regions_valid; 1705 if (state->fc_regions_used == state->fc_regions_size) { 1706 struct ext4_fc_alloc_region *fc_regions; 1707 1708 fc_regions = krealloc(state->fc_regions, 1709 sizeof(struct ext4_fc_alloc_region) * 1710 (state->fc_regions_size + 1711 EXT4_FC_REPLAY_REALLOC_INCREMENT), 1712 GFP_KERNEL); 1713 if (!fc_regions) 1714 return -ENOMEM; 1715 state->fc_regions_size += 1716 EXT4_FC_REPLAY_REALLOC_INCREMENT; 1717 state->fc_regions = fc_regions; 1718 } 1719 region = &state->fc_regions[state->fc_regions_used++]; 1720 region->ino = ino; 1721 region->lblk = lblk; 1722 region->pblk = pblk; 1723 region->len = len; 1724 1725 if (replay) 1726 state->fc_regions_valid++; 1727 1728 return 0; 1729 } 1730 1731 /* Replay add range tag */ 1732 static int ext4_fc_replay_add_range(struct super_block *sb, 1733 struct ext4_fc_tl *tl, u8 *val) 1734 { 1735 struct ext4_fc_add_range fc_add_ex; 1736 struct ext4_extent newex, *ex; 1737 struct inode *inode; 1738 ext4_lblk_t start, cur; 1739 int remaining, len; 1740 ext4_fsblk_t start_pblk; 1741 struct ext4_map_blocks map; 1742 struct ext4_ext_path *path = NULL; 1743 int ret; 1744 1745 memcpy(&fc_add_ex, val, sizeof(fc_add_ex)); 1746 ex = (struct ext4_extent *)&fc_add_ex.fc_ex; 1747 1748 trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE, 1749 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block), 1750 ext4_ext_get_actual_len(ex)); 1751 1752 inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL); 1753 if (IS_ERR(inode)) { 1754 ext4_debug("Inode not found."); 1755 return 0; 1756 } 1757 1758 ret = ext4_fc_record_modified_inode(sb, inode->i_ino); 1759 if (ret) 1760 goto out; 1761 1762 start = le32_to_cpu(ex->ee_block); 1763 start_pblk = ext4_ext_pblock(ex); 1764 len = ext4_ext_get_actual_len(ex); 1765 1766 cur = start; 1767 remaining = len; 1768 ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n", 1769 start, start_pblk, len, ext4_ext_is_unwritten(ex), 1770 inode->i_ino); 1771 1772 while (remaining > 0) { 1773 map.m_lblk = cur; 1774 map.m_len = remaining; 1775 map.m_pblk = 0; 1776 ret = ext4_map_blocks(NULL, inode, &map, 0); 1777 1778 if (ret < 0) 1779 goto out; 1780 1781 if (ret == 0) { 1782 /* Range is not mapped */ 1783 path = ext4_find_extent(inode, cur, NULL, 0); 1784 if (IS_ERR(path)) 1785 goto out; 1786 memset(&newex, 0, sizeof(newex)); 1787 newex.ee_block = cpu_to_le32(cur); 1788 ext4_ext_store_pblock( 1789 &newex, start_pblk + cur - start); 1790 newex.ee_len = cpu_to_le16(map.m_len); 1791 if (ext4_ext_is_unwritten(ex)) 1792 ext4_ext_mark_unwritten(&newex); 1793 down_write(&EXT4_I(inode)->i_data_sem); 1794 ret = ext4_ext_insert_extent( 1795 NULL, inode, &path, &newex, 0); 1796 up_write((&EXT4_I(inode)->i_data_sem)); 1797 ext4_free_ext_path(path); 1798 if (ret) 1799 goto out; 1800 goto next; 1801 } 1802 1803 if (start_pblk + cur - start != map.m_pblk) { 1804 /* 1805 * Logical to physical mapping changed. This can happen 1806 * if this range was removed and then reallocated to 1807 * map to new physical blocks during a fast commit. 1808 */ 1809 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, 1810 ext4_ext_is_unwritten(ex), 1811 start_pblk + cur - start); 1812 if (ret) 1813 goto out; 1814 /* 1815 * Mark the old blocks as free since they aren't used 1816 * anymore. We maintain an array of all the modified 1817 * inodes. In case these blocks are still used at either 1818 * a different logical range in the same inode or in 1819 * some different inode, we will mark them as allocated 1820 * at the end of the FC replay using our array of 1821 * modified inodes. 1822 */ 1823 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0); 1824 goto next; 1825 } 1826 1827 /* Range is mapped and needs a state change */ 1828 ext4_debug("Converting from %ld to %d %lld", 1829 map.m_flags & EXT4_MAP_UNWRITTEN, 1830 ext4_ext_is_unwritten(ex), map.m_pblk); 1831 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, 1832 ext4_ext_is_unwritten(ex), map.m_pblk); 1833 if (ret) 1834 goto out; 1835 /* 1836 * We may have split the extent tree while toggling the state. 1837 * Try to shrink the extent tree now. 1838 */ 1839 ext4_ext_replay_shrink_inode(inode, start + len); 1840 next: 1841 cur += map.m_len; 1842 remaining -= map.m_len; 1843 } 1844 ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >> 1845 sb->s_blocksize_bits); 1846 out: 1847 iput(inode); 1848 return 0; 1849 } 1850 1851 /* Replay DEL_RANGE tag */ 1852 static int 1853 ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl *tl, 1854 u8 *val) 1855 { 1856 struct inode *inode; 1857 struct ext4_fc_del_range lrange; 1858 struct ext4_map_blocks map; 1859 ext4_lblk_t cur, remaining; 1860 int ret; 1861 1862 memcpy(&lrange, val, sizeof(lrange)); 1863 cur = le32_to_cpu(lrange.fc_lblk); 1864 remaining = le32_to_cpu(lrange.fc_len); 1865 1866 trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE, 1867 le32_to_cpu(lrange.fc_ino), cur, remaining); 1868 1869 inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL); 1870 if (IS_ERR(inode)) { 1871 ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino)); 1872 return 0; 1873 } 1874 1875 ret = ext4_fc_record_modified_inode(sb, inode->i_ino); 1876 if (ret) 1877 goto out; 1878 1879 ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n", 1880 inode->i_ino, le32_to_cpu(lrange.fc_lblk), 1881 le32_to_cpu(lrange.fc_len)); 1882 while (remaining > 0) { 1883 map.m_lblk = cur; 1884 map.m_len = remaining; 1885 1886 ret = ext4_map_blocks(NULL, inode, &map, 0); 1887 if (ret < 0) 1888 goto out; 1889 if (ret > 0) { 1890 remaining -= ret; 1891 cur += ret; 1892 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0); 1893 } else { 1894 remaining -= map.m_len; 1895 cur += map.m_len; 1896 } 1897 } 1898 1899 down_write(&EXT4_I(inode)->i_data_sem); 1900 ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk), 1901 le32_to_cpu(lrange.fc_lblk) + 1902 le32_to_cpu(lrange.fc_len) - 1); 1903 up_write(&EXT4_I(inode)->i_data_sem); 1904 if (ret) 1905 goto out; 1906 ext4_ext_replay_shrink_inode(inode, 1907 i_size_read(inode) >> sb->s_blocksize_bits); 1908 ext4_mark_inode_dirty(NULL, inode); 1909 out: 1910 iput(inode); 1911 return 0; 1912 } 1913 1914 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb) 1915 { 1916 struct ext4_fc_replay_state *state; 1917 struct inode *inode; 1918 struct ext4_ext_path *path = NULL; 1919 struct ext4_map_blocks map; 1920 int i, ret, j; 1921 ext4_lblk_t cur, end; 1922 1923 state = &EXT4_SB(sb)->s_fc_replay_state; 1924 for (i = 0; i < state->fc_modified_inodes_used; i++) { 1925 inode = ext4_iget(sb, state->fc_modified_inodes[i], 1926 EXT4_IGET_NORMAL); 1927 if (IS_ERR(inode)) { 1928 ext4_debug("Inode %d not found.", 1929 state->fc_modified_inodes[i]); 1930 continue; 1931 } 1932 cur = 0; 1933 end = EXT_MAX_BLOCKS; 1934 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) { 1935 iput(inode); 1936 continue; 1937 } 1938 while (cur < end) { 1939 map.m_lblk = cur; 1940 map.m_len = end - cur; 1941 1942 ret = ext4_map_blocks(NULL, inode, &map, 0); 1943 if (ret < 0) 1944 break; 1945 1946 if (ret > 0) { 1947 path = ext4_find_extent(inode, map.m_lblk, NULL, 0); 1948 if (!IS_ERR(path)) { 1949 for (j = 0; j < path->p_depth; j++) 1950 ext4_mb_mark_bb(inode->i_sb, 1951 path[j].p_block, 1, 1); 1952 ext4_free_ext_path(path); 1953 } 1954 cur += ret; 1955 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, 1956 map.m_len, 1); 1957 } else { 1958 cur = cur + (map.m_len ? map.m_len : 1); 1959 } 1960 } 1961 iput(inode); 1962 } 1963 } 1964 1965 /* 1966 * Check if block is in excluded regions for block allocation. The simple 1967 * allocator that runs during replay phase is calls this function to see 1968 * if it is okay to use a block. 1969 */ 1970 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk) 1971 { 1972 int i; 1973 struct ext4_fc_replay_state *state; 1974 1975 state = &EXT4_SB(sb)->s_fc_replay_state; 1976 for (i = 0; i < state->fc_regions_valid; i++) { 1977 if (state->fc_regions[i].ino == 0 || 1978 state->fc_regions[i].len == 0) 1979 continue; 1980 if (in_range(blk, state->fc_regions[i].pblk, 1981 state->fc_regions[i].len)) 1982 return true; 1983 } 1984 return false; 1985 } 1986 1987 /* Cleanup function called after replay */ 1988 void ext4_fc_replay_cleanup(struct super_block *sb) 1989 { 1990 struct ext4_sb_info *sbi = EXT4_SB(sb); 1991 1992 sbi->s_mount_state &= ~EXT4_FC_REPLAY; 1993 kfree(sbi->s_fc_replay_state.fc_regions); 1994 kfree(sbi->s_fc_replay_state.fc_modified_inodes); 1995 } 1996 1997 static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi, 1998 int tag, int len) 1999 { 2000 switch (tag) { 2001 case EXT4_FC_TAG_ADD_RANGE: 2002 return len == sizeof(struct ext4_fc_add_range); 2003 case EXT4_FC_TAG_DEL_RANGE: 2004 return len == sizeof(struct ext4_fc_del_range); 2005 case EXT4_FC_TAG_CREAT: 2006 case EXT4_FC_TAG_LINK: 2007 case EXT4_FC_TAG_UNLINK: 2008 len -= sizeof(struct ext4_fc_dentry_info); 2009 return len >= 1 && len <= EXT4_NAME_LEN; 2010 case EXT4_FC_TAG_INODE: 2011 len -= sizeof(struct ext4_fc_inode); 2012 return len >= EXT4_GOOD_OLD_INODE_SIZE && 2013 len <= sbi->s_inode_size; 2014 case EXT4_FC_TAG_PAD: 2015 return true; /* padding can have any length */ 2016 case EXT4_FC_TAG_TAIL: 2017 return len >= sizeof(struct ext4_fc_tail); 2018 case EXT4_FC_TAG_HEAD: 2019 return len == sizeof(struct ext4_fc_head); 2020 } 2021 return false; 2022 } 2023 2024 /* 2025 * Recovery Scan phase handler 2026 * 2027 * This function is called during the scan phase and is responsible 2028 * for doing following things: 2029 * - Make sure the fast commit area has valid tags for replay 2030 * - Count number of tags that need to be replayed by the replay handler 2031 * - Verify CRC 2032 * - Create a list of excluded blocks for allocation during replay phase 2033 * 2034 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is 2035 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP 2036 * to indicate that scan has finished and JBD2 can now start replay phase. 2037 * It returns a negative error to indicate that there was an error. At the end 2038 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set 2039 * to indicate the number of tags that need to replayed during the replay phase. 2040 */ 2041 static int ext4_fc_replay_scan(journal_t *journal, 2042 struct buffer_head *bh, int off, 2043 tid_t expected_tid) 2044 { 2045 struct super_block *sb = journal->j_private; 2046 struct ext4_sb_info *sbi = EXT4_SB(sb); 2047 struct ext4_fc_replay_state *state; 2048 int ret = JBD2_FC_REPLAY_CONTINUE; 2049 struct ext4_fc_add_range ext; 2050 struct ext4_fc_tl tl; 2051 struct ext4_fc_tail tail; 2052 __u8 *start, *end, *cur, *val; 2053 struct ext4_fc_head head; 2054 struct ext4_extent *ex; 2055 2056 state = &sbi->s_fc_replay_state; 2057 2058 start = (u8 *)bh->b_data; 2059 end = (__u8 *)bh->b_data + journal->j_blocksize - 1; 2060 2061 if (state->fc_replay_expected_off == 0) { 2062 state->fc_cur_tag = 0; 2063 state->fc_replay_num_tags = 0; 2064 state->fc_crc = 0; 2065 state->fc_regions = NULL; 2066 state->fc_regions_valid = state->fc_regions_used = 2067 state->fc_regions_size = 0; 2068 /* Check if we can stop early */ 2069 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag) 2070 != EXT4_FC_TAG_HEAD) 2071 return 0; 2072 } 2073 2074 if (off != state->fc_replay_expected_off) { 2075 ret = -EFSCORRUPTED; 2076 goto out_err; 2077 } 2078 2079 state->fc_replay_expected_off++; 2080 for (cur = start; cur < end - EXT4_FC_TAG_BASE_LEN; 2081 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) { 2082 ext4_fc_get_tl(&tl, cur); 2083 val = cur + EXT4_FC_TAG_BASE_LEN; 2084 if (tl.fc_len > end - val || 2085 !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) { 2086 ret = state->fc_replay_num_tags ? 2087 JBD2_FC_REPLAY_STOP : -ECANCELED; 2088 goto out_err; 2089 } 2090 ext4_debug("Scan phase, tag:%s, blk %lld\n", 2091 tag2str(tl.fc_tag), bh->b_blocknr); 2092 switch (tl.fc_tag) { 2093 case EXT4_FC_TAG_ADD_RANGE: 2094 memcpy(&ext, val, sizeof(ext)); 2095 ex = (struct ext4_extent *)&ext.fc_ex; 2096 ret = ext4_fc_record_regions(sb, 2097 le32_to_cpu(ext.fc_ino), 2098 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex), 2099 ext4_ext_get_actual_len(ex), 0); 2100 if (ret < 0) 2101 break; 2102 ret = JBD2_FC_REPLAY_CONTINUE; 2103 fallthrough; 2104 case EXT4_FC_TAG_DEL_RANGE: 2105 case EXT4_FC_TAG_LINK: 2106 case EXT4_FC_TAG_UNLINK: 2107 case EXT4_FC_TAG_CREAT: 2108 case EXT4_FC_TAG_INODE: 2109 case EXT4_FC_TAG_PAD: 2110 state->fc_cur_tag++; 2111 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, 2112 EXT4_FC_TAG_BASE_LEN + tl.fc_len); 2113 break; 2114 case EXT4_FC_TAG_TAIL: 2115 state->fc_cur_tag++; 2116 memcpy(&tail, val, sizeof(tail)); 2117 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, 2118 EXT4_FC_TAG_BASE_LEN + 2119 offsetof(struct ext4_fc_tail, 2120 fc_crc)); 2121 if (le32_to_cpu(tail.fc_tid) == expected_tid && 2122 le32_to_cpu(tail.fc_crc) == state->fc_crc) { 2123 state->fc_replay_num_tags = state->fc_cur_tag; 2124 state->fc_regions_valid = 2125 state->fc_regions_used; 2126 } else { 2127 ret = state->fc_replay_num_tags ? 2128 JBD2_FC_REPLAY_STOP : -EFSBADCRC; 2129 } 2130 state->fc_crc = 0; 2131 break; 2132 case EXT4_FC_TAG_HEAD: 2133 memcpy(&head, val, sizeof(head)); 2134 if (le32_to_cpu(head.fc_features) & 2135 ~EXT4_FC_SUPPORTED_FEATURES) { 2136 ret = -EOPNOTSUPP; 2137 break; 2138 } 2139 if (le32_to_cpu(head.fc_tid) != expected_tid) { 2140 ret = JBD2_FC_REPLAY_STOP; 2141 break; 2142 } 2143 state->fc_cur_tag++; 2144 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, 2145 EXT4_FC_TAG_BASE_LEN + tl.fc_len); 2146 break; 2147 default: 2148 ret = state->fc_replay_num_tags ? 2149 JBD2_FC_REPLAY_STOP : -ECANCELED; 2150 } 2151 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP) 2152 break; 2153 } 2154 2155 out_err: 2156 trace_ext4_fc_replay_scan(sb, ret, off); 2157 return ret; 2158 } 2159 2160 /* 2161 * Main recovery path entry point. 2162 * The meaning of return codes is similar as above. 2163 */ 2164 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh, 2165 enum passtype pass, int off, tid_t expected_tid) 2166 { 2167 struct super_block *sb = journal->j_private; 2168 struct ext4_sb_info *sbi = EXT4_SB(sb); 2169 struct ext4_fc_tl tl; 2170 __u8 *start, *end, *cur, *val; 2171 int ret = JBD2_FC_REPLAY_CONTINUE; 2172 struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state; 2173 struct ext4_fc_tail tail; 2174 2175 if (pass == PASS_SCAN) { 2176 state->fc_current_pass = PASS_SCAN; 2177 return ext4_fc_replay_scan(journal, bh, off, expected_tid); 2178 } 2179 2180 if (state->fc_current_pass != pass) { 2181 state->fc_current_pass = pass; 2182 sbi->s_mount_state |= EXT4_FC_REPLAY; 2183 } 2184 if (!sbi->s_fc_replay_state.fc_replay_num_tags) { 2185 ext4_debug("Replay stops\n"); 2186 ext4_fc_set_bitmaps_and_counters(sb); 2187 return 0; 2188 } 2189 2190 #ifdef CONFIG_EXT4_DEBUG 2191 if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) { 2192 pr_warn("Dropping fc block %d because max_replay set\n", off); 2193 return JBD2_FC_REPLAY_STOP; 2194 } 2195 #endif 2196 2197 start = (u8 *)bh->b_data; 2198 end = (__u8 *)bh->b_data + journal->j_blocksize - 1; 2199 2200 for (cur = start; cur < end - EXT4_FC_TAG_BASE_LEN; 2201 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) { 2202 ext4_fc_get_tl(&tl, cur); 2203 val = cur + EXT4_FC_TAG_BASE_LEN; 2204 2205 if (state->fc_replay_num_tags == 0) { 2206 ret = JBD2_FC_REPLAY_STOP; 2207 ext4_fc_set_bitmaps_and_counters(sb); 2208 break; 2209 } 2210 2211 ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag)); 2212 state->fc_replay_num_tags--; 2213 switch (tl.fc_tag) { 2214 case EXT4_FC_TAG_LINK: 2215 ret = ext4_fc_replay_link(sb, &tl, val); 2216 break; 2217 case EXT4_FC_TAG_UNLINK: 2218 ret = ext4_fc_replay_unlink(sb, &tl, val); 2219 break; 2220 case EXT4_FC_TAG_ADD_RANGE: 2221 ret = ext4_fc_replay_add_range(sb, &tl, val); 2222 break; 2223 case EXT4_FC_TAG_CREAT: 2224 ret = ext4_fc_replay_create(sb, &tl, val); 2225 break; 2226 case EXT4_FC_TAG_DEL_RANGE: 2227 ret = ext4_fc_replay_del_range(sb, &tl, val); 2228 break; 2229 case EXT4_FC_TAG_INODE: 2230 ret = ext4_fc_replay_inode(sb, &tl, val); 2231 break; 2232 case EXT4_FC_TAG_PAD: 2233 trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0, 2234 tl.fc_len, 0); 2235 break; 2236 case EXT4_FC_TAG_TAIL: 2237 trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 2238 0, tl.fc_len, 0); 2239 memcpy(&tail, val, sizeof(tail)); 2240 WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid); 2241 break; 2242 case EXT4_FC_TAG_HEAD: 2243 break; 2244 default: 2245 trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0); 2246 ret = -ECANCELED; 2247 break; 2248 } 2249 if (ret < 0) 2250 break; 2251 ret = JBD2_FC_REPLAY_CONTINUE; 2252 } 2253 return ret; 2254 } 2255 2256 void ext4_fc_init(struct super_block *sb, journal_t *journal) 2257 { 2258 /* 2259 * We set replay callback even if fast commit disabled because we may 2260 * could still have fast commit blocks that need to be replayed even if 2261 * fast commit has now been turned off. 2262 */ 2263 journal->j_fc_replay_callback = ext4_fc_replay; 2264 if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) 2265 return; 2266 journal->j_fc_cleanup_callback = ext4_fc_cleanup; 2267 } 2268 2269 static const char * const fc_ineligible_reasons[] = { 2270 [EXT4_FC_REASON_XATTR] = "Extended attributes changed", 2271 [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename", 2272 [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed", 2273 [EXT4_FC_REASON_NOMEM] = "Insufficient memory", 2274 [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot", 2275 [EXT4_FC_REASON_RESIZE] = "Resize", 2276 [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed", 2277 [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op", 2278 [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling", 2279 [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename", 2280 }; 2281 2282 int ext4_fc_info_show(struct seq_file *seq, void *v) 2283 { 2284 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private); 2285 struct ext4_fc_stats *stats = &sbi->s_fc_stats; 2286 int i; 2287 2288 if (v != SEQ_START_TOKEN) 2289 return 0; 2290 2291 seq_printf(seq, 2292 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n", 2293 stats->fc_num_commits, stats->fc_ineligible_commits, 2294 stats->fc_numblks, 2295 div_u64(stats->s_fc_avg_commit_time, 1000)); 2296 seq_puts(seq, "Ineligible reasons:\n"); 2297 for (i = 0; i < EXT4_FC_REASON_MAX; i++) 2298 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i], 2299 stats->fc_ineligible_reason_count[i]); 2300 2301 return 0; 2302 } 2303 2304 int __init ext4_fc_init_dentry_cache(void) 2305 { 2306 ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update, 2307 SLAB_RECLAIM_ACCOUNT); 2308 2309 if (ext4_fc_dentry_cachep == NULL) 2310 return -ENOMEM; 2311 2312 return 0; 2313 } 2314 2315 void ext4_fc_destroy_dentry_cache(void) 2316 { 2317 kmem_cache_destroy(ext4_fc_dentry_cachep); 2318 } 2319