xref: /openbmc/linux/fs/ext4/fast_commit.c (revision 67bb66d32905627e29400e2cb7f87a7c4c8cf667)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * fs/ext4/fast_commit.c
5  *
6  * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7  *
8  * Ext4 fast commits routines.
9  */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14 
15 /*
16  * Ext4 Fast Commits
17  * -----------------
18  *
19  * Ext4 fast commits implement fine grained journalling for Ext4.
20  *
21  * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22  * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23  * TLV during the recovery phase. For the scenarios for which we currently
24  * don't have replay code, fast commit falls back to full commits.
25  * Fast commits record delta in one of the following three categories.
26  *
27  * (A) Directory entry updates:
28  *
29  * - EXT4_FC_TAG_UNLINK		- records directory entry unlink
30  * - EXT4_FC_TAG_LINK		- records directory entry link
31  * - EXT4_FC_TAG_CREAT		- records inode and directory entry creation
32  *
33  * (B) File specific data range updates:
34  *
35  * - EXT4_FC_TAG_ADD_RANGE	- records addition of new blocks to an inode
36  * - EXT4_FC_TAG_DEL_RANGE	- records deletion of blocks from an inode
37  *
38  * (C) Inode metadata (mtime / ctime etc):
39  *
40  * - EXT4_FC_TAG_INODE		- record the inode that should be replayed
41  *				  during recovery. Note that iblocks field is
42  *				  not replayed and instead derived during
43  *				  replay.
44  * Commit Operation
45  * ----------------
46  * With fast commits, we maintain all the directory entry operations in the
47  * order in which they are issued in an in-memory queue. This queue is flushed
48  * to disk during the commit operation. We also maintain a list of inodes
49  * that need to be committed during a fast commit in another in memory queue of
50  * inodes. During the commit operation, we commit in the following order:
51  *
52  * [1] Lock inodes for any further data updates by setting COMMITTING state
53  * [2] Submit data buffers of all the inodes
54  * [3] Wait for [2] to complete
55  * [4] Commit all the directory entry updates in the fast commit space
56  * [5] Commit all the changed inode structures
57  * [6] Write tail tag (this tag ensures the atomicity, please read the following
58  *     section for more details).
59  * [7] Wait for [4], [5] and [6] to complete.
60  *
61  * All the inode updates must call ext4_fc_start_update() before starting an
62  * update. If such an ongoing update is present, fast commit waits for it to
63  * complete. The completion of such an update is marked by
64  * ext4_fc_stop_update().
65  *
66  * Fast Commit Ineligibility
67  * -------------------------
68  * Not all operations are supported by fast commits today (e.g extended
69  * attributes). Fast commit ineligibility is marked by calling one of the
70  * two following functions:
71  *
72  * - ext4_fc_mark_ineligible(): This makes next fast commit operation to fall
73  *   back to full commit. This is useful in case of transient errors.
74  *
75  * - ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() - This makes all
76  *   the fast commits happening between ext4_fc_start_ineligible() and
77  *   ext4_fc_stop_ineligible() and one fast commit after the call to
78  *   ext4_fc_stop_ineligible() to fall back to full commits. It is important to
79  *   make one more fast commit to fall back to full commit after stop call so
80  *   that it guaranteed that the fast commit ineligible operation contained
81  *   within ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() is
82  *   followed by at least 1 full commit.
83  *
84  * Atomicity of commits
85  * --------------------
86  * In order to guarantee atomicity during the commit operation, fast commit
87  * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
88  * tag contains CRC of the contents and TID of the transaction after which
89  * this fast commit should be applied. Recovery code replays fast commit
90  * logs only if there's at least 1 valid tail present. For every fast commit
91  * operation, there is 1 tail. This means, we may end up with multiple tails
92  * in the fast commit space. Here's an example:
93  *
94  * - Create a new file A and remove existing file B
95  * - fsync()
96  * - Append contents to file A
97  * - Truncate file A
98  * - fsync()
99  *
100  * The fast commit space at the end of above operations would look like this:
101  *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
102  *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
103  *
104  * Replay code should thus check for all the valid tails in the FC area.
105  *
106  * Fast Commit Replay Idempotence
107  * ------------------------------
108  *
109  * Fast commits tags are idempotent in nature provided the recovery code follows
110  * certain rules. The guiding principle that the commit path follows while
111  * committing is that it stores the result of a particular operation instead of
112  * storing the procedure.
113  *
114  * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
115  * was associated with inode 10. During fast commit, instead of storing this
116  * operation as a procedure "rename a to b", we store the resulting file system
117  * state as a "series" of outcomes:
118  *
119  * - Link dirent b to inode 10
120  * - Unlink dirent a
121  * - Inode <10> with valid refcount
122  *
123  * Now when recovery code runs, it needs "enforce" this state on the file
124  * system. This is what guarantees idempotence of fast commit replay.
125  *
126  * Let's take an example of a procedure that is not idempotent and see how fast
127  * commits make it idempotent. Consider following sequence of operations:
128  *
129  *     rm A;    mv B A;    read A
130  *  (x)     (y)        (z)
131  *
132  * (x), (y) and (z) are the points at which we can crash. If we store this
133  * sequence of operations as is then the replay is not idempotent. Let's say
134  * while in replay, we crash at (z). During the second replay, file A (which was
135  * actually created as a result of "mv B A" operation) would get deleted. Thus,
136  * file named A would be absent when we try to read A. So, this sequence of
137  * operations is not idempotent. However, as mentioned above, instead of storing
138  * the procedure fast commits store the outcome of each procedure. Thus the fast
139  * commit log for above procedure would be as follows:
140  *
141  * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
142  * inode 11 before the replay)
143  *
144  *    [Unlink A]   [Link A to inode 11]   [Unlink B]   [Inode 11]
145  * (w)          (x)                    (y)          (z)
146  *
147  * If we crash at (z), we will have file A linked to inode 11. During the second
148  * replay, we will remove file A (inode 11). But we will create it back and make
149  * it point to inode 11. We won't find B, so we'll just skip that step. At this
150  * point, the refcount for inode 11 is not reliable, but that gets fixed by the
151  * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
152  * similarly. Thus, by converting a non-idempotent procedure into a series of
153  * idempotent outcomes, fast commits ensured idempotence during the replay.
154  *
155  * TODOs
156  * -----
157  *
158  * 0) Fast commit replay path hardening: Fast commit replay code should use
159  *    journal handles to make sure all the updates it does during the replay
160  *    path are atomic. With that if we crash during fast commit replay, after
161  *    trying to do recovery again, we will find a file system where fast commit
162  *    area is invalid (because new full commit would be found). In order to deal
163  *    with that, fast commit replay code should ensure that the "FC_REPLAY"
164  *    superblock state is persisted before starting the replay, so that after
165  *    the crash, fast commit recovery code can look at that flag and perform
166  *    fast commit recovery even if that area is invalidated by later full
167  *    commits.
168  *
169  * 1) Make fast commit atomic updates more fine grained. Today, a fast commit
170  *    eligible update must be protected within ext4_fc_start_update() and
171  *    ext4_fc_stop_update(). These routines are called at much higher
172  *    routines. This can be made more fine grained by combining with
173  *    ext4_journal_start().
174  *
175  * 2) Same above for ext4_fc_start_ineligible() and ext4_fc_stop_ineligible()
176  *
177  * 3) Handle more ineligible cases.
178  */
179 
180 #include <trace/events/ext4.h>
181 static struct kmem_cache *ext4_fc_dentry_cachep;
182 
183 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
184 {
185 	BUFFER_TRACE(bh, "");
186 	if (uptodate) {
187 		ext4_debug("%s: Block %lld up-to-date",
188 			   __func__, bh->b_blocknr);
189 		set_buffer_uptodate(bh);
190 	} else {
191 		ext4_debug("%s: Block %lld not up-to-date",
192 			   __func__, bh->b_blocknr);
193 		clear_buffer_uptodate(bh);
194 	}
195 
196 	unlock_buffer(bh);
197 }
198 
199 static inline void ext4_fc_reset_inode(struct inode *inode)
200 {
201 	struct ext4_inode_info *ei = EXT4_I(inode);
202 
203 	ei->i_fc_lblk_start = 0;
204 	ei->i_fc_lblk_len = 0;
205 }
206 
207 void ext4_fc_init_inode(struct inode *inode)
208 {
209 	struct ext4_inode_info *ei = EXT4_I(inode);
210 
211 	ext4_fc_reset_inode(inode);
212 	ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
213 	INIT_LIST_HEAD(&ei->i_fc_list);
214 	init_waitqueue_head(&ei->i_fc_wait);
215 	atomic_set(&ei->i_fc_updates, 0);
216 }
217 
218 /* This function must be called with sbi->s_fc_lock held. */
219 static void ext4_fc_wait_committing_inode(struct inode *inode)
220 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
221 {
222 	wait_queue_head_t *wq;
223 	struct ext4_inode_info *ei = EXT4_I(inode);
224 
225 #if (BITS_PER_LONG < 64)
226 	DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
227 			EXT4_STATE_FC_COMMITTING);
228 	wq = bit_waitqueue(&ei->i_state_flags,
229 				EXT4_STATE_FC_COMMITTING);
230 #else
231 	DEFINE_WAIT_BIT(wait, &ei->i_flags,
232 			EXT4_STATE_FC_COMMITTING);
233 	wq = bit_waitqueue(&ei->i_flags,
234 				EXT4_STATE_FC_COMMITTING);
235 #endif
236 	lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
237 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
238 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
239 	schedule();
240 	finish_wait(wq, &wait.wq_entry);
241 }
242 
243 /*
244  * Inform Ext4's fast about start of an inode update
245  *
246  * This function is called by the high level call VFS callbacks before
247  * performing any inode update. This function blocks if there's an ongoing
248  * fast commit on the inode in question.
249  */
250 void ext4_fc_start_update(struct inode *inode)
251 {
252 	struct ext4_inode_info *ei = EXT4_I(inode);
253 
254 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
255 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
256 		return;
257 
258 restart:
259 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
260 	if (list_empty(&ei->i_fc_list))
261 		goto out;
262 
263 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
264 		ext4_fc_wait_committing_inode(inode);
265 		goto restart;
266 	}
267 out:
268 	atomic_inc(&ei->i_fc_updates);
269 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
270 }
271 
272 /*
273  * Stop inode update and wake up waiting fast commits if any.
274  */
275 void ext4_fc_stop_update(struct inode *inode)
276 {
277 	struct ext4_inode_info *ei = EXT4_I(inode);
278 
279 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
280 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
281 		return;
282 
283 	if (atomic_dec_and_test(&ei->i_fc_updates))
284 		wake_up_all(&ei->i_fc_wait);
285 }
286 
287 /*
288  * Remove inode from fast commit list. If the inode is being committed
289  * we wait until inode commit is done.
290  */
291 void ext4_fc_del(struct inode *inode)
292 {
293 	struct ext4_inode_info *ei = EXT4_I(inode);
294 
295 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
296 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
297 		return;
298 
299 restart:
300 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
301 	if (list_empty(&ei->i_fc_list)) {
302 		spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
303 		return;
304 	}
305 
306 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
307 		ext4_fc_wait_committing_inode(inode);
308 		goto restart;
309 	}
310 	list_del_init(&ei->i_fc_list);
311 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
312 }
313 
314 /*
315  * Mark file system as fast commit ineligible. This means that next commit
316  * operation would result in a full jbd2 commit.
317  */
318 void ext4_fc_mark_ineligible(struct super_block *sb, int reason)
319 {
320 	struct ext4_sb_info *sbi = EXT4_SB(sb);
321 
322 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
323 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
324 		return;
325 
326 	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
327 	WARN_ON(reason >= EXT4_FC_REASON_MAX);
328 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
329 }
330 
331 /*
332  * Start a fast commit ineligible update. Any commits that happen while
333  * such an operation is in progress fall back to full commits.
334  */
335 void ext4_fc_start_ineligible(struct super_block *sb, int reason)
336 {
337 	struct ext4_sb_info *sbi = EXT4_SB(sb);
338 
339 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
340 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
341 		return;
342 
343 	WARN_ON(reason >= EXT4_FC_REASON_MAX);
344 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
345 	atomic_inc(&sbi->s_fc_ineligible_updates);
346 }
347 
348 /*
349  * Stop a fast commit ineligible update. We set EXT4_MF_FC_INELIGIBLE flag here
350  * to ensure that after stopping the ineligible update, at least one full
351  * commit takes place.
352  */
353 void ext4_fc_stop_ineligible(struct super_block *sb)
354 {
355 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
356 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
357 		return;
358 
359 	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
360 	atomic_dec(&EXT4_SB(sb)->s_fc_ineligible_updates);
361 }
362 
363 static inline int ext4_fc_is_ineligible(struct super_block *sb)
364 {
365 	return (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE) ||
366 		atomic_read(&EXT4_SB(sb)->s_fc_ineligible_updates));
367 }
368 
369 /*
370  * Generic fast commit tracking function. If this is the first time this we are
371  * called after a full commit, we initialize fast commit fields and then call
372  * __fc_track_fn() with update = 0. If we have already been called after a full
373  * commit, we pass update = 1. Based on that, the track function can determine
374  * if it needs to track a field for the first time or if it needs to just
375  * update the previously tracked value.
376  *
377  * If enqueue is set, this function enqueues the inode in fast commit list.
378  */
379 static int ext4_fc_track_template(
380 	handle_t *handle, struct inode *inode,
381 	int (*__fc_track_fn)(struct inode *, void *, bool),
382 	void *args, int enqueue)
383 {
384 	bool update = false;
385 	struct ext4_inode_info *ei = EXT4_I(inode);
386 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
387 	tid_t tid = 0;
388 	int ret;
389 
390 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
391 	    (sbi->s_mount_state & EXT4_FC_REPLAY))
392 		return -EOPNOTSUPP;
393 
394 	if (ext4_fc_is_ineligible(inode->i_sb))
395 		return -EINVAL;
396 
397 	tid = handle->h_transaction->t_tid;
398 	mutex_lock(&ei->i_fc_lock);
399 	if (tid == ei->i_sync_tid) {
400 		update = true;
401 	} else {
402 		ext4_fc_reset_inode(inode);
403 		ei->i_sync_tid = tid;
404 	}
405 	ret = __fc_track_fn(inode, args, update);
406 	mutex_unlock(&ei->i_fc_lock);
407 
408 	if (!enqueue)
409 		return ret;
410 
411 	spin_lock(&sbi->s_fc_lock);
412 	if (list_empty(&EXT4_I(inode)->i_fc_list))
413 		list_add_tail(&EXT4_I(inode)->i_fc_list,
414 				(ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING)) ?
415 				&sbi->s_fc_q[FC_Q_STAGING] :
416 				&sbi->s_fc_q[FC_Q_MAIN]);
417 	spin_unlock(&sbi->s_fc_lock);
418 
419 	return ret;
420 }
421 
422 struct __track_dentry_update_args {
423 	struct dentry *dentry;
424 	int op;
425 };
426 
427 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
428 static int __track_dentry_update(struct inode *inode, void *arg, bool update)
429 {
430 	struct ext4_fc_dentry_update *node;
431 	struct ext4_inode_info *ei = EXT4_I(inode);
432 	struct __track_dentry_update_args *dentry_update =
433 		(struct __track_dentry_update_args *)arg;
434 	struct dentry *dentry = dentry_update->dentry;
435 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
436 
437 	mutex_unlock(&ei->i_fc_lock);
438 	node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
439 	if (!node) {
440 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
441 		mutex_lock(&ei->i_fc_lock);
442 		return -ENOMEM;
443 	}
444 
445 	node->fcd_op = dentry_update->op;
446 	node->fcd_parent = dentry->d_parent->d_inode->i_ino;
447 	node->fcd_ino = inode->i_ino;
448 	if (dentry->d_name.len > DNAME_INLINE_LEN) {
449 		node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
450 		if (!node->fcd_name.name) {
451 			kmem_cache_free(ext4_fc_dentry_cachep, node);
452 			ext4_fc_mark_ineligible(inode->i_sb,
453 				EXT4_FC_REASON_NOMEM);
454 			mutex_lock(&ei->i_fc_lock);
455 			return -ENOMEM;
456 		}
457 		memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
458 			dentry->d_name.len);
459 	} else {
460 		memcpy(node->fcd_iname, dentry->d_name.name,
461 			dentry->d_name.len);
462 		node->fcd_name.name = node->fcd_iname;
463 	}
464 	node->fcd_name.len = dentry->d_name.len;
465 
466 	spin_lock(&sbi->s_fc_lock);
467 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING))
468 		list_add_tail(&node->fcd_list,
469 				&sbi->s_fc_dentry_q[FC_Q_STAGING]);
470 	else
471 		list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
472 	spin_unlock(&sbi->s_fc_lock);
473 	mutex_lock(&ei->i_fc_lock);
474 
475 	return 0;
476 }
477 
478 void __ext4_fc_track_unlink(handle_t *handle,
479 		struct inode *inode, struct dentry *dentry)
480 {
481 	struct __track_dentry_update_args args;
482 	int ret;
483 
484 	args.dentry = dentry;
485 	args.op = EXT4_FC_TAG_UNLINK;
486 
487 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
488 					(void *)&args, 0);
489 	trace_ext4_fc_track_unlink(inode, dentry, ret);
490 }
491 
492 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
493 {
494 	__ext4_fc_track_unlink(handle, d_inode(dentry), dentry);
495 }
496 
497 void __ext4_fc_track_link(handle_t *handle,
498 	struct inode *inode, struct dentry *dentry)
499 {
500 	struct __track_dentry_update_args args;
501 	int ret;
502 
503 	args.dentry = dentry;
504 	args.op = EXT4_FC_TAG_LINK;
505 
506 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
507 					(void *)&args, 0);
508 	trace_ext4_fc_track_link(inode, dentry, ret);
509 }
510 
511 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
512 {
513 	__ext4_fc_track_link(handle, d_inode(dentry), dentry);
514 }
515 
516 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
517 			  struct dentry *dentry)
518 {
519 	struct __track_dentry_update_args args;
520 	int ret;
521 
522 	args.dentry = dentry;
523 	args.op = EXT4_FC_TAG_CREAT;
524 
525 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
526 					(void *)&args, 0);
527 	trace_ext4_fc_track_create(inode, dentry, ret);
528 }
529 
530 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
531 {
532 	__ext4_fc_track_create(handle, d_inode(dentry), dentry);
533 }
534 
535 /* __track_fn for inode tracking */
536 static int __track_inode(struct inode *inode, void *arg, bool update)
537 {
538 	if (update)
539 		return -EEXIST;
540 
541 	EXT4_I(inode)->i_fc_lblk_len = 0;
542 
543 	return 0;
544 }
545 
546 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
547 {
548 	int ret;
549 
550 	if (S_ISDIR(inode->i_mode))
551 		return;
552 
553 	if (ext4_should_journal_data(inode)) {
554 		ext4_fc_mark_ineligible(inode->i_sb,
555 					EXT4_FC_REASON_INODE_JOURNAL_DATA);
556 		return;
557 	}
558 
559 	ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
560 	trace_ext4_fc_track_inode(inode, ret);
561 }
562 
563 struct __track_range_args {
564 	ext4_lblk_t start, end;
565 };
566 
567 /* __track_fn for tracking data updates */
568 static int __track_range(struct inode *inode, void *arg, bool update)
569 {
570 	struct ext4_inode_info *ei = EXT4_I(inode);
571 	ext4_lblk_t oldstart;
572 	struct __track_range_args *__arg =
573 		(struct __track_range_args *)arg;
574 
575 	if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
576 		ext4_debug("Special inode %ld being modified\n", inode->i_ino);
577 		return -ECANCELED;
578 	}
579 
580 	oldstart = ei->i_fc_lblk_start;
581 
582 	if (update && ei->i_fc_lblk_len > 0) {
583 		ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
584 		ei->i_fc_lblk_len =
585 			max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
586 				ei->i_fc_lblk_start + 1;
587 	} else {
588 		ei->i_fc_lblk_start = __arg->start;
589 		ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
590 	}
591 
592 	return 0;
593 }
594 
595 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
596 			 ext4_lblk_t end)
597 {
598 	struct __track_range_args args;
599 	int ret;
600 
601 	if (S_ISDIR(inode->i_mode))
602 		return;
603 
604 	args.start = start;
605 	args.end = end;
606 
607 	ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1);
608 
609 	trace_ext4_fc_track_range(inode, start, end, ret);
610 }
611 
612 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
613 {
614 	int write_flags = REQ_SYNC;
615 	struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
616 
617 	/* Add REQ_FUA | REQ_PREFLUSH only its tail */
618 	if (test_opt(sb, BARRIER) && is_tail)
619 		write_flags |= REQ_FUA | REQ_PREFLUSH;
620 	lock_buffer(bh);
621 	set_buffer_dirty(bh);
622 	set_buffer_uptodate(bh);
623 	bh->b_end_io = ext4_end_buffer_io_sync;
624 	submit_bh(REQ_OP_WRITE, write_flags, bh);
625 	EXT4_SB(sb)->s_fc_bh = NULL;
626 }
627 
628 /* Ext4 commit path routines */
629 
630 /* memzero and update CRC */
631 static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len,
632 				u32 *crc)
633 {
634 	void *ret;
635 
636 	ret = memset(dst, 0, len);
637 	if (crc)
638 		*crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len);
639 	return ret;
640 }
641 
642 /*
643  * Allocate len bytes on a fast commit buffer.
644  *
645  * During the commit time this function is used to manage fast commit
646  * block space. We don't split a fast commit log onto different
647  * blocks. So this function makes sure that if there's not enough space
648  * on the current block, the remaining space in the current block is
649  * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
650  * new block is from jbd2 and CRC is updated to reflect the padding
651  * we added.
652  */
653 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
654 {
655 	struct ext4_fc_tl *tl;
656 	struct ext4_sb_info *sbi = EXT4_SB(sb);
657 	struct buffer_head *bh;
658 	int bsize = sbi->s_journal->j_blocksize;
659 	int ret, off = sbi->s_fc_bytes % bsize;
660 	int pad_len;
661 
662 	/*
663 	 * After allocating len, we should have space at least for a 0 byte
664 	 * padding.
665 	 */
666 	if (len + sizeof(struct ext4_fc_tl) > bsize)
667 		return NULL;
668 
669 	if (bsize - off - 1 > len + sizeof(struct ext4_fc_tl)) {
670 		/*
671 		 * Only allocate from current buffer if we have enough space for
672 		 * this request AND we have space to add a zero byte padding.
673 		 */
674 		if (!sbi->s_fc_bh) {
675 			ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
676 			if (ret)
677 				return NULL;
678 			sbi->s_fc_bh = bh;
679 		}
680 		sbi->s_fc_bytes += len;
681 		return sbi->s_fc_bh->b_data + off;
682 	}
683 	/* Need to add PAD tag */
684 	tl = (struct ext4_fc_tl *)(sbi->s_fc_bh->b_data + off);
685 	tl->fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
686 	pad_len = bsize - off - 1 - sizeof(struct ext4_fc_tl);
687 	tl->fc_len = cpu_to_le16(pad_len);
688 	if (crc)
689 		*crc = ext4_chksum(sbi, *crc, tl, sizeof(*tl));
690 	if (pad_len > 0)
691 		ext4_fc_memzero(sb, tl + 1, pad_len, crc);
692 	ext4_fc_submit_bh(sb, false);
693 
694 	ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
695 	if (ret)
696 		return NULL;
697 	sbi->s_fc_bh = bh;
698 	sbi->s_fc_bytes = (sbi->s_fc_bytes / bsize + 1) * bsize + len;
699 	return sbi->s_fc_bh->b_data;
700 }
701 
702 /* memcpy to fc reserved space and update CRC */
703 static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src,
704 				int len, u32 *crc)
705 {
706 	if (crc)
707 		*crc = ext4_chksum(EXT4_SB(sb), *crc, src, len);
708 	return memcpy(dst, src, len);
709 }
710 
711 /*
712  * Complete a fast commit by writing tail tag.
713  *
714  * Writing tail tag marks the end of a fast commit. In order to guarantee
715  * atomicity, after writing tail tag, even if there's space remaining
716  * in the block, next commit shouldn't use it. That's why tail tag
717  * has the length as that of the remaining space on the block.
718  */
719 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
720 {
721 	struct ext4_sb_info *sbi = EXT4_SB(sb);
722 	struct ext4_fc_tl tl;
723 	struct ext4_fc_tail tail;
724 	int off, bsize = sbi->s_journal->j_blocksize;
725 	u8 *dst;
726 
727 	/*
728 	 * ext4_fc_reserve_space takes care of allocating an extra block if
729 	 * there's no enough space on this block for accommodating this tail.
730 	 */
731 	dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(tail), &crc);
732 	if (!dst)
733 		return -ENOSPC;
734 
735 	off = sbi->s_fc_bytes % bsize;
736 
737 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
738 	tl.fc_len = cpu_to_le16(bsize - off - 1 + sizeof(struct ext4_fc_tail));
739 	sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
740 
741 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), &crc);
742 	dst += sizeof(tl);
743 	tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
744 	ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc);
745 	dst += sizeof(tail.fc_tid);
746 	tail.fc_crc = cpu_to_le32(crc);
747 	ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL);
748 
749 	ext4_fc_submit_bh(sb, true);
750 
751 	return 0;
752 }
753 
754 /*
755  * Adds tag, length, value and updates CRC. Returns true if tlv was added.
756  * Returns false if there's not enough space.
757  */
758 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
759 			   u32 *crc)
760 {
761 	struct ext4_fc_tl tl;
762 	u8 *dst;
763 
764 	dst = ext4_fc_reserve_space(sb, sizeof(tl) + len, crc);
765 	if (!dst)
766 		return false;
767 
768 	tl.fc_tag = cpu_to_le16(tag);
769 	tl.fc_len = cpu_to_le16(len);
770 
771 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
772 	ext4_fc_memcpy(sb, dst + sizeof(tl), val, len, crc);
773 
774 	return true;
775 }
776 
777 /* Same as above, but adds dentry tlv. */
778 static  bool ext4_fc_add_dentry_tlv(struct super_block *sb, u16 tag,
779 					int parent_ino, int ino, int dlen,
780 					const unsigned char *dname,
781 					u32 *crc)
782 {
783 	struct ext4_fc_dentry_info fcd;
784 	struct ext4_fc_tl tl;
785 	u8 *dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(fcd) + dlen,
786 					crc);
787 
788 	if (!dst)
789 		return false;
790 
791 	fcd.fc_parent_ino = cpu_to_le32(parent_ino);
792 	fcd.fc_ino = cpu_to_le32(ino);
793 	tl.fc_tag = cpu_to_le16(tag);
794 	tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
795 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
796 	dst += sizeof(tl);
797 	ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc);
798 	dst += sizeof(fcd);
799 	ext4_fc_memcpy(sb, dst, dname, dlen, crc);
800 	dst += dlen;
801 
802 	return true;
803 }
804 
805 /*
806  * Writes inode in the fast commit space under TLV with tag @tag.
807  * Returns 0 on success, error on failure.
808  */
809 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
810 {
811 	struct ext4_inode_info *ei = EXT4_I(inode);
812 	int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
813 	int ret;
814 	struct ext4_iloc iloc;
815 	struct ext4_fc_inode fc_inode;
816 	struct ext4_fc_tl tl;
817 	u8 *dst;
818 
819 	ret = ext4_get_inode_loc(inode, &iloc);
820 	if (ret)
821 		return ret;
822 
823 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
824 		inode_len += ei->i_extra_isize;
825 
826 	fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
827 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
828 	tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
829 
830 	dst = ext4_fc_reserve_space(inode->i_sb,
831 			sizeof(tl) + inode_len + sizeof(fc_inode.fc_ino), crc);
832 	if (!dst)
833 		return -ECANCELED;
834 
835 	if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, sizeof(tl), crc))
836 		return -ECANCELED;
837 	dst += sizeof(tl);
838 	if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc))
839 		return -ECANCELED;
840 	dst += sizeof(fc_inode);
841 	if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc),
842 					inode_len, crc))
843 		return -ECANCELED;
844 
845 	return 0;
846 }
847 
848 /*
849  * Writes updated data ranges for the inode in question. Updates CRC.
850  * Returns 0 on success, error otherwise.
851  */
852 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
853 {
854 	ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
855 	struct ext4_inode_info *ei = EXT4_I(inode);
856 	struct ext4_map_blocks map;
857 	struct ext4_fc_add_range fc_ext;
858 	struct ext4_fc_del_range lrange;
859 	struct ext4_extent *ex;
860 	int ret;
861 
862 	mutex_lock(&ei->i_fc_lock);
863 	if (ei->i_fc_lblk_len == 0) {
864 		mutex_unlock(&ei->i_fc_lock);
865 		return 0;
866 	}
867 	old_blk_size = ei->i_fc_lblk_start;
868 	new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
869 	ei->i_fc_lblk_len = 0;
870 	mutex_unlock(&ei->i_fc_lock);
871 
872 	cur_lblk_off = old_blk_size;
873 	jbd_debug(1, "%s: will try writing %d to %d for inode %ld\n",
874 		  __func__, cur_lblk_off, new_blk_size, inode->i_ino);
875 
876 	while (cur_lblk_off <= new_blk_size) {
877 		map.m_lblk = cur_lblk_off;
878 		map.m_len = new_blk_size - cur_lblk_off + 1;
879 		ret = ext4_map_blocks(NULL, inode, &map, 0);
880 		if (ret < 0)
881 			return -ECANCELED;
882 
883 		if (map.m_len == 0) {
884 			cur_lblk_off++;
885 			continue;
886 		}
887 
888 		if (ret == 0) {
889 			lrange.fc_ino = cpu_to_le32(inode->i_ino);
890 			lrange.fc_lblk = cpu_to_le32(map.m_lblk);
891 			lrange.fc_len = cpu_to_le32(map.m_len);
892 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
893 					    sizeof(lrange), (u8 *)&lrange, crc))
894 				return -ENOSPC;
895 		} else {
896 			fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
897 			ex = (struct ext4_extent *)&fc_ext.fc_ex;
898 			ex->ee_block = cpu_to_le32(map.m_lblk);
899 			ex->ee_len = cpu_to_le16(map.m_len);
900 			ext4_ext_store_pblock(ex, map.m_pblk);
901 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
902 				ext4_ext_mark_unwritten(ex);
903 			else
904 				ext4_ext_mark_initialized(ex);
905 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
906 					    sizeof(fc_ext), (u8 *)&fc_ext, crc))
907 				return -ENOSPC;
908 		}
909 
910 		cur_lblk_off += map.m_len;
911 	}
912 
913 	return 0;
914 }
915 
916 
917 /* Submit data for all the fast commit inodes */
918 static int ext4_fc_submit_inode_data_all(journal_t *journal)
919 {
920 	struct super_block *sb = (struct super_block *)(journal->j_private);
921 	struct ext4_sb_info *sbi = EXT4_SB(sb);
922 	struct ext4_inode_info *ei;
923 	int ret = 0;
924 
925 	spin_lock(&sbi->s_fc_lock);
926 	ext4_set_mount_flag(sb, EXT4_MF_FC_COMMITTING);
927 	list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
928 		ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
929 		while (atomic_read(&ei->i_fc_updates)) {
930 			DEFINE_WAIT(wait);
931 
932 			prepare_to_wait(&ei->i_fc_wait, &wait,
933 						TASK_UNINTERRUPTIBLE);
934 			if (atomic_read(&ei->i_fc_updates)) {
935 				spin_unlock(&sbi->s_fc_lock);
936 				schedule();
937 				spin_lock(&sbi->s_fc_lock);
938 			}
939 			finish_wait(&ei->i_fc_wait, &wait);
940 		}
941 		spin_unlock(&sbi->s_fc_lock);
942 		ret = jbd2_submit_inode_data(ei->jinode);
943 		if (ret)
944 			return ret;
945 		spin_lock(&sbi->s_fc_lock);
946 	}
947 	spin_unlock(&sbi->s_fc_lock);
948 
949 	return ret;
950 }
951 
952 /* Wait for completion of data for all the fast commit inodes */
953 static int ext4_fc_wait_inode_data_all(journal_t *journal)
954 {
955 	struct super_block *sb = (struct super_block *)(journal->j_private);
956 	struct ext4_sb_info *sbi = EXT4_SB(sb);
957 	struct ext4_inode_info *pos, *n;
958 	int ret = 0;
959 
960 	spin_lock(&sbi->s_fc_lock);
961 	list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
962 		if (!ext4_test_inode_state(&pos->vfs_inode,
963 					   EXT4_STATE_FC_COMMITTING))
964 			continue;
965 		spin_unlock(&sbi->s_fc_lock);
966 
967 		ret = jbd2_wait_inode_data(journal, pos->jinode);
968 		if (ret)
969 			return ret;
970 		spin_lock(&sbi->s_fc_lock);
971 	}
972 	spin_unlock(&sbi->s_fc_lock);
973 
974 	return 0;
975 }
976 
977 /* Commit all the directory entry updates */
978 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
979 __acquires(&sbi->s_fc_lock)
980 __releases(&sbi->s_fc_lock)
981 {
982 	struct super_block *sb = (struct super_block *)(journal->j_private);
983 	struct ext4_sb_info *sbi = EXT4_SB(sb);
984 	struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
985 	struct inode *inode;
986 	struct ext4_inode_info *ei, *ei_n;
987 	int ret;
988 
989 	if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
990 		return 0;
991 	list_for_each_entry_safe(fc_dentry, fc_dentry_n,
992 				 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
993 		if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
994 			spin_unlock(&sbi->s_fc_lock);
995 			if (!ext4_fc_add_dentry_tlv(
996 				sb, fc_dentry->fcd_op,
997 				fc_dentry->fcd_parent, fc_dentry->fcd_ino,
998 				fc_dentry->fcd_name.len,
999 				fc_dentry->fcd_name.name, crc)) {
1000 				ret = -ENOSPC;
1001 				goto lock_and_exit;
1002 			}
1003 			spin_lock(&sbi->s_fc_lock);
1004 			continue;
1005 		}
1006 
1007 		inode = NULL;
1008 		list_for_each_entry_safe(ei, ei_n, &sbi->s_fc_q[FC_Q_MAIN],
1009 					 i_fc_list) {
1010 			if (ei->vfs_inode.i_ino == fc_dentry->fcd_ino) {
1011 				inode = &ei->vfs_inode;
1012 				break;
1013 			}
1014 		}
1015 		/*
1016 		 * If we don't find inode in our list, then it was deleted,
1017 		 * in which case, we don't need to record it's create tag.
1018 		 */
1019 		if (!inode)
1020 			continue;
1021 		spin_unlock(&sbi->s_fc_lock);
1022 
1023 		/*
1024 		 * We first write the inode and then the create dirent. This
1025 		 * allows the recovery code to create an unnamed inode first
1026 		 * and then link it to a directory entry. This allows us
1027 		 * to use namei.c routines almost as is and simplifies
1028 		 * the recovery code.
1029 		 */
1030 		ret = ext4_fc_write_inode(inode, crc);
1031 		if (ret)
1032 			goto lock_and_exit;
1033 
1034 		ret = ext4_fc_write_inode_data(inode, crc);
1035 		if (ret)
1036 			goto lock_and_exit;
1037 
1038 		if (!ext4_fc_add_dentry_tlv(
1039 			sb, fc_dentry->fcd_op,
1040 			fc_dentry->fcd_parent, fc_dentry->fcd_ino,
1041 			fc_dentry->fcd_name.len,
1042 			fc_dentry->fcd_name.name, crc)) {
1043 			ret = -ENOSPC;
1044 			goto lock_and_exit;
1045 		}
1046 
1047 		spin_lock(&sbi->s_fc_lock);
1048 	}
1049 	return 0;
1050 lock_and_exit:
1051 	spin_lock(&sbi->s_fc_lock);
1052 	return ret;
1053 }
1054 
1055 static int ext4_fc_perform_commit(journal_t *journal)
1056 {
1057 	struct super_block *sb = (struct super_block *)(journal->j_private);
1058 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1059 	struct ext4_inode_info *iter;
1060 	struct ext4_fc_head head;
1061 	struct inode *inode;
1062 	struct blk_plug plug;
1063 	int ret = 0;
1064 	u32 crc = 0;
1065 
1066 	ret = ext4_fc_submit_inode_data_all(journal);
1067 	if (ret)
1068 		return ret;
1069 
1070 	ret = ext4_fc_wait_inode_data_all(journal);
1071 	if (ret)
1072 		return ret;
1073 
1074 	/*
1075 	 * If file system device is different from journal device, issue a cache
1076 	 * flush before we start writing fast commit blocks.
1077 	 */
1078 	if (journal->j_fs_dev != journal->j_dev)
1079 		blkdev_issue_flush(journal->j_fs_dev);
1080 
1081 	blk_start_plug(&plug);
1082 	if (sbi->s_fc_bytes == 0) {
1083 		/*
1084 		 * Add a head tag only if this is the first fast commit
1085 		 * in this TID.
1086 		 */
1087 		head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1088 		head.fc_tid = cpu_to_le32(
1089 			sbi->s_journal->j_running_transaction->t_tid);
1090 		if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1091 			(u8 *)&head, &crc)) {
1092 			ret = -ENOSPC;
1093 			goto out;
1094 		}
1095 	}
1096 
1097 	spin_lock(&sbi->s_fc_lock);
1098 	ret = ext4_fc_commit_dentry_updates(journal, &crc);
1099 	if (ret) {
1100 		spin_unlock(&sbi->s_fc_lock);
1101 		goto out;
1102 	}
1103 
1104 	list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1105 		inode = &iter->vfs_inode;
1106 		if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1107 			continue;
1108 
1109 		spin_unlock(&sbi->s_fc_lock);
1110 		ret = ext4_fc_write_inode_data(inode, &crc);
1111 		if (ret)
1112 			goto out;
1113 		ret = ext4_fc_write_inode(inode, &crc);
1114 		if (ret)
1115 			goto out;
1116 		spin_lock(&sbi->s_fc_lock);
1117 	}
1118 	spin_unlock(&sbi->s_fc_lock);
1119 
1120 	ret = ext4_fc_write_tail(sb, crc);
1121 
1122 out:
1123 	blk_finish_plug(&plug);
1124 	return ret;
1125 }
1126 
1127 /*
1128  * The main commit entry point. Performs a fast commit for transaction
1129  * commit_tid if needed. If it's not possible to perform a fast commit
1130  * due to various reasons, we fall back to full commit. Returns 0
1131  * on success, error otherwise.
1132  */
1133 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1134 {
1135 	struct super_block *sb = (struct super_block *)(journal->j_private);
1136 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1137 	int nblks = 0, ret, bsize = journal->j_blocksize;
1138 	int subtid = atomic_read(&sbi->s_fc_subtid);
1139 	int reason = EXT4_FC_REASON_OK, fc_bufs_before = 0;
1140 	ktime_t start_time, commit_time;
1141 
1142 	trace_ext4_fc_commit_start(sb);
1143 
1144 	start_time = ktime_get();
1145 
1146 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
1147 		(ext4_fc_is_ineligible(sb))) {
1148 		reason = EXT4_FC_REASON_INELIGIBLE;
1149 		goto out;
1150 	}
1151 
1152 restart_fc:
1153 	ret = jbd2_fc_begin_commit(journal, commit_tid);
1154 	if (ret == -EALREADY) {
1155 		/* There was an ongoing commit, check if we need to restart */
1156 		if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1157 			commit_tid > journal->j_commit_sequence)
1158 			goto restart_fc;
1159 		reason = EXT4_FC_REASON_ALREADY_COMMITTED;
1160 		goto out;
1161 	} else if (ret) {
1162 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1163 		reason = EXT4_FC_REASON_FC_START_FAILED;
1164 		goto out;
1165 	}
1166 
1167 	fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1168 	ret = ext4_fc_perform_commit(journal);
1169 	if (ret < 0) {
1170 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1171 		reason = EXT4_FC_REASON_FC_FAILED;
1172 		goto out;
1173 	}
1174 	nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1175 	ret = jbd2_fc_wait_bufs(journal, nblks);
1176 	if (ret < 0) {
1177 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1178 		reason = EXT4_FC_REASON_FC_FAILED;
1179 		goto out;
1180 	}
1181 	atomic_inc(&sbi->s_fc_subtid);
1182 	jbd2_fc_end_commit(journal);
1183 out:
1184 	/* Has any ineligible update happened since we started? */
1185 	if (reason == EXT4_FC_REASON_OK && ext4_fc_is_ineligible(sb)) {
1186 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1187 		reason = EXT4_FC_REASON_INELIGIBLE;
1188 	}
1189 
1190 	spin_lock(&sbi->s_fc_lock);
1191 	if (reason != EXT4_FC_REASON_OK &&
1192 		reason != EXT4_FC_REASON_ALREADY_COMMITTED) {
1193 		sbi->s_fc_stats.fc_ineligible_commits++;
1194 	} else {
1195 		sbi->s_fc_stats.fc_num_commits++;
1196 		sbi->s_fc_stats.fc_numblks += nblks;
1197 	}
1198 	spin_unlock(&sbi->s_fc_lock);
1199 	nblks = (reason == EXT4_FC_REASON_OK) ? nblks : 0;
1200 	trace_ext4_fc_commit_stop(sb, nblks, reason);
1201 	commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1202 	/*
1203 	 * weight the commit time higher than the average time so we don't
1204 	 * react too strongly to vast changes in the commit time
1205 	 */
1206 	if (likely(sbi->s_fc_avg_commit_time))
1207 		sbi->s_fc_avg_commit_time = (commit_time +
1208 				sbi->s_fc_avg_commit_time * 3) / 4;
1209 	else
1210 		sbi->s_fc_avg_commit_time = commit_time;
1211 	jbd_debug(1,
1212 		"Fast commit ended with blks = %d, reason = %d, subtid - %d",
1213 		nblks, reason, subtid);
1214 	if (reason == EXT4_FC_REASON_FC_FAILED)
1215 		return jbd2_fc_end_commit_fallback(journal);
1216 	if (reason == EXT4_FC_REASON_FC_START_FAILED ||
1217 		reason == EXT4_FC_REASON_INELIGIBLE)
1218 		return jbd2_complete_transaction(journal, commit_tid);
1219 	return 0;
1220 }
1221 
1222 /*
1223  * Fast commit cleanup routine. This is called after every fast commit and
1224  * full commit. full is true if we are called after a full commit.
1225  */
1226 static void ext4_fc_cleanup(journal_t *journal, int full)
1227 {
1228 	struct super_block *sb = journal->j_private;
1229 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1230 	struct ext4_inode_info *iter, *iter_n;
1231 	struct ext4_fc_dentry_update *fc_dentry;
1232 
1233 	if (full && sbi->s_fc_bh)
1234 		sbi->s_fc_bh = NULL;
1235 
1236 	jbd2_fc_release_bufs(journal);
1237 
1238 	spin_lock(&sbi->s_fc_lock);
1239 	list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1240 				 i_fc_list) {
1241 		list_del_init(&iter->i_fc_list);
1242 		ext4_clear_inode_state(&iter->vfs_inode,
1243 				       EXT4_STATE_FC_COMMITTING);
1244 		ext4_fc_reset_inode(&iter->vfs_inode);
1245 		/* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1246 		smp_mb();
1247 #if (BITS_PER_LONG < 64)
1248 		wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1249 #else
1250 		wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1251 #endif
1252 	}
1253 
1254 	while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1255 		fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1256 					     struct ext4_fc_dentry_update,
1257 					     fcd_list);
1258 		list_del_init(&fc_dentry->fcd_list);
1259 		spin_unlock(&sbi->s_fc_lock);
1260 
1261 		if (fc_dentry->fcd_name.name &&
1262 			fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1263 			kfree(fc_dentry->fcd_name.name);
1264 		kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1265 		spin_lock(&sbi->s_fc_lock);
1266 	}
1267 
1268 	list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1269 				&sbi->s_fc_dentry_q[FC_Q_MAIN]);
1270 	list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1271 				&sbi->s_fc_q[FC_Q_MAIN]);
1272 
1273 	ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
1274 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1275 
1276 	if (full)
1277 		sbi->s_fc_bytes = 0;
1278 	spin_unlock(&sbi->s_fc_lock);
1279 	trace_ext4_fc_stats(sb);
1280 }
1281 
1282 /* Ext4 Replay Path Routines */
1283 
1284 /* Helper struct for dentry replay routines */
1285 struct dentry_info_args {
1286 	int parent_ino, dname_len, ino, inode_len;
1287 	char *dname;
1288 };
1289 
1290 static inline void tl_to_darg(struct dentry_info_args *darg,
1291 			      struct  ext4_fc_tl *tl, u8 *val)
1292 {
1293 	struct ext4_fc_dentry_info fcd;
1294 
1295 	memcpy(&fcd, val, sizeof(fcd));
1296 
1297 	darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1298 	darg->ino = le32_to_cpu(fcd.fc_ino);
1299 	darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1300 	darg->dname_len = le16_to_cpu(tl->fc_len) -
1301 		sizeof(struct ext4_fc_dentry_info);
1302 }
1303 
1304 /* Unlink replay function */
1305 static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl *tl,
1306 				 u8 *val)
1307 {
1308 	struct inode *inode, *old_parent;
1309 	struct qstr entry;
1310 	struct dentry_info_args darg;
1311 	int ret = 0;
1312 
1313 	tl_to_darg(&darg, tl, val);
1314 
1315 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1316 			darg.parent_ino, darg.dname_len);
1317 
1318 	entry.name = darg.dname;
1319 	entry.len = darg.dname_len;
1320 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1321 
1322 	if (IS_ERR(inode)) {
1323 		jbd_debug(1, "Inode %d not found", darg.ino);
1324 		return 0;
1325 	}
1326 
1327 	old_parent = ext4_iget(sb, darg.parent_ino,
1328 				EXT4_IGET_NORMAL);
1329 	if (IS_ERR(old_parent)) {
1330 		jbd_debug(1, "Dir with inode  %d not found", darg.parent_ino);
1331 		iput(inode);
1332 		return 0;
1333 	}
1334 
1335 	ret = __ext4_unlink(NULL, old_parent, &entry, inode);
1336 	/* -ENOENT ok coz it might not exist anymore. */
1337 	if (ret == -ENOENT)
1338 		ret = 0;
1339 	iput(old_parent);
1340 	iput(inode);
1341 	return ret;
1342 }
1343 
1344 static int ext4_fc_replay_link_internal(struct super_block *sb,
1345 				struct dentry_info_args *darg,
1346 				struct inode *inode)
1347 {
1348 	struct inode *dir = NULL;
1349 	struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1350 	struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1351 	int ret = 0;
1352 
1353 	dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1354 	if (IS_ERR(dir)) {
1355 		jbd_debug(1, "Dir with inode %d not found.", darg->parent_ino);
1356 		dir = NULL;
1357 		goto out;
1358 	}
1359 
1360 	dentry_dir = d_obtain_alias(dir);
1361 	if (IS_ERR(dentry_dir)) {
1362 		jbd_debug(1, "Failed to obtain dentry");
1363 		dentry_dir = NULL;
1364 		goto out;
1365 	}
1366 
1367 	dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1368 	if (!dentry_inode) {
1369 		jbd_debug(1, "Inode dentry not created.");
1370 		ret = -ENOMEM;
1371 		goto out;
1372 	}
1373 
1374 	ret = __ext4_link(dir, inode, dentry_inode);
1375 	/*
1376 	 * It's possible that link already existed since data blocks
1377 	 * for the dir in question got persisted before we crashed OR
1378 	 * we replayed this tag and crashed before the entire replay
1379 	 * could complete.
1380 	 */
1381 	if (ret && ret != -EEXIST) {
1382 		jbd_debug(1, "Failed to link\n");
1383 		goto out;
1384 	}
1385 
1386 	ret = 0;
1387 out:
1388 	if (dentry_dir) {
1389 		d_drop(dentry_dir);
1390 		dput(dentry_dir);
1391 	} else if (dir) {
1392 		iput(dir);
1393 	}
1394 	if (dentry_inode) {
1395 		d_drop(dentry_inode);
1396 		dput(dentry_inode);
1397 	}
1398 
1399 	return ret;
1400 }
1401 
1402 /* Link replay function */
1403 static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl *tl,
1404 			       u8 *val)
1405 {
1406 	struct inode *inode;
1407 	struct dentry_info_args darg;
1408 	int ret = 0;
1409 
1410 	tl_to_darg(&darg, tl, val);
1411 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1412 			darg.parent_ino, darg.dname_len);
1413 
1414 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1415 	if (IS_ERR(inode)) {
1416 		jbd_debug(1, "Inode not found.");
1417 		return 0;
1418 	}
1419 
1420 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1421 	iput(inode);
1422 	return ret;
1423 }
1424 
1425 /*
1426  * Record all the modified inodes during replay. We use this later to setup
1427  * block bitmaps correctly.
1428  */
1429 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1430 {
1431 	struct ext4_fc_replay_state *state;
1432 	int i;
1433 
1434 	state = &EXT4_SB(sb)->s_fc_replay_state;
1435 	for (i = 0; i < state->fc_modified_inodes_used; i++)
1436 		if (state->fc_modified_inodes[i] == ino)
1437 			return 0;
1438 	if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1439 		state->fc_modified_inodes_size +=
1440 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1441 		state->fc_modified_inodes = krealloc(
1442 					state->fc_modified_inodes, sizeof(int) *
1443 					state->fc_modified_inodes_size,
1444 					GFP_KERNEL);
1445 		if (!state->fc_modified_inodes)
1446 			return -ENOMEM;
1447 	}
1448 	state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1449 	return 0;
1450 }
1451 
1452 /*
1453  * Inode replay function
1454  */
1455 static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl *tl,
1456 				u8 *val)
1457 {
1458 	struct ext4_fc_inode fc_inode;
1459 	struct ext4_inode *raw_inode;
1460 	struct ext4_inode *raw_fc_inode;
1461 	struct inode *inode = NULL;
1462 	struct ext4_iloc iloc;
1463 	int inode_len, ino, ret, tag = le16_to_cpu(tl->fc_tag);
1464 	struct ext4_extent_header *eh;
1465 
1466 	memcpy(&fc_inode, val, sizeof(fc_inode));
1467 
1468 	ino = le32_to_cpu(fc_inode.fc_ino);
1469 	trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1470 
1471 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1472 	if (!IS_ERR(inode)) {
1473 		ext4_ext_clear_bb(inode);
1474 		iput(inode);
1475 	}
1476 	inode = NULL;
1477 
1478 	ext4_fc_record_modified_inode(sb, ino);
1479 
1480 	raw_fc_inode = (struct ext4_inode *)
1481 		(val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1482 	ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1483 	if (ret)
1484 		goto out;
1485 
1486 	inode_len = le16_to_cpu(tl->fc_len) - sizeof(struct ext4_fc_inode);
1487 	raw_inode = ext4_raw_inode(&iloc);
1488 
1489 	memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1490 	memcpy(&raw_inode->i_generation, &raw_fc_inode->i_generation,
1491 		inode_len - offsetof(struct ext4_inode, i_generation));
1492 	if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1493 		eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1494 		if (eh->eh_magic != EXT4_EXT_MAGIC) {
1495 			memset(eh, 0, sizeof(*eh));
1496 			eh->eh_magic = EXT4_EXT_MAGIC;
1497 			eh->eh_max = cpu_to_le16(
1498 				(sizeof(raw_inode->i_block) -
1499 				 sizeof(struct ext4_extent_header))
1500 				 / sizeof(struct ext4_extent));
1501 		}
1502 	} else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1503 		memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1504 			sizeof(raw_inode->i_block));
1505 	}
1506 
1507 	/* Immediately update the inode on disk. */
1508 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1509 	if (ret)
1510 		goto out;
1511 	ret = sync_dirty_buffer(iloc.bh);
1512 	if (ret)
1513 		goto out;
1514 	ret = ext4_mark_inode_used(sb, ino);
1515 	if (ret)
1516 		goto out;
1517 
1518 	/* Given that we just wrote the inode on disk, this SHOULD succeed. */
1519 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1520 	if (IS_ERR(inode)) {
1521 		jbd_debug(1, "Inode not found.");
1522 		return -EFSCORRUPTED;
1523 	}
1524 
1525 	/*
1526 	 * Our allocator could have made different decisions than before
1527 	 * crashing. This should be fixed but until then, we calculate
1528 	 * the number of blocks the inode.
1529 	 */
1530 	ext4_ext_replay_set_iblocks(inode);
1531 
1532 	inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1533 	ext4_reset_inode_seed(inode);
1534 
1535 	ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1536 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1537 	sync_dirty_buffer(iloc.bh);
1538 	brelse(iloc.bh);
1539 out:
1540 	iput(inode);
1541 	if (!ret)
1542 		blkdev_issue_flush(sb->s_bdev);
1543 
1544 	return 0;
1545 }
1546 
1547 /*
1548  * Dentry create replay function.
1549  *
1550  * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1551  * inode for which we are trying to create a dentry here, should already have
1552  * been replayed before we start here.
1553  */
1554 static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl *tl,
1555 				 u8 *val)
1556 {
1557 	int ret = 0;
1558 	struct inode *inode = NULL;
1559 	struct inode *dir = NULL;
1560 	struct dentry_info_args darg;
1561 
1562 	tl_to_darg(&darg, tl, val);
1563 
1564 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1565 			darg.parent_ino, darg.dname_len);
1566 
1567 	/* This takes care of update group descriptor and other metadata */
1568 	ret = ext4_mark_inode_used(sb, darg.ino);
1569 	if (ret)
1570 		goto out;
1571 
1572 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1573 	if (IS_ERR(inode)) {
1574 		jbd_debug(1, "inode %d not found.", darg.ino);
1575 		inode = NULL;
1576 		ret = -EINVAL;
1577 		goto out;
1578 	}
1579 
1580 	if (S_ISDIR(inode->i_mode)) {
1581 		/*
1582 		 * If we are creating a directory, we need to make sure that the
1583 		 * dot and dot dot dirents are setup properly.
1584 		 */
1585 		dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1586 		if (IS_ERR(dir)) {
1587 			jbd_debug(1, "Dir %d not found.", darg.ino);
1588 			goto out;
1589 		}
1590 		ret = ext4_init_new_dir(NULL, dir, inode);
1591 		iput(dir);
1592 		if (ret) {
1593 			ret = 0;
1594 			goto out;
1595 		}
1596 	}
1597 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1598 	if (ret)
1599 		goto out;
1600 	set_nlink(inode, 1);
1601 	ext4_mark_inode_dirty(NULL, inode);
1602 out:
1603 	if (inode)
1604 		iput(inode);
1605 	return ret;
1606 }
1607 
1608 /*
1609  * Record physical disk regions which are in use as per fast commit area. Our
1610  * simple replay phase allocator excludes these regions from allocation.
1611  */
1612 static int ext4_fc_record_regions(struct super_block *sb, int ino,
1613 		ext4_lblk_t lblk, ext4_fsblk_t pblk, int len)
1614 {
1615 	struct ext4_fc_replay_state *state;
1616 	struct ext4_fc_alloc_region *region;
1617 
1618 	state = &EXT4_SB(sb)->s_fc_replay_state;
1619 	if (state->fc_regions_used == state->fc_regions_size) {
1620 		state->fc_regions_size +=
1621 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1622 		state->fc_regions = krealloc(
1623 					state->fc_regions,
1624 					state->fc_regions_size *
1625 					sizeof(struct ext4_fc_alloc_region),
1626 					GFP_KERNEL);
1627 		if (!state->fc_regions)
1628 			return -ENOMEM;
1629 	}
1630 	region = &state->fc_regions[state->fc_regions_used++];
1631 	region->ino = ino;
1632 	region->lblk = lblk;
1633 	region->pblk = pblk;
1634 	region->len = len;
1635 
1636 	return 0;
1637 }
1638 
1639 /* Replay add range tag */
1640 static int ext4_fc_replay_add_range(struct super_block *sb,
1641 				    struct ext4_fc_tl *tl, u8 *val)
1642 {
1643 	struct ext4_fc_add_range fc_add_ex;
1644 	struct ext4_extent newex, *ex;
1645 	struct inode *inode;
1646 	ext4_lblk_t start, cur;
1647 	int remaining, len;
1648 	ext4_fsblk_t start_pblk;
1649 	struct ext4_map_blocks map;
1650 	struct ext4_ext_path *path = NULL;
1651 	int ret;
1652 
1653 	memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1654 	ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1655 
1656 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1657 		le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1658 		ext4_ext_get_actual_len(ex));
1659 
1660 	inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1661 	if (IS_ERR(inode)) {
1662 		jbd_debug(1, "Inode not found.");
1663 		return 0;
1664 	}
1665 
1666 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1667 
1668 	start = le32_to_cpu(ex->ee_block);
1669 	start_pblk = ext4_ext_pblock(ex);
1670 	len = ext4_ext_get_actual_len(ex);
1671 
1672 	cur = start;
1673 	remaining = len;
1674 	jbd_debug(1, "ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1675 		  start, start_pblk, len, ext4_ext_is_unwritten(ex),
1676 		  inode->i_ino);
1677 
1678 	while (remaining > 0) {
1679 		map.m_lblk = cur;
1680 		map.m_len = remaining;
1681 		map.m_pblk = 0;
1682 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1683 
1684 		if (ret < 0) {
1685 			iput(inode);
1686 			return 0;
1687 		}
1688 
1689 		if (ret == 0) {
1690 			/* Range is not mapped */
1691 			path = ext4_find_extent(inode, cur, NULL, 0);
1692 			if (IS_ERR(path)) {
1693 				iput(inode);
1694 				return 0;
1695 			}
1696 			memset(&newex, 0, sizeof(newex));
1697 			newex.ee_block = cpu_to_le32(cur);
1698 			ext4_ext_store_pblock(
1699 				&newex, start_pblk + cur - start);
1700 			newex.ee_len = cpu_to_le16(map.m_len);
1701 			if (ext4_ext_is_unwritten(ex))
1702 				ext4_ext_mark_unwritten(&newex);
1703 			down_write(&EXT4_I(inode)->i_data_sem);
1704 			ret = ext4_ext_insert_extent(
1705 				NULL, inode, &path, &newex, 0);
1706 			up_write((&EXT4_I(inode)->i_data_sem));
1707 			ext4_ext_drop_refs(path);
1708 			kfree(path);
1709 			if (ret) {
1710 				iput(inode);
1711 				return 0;
1712 			}
1713 			goto next;
1714 		}
1715 
1716 		if (start_pblk + cur - start != map.m_pblk) {
1717 			/*
1718 			 * Logical to physical mapping changed. This can happen
1719 			 * if this range was removed and then reallocated to
1720 			 * map to new physical blocks during a fast commit.
1721 			 */
1722 			ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1723 					ext4_ext_is_unwritten(ex),
1724 					start_pblk + cur - start);
1725 			if (ret) {
1726 				iput(inode);
1727 				return 0;
1728 			}
1729 			/*
1730 			 * Mark the old blocks as free since they aren't used
1731 			 * anymore. We maintain an array of all the modified
1732 			 * inodes. In case these blocks are still used at either
1733 			 * a different logical range in the same inode or in
1734 			 * some different inode, we will mark them as allocated
1735 			 * at the end of the FC replay using our array of
1736 			 * modified inodes.
1737 			 */
1738 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1739 			goto next;
1740 		}
1741 
1742 		/* Range is mapped and needs a state change */
1743 		jbd_debug(1, "Converting from %ld to %d %lld",
1744 				map.m_flags & EXT4_MAP_UNWRITTEN,
1745 			ext4_ext_is_unwritten(ex), map.m_pblk);
1746 		ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1747 					ext4_ext_is_unwritten(ex), map.m_pblk);
1748 		if (ret) {
1749 			iput(inode);
1750 			return 0;
1751 		}
1752 		/*
1753 		 * We may have split the extent tree while toggling the state.
1754 		 * Try to shrink the extent tree now.
1755 		 */
1756 		ext4_ext_replay_shrink_inode(inode, start + len);
1757 next:
1758 		cur += map.m_len;
1759 		remaining -= map.m_len;
1760 	}
1761 	ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1762 					sb->s_blocksize_bits);
1763 	iput(inode);
1764 	return 0;
1765 }
1766 
1767 /* Replay DEL_RANGE tag */
1768 static int
1769 ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl *tl,
1770 			 u8 *val)
1771 {
1772 	struct inode *inode;
1773 	struct ext4_fc_del_range lrange;
1774 	struct ext4_map_blocks map;
1775 	ext4_lblk_t cur, remaining;
1776 	int ret;
1777 
1778 	memcpy(&lrange, val, sizeof(lrange));
1779 	cur = le32_to_cpu(lrange.fc_lblk);
1780 	remaining = le32_to_cpu(lrange.fc_len);
1781 
1782 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1783 		le32_to_cpu(lrange.fc_ino), cur, remaining);
1784 
1785 	inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1786 	if (IS_ERR(inode)) {
1787 		jbd_debug(1, "Inode %d not found", le32_to_cpu(lrange.fc_ino));
1788 		return 0;
1789 	}
1790 
1791 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1792 
1793 	jbd_debug(1, "DEL_RANGE, inode %ld, lblk %d, len %d\n",
1794 			inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1795 			le32_to_cpu(lrange.fc_len));
1796 	while (remaining > 0) {
1797 		map.m_lblk = cur;
1798 		map.m_len = remaining;
1799 
1800 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1801 		if (ret < 0) {
1802 			iput(inode);
1803 			return 0;
1804 		}
1805 		if (ret > 0) {
1806 			remaining -= ret;
1807 			cur += ret;
1808 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1809 		} else {
1810 			remaining -= map.m_len;
1811 			cur += map.m_len;
1812 		}
1813 	}
1814 
1815 	ret = ext4_punch_hole(inode,
1816 		le32_to_cpu(lrange.fc_lblk) << sb->s_blocksize_bits,
1817 		le32_to_cpu(lrange.fc_len) <<  sb->s_blocksize_bits);
1818 	if (ret)
1819 		jbd_debug(1, "ext4_punch_hole returned %d", ret);
1820 	ext4_ext_replay_shrink_inode(inode,
1821 		i_size_read(inode) >> sb->s_blocksize_bits);
1822 	ext4_mark_inode_dirty(NULL, inode);
1823 	iput(inode);
1824 
1825 	return 0;
1826 }
1827 
1828 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1829 {
1830 	struct ext4_fc_replay_state *state;
1831 	struct inode *inode;
1832 	struct ext4_ext_path *path = NULL;
1833 	struct ext4_map_blocks map;
1834 	int i, ret, j;
1835 	ext4_lblk_t cur, end;
1836 
1837 	state = &EXT4_SB(sb)->s_fc_replay_state;
1838 	for (i = 0; i < state->fc_modified_inodes_used; i++) {
1839 		inode = ext4_iget(sb, state->fc_modified_inodes[i],
1840 			EXT4_IGET_NORMAL);
1841 		if (IS_ERR(inode)) {
1842 			jbd_debug(1, "Inode %d not found.",
1843 				state->fc_modified_inodes[i]);
1844 			continue;
1845 		}
1846 		cur = 0;
1847 		end = EXT_MAX_BLOCKS;
1848 		while (cur < end) {
1849 			map.m_lblk = cur;
1850 			map.m_len = end - cur;
1851 
1852 			ret = ext4_map_blocks(NULL, inode, &map, 0);
1853 			if (ret < 0)
1854 				break;
1855 
1856 			if (ret > 0) {
1857 				path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1858 				if (!IS_ERR(path)) {
1859 					for (j = 0; j < path->p_depth; j++)
1860 						ext4_mb_mark_bb(inode->i_sb,
1861 							path[j].p_block, 1, 1);
1862 					ext4_ext_drop_refs(path);
1863 					kfree(path);
1864 				}
1865 				cur += ret;
1866 				ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1867 							map.m_len, 1);
1868 			} else {
1869 				cur = cur + (map.m_len ? map.m_len : 1);
1870 			}
1871 		}
1872 		iput(inode);
1873 	}
1874 }
1875 
1876 /*
1877  * Check if block is in excluded regions for block allocation. The simple
1878  * allocator that runs during replay phase is calls this function to see
1879  * if it is okay to use a block.
1880  */
1881 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1882 {
1883 	int i;
1884 	struct ext4_fc_replay_state *state;
1885 
1886 	state = &EXT4_SB(sb)->s_fc_replay_state;
1887 	for (i = 0; i < state->fc_regions_valid; i++) {
1888 		if (state->fc_regions[i].ino == 0 ||
1889 			state->fc_regions[i].len == 0)
1890 			continue;
1891 		if (blk >= state->fc_regions[i].pblk &&
1892 		    blk < state->fc_regions[i].pblk + state->fc_regions[i].len)
1893 			return true;
1894 	}
1895 	return false;
1896 }
1897 
1898 /* Cleanup function called after replay */
1899 void ext4_fc_replay_cleanup(struct super_block *sb)
1900 {
1901 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1902 
1903 	sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1904 	kfree(sbi->s_fc_replay_state.fc_regions);
1905 	kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1906 }
1907 
1908 /*
1909  * Recovery Scan phase handler
1910  *
1911  * This function is called during the scan phase and is responsible
1912  * for doing following things:
1913  * - Make sure the fast commit area has valid tags for replay
1914  * - Count number of tags that need to be replayed by the replay handler
1915  * - Verify CRC
1916  * - Create a list of excluded blocks for allocation during replay phase
1917  *
1918  * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
1919  * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
1920  * to indicate that scan has finished and JBD2 can now start replay phase.
1921  * It returns a negative error to indicate that there was an error. At the end
1922  * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
1923  * to indicate the number of tags that need to replayed during the replay phase.
1924  */
1925 static int ext4_fc_replay_scan(journal_t *journal,
1926 				struct buffer_head *bh, int off,
1927 				tid_t expected_tid)
1928 {
1929 	struct super_block *sb = journal->j_private;
1930 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1931 	struct ext4_fc_replay_state *state;
1932 	int ret = JBD2_FC_REPLAY_CONTINUE;
1933 	struct ext4_fc_add_range ext;
1934 	struct ext4_fc_tl tl;
1935 	struct ext4_fc_tail tail;
1936 	__u8 *start, *end, *cur, *val;
1937 	struct ext4_fc_head head;
1938 	struct ext4_extent *ex;
1939 
1940 	state = &sbi->s_fc_replay_state;
1941 
1942 	start = (u8 *)bh->b_data;
1943 	end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
1944 
1945 	if (state->fc_replay_expected_off == 0) {
1946 		state->fc_cur_tag = 0;
1947 		state->fc_replay_num_tags = 0;
1948 		state->fc_crc = 0;
1949 		state->fc_regions = NULL;
1950 		state->fc_regions_valid = state->fc_regions_used =
1951 			state->fc_regions_size = 0;
1952 		/* Check if we can stop early */
1953 		if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
1954 			!= EXT4_FC_TAG_HEAD)
1955 			return 0;
1956 	}
1957 
1958 	if (off != state->fc_replay_expected_off) {
1959 		ret = -EFSCORRUPTED;
1960 		goto out_err;
1961 	}
1962 
1963 	state->fc_replay_expected_off++;
1964 	for (cur = start; cur < end; cur = cur + sizeof(tl) + le16_to_cpu(tl.fc_len)) {
1965 		memcpy(&tl, cur, sizeof(tl));
1966 		val = cur + sizeof(tl);
1967 		jbd_debug(3, "Scan phase, tag:%s, blk %lld\n",
1968 			  tag2str(le16_to_cpu(tl.fc_tag)), bh->b_blocknr);
1969 		switch (le16_to_cpu(tl.fc_tag)) {
1970 		case EXT4_FC_TAG_ADD_RANGE:
1971 			memcpy(&ext, val, sizeof(ext));
1972 			ex = (struct ext4_extent *)&ext.fc_ex;
1973 			ret = ext4_fc_record_regions(sb,
1974 				le32_to_cpu(ext.fc_ino),
1975 				le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
1976 				ext4_ext_get_actual_len(ex));
1977 			if (ret < 0)
1978 				break;
1979 			ret = JBD2_FC_REPLAY_CONTINUE;
1980 			fallthrough;
1981 		case EXT4_FC_TAG_DEL_RANGE:
1982 		case EXT4_FC_TAG_LINK:
1983 		case EXT4_FC_TAG_UNLINK:
1984 		case EXT4_FC_TAG_CREAT:
1985 		case EXT4_FC_TAG_INODE:
1986 		case EXT4_FC_TAG_PAD:
1987 			state->fc_cur_tag++;
1988 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
1989 					sizeof(tl) + le16_to_cpu(tl.fc_len));
1990 			break;
1991 		case EXT4_FC_TAG_TAIL:
1992 			state->fc_cur_tag++;
1993 			memcpy(&tail, val, sizeof(tail));
1994 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
1995 						sizeof(tl) +
1996 						offsetof(struct ext4_fc_tail,
1997 						fc_crc));
1998 			if (le32_to_cpu(tail.fc_tid) == expected_tid &&
1999 				le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2000 				state->fc_replay_num_tags = state->fc_cur_tag;
2001 				state->fc_regions_valid =
2002 					state->fc_regions_used;
2003 			} else {
2004 				ret = state->fc_replay_num_tags ?
2005 					JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2006 			}
2007 			state->fc_crc = 0;
2008 			break;
2009 		case EXT4_FC_TAG_HEAD:
2010 			memcpy(&head, val, sizeof(head));
2011 			if (le32_to_cpu(head.fc_features) &
2012 				~EXT4_FC_SUPPORTED_FEATURES) {
2013 				ret = -EOPNOTSUPP;
2014 				break;
2015 			}
2016 			if (le32_to_cpu(head.fc_tid) != expected_tid) {
2017 				ret = JBD2_FC_REPLAY_STOP;
2018 				break;
2019 			}
2020 			state->fc_cur_tag++;
2021 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2022 					    sizeof(tl) + le16_to_cpu(tl.fc_len));
2023 			break;
2024 		default:
2025 			ret = state->fc_replay_num_tags ?
2026 				JBD2_FC_REPLAY_STOP : -ECANCELED;
2027 		}
2028 		if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2029 			break;
2030 	}
2031 
2032 out_err:
2033 	trace_ext4_fc_replay_scan(sb, ret, off);
2034 	return ret;
2035 }
2036 
2037 /*
2038  * Main recovery path entry point.
2039  * The meaning of return codes is similar as above.
2040  */
2041 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2042 				enum passtype pass, int off, tid_t expected_tid)
2043 {
2044 	struct super_block *sb = journal->j_private;
2045 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2046 	struct ext4_fc_tl tl;
2047 	__u8 *start, *end, *cur, *val;
2048 	int ret = JBD2_FC_REPLAY_CONTINUE;
2049 	struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2050 	struct ext4_fc_tail tail;
2051 
2052 	if (pass == PASS_SCAN) {
2053 		state->fc_current_pass = PASS_SCAN;
2054 		return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2055 	}
2056 
2057 	if (state->fc_current_pass != pass) {
2058 		state->fc_current_pass = pass;
2059 		sbi->s_mount_state |= EXT4_FC_REPLAY;
2060 	}
2061 	if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2062 		jbd_debug(1, "Replay stops\n");
2063 		ext4_fc_set_bitmaps_and_counters(sb);
2064 		return 0;
2065 	}
2066 
2067 #ifdef CONFIG_EXT4_DEBUG
2068 	if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2069 		pr_warn("Dropping fc block %d because max_replay set\n", off);
2070 		return JBD2_FC_REPLAY_STOP;
2071 	}
2072 #endif
2073 
2074 	start = (u8 *)bh->b_data;
2075 	end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
2076 
2077 	for (cur = start; cur < end; cur = cur + sizeof(tl) + le16_to_cpu(tl.fc_len)) {
2078 		memcpy(&tl, cur, sizeof(tl));
2079 		val = cur + sizeof(tl);
2080 
2081 		if (state->fc_replay_num_tags == 0) {
2082 			ret = JBD2_FC_REPLAY_STOP;
2083 			ext4_fc_set_bitmaps_and_counters(sb);
2084 			break;
2085 		}
2086 		jbd_debug(3, "Replay phase, tag:%s\n",
2087 				tag2str(le16_to_cpu(tl.fc_tag)));
2088 		state->fc_replay_num_tags--;
2089 		switch (le16_to_cpu(tl.fc_tag)) {
2090 		case EXT4_FC_TAG_LINK:
2091 			ret = ext4_fc_replay_link(sb, &tl, val);
2092 			break;
2093 		case EXT4_FC_TAG_UNLINK:
2094 			ret = ext4_fc_replay_unlink(sb, &tl, val);
2095 			break;
2096 		case EXT4_FC_TAG_ADD_RANGE:
2097 			ret = ext4_fc_replay_add_range(sb, &tl, val);
2098 			break;
2099 		case EXT4_FC_TAG_CREAT:
2100 			ret = ext4_fc_replay_create(sb, &tl, val);
2101 			break;
2102 		case EXT4_FC_TAG_DEL_RANGE:
2103 			ret = ext4_fc_replay_del_range(sb, &tl, val);
2104 			break;
2105 		case EXT4_FC_TAG_INODE:
2106 			ret = ext4_fc_replay_inode(sb, &tl, val);
2107 			break;
2108 		case EXT4_FC_TAG_PAD:
2109 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2110 					     le16_to_cpu(tl.fc_len), 0);
2111 			break;
2112 		case EXT4_FC_TAG_TAIL:
2113 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 0,
2114 					     le16_to_cpu(tl.fc_len), 0);
2115 			memcpy(&tail, val, sizeof(tail));
2116 			WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2117 			break;
2118 		case EXT4_FC_TAG_HEAD:
2119 			break;
2120 		default:
2121 			trace_ext4_fc_replay(sb, le16_to_cpu(tl.fc_tag), 0,
2122 					     le16_to_cpu(tl.fc_len), 0);
2123 			ret = -ECANCELED;
2124 			break;
2125 		}
2126 		if (ret < 0)
2127 			break;
2128 		ret = JBD2_FC_REPLAY_CONTINUE;
2129 	}
2130 	return ret;
2131 }
2132 
2133 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2134 {
2135 	/*
2136 	 * We set replay callback even if fast commit disabled because we may
2137 	 * could still have fast commit blocks that need to be replayed even if
2138 	 * fast commit has now been turned off.
2139 	 */
2140 	journal->j_fc_replay_callback = ext4_fc_replay;
2141 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2142 		return;
2143 	journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2144 }
2145 
2146 static const char *fc_ineligible_reasons[] = {
2147 	"Extended attributes changed",
2148 	"Cross rename",
2149 	"Journal flag changed",
2150 	"Insufficient memory",
2151 	"Swap boot",
2152 	"Resize",
2153 	"Dir renamed",
2154 	"Falloc range op",
2155 	"Data journalling",
2156 	"FC Commit Failed"
2157 };
2158 
2159 int ext4_fc_info_show(struct seq_file *seq, void *v)
2160 {
2161 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2162 	struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2163 	int i;
2164 
2165 	if (v != SEQ_START_TOKEN)
2166 		return 0;
2167 
2168 	seq_printf(seq,
2169 		"fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2170 		   stats->fc_num_commits, stats->fc_ineligible_commits,
2171 		   stats->fc_numblks,
2172 		   div_u64(sbi->s_fc_avg_commit_time, 1000));
2173 	seq_puts(seq, "Ineligible reasons:\n");
2174 	for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2175 		seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2176 			stats->fc_ineligible_reason_count[i]);
2177 
2178 	return 0;
2179 }
2180 
2181 int __init ext4_fc_init_dentry_cache(void)
2182 {
2183 	ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2184 					   SLAB_RECLAIM_ACCOUNT);
2185 
2186 	if (ext4_fc_dentry_cachep == NULL)
2187 		return -ENOMEM;
2188 
2189 	return 0;
2190 }
2191