xref: /openbmc/linux/fs/ext4/extents.c (revision efdcd41b4e41560375bb34ad8b095bcaa1c3a93f)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
46 
47 
48 /*
49  * ext_pblock:
50  * combine low and high parts of physical block number into ext4_fsblk_t
51  */
52 static ext4_fsblk_t ext_pblock(struct ext4_extent *ex)
53 {
54 	ext4_fsblk_t block;
55 
56 	block = le32_to_cpu(ex->ee_start_lo);
57 	block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1;
58 	return block;
59 }
60 
61 /*
62  * idx_pblock:
63  * combine low and high parts of a leaf physical block number into ext4_fsblk_t
64  */
65 ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix)
66 {
67 	ext4_fsblk_t block;
68 
69 	block = le32_to_cpu(ix->ei_leaf_lo);
70 	block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1;
71 	return block;
72 }
73 
74 /*
75  * ext4_ext_store_pblock:
76  * stores a large physical block number into an extent struct,
77  * breaking it into parts
78  */
79 void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb)
80 {
81 	ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
82 	ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
83 }
84 
85 /*
86  * ext4_idx_store_pblock:
87  * stores a large physical block number into an index struct,
88  * breaking it into parts
89  */
90 static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb)
91 {
92 	ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
93 	ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
94 }
95 
96 static int ext4_ext_journal_restart(handle_t *handle, int needed)
97 {
98 	int err;
99 
100 	if (!ext4_handle_valid(handle))
101 		return 0;
102 	if (handle->h_buffer_credits > needed)
103 		return 0;
104 	err = ext4_journal_extend(handle, needed);
105 	if (err <= 0)
106 		return err;
107 	return ext4_journal_restart(handle, needed);
108 }
109 
110 /*
111  * could return:
112  *  - EROFS
113  *  - ENOMEM
114  */
115 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
116 				struct ext4_ext_path *path)
117 {
118 	if (path->p_bh) {
119 		/* path points to block */
120 		return ext4_journal_get_write_access(handle, path->p_bh);
121 	}
122 	/* path points to leaf/index in inode body */
123 	/* we use in-core data, no need to protect them */
124 	return 0;
125 }
126 
127 /*
128  * could return:
129  *  - EROFS
130  *  - ENOMEM
131  *  - EIO
132  */
133 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
134 				struct ext4_ext_path *path)
135 {
136 	int err;
137 	if (path->p_bh) {
138 		/* path points to block */
139 		err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
140 	} else {
141 		/* path points to leaf/index in inode body */
142 		err = ext4_mark_inode_dirty(handle, inode);
143 	}
144 	return err;
145 }
146 
147 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
148 			      struct ext4_ext_path *path,
149 			      ext4_lblk_t block)
150 {
151 	struct ext4_inode_info *ei = EXT4_I(inode);
152 	ext4_fsblk_t bg_start;
153 	ext4_fsblk_t last_block;
154 	ext4_grpblk_t colour;
155 	int depth;
156 
157 	if (path) {
158 		struct ext4_extent *ex;
159 		depth = path->p_depth;
160 
161 		/* try to predict block placement */
162 		ex = path[depth].p_ext;
163 		if (ex)
164 			return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block));
165 
166 		/* it looks like index is empty;
167 		 * try to find starting block from index itself */
168 		if (path[depth].p_bh)
169 			return path[depth].p_bh->b_blocknr;
170 	}
171 
172 	/* OK. use inode's group */
173 	bg_start = (ei->i_block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) +
174 		le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block);
175 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
176 
177 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
178 		colour = (current->pid % 16) *
179 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
180 	else
181 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
182 	return bg_start + colour + block;
183 }
184 
185 /*
186  * Allocation for a meta data block
187  */
188 static ext4_fsblk_t
189 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
190 			struct ext4_ext_path *path,
191 			struct ext4_extent *ex, int *err)
192 {
193 	ext4_fsblk_t goal, newblock;
194 
195 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
196 	newblock = ext4_new_meta_blocks(handle, inode, goal, NULL, err);
197 	return newblock;
198 }
199 
200 static int ext4_ext_space_block(struct inode *inode)
201 {
202 	int size;
203 
204 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
205 			/ sizeof(struct ext4_extent);
206 #ifdef AGGRESSIVE_TEST
207 	if (size > 6)
208 		size = 6;
209 #endif
210 	return size;
211 }
212 
213 static int ext4_ext_space_block_idx(struct inode *inode)
214 {
215 	int size;
216 
217 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
218 			/ sizeof(struct ext4_extent_idx);
219 #ifdef AGGRESSIVE_TEST
220 	if (size > 5)
221 		size = 5;
222 #endif
223 	return size;
224 }
225 
226 static int ext4_ext_space_root(struct inode *inode)
227 {
228 	int size;
229 
230 	size = sizeof(EXT4_I(inode)->i_data);
231 	size -= sizeof(struct ext4_extent_header);
232 	size /= sizeof(struct ext4_extent);
233 #ifdef AGGRESSIVE_TEST
234 	if (size > 3)
235 		size = 3;
236 #endif
237 	return size;
238 }
239 
240 static int ext4_ext_space_root_idx(struct inode *inode)
241 {
242 	int size;
243 
244 	size = sizeof(EXT4_I(inode)->i_data);
245 	size -= sizeof(struct ext4_extent_header);
246 	size /= sizeof(struct ext4_extent_idx);
247 #ifdef AGGRESSIVE_TEST
248 	if (size > 4)
249 		size = 4;
250 #endif
251 	return size;
252 }
253 
254 /*
255  * Calculate the number of metadata blocks needed
256  * to allocate @blocks
257  * Worse case is one block per extent
258  */
259 int ext4_ext_calc_metadata_amount(struct inode *inode, int blocks)
260 {
261 	int lcap, icap, rcap, leafs, idxs, num;
262 	int newextents = blocks;
263 
264 	rcap = ext4_ext_space_root_idx(inode);
265 	lcap = ext4_ext_space_block(inode);
266 	icap = ext4_ext_space_block_idx(inode);
267 
268 	/* number of new leaf blocks needed */
269 	num = leafs = (newextents + lcap - 1) / lcap;
270 
271 	/*
272 	 * Worse case, we need separate index block(s)
273 	 * to link all new leaf blocks
274 	 */
275 	idxs = (leafs + icap - 1) / icap;
276 	do {
277 		num += idxs;
278 		idxs = (idxs + icap - 1) / icap;
279 	} while (idxs > rcap);
280 
281 	return num;
282 }
283 
284 static int
285 ext4_ext_max_entries(struct inode *inode, int depth)
286 {
287 	int max;
288 
289 	if (depth == ext_depth(inode)) {
290 		if (depth == 0)
291 			max = ext4_ext_space_root(inode);
292 		else
293 			max = ext4_ext_space_root_idx(inode);
294 	} else {
295 		if (depth == 0)
296 			max = ext4_ext_space_block(inode);
297 		else
298 			max = ext4_ext_space_block_idx(inode);
299 	}
300 
301 	return max;
302 }
303 
304 static int __ext4_ext_check_header(const char *function, struct inode *inode,
305 					struct ext4_extent_header *eh,
306 					int depth)
307 {
308 	const char *error_msg;
309 	int max = 0;
310 
311 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
312 		error_msg = "invalid magic";
313 		goto corrupted;
314 	}
315 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
316 		error_msg = "unexpected eh_depth";
317 		goto corrupted;
318 	}
319 	if (unlikely(eh->eh_max == 0)) {
320 		error_msg = "invalid eh_max";
321 		goto corrupted;
322 	}
323 	max = ext4_ext_max_entries(inode, depth);
324 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
325 		error_msg = "too large eh_max";
326 		goto corrupted;
327 	}
328 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
329 		error_msg = "invalid eh_entries";
330 		goto corrupted;
331 	}
332 	return 0;
333 
334 corrupted:
335 	ext4_error(inode->i_sb, function,
336 			"bad header in inode #%lu: %s - magic %x, "
337 			"entries %u, max %u(%u), depth %u(%u)",
338 			inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic),
339 			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
340 			max, le16_to_cpu(eh->eh_depth), depth);
341 
342 	return -EIO;
343 }
344 
345 #define ext4_ext_check_header(inode, eh, depth)	\
346 	__ext4_ext_check_header(__func__, inode, eh, depth)
347 
348 #ifdef EXT_DEBUG
349 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
350 {
351 	int k, l = path->p_depth;
352 
353 	ext_debug("path:");
354 	for (k = 0; k <= l; k++, path++) {
355 		if (path->p_idx) {
356 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
357 			    idx_pblock(path->p_idx));
358 		} else if (path->p_ext) {
359 			ext_debug("  %d:%d:%llu ",
360 				  le32_to_cpu(path->p_ext->ee_block),
361 				  ext4_ext_get_actual_len(path->p_ext),
362 				  ext_pblock(path->p_ext));
363 		} else
364 			ext_debug("  []");
365 	}
366 	ext_debug("\n");
367 }
368 
369 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
370 {
371 	int depth = ext_depth(inode);
372 	struct ext4_extent_header *eh;
373 	struct ext4_extent *ex;
374 	int i;
375 
376 	if (!path)
377 		return;
378 
379 	eh = path[depth].p_hdr;
380 	ex = EXT_FIRST_EXTENT(eh);
381 
382 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
383 		ext_debug("%d:%d:%llu ", le32_to_cpu(ex->ee_block),
384 			  ext4_ext_get_actual_len(ex), ext_pblock(ex));
385 	}
386 	ext_debug("\n");
387 }
388 #else
389 #define ext4_ext_show_path(inode, path)
390 #define ext4_ext_show_leaf(inode, path)
391 #endif
392 
393 void ext4_ext_drop_refs(struct ext4_ext_path *path)
394 {
395 	int depth = path->p_depth;
396 	int i;
397 
398 	for (i = 0; i <= depth; i++, path++)
399 		if (path->p_bh) {
400 			brelse(path->p_bh);
401 			path->p_bh = NULL;
402 		}
403 }
404 
405 /*
406  * ext4_ext_binsearch_idx:
407  * binary search for the closest index of the given block
408  * the header must be checked before calling this
409  */
410 static void
411 ext4_ext_binsearch_idx(struct inode *inode,
412 			struct ext4_ext_path *path, ext4_lblk_t block)
413 {
414 	struct ext4_extent_header *eh = path->p_hdr;
415 	struct ext4_extent_idx *r, *l, *m;
416 
417 
418 	ext_debug("binsearch for %u(idx):  ", block);
419 
420 	l = EXT_FIRST_INDEX(eh) + 1;
421 	r = EXT_LAST_INDEX(eh);
422 	while (l <= r) {
423 		m = l + (r - l) / 2;
424 		if (block < le32_to_cpu(m->ei_block))
425 			r = m - 1;
426 		else
427 			l = m + 1;
428 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
429 				m, le32_to_cpu(m->ei_block),
430 				r, le32_to_cpu(r->ei_block));
431 	}
432 
433 	path->p_idx = l - 1;
434 	ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
435 		  idx_pblock(path->p_idx));
436 
437 #ifdef CHECK_BINSEARCH
438 	{
439 		struct ext4_extent_idx *chix, *ix;
440 		int k;
441 
442 		chix = ix = EXT_FIRST_INDEX(eh);
443 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
444 		  if (k != 0 &&
445 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
446 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
447 				       "first=0x%p\n", k,
448 				       ix, EXT_FIRST_INDEX(eh));
449 				printk(KERN_DEBUG "%u <= %u\n",
450 				       le32_to_cpu(ix->ei_block),
451 				       le32_to_cpu(ix[-1].ei_block));
452 			}
453 			BUG_ON(k && le32_to_cpu(ix->ei_block)
454 					   <= le32_to_cpu(ix[-1].ei_block));
455 			if (block < le32_to_cpu(ix->ei_block))
456 				break;
457 			chix = ix;
458 		}
459 		BUG_ON(chix != path->p_idx);
460 	}
461 #endif
462 
463 }
464 
465 /*
466  * ext4_ext_binsearch:
467  * binary search for closest extent of the given block
468  * the header must be checked before calling this
469  */
470 static void
471 ext4_ext_binsearch(struct inode *inode,
472 		struct ext4_ext_path *path, ext4_lblk_t block)
473 {
474 	struct ext4_extent_header *eh = path->p_hdr;
475 	struct ext4_extent *r, *l, *m;
476 
477 	if (eh->eh_entries == 0) {
478 		/*
479 		 * this leaf is empty:
480 		 * we get such a leaf in split/add case
481 		 */
482 		return;
483 	}
484 
485 	ext_debug("binsearch for %u:  ", block);
486 
487 	l = EXT_FIRST_EXTENT(eh) + 1;
488 	r = EXT_LAST_EXTENT(eh);
489 
490 	while (l <= r) {
491 		m = l + (r - l) / 2;
492 		if (block < le32_to_cpu(m->ee_block))
493 			r = m - 1;
494 		else
495 			l = m + 1;
496 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
497 				m, le32_to_cpu(m->ee_block),
498 				r, le32_to_cpu(r->ee_block));
499 	}
500 
501 	path->p_ext = l - 1;
502 	ext_debug("  -> %d:%llu:%d ",
503 			le32_to_cpu(path->p_ext->ee_block),
504 			ext_pblock(path->p_ext),
505 			ext4_ext_get_actual_len(path->p_ext));
506 
507 #ifdef CHECK_BINSEARCH
508 	{
509 		struct ext4_extent *chex, *ex;
510 		int k;
511 
512 		chex = ex = EXT_FIRST_EXTENT(eh);
513 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
514 			BUG_ON(k && le32_to_cpu(ex->ee_block)
515 					  <= le32_to_cpu(ex[-1].ee_block));
516 			if (block < le32_to_cpu(ex->ee_block))
517 				break;
518 			chex = ex;
519 		}
520 		BUG_ON(chex != path->p_ext);
521 	}
522 #endif
523 
524 }
525 
526 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
527 {
528 	struct ext4_extent_header *eh;
529 
530 	eh = ext_inode_hdr(inode);
531 	eh->eh_depth = 0;
532 	eh->eh_entries = 0;
533 	eh->eh_magic = EXT4_EXT_MAGIC;
534 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode));
535 	ext4_mark_inode_dirty(handle, inode);
536 	ext4_ext_invalidate_cache(inode);
537 	return 0;
538 }
539 
540 struct ext4_ext_path *
541 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
542 					struct ext4_ext_path *path)
543 {
544 	struct ext4_extent_header *eh;
545 	struct buffer_head *bh;
546 	short int depth, i, ppos = 0, alloc = 0;
547 
548 	eh = ext_inode_hdr(inode);
549 	depth = ext_depth(inode);
550 	if (ext4_ext_check_header(inode, eh, depth))
551 		return ERR_PTR(-EIO);
552 
553 
554 	/* account possible depth increase */
555 	if (!path) {
556 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
557 				GFP_NOFS);
558 		if (!path)
559 			return ERR_PTR(-ENOMEM);
560 		alloc = 1;
561 	}
562 	path[0].p_hdr = eh;
563 	path[0].p_bh = NULL;
564 
565 	i = depth;
566 	/* walk through the tree */
567 	while (i) {
568 		ext_debug("depth %d: num %d, max %d\n",
569 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
570 
571 		ext4_ext_binsearch_idx(inode, path + ppos, block);
572 		path[ppos].p_block = idx_pblock(path[ppos].p_idx);
573 		path[ppos].p_depth = i;
574 		path[ppos].p_ext = NULL;
575 
576 		bh = sb_bread(inode->i_sb, path[ppos].p_block);
577 		if (!bh)
578 			goto err;
579 
580 		eh = ext_block_hdr(bh);
581 		ppos++;
582 		BUG_ON(ppos > depth);
583 		path[ppos].p_bh = bh;
584 		path[ppos].p_hdr = eh;
585 		i--;
586 
587 		if (ext4_ext_check_header(inode, eh, i))
588 			goto err;
589 	}
590 
591 	path[ppos].p_depth = i;
592 	path[ppos].p_ext = NULL;
593 	path[ppos].p_idx = NULL;
594 
595 	/* find extent */
596 	ext4_ext_binsearch(inode, path + ppos, block);
597 	/* if not an empty leaf */
598 	if (path[ppos].p_ext)
599 		path[ppos].p_block = ext_pblock(path[ppos].p_ext);
600 
601 	ext4_ext_show_path(inode, path);
602 
603 	return path;
604 
605 err:
606 	ext4_ext_drop_refs(path);
607 	if (alloc)
608 		kfree(path);
609 	return ERR_PTR(-EIO);
610 }
611 
612 /*
613  * ext4_ext_insert_index:
614  * insert new index [@logical;@ptr] into the block at @curp;
615  * check where to insert: before @curp or after @curp
616  */
617 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
618 				struct ext4_ext_path *curp,
619 				int logical, ext4_fsblk_t ptr)
620 {
621 	struct ext4_extent_idx *ix;
622 	int len, err;
623 
624 	err = ext4_ext_get_access(handle, inode, curp);
625 	if (err)
626 		return err;
627 
628 	BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block));
629 	len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
630 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
631 		/* insert after */
632 		if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
633 			len = (len - 1) * sizeof(struct ext4_extent_idx);
634 			len = len < 0 ? 0 : len;
635 			ext_debug("insert new index %d after: %llu. "
636 					"move %d from 0x%p to 0x%p\n",
637 					logical, ptr, len,
638 					(curp->p_idx + 1), (curp->p_idx + 2));
639 			memmove(curp->p_idx + 2, curp->p_idx + 1, len);
640 		}
641 		ix = curp->p_idx + 1;
642 	} else {
643 		/* insert before */
644 		len = len * sizeof(struct ext4_extent_idx);
645 		len = len < 0 ? 0 : len;
646 		ext_debug("insert new index %d before: %llu. "
647 				"move %d from 0x%p to 0x%p\n",
648 				logical, ptr, len,
649 				curp->p_idx, (curp->p_idx + 1));
650 		memmove(curp->p_idx + 1, curp->p_idx, len);
651 		ix = curp->p_idx;
652 	}
653 
654 	ix->ei_block = cpu_to_le32(logical);
655 	ext4_idx_store_pblock(ix, ptr);
656 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
657 
658 	BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries)
659 			     > le16_to_cpu(curp->p_hdr->eh_max));
660 	BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr));
661 
662 	err = ext4_ext_dirty(handle, inode, curp);
663 	ext4_std_error(inode->i_sb, err);
664 
665 	return err;
666 }
667 
668 /*
669  * ext4_ext_split:
670  * inserts new subtree into the path, using free index entry
671  * at depth @at:
672  * - allocates all needed blocks (new leaf and all intermediate index blocks)
673  * - makes decision where to split
674  * - moves remaining extents and index entries (right to the split point)
675  *   into the newly allocated blocks
676  * - initializes subtree
677  */
678 static int ext4_ext_split(handle_t *handle, struct inode *inode,
679 				struct ext4_ext_path *path,
680 				struct ext4_extent *newext, int at)
681 {
682 	struct buffer_head *bh = NULL;
683 	int depth = ext_depth(inode);
684 	struct ext4_extent_header *neh;
685 	struct ext4_extent_idx *fidx;
686 	struct ext4_extent *ex;
687 	int i = at, k, m, a;
688 	ext4_fsblk_t newblock, oldblock;
689 	__le32 border;
690 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
691 	int err = 0;
692 
693 	/* make decision: where to split? */
694 	/* FIXME: now decision is simplest: at current extent */
695 
696 	/* if current leaf will be split, then we should use
697 	 * border from split point */
698 	BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr));
699 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
700 		border = path[depth].p_ext[1].ee_block;
701 		ext_debug("leaf will be split."
702 				" next leaf starts at %d\n",
703 				  le32_to_cpu(border));
704 	} else {
705 		border = newext->ee_block;
706 		ext_debug("leaf will be added."
707 				" next leaf starts at %d\n",
708 				le32_to_cpu(border));
709 	}
710 
711 	/*
712 	 * If error occurs, then we break processing
713 	 * and mark filesystem read-only. index won't
714 	 * be inserted and tree will be in consistent
715 	 * state. Next mount will repair buffers too.
716 	 */
717 
718 	/*
719 	 * Get array to track all allocated blocks.
720 	 * We need this to handle errors and free blocks
721 	 * upon them.
722 	 */
723 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
724 	if (!ablocks)
725 		return -ENOMEM;
726 
727 	/* allocate all needed blocks */
728 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
729 	for (a = 0; a < depth - at; a++) {
730 		newblock = ext4_ext_new_meta_block(handle, inode, path,
731 						   newext, &err);
732 		if (newblock == 0)
733 			goto cleanup;
734 		ablocks[a] = newblock;
735 	}
736 
737 	/* initialize new leaf */
738 	newblock = ablocks[--a];
739 	BUG_ON(newblock == 0);
740 	bh = sb_getblk(inode->i_sb, newblock);
741 	if (!bh) {
742 		err = -EIO;
743 		goto cleanup;
744 	}
745 	lock_buffer(bh);
746 
747 	err = ext4_journal_get_create_access(handle, bh);
748 	if (err)
749 		goto cleanup;
750 
751 	neh = ext_block_hdr(bh);
752 	neh->eh_entries = 0;
753 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
754 	neh->eh_magic = EXT4_EXT_MAGIC;
755 	neh->eh_depth = 0;
756 	ex = EXT_FIRST_EXTENT(neh);
757 
758 	/* move remainder of path[depth] to the new leaf */
759 	BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max);
760 	/* start copy from next extent */
761 	/* TODO: we could do it by single memmove */
762 	m = 0;
763 	path[depth].p_ext++;
764 	while (path[depth].p_ext <=
765 			EXT_MAX_EXTENT(path[depth].p_hdr)) {
766 		ext_debug("move %d:%llu:%d in new leaf %llu\n",
767 				le32_to_cpu(path[depth].p_ext->ee_block),
768 				ext_pblock(path[depth].p_ext),
769 				ext4_ext_get_actual_len(path[depth].p_ext),
770 				newblock);
771 		/*memmove(ex++, path[depth].p_ext++,
772 				sizeof(struct ext4_extent));
773 		neh->eh_entries++;*/
774 		path[depth].p_ext++;
775 		m++;
776 	}
777 	if (m) {
778 		memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
779 		le16_add_cpu(&neh->eh_entries, m);
780 	}
781 
782 	set_buffer_uptodate(bh);
783 	unlock_buffer(bh);
784 
785 	err = ext4_handle_dirty_metadata(handle, inode, bh);
786 	if (err)
787 		goto cleanup;
788 	brelse(bh);
789 	bh = NULL;
790 
791 	/* correct old leaf */
792 	if (m) {
793 		err = ext4_ext_get_access(handle, inode, path + depth);
794 		if (err)
795 			goto cleanup;
796 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
797 		err = ext4_ext_dirty(handle, inode, path + depth);
798 		if (err)
799 			goto cleanup;
800 
801 	}
802 
803 	/* create intermediate indexes */
804 	k = depth - at - 1;
805 	BUG_ON(k < 0);
806 	if (k)
807 		ext_debug("create %d intermediate indices\n", k);
808 	/* insert new index into current index block */
809 	/* current depth stored in i var */
810 	i = depth - 1;
811 	while (k--) {
812 		oldblock = newblock;
813 		newblock = ablocks[--a];
814 		bh = sb_getblk(inode->i_sb, newblock);
815 		if (!bh) {
816 			err = -EIO;
817 			goto cleanup;
818 		}
819 		lock_buffer(bh);
820 
821 		err = ext4_journal_get_create_access(handle, bh);
822 		if (err)
823 			goto cleanup;
824 
825 		neh = ext_block_hdr(bh);
826 		neh->eh_entries = cpu_to_le16(1);
827 		neh->eh_magic = EXT4_EXT_MAGIC;
828 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
829 		neh->eh_depth = cpu_to_le16(depth - i);
830 		fidx = EXT_FIRST_INDEX(neh);
831 		fidx->ei_block = border;
832 		ext4_idx_store_pblock(fidx, oldblock);
833 
834 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
835 				i, newblock, le32_to_cpu(border), oldblock);
836 		/* copy indexes */
837 		m = 0;
838 		path[i].p_idx++;
839 
840 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
841 				EXT_MAX_INDEX(path[i].p_hdr));
842 		BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) !=
843 				EXT_LAST_INDEX(path[i].p_hdr));
844 		while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
845 			ext_debug("%d: move %d:%llu in new index %llu\n", i,
846 					le32_to_cpu(path[i].p_idx->ei_block),
847 					idx_pblock(path[i].p_idx),
848 					newblock);
849 			/*memmove(++fidx, path[i].p_idx++,
850 					sizeof(struct ext4_extent_idx));
851 			neh->eh_entries++;
852 			BUG_ON(neh->eh_entries > neh->eh_max);*/
853 			path[i].p_idx++;
854 			m++;
855 		}
856 		if (m) {
857 			memmove(++fidx, path[i].p_idx - m,
858 				sizeof(struct ext4_extent_idx) * m);
859 			le16_add_cpu(&neh->eh_entries, m);
860 		}
861 		set_buffer_uptodate(bh);
862 		unlock_buffer(bh);
863 
864 		err = ext4_handle_dirty_metadata(handle, inode, bh);
865 		if (err)
866 			goto cleanup;
867 		brelse(bh);
868 		bh = NULL;
869 
870 		/* correct old index */
871 		if (m) {
872 			err = ext4_ext_get_access(handle, inode, path + i);
873 			if (err)
874 				goto cleanup;
875 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
876 			err = ext4_ext_dirty(handle, inode, path + i);
877 			if (err)
878 				goto cleanup;
879 		}
880 
881 		i--;
882 	}
883 
884 	/* insert new index */
885 	err = ext4_ext_insert_index(handle, inode, path + at,
886 				    le32_to_cpu(border), newblock);
887 
888 cleanup:
889 	if (bh) {
890 		if (buffer_locked(bh))
891 			unlock_buffer(bh);
892 		brelse(bh);
893 	}
894 
895 	if (err) {
896 		/* free all allocated blocks in error case */
897 		for (i = 0; i < depth; i++) {
898 			if (!ablocks[i])
899 				continue;
900 			ext4_free_blocks(handle, inode, ablocks[i], 1, 1);
901 		}
902 	}
903 	kfree(ablocks);
904 
905 	return err;
906 }
907 
908 /*
909  * ext4_ext_grow_indepth:
910  * implements tree growing procedure:
911  * - allocates new block
912  * - moves top-level data (index block or leaf) into the new block
913  * - initializes new top-level, creating index that points to the
914  *   just created block
915  */
916 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
917 					struct ext4_ext_path *path,
918 					struct ext4_extent *newext)
919 {
920 	struct ext4_ext_path *curp = path;
921 	struct ext4_extent_header *neh;
922 	struct ext4_extent_idx *fidx;
923 	struct buffer_head *bh;
924 	ext4_fsblk_t newblock;
925 	int err = 0;
926 
927 	newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err);
928 	if (newblock == 0)
929 		return err;
930 
931 	bh = sb_getblk(inode->i_sb, newblock);
932 	if (!bh) {
933 		err = -EIO;
934 		ext4_std_error(inode->i_sb, err);
935 		return err;
936 	}
937 	lock_buffer(bh);
938 
939 	err = ext4_journal_get_create_access(handle, bh);
940 	if (err) {
941 		unlock_buffer(bh);
942 		goto out;
943 	}
944 
945 	/* move top-level index/leaf into new block */
946 	memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
947 
948 	/* set size of new block */
949 	neh = ext_block_hdr(bh);
950 	/* old root could have indexes or leaves
951 	 * so calculate e_max right way */
952 	if (ext_depth(inode))
953 	  neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
954 	else
955 	  neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
956 	neh->eh_magic = EXT4_EXT_MAGIC;
957 	set_buffer_uptodate(bh);
958 	unlock_buffer(bh);
959 
960 	err = ext4_handle_dirty_metadata(handle, inode, bh);
961 	if (err)
962 		goto out;
963 
964 	/* create index in new top-level index: num,max,pointer */
965 	err = ext4_ext_get_access(handle, inode, curp);
966 	if (err)
967 		goto out;
968 
969 	curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
970 	curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode));
971 	curp->p_hdr->eh_entries = cpu_to_le16(1);
972 	curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
973 
974 	if (path[0].p_hdr->eh_depth)
975 		curp->p_idx->ei_block =
976 			EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
977 	else
978 		curp->p_idx->ei_block =
979 			EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
980 	ext4_idx_store_pblock(curp->p_idx, newblock);
981 
982 	neh = ext_inode_hdr(inode);
983 	fidx = EXT_FIRST_INDEX(neh);
984 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
985 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
986 		  le32_to_cpu(fidx->ei_block), idx_pblock(fidx));
987 
988 	neh->eh_depth = cpu_to_le16(path->p_depth + 1);
989 	err = ext4_ext_dirty(handle, inode, curp);
990 out:
991 	brelse(bh);
992 
993 	return err;
994 }
995 
996 /*
997  * ext4_ext_create_new_leaf:
998  * finds empty index and adds new leaf.
999  * if no free index is found, then it requests in-depth growing.
1000  */
1001 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1002 					struct ext4_ext_path *path,
1003 					struct ext4_extent *newext)
1004 {
1005 	struct ext4_ext_path *curp;
1006 	int depth, i, err = 0;
1007 
1008 repeat:
1009 	i = depth = ext_depth(inode);
1010 
1011 	/* walk up to the tree and look for free index entry */
1012 	curp = path + depth;
1013 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1014 		i--;
1015 		curp--;
1016 	}
1017 
1018 	/* we use already allocated block for index block,
1019 	 * so subsequent data blocks should be contiguous */
1020 	if (EXT_HAS_FREE_INDEX(curp)) {
1021 		/* if we found index with free entry, then use that
1022 		 * entry: create all needed subtree and add new leaf */
1023 		err = ext4_ext_split(handle, inode, path, newext, i);
1024 		if (err)
1025 			goto out;
1026 
1027 		/* refill path */
1028 		ext4_ext_drop_refs(path);
1029 		path = ext4_ext_find_extent(inode,
1030 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1031 				    path);
1032 		if (IS_ERR(path))
1033 			err = PTR_ERR(path);
1034 	} else {
1035 		/* tree is full, time to grow in depth */
1036 		err = ext4_ext_grow_indepth(handle, inode, path, newext);
1037 		if (err)
1038 			goto out;
1039 
1040 		/* refill path */
1041 		ext4_ext_drop_refs(path);
1042 		path = ext4_ext_find_extent(inode,
1043 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1044 				    path);
1045 		if (IS_ERR(path)) {
1046 			err = PTR_ERR(path);
1047 			goto out;
1048 		}
1049 
1050 		/*
1051 		 * only first (depth 0 -> 1) produces free space;
1052 		 * in all other cases we have to split the grown tree
1053 		 */
1054 		depth = ext_depth(inode);
1055 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1056 			/* now we need to split */
1057 			goto repeat;
1058 		}
1059 	}
1060 
1061 out:
1062 	return err;
1063 }
1064 
1065 /*
1066  * search the closest allocated block to the left for *logical
1067  * and returns it at @logical + it's physical address at @phys
1068  * if *logical is the smallest allocated block, the function
1069  * returns 0 at @phys
1070  * return value contains 0 (success) or error code
1071  */
1072 int
1073 ext4_ext_search_left(struct inode *inode, struct ext4_ext_path *path,
1074 			ext4_lblk_t *logical, ext4_fsblk_t *phys)
1075 {
1076 	struct ext4_extent_idx *ix;
1077 	struct ext4_extent *ex;
1078 	int depth, ee_len;
1079 
1080 	BUG_ON(path == NULL);
1081 	depth = path->p_depth;
1082 	*phys = 0;
1083 
1084 	if (depth == 0 && path->p_ext == NULL)
1085 		return 0;
1086 
1087 	/* usually extent in the path covers blocks smaller
1088 	 * then *logical, but it can be that extent is the
1089 	 * first one in the file */
1090 
1091 	ex = path[depth].p_ext;
1092 	ee_len = ext4_ext_get_actual_len(ex);
1093 	if (*logical < le32_to_cpu(ex->ee_block)) {
1094 		BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1095 		while (--depth >= 0) {
1096 			ix = path[depth].p_idx;
1097 			BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1098 		}
1099 		return 0;
1100 	}
1101 
1102 	BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1103 
1104 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1105 	*phys = ext_pblock(ex) + ee_len - 1;
1106 	return 0;
1107 }
1108 
1109 /*
1110  * search the closest allocated block to the right for *logical
1111  * and returns it at @logical + it's physical address at @phys
1112  * if *logical is the smallest allocated block, the function
1113  * returns 0 at @phys
1114  * return value contains 0 (success) or error code
1115  */
1116 int
1117 ext4_ext_search_right(struct inode *inode, struct ext4_ext_path *path,
1118 			ext4_lblk_t *logical, ext4_fsblk_t *phys)
1119 {
1120 	struct buffer_head *bh = NULL;
1121 	struct ext4_extent_header *eh;
1122 	struct ext4_extent_idx *ix;
1123 	struct ext4_extent *ex;
1124 	ext4_fsblk_t block;
1125 	int depth, ee_len;
1126 
1127 	BUG_ON(path == NULL);
1128 	depth = path->p_depth;
1129 	*phys = 0;
1130 
1131 	if (depth == 0 && path->p_ext == NULL)
1132 		return 0;
1133 
1134 	/* usually extent in the path covers blocks smaller
1135 	 * then *logical, but it can be that extent is the
1136 	 * first one in the file */
1137 
1138 	ex = path[depth].p_ext;
1139 	ee_len = ext4_ext_get_actual_len(ex);
1140 	if (*logical < le32_to_cpu(ex->ee_block)) {
1141 		BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1142 		while (--depth >= 0) {
1143 			ix = path[depth].p_idx;
1144 			BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1145 		}
1146 		*logical = le32_to_cpu(ex->ee_block);
1147 		*phys = ext_pblock(ex);
1148 		return 0;
1149 	}
1150 
1151 	BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1152 
1153 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1154 		/* next allocated block in this leaf */
1155 		ex++;
1156 		*logical = le32_to_cpu(ex->ee_block);
1157 		*phys = ext_pblock(ex);
1158 		return 0;
1159 	}
1160 
1161 	/* go up and search for index to the right */
1162 	while (--depth >= 0) {
1163 		ix = path[depth].p_idx;
1164 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1165 			goto got_index;
1166 	}
1167 
1168 	/* we've gone up to the root and found no index to the right */
1169 	return 0;
1170 
1171 got_index:
1172 	/* we've found index to the right, let's
1173 	 * follow it and find the closest allocated
1174 	 * block to the right */
1175 	ix++;
1176 	block = idx_pblock(ix);
1177 	while (++depth < path->p_depth) {
1178 		bh = sb_bread(inode->i_sb, block);
1179 		if (bh == NULL)
1180 			return -EIO;
1181 		eh = ext_block_hdr(bh);
1182 		if (ext4_ext_check_header(inode, eh, depth)) {
1183 			put_bh(bh);
1184 			return -EIO;
1185 		}
1186 		ix = EXT_FIRST_INDEX(eh);
1187 		block = idx_pblock(ix);
1188 		put_bh(bh);
1189 	}
1190 
1191 	bh = sb_bread(inode->i_sb, block);
1192 	if (bh == NULL)
1193 		return -EIO;
1194 	eh = ext_block_hdr(bh);
1195 	if (ext4_ext_check_header(inode, eh, path->p_depth - depth)) {
1196 		put_bh(bh);
1197 		return -EIO;
1198 	}
1199 	ex = EXT_FIRST_EXTENT(eh);
1200 	*logical = le32_to_cpu(ex->ee_block);
1201 	*phys = ext_pblock(ex);
1202 	put_bh(bh);
1203 	return 0;
1204 }
1205 
1206 /*
1207  * ext4_ext_next_allocated_block:
1208  * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1209  * NOTE: it considers block number from index entry as
1210  * allocated block. Thus, index entries have to be consistent
1211  * with leaves.
1212  */
1213 static ext4_lblk_t
1214 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1215 {
1216 	int depth;
1217 
1218 	BUG_ON(path == NULL);
1219 	depth = path->p_depth;
1220 
1221 	if (depth == 0 && path->p_ext == NULL)
1222 		return EXT_MAX_BLOCK;
1223 
1224 	while (depth >= 0) {
1225 		if (depth == path->p_depth) {
1226 			/* leaf */
1227 			if (path[depth].p_ext !=
1228 					EXT_LAST_EXTENT(path[depth].p_hdr))
1229 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1230 		} else {
1231 			/* index */
1232 			if (path[depth].p_idx !=
1233 					EXT_LAST_INDEX(path[depth].p_hdr))
1234 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1235 		}
1236 		depth--;
1237 	}
1238 
1239 	return EXT_MAX_BLOCK;
1240 }
1241 
1242 /*
1243  * ext4_ext_next_leaf_block:
1244  * returns first allocated block from next leaf or EXT_MAX_BLOCK
1245  */
1246 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1247 					struct ext4_ext_path *path)
1248 {
1249 	int depth;
1250 
1251 	BUG_ON(path == NULL);
1252 	depth = path->p_depth;
1253 
1254 	/* zero-tree has no leaf blocks at all */
1255 	if (depth == 0)
1256 		return EXT_MAX_BLOCK;
1257 
1258 	/* go to index block */
1259 	depth--;
1260 
1261 	while (depth >= 0) {
1262 		if (path[depth].p_idx !=
1263 				EXT_LAST_INDEX(path[depth].p_hdr))
1264 			return (ext4_lblk_t)
1265 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1266 		depth--;
1267 	}
1268 
1269 	return EXT_MAX_BLOCK;
1270 }
1271 
1272 /*
1273  * ext4_ext_correct_indexes:
1274  * if leaf gets modified and modified extent is first in the leaf,
1275  * then we have to correct all indexes above.
1276  * TODO: do we need to correct tree in all cases?
1277  */
1278 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1279 				struct ext4_ext_path *path)
1280 {
1281 	struct ext4_extent_header *eh;
1282 	int depth = ext_depth(inode);
1283 	struct ext4_extent *ex;
1284 	__le32 border;
1285 	int k, err = 0;
1286 
1287 	eh = path[depth].p_hdr;
1288 	ex = path[depth].p_ext;
1289 	BUG_ON(ex == NULL);
1290 	BUG_ON(eh == NULL);
1291 
1292 	if (depth == 0) {
1293 		/* there is no tree at all */
1294 		return 0;
1295 	}
1296 
1297 	if (ex != EXT_FIRST_EXTENT(eh)) {
1298 		/* we correct tree if first leaf got modified only */
1299 		return 0;
1300 	}
1301 
1302 	/*
1303 	 * TODO: we need correction if border is smaller than current one
1304 	 */
1305 	k = depth - 1;
1306 	border = path[depth].p_ext->ee_block;
1307 	err = ext4_ext_get_access(handle, inode, path + k);
1308 	if (err)
1309 		return err;
1310 	path[k].p_idx->ei_block = border;
1311 	err = ext4_ext_dirty(handle, inode, path + k);
1312 	if (err)
1313 		return err;
1314 
1315 	while (k--) {
1316 		/* change all left-side indexes */
1317 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1318 			break;
1319 		err = ext4_ext_get_access(handle, inode, path + k);
1320 		if (err)
1321 			break;
1322 		path[k].p_idx->ei_block = border;
1323 		err = ext4_ext_dirty(handle, inode, path + k);
1324 		if (err)
1325 			break;
1326 	}
1327 
1328 	return err;
1329 }
1330 
1331 static int
1332 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1333 				struct ext4_extent *ex2)
1334 {
1335 	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1336 
1337 	/*
1338 	 * Make sure that either both extents are uninitialized, or
1339 	 * both are _not_.
1340 	 */
1341 	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1342 		return 0;
1343 
1344 	if (ext4_ext_is_uninitialized(ex1))
1345 		max_len = EXT_UNINIT_MAX_LEN;
1346 	else
1347 		max_len = EXT_INIT_MAX_LEN;
1348 
1349 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1350 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1351 
1352 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1353 			le32_to_cpu(ex2->ee_block))
1354 		return 0;
1355 
1356 	/*
1357 	 * To allow future support for preallocated extents to be added
1358 	 * as an RO_COMPAT feature, refuse to merge to extents if
1359 	 * this can result in the top bit of ee_len being set.
1360 	 */
1361 	if (ext1_ee_len + ext2_ee_len > max_len)
1362 		return 0;
1363 #ifdef AGGRESSIVE_TEST
1364 	if (ext1_ee_len >= 4)
1365 		return 0;
1366 #endif
1367 
1368 	if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2))
1369 		return 1;
1370 	return 0;
1371 }
1372 
1373 /*
1374  * This function tries to merge the "ex" extent to the next extent in the tree.
1375  * It always tries to merge towards right. If you want to merge towards
1376  * left, pass "ex - 1" as argument instead of "ex".
1377  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1378  * 1 if they got merged.
1379  */
1380 int ext4_ext_try_to_merge(struct inode *inode,
1381 			  struct ext4_ext_path *path,
1382 			  struct ext4_extent *ex)
1383 {
1384 	struct ext4_extent_header *eh;
1385 	unsigned int depth, len;
1386 	int merge_done = 0;
1387 	int uninitialized = 0;
1388 
1389 	depth = ext_depth(inode);
1390 	BUG_ON(path[depth].p_hdr == NULL);
1391 	eh = path[depth].p_hdr;
1392 
1393 	while (ex < EXT_LAST_EXTENT(eh)) {
1394 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1395 			break;
1396 		/* merge with next extent! */
1397 		if (ext4_ext_is_uninitialized(ex))
1398 			uninitialized = 1;
1399 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1400 				+ ext4_ext_get_actual_len(ex + 1));
1401 		if (uninitialized)
1402 			ext4_ext_mark_uninitialized(ex);
1403 
1404 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1405 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1406 				* sizeof(struct ext4_extent);
1407 			memmove(ex + 1, ex + 2, len);
1408 		}
1409 		le16_add_cpu(&eh->eh_entries, -1);
1410 		merge_done = 1;
1411 		WARN_ON(eh->eh_entries == 0);
1412 		if (!eh->eh_entries)
1413 			ext4_error(inode->i_sb, "ext4_ext_try_to_merge",
1414 			   "inode#%lu, eh->eh_entries = 0!", inode->i_ino);
1415 	}
1416 
1417 	return merge_done;
1418 }
1419 
1420 /*
1421  * check if a portion of the "newext" extent overlaps with an
1422  * existing extent.
1423  *
1424  * If there is an overlap discovered, it updates the length of the newext
1425  * such that there will be no overlap, and then returns 1.
1426  * If there is no overlap found, it returns 0.
1427  */
1428 unsigned int ext4_ext_check_overlap(struct inode *inode,
1429 				    struct ext4_extent *newext,
1430 				    struct ext4_ext_path *path)
1431 {
1432 	ext4_lblk_t b1, b2;
1433 	unsigned int depth, len1;
1434 	unsigned int ret = 0;
1435 
1436 	b1 = le32_to_cpu(newext->ee_block);
1437 	len1 = ext4_ext_get_actual_len(newext);
1438 	depth = ext_depth(inode);
1439 	if (!path[depth].p_ext)
1440 		goto out;
1441 	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1442 
1443 	/*
1444 	 * get the next allocated block if the extent in the path
1445 	 * is before the requested block(s)
1446 	 */
1447 	if (b2 < b1) {
1448 		b2 = ext4_ext_next_allocated_block(path);
1449 		if (b2 == EXT_MAX_BLOCK)
1450 			goto out;
1451 	}
1452 
1453 	/* check for wrap through zero on extent logical start block*/
1454 	if (b1 + len1 < b1) {
1455 		len1 = EXT_MAX_BLOCK - b1;
1456 		newext->ee_len = cpu_to_le16(len1);
1457 		ret = 1;
1458 	}
1459 
1460 	/* check for overlap */
1461 	if (b1 + len1 > b2) {
1462 		newext->ee_len = cpu_to_le16(b2 - b1);
1463 		ret = 1;
1464 	}
1465 out:
1466 	return ret;
1467 }
1468 
1469 /*
1470  * ext4_ext_insert_extent:
1471  * tries to merge requsted extent into the existing extent or
1472  * inserts requested extent as new one into the tree,
1473  * creating new leaf in the no-space case.
1474  */
1475 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1476 				struct ext4_ext_path *path,
1477 				struct ext4_extent *newext)
1478 {
1479 	struct ext4_extent_header *eh;
1480 	struct ext4_extent *ex, *fex;
1481 	struct ext4_extent *nearex; /* nearest extent */
1482 	struct ext4_ext_path *npath = NULL;
1483 	int depth, len, err;
1484 	ext4_lblk_t next;
1485 	unsigned uninitialized = 0;
1486 
1487 	BUG_ON(ext4_ext_get_actual_len(newext) == 0);
1488 	depth = ext_depth(inode);
1489 	ex = path[depth].p_ext;
1490 	BUG_ON(path[depth].p_hdr == NULL);
1491 
1492 	/* try to insert block into found extent and return */
1493 	if (ex && ext4_can_extents_be_merged(inode, ex, newext)) {
1494 		ext_debug("append %d block to %d:%d (from %llu)\n",
1495 				ext4_ext_get_actual_len(newext),
1496 				le32_to_cpu(ex->ee_block),
1497 				ext4_ext_get_actual_len(ex), ext_pblock(ex));
1498 		err = ext4_ext_get_access(handle, inode, path + depth);
1499 		if (err)
1500 			return err;
1501 
1502 		/*
1503 		 * ext4_can_extents_be_merged should have checked that either
1504 		 * both extents are uninitialized, or both aren't. Thus we
1505 		 * need to check only one of them here.
1506 		 */
1507 		if (ext4_ext_is_uninitialized(ex))
1508 			uninitialized = 1;
1509 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1510 					+ ext4_ext_get_actual_len(newext));
1511 		if (uninitialized)
1512 			ext4_ext_mark_uninitialized(ex);
1513 		eh = path[depth].p_hdr;
1514 		nearex = ex;
1515 		goto merge;
1516 	}
1517 
1518 repeat:
1519 	depth = ext_depth(inode);
1520 	eh = path[depth].p_hdr;
1521 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1522 		goto has_space;
1523 
1524 	/* probably next leaf has space for us? */
1525 	fex = EXT_LAST_EXTENT(eh);
1526 	next = ext4_ext_next_leaf_block(inode, path);
1527 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1528 	    && next != EXT_MAX_BLOCK) {
1529 		ext_debug("next leaf block - %d\n", next);
1530 		BUG_ON(npath != NULL);
1531 		npath = ext4_ext_find_extent(inode, next, NULL);
1532 		if (IS_ERR(npath))
1533 			return PTR_ERR(npath);
1534 		BUG_ON(npath->p_depth != path->p_depth);
1535 		eh = npath[depth].p_hdr;
1536 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1537 			ext_debug("next leaf isnt full(%d)\n",
1538 				  le16_to_cpu(eh->eh_entries));
1539 			path = npath;
1540 			goto repeat;
1541 		}
1542 		ext_debug("next leaf has no free space(%d,%d)\n",
1543 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1544 	}
1545 
1546 	/*
1547 	 * There is no free space in the found leaf.
1548 	 * We're gonna add a new leaf in the tree.
1549 	 */
1550 	err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1551 	if (err)
1552 		goto cleanup;
1553 	depth = ext_depth(inode);
1554 	eh = path[depth].p_hdr;
1555 
1556 has_space:
1557 	nearex = path[depth].p_ext;
1558 
1559 	err = ext4_ext_get_access(handle, inode, path + depth);
1560 	if (err)
1561 		goto cleanup;
1562 
1563 	if (!nearex) {
1564 		/* there is no extent in this leaf, create first one */
1565 		ext_debug("first extent in the leaf: %d:%llu:%d\n",
1566 				le32_to_cpu(newext->ee_block),
1567 				ext_pblock(newext),
1568 				ext4_ext_get_actual_len(newext));
1569 		path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1570 	} else if (le32_to_cpu(newext->ee_block)
1571 			   > le32_to_cpu(nearex->ee_block)) {
1572 /*		BUG_ON(newext->ee_block == nearex->ee_block); */
1573 		if (nearex != EXT_LAST_EXTENT(eh)) {
1574 			len = EXT_MAX_EXTENT(eh) - nearex;
1575 			len = (len - 1) * sizeof(struct ext4_extent);
1576 			len = len < 0 ? 0 : len;
1577 			ext_debug("insert %d:%llu:%d after: nearest 0x%p, "
1578 					"move %d from 0x%p to 0x%p\n",
1579 					le32_to_cpu(newext->ee_block),
1580 					ext_pblock(newext),
1581 					ext4_ext_get_actual_len(newext),
1582 					nearex, len, nearex + 1, nearex + 2);
1583 			memmove(nearex + 2, nearex + 1, len);
1584 		}
1585 		path[depth].p_ext = nearex + 1;
1586 	} else {
1587 		BUG_ON(newext->ee_block == nearex->ee_block);
1588 		len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1589 		len = len < 0 ? 0 : len;
1590 		ext_debug("insert %d:%llu:%d before: nearest 0x%p, "
1591 				"move %d from 0x%p to 0x%p\n",
1592 				le32_to_cpu(newext->ee_block),
1593 				ext_pblock(newext),
1594 				ext4_ext_get_actual_len(newext),
1595 				nearex, len, nearex + 1, nearex + 2);
1596 		memmove(nearex + 1, nearex, len);
1597 		path[depth].p_ext = nearex;
1598 	}
1599 
1600 	le16_add_cpu(&eh->eh_entries, 1);
1601 	nearex = path[depth].p_ext;
1602 	nearex->ee_block = newext->ee_block;
1603 	ext4_ext_store_pblock(nearex, ext_pblock(newext));
1604 	nearex->ee_len = newext->ee_len;
1605 
1606 merge:
1607 	/* try to merge extents to the right */
1608 	ext4_ext_try_to_merge(inode, path, nearex);
1609 
1610 	/* try to merge extents to the left */
1611 
1612 	/* time to correct all indexes above */
1613 	err = ext4_ext_correct_indexes(handle, inode, path);
1614 	if (err)
1615 		goto cleanup;
1616 
1617 	err = ext4_ext_dirty(handle, inode, path + depth);
1618 
1619 cleanup:
1620 	if (npath) {
1621 		ext4_ext_drop_refs(npath);
1622 		kfree(npath);
1623 	}
1624 	ext4_ext_invalidate_cache(inode);
1625 	return err;
1626 }
1627 
1628 int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1629 			ext4_lblk_t num, ext_prepare_callback func,
1630 			void *cbdata)
1631 {
1632 	struct ext4_ext_path *path = NULL;
1633 	struct ext4_ext_cache cbex;
1634 	struct ext4_extent *ex;
1635 	ext4_lblk_t next, start = 0, end = 0;
1636 	ext4_lblk_t last = block + num;
1637 	int depth, exists, err = 0;
1638 
1639 	BUG_ON(func == NULL);
1640 	BUG_ON(inode == NULL);
1641 
1642 	while (block < last && block != EXT_MAX_BLOCK) {
1643 		num = last - block;
1644 		/* find extent for this block */
1645 		path = ext4_ext_find_extent(inode, block, path);
1646 		if (IS_ERR(path)) {
1647 			err = PTR_ERR(path);
1648 			path = NULL;
1649 			break;
1650 		}
1651 
1652 		depth = ext_depth(inode);
1653 		BUG_ON(path[depth].p_hdr == NULL);
1654 		ex = path[depth].p_ext;
1655 		next = ext4_ext_next_allocated_block(path);
1656 
1657 		exists = 0;
1658 		if (!ex) {
1659 			/* there is no extent yet, so try to allocate
1660 			 * all requested space */
1661 			start = block;
1662 			end = block + num;
1663 		} else if (le32_to_cpu(ex->ee_block) > block) {
1664 			/* need to allocate space before found extent */
1665 			start = block;
1666 			end = le32_to_cpu(ex->ee_block);
1667 			if (block + num < end)
1668 				end = block + num;
1669 		} else if (block >= le32_to_cpu(ex->ee_block)
1670 					+ ext4_ext_get_actual_len(ex)) {
1671 			/* need to allocate space after found extent */
1672 			start = block;
1673 			end = block + num;
1674 			if (end >= next)
1675 				end = next;
1676 		} else if (block >= le32_to_cpu(ex->ee_block)) {
1677 			/*
1678 			 * some part of requested space is covered
1679 			 * by found extent
1680 			 */
1681 			start = block;
1682 			end = le32_to_cpu(ex->ee_block)
1683 				+ ext4_ext_get_actual_len(ex);
1684 			if (block + num < end)
1685 				end = block + num;
1686 			exists = 1;
1687 		} else {
1688 			BUG();
1689 		}
1690 		BUG_ON(end <= start);
1691 
1692 		if (!exists) {
1693 			cbex.ec_block = start;
1694 			cbex.ec_len = end - start;
1695 			cbex.ec_start = 0;
1696 			cbex.ec_type = EXT4_EXT_CACHE_GAP;
1697 		} else {
1698 			cbex.ec_block = le32_to_cpu(ex->ee_block);
1699 			cbex.ec_len = ext4_ext_get_actual_len(ex);
1700 			cbex.ec_start = ext_pblock(ex);
1701 			cbex.ec_type = EXT4_EXT_CACHE_EXTENT;
1702 		}
1703 
1704 		BUG_ON(cbex.ec_len == 0);
1705 		err = func(inode, path, &cbex, ex, cbdata);
1706 		ext4_ext_drop_refs(path);
1707 
1708 		if (err < 0)
1709 			break;
1710 
1711 		if (err == EXT_REPEAT)
1712 			continue;
1713 		else if (err == EXT_BREAK) {
1714 			err = 0;
1715 			break;
1716 		}
1717 
1718 		if (ext_depth(inode) != depth) {
1719 			/* depth was changed. we have to realloc path */
1720 			kfree(path);
1721 			path = NULL;
1722 		}
1723 
1724 		block = cbex.ec_block + cbex.ec_len;
1725 	}
1726 
1727 	if (path) {
1728 		ext4_ext_drop_refs(path);
1729 		kfree(path);
1730 	}
1731 
1732 	return err;
1733 }
1734 
1735 static void
1736 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1737 			__u32 len, ext4_fsblk_t start, int type)
1738 {
1739 	struct ext4_ext_cache *cex;
1740 	BUG_ON(len == 0);
1741 	cex = &EXT4_I(inode)->i_cached_extent;
1742 	cex->ec_type = type;
1743 	cex->ec_block = block;
1744 	cex->ec_len = len;
1745 	cex->ec_start = start;
1746 }
1747 
1748 /*
1749  * ext4_ext_put_gap_in_cache:
1750  * calculate boundaries of the gap that the requested block fits into
1751  * and cache this gap
1752  */
1753 static void
1754 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1755 				ext4_lblk_t block)
1756 {
1757 	int depth = ext_depth(inode);
1758 	unsigned long len;
1759 	ext4_lblk_t lblock;
1760 	struct ext4_extent *ex;
1761 
1762 	ex = path[depth].p_ext;
1763 	if (ex == NULL) {
1764 		/* there is no extent yet, so gap is [0;-] */
1765 		lblock = 0;
1766 		len = EXT_MAX_BLOCK;
1767 		ext_debug("cache gap(whole file):");
1768 	} else if (block < le32_to_cpu(ex->ee_block)) {
1769 		lblock = block;
1770 		len = le32_to_cpu(ex->ee_block) - block;
1771 		ext_debug("cache gap(before): %u [%u:%u]",
1772 				block,
1773 				le32_to_cpu(ex->ee_block),
1774 				 ext4_ext_get_actual_len(ex));
1775 	} else if (block >= le32_to_cpu(ex->ee_block)
1776 			+ ext4_ext_get_actual_len(ex)) {
1777 		ext4_lblk_t next;
1778 		lblock = le32_to_cpu(ex->ee_block)
1779 			+ ext4_ext_get_actual_len(ex);
1780 
1781 		next = ext4_ext_next_allocated_block(path);
1782 		ext_debug("cache gap(after): [%u:%u] %u",
1783 				le32_to_cpu(ex->ee_block),
1784 				ext4_ext_get_actual_len(ex),
1785 				block);
1786 		BUG_ON(next == lblock);
1787 		len = next - lblock;
1788 	} else {
1789 		lblock = len = 0;
1790 		BUG();
1791 	}
1792 
1793 	ext_debug(" -> %u:%lu\n", lblock, len);
1794 	ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP);
1795 }
1796 
1797 static int
1798 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
1799 			struct ext4_extent *ex)
1800 {
1801 	struct ext4_ext_cache *cex;
1802 
1803 	cex = &EXT4_I(inode)->i_cached_extent;
1804 
1805 	/* has cache valid data? */
1806 	if (cex->ec_type == EXT4_EXT_CACHE_NO)
1807 		return EXT4_EXT_CACHE_NO;
1808 
1809 	BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP &&
1810 			cex->ec_type != EXT4_EXT_CACHE_EXTENT);
1811 	if (block >= cex->ec_block && block < cex->ec_block + cex->ec_len) {
1812 		ex->ee_block = cpu_to_le32(cex->ec_block);
1813 		ext4_ext_store_pblock(ex, cex->ec_start);
1814 		ex->ee_len = cpu_to_le16(cex->ec_len);
1815 		ext_debug("%u cached by %u:%u:%llu\n",
1816 				block,
1817 				cex->ec_block, cex->ec_len, cex->ec_start);
1818 		return cex->ec_type;
1819 	}
1820 
1821 	/* not in cache */
1822 	return EXT4_EXT_CACHE_NO;
1823 }
1824 
1825 /*
1826  * ext4_ext_rm_idx:
1827  * removes index from the index block.
1828  * It's used in truncate case only, thus all requests are for
1829  * last index in the block only.
1830  */
1831 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
1832 			struct ext4_ext_path *path)
1833 {
1834 	struct buffer_head *bh;
1835 	int err;
1836 	ext4_fsblk_t leaf;
1837 
1838 	/* free index block */
1839 	path--;
1840 	leaf = idx_pblock(path->p_idx);
1841 	BUG_ON(path->p_hdr->eh_entries == 0);
1842 	err = ext4_ext_get_access(handle, inode, path);
1843 	if (err)
1844 		return err;
1845 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
1846 	err = ext4_ext_dirty(handle, inode, path);
1847 	if (err)
1848 		return err;
1849 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
1850 	bh = sb_find_get_block(inode->i_sb, leaf);
1851 	ext4_forget(handle, 1, inode, bh, leaf);
1852 	ext4_free_blocks(handle, inode, leaf, 1, 1);
1853 	return err;
1854 }
1855 
1856 /*
1857  * ext4_ext_calc_credits_for_single_extent:
1858  * This routine returns max. credits that needed to insert an extent
1859  * to the extent tree.
1860  * When pass the actual path, the caller should calculate credits
1861  * under i_data_sem.
1862  */
1863 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
1864 						struct ext4_ext_path *path)
1865 {
1866 	if (path) {
1867 		int depth = ext_depth(inode);
1868 		int ret = 0;
1869 
1870 		/* probably there is space in leaf? */
1871 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
1872 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
1873 
1874 			/*
1875 			 *  There are some space in the leaf tree, no
1876 			 *  need to account for leaf block credit
1877 			 *
1878 			 *  bitmaps and block group descriptor blocks
1879 			 *  and other metadat blocks still need to be
1880 			 *  accounted.
1881 			 */
1882 			/* 1 bitmap, 1 block group descriptor */
1883 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
1884 		}
1885 	}
1886 
1887 	return ext4_chunk_trans_blocks(inode, nrblocks);
1888 }
1889 
1890 /*
1891  * How many index/leaf blocks need to change/allocate to modify nrblocks?
1892  *
1893  * if nrblocks are fit in a single extent (chunk flag is 1), then
1894  * in the worse case, each tree level index/leaf need to be changed
1895  * if the tree split due to insert a new extent, then the old tree
1896  * index/leaf need to be updated too
1897  *
1898  * If the nrblocks are discontiguous, they could cause
1899  * the whole tree split more than once, but this is really rare.
1900  */
1901 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
1902 {
1903 	int index;
1904 	int depth = ext_depth(inode);
1905 
1906 	if (chunk)
1907 		index = depth * 2;
1908 	else
1909 		index = depth * 3;
1910 
1911 	return index;
1912 }
1913 
1914 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
1915 				struct ext4_extent *ex,
1916 				ext4_lblk_t from, ext4_lblk_t to)
1917 {
1918 	struct buffer_head *bh;
1919 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
1920 	int i, metadata = 0;
1921 
1922 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1923 		metadata = 1;
1924 #ifdef EXTENTS_STATS
1925 	{
1926 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1927 		spin_lock(&sbi->s_ext_stats_lock);
1928 		sbi->s_ext_blocks += ee_len;
1929 		sbi->s_ext_extents++;
1930 		if (ee_len < sbi->s_ext_min)
1931 			sbi->s_ext_min = ee_len;
1932 		if (ee_len > sbi->s_ext_max)
1933 			sbi->s_ext_max = ee_len;
1934 		if (ext_depth(inode) > sbi->s_depth_max)
1935 			sbi->s_depth_max = ext_depth(inode);
1936 		spin_unlock(&sbi->s_ext_stats_lock);
1937 	}
1938 #endif
1939 	if (from >= le32_to_cpu(ex->ee_block)
1940 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
1941 		/* tail removal */
1942 		ext4_lblk_t num;
1943 		ext4_fsblk_t start;
1944 
1945 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
1946 		start = ext_pblock(ex) + ee_len - num;
1947 		ext_debug("free last %u blocks starting %llu\n", num, start);
1948 		for (i = 0; i < num; i++) {
1949 			bh = sb_find_get_block(inode->i_sb, start + i);
1950 			ext4_forget(handle, 0, inode, bh, start + i);
1951 		}
1952 		ext4_free_blocks(handle, inode, start, num, metadata);
1953 	} else if (from == le32_to_cpu(ex->ee_block)
1954 		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
1955 		printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n",
1956 			from, to, le32_to_cpu(ex->ee_block), ee_len);
1957 	} else {
1958 		printk(KERN_INFO "strange request: removal(2) "
1959 				"%u-%u from %u:%u\n",
1960 				from, to, le32_to_cpu(ex->ee_block), ee_len);
1961 	}
1962 	return 0;
1963 }
1964 
1965 static int
1966 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
1967 		struct ext4_ext_path *path, ext4_lblk_t start)
1968 {
1969 	int err = 0, correct_index = 0;
1970 	int depth = ext_depth(inode), credits;
1971 	struct ext4_extent_header *eh;
1972 	ext4_lblk_t a, b, block;
1973 	unsigned num;
1974 	ext4_lblk_t ex_ee_block;
1975 	unsigned short ex_ee_len;
1976 	unsigned uninitialized = 0;
1977 	struct ext4_extent *ex;
1978 
1979 	/* the header must be checked already in ext4_ext_remove_space() */
1980 	ext_debug("truncate since %u in leaf\n", start);
1981 	if (!path[depth].p_hdr)
1982 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
1983 	eh = path[depth].p_hdr;
1984 	BUG_ON(eh == NULL);
1985 
1986 	/* find where to start removing */
1987 	ex = EXT_LAST_EXTENT(eh);
1988 
1989 	ex_ee_block = le32_to_cpu(ex->ee_block);
1990 	if (ext4_ext_is_uninitialized(ex))
1991 		uninitialized = 1;
1992 	ex_ee_len = ext4_ext_get_actual_len(ex);
1993 
1994 	while (ex >= EXT_FIRST_EXTENT(eh) &&
1995 			ex_ee_block + ex_ee_len > start) {
1996 		ext_debug("remove ext %lu:%u\n", ex_ee_block, ex_ee_len);
1997 		path[depth].p_ext = ex;
1998 
1999 		a = ex_ee_block > start ? ex_ee_block : start;
2000 		b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
2001 			ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
2002 
2003 		ext_debug("  border %u:%u\n", a, b);
2004 
2005 		if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
2006 			block = 0;
2007 			num = 0;
2008 			BUG();
2009 		} else if (a != ex_ee_block) {
2010 			/* remove tail of the extent */
2011 			block = ex_ee_block;
2012 			num = a - block;
2013 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2014 			/* remove head of the extent */
2015 			block = a;
2016 			num = b - a;
2017 			/* there is no "make a hole" API yet */
2018 			BUG();
2019 		} else {
2020 			/* remove whole extent: excellent! */
2021 			block = ex_ee_block;
2022 			num = 0;
2023 			BUG_ON(a != ex_ee_block);
2024 			BUG_ON(b != ex_ee_block + ex_ee_len - 1);
2025 		}
2026 
2027 		/*
2028 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2029 		 * descriptor) for each block group; assume two block
2030 		 * groups plus ex_ee_len/blocks_per_block_group for
2031 		 * the worst case
2032 		 */
2033 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2034 		if (ex == EXT_FIRST_EXTENT(eh)) {
2035 			correct_index = 1;
2036 			credits += (ext_depth(inode)) + 1;
2037 		}
2038 		credits += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
2039 
2040 		err = ext4_ext_journal_restart(handle, credits);
2041 		if (err)
2042 			goto out;
2043 
2044 		err = ext4_ext_get_access(handle, inode, path + depth);
2045 		if (err)
2046 			goto out;
2047 
2048 		err = ext4_remove_blocks(handle, inode, ex, a, b);
2049 		if (err)
2050 			goto out;
2051 
2052 		if (num == 0) {
2053 			/* this extent is removed; mark slot entirely unused */
2054 			ext4_ext_store_pblock(ex, 0);
2055 			le16_add_cpu(&eh->eh_entries, -1);
2056 		}
2057 
2058 		ex->ee_block = cpu_to_le32(block);
2059 		ex->ee_len = cpu_to_le16(num);
2060 		/*
2061 		 * Do not mark uninitialized if all the blocks in the
2062 		 * extent have been removed.
2063 		 */
2064 		if (uninitialized && num)
2065 			ext4_ext_mark_uninitialized(ex);
2066 
2067 		err = ext4_ext_dirty(handle, inode, path + depth);
2068 		if (err)
2069 			goto out;
2070 
2071 		ext_debug("new extent: %u:%u:%llu\n", block, num,
2072 				ext_pblock(ex));
2073 		ex--;
2074 		ex_ee_block = le32_to_cpu(ex->ee_block);
2075 		ex_ee_len = ext4_ext_get_actual_len(ex);
2076 	}
2077 
2078 	if (correct_index && eh->eh_entries)
2079 		err = ext4_ext_correct_indexes(handle, inode, path);
2080 
2081 	/* if this leaf is free, then we should
2082 	 * remove it from index block above */
2083 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2084 		err = ext4_ext_rm_idx(handle, inode, path + depth);
2085 
2086 out:
2087 	return err;
2088 }
2089 
2090 /*
2091  * ext4_ext_more_to_rm:
2092  * returns 1 if current index has to be freed (even partial)
2093  */
2094 static int
2095 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2096 {
2097 	BUG_ON(path->p_idx == NULL);
2098 
2099 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2100 		return 0;
2101 
2102 	/*
2103 	 * if truncate on deeper level happened, it wasn't partial,
2104 	 * so we have to consider current index for truncation
2105 	 */
2106 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2107 		return 0;
2108 	return 1;
2109 }
2110 
2111 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2112 {
2113 	struct super_block *sb = inode->i_sb;
2114 	int depth = ext_depth(inode);
2115 	struct ext4_ext_path *path;
2116 	handle_t *handle;
2117 	int i = 0, err = 0;
2118 
2119 	ext_debug("truncate since %u\n", start);
2120 
2121 	/* probably first extent we're gonna free will be last in block */
2122 	handle = ext4_journal_start(inode, depth + 1);
2123 	if (IS_ERR(handle))
2124 		return PTR_ERR(handle);
2125 
2126 	ext4_ext_invalidate_cache(inode);
2127 
2128 	/*
2129 	 * We start scanning from right side, freeing all the blocks
2130 	 * after i_size and walking into the tree depth-wise.
2131 	 */
2132 	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2133 	if (path == NULL) {
2134 		ext4_journal_stop(handle);
2135 		return -ENOMEM;
2136 	}
2137 	path[0].p_hdr = ext_inode_hdr(inode);
2138 	if (ext4_ext_check_header(inode, path[0].p_hdr, depth)) {
2139 		err = -EIO;
2140 		goto out;
2141 	}
2142 	path[0].p_depth = depth;
2143 
2144 	while (i >= 0 && err == 0) {
2145 		if (i == depth) {
2146 			/* this is leaf block */
2147 			err = ext4_ext_rm_leaf(handle, inode, path, start);
2148 			/* root level has p_bh == NULL, brelse() eats this */
2149 			brelse(path[i].p_bh);
2150 			path[i].p_bh = NULL;
2151 			i--;
2152 			continue;
2153 		}
2154 
2155 		/* this is index block */
2156 		if (!path[i].p_hdr) {
2157 			ext_debug("initialize header\n");
2158 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2159 		}
2160 
2161 		if (!path[i].p_idx) {
2162 			/* this level hasn't been touched yet */
2163 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2164 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2165 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2166 				  path[i].p_hdr,
2167 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2168 		} else {
2169 			/* we were already here, see at next index */
2170 			path[i].p_idx--;
2171 		}
2172 
2173 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2174 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2175 				path[i].p_idx);
2176 		if (ext4_ext_more_to_rm(path + i)) {
2177 			struct buffer_head *bh;
2178 			/* go to the next level */
2179 			ext_debug("move to level %d (block %llu)\n",
2180 				  i + 1, idx_pblock(path[i].p_idx));
2181 			memset(path + i + 1, 0, sizeof(*path));
2182 			bh = sb_bread(sb, idx_pblock(path[i].p_idx));
2183 			if (!bh) {
2184 				/* should we reset i_size? */
2185 				err = -EIO;
2186 				break;
2187 			}
2188 			if (WARN_ON(i + 1 > depth)) {
2189 				err = -EIO;
2190 				break;
2191 			}
2192 			if (ext4_ext_check_header(inode, ext_block_hdr(bh),
2193 							depth - i - 1)) {
2194 				err = -EIO;
2195 				break;
2196 			}
2197 			path[i + 1].p_bh = bh;
2198 
2199 			/* save actual number of indexes since this
2200 			 * number is changed at the next iteration */
2201 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2202 			i++;
2203 		} else {
2204 			/* we finished processing this index, go up */
2205 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2206 				/* index is empty, remove it;
2207 				 * handle must be already prepared by the
2208 				 * truncatei_leaf() */
2209 				err = ext4_ext_rm_idx(handle, inode, path + i);
2210 			}
2211 			/* root level has p_bh == NULL, brelse() eats this */
2212 			brelse(path[i].p_bh);
2213 			path[i].p_bh = NULL;
2214 			i--;
2215 			ext_debug("return to level %d\n", i);
2216 		}
2217 	}
2218 
2219 	/* TODO: flexible tree reduction should be here */
2220 	if (path->p_hdr->eh_entries == 0) {
2221 		/*
2222 		 * truncate to zero freed all the tree,
2223 		 * so we need to correct eh_depth
2224 		 */
2225 		err = ext4_ext_get_access(handle, inode, path);
2226 		if (err == 0) {
2227 			ext_inode_hdr(inode)->eh_depth = 0;
2228 			ext_inode_hdr(inode)->eh_max =
2229 				cpu_to_le16(ext4_ext_space_root(inode));
2230 			err = ext4_ext_dirty(handle, inode, path);
2231 		}
2232 	}
2233 out:
2234 	ext4_ext_drop_refs(path);
2235 	kfree(path);
2236 	ext4_journal_stop(handle);
2237 
2238 	return err;
2239 }
2240 
2241 /*
2242  * called at mount time
2243  */
2244 void ext4_ext_init(struct super_block *sb)
2245 {
2246 	/*
2247 	 * possible initialization would be here
2248 	 */
2249 
2250 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2251 		printk(KERN_INFO "EXT4-fs: file extents enabled");
2252 #ifdef AGGRESSIVE_TEST
2253 		printk(", aggressive tests");
2254 #endif
2255 #ifdef CHECK_BINSEARCH
2256 		printk(", check binsearch");
2257 #endif
2258 #ifdef EXTENTS_STATS
2259 		printk(", stats");
2260 #endif
2261 		printk("\n");
2262 #ifdef EXTENTS_STATS
2263 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2264 		EXT4_SB(sb)->s_ext_min = 1 << 30;
2265 		EXT4_SB(sb)->s_ext_max = 0;
2266 #endif
2267 	}
2268 }
2269 
2270 /*
2271  * called at umount time
2272  */
2273 void ext4_ext_release(struct super_block *sb)
2274 {
2275 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2276 		return;
2277 
2278 #ifdef EXTENTS_STATS
2279 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2280 		struct ext4_sb_info *sbi = EXT4_SB(sb);
2281 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2282 			sbi->s_ext_blocks, sbi->s_ext_extents,
2283 			sbi->s_ext_blocks / sbi->s_ext_extents);
2284 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2285 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2286 	}
2287 #endif
2288 }
2289 
2290 static void bi_complete(struct bio *bio, int error)
2291 {
2292 	complete((struct completion *)bio->bi_private);
2293 }
2294 
2295 /* FIXME!! we need to try to merge to left or right after zero-out  */
2296 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2297 {
2298 	int ret = -EIO;
2299 	struct bio *bio;
2300 	int blkbits, blocksize;
2301 	sector_t ee_pblock;
2302 	struct completion event;
2303 	unsigned int ee_len, len, done, offset;
2304 
2305 
2306 	blkbits   = inode->i_blkbits;
2307 	blocksize = inode->i_sb->s_blocksize;
2308 	ee_len    = ext4_ext_get_actual_len(ex);
2309 	ee_pblock = ext_pblock(ex);
2310 
2311 	/* convert ee_pblock to 512 byte sectors */
2312 	ee_pblock = ee_pblock << (blkbits - 9);
2313 
2314 	while (ee_len > 0) {
2315 
2316 		if (ee_len > BIO_MAX_PAGES)
2317 			len = BIO_MAX_PAGES;
2318 		else
2319 			len = ee_len;
2320 
2321 		bio = bio_alloc(GFP_NOIO, len);
2322 		if (!bio)
2323 			return -ENOMEM;
2324 		bio->bi_sector = ee_pblock;
2325 		bio->bi_bdev   = inode->i_sb->s_bdev;
2326 
2327 		done = 0;
2328 		offset = 0;
2329 		while (done < len) {
2330 			ret = bio_add_page(bio, ZERO_PAGE(0),
2331 							blocksize, offset);
2332 			if (ret != blocksize) {
2333 				/*
2334 				 * We can't add any more pages because of
2335 				 * hardware limitations.  Start a new bio.
2336 				 */
2337 				break;
2338 			}
2339 			done++;
2340 			offset += blocksize;
2341 			if (offset >= PAGE_CACHE_SIZE)
2342 				offset = 0;
2343 		}
2344 
2345 		init_completion(&event);
2346 		bio->bi_private = &event;
2347 		bio->bi_end_io = bi_complete;
2348 		submit_bio(WRITE, bio);
2349 		wait_for_completion(&event);
2350 
2351 		if (test_bit(BIO_UPTODATE, &bio->bi_flags))
2352 			ret = 0;
2353 		else {
2354 			ret = -EIO;
2355 			break;
2356 		}
2357 		bio_put(bio);
2358 		ee_len    -= done;
2359 		ee_pblock += done  << (blkbits - 9);
2360 	}
2361 	return ret;
2362 }
2363 
2364 #define EXT4_EXT_ZERO_LEN 7
2365 
2366 /*
2367  * This function is called by ext4_ext_get_blocks() if someone tries to write
2368  * to an uninitialized extent. It may result in splitting the uninitialized
2369  * extent into multiple extents (upto three - one initialized and two
2370  * uninitialized).
2371  * There are three possibilities:
2372  *   a> There is no split required: Entire extent should be initialized
2373  *   b> Splits in two extents: Write is happening at either end of the extent
2374  *   c> Splits in three extents: Somone is writing in middle of the extent
2375  */
2376 static int ext4_ext_convert_to_initialized(handle_t *handle,
2377 						struct inode *inode,
2378 						struct ext4_ext_path *path,
2379 						ext4_lblk_t iblock,
2380 						unsigned int max_blocks)
2381 {
2382 	struct ext4_extent *ex, newex, orig_ex;
2383 	struct ext4_extent *ex1 = NULL;
2384 	struct ext4_extent *ex2 = NULL;
2385 	struct ext4_extent *ex3 = NULL;
2386 	struct ext4_extent_header *eh;
2387 	ext4_lblk_t ee_block;
2388 	unsigned int allocated, ee_len, depth;
2389 	ext4_fsblk_t newblock;
2390 	int err = 0;
2391 	int ret = 0;
2392 
2393 	depth = ext_depth(inode);
2394 	eh = path[depth].p_hdr;
2395 	ex = path[depth].p_ext;
2396 	ee_block = le32_to_cpu(ex->ee_block);
2397 	ee_len = ext4_ext_get_actual_len(ex);
2398 	allocated = ee_len - (iblock - ee_block);
2399 	newblock = iblock - ee_block + ext_pblock(ex);
2400 	ex2 = ex;
2401 	orig_ex.ee_block = ex->ee_block;
2402 	orig_ex.ee_len   = cpu_to_le16(ee_len);
2403 	ext4_ext_store_pblock(&orig_ex, ext_pblock(ex));
2404 
2405 	err = ext4_ext_get_access(handle, inode, path + depth);
2406 	if (err)
2407 		goto out;
2408 	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2409 	if (ee_len <= 2*EXT4_EXT_ZERO_LEN) {
2410 		err =  ext4_ext_zeroout(inode, &orig_ex);
2411 		if (err)
2412 			goto fix_extent_len;
2413 		/* update the extent length and mark as initialized */
2414 		ex->ee_block = orig_ex.ee_block;
2415 		ex->ee_len   = orig_ex.ee_len;
2416 		ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2417 		ext4_ext_dirty(handle, inode, path + depth);
2418 		/* zeroed the full extent */
2419 		return allocated;
2420 	}
2421 
2422 	/* ex1: ee_block to iblock - 1 : uninitialized */
2423 	if (iblock > ee_block) {
2424 		ex1 = ex;
2425 		ex1->ee_len = cpu_to_le16(iblock - ee_block);
2426 		ext4_ext_mark_uninitialized(ex1);
2427 		ex2 = &newex;
2428 	}
2429 	/*
2430 	 * for sanity, update the length of the ex2 extent before
2431 	 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2432 	 * overlap of blocks.
2433 	 */
2434 	if (!ex1 && allocated > max_blocks)
2435 		ex2->ee_len = cpu_to_le16(max_blocks);
2436 	/* ex3: to ee_block + ee_len : uninitialised */
2437 	if (allocated > max_blocks) {
2438 		unsigned int newdepth;
2439 		/* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */
2440 		if (allocated <= EXT4_EXT_ZERO_LEN) {
2441 			/*
2442 			 * iblock == ee_block is handled by the zerouout
2443 			 * at the beginning.
2444 			 * Mark first half uninitialized.
2445 			 * Mark second half initialized and zero out the
2446 			 * initialized extent
2447 			 */
2448 			ex->ee_block = orig_ex.ee_block;
2449 			ex->ee_len   = cpu_to_le16(ee_len - allocated);
2450 			ext4_ext_mark_uninitialized(ex);
2451 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2452 			ext4_ext_dirty(handle, inode, path + depth);
2453 
2454 			ex3 = &newex;
2455 			ex3->ee_block = cpu_to_le32(iblock);
2456 			ext4_ext_store_pblock(ex3, newblock);
2457 			ex3->ee_len = cpu_to_le16(allocated);
2458 			err = ext4_ext_insert_extent(handle, inode, path, ex3);
2459 			if (err == -ENOSPC) {
2460 				err =  ext4_ext_zeroout(inode, &orig_ex);
2461 				if (err)
2462 					goto fix_extent_len;
2463 				ex->ee_block = orig_ex.ee_block;
2464 				ex->ee_len   = orig_ex.ee_len;
2465 				ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2466 				ext4_ext_dirty(handle, inode, path + depth);
2467 				/* blocks available from iblock */
2468 				return allocated;
2469 
2470 			} else if (err)
2471 				goto fix_extent_len;
2472 
2473 			/*
2474 			 * We need to zero out the second half because
2475 			 * an fallocate request can update file size and
2476 			 * converting the second half to initialized extent
2477 			 * implies that we can leak some junk data to user
2478 			 * space.
2479 			 */
2480 			err =  ext4_ext_zeroout(inode, ex3);
2481 			if (err) {
2482 				/*
2483 				 * We should actually mark the
2484 				 * second half as uninit and return error
2485 				 * Insert would have changed the extent
2486 				 */
2487 				depth = ext_depth(inode);
2488 				ext4_ext_drop_refs(path);
2489 				path = ext4_ext_find_extent(inode,
2490 								iblock, path);
2491 				if (IS_ERR(path)) {
2492 					err = PTR_ERR(path);
2493 					return err;
2494 				}
2495 				/* get the second half extent details */
2496 				ex = path[depth].p_ext;
2497 				err = ext4_ext_get_access(handle, inode,
2498 								path + depth);
2499 				if (err)
2500 					return err;
2501 				ext4_ext_mark_uninitialized(ex);
2502 				ext4_ext_dirty(handle, inode, path + depth);
2503 				return err;
2504 			}
2505 
2506 			/* zeroed the second half */
2507 			return allocated;
2508 		}
2509 		ex3 = &newex;
2510 		ex3->ee_block = cpu_to_le32(iblock + max_blocks);
2511 		ext4_ext_store_pblock(ex3, newblock + max_blocks);
2512 		ex3->ee_len = cpu_to_le16(allocated - max_blocks);
2513 		ext4_ext_mark_uninitialized(ex3);
2514 		err = ext4_ext_insert_extent(handle, inode, path, ex3);
2515 		if (err == -ENOSPC) {
2516 			err =  ext4_ext_zeroout(inode, &orig_ex);
2517 			if (err)
2518 				goto fix_extent_len;
2519 			/* update the extent length and mark as initialized */
2520 			ex->ee_block = orig_ex.ee_block;
2521 			ex->ee_len   = orig_ex.ee_len;
2522 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2523 			ext4_ext_dirty(handle, inode, path + depth);
2524 			/* zeroed the full extent */
2525 			/* blocks available from iblock */
2526 			return allocated;
2527 
2528 		} else if (err)
2529 			goto fix_extent_len;
2530 		/*
2531 		 * The depth, and hence eh & ex might change
2532 		 * as part of the insert above.
2533 		 */
2534 		newdepth = ext_depth(inode);
2535 		/*
2536 		 * update the extent length after successful insert of the
2537 		 * split extent
2538 		 */
2539 		orig_ex.ee_len = cpu_to_le16(ee_len -
2540 						ext4_ext_get_actual_len(ex3));
2541 		depth = newdepth;
2542 		ext4_ext_drop_refs(path);
2543 		path = ext4_ext_find_extent(inode, iblock, path);
2544 		if (IS_ERR(path)) {
2545 			err = PTR_ERR(path);
2546 			goto out;
2547 		}
2548 		eh = path[depth].p_hdr;
2549 		ex = path[depth].p_ext;
2550 		if (ex2 != &newex)
2551 			ex2 = ex;
2552 
2553 		err = ext4_ext_get_access(handle, inode, path + depth);
2554 		if (err)
2555 			goto out;
2556 
2557 		allocated = max_blocks;
2558 
2559 		/* If extent has less than EXT4_EXT_ZERO_LEN and we are trying
2560 		 * to insert a extent in the middle zerout directly
2561 		 * otherwise give the extent a chance to merge to left
2562 		 */
2563 		if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN &&
2564 							iblock != ee_block) {
2565 			err =  ext4_ext_zeroout(inode, &orig_ex);
2566 			if (err)
2567 				goto fix_extent_len;
2568 			/* update the extent length and mark as initialized */
2569 			ex->ee_block = orig_ex.ee_block;
2570 			ex->ee_len   = orig_ex.ee_len;
2571 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2572 			ext4_ext_dirty(handle, inode, path + depth);
2573 			/* zero out the first half */
2574 			/* blocks available from iblock */
2575 			return allocated;
2576 		}
2577 	}
2578 	/*
2579 	 * If there was a change of depth as part of the
2580 	 * insertion of ex3 above, we need to update the length
2581 	 * of the ex1 extent again here
2582 	 */
2583 	if (ex1 && ex1 != ex) {
2584 		ex1 = ex;
2585 		ex1->ee_len = cpu_to_le16(iblock - ee_block);
2586 		ext4_ext_mark_uninitialized(ex1);
2587 		ex2 = &newex;
2588 	}
2589 	/* ex2: iblock to iblock + maxblocks-1 : initialised */
2590 	ex2->ee_block = cpu_to_le32(iblock);
2591 	ext4_ext_store_pblock(ex2, newblock);
2592 	ex2->ee_len = cpu_to_le16(allocated);
2593 	if (ex2 != ex)
2594 		goto insert;
2595 	/*
2596 	 * New (initialized) extent starts from the first block
2597 	 * in the current extent. i.e., ex2 == ex
2598 	 * We have to see if it can be merged with the extent
2599 	 * on the left.
2600 	 */
2601 	if (ex2 > EXT_FIRST_EXTENT(eh)) {
2602 		/*
2603 		 * To merge left, pass "ex2 - 1" to try_to_merge(),
2604 		 * since it merges towards right _only_.
2605 		 */
2606 		ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
2607 		if (ret) {
2608 			err = ext4_ext_correct_indexes(handle, inode, path);
2609 			if (err)
2610 				goto out;
2611 			depth = ext_depth(inode);
2612 			ex2--;
2613 		}
2614 	}
2615 	/*
2616 	 * Try to Merge towards right. This might be required
2617 	 * only when the whole extent is being written to.
2618 	 * i.e. ex2 == ex and ex3 == NULL.
2619 	 */
2620 	if (!ex3) {
2621 		ret = ext4_ext_try_to_merge(inode, path, ex2);
2622 		if (ret) {
2623 			err = ext4_ext_correct_indexes(handle, inode, path);
2624 			if (err)
2625 				goto out;
2626 		}
2627 	}
2628 	/* Mark modified extent as dirty */
2629 	err = ext4_ext_dirty(handle, inode, path + depth);
2630 	goto out;
2631 insert:
2632 	err = ext4_ext_insert_extent(handle, inode, path, &newex);
2633 	if (err == -ENOSPC) {
2634 		err =  ext4_ext_zeroout(inode, &orig_ex);
2635 		if (err)
2636 			goto fix_extent_len;
2637 		/* update the extent length and mark as initialized */
2638 		ex->ee_block = orig_ex.ee_block;
2639 		ex->ee_len   = orig_ex.ee_len;
2640 		ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2641 		ext4_ext_dirty(handle, inode, path + depth);
2642 		/* zero out the first half */
2643 		return allocated;
2644 	} else if (err)
2645 		goto fix_extent_len;
2646 out:
2647 	return err ? err : allocated;
2648 
2649 fix_extent_len:
2650 	ex->ee_block = orig_ex.ee_block;
2651 	ex->ee_len   = orig_ex.ee_len;
2652 	ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2653 	ext4_ext_mark_uninitialized(ex);
2654 	ext4_ext_dirty(handle, inode, path + depth);
2655 	return err;
2656 }
2657 
2658 /*
2659  * Block allocation/map/preallocation routine for extents based files
2660  *
2661  *
2662  * Need to be called with
2663  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
2664  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
2665  *
2666  * return > 0, number of of blocks already mapped/allocated
2667  *          if create == 0 and these are pre-allocated blocks
2668  *          	buffer head is unmapped
2669  *          otherwise blocks are mapped
2670  *
2671  * return = 0, if plain look up failed (blocks have not been allocated)
2672  *          buffer head is unmapped
2673  *
2674  * return < 0, error case.
2675  */
2676 int ext4_ext_get_blocks(handle_t *handle, struct inode *inode,
2677 			ext4_lblk_t iblock,
2678 			unsigned int max_blocks, struct buffer_head *bh_result,
2679 			int create, int extend_disksize)
2680 {
2681 	struct ext4_ext_path *path = NULL;
2682 	struct ext4_extent_header *eh;
2683 	struct ext4_extent newex, *ex;
2684 	ext4_fsblk_t newblock;
2685 	int err = 0, depth, ret, cache_type;
2686 	unsigned int allocated = 0;
2687 	struct ext4_allocation_request ar;
2688 	loff_t disksize;
2689 
2690 	__clear_bit(BH_New, &bh_result->b_state);
2691 	ext_debug("blocks %u/%u requested for inode %u\n",
2692 			iblock, max_blocks, inode->i_ino);
2693 
2694 	/* check in cache */
2695 	cache_type = ext4_ext_in_cache(inode, iblock, &newex);
2696 	if (cache_type) {
2697 		if (cache_type == EXT4_EXT_CACHE_GAP) {
2698 			if (!create) {
2699 				/*
2700 				 * block isn't allocated yet and
2701 				 * user doesn't want to allocate it
2702 				 */
2703 				goto out2;
2704 			}
2705 			/* we should allocate requested block */
2706 		} else if (cache_type == EXT4_EXT_CACHE_EXTENT) {
2707 			/* block is already allocated */
2708 			newblock = iblock
2709 				   - le32_to_cpu(newex.ee_block)
2710 				   + ext_pblock(&newex);
2711 			/* number of remaining blocks in the extent */
2712 			allocated = ext4_ext_get_actual_len(&newex) -
2713 					(iblock - le32_to_cpu(newex.ee_block));
2714 			goto out;
2715 		} else {
2716 			BUG();
2717 		}
2718 	}
2719 
2720 	/* find extent for this block */
2721 	path = ext4_ext_find_extent(inode, iblock, NULL);
2722 	if (IS_ERR(path)) {
2723 		err = PTR_ERR(path);
2724 		path = NULL;
2725 		goto out2;
2726 	}
2727 
2728 	depth = ext_depth(inode);
2729 
2730 	/*
2731 	 * consistent leaf must not be empty;
2732 	 * this situation is possible, though, _during_ tree modification;
2733 	 * this is why assert can't be put in ext4_ext_find_extent()
2734 	 */
2735 	BUG_ON(path[depth].p_ext == NULL && depth != 0);
2736 	eh = path[depth].p_hdr;
2737 
2738 	ex = path[depth].p_ext;
2739 	if (ex) {
2740 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
2741 		ext4_fsblk_t ee_start = ext_pblock(ex);
2742 		unsigned short ee_len;
2743 
2744 		/*
2745 		 * Uninitialized extents are treated as holes, except that
2746 		 * we split out initialized portions during a write.
2747 		 */
2748 		ee_len = ext4_ext_get_actual_len(ex);
2749 		/* if found extent covers block, simply return it */
2750 		if (iblock >= ee_block && iblock < ee_block + ee_len) {
2751 			newblock = iblock - ee_block + ee_start;
2752 			/* number of remaining blocks in the extent */
2753 			allocated = ee_len - (iblock - ee_block);
2754 			ext_debug("%u fit into %lu:%d -> %llu\n", iblock,
2755 					ee_block, ee_len, newblock);
2756 
2757 			/* Do not put uninitialized extent in the cache */
2758 			if (!ext4_ext_is_uninitialized(ex)) {
2759 				ext4_ext_put_in_cache(inode, ee_block,
2760 							ee_len, ee_start,
2761 							EXT4_EXT_CACHE_EXTENT);
2762 				goto out;
2763 			}
2764 			if (create == EXT4_CREATE_UNINITIALIZED_EXT)
2765 				goto out;
2766 			if (!create) {
2767 				/*
2768 				 * We have blocks reserved already.  We
2769 				 * return allocated blocks so that delalloc
2770 				 * won't do block reservation for us.  But
2771 				 * the buffer head will be unmapped so that
2772 				 * a read from the block returns 0s.
2773 				 */
2774 				if (allocated > max_blocks)
2775 					allocated = max_blocks;
2776 				set_buffer_unwritten(bh_result);
2777 				goto out2;
2778 			}
2779 
2780 			ret = ext4_ext_convert_to_initialized(handle, inode,
2781 								path, iblock,
2782 								max_blocks);
2783 			if (ret <= 0) {
2784 				err = ret;
2785 				goto out2;
2786 			} else
2787 				allocated = ret;
2788 			goto outnew;
2789 		}
2790 	}
2791 
2792 	/*
2793 	 * requested block isn't allocated yet;
2794 	 * we couldn't try to create block if create flag is zero
2795 	 */
2796 	if (!create) {
2797 		/*
2798 		 * put just found gap into cache to speed up
2799 		 * subsequent requests
2800 		 */
2801 		ext4_ext_put_gap_in_cache(inode, path, iblock);
2802 		goto out2;
2803 	}
2804 	/*
2805 	 * Okay, we need to do block allocation.
2806 	 */
2807 
2808 	/* find neighbour allocated blocks */
2809 	ar.lleft = iblock;
2810 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
2811 	if (err)
2812 		goto out2;
2813 	ar.lright = iblock;
2814 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
2815 	if (err)
2816 		goto out2;
2817 
2818 	/*
2819 	 * See if request is beyond maximum number of blocks we can have in
2820 	 * a single extent. For an initialized extent this limit is
2821 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
2822 	 * EXT_UNINIT_MAX_LEN.
2823 	 */
2824 	if (max_blocks > EXT_INIT_MAX_LEN &&
2825 	    create != EXT4_CREATE_UNINITIALIZED_EXT)
2826 		max_blocks = EXT_INIT_MAX_LEN;
2827 	else if (max_blocks > EXT_UNINIT_MAX_LEN &&
2828 		 create == EXT4_CREATE_UNINITIALIZED_EXT)
2829 		max_blocks = EXT_UNINIT_MAX_LEN;
2830 
2831 	/* Check if we can really insert (iblock)::(iblock+max_blocks) extent */
2832 	newex.ee_block = cpu_to_le32(iblock);
2833 	newex.ee_len = cpu_to_le16(max_blocks);
2834 	err = ext4_ext_check_overlap(inode, &newex, path);
2835 	if (err)
2836 		allocated = ext4_ext_get_actual_len(&newex);
2837 	else
2838 		allocated = max_blocks;
2839 
2840 	/* allocate new block */
2841 	ar.inode = inode;
2842 	ar.goal = ext4_ext_find_goal(inode, path, iblock);
2843 	ar.logical = iblock;
2844 	ar.len = allocated;
2845 	if (S_ISREG(inode->i_mode))
2846 		ar.flags = EXT4_MB_HINT_DATA;
2847 	else
2848 		/* disable in-core preallocation for non-regular files */
2849 		ar.flags = 0;
2850 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
2851 	if (!newblock)
2852 		goto out2;
2853 	ext_debug("allocate new block: goal %llu, found %llu/%lu\n",
2854 		  ar.goal, newblock, allocated);
2855 
2856 	/* try to insert new extent into found leaf and return */
2857 	ext4_ext_store_pblock(&newex, newblock);
2858 	newex.ee_len = cpu_to_le16(ar.len);
2859 	if (create == EXT4_CREATE_UNINITIALIZED_EXT)  /* Mark uninitialized */
2860 		ext4_ext_mark_uninitialized(&newex);
2861 	err = ext4_ext_insert_extent(handle, inode, path, &newex);
2862 	if (err) {
2863 		/* free data blocks we just allocated */
2864 		/* not a good idea to call discard here directly,
2865 		 * but otherwise we'd need to call it every free() */
2866 		ext4_discard_preallocations(inode);
2867 		ext4_free_blocks(handle, inode, ext_pblock(&newex),
2868 					ext4_ext_get_actual_len(&newex), 0);
2869 		goto out2;
2870 	}
2871 
2872 	/* previous routine could use block we allocated */
2873 	newblock = ext_pblock(&newex);
2874 	allocated = ext4_ext_get_actual_len(&newex);
2875 outnew:
2876 	if (extend_disksize) {
2877 		disksize = ((loff_t) iblock + ar.len) << inode->i_blkbits;
2878 		if (disksize > i_size_read(inode))
2879 			disksize = i_size_read(inode);
2880 		if (disksize > EXT4_I(inode)->i_disksize)
2881 			EXT4_I(inode)->i_disksize = disksize;
2882 	}
2883 
2884 	set_buffer_new(bh_result);
2885 
2886 	/* Cache only when it is _not_ an uninitialized extent */
2887 	if (create != EXT4_CREATE_UNINITIALIZED_EXT)
2888 		ext4_ext_put_in_cache(inode, iblock, allocated, newblock,
2889 						EXT4_EXT_CACHE_EXTENT);
2890 out:
2891 	if (allocated > max_blocks)
2892 		allocated = max_blocks;
2893 	ext4_ext_show_leaf(inode, path);
2894 	set_buffer_mapped(bh_result);
2895 	bh_result->b_bdev = inode->i_sb->s_bdev;
2896 	bh_result->b_blocknr = newblock;
2897 out2:
2898 	if (path) {
2899 		ext4_ext_drop_refs(path);
2900 		kfree(path);
2901 	}
2902 	return err ? err : allocated;
2903 }
2904 
2905 void ext4_ext_truncate(struct inode *inode)
2906 {
2907 	struct address_space *mapping = inode->i_mapping;
2908 	struct super_block *sb = inode->i_sb;
2909 	ext4_lblk_t last_block;
2910 	handle_t *handle;
2911 	int err = 0;
2912 
2913 	/*
2914 	 * probably first extent we're gonna free will be last in block
2915 	 */
2916 	err = ext4_writepage_trans_blocks(inode);
2917 	handle = ext4_journal_start(inode, err);
2918 	if (IS_ERR(handle))
2919 		return;
2920 
2921 	if (inode->i_size & (sb->s_blocksize - 1))
2922 		ext4_block_truncate_page(handle, mapping, inode->i_size);
2923 
2924 	if (ext4_orphan_add(handle, inode))
2925 		goto out_stop;
2926 
2927 	down_write(&EXT4_I(inode)->i_data_sem);
2928 	ext4_ext_invalidate_cache(inode);
2929 
2930 	ext4_discard_preallocations(inode);
2931 
2932 	/*
2933 	 * TODO: optimization is possible here.
2934 	 * Probably we need not scan at all,
2935 	 * because page truncation is enough.
2936 	 */
2937 
2938 	/* we have to know where to truncate from in crash case */
2939 	EXT4_I(inode)->i_disksize = inode->i_size;
2940 	ext4_mark_inode_dirty(handle, inode);
2941 
2942 	last_block = (inode->i_size + sb->s_blocksize - 1)
2943 			>> EXT4_BLOCK_SIZE_BITS(sb);
2944 	err = ext4_ext_remove_space(inode, last_block);
2945 
2946 	/* In a multi-transaction truncate, we only make the final
2947 	 * transaction synchronous.
2948 	 */
2949 	if (IS_SYNC(inode))
2950 		ext4_handle_sync(handle);
2951 
2952 out_stop:
2953 	up_write(&EXT4_I(inode)->i_data_sem);
2954 	/*
2955 	 * If this was a simple ftruncate() and the file will remain alive,
2956 	 * then we need to clear up the orphan record which we created above.
2957 	 * However, if this was a real unlink then we were called by
2958 	 * ext4_delete_inode(), and we allow that function to clean up the
2959 	 * orphan info for us.
2960 	 */
2961 	if (inode->i_nlink)
2962 		ext4_orphan_del(handle, inode);
2963 
2964 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2965 	ext4_mark_inode_dirty(handle, inode);
2966 	ext4_journal_stop(handle);
2967 }
2968 
2969 static void ext4_falloc_update_inode(struct inode *inode,
2970 				int mode, loff_t new_size, int update_ctime)
2971 {
2972 	struct timespec now;
2973 
2974 	if (update_ctime) {
2975 		now = current_fs_time(inode->i_sb);
2976 		if (!timespec_equal(&inode->i_ctime, &now))
2977 			inode->i_ctime = now;
2978 	}
2979 	/*
2980 	 * Update only when preallocation was requested beyond
2981 	 * the file size.
2982 	 */
2983 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
2984 		if (new_size > i_size_read(inode))
2985 			i_size_write(inode, new_size);
2986 		if (new_size > EXT4_I(inode)->i_disksize)
2987 			ext4_update_i_disksize(inode, new_size);
2988 	}
2989 
2990 }
2991 
2992 /*
2993  * preallocate space for a file. This implements ext4's fallocate inode
2994  * operation, which gets called from sys_fallocate system call.
2995  * For block-mapped files, posix_fallocate should fall back to the method
2996  * of writing zeroes to the required new blocks (the same behavior which is
2997  * expected for file systems which do not support fallocate() system call).
2998  */
2999 long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len)
3000 {
3001 	handle_t *handle;
3002 	ext4_lblk_t block;
3003 	loff_t new_size;
3004 	unsigned int max_blocks;
3005 	int ret = 0;
3006 	int ret2 = 0;
3007 	int retries = 0;
3008 	struct buffer_head map_bh;
3009 	unsigned int credits, blkbits = inode->i_blkbits;
3010 
3011 	/*
3012 	 * currently supporting (pre)allocate mode for extent-based
3013 	 * files _only_
3014 	 */
3015 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3016 		return -EOPNOTSUPP;
3017 
3018 	/* preallocation to directories is currently not supported */
3019 	if (S_ISDIR(inode->i_mode))
3020 		return -ENODEV;
3021 
3022 	block = offset >> blkbits;
3023 	/*
3024 	 * We can't just convert len to max_blocks because
3025 	 * If blocksize = 4096 offset = 3072 and len = 2048
3026 	 */
3027 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3028 							- block;
3029 	/*
3030 	 * credits to insert 1 extent into extent tree
3031 	 */
3032 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3033 	mutex_lock(&inode->i_mutex);
3034 retry:
3035 	while (ret >= 0 && ret < max_blocks) {
3036 		block = block + ret;
3037 		max_blocks = max_blocks - ret;
3038 		handle = ext4_journal_start(inode, credits);
3039 		if (IS_ERR(handle)) {
3040 			ret = PTR_ERR(handle);
3041 			break;
3042 		}
3043 		ret = ext4_get_blocks_wrap(handle, inode, block,
3044 					  max_blocks, &map_bh,
3045 					  EXT4_CREATE_UNINITIALIZED_EXT, 0, 0);
3046 		if (ret <= 0) {
3047 #ifdef EXT4FS_DEBUG
3048 			WARN_ON(ret <= 0);
3049 			printk(KERN_ERR "%s: ext4_ext_get_blocks "
3050 				    "returned error inode#%lu, block=%u, "
3051 				    "max_blocks=%u", __func__,
3052 				    inode->i_ino, block, max_blocks);
3053 #endif
3054 			ext4_mark_inode_dirty(handle, inode);
3055 			ret2 = ext4_journal_stop(handle);
3056 			break;
3057 		}
3058 		if ((block + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3059 						blkbits) >> blkbits))
3060 			new_size = offset + len;
3061 		else
3062 			new_size = (block + ret) << blkbits;
3063 
3064 		ext4_falloc_update_inode(inode, mode, new_size,
3065 						buffer_new(&map_bh));
3066 		ext4_mark_inode_dirty(handle, inode);
3067 		ret2 = ext4_journal_stop(handle);
3068 		if (ret2)
3069 			break;
3070 	}
3071 	if (ret == -ENOSPC &&
3072 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
3073 		ret = 0;
3074 		goto retry;
3075 	}
3076 	mutex_unlock(&inode->i_mutex);
3077 	return ret > 0 ? ret2 : ret;
3078 }
3079 
3080 /*
3081  * Callback function called for each extent to gather FIEMAP information.
3082  */
3083 static int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path,
3084 		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
3085 		       void *data)
3086 {
3087 	struct fiemap_extent_info *fieinfo = data;
3088 	unsigned long blksize_bits = inode->i_sb->s_blocksize_bits;
3089 	__u64	logical;
3090 	__u64	physical;
3091 	__u64	length;
3092 	__u32	flags = 0;
3093 	int	error;
3094 
3095 	logical =  (__u64)newex->ec_block << blksize_bits;
3096 
3097 	if (newex->ec_type == EXT4_EXT_CACHE_GAP) {
3098 		pgoff_t offset;
3099 		struct page *page;
3100 		struct buffer_head *bh = NULL;
3101 
3102 		offset = logical >> PAGE_SHIFT;
3103 		page = find_get_page(inode->i_mapping, offset);
3104 		if (!page || !page_has_buffers(page))
3105 			return EXT_CONTINUE;
3106 
3107 		bh = page_buffers(page);
3108 
3109 		if (!bh)
3110 			return EXT_CONTINUE;
3111 
3112 		if (buffer_delay(bh)) {
3113 			flags |= FIEMAP_EXTENT_DELALLOC;
3114 			page_cache_release(page);
3115 		} else {
3116 			page_cache_release(page);
3117 			return EXT_CONTINUE;
3118 		}
3119 	}
3120 
3121 	physical = (__u64)newex->ec_start << blksize_bits;
3122 	length =   (__u64)newex->ec_len << blksize_bits;
3123 
3124 	if (ex && ext4_ext_is_uninitialized(ex))
3125 		flags |= FIEMAP_EXTENT_UNWRITTEN;
3126 
3127 	/*
3128 	 * If this extent reaches EXT_MAX_BLOCK, it must be last.
3129 	 *
3130 	 * Or if ext4_ext_next_allocated_block is EXT_MAX_BLOCK,
3131 	 * this also indicates no more allocated blocks.
3132 	 *
3133 	 * XXX this might miss a single-block extent at EXT_MAX_BLOCK
3134 	 */
3135 	if (logical + length - 1 == EXT_MAX_BLOCK ||
3136 	    ext4_ext_next_allocated_block(path) == EXT_MAX_BLOCK)
3137 		flags |= FIEMAP_EXTENT_LAST;
3138 
3139 	error = fiemap_fill_next_extent(fieinfo, logical, physical,
3140 					length, flags);
3141 	if (error < 0)
3142 		return error;
3143 	if (error == 1)
3144 		return EXT_BREAK;
3145 
3146 	return EXT_CONTINUE;
3147 }
3148 
3149 /* fiemap flags we can handle specified here */
3150 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
3151 
3152 static int ext4_xattr_fiemap(struct inode *inode,
3153 				struct fiemap_extent_info *fieinfo)
3154 {
3155 	__u64 physical = 0;
3156 	__u64 length;
3157 	__u32 flags = FIEMAP_EXTENT_LAST;
3158 	int blockbits = inode->i_sb->s_blocksize_bits;
3159 	int error = 0;
3160 
3161 	/* in-inode? */
3162 	if (EXT4_I(inode)->i_state & EXT4_STATE_XATTR) {
3163 		struct ext4_iloc iloc;
3164 		int offset;	/* offset of xattr in inode */
3165 
3166 		error = ext4_get_inode_loc(inode, &iloc);
3167 		if (error)
3168 			return error;
3169 		physical = iloc.bh->b_blocknr << blockbits;
3170 		offset = EXT4_GOOD_OLD_INODE_SIZE +
3171 				EXT4_I(inode)->i_extra_isize;
3172 		physical += offset;
3173 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
3174 		flags |= FIEMAP_EXTENT_DATA_INLINE;
3175 	} else { /* external block */
3176 		physical = EXT4_I(inode)->i_file_acl << blockbits;
3177 		length = inode->i_sb->s_blocksize;
3178 	}
3179 
3180 	if (physical)
3181 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
3182 						length, flags);
3183 	return (error < 0 ? error : 0);
3184 }
3185 
3186 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3187 		__u64 start, __u64 len)
3188 {
3189 	ext4_lblk_t start_blk;
3190 	ext4_lblk_t len_blks;
3191 	int error = 0;
3192 
3193 	/* fallback to generic here if not in extents fmt */
3194 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3195 		return generic_block_fiemap(inode, fieinfo, start, len,
3196 			ext4_get_block);
3197 
3198 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
3199 		return -EBADR;
3200 
3201 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
3202 		error = ext4_xattr_fiemap(inode, fieinfo);
3203 	} else {
3204 		start_blk = start >> inode->i_sb->s_blocksize_bits;
3205 		len_blks = len >> inode->i_sb->s_blocksize_bits;
3206 
3207 		/*
3208 		 * Walk the extent tree gathering extent information.
3209 		 * ext4_ext_fiemap_cb will push extents back to user.
3210 		 */
3211 		down_write(&EXT4_I(inode)->i_data_sem);
3212 		error = ext4_ext_walk_space(inode, start_blk, len_blks,
3213 					  ext4_ext_fiemap_cb, fieinfo);
3214 		up_write(&EXT4_I(inode)->i_data_sem);
3215 	}
3216 
3217 	return error;
3218 }
3219 
3220