1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public Licens 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/fs.h> 33 #include <linux/time.h> 34 #include <linux/jbd2.h> 35 #include <linux/highuid.h> 36 #include <linux/pagemap.h> 37 #include <linux/quotaops.h> 38 #include <linux/string.h> 39 #include <linux/slab.h> 40 #include <asm/uaccess.h> 41 #include <linux/fiemap.h> 42 #include "ext4_jbd2.h" 43 #include "ext4_extents.h" 44 #include "xattr.h" 45 46 #include <trace/events/ext4.h> 47 48 /* 49 * used by extent splitting. 50 */ 51 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 52 due to ENOSPC */ 53 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */ 54 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */ 55 56 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */ 57 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */ 58 59 static __le32 ext4_extent_block_csum(struct inode *inode, 60 struct ext4_extent_header *eh) 61 { 62 struct ext4_inode_info *ei = EXT4_I(inode); 63 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 64 __u32 csum; 65 66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, 67 EXT4_EXTENT_TAIL_OFFSET(eh)); 68 return cpu_to_le32(csum); 69 } 70 71 static int ext4_extent_block_csum_verify(struct inode *inode, 72 struct ext4_extent_header *eh) 73 { 74 struct ext4_extent_tail *et; 75 76 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 77 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 78 return 1; 79 80 et = find_ext4_extent_tail(eh); 81 if (et->et_checksum != ext4_extent_block_csum(inode, eh)) 82 return 0; 83 return 1; 84 } 85 86 static void ext4_extent_block_csum_set(struct inode *inode, 87 struct ext4_extent_header *eh) 88 { 89 struct ext4_extent_tail *et; 90 91 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 92 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 93 return; 94 95 et = find_ext4_extent_tail(eh); 96 et->et_checksum = ext4_extent_block_csum(inode, eh); 97 } 98 99 static int ext4_split_extent(handle_t *handle, 100 struct inode *inode, 101 struct ext4_ext_path *path, 102 struct ext4_map_blocks *map, 103 int split_flag, 104 int flags); 105 106 static int ext4_split_extent_at(handle_t *handle, 107 struct inode *inode, 108 struct ext4_ext_path *path, 109 ext4_lblk_t split, 110 int split_flag, 111 int flags); 112 113 static int ext4_find_delayed_extent(struct inode *inode, 114 struct extent_status *newes); 115 116 static int ext4_ext_truncate_extend_restart(handle_t *handle, 117 struct inode *inode, 118 int needed) 119 { 120 int err; 121 122 if (!ext4_handle_valid(handle)) 123 return 0; 124 if (handle->h_buffer_credits > needed) 125 return 0; 126 err = ext4_journal_extend(handle, needed); 127 if (err <= 0) 128 return err; 129 err = ext4_truncate_restart_trans(handle, inode, needed); 130 if (err == 0) 131 err = -EAGAIN; 132 133 return err; 134 } 135 136 /* 137 * could return: 138 * - EROFS 139 * - ENOMEM 140 */ 141 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 142 struct ext4_ext_path *path) 143 { 144 if (path->p_bh) { 145 /* path points to block */ 146 BUFFER_TRACE(path->p_bh, "get_write_access"); 147 return ext4_journal_get_write_access(handle, path->p_bh); 148 } 149 /* path points to leaf/index in inode body */ 150 /* we use in-core data, no need to protect them */ 151 return 0; 152 } 153 154 /* 155 * could return: 156 * - EROFS 157 * - ENOMEM 158 * - EIO 159 */ 160 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle, 161 struct inode *inode, struct ext4_ext_path *path) 162 { 163 int err; 164 165 WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); 166 if (path->p_bh) { 167 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); 168 /* path points to block */ 169 err = __ext4_handle_dirty_metadata(where, line, handle, 170 inode, path->p_bh); 171 } else { 172 /* path points to leaf/index in inode body */ 173 err = ext4_mark_inode_dirty(handle, inode); 174 } 175 return err; 176 } 177 178 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 179 struct ext4_ext_path *path, 180 ext4_lblk_t block) 181 { 182 if (path) { 183 int depth = path->p_depth; 184 struct ext4_extent *ex; 185 186 /* 187 * Try to predict block placement assuming that we are 188 * filling in a file which will eventually be 189 * non-sparse --- i.e., in the case of libbfd writing 190 * an ELF object sections out-of-order but in a way 191 * the eventually results in a contiguous object or 192 * executable file, or some database extending a table 193 * space file. However, this is actually somewhat 194 * non-ideal if we are writing a sparse file such as 195 * qemu or KVM writing a raw image file that is going 196 * to stay fairly sparse, since it will end up 197 * fragmenting the file system's free space. Maybe we 198 * should have some hueristics or some way to allow 199 * userspace to pass a hint to file system, 200 * especially if the latter case turns out to be 201 * common. 202 */ 203 ex = path[depth].p_ext; 204 if (ex) { 205 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 206 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 207 208 if (block > ext_block) 209 return ext_pblk + (block - ext_block); 210 else 211 return ext_pblk - (ext_block - block); 212 } 213 214 /* it looks like index is empty; 215 * try to find starting block from index itself */ 216 if (path[depth].p_bh) 217 return path[depth].p_bh->b_blocknr; 218 } 219 220 /* OK. use inode's group */ 221 return ext4_inode_to_goal_block(inode); 222 } 223 224 /* 225 * Allocation for a meta data block 226 */ 227 static ext4_fsblk_t 228 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 229 struct ext4_ext_path *path, 230 struct ext4_extent *ex, int *err, unsigned int flags) 231 { 232 ext4_fsblk_t goal, newblock; 233 234 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 235 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 236 NULL, err); 237 return newblock; 238 } 239 240 static inline int ext4_ext_space_block(struct inode *inode, int check) 241 { 242 int size; 243 244 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 245 / sizeof(struct ext4_extent); 246 #ifdef AGGRESSIVE_TEST 247 if (!check && size > 6) 248 size = 6; 249 #endif 250 return size; 251 } 252 253 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 254 { 255 int size; 256 257 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 258 / sizeof(struct ext4_extent_idx); 259 #ifdef AGGRESSIVE_TEST 260 if (!check && size > 5) 261 size = 5; 262 #endif 263 return size; 264 } 265 266 static inline int ext4_ext_space_root(struct inode *inode, int check) 267 { 268 int size; 269 270 size = sizeof(EXT4_I(inode)->i_data); 271 size -= sizeof(struct ext4_extent_header); 272 size /= sizeof(struct ext4_extent); 273 #ifdef AGGRESSIVE_TEST 274 if (!check && size > 3) 275 size = 3; 276 #endif 277 return size; 278 } 279 280 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 281 { 282 int size; 283 284 size = sizeof(EXT4_I(inode)->i_data); 285 size -= sizeof(struct ext4_extent_header); 286 size /= sizeof(struct ext4_extent_idx); 287 #ifdef AGGRESSIVE_TEST 288 if (!check && size > 4) 289 size = 4; 290 #endif 291 return size; 292 } 293 294 static inline int 295 ext4_force_split_extent_at(handle_t *handle, struct inode *inode, 296 struct ext4_ext_path *path, ext4_lblk_t lblk, 297 int nofail) 298 { 299 int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext); 300 301 return ext4_split_extent_at(handle, inode, path, lblk, unwritten ? 302 EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0, 303 EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO | 304 (nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0)); 305 } 306 307 /* 308 * Calculate the number of metadata blocks needed 309 * to allocate @blocks 310 * Worse case is one block per extent 311 */ 312 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 313 { 314 struct ext4_inode_info *ei = EXT4_I(inode); 315 int idxs; 316 317 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 318 / sizeof(struct ext4_extent_idx)); 319 320 /* 321 * If the new delayed allocation block is contiguous with the 322 * previous da block, it can share index blocks with the 323 * previous block, so we only need to allocate a new index 324 * block every idxs leaf blocks. At ldxs**2 blocks, we need 325 * an additional index block, and at ldxs**3 blocks, yet 326 * another index blocks. 327 */ 328 if (ei->i_da_metadata_calc_len && 329 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 330 int num = 0; 331 332 if ((ei->i_da_metadata_calc_len % idxs) == 0) 333 num++; 334 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 335 num++; 336 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 337 num++; 338 ei->i_da_metadata_calc_len = 0; 339 } else 340 ei->i_da_metadata_calc_len++; 341 ei->i_da_metadata_calc_last_lblock++; 342 return num; 343 } 344 345 /* 346 * In the worst case we need a new set of index blocks at 347 * every level of the inode's extent tree. 348 */ 349 ei->i_da_metadata_calc_len = 1; 350 ei->i_da_metadata_calc_last_lblock = lblock; 351 return ext_depth(inode) + 1; 352 } 353 354 static int 355 ext4_ext_max_entries(struct inode *inode, int depth) 356 { 357 int max; 358 359 if (depth == ext_depth(inode)) { 360 if (depth == 0) 361 max = ext4_ext_space_root(inode, 1); 362 else 363 max = ext4_ext_space_root_idx(inode, 1); 364 } else { 365 if (depth == 0) 366 max = ext4_ext_space_block(inode, 1); 367 else 368 max = ext4_ext_space_block_idx(inode, 1); 369 } 370 371 return max; 372 } 373 374 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 375 { 376 ext4_fsblk_t block = ext4_ext_pblock(ext); 377 int len = ext4_ext_get_actual_len(ext); 378 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block); 379 ext4_lblk_t last = lblock + len - 1; 380 381 if (lblock > last) 382 return 0; 383 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 384 } 385 386 static int ext4_valid_extent_idx(struct inode *inode, 387 struct ext4_extent_idx *ext_idx) 388 { 389 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 390 391 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 392 } 393 394 static int ext4_valid_extent_entries(struct inode *inode, 395 struct ext4_extent_header *eh, 396 int depth) 397 { 398 unsigned short entries; 399 if (eh->eh_entries == 0) 400 return 1; 401 402 entries = le16_to_cpu(eh->eh_entries); 403 404 if (depth == 0) { 405 /* leaf entries */ 406 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 407 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 408 ext4_fsblk_t pblock = 0; 409 ext4_lblk_t lblock = 0; 410 ext4_lblk_t prev = 0; 411 int len = 0; 412 while (entries) { 413 if (!ext4_valid_extent(inode, ext)) 414 return 0; 415 416 /* Check for overlapping extents */ 417 lblock = le32_to_cpu(ext->ee_block); 418 len = ext4_ext_get_actual_len(ext); 419 if ((lblock <= prev) && prev) { 420 pblock = ext4_ext_pblock(ext); 421 es->s_last_error_block = cpu_to_le64(pblock); 422 return 0; 423 } 424 ext++; 425 entries--; 426 prev = lblock + len - 1; 427 } 428 } else { 429 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 430 while (entries) { 431 if (!ext4_valid_extent_idx(inode, ext_idx)) 432 return 0; 433 ext_idx++; 434 entries--; 435 } 436 } 437 return 1; 438 } 439 440 static int __ext4_ext_check(const char *function, unsigned int line, 441 struct inode *inode, struct ext4_extent_header *eh, 442 int depth, ext4_fsblk_t pblk) 443 { 444 const char *error_msg; 445 int max = 0; 446 447 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 448 error_msg = "invalid magic"; 449 goto corrupted; 450 } 451 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 452 error_msg = "unexpected eh_depth"; 453 goto corrupted; 454 } 455 if (unlikely(eh->eh_max == 0)) { 456 error_msg = "invalid eh_max"; 457 goto corrupted; 458 } 459 max = ext4_ext_max_entries(inode, depth); 460 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 461 error_msg = "too large eh_max"; 462 goto corrupted; 463 } 464 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 465 error_msg = "invalid eh_entries"; 466 goto corrupted; 467 } 468 if (!ext4_valid_extent_entries(inode, eh, depth)) { 469 error_msg = "invalid extent entries"; 470 goto corrupted; 471 } 472 /* Verify checksum on non-root extent tree nodes */ 473 if (ext_depth(inode) != depth && 474 !ext4_extent_block_csum_verify(inode, eh)) { 475 error_msg = "extent tree corrupted"; 476 goto corrupted; 477 } 478 return 0; 479 480 corrupted: 481 ext4_error_inode(inode, function, line, 0, 482 "pblk %llu bad header/extent: %s - magic %x, " 483 "entries %u, max %u(%u), depth %u(%u)", 484 (unsigned long long) pblk, error_msg, 485 le16_to_cpu(eh->eh_magic), 486 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 487 max, le16_to_cpu(eh->eh_depth), depth); 488 return -EIO; 489 } 490 491 #define ext4_ext_check(inode, eh, depth, pblk) \ 492 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk)) 493 494 int ext4_ext_check_inode(struct inode *inode) 495 { 496 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0); 497 } 498 499 static struct buffer_head * 500 __read_extent_tree_block(const char *function, unsigned int line, 501 struct inode *inode, ext4_fsblk_t pblk, int depth, 502 int flags) 503 { 504 struct buffer_head *bh; 505 int err; 506 507 bh = sb_getblk(inode->i_sb, pblk); 508 if (unlikely(!bh)) 509 return ERR_PTR(-ENOMEM); 510 511 if (!bh_uptodate_or_lock(bh)) { 512 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_); 513 err = bh_submit_read(bh); 514 if (err < 0) 515 goto errout; 516 } 517 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE)) 518 return bh; 519 err = __ext4_ext_check(function, line, inode, 520 ext_block_hdr(bh), depth, pblk); 521 if (err) 522 goto errout; 523 set_buffer_verified(bh); 524 /* 525 * If this is a leaf block, cache all of its entries 526 */ 527 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) { 528 struct ext4_extent_header *eh = ext_block_hdr(bh); 529 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh); 530 ext4_lblk_t prev = 0; 531 int i; 532 533 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) { 534 unsigned int status = EXTENT_STATUS_WRITTEN; 535 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block); 536 int len = ext4_ext_get_actual_len(ex); 537 538 if (prev && (prev != lblk)) 539 ext4_es_cache_extent(inode, prev, 540 lblk - prev, ~0, 541 EXTENT_STATUS_HOLE); 542 543 if (ext4_ext_is_unwritten(ex)) 544 status = EXTENT_STATUS_UNWRITTEN; 545 ext4_es_cache_extent(inode, lblk, len, 546 ext4_ext_pblock(ex), status); 547 prev = lblk + len; 548 } 549 } 550 return bh; 551 errout: 552 put_bh(bh); 553 return ERR_PTR(err); 554 555 } 556 557 #define read_extent_tree_block(inode, pblk, depth, flags) \ 558 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \ 559 (depth), (flags)) 560 561 /* 562 * This function is called to cache a file's extent information in the 563 * extent status tree 564 */ 565 int ext4_ext_precache(struct inode *inode) 566 { 567 struct ext4_inode_info *ei = EXT4_I(inode); 568 struct ext4_ext_path *path = NULL; 569 struct buffer_head *bh; 570 int i = 0, depth, ret = 0; 571 572 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 573 return 0; /* not an extent-mapped inode */ 574 575 down_read(&ei->i_data_sem); 576 depth = ext_depth(inode); 577 578 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 579 GFP_NOFS); 580 if (path == NULL) { 581 up_read(&ei->i_data_sem); 582 return -ENOMEM; 583 } 584 585 /* Don't cache anything if there are no external extent blocks */ 586 if (depth == 0) 587 goto out; 588 path[0].p_hdr = ext_inode_hdr(inode); 589 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0); 590 if (ret) 591 goto out; 592 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr); 593 while (i >= 0) { 594 /* 595 * If this is a leaf block or we've reached the end of 596 * the index block, go up 597 */ 598 if ((i == depth) || 599 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) { 600 brelse(path[i].p_bh); 601 path[i].p_bh = NULL; 602 i--; 603 continue; 604 } 605 bh = read_extent_tree_block(inode, 606 ext4_idx_pblock(path[i].p_idx++), 607 depth - i - 1, 608 EXT4_EX_FORCE_CACHE); 609 if (IS_ERR(bh)) { 610 ret = PTR_ERR(bh); 611 break; 612 } 613 i++; 614 path[i].p_bh = bh; 615 path[i].p_hdr = ext_block_hdr(bh); 616 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr); 617 } 618 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED); 619 out: 620 up_read(&ei->i_data_sem); 621 ext4_ext_drop_refs(path); 622 kfree(path); 623 return ret; 624 } 625 626 #ifdef EXT_DEBUG 627 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 628 { 629 int k, l = path->p_depth; 630 631 ext_debug("path:"); 632 for (k = 0; k <= l; k++, path++) { 633 if (path->p_idx) { 634 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 635 ext4_idx_pblock(path->p_idx)); 636 } else if (path->p_ext) { 637 ext_debug(" %d:[%d]%d:%llu ", 638 le32_to_cpu(path->p_ext->ee_block), 639 ext4_ext_is_unwritten(path->p_ext), 640 ext4_ext_get_actual_len(path->p_ext), 641 ext4_ext_pblock(path->p_ext)); 642 } else 643 ext_debug(" []"); 644 } 645 ext_debug("\n"); 646 } 647 648 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 649 { 650 int depth = ext_depth(inode); 651 struct ext4_extent_header *eh; 652 struct ext4_extent *ex; 653 int i; 654 655 if (!path) 656 return; 657 658 eh = path[depth].p_hdr; 659 ex = EXT_FIRST_EXTENT(eh); 660 661 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 662 663 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 664 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 665 ext4_ext_is_unwritten(ex), 666 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 667 } 668 ext_debug("\n"); 669 } 670 671 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 672 ext4_fsblk_t newblock, int level) 673 { 674 int depth = ext_depth(inode); 675 struct ext4_extent *ex; 676 677 if (depth != level) { 678 struct ext4_extent_idx *idx; 679 idx = path[level].p_idx; 680 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 681 ext_debug("%d: move %d:%llu in new index %llu\n", level, 682 le32_to_cpu(idx->ei_block), 683 ext4_idx_pblock(idx), 684 newblock); 685 idx++; 686 } 687 688 return; 689 } 690 691 ex = path[depth].p_ext; 692 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 693 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 694 le32_to_cpu(ex->ee_block), 695 ext4_ext_pblock(ex), 696 ext4_ext_is_unwritten(ex), 697 ext4_ext_get_actual_len(ex), 698 newblock); 699 ex++; 700 } 701 } 702 703 #else 704 #define ext4_ext_show_path(inode, path) 705 #define ext4_ext_show_leaf(inode, path) 706 #define ext4_ext_show_move(inode, path, newblock, level) 707 #endif 708 709 void ext4_ext_drop_refs(struct ext4_ext_path *path) 710 { 711 int depth = path->p_depth; 712 int i; 713 714 for (i = 0; i <= depth; i++, path++) 715 if (path->p_bh) { 716 brelse(path->p_bh); 717 path->p_bh = NULL; 718 } 719 } 720 721 /* 722 * ext4_ext_binsearch_idx: 723 * binary search for the closest index of the given block 724 * the header must be checked before calling this 725 */ 726 static void 727 ext4_ext_binsearch_idx(struct inode *inode, 728 struct ext4_ext_path *path, ext4_lblk_t block) 729 { 730 struct ext4_extent_header *eh = path->p_hdr; 731 struct ext4_extent_idx *r, *l, *m; 732 733 734 ext_debug("binsearch for %u(idx): ", block); 735 736 l = EXT_FIRST_INDEX(eh) + 1; 737 r = EXT_LAST_INDEX(eh); 738 while (l <= r) { 739 m = l + (r - l) / 2; 740 if (block < le32_to_cpu(m->ei_block)) 741 r = m - 1; 742 else 743 l = m + 1; 744 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 745 m, le32_to_cpu(m->ei_block), 746 r, le32_to_cpu(r->ei_block)); 747 } 748 749 path->p_idx = l - 1; 750 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), 751 ext4_idx_pblock(path->p_idx)); 752 753 #ifdef CHECK_BINSEARCH 754 { 755 struct ext4_extent_idx *chix, *ix; 756 int k; 757 758 chix = ix = EXT_FIRST_INDEX(eh); 759 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 760 if (k != 0 && 761 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 762 printk(KERN_DEBUG "k=%d, ix=0x%p, " 763 "first=0x%p\n", k, 764 ix, EXT_FIRST_INDEX(eh)); 765 printk(KERN_DEBUG "%u <= %u\n", 766 le32_to_cpu(ix->ei_block), 767 le32_to_cpu(ix[-1].ei_block)); 768 } 769 BUG_ON(k && le32_to_cpu(ix->ei_block) 770 <= le32_to_cpu(ix[-1].ei_block)); 771 if (block < le32_to_cpu(ix->ei_block)) 772 break; 773 chix = ix; 774 } 775 BUG_ON(chix != path->p_idx); 776 } 777 #endif 778 779 } 780 781 /* 782 * ext4_ext_binsearch: 783 * binary search for closest extent of the given block 784 * the header must be checked before calling this 785 */ 786 static void 787 ext4_ext_binsearch(struct inode *inode, 788 struct ext4_ext_path *path, ext4_lblk_t block) 789 { 790 struct ext4_extent_header *eh = path->p_hdr; 791 struct ext4_extent *r, *l, *m; 792 793 if (eh->eh_entries == 0) { 794 /* 795 * this leaf is empty: 796 * we get such a leaf in split/add case 797 */ 798 return; 799 } 800 801 ext_debug("binsearch for %u: ", block); 802 803 l = EXT_FIRST_EXTENT(eh) + 1; 804 r = EXT_LAST_EXTENT(eh); 805 806 while (l <= r) { 807 m = l + (r - l) / 2; 808 if (block < le32_to_cpu(m->ee_block)) 809 r = m - 1; 810 else 811 l = m + 1; 812 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 813 m, le32_to_cpu(m->ee_block), 814 r, le32_to_cpu(r->ee_block)); 815 } 816 817 path->p_ext = l - 1; 818 ext_debug(" -> %d:%llu:[%d]%d ", 819 le32_to_cpu(path->p_ext->ee_block), 820 ext4_ext_pblock(path->p_ext), 821 ext4_ext_is_unwritten(path->p_ext), 822 ext4_ext_get_actual_len(path->p_ext)); 823 824 #ifdef CHECK_BINSEARCH 825 { 826 struct ext4_extent *chex, *ex; 827 int k; 828 829 chex = ex = EXT_FIRST_EXTENT(eh); 830 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 831 BUG_ON(k && le32_to_cpu(ex->ee_block) 832 <= le32_to_cpu(ex[-1].ee_block)); 833 if (block < le32_to_cpu(ex->ee_block)) 834 break; 835 chex = ex; 836 } 837 BUG_ON(chex != path->p_ext); 838 } 839 #endif 840 841 } 842 843 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 844 { 845 struct ext4_extent_header *eh; 846 847 eh = ext_inode_hdr(inode); 848 eh->eh_depth = 0; 849 eh->eh_entries = 0; 850 eh->eh_magic = EXT4_EXT_MAGIC; 851 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 852 ext4_mark_inode_dirty(handle, inode); 853 return 0; 854 } 855 856 struct ext4_ext_path * 857 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block, 858 struct ext4_ext_path **orig_path, int flags) 859 { 860 struct ext4_extent_header *eh; 861 struct buffer_head *bh; 862 struct ext4_ext_path *path = orig_path ? *orig_path : NULL; 863 short int depth, i, ppos = 0; 864 short free_on_err = (flags & EXT4_EX_NOFREE_ON_ERR) == 0; 865 int ret; 866 867 eh = ext_inode_hdr(inode); 868 depth = ext_depth(inode); 869 870 /* account possible depth increase */ 871 if (!path) { 872 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 873 GFP_NOFS); 874 if (unlikely(!path)) 875 return ERR_PTR(-ENOMEM); 876 free_on_err = 1; 877 } 878 path[0].p_hdr = eh; 879 path[0].p_bh = NULL; 880 881 i = depth; 882 /* walk through the tree */ 883 while (i) { 884 ext_debug("depth %d: num %d, max %d\n", 885 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 886 887 ext4_ext_binsearch_idx(inode, path + ppos, block); 888 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 889 path[ppos].p_depth = i; 890 path[ppos].p_ext = NULL; 891 892 bh = read_extent_tree_block(inode, path[ppos].p_block, --i, 893 flags); 894 if (unlikely(IS_ERR(bh))) { 895 ret = PTR_ERR(bh); 896 goto err; 897 } 898 899 eh = ext_block_hdr(bh); 900 ppos++; 901 if (unlikely(ppos > depth)) { 902 put_bh(bh); 903 EXT4_ERROR_INODE(inode, 904 "ppos %d > depth %d", ppos, depth); 905 ret = -EIO; 906 goto err; 907 } 908 path[ppos].p_bh = bh; 909 path[ppos].p_hdr = eh; 910 } 911 912 path[ppos].p_depth = i; 913 path[ppos].p_ext = NULL; 914 path[ppos].p_idx = NULL; 915 916 /* find extent */ 917 ext4_ext_binsearch(inode, path + ppos, block); 918 /* if not an empty leaf */ 919 if (path[ppos].p_ext) 920 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 921 922 ext4_ext_show_path(inode, path); 923 924 return path; 925 926 err: 927 ext4_ext_drop_refs(path); 928 if (free_on_err) { 929 kfree(path); 930 if (orig_path) 931 *orig_path = NULL; 932 } 933 return ERR_PTR(ret); 934 } 935 936 /* 937 * ext4_ext_insert_index: 938 * insert new index [@logical;@ptr] into the block at @curp; 939 * check where to insert: before @curp or after @curp 940 */ 941 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 942 struct ext4_ext_path *curp, 943 int logical, ext4_fsblk_t ptr) 944 { 945 struct ext4_extent_idx *ix; 946 int len, err; 947 948 err = ext4_ext_get_access(handle, inode, curp); 949 if (err) 950 return err; 951 952 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 953 EXT4_ERROR_INODE(inode, 954 "logical %d == ei_block %d!", 955 logical, le32_to_cpu(curp->p_idx->ei_block)); 956 return -EIO; 957 } 958 959 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 960 >= le16_to_cpu(curp->p_hdr->eh_max))) { 961 EXT4_ERROR_INODE(inode, 962 "eh_entries %d >= eh_max %d!", 963 le16_to_cpu(curp->p_hdr->eh_entries), 964 le16_to_cpu(curp->p_hdr->eh_max)); 965 return -EIO; 966 } 967 968 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 969 /* insert after */ 970 ext_debug("insert new index %d after: %llu\n", logical, ptr); 971 ix = curp->p_idx + 1; 972 } else { 973 /* insert before */ 974 ext_debug("insert new index %d before: %llu\n", logical, ptr); 975 ix = curp->p_idx; 976 } 977 978 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 979 BUG_ON(len < 0); 980 if (len > 0) { 981 ext_debug("insert new index %d: " 982 "move %d indices from 0x%p to 0x%p\n", 983 logical, len, ix, ix + 1); 984 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 985 } 986 987 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 988 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 989 return -EIO; 990 } 991 992 ix->ei_block = cpu_to_le32(logical); 993 ext4_idx_store_pblock(ix, ptr); 994 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 995 996 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 997 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 998 return -EIO; 999 } 1000 1001 err = ext4_ext_dirty(handle, inode, curp); 1002 ext4_std_error(inode->i_sb, err); 1003 1004 return err; 1005 } 1006 1007 /* 1008 * ext4_ext_split: 1009 * inserts new subtree into the path, using free index entry 1010 * at depth @at: 1011 * - allocates all needed blocks (new leaf and all intermediate index blocks) 1012 * - makes decision where to split 1013 * - moves remaining extents and index entries (right to the split point) 1014 * into the newly allocated blocks 1015 * - initializes subtree 1016 */ 1017 static int ext4_ext_split(handle_t *handle, struct inode *inode, 1018 unsigned int flags, 1019 struct ext4_ext_path *path, 1020 struct ext4_extent *newext, int at) 1021 { 1022 struct buffer_head *bh = NULL; 1023 int depth = ext_depth(inode); 1024 struct ext4_extent_header *neh; 1025 struct ext4_extent_idx *fidx; 1026 int i = at, k, m, a; 1027 ext4_fsblk_t newblock, oldblock; 1028 __le32 border; 1029 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 1030 int err = 0; 1031 1032 /* make decision: where to split? */ 1033 /* FIXME: now decision is simplest: at current extent */ 1034 1035 /* if current leaf will be split, then we should use 1036 * border from split point */ 1037 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 1038 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 1039 return -EIO; 1040 } 1041 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 1042 border = path[depth].p_ext[1].ee_block; 1043 ext_debug("leaf will be split." 1044 " next leaf starts at %d\n", 1045 le32_to_cpu(border)); 1046 } else { 1047 border = newext->ee_block; 1048 ext_debug("leaf will be added." 1049 " next leaf starts at %d\n", 1050 le32_to_cpu(border)); 1051 } 1052 1053 /* 1054 * If error occurs, then we break processing 1055 * and mark filesystem read-only. index won't 1056 * be inserted and tree will be in consistent 1057 * state. Next mount will repair buffers too. 1058 */ 1059 1060 /* 1061 * Get array to track all allocated blocks. 1062 * We need this to handle errors and free blocks 1063 * upon them. 1064 */ 1065 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 1066 if (!ablocks) 1067 return -ENOMEM; 1068 1069 /* allocate all needed blocks */ 1070 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 1071 for (a = 0; a < depth - at; a++) { 1072 newblock = ext4_ext_new_meta_block(handle, inode, path, 1073 newext, &err, flags); 1074 if (newblock == 0) 1075 goto cleanup; 1076 ablocks[a] = newblock; 1077 } 1078 1079 /* initialize new leaf */ 1080 newblock = ablocks[--a]; 1081 if (unlikely(newblock == 0)) { 1082 EXT4_ERROR_INODE(inode, "newblock == 0!"); 1083 err = -EIO; 1084 goto cleanup; 1085 } 1086 bh = sb_getblk(inode->i_sb, newblock); 1087 if (unlikely(!bh)) { 1088 err = -ENOMEM; 1089 goto cleanup; 1090 } 1091 lock_buffer(bh); 1092 1093 err = ext4_journal_get_create_access(handle, bh); 1094 if (err) 1095 goto cleanup; 1096 1097 neh = ext_block_hdr(bh); 1098 neh->eh_entries = 0; 1099 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1100 neh->eh_magic = EXT4_EXT_MAGIC; 1101 neh->eh_depth = 0; 1102 1103 /* move remainder of path[depth] to the new leaf */ 1104 if (unlikely(path[depth].p_hdr->eh_entries != 1105 path[depth].p_hdr->eh_max)) { 1106 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 1107 path[depth].p_hdr->eh_entries, 1108 path[depth].p_hdr->eh_max); 1109 err = -EIO; 1110 goto cleanup; 1111 } 1112 /* start copy from next extent */ 1113 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 1114 ext4_ext_show_move(inode, path, newblock, depth); 1115 if (m) { 1116 struct ext4_extent *ex; 1117 ex = EXT_FIRST_EXTENT(neh); 1118 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 1119 le16_add_cpu(&neh->eh_entries, m); 1120 } 1121 1122 ext4_extent_block_csum_set(inode, neh); 1123 set_buffer_uptodate(bh); 1124 unlock_buffer(bh); 1125 1126 err = ext4_handle_dirty_metadata(handle, inode, bh); 1127 if (err) 1128 goto cleanup; 1129 brelse(bh); 1130 bh = NULL; 1131 1132 /* correct old leaf */ 1133 if (m) { 1134 err = ext4_ext_get_access(handle, inode, path + depth); 1135 if (err) 1136 goto cleanup; 1137 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 1138 err = ext4_ext_dirty(handle, inode, path + depth); 1139 if (err) 1140 goto cleanup; 1141 1142 } 1143 1144 /* create intermediate indexes */ 1145 k = depth - at - 1; 1146 if (unlikely(k < 0)) { 1147 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 1148 err = -EIO; 1149 goto cleanup; 1150 } 1151 if (k) 1152 ext_debug("create %d intermediate indices\n", k); 1153 /* insert new index into current index block */ 1154 /* current depth stored in i var */ 1155 i = depth - 1; 1156 while (k--) { 1157 oldblock = newblock; 1158 newblock = ablocks[--a]; 1159 bh = sb_getblk(inode->i_sb, newblock); 1160 if (unlikely(!bh)) { 1161 err = -ENOMEM; 1162 goto cleanup; 1163 } 1164 lock_buffer(bh); 1165 1166 err = ext4_journal_get_create_access(handle, bh); 1167 if (err) 1168 goto cleanup; 1169 1170 neh = ext_block_hdr(bh); 1171 neh->eh_entries = cpu_to_le16(1); 1172 neh->eh_magic = EXT4_EXT_MAGIC; 1173 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1174 neh->eh_depth = cpu_to_le16(depth - i); 1175 fidx = EXT_FIRST_INDEX(neh); 1176 fidx->ei_block = border; 1177 ext4_idx_store_pblock(fidx, oldblock); 1178 1179 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 1180 i, newblock, le32_to_cpu(border), oldblock); 1181 1182 /* move remainder of path[i] to the new index block */ 1183 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 1184 EXT_LAST_INDEX(path[i].p_hdr))) { 1185 EXT4_ERROR_INODE(inode, 1186 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 1187 le32_to_cpu(path[i].p_ext->ee_block)); 1188 err = -EIO; 1189 goto cleanup; 1190 } 1191 /* start copy indexes */ 1192 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 1193 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 1194 EXT_MAX_INDEX(path[i].p_hdr)); 1195 ext4_ext_show_move(inode, path, newblock, i); 1196 if (m) { 1197 memmove(++fidx, path[i].p_idx, 1198 sizeof(struct ext4_extent_idx) * m); 1199 le16_add_cpu(&neh->eh_entries, m); 1200 } 1201 ext4_extent_block_csum_set(inode, neh); 1202 set_buffer_uptodate(bh); 1203 unlock_buffer(bh); 1204 1205 err = ext4_handle_dirty_metadata(handle, inode, bh); 1206 if (err) 1207 goto cleanup; 1208 brelse(bh); 1209 bh = NULL; 1210 1211 /* correct old index */ 1212 if (m) { 1213 err = ext4_ext_get_access(handle, inode, path + i); 1214 if (err) 1215 goto cleanup; 1216 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1217 err = ext4_ext_dirty(handle, inode, path + i); 1218 if (err) 1219 goto cleanup; 1220 } 1221 1222 i--; 1223 } 1224 1225 /* insert new index */ 1226 err = ext4_ext_insert_index(handle, inode, path + at, 1227 le32_to_cpu(border), newblock); 1228 1229 cleanup: 1230 if (bh) { 1231 if (buffer_locked(bh)) 1232 unlock_buffer(bh); 1233 brelse(bh); 1234 } 1235 1236 if (err) { 1237 /* free all allocated blocks in error case */ 1238 for (i = 0; i < depth; i++) { 1239 if (!ablocks[i]) 1240 continue; 1241 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1242 EXT4_FREE_BLOCKS_METADATA); 1243 } 1244 } 1245 kfree(ablocks); 1246 1247 return err; 1248 } 1249 1250 /* 1251 * ext4_ext_grow_indepth: 1252 * implements tree growing procedure: 1253 * - allocates new block 1254 * - moves top-level data (index block or leaf) into the new block 1255 * - initializes new top-level, creating index that points to the 1256 * just created block 1257 */ 1258 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1259 unsigned int flags, 1260 struct ext4_extent *newext) 1261 { 1262 struct ext4_extent_header *neh; 1263 struct buffer_head *bh; 1264 ext4_fsblk_t newblock; 1265 int err = 0; 1266 1267 newblock = ext4_ext_new_meta_block(handle, inode, NULL, 1268 newext, &err, flags); 1269 if (newblock == 0) 1270 return err; 1271 1272 bh = sb_getblk(inode->i_sb, newblock); 1273 if (unlikely(!bh)) 1274 return -ENOMEM; 1275 lock_buffer(bh); 1276 1277 err = ext4_journal_get_create_access(handle, bh); 1278 if (err) { 1279 unlock_buffer(bh); 1280 goto out; 1281 } 1282 1283 /* move top-level index/leaf into new block */ 1284 memmove(bh->b_data, EXT4_I(inode)->i_data, 1285 sizeof(EXT4_I(inode)->i_data)); 1286 1287 /* set size of new block */ 1288 neh = ext_block_hdr(bh); 1289 /* old root could have indexes or leaves 1290 * so calculate e_max right way */ 1291 if (ext_depth(inode)) 1292 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1293 else 1294 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1295 neh->eh_magic = EXT4_EXT_MAGIC; 1296 ext4_extent_block_csum_set(inode, neh); 1297 set_buffer_uptodate(bh); 1298 unlock_buffer(bh); 1299 1300 err = ext4_handle_dirty_metadata(handle, inode, bh); 1301 if (err) 1302 goto out; 1303 1304 /* Update top-level index: num,max,pointer */ 1305 neh = ext_inode_hdr(inode); 1306 neh->eh_entries = cpu_to_le16(1); 1307 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1308 if (neh->eh_depth == 0) { 1309 /* Root extent block becomes index block */ 1310 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1311 EXT_FIRST_INDEX(neh)->ei_block = 1312 EXT_FIRST_EXTENT(neh)->ee_block; 1313 } 1314 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1315 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1316 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1317 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1318 1319 le16_add_cpu(&neh->eh_depth, 1); 1320 ext4_mark_inode_dirty(handle, inode); 1321 out: 1322 brelse(bh); 1323 1324 return err; 1325 } 1326 1327 /* 1328 * ext4_ext_create_new_leaf: 1329 * finds empty index and adds new leaf. 1330 * if no free index is found, then it requests in-depth growing. 1331 */ 1332 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1333 unsigned int mb_flags, 1334 unsigned int gb_flags, 1335 struct ext4_ext_path *path, 1336 struct ext4_extent *newext) 1337 { 1338 struct ext4_ext_path *curp; 1339 int depth, i, err = 0; 1340 1341 repeat: 1342 i = depth = ext_depth(inode); 1343 1344 /* walk up to the tree and look for free index entry */ 1345 curp = path + depth; 1346 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1347 i--; 1348 curp--; 1349 } 1350 1351 /* we use already allocated block for index block, 1352 * so subsequent data blocks should be contiguous */ 1353 if (EXT_HAS_FREE_INDEX(curp)) { 1354 /* if we found index with free entry, then use that 1355 * entry: create all needed subtree and add new leaf */ 1356 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i); 1357 if (err) 1358 goto out; 1359 1360 /* refill path */ 1361 ext4_ext_drop_refs(path); 1362 path = ext4_ext_find_extent(inode, 1363 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1364 &path, gb_flags | EXT4_EX_NOFREE_ON_ERR); 1365 if (IS_ERR(path)) 1366 err = PTR_ERR(path); 1367 } else { 1368 /* tree is full, time to grow in depth */ 1369 err = ext4_ext_grow_indepth(handle, inode, mb_flags, newext); 1370 if (err) 1371 goto out; 1372 1373 /* refill path */ 1374 ext4_ext_drop_refs(path); 1375 path = ext4_ext_find_extent(inode, 1376 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1377 &path, gb_flags | EXT4_EX_NOFREE_ON_ERR); 1378 if (IS_ERR(path)) { 1379 err = PTR_ERR(path); 1380 goto out; 1381 } 1382 1383 /* 1384 * only first (depth 0 -> 1) produces free space; 1385 * in all other cases we have to split the grown tree 1386 */ 1387 depth = ext_depth(inode); 1388 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1389 /* now we need to split */ 1390 goto repeat; 1391 } 1392 } 1393 1394 out: 1395 return err; 1396 } 1397 1398 /* 1399 * search the closest allocated block to the left for *logical 1400 * and returns it at @logical + it's physical address at @phys 1401 * if *logical is the smallest allocated block, the function 1402 * returns 0 at @phys 1403 * return value contains 0 (success) or error code 1404 */ 1405 static int ext4_ext_search_left(struct inode *inode, 1406 struct ext4_ext_path *path, 1407 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1408 { 1409 struct ext4_extent_idx *ix; 1410 struct ext4_extent *ex; 1411 int depth, ee_len; 1412 1413 if (unlikely(path == NULL)) { 1414 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1415 return -EIO; 1416 } 1417 depth = path->p_depth; 1418 *phys = 0; 1419 1420 if (depth == 0 && path->p_ext == NULL) 1421 return 0; 1422 1423 /* usually extent in the path covers blocks smaller 1424 * then *logical, but it can be that extent is the 1425 * first one in the file */ 1426 1427 ex = path[depth].p_ext; 1428 ee_len = ext4_ext_get_actual_len(ex); 1429 if (*logical < le32_to_cpu(ex->ee_block)) { 1430 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1431 EXT4_ERROR_INODE(inode, 1432 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1433 *logical, le32_to_cpu(ex->ee_block)); 1434 return -EIO; 1435 } 1436 while (--depth >= 0) { 1437 ix = path[depth].p_idx; 1438 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1439 EXT4_ERROR_INODE(inode, 1440 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1441 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1442 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1443 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1444 depth); 1445 return -EIO; 1446 } 1447 } 1448 return 0; 1449 } 1450 1451 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1452 EXT4_ERROR_INODE(inode, 1453 "logical %d < ee_block %d + ee_len %d!", 1454 *logical, le32_to_cpu(ex->ee_block), ee_len); 1455 return -EIO; 1456 } 1457 1458 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1459 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1460 return 0; 1461 } 1462 1463 /* 1464 * search the closest allocated block to the right for *logical 1465 * and returns it at @logical + it's physical address at @phys 1466 * if *logical is the largest allocated block, the function 1467 * returns 0 at @phys 1468 * return value contains 0 (success) or error code 1469 */ 1470 static int ext4_ext_search_right(struct inode *inode, 1471 struct ext4_ext_path *path, 1472 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1473 struct ext4_extent **ret_ex) 1474 { 1475 struct buffer_head *bh = NULL; 1476 struct ext4_extent_header *eh; 1477 struct ext4_extent_idx *ix; 1478 struct ext4_extent *ex; 1479 ext4_fsblk_t block; 1480 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1481 int ee_len; 1482 1483 if (unlikely(path == NULL)) { 1484 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1485 return -EIO; 1486 } 1487 depth = path->p_depth; 1488 *phys = 0; 1489 1490 if (depth == 0 && path->p_ext == NULL) 1491 return 0; 1492 1493 /* usually extent in the path covers blocks smaller 1494 * then *logical, but it can be that extent is the 1495 * first one in the file */ 1496 1497 ex = path[depth].p_ext; 1498 ee_len = ext4_ext_get_actual_len(ex); 1499 if (*logical < le32_to_cpu(ex->ee_block)) { 1500 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1501 EXT4_ERROR_INODE(inode, 1502 "first_extent(path[%d].p_hdr) != ex", 1503 depth); 1504 return -EIO; 1505 } 1506 while (--depth >= 0) { 1507 ix = path[depth].p_idx; 1508 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1509 EXT4_ERROR_INODE(inode, 1510 "ix != EXT_FIRST_INDEX *logical %d!", 1511 *logical); 1512 return -EIO; 1513 } 1514 } 1515 goto found_extent; 1516 } 1517 1518 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1519 EXT4_ERROR_INODE(inode, 1520 "logical %d < ee_block %d + ee_len %d!", 1521 *logical, le32_to_cpu(ex->ee_block), ee_len); 1522 return -EIO; 1523 } 1524 1525 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1526 /* next allocated block in this leaf */ 1527 ex++; 1528 goto found_extent; 1529 } 1530 1531 /* go up and search for index to the right */ 1532 while (--depth >= 0) { 1533 ix = path[depth].p_idx; 1534 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1535 goto got_index; 1536 } 1537 1538 /* we've gone up to the root and found no index to the right */ 1539 return 0; 1540 1541 got_index: 1542 /* we've found index to the right, let's 1543 * follow it and find the closest allocated 1544 * block to the right */ 1545 ix++; 1546 block = ext4_idx_pblock(ix); 1547 while (++depth < path->p_depth) { 1548 /* subtract from p_depth to get proper eh_depth */ 1549 bh = read_extent_tree_block(inode, block, 1550 path->p_depth - depth, 0); 1551 if (IS_ERR(bh)) 1552 return PTR_ERR(bh); 1553 eh = ext_block_hdr(bh); 1554 ix = EXT_FIRST_INDEX(eh); 1555 block = ext4_idx_pblock(ix); 1556 put_bh(bh); 1557 } 1558 1559 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0); 1560 if (IS_ERR(bh)) 1561 return PTR_ERR(bh); 1562 eh = ext_block_hdr(bh); 1563 ex = EXT_FIRST_EXTENT(eh); 1564 found_extent: 1565 *logical = le32_to_cpu(ex->ee_block); 1566 *phys = ext4_ext_pblock(ex); 1567 *ret_ex = ex; 1568 if (bh) 1569 put_bh(bh); 1570 return 0; 1571 } 1572 1573 /* 1574 * ext4_ext_next_allocated_block: 1575 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1576 * NOTE: it considers block number from index entry as 1577 * allocated block. Thus, index entries have to be consistent 1578 * with leaves. 1579 */ 1580 ext4_lblk_t 1581 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1582 { 1583 int depth; 1584 1585 BUG_ON(path == NULL); 1586 depth = path->p_depth; 1587 1588 if (depth == 0 && path->p_ext == NULL) 1589 return EXT_MAX_BLOCKS; 1590 1591 while (depth >= 0) { 1592 if (depth == path->p_depth) { 1593 /* leaf */ 1594 if (path[depth].p_ext && 1595 path[depth].p_ext != 1596 EXT_LAST_EXTENT(path[depth].p_hdr)) 1597 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1598 } else { 1599 /* index */ 1600 if (path[depth].p_idx != 1601 EXT_LAST_INDEX(path[depth].p_hdr)) 1602 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1603 } 1604 depth--; 1605 } 1606 1607 return EXT_MAX_BLOCKS; 1608 } 1609 1610 /* 1611 * ext4_ext_next_leaf_block: 1612 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1613 */ 1614 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1615 { 1616 int depth; 1617 1618 BUG_ON(path == NULL); 1619 depth = path->p_depth; 1620 1621 /* zero-tree has no leaf blocks at all */ 1622 if (depth == 0) 1623 return EXT_MAX_BLOCKS; 1624 1625 /* go to index block */ 1626 depth--; 1627 1628 while (depth >= 0) { 1629 if (path[depth].p_idx != 1630 EXT_LAST_INDEX(path[depth].p_hdr)) 1631 return (ext4_lblk_t) 1632 le32_to_cpu(path[depth].p_idx[1].ei_block); 1633 depth--; 1634 } 1635 1636 return EXT_MAX_BLOCKS; 1637 } 1638 1639 /* 1640 * ext4_ext_correct_indexes: 1641 * if leaf gets modified and modified extent is first in the leaf, 1642 * then we have to correct all indexes above. 1643 * TODO: do we need to correct tree in all cases? 1644 */ 1645 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1646 struct ext4_ext_path *path) 1647 { 1648 struct ext4_extent_header *eh; 1649 int depth = ext_depth(inode); 1650 struct ext4_extent *ex; 1651 __le32 border; 1652 int k, err = 0; 1653 1654 eh = path[depth].p_hdr; 1655 ex = path[depth].p_ext; 1656 1657 if (unlikely(ex == NULL || eh == NULL)) { 1658 EXT4_ERROR_INODE(inode, 1659 "ex %p == NULL or eh %p == NULL", ex, eh); 1660 return -EIO; 1661 } 1662 1663 if (depth == 0) { 1664 /* there is no tree at all */ 1665 return 0; 1666 } 1667 1668 if (ex != EXT_FIRST_EXTENT(eh)) { 1669 /* we correct tree if first leaf got modified only */ 1670 return 0; 1671 } 1672 1673 /* 1674 * TODO: we need correction if border is smaller than current one 1675 */ 1676 k = depth - 1; 1677 border = path[depth].p_ext->ee_block; 1678 err = ext4_ext_get_access(handle, inode, path + k); 1679 if (err) 1680 return err; 1681 path[k].p_idx->ei_block = border; 1682 err = ext4_ext_dirty(handle, inode, path + k); 1683 if (err) 1684 return err; 1685 1686 while (k--) { 1687 /* change all left-side indexes */ 1688 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1689 break; 1690 err = ext4_ext_get_access(handle, inode, path + k); 1691 if (err) 1692 break; 1693 path[k].p_idx->ei_block = border; 1694 err = ext4_ext_dirty(handle, inode, path + k); 1695 if (err) 1696 break; 1697 } 1698 1699 return err; 1700 } 1701 1702 int 1703 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1704 struct ext4_extent *ex2) 1705 { 1706 unsigned short ext1_ee_len, ext2_ee_len; 1707 1708 /* 1709 * Make sure that both extents are initialized. We don't merge 1710 * unwritten extents so that we can be sure that end_io code has 1711 * the extent that was written properly split out and conversion to 1712 * initialized is trivial. 1713 */ 1714 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2)) 1715 return 0; 1716 1717 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1718 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1719 1720 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1721 le32_to_cpu(ex2->ee_block)) 1722 return 0; 1723 1724 /* 1725 * To allow future support for preallocated extents to be added 1726 * as an RO_COMPAT feature, refuse to merge to extents if 1727 * this can result in the top bit of ee_len being set. 1728 */ 1729 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN) 1730 return 0; 1731 if (ext4_ext_is_unwritten(ex1) && 1732 (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) || 1733 atomic_read(&EXT4_I(inode)->i_unwritten) || 1734 (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN))) 1735 return 0; 1736 #ifdef AGGRESSIVE_TEST 1737 if (ext1_ee_len >= 4) 1738 return 0; 1739 #endif 1740 1741 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1742 return 1; 1743 return 0; 1744 } 1745 1746 /* 1747 * This function tries to merge the "ex" extent to the next extent in the tree. 1748 * It always tries to merge towards right. If you want to merge towards 1749 * left, pass "ex - 1" as argument instead of "ex". 1750 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1751 * 1 if they got merged. 1752 */ 1753 static int ext4_ext_try_to_merge_right(struct inode *inode, 1754 struct ext4_ext_path *path, 1755 struct ext4_extent *ex) 1756 { 1757 struct ext4_extent_header *eh; 1758 unsigned int depth, len; 1759 int merge_done = 0, unwritten; 1760 1761 depth = ext_depth(inode); 1762 BUG_ON(path[depth].p_hdr == NULL); 1763 eh = path[depth].p_hdr; 1764 1765 while (ex < EXT_LAST_EXTENT(eh)) { 1766 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1767 break; 1768 /* merge with next extent! */ 1769 unwritten = ext4_ext_is_unwritten(ex); 1770 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1771 + ext4_ext_get_actual_len(ex + 1)); 1772 if (unwritten) 1773 ext4_ext_mark_unwritten(ex); 1774 1775 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1776 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1777 * sizeof(struct ext4_extent); 1778 memmove(ex + 1, ex + 2, len); 1779 } 1780 le16_add_cpu(&eh->eh_entries, -1); 1781 merge_done = 1; 1782 WARN_ON(eh->eh_entries == 0); 1783 if (!eh->eh_entries) 1784 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1785 } 1786 1787 return merge_done; 1788 } 1789 1790 /* 1791 * This function does a very simple check to see if we can collapse 1792 * an extent tree with a single extent tree leaf block into the inode. 1793 */ 1794 static void ext4_ext_try_to_merge_up(handle_t *handle, 1795 struct inode *inode, 1796 struct ext4_ext_path *path) 1797 { 1798 size_t s; 1799 unsigned max_root = ext4_ext_space_root(inode, 0); 1800 ext4_fsblk_t blk; 1801 1802 if ((path[0].p_depth != 1) || 1803 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || 1804 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) 1805 return; 1806 1807 /* 1808 * We need to modify the block allocation bitmap and the block 1809 * group descriptor to release the extent tree block. If we 1810 * can't get the journal credits, give up. 1811 */ 1812 if (ext4_journal_extend(handle, 2)) 1813 return; 1814 1815 /* 1816 * Copy the extent data up to the inode 1817 */ 1818 blk = ext4_idx_pblock(path[0].p_idx); 1819 s = le16_to_cpu(path[1].p_hdr->eh_entries) * 1820 sizeof(struct ext4_extent_idx); 1821 s += sizeof(struct ext4_extent_header); 1822 1823 memcpy(path[0].p_hdr, path[1].p_hdr, s); 1824 path[0].p_depth = 0; 1825 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + 1826 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); 1827 path[0].p_hdr->eh_max = cpu_to_le16(max_root); 1828 1829 brelse(path[1].p_bh); 1830 ext4_free_blocks(handle, inode, NULL, blk, 1, 1831 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 1832 } 1833 1834 /* 1835 * This function tries to merge the @ex extent to neighbours in the tree. 1836 * return 1 if merge left else 0. 1837 */ 1838 static void ext4_ext_try_to_merge(handle_t *handle, 1839 struct inode *inode, 1840 struct ext4_ext_path *path, 1841 struct ext4_extent *ex) { 1842 struct ext4_extent_header *eh; 1843 unsigned int depth; 1844 int merge_done = 0; 1845 1846 depth = ext_depth(inode); 1847 BUG_ON(path[depth].p_hdr == NULL); 1848 eh = path[depth].p_hdr; 1849 1850 if (ex > EXT_FIRST_EXTENT(eh)) 1851 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1852 1853 if (!merge_done) 1854 (void) ext4_ext_try_to_merge_right(inode, path, ex); 1855 1856 ext4_ext_try_to_merge_up(handle, inode, path); 1857 } 1858 1859 /* 1860 * check if a portion of the "newext" extent overlaps with an 1861 * existing extent. 1862 * 1863 * If there is an overlap discovered, it updates the length of the newext 1864 * such that there will be no overlap, and then returns 1. 1865 * If there is no overlap found, it returns 0. 1866 */ 1867 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1868 struct inode *inode, 1869 struct ext4_extent *newext, 1870 struct ext4_ext_path *path) 1871 { 1872 ext4_lblk_t b1, b2; 1873 unsigned int depth, len1; 1874 unsigned int ret = 0; 1875 1876 b1 = le32_to_cpu(newext->ee_block); 1877 len1 = ext4_ext_get_actual_len(newext); 1878 depth = ext_depth(inode); 1879 if (!path[depth].p_ext) 1880 goto out; 1881 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block)); 1882 1883 /* 1884 * get the next allocated block if the extent in the path 1885 * is before the requested block(s) 1886 */ 1887 if (b2 < b1) { 1888 b2 = ext4_ext_next_allocated_block(path); 1889 if (b2 == EXT_MAX_BLOCKS) 1890 goto out; 1891 b2 = EXT4_LBLK_CMASK(sbi, b2); 1892 } 1893 1894 /* check for wrap through zero on extent logical start block*/ 1895 if (b1 + len1 < b1) { 1896 len1 = EXT_MAX_BLOCKS - b1; 1897 newext->ee_len = cpu_to_le16(len1); 1898 ret = 1; 1899 } 1900 1901 /* check for overlap */ 1902 if (b1 + len1 > b2) { 1903 newext->ee_len = cpu_to_le16(b2 - b1); 1904 ret = 1; 1905 } 1906 out: 1907 return ret; 1908 } 1909 1910 /* 1911 * ext4_ext_insert_extent: 1912 * tries to merge requsted extent into the existing extent or 1913 * inserts requested extent as new one into the tree, 1914 * creating new leaf in the no-space case. 1915 */ 1916 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1917 struct ext4_ext_path *path, 1918 struct ext4_extent *newext, int gb_flags) 1919 { 1920 struct ext4_extent_header *eh; 1921 struct ext4_extent *ex, *fex; 1922 struct ext4_extent *nearex; /* nearest extent */ 1923 struct ext4_ext_path *npath = NULL; 1924 int depth, len, err; 1925 ext4_lblk_t next; 1926 int mb_flags = 0, unwritten; 1927 1928 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1929 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1930 return -EIO; 1931 } 1932 depth = ext_depth(inode); 1933 ex = path[depth].p_ext; 1934 eh = path[depth].p_hdr; 1935 if (unlikely(path[depth].p_hdr == NULL)) { 1936 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1937 return -EIO; 1938 } 1939 1940 /* try to insert block into found extent and return */ 1941 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) { 1942 1943 /* 1944 * Try to see whether we should rather test the extent on 1945 * right from ex, or from the left of ex. This is because 1946 * ext4_ext_find_extent() can return either extent on the 1947 * left, or on the right from the searched position. This 1948 * will make merging more effective. 1949 */ 1950 if (ex < EXT_LAST_EXTENT(eh) && 1951 (le32_to_cpu(ex->ee_block) + 1952 ext4_ext_get_actual_len(ex) < 1953 le32_to_cpu(newext->ee_block))) { 1954 ex += 1; 1955 goto prepend; 1956 } else if ((ex > EXT_FIRST_EXTENT(eh)) && 1957 (le32_to_cpu(newext->ee_block) + 1958 ext4_ext_get_actual_len(newext) < 1959 le32_to_cpu(ex->ee_block))) 1960 ex -= 1; 1961 1962 /* Try to append newex to the ex */ 1963 if (ext4_can_extents_be_merged(inode, ex, newext)) { 1964 ext_debug("append [%d]%d block to %u:[%d]%d" 1965 "(from %llu)\n", 1966 ext4_ext_is_unwritten(newext), 1967 ext4_ext_get_actual_len(newext), 1968 le32_to_cpu(ex->ee_block), 1969 ext4_ext_is_unwritten(ex), 1970 ext4_ext_get_actual_len(ex), 1971 ext4_ext_pblock(ex)); 1972 err = ext4_ext_get_access(handle, inode, 1973 path + depth); 1974 if (err) 1975 return err; 1976 unwritten = ext4_ext_is_unwritten(ex); 1977 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1978 + ext4_ext_get_actual_len(newext)); 1979 if (unwritten) 1980 ext4_ext_mark_unwritten(ex); 1981 eh = path[depth].p_hdr; 1982 nearex = ex; 1983 goto merge; 1984 } 1985 1986 prepend: 1987 /* Try to prepend newex to the ex */ 1988 if (ext4_can_extents_be_merged(inode, newext, ex)) { 1989 ext_debug("prepend %u[%d]%d block to %u:[%d]%d" 1990 "(from %llu)\n", 1991 le32_to_cpu(newext->ee_block), 1992 ext4_ext_is_unwritten(newext), 1993 ext4_ext_get_actual_len(newext), 1994 le32_to_cpu(ex->ee_block), 1995 ext4_ext_is_unwritten(ex), 1996 ext4_ext_get_actual_len(ex), 1997 ext4_ext_pblock(ex)); 1998 err = ext4_ext_get_access(handle, inode, 1999 path + depth); 2000 if (err) 2001 return err; 2002 2003 unwritten = ext4_ext_is_unwritten(ex); 2004 ex->ee_block = newext->ee_block; 2005 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext)); 2006 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 2007 + ext4_ext_get_actual_len(newext)); 2008 if (unwritten) 2009 ext4_ext_mark_unwritten(ex); 2010 eh = path[depth].p_hdr; 2011 nearex = ex; 2012 goto merge; 2013 } 2014 } 2015 2016 depth = ext_depth(inode); 2017 eh = path[depth].p_hdr; 2018 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 2019 goto has_space; 2020 2021 /* probably next leaf has space for us? */ 2022 fex = EXT_LAST_EXTENT(eh); 2023 next = EXT_MAX_BLOCKS; 2024 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 2025 next = ext4_ext_next_leaf_block(path); 2026 if (next != EXT_MAX_BLOCKS) { 2027 ext_debug("next leaf block - %u\n", next); 2028 BUG_ON(npath != NULL); 2029 npath = ext4_ext_find_extent(inode, next, NULL, 0); 2030 if (IS_ERR(npath)) 2031 return PTR_ERR(npath); 2032 BUG_ON(npath->p_depth != path->p_depth); 2033 eh = npath[depth].p_hdr; 2034 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 2035 ext_debug("next leaf isn't full(%d)\n", 2036 le16_to_cpu(eh->eh_entries)); 2037 path = npath; 2038 goto has_space; 2039 } 2040 ext_debug("next leaf has no free space(%d,%d)\n", 2041 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 2042 } 2043 2044 /* 2045 * There is no free space in the found leaf. 2046 * We're gonna add a new leaf in the tree. 2047 */ 2048 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 2049 mb_flags = EXT4_MB_USE_RESERVED; 2050 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags, 2051 path, newext); 2052 if (err) 2053 goto cleanup; 2054 depth = ext_depth(inode); 2055 eh = path[depth].p_hdr; 2056 2057 has_space: 2058 nearex = path[depth].p_ext; 2059 2060 err = ext4_ext_get_access(handle, inode, path + depth); 2061 if (err) 2062 goto cleanup; 2063 2064 if (!nearex) { 2065 /* there is no extent in this leaf, create first one */ 2066 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 2067 le32_to_cpu(newext->ee_block), 2068 ext4_ext_pblock(newext), 2069 ext4_ext_is_unwritten(newext), 2070 ext4_ext_get_actual_len(newext)); 2071 nearex = EXT_FIRST_EXTENT(eh); 2072 } else { 2073 if (le32_to_cpu(newext->ee_block) 2074 > le32_to_cpu(nearex->ee_block)) { 2075 /* Insert after */ 2076 ext_debug("insert %u:%llu:[%d]%d before: " 2077 "nearest %p\n", 2078 le32_to_cpu(newext->ee_block), 2079 ext4_ext_pblock(newext), 2080 ext4_ext_is_unwritten(newext), 2081 ext4_ext_get_actual_len(newext), 2082 nearex); 2083 nearex++; 2084 } else { 2085 /* Insert before */ 2086 BUG_ON(newext->ee_block == nearex->ee_block); 2087 ext_debug("insert %u:%llu:[%d]%d after: " 2088 "nearest %p\n", 2089 le32_to_cpu(newext->ee_block), 2090 ext4_ext_pblock(newext), 2091 ext4_ext_is_unwritten(newext), 2092 ext4_ext_get_actual_len(newext), 2093 nearex); 2094 } 2095 len = EXT_LAST_EXTENT(eh) - nearex + 1; 2096 if (len > 0) { 2097 ext_debug("insert %u:%llu:[%d]%d: " 2098 "move %d extents from 0x%p to 0x%p\n", 2099 le32_to_cpu(newext->ee_block), 2100 ext4_ext_pblock(newext), 2101 ext4_ext_is_unwritten(newext), 2102 ext4_ext_get_actual_len(newext), 2103 len, nearex, nearex + 1); 2104 memmove(nearex + 1, nearex, 2105 len * sizeof(struct ext4_extent)); 2106 } 2107 } 2108 2109 le16_add_cpu(&eh->eh_entries, 1); 2110 path[depth].p_ext = nearex; 2111 nearex->ee_block = newext->ee_block; 2112 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 2113 nearex->ee_len = newext->ee_len; 2114 2115 merge: 2116 /* try to merge extents */ 2117 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) 2118 ext4_ext_try_to_merge(handle, inode, path, nearex); 2119 2120 2121 /* time to correct all indexes above */ 2122 err = ext4_ext_correct_indexes(handle, inode, path); 2123 if (err) 2124 goto cleanup; 2125 2126 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 2127 2128 cleanup: 2129 if (npath) { 2130 ext4_ext_drop_refs(npath); 2131 kfree(npath); 2132 } 2133 return err; 2134 } 2135 2136 static int ext4_fill_fiemap_extents(struct inode *inode, 2137 ext4_lblk_t block, ext4_lblk_t num, 2138 struct fiemap_extent_info *fieinfo) 2139 { 2140 struct ext4_ext_path *path = NULL; 2141 struct ext4_extent *ex; 2142 struct extent_status es; 2143 ext4_lblk_t next, next_del, start = 0, end = 0; 2144 ext4_lblk_t last = block + num; 2145 int exists, depth = 0, err = 0; 2146 unsigned int flags = 0; 2147 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 2148 2149 while (block < last && block != EXT_MAX_BLOCKS) { 2150 num = last - block; 2151 /* find extent for this block */ 2152 down_read(&EXT4_I(inode)->i_data_sem); 2153 2154 if (path && ext_depth(inode) != depth) { 2155 /* depth was changed. we have to realloc path */ 2156 kfree(path); 2157 path = NULL; 2158 } 2159 2160 path = ext4_ext_find_extent(inode, block, &path, 0); 2161 if (IS_ERR(path)) { 2162 up_read(&EXT4_I(inode)->i_data_sem); 2163 err = PTR_ERR(path); 2164 path = NULL; 2165 break; 2166 } 2167 2168 depth = ext_depth(inode); 2169 if (unlikely(path[depth].p_hdr == NULL)) { 2170 up_read(&EXT4_I(inode)->i_data_sem); 2171 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2172 err = -EIO; 2173 break; 2174 } 2175 ex = path[depth].p_ext; 2176 next = ext4_ext_next_allocated_block(path); 2177 ext4_ext_drop_refs(path); 2178 2179 flags = 0; 2180 exists = 0; 2181 if (!ex) { 2182 /* there is no extent yet, so try to allocate 2183 * all requested space */ 2184 start = block; 2185 end = block + num; 2186 } else if (le32_to_cpu(ex->ee_block) > block) { 2187 /* need to allocate space before found extent */ 2188 start = block; 2189 end = le32_to_cpu(ex->ee_block); 2190 if (block + num < end) 2191 end = block + num; 2192 } else if (block >= le32_to_cpu(ex->ee_block) 2193 + ext4_ext_get_actual_len(ex)) { 2194 /* need to allocate space after found extent */ 2195 start = block; 2196 end = block + num; 2197 if (end >= next) 2198 end = next; 2199 } else if (block >= le32_to_cpu(ex->ee_block)) { 2200 /* 2201 * some part of requested space is covered 2202 * by found extent 2203 */ 2204 start = block; 2205 end = le32_to_cpu(ex->ee_block) 2206 + ext4_ext_get_actual_len(ex); 2207 if (block + num < end) 2208 end = block + num; 2209 exists = 1; 2210 } else { 2211 BUG(); 2212 } 2213 BUG_ON(end <= start); 2214 2215 if (!exists) { 2216 es.es_lblk = start; 2217 es.es_len = end - start; 2218 es.es_pblk = 0; 2219 } else { 2220 es.es_lblk = le32_to_cpu(ex->ee_block); 2221 es.es_len = ext4_ext_get_actual_len(ex); 2222 es.es_pblk = ext4_ext_pblock(ex); 2223 if (ext4_ext_is_unwritten(ex)) 2224 flags |= FIEMAP_EXTENT_UNWRITTEN; 2225 } 2226 2227 /* 2228 * Find delayed extent and update es accordingly. We call 2229 * it even in !exists case to find out whether es is the 2230 * last existing extent or not. 2231 */ 2232 next_del = ext4_find_delayed_extent(inode, &es); 2233 if (!exists && next_del) { 2234 exists = 1; 2235 flags |= (FIEMAP_EXTENT_DELALLOC | 2236 FIEMAP_EXTENT_UNKNOWN); 2237 } 2238 up_read(&EXT4_I(inode)->i_data_sem); 2239 2240 if (unlikely(es.es_len == 0)) { 2241 EXT4_ERROR_INODE(inode, "es.es_len == 0"); 2242 err = -EIO; 2243 break; 2244 } 2245 2246 /* 2247 * This is possible iff next == next_del == EXT_MAX_BLOCKS. 2248 * we need to check next == EXT_MAX_BLOCKS because it is 2249 * possible that an extent is with unwritten and delayed 2250 * status due to when an extent is delayed allocated and 2251 * is allocated by fallocate status tree will track both of 2252 * them in a extent. 2253 * 2254 * So we could return a unwritten and delayed extent, and 2255 * its block is equal to 'next'. 2256 */ 2257 if (next == next_del && next == EXT_MAX_BLOCKS) { 2258 flags |= FIEMAP_EXTENT_LAST; 2259 if (unlikely(next_del != EXT_MAX_BLOCKS || 2260 next != EXT_MAX_BLOCKS)) { 2261 EXT4_ERROR_INODE(inode, 2262 "next extent == %u, next " 2263 "delalloc extent = %u", 2264 next, next_del); 2265 err = -EIO; 2266 break; 2267 } 2268 } 2269 2270 if (exists) { 2271 err = fiemap_fill_next_extent(fieinfo, 2272 (__u64)es.es_lblk << blksize_bits, 2273 (__u64)es.es_pblk << blksize_bits, 2274 (__u64)es.es_len << blksize_bits, 2275 flags); 2276 if (err < 0) 2277 break; 2278 if (err == 1) { 2279 err = 0; 2280 break; 2281 } 2282 } 2283 2284 block = es.es_lblk + es.es_len; 2285 } 2286 2287 if (path) { 2288 ext4_ext_drop_refs(path); 2289 kfree(path); 2290 } 2291 2292 return err; 2293 } 2294 2295 /* 2296 * ext4_ext_put_gap_in_cache: 2297 * calculate boundaries of the gap that the requested block fits into 2298 * and cache this gap 2299 */ 2300 static void 2301 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, 2302 ext4_lblk_t block) 2303 { 2304 int depth = ext_depth(inode); 2305 unsigned long len = 0; 2306 ext4_lblk_t lblock = 0; 2307 struct ext4_extent *ex; 2308 2309 ex = path[depth].p_ext; 2310 if (ex == NULL) { 2311 /* 2312 * there is no extent yet, so gap is [0;-] and we 2313 * don't cache it 2314 */ 2315 ext_debug("cache gap(whole file):"); 2316 } else if (block < le32_to_cpu(ex->ee_block)) { 2317 lblock = block; 2318 len = le32_to_cpu(ex->ee_block) - block; 2319 ext_debug("cache gap(before): %u [%u:%u]", 2320 block, 2321 le32_to_cpu(ex->ee_block), 2322 ext4_ext_get_actual_len(ex)); 2323 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1)) 2324 ext4_es_insert_extent(inode, lblock, len, ~0, 2325 EXTENT_STATUS_HOLE); 2326 } else if (block >= le32_to_cpu(ex->ee_block) 2327 + ext4_ext_get_actual_len(ex)) { 2328 ext4_lblk_t next; 2329 lblock = le32_to_cpu(ex->ee_block) 2330 + ext4_ext_get_actual_len(ex); 2331 2332 next = ext4_ext_next_allocated_block(path); 2333 ext_debug("cache gap(after): [%u:%u] %u", 2334 le32_to_cpu(ex->ee_block), 2335 ext4_ext_get_actual_len(ex), 2336 block); 2337 BUG_ON(next == lblock); 2338 len = next - lblock; 2339 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1)) 2340 ext4_es_insert_extent(inode, lblock, len, ~0, 2341 EXTENT_STATUS_HOLE); 2342 } else { 2343 BUG(); 2344 } 2345 2346 ext_debug(" -> %u:%lu\n", lblock, len); 2347 } 2348 2349 /* 2350 * ext4_ext_rm_idx: 2351 * removes index from the index block. 2352 */ 2353 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2354 struct ext4_ext_path *path, int depth) 2355 { 2356 int err; 2357 ext4_fsblk_t leaf; 2358 2359 /* free index block */ 2360 depth--; 2361 path = path + depth; 2362 leaf = ext4_idx_pblock(path->p_idx); 2363 if (unlikely(path->p_hdr->eh_entries == 0)) { 2364 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2365 return -EIO; 2366 } 2367 err = ext4_ext_get_access(handle, inode, path); 2368 if (err) 2369 return err; 2370 2371 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2372 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2373 len *= sizeof(struct ext4_extent_idx); 2374 memmove(path->p_idx, path->p_idx + 1, len); 2375 } 2376 2377 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2378 err = ext4_ext_dirty(handle, inode, path); 2379 if (err) 2380 return err; 2381 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2382 trace_ext4_ext_rm_idx(inode, leaf); 2383 2384 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2385 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2386 2387 while (--depth >= 0) { 2388 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr)) 2389 break; 2390 path--; 2391 err = ext4_ext_get_access(handle, inode, path); 2392 if (err) 2393 break; 2394 path->p_idx->ei_block = (path+1)->p_idx->ei_block; 2395 err = ext4_ext_dirty(handle, inode, path); 2396 if (err) 2397 break; 2398 } 2399 return err; 2400 } 2401 2402 /* 2403 * ext4_ext_calc_credits_for_single_extent: 2404 * This routine returns max. credits that needed to insert an extent 2405 * to the extent tree. 2406 * When pass the actual path, the caller should calculate credits 2407 * under i_data_sem. 2408 */ 2409 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2410 struct ext4_ext_path *path) 2411 { 2412 if (path) { 2413 int depth = ext_depth(inode); 2414 int ret = 0; 2415 2416 /* probably there is space in leaf? */ 2417 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2418 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2419 2420 /* 2421 * There are some space in the leaf tree, no 2422 * need to account for leaf block credit 2423 * 2424 * bitmaps and block group descriptor blocks 2425 * and other metadata blocks still need to be 2426 * accounted. 2427 */ 2428 /* 1 bitmap, 1 block group descriptor */ 2429 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2430 return ret; 2431 } 2432 } 2433 2434 return ext4_chunk_trans_blocks(inode, nrblocks); 2435 } 2436 2437 /* 2438 * How many index/leaf blocks need to change/allocate to add @extents extents? 2439 * 2440 * If we add a single extent, then in the worse case, each tree level 2441 * index/leaf need to be changed in case of the tree split. 2442 * 2443 * If more extents are inserted, they could cause the whole tree split more 2444 * than once, but this is really rare. 2445 */ 2446 int ext4_ext_index_trans_blocks(struct inode *inode, int extents) 2447 { 2448 int index; 2449 int depth; 2450 2451 /* If we are converting the inline data, only one is needed here. */ 2452 if (ext4_has_inline_data(inode)) 2453 return 1; 2454 2455 depth = ext_depth(inode); 2456 2457 if (extents <= 1) 2458 index = depth * 2; 2459 else 2460 index = depth * 3; 2461 2462 return index; 2463 } 2464 2465 static inline int get_default_free_blocks_flags(struct inode *inode) 2466 { 2467 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2468 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; 2469 else if (ext4_should_journal_data(inode)) 2470 return EXT4_FREE_BLOCKS_FORGET; 2471 return 0; 2472 } 2473 2474 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2475 struct ext4_extent *ex, 2476 long long *partial_cluster, 2477 ext4_lblk_t from, ext4_lblk_t to) 2478 { 2479 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2480 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2481 ext4_fsblk_t pblk; 2482 int flags = get_default_free_blocks_flags(inode); 2483 2484 /* 2485 * For bigalloc file systems, we never free a partial cluster 2486 * at the beginning of the extent. Instead, we make a note 2487 * that we tried freeing the cluster, and check to see if we 2488 * need to free it on a subsequent call to ext4_remove_blocks, 2489 * or at the end of the ext4_truncate() operation. 2490 */ 2491 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2492 2493 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster); 2494 /* 2495 * If we have a partial cluster, and it's different from the 2496 * cluster of the last block, we need to explicitly free the 2497 * partial cluster here. 2498 */ 2499 pblk = ext4_ext_pblock(ex) + ee_len - 1; 2500 if ((*partial_cluster > 0) && 2501 (EXT4_B2C(sbi, pblk) != *partial_cluster)) { 2502 ext4_free_blocks(handle, inode, NULL, 2503 EXT4_C2B(sbi, *partial_cluster), 2504 sbi->s_cluster_ratio, flags); 2505 *partial_cluster = 0; 2506 } 2507 2508 #ifdef EXTENTS_STATS 2509 { 2510 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2511 spin_lock(&sbi->s_ext_stats_lock); 2512 sbi->s_ext_blocks += ee_len; 2513 sbi->s_ext_extents++; 2514 if (ee_len < sbi->s_ext_min) 2515 sbi->s_ext_min = ee_len; 2516 if (ee_len > sbi->s_ext_max) 2517 sbi->s_ext_max = ee_len; 2518 if (ext_depth(inode) > sbi->s_depth_max) 2519 sbi->s_depth_max = ext_depth(inode); 2520 spin_unlock(&sbi->s_ext_stats_lock); 2521 } 2522 #endif 2523 if (from >= le32_to_cpu(ex->ee_block) 2524 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 2525 /* tail removal */ 2526 ext4_lblk_t num; 2527 unsigned int unaligned; 2528 2529 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2530 pblk = ext4_ext_pblock(ex) + ee_len - num; 2531 /* 2532 * Usually we want to free partial cluster at the end of the 2533 * extent, except for the situation when the cluster is still 2534 * used by any other extent (partial_cluster is negative). 2535 */ 2536 if (*partial_cluster < 0 && 2537 -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1)) 2538 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER; 2539 2540 ext_debug("free last %u blocks starting %llu partial %lld\n", 2541 num, pblk, *partial_cluster); 2542 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2543 /* 2544 * If the block range to be freed didn't start at the 2545 * beginning of a cluster, and we removed the entire 2546 * extent and the cluster is not used by any other extent, 2547 * save the partial cluster here, since we might need to 2548 * delete if we determine that the truncate operation has 2549 * removed all of the blocks in the cluster. 2550 * 2551 * On the other hand, if we did not manage to free the whole 2552 * extent, we have to mark the cluster as used (store negative 2553 * cluster number in partial_cluster). 2554 */ 2555 unaligned = EXT4_PBLK_COFF(sbi, pblk); 2556 if (unaligned && (ee_len == num) && 2557 (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk)))) 2558 *partial_cluster = EXT4_B2C(sbi, pblk); 2559 else if (unaligned) 2560 *partial_cluster = -((long long)EXT4_B2C(sbi, pblk)); 2561 else if (*partial_cluster > 0) 2562 *partial_cluster = 0; 2563 } else 2564 ext4_error(sbi->s_sb, "strange request: removal(2) " 2565 "%u-%u from %u:%u\n", 2566 from, to, le32_to_cpu(ex->ee_block), ee_len); 2567 return 0; 2568 } 2569 2570 2571 /* 2572 * ext4_ext_rm_leaf() Removes the extents associated with the 2573 * blocks appearing between "start" and "end", and splits the extents 2574 * if "start" and "end" appear in the same extent 2575 * 2576 * @handle: The journal handle 2577 * @inode: The files inode 2578 * @path: The path to the leaf 2579 * @partial_cluster: The cluster which we'll have to free if all extents 2580 * has been released from it. It gets negative in case 2581 * that the cluster is still used. 2582 * @start: The first block to remove 2583 * @end: The last block to remove 2584 */ 2585 static int 2586 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2587 struct ext4_ext_path *path, 2588 long long *partial_cluster, 2589 ext4_lblk_t start, ext4_lblk_t end) 2590 { 2591 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2592 int err = 0, correct_index = 0; 2593 int depth = ext_depth(inode), credits; 2594 struct ext4_extent_header *eh; 2595 ext4_lblk_t a, b; 2596 unsigned num; 2597 ext4_lblk_t ex_ee_block; 2598 unsigned short ex_ee_len; 2599 unsigned unwritten = 0; 2600 struct ext4_extent *ex; 2601 ext4_fsblk_t pblk; 2602 2603 /* the header must be checked already in ext4_ext_remove_space() */ 2604 ext_debug("truncate since %u in leaf to %u\n", start, end); 2605 if (!path[depth].p_hdr) 2606 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2607 eh = path[depth].p_hdr; 2608 if (unlikely(path[depth].p_hdr == NULL)) { 2609 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2610 return -EIO; 2611 } 2612 /* find where to start removing */ 2613 ex = path[depth].p_ext; 2614 if (!ex) 2615 ex = EXT_LAST_EXTENT(eh); 2616 2617 ex_ee_block = le32_to_cpu(ex->ee_block); 2618 ex_ee_len = ext4_ext_get_actual_len(ex); 2619 2620 /* 2621 * If we're starting with an extent other than the last one in the 2622 * node, we need to see if it shares a cluster with the extent to 2623 * the right (towards the end of the file). If its leftmost cluster 2624 * is this extent's rightmost cluster and it is not cluster aligned, 2625 * we'll mark it as a partial that is not to be deallocated. 2626 */ 2627 2628 if (ex != EXT_LAST_EXTENT(eh)) { 2629 ext4_fsblk_t current_pblk, right_pblk; 2630 long long current_cluster, right_cluster; 2631 2632 current_pblk = ext4_ext_pblock(ex) + ex_ee_len - 1; 2633 current_cluster = (long long)EXT4_B2C(sbi, current_pblk); 2634 right_pblk = ext4_ext_pblock(ex + 1); 2635 right_cluster = (long long)EXT4_B2C(sbi, right_pblk); 2636 if (current_cluster == right_cluster && 2637 EXT4_PBLK_COFF(sbi, right_pblk)) 2638 *partial_cluster = -right_cluster; 2639 } 2640 2641 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster); 2642 2643 while (ex >= EXT_FIRST_EXTENT(eh) && 2644 ex_ee_block + ex_ee_len > start) { 2645 2646 if (ext4_ext_is_unwritten(ex)) 2647 unwritten = 1; 2648 else 2649 unwritten = 0; 2650 2651 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2652 unwritten, ex_ee_len); 2653 path[depth].p_ext = ex; 2654 2655 a = ex_ee_block > start ? ex_ee_block : start; 2656 b = ex_ee_block+ex_ee_len - 1 < end ? 2657 ex_ee_block+ex_ee_len - 1 : end; 2658 2659 ext_debug(" border %u:%u\n", a, b); 2660 2661 /* If this extent is beyond the end of the hole, skip it */ 2662 if (end < ex_ee_block) { 2663 /* 2664 * We're going to skip this extent and move to another, 2665 * so if this extent is not cluster aligned we have 2666 * to mark the current cluster as used to avoid 2667 * accidentally freeing it later on 2668 */ 2669 pblk = ext4_ext_pblock(ex); 2670 if (EXT4_PBLK_COFF(sbi, pblk)) 2671 *partial_cluster = 2672 -((long long)EXT4_B2C(sbi, pblk)); 2673 ex--; 2674 ex_ee_block = le32_to_cpu(ex->ee_block); 2675 ex_ee_len = ext4_ext_get_actual_len(ex); 2676 continue; 2677 } else if (b != ex_ee_block + ex_ee_len - 1) { 2678 EXT4_ERROR_INODE(inode, 2679 "can not handle truncate %u:%u " 2680 "on extent %u:%u", 2681 start, end, ex_ee_block, 2682 ex_ee_block + ex_ee_len - 1); 2683 err = -EIO; 2684 goto out; 2685 } else if (a != ex_ee_block) { 2686 /* remove tail of the extent */ 2687 num = a - ex_ee_block; 2688 } else { 2689 /* remove whole extent: excellent! */ 2690 num = 0; 2691 } 2692 /* 2693 * 3 for leaf, sb, and inode plus 2 (bmap and group 2694 * descriptor) for each block group; assume two block 2695 * groups plus ex_ee_len/blocks_per_block_group for 2696 * the worst case 2697 */ 2698 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2699 if (ex == EXT_FIRST_EXTENT(eh)) { 2700 correct_index = 1; 2701 credits += (ext_depth(inode)) + 1; 2702 } 2703 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2704 2705 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2706 if (err) 2707 goto out; 2708 2709 err = ext4_ext_get_access(handle, inode, path + depth); 2710 if (err) 2711 goto out; 2712 2713 err = ext4_remove_blocks(handle, inode, ex, partial_cluster, 2714 a, b); 2715 if (err) 2716 goto out; 2717 2718 if (num == 0) 2719 /* this extent is removed; mark slot entirely unused */ 2720 ext4_ext_store_pblock(ex, 0); 2721 2722 ex->ee_len = cpu_to_le16(num); 2723 /* 2724 * Do not mark unwritten if all the blocks in the 2725 * extent have been removed. 2726 */ 2727 if (unwritten && num) 2728 ext4_ext_mark_unwritten(ex); 2729 /* 2730 * If the extent was completely released, 2731 * we need to remove it from the leaf 2732 */ 2733 if (num == 0) { 2734 if (end != EXT_MAX_BLOCKS - 1) { 2735 /* 2736 * For hole punching, we need to scoot all the 2737 * extents up when an extent is removed so that 2738 * we dont have blank extents in the middle 2739 */ 2740 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2741 sizeof(struct ext4_extent)); 2742 2743 /* Now get rid of the one at the end */ 2744 memset(EXT_LAST_EXTENT(eh), 0, 2745 sizeof(struct ext4_extent)); 2746 } 2747 le16_add_cpu(&eh->eh_entries, -1); 2748 } else if (*partial_cluster > 0) 2749 *partial_cluster = 0; 2750 2751 err = ext4_ext_dirty(handle, inode, path + depth); 2752 if (err) 2753 goto out; 2754 2755 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, 2756 ext4_ext_pblock(ex)); 2757 ex--; 2758 ex_ee_block = le32_to_cpu(ex->ee_block); 2759 ex_ee_len = ext4_ext_get_actual_len(ex); 2760 } 2761 2762 if (correct_index && eh->eh_entries) 2763 err = ext4_ext_correct_indexes(handle, inode, path); 2764 2765 /* 2766 * If there's a partial cluster and at least one extent remains in 2767 * the leaf, free the partial cluster if it isn't shared with the 2768 * current extent. If there's a partial cluster and no extents 2769 * remain in the leaf, it can't be freed here. It can only be 2770 * freed when it's possible to determine if it's not shared with 2771 * any other extent - when the next leaf is processed or when space 2772 * removal is complete. 2773 */ 2774 if (*partial_cluster > 0 && eh->eh_entries && 2775 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) != 2776 *partial_cluster)) { 2777 int flags = get_default_free_blocks_flags(inode); 2778 2779 ext4_free_blocks(handle, inode, NULL, 2780 EXT4_C2B(sbi, *partial_cluster), 2781 sbi->s_cluster_ratio, flags); 2782 *partial_cluster = 0; 2783 } 2784 2785 /* if this leaf is free, then we should 2786 * remove it from index block above */ 2787 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2788 err = ext4_ext_rm_idx(handle, inode, path, depth); 2789 2790 out: 2791 return err; 2792 } 2793 2794 /* 2795 * ext4_ext_more_to_rm: 2796 * returns 1 if current index has to be freed (even partial) 2797 */ 2798 static int 2799 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2800 { 2801 BUG_ON(path->p_idx == NULL); 2802 2803 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2804 return 0; 2805 2806 /* 2807 * if truncate on deeper level happened, it wasn't partial, 2808 * so we have to consider current index for truncation 2809 */ 2810 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2811 return 0; 2812 return 1; 2813 } 2814 2815 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2816 ext4_lblk_t end) 2817 { 2818 struct super_block *sb = inode->i_sb; 2819 int depth = ext_depth(inode); 2820 struct ext4_ext_path *path = NULL; 2821 long long partial_cluster = 0; 2822 handle_t *handle; 2823 int i = 0, err = 0; 2824 2825 ext_debug("truncate since %u to %u\n", start, end); 2826 2827 /* probably first extent we're gonna free will be last in block */ 2828 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1); 2829 if (IS_ERR(handle)) 2830 return PTR_ERR(handle); 2831 2832 again: 2833 trace_ext4_ext_remove_space(inode, start, end, depth); 2834 2835 /* 2836 * Check if we are removing extents inside the extent tree. If that 2837 * is the case, we are going to punch a hole inside the extent tree 2838 * so we have to check whether we need to split the extent covering 2839 * the last block to remove so we can easily remove the part of it 2840 * in ext4_ext_rm_leaf(). 2841 */ 2842 if (end < EXT_MAX_BLOCKS - 1) { 2843 struct ext4_extent *ex; 2844 ext4_lblk_t ee_block; 2845 2846 /* find extent for this block */ 2847 path = ext4_ext_find_extent(inode, end, NULL, EXT4_EX_NOCACHE); 2848 if (IS_ERR(path)) { 2849 ext4_journal_stop(handle); 2850 return PTR_ERR(path); 2851 } 2852 depth = ext_depth(inode); 2853 /* Leaf not may not exist only if inode has no blocks at all */ 2854 ex = path[depth].p_ext; 2855 if (!ex) { 2856 if (depth) { 2857 EXT4_ERROR_INODE(inode, 2858 "path[%d].p_hdr == NULL", 2859 depth); 2860 err = -EIO; 2861 } 2862 goto out; 2863 } 2864 2865 ee_block = le32_to_cpu(ex->ee_block); 2866 2867 /* 2868 * See if the last block is inside the extent, if so split 2869 * the extent at 'end' block so we can easily remove the 2870 * tail of the first part of the split extent in 2871 * ext4_ext_rm_leaf(). 2872 */ 2873 if (end >= ee_block && 2874 end < ee_block + ext4_ext_get_actual_len(ex) - 1) { 2875 /* 2876 * Split the extent in two so that 'end' is the last 2877 * block in the first new extent. Also we should not 2878 * fail removing space due to ENOSPC so try to use 2879 * reserved block if that happens. 2880 */ 2881 err = ext4_force_split_extent_at(handle, inode, path, 2882 end + 1, 1); 2883 if (err < 0) 2884 goto out; 2885 } 2886 } 2887 /* 2888 * We start scanning from right side, freeing all the blocks 2889 * after i_size and walking into the tree depth-wise. 2890 */ 2891 depth = ext_depth(inode); 2892 if (path) { 2893 int k = i = depth; 2894 while (--k > 0) 2895 path[k].p_block = 2896 le16_to_cpu(path[k].p_hdr->eh_entries)+1; 2897 } else { 2898 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 2899 GFP_NOFS); 2900 if (path == NULL) { 2901 ext4_journal_stop(handle); 2902 return -ENOMEM; 2903 } 2904 path[0].p_depth = depth; 2905 path[0].p_hdr = ext_inode_hdr(inode); 2906 i = 0; 2907 2908 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) { 2909 err = -EIO; 2910 goto out; 2911 } 2912 } 2913 err = 0; 2914 2915 while (i >= 0 && err == 0) { 2916 if (i == depth) { 2917 /* this is leaf block */ 2918 err = ext4_ext_rm_leaf(handle, inode, path, 2919 &partial_cluster, start, 2920 end); 2921 /* root level has p_bh == NULL, brelse() eats this */ 2922 brelse(path[i].p_bh); 2923 path[i].p_bh = NULL; 2924 i--; 2925 continue; 2926 } 2927 2928 /* this is index block */ 2929 if (!path[i].p_hdr) { 2930 ext_debug("initialize header\n"); 2931 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2932 } 2933 2934 if (!path[i].p_idx) { 2935 /* this level hasn't been touched yet */ 2936 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2937 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2938 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2939 path[i].p_hdr, 2940 le16_to_cpu(path[i].p_hdr->eh_entries)); 2941 } else { 2942 /* we were already here, see at next index */ 2943 path[i].p_idx--; 2944 } 2945 2946 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2947 i, EXT_FIRST_INDEX(path[i].p_hdr), 2948 path[i].p_idx); 2949 if (ext4_ext_more_to_rm(path + i)) { 2950 struct buffer_head *bh; 2951 /* go to the next level */ 2952 ext_debug("move to level %d (block %llu)\n", 2953 i + 1, ext4_idx_pblock(path[i].p_idx)); 2954 memset(path + i + 1, 0, sizeof(*path)); 2955 bh = read_extent_tree_block(inode, 2956 ext4_idx_pblock(path[i].p_idx), depth - i - 1, 2957 EXT4_EX_NOCACHE); 2958 if (IS_ERR(bh)) { 2959 /* should we reset i_size? */ 2960 err = PTR_ERR(bh); 2961 break; 2962 } 2963 /* Yield here to deal with large extent trees. 2964 * Should be a no-op if we did IO above. */ 2965 cond_resched(); 2966 if (WARN_ON(i + 1 > depth)) { 2967 err = -EIO; 2968 break; 2969 } 2970 path[i + 1].p_bh = bh; 2971 2972 /* save actual number of indexes since this 2973 * number is changed at the next iteration */ 2974 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2975 i++; 2976 } else { 2977 /* we finished processing this index, go up */ 2978 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2979 /* index is empty, remove it; 2980 * handle must be already prepared by the 2981 * truncatei_leaf() */ 2982 err = ext4_ext_rm_idx(handle, inode, path, i); 2983 } 2984 /* root level has p_bh == NULL, brelse() eats this */ 2985 brelse(path[i].p_bh); 2986 path[i].p_bh = NULL; 2987 i--; 2988 ext_debug("return to level %d\n", i); 2989 } 2990 } 2991 2992 trace_ext4_ext_remove_space_done(inode, start, end, depth, 2993 partial_cluster, path->p_hdr->eh_entries); 2994 2995 /* If we still have something in the partial cluster and we have removed 2996 * even the first extent, then we should free the blocks in the partial 2997 * cluster as well. */ 2998 if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) { 2999 int flags = get_default_free_blocks_flags(inode); 3000 3001 ext4_free_blocks(handle, inode, NULL, 3002 EXT4_C2B(EXT4_SB(sb), partial_cluster), 3003 EXT4_SB(sb)->s_cluster_ratio, flags); 3004 partial_cluster = 0; 3005 } 3006 3007 /* TODO: flexible tree reduction should be here */ 3008 if (path->p_hdr->eh_entries == 0) { 3009 /* 3010 * truncate to zero freed all the tree, 3011 * so we need to correct eh_depth 3012 */ 3013 err = ext4_ext_get_access(handle, inode, path); 3014 if (err == 0) { 3015 ext_inode_hdr(inode)->eh_depth = 0; 3016 ext_inode_hdr(inode)->eh_max = 3017 cpu_to_le16(ext4_ext_space_root(inode, 0)); 3018 err = ext4_ext_dirty(handle, inode, path); 3019 } 3020 } 3021 out: 3022 ext4_ext_drop_refs(path); 3023 kfree(path); 3024 if (err == -EAGAIN) { 3025 path = NULL; 3026 goto again; 3027 } 3028 ext4_journal_stop(handle); 3029 3030 return err; 3031 } 3032 3033 /* 3034 * called at mount time 3035 */ 3036 void ext4_ext_init(struct super_block *sb) 3037 { 3038 /* 3039 * possible initialization would be here 3040 */ 3041 3042 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 3043 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 3044 printk(KERN_INFO "EXT4-fs: file extents enabled" 3045 #ifdef AGGRESSIVE_TEST 3046 ", aggressive tests" 3047 #endif 3048 #ifdef CHECK_BINSEARCH 3049 ", check binsearch" 3050 #endif 3051 #ifdef EXTENTS_STATS 3052 ", stats" 3053 #endif 3054 "\n"); 3055 #endif 3056 #ifdef EXTENTS_STATS 3057 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 3058 EXT4_SB(sb)->s_ext_min = 1 << 30; 3059 EXT4_SB(sb)->s_ext_max = 0; 3060 #endif 3061 } 3062 } 3063 3064 /* 3065 * called at umount time 3066 */ 3067 void ext4_ext_release(struct super_block *sb) 3068 { 3069 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 3070 return; 3071 3072 #ifdef EXTENTS_STATS 3073 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 3074 struct ext4_sb_info *sbi = EXT4_SB(sb); 3075 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 3076 sbi->s_ext_blocks, sbi->s_ext_extents, 3077 sbi->s_ext_blocks / sbi->s_ext_extents); 3078 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 3079 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 3080 } 3081 #endif 3082 } 3083 3084 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex) 3085 { 3086 ext4_lblk_t ee_block; 3087 ext4_fsblk_t ee_pblock; 3088 unsigned int ee_len; 3089 3090 ee_block = le32_to_cpu(ex->ee_block); 3091 ee_len = ext4_ext_get_actual_len(ex); 3092 ee_pblock = ext4_ext_pblock(ex); 3093 3094 if (ee_len == 0) 3095 return 0; 3096 3097 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock, 3098 EXTENT_STATUS_WRITTEN); 3099 } 3100 3101 /* FIXME!! we need to try to merge to left or right after zero-out */ 3102 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 3103 { 3104 ext4_fsblk_t ee_pblock; 3105 unsigned int ee_len; 3106 int ret; 3107 3108 ee_len = ext4_ext_get_actual_len(ex); 3109 ee_pblock = ext4_ext_pblock(ex); 3110 3111 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS); 3112 if (ret > 0) 3113 ret = 0; 3114 3115 return ret; 3116 } 3117 3118 /* 3119 * ext4_split_extent_at() splits an extent at given block. 3120 * 3121 * @handle: the journal handle 3122 * @inode: the file inode 3123 * @path: the path to the extent 3124 * @split: the logical block where the extent is splitted. 3125 * @split_flags: indicates if the extent could be zeroout if split fails, and 3126 * the states(init or unwritten) of new extents. 3127 * @flags: flags used to insert new extent to extent tree. 3128 * 3129 * 3130 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 3131 * of which are deterimined by split_flag. 3132 * 3133 * There are two cases: 3134 * a> the extent are splitted into two extent. 3135 * b> split is not needed, and just mark the extent. 3136 * 3137 * return 0 on success. 3138 */ 3139 static int ext4_split_extent_at(handle_t *handle, 3140 struct inode *inode, 3141 struct ext4_ext_path *path, 3142 ext4_lblk_t split, 3143 int split_flag, 3144 int flags) 3145 { 3146 ext4_fsblk_t newblock; 3147 ext4_lblk_t ee_block; 3148 struct ext4_extent *ex, newex, orig_ex, zero_ex; 3149 struct ext4_extent *ex2 = NULL; 3150 unsigned int ee_len, depth; 3151 int err = 0; 3152 3153 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == 3154 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); 3155 3156 ext_debug("ext4_split_extents_at: inode %lu, logical" 3157 "block %llu\n", inode->i_ino, (unsigned long long)split); 3158 3159 ext4_ext_show_leaf(inode, path); 3160 3161 depth = ext_depth(inode); 3162 ex = path[depth].p_ext; 3163 ee_block = le32_to_cpu(ex->ee_block); 3164 ee_len = ext4_ext_get_actual_len(ex); 3165 newblock = split - ee_block + ext4_ext_pblock(ex); 3166 3167 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 3168 BUG_ON(!ext4_ext_is_unwritten(ex) && 3169 split_flag & (EXT4_EXT_MAY_ZEROOUT | 3170 EXT4_EXT_MARK_UNWRIT1 | 3171 EXT4_EXT_MARK_UNWRIT2)); 3172 3173 err = ext4_ext_get_access(handle, inode, path + depth); 3174 if (err) 3175 goto out; 3176 3177 if (split == ee_block) { 3178 /* 3179 * case b: block @split is the block that the extent begins with 3180 * then we just change the state of the extent, and splitting 3181 * is not needed. 3182 */ 3183 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3184 ext4_ext_mark_unwritten(ex); 3185 else 3186 ext4_ext_mark_initialized(ex); 3187 3188 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 3189 ext4_ext_try_to_merge(handle, inode, path, ex); 3190 3191 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3192 goto out; 3193 } 3194 3195 /* case a */ 3196 memcpy(&orig_ex, ex, sizeof(orig_ex)); 3197 ex->ee_len = cpu_to_le16(split - ee_block); 3198 if (split_flag & EXT4_EXT_MARK_UNWRIT1) 3199 ext4_ext_mark_unwritten(ex); 3200 3201 /* 3202 * path may lead to new leaf, not to original leaf any more 3203 * after ext4_ext_insert_extent() returns, 3204 */ 3205 err = ext4_ext_dirty(handle, inode, path + depth); 3206 if (err) 3207 goto fix_extent_len; 3208 3209 ex2 = &newex; 3210 ex2->ee_block = cpu_to_le32(split); 3211 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 3212 ext4_ext_store_pblock(ex2, newblock); 3213 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3214 ext4_ext_mark_unwritten(ex2); 3215 3216 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags); 3217 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3218 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { 3219 if (split_flag & EXT4_EXT_DATA_VALID1) { 3220 err = ext4_ext_zeroout(inode, ex2); 3221 zero_ex.ee_block = ex2->ee_block; 3222 zero_ex.ee_len = cpu_to_le16( 3223 ext4_ext_get_actual_len(ex2)); 3224 ext4_ext_store_pblock(&zero_ex, 3225 ext4_ext_pblock(ex2)); 3226 } else { 3227 err = ext4_ext_zeroout(inode, ex); 3228 zero_ex.ee_block = ex->ee_block; 3229 zero_ex.ee_len = cpu_to_le16( 3230 ext4_ext_get_actual_len(ex)); 3231 ext4_ext_store_pblock(&zero_ex, 3232 ext4_ext_pblock(ex)); 3233 } 3234 } else { 3235 err = ext4_ext_zeroout(inode, &orig_ex); 3236 zero_ex.ee_block = orig_ex.ee_block; 3237 zero_ex.ee_len = cpu_to_le16( 3238 ext4_ext_get_actual_len(&orig_ex)); 3239 ext4_ext_store_pblock(&zero_ex, 3240 ext4_ext_pblock(&orig_ex)); 3241 } 3242 3243 if (err) 3244 goto fix_extent_len; 3245 /* update the extent length and mark as initialized */ 3246 ex->ee_len = cpu_to_le16(ee_len); 3247 ext4_ext_try_to_merge(handle, inode, path, ex); 3248 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3249 if (err) 3250 goto fix_extent_len; 3251 3252 /* update extent status tree */ 3253 err = ext4_zeroout_es(inode, &zero_ex); 3254 3255 goto out; 3256 } else if (err) 3257 goto fix_extent_len; 3258 3259 out: 3260 ext4_ext_show_leaf(inode, path); 3261 return err; 3262 3263 fix_extent_len: 3264 ex->ee_len = orig_ex.ee_len; 3265 ext4_ext_dirty(handle, inode, path + path->p_depth); 3266 return err; 3267 } 3268 3269 /* 3270 * ext4_split_extents() splits an extent and mark extent which is covered 3271 * by @map as split_flags indicates 3272 * 3273 * It may result in splitting the extent into multiple extents (up to three) 3274 * There are three possibilities: 3275 * a> There is no split required 3276 * b> Splits in two extents: Split is happening at either end of the extent 3277 * c> Splits in three extents: Somone is splitting in middle of the extent 3278 * 3279 */ 3280 static int ext4_split_extent(handle_t *handle, 3281 struct inode *inode, 3282 struct ext4_ext_path *path, 3283 struct ext4_map_blocks *map, 3284 int split_flag, 3285 int flags) 3286 { 3287 ext4_lblk_t ee_block; 3288 struct ext4_extent *ex; 3289 unsigned int ee_len, depth; 3290 int err = 0; 3291 int unwritten; 3292 int split_flag1, flags1; 3293 int allocated = map->m_len; 3294 3295 depth = ext_depth(inode); 3296 ex = path[depth].p_ext; 3297 ee_block = le32_to_cpu(ex->ee_block); 3298 ee_len = ext4_ext_get_actual_len(ex); 3299 unwritten = ext4_ext_is_unwritten(ex); 3300 3301 if (map->m_lblk + map->m_len < ee_block + ee_len) { 3302 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; 3303 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 3304 if (unwritten) 3305 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 | 3306 EXT4_EXT_MARK_UNWRIT2; 3307 if (split_flag & EXT4_EXT_DATA_VALID2) 3308 split_flag1 |= EXT4_EXT_DATA_VALID1; 3309 err = ext4_split_extent_at(handle, inode, path, 3310 map->m_lblk + map->m_len, split_flag1, flags1); 3311 if (err) 3312 goto out; 3313 } else { 3314 allocated = ee_len - (map->m_lblk - ee_block); 3315 } 3316 /* 3317 * Update path is required because previous ext4_split_extent_at() may 3318 * result in split of original leaf or extent zeroout. 3319 */ 3320 ext4_ext_drop_refs(path); 3321 path = ext4_ext_find_extent(inode, map->m_lblk, &path, 3322 EXT4_EX_NOFREE_ON_ERR); 3323 if (IS_ERR(path)) 3324 return PTR_ERR(path); 3325 depth = ext_depth(inode); 3326 ex = path[depth].p_ext; 3327 if (!ex) { 3328 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3329 (unsigned long) map->m_lblk); 3330 return -EIO; 3331 } 3332 unwritten = ext4_ext_is_unwritten(ex); 3333 split_flag1 = 0; 3334 3335 if (map->m_lblk >= ee_block) { 3336 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2; 3337 if (unwritten) { 3338 split_flag1 |= EXT4_EXT_MARK_UNWRIT1; 3339 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT | 3340 EXT4_EXT_MARK_UNWRIT2); 3341 } 3342 err = ext4_split_extent_at(handle, inode, path, 3343 map->m_lblk, split_flag1, flags); 3344 if (err) 3345 goto out; 3346 } 3347 3348 ext4_ext_show_leaf(inode, path); 3349 out: 3350 return err ? err : allocated; 3351 } 3352 3353 /* 3354 * This function is called by ext4_ext_map_blocks() if someone tries to write 3355 * to an unwritten extent. It may result in splitting the unwritten 3356 * extent into multiple extents (up to three - one initialized and two 3357 * unwritten). 3358 * There are three possibilities: 3359 * a> There is no split required: Entire extent should be initialized 3360 * b> Splits in two extents: Write is happening at either end of the extent 3361 * c> Splits in three extents: Somone is writing in middle of the extent 3362 * 3363 * Pre-conditions: 3364 * - The extent pointed to by 'path' is unwritten. 3365 * - The extent pointed to by 'path' contains a superset 3366 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 3367 * 3368 * Post-conditions on success: 3369 * - the returned value is the number of blocks beyond map->l_lblk 3370 * that are allocated and initialized. 3371 * It is guaranteed to be >= map->m_len. 3372 */ 3373 static int ext4_ext_convert_to_initialized(handle_t *handle, 3374 struct inode *inode, 3375 struct ext4_map_blocks *map, 3376 struct ext4_ext_path *path, 3377 int flags) 3378 { 3379 struct ext4_sb_info *sbi; 3380 struct ext4_extent_header *eh; 3381 struct ext4_map_blocks split_map; 3382 struct ext4_extent zero_ex; 3383 struct ext4_extent *ex, *abut_ex; 3384 ext4_lblk_t ee_block, eof_block; 3385 unsigned int ee_len, depth, map_len = map->m_len; 3386 int allocated = 0, max_zeroout = 0; 3387 int err = 0; 3388 int split_flag = 0; 3389 3390 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 3391 "block %llu, max_blocks %u\n", inode->i_ino, 3392 (unsigned long long)map->m_lblk, map_len); 3393 3394 sbi = EXT4_SB(inode->i_sb); 3395 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3396 inode->i_sb->s_blocksize_bits; 3397 if (eof_block < map->m_lblk + map_len) 3398 eof_block = map->m_lblk + map_len; 3399 3400 depth = ext_depth(inode); 3401 eh = path[depth].p_hdr; 3402 ex = path[depth].p_ext; 3403 ee_block = le32_to_cpu(ex->ee_block); 3404 ee_len = ext4_ext_get_actual_len(ex); 3405 zero_ex.ee_len = 0; 3406 3407 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3408 3409 /* Pre-conditions */ 3410 BUG_ON(!ext4_ext_is_unwritten(ex)); 3411 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3412 3413 /* 3414 * Attempt to transfer newly initialized blocks from the currently 3415 * unwritten extent to its neighbor. This is much cheaper 3416 * than an insertion followed by a merge as those involve costly 3417 * memmove() calls. Transferring to the left is the common case in 3418 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE) 3419 * followed by append writes. 3420 * 3421 * Limitations of the current logic: 3422 * - L1: we do not deal with writes covering the whole extent. 3423 * This would require removing the extent if the transfer 3424 * is possible. 3425 * - L2: we only attempt to merge with an extent stored in the 3426 * same extent tree node. 3427 */ 3428 if ((map->m_lblk == ee_block) && 3429 /* See if we can merge left */ 3430 (map_len < ee_len) && /*L1*/ 3431 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/ 3432 ext4_lblk_t prev_lblk; 3433 ext4_fsblk_t prev_pblk, ee_pblk; 3434 unsigned int prev_len; 3435 3436 abut_ex = ex - 1; 3437 prev_lblk = le32_to_cpu(abut_ex->ee_block); 3438 prev_len = ext4_ext_get_actual_len(abut_ex); 3439 prev_pblk = ext4_ext_pblock(abut_ex); 3440 ee_pblk = ext4_ext_pblock(ex); 3441 3442 /* 3443 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3444 * upon those conditions: 3445 * - C1: abut_ex is initialized, 3446 * - C2: abut_ex is logically abutting ex, 3447 * - C3: abut_ex is physically abutting ex, 3448 * - C4: abut_ex can receive the additional blocks without 3449 * overflowing the (initialized) length limit. 3450 */ 3451 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3452 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3453 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3454 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3455 err = ext4_ext_get_access(handle, inode, path + depth); 3456 if (err) 3457 goto out; 3458 3459 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3460 map, ex, abut_ex); 3461 3462 /* Shift the start of ex by 'map_len' blocks */ 3463 ex->ee_block = cpu_to_le32(ee_block + map_len); 3464 ext4_ext_store_pblock(ex, ee_pblk + map_len); 3465 ex->ee_len = cpu_to_le16(ee_len - map_len); 3466 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3467 3468 /* Extend abut_ex by 'map_len' blocks */ 3469 abut_ex->ee_len = cpu_to_le16(prev_len + map_len); 3470 3471 /* Result: number of initialized blocks past m_lblk */ 3472 allocated = map_len; 3473 } 3474 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) && 3475 (map_len < ee_len) && /*L1*/ 3476 ex < EXT_LAST_EXTENT(eh)) { /*L2*/ 3477 /* See if we can merge right */ 3478 ext4_lblk_t next_lblk; 3479 ext4_fsblk_t next_pblk, ee_pblk; 3480 unsigned int next_len; 3481 3482 abut_ex = ex + 1; 3483 next_lblk = le32_to_cpu(abut_ex->ee_block); 3484 next_len = ext4_ext_get_actual_len(abut_ex); 3485 next_pblk = ext4_ext_pblock(abut_ex); 3486 ee_pblk = ext4_ext_pblock(ex); 3487 3488 /* 3489 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3490 * upon those conditions: 3491 * - C1: abut_ex is initialized, 3492 * - C2: abut_ex is logically abutting ex, 3493 * - C3: abut_ex is physically abutting ex, 3494 * - C4: abut_ex can receive the additional blocks without 3495 * overflowing the (initialized) length limit. 3496 */ 3497 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3498 ((map->m_lblk + map_len) == next_lblk) && /*C2*/ 3499 ((ee_pblk + ee_len) == next_pblk) && /*C3*/ 3500 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3501 err = ext4_ext_get_access(handle, inode, path + depth); 3502 if (err) 3503 goto out; 3504 3505 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3506 map, ex, abut_ex); 3507 3508 /* Shift the start of abut_ex by 'map_len' blocks */ 3509 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len); 3510 ext4_ext_store_pblock(abut_ex, next_pblk - map_len); 3511 ex->ee_len = cpu_to_le16(ee_len - map_len); 3512 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3513 3514 /* Extend abut_ex by 'map_len' blocks */ 3515 abut_ex->ee_len = cpu_to_le16(next_len + map_len); 3516 3517 /* Result: number of initialized blocks past m_lblk */ 3518 allocated = map_len; 3519 } 3520 } 3521 if (allocated) { 3522 /* Mark the block containing both extents as dirty */ 3523 ext4_ext_dirty(handle, inode, path + depth); 3524 3525 /* Update path to point to the right extent */ 3526 path[depth].p_ext = abut_ex; 3527 goto out; 3528 } else 3529 allocated = ee_len - (map->m_lblk - ee_block); 3530 3531 WARN_ON(map->m_lblk < ee_block); 3532 /* 3533 * It is safe to convert extent to initialized via explicit 3534 * zeroout only if extent is fully inside i_size or new_size. 3535 */ 3536 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3537 3538 if (EXT4_EXT_MAY_ZEROOUT & split_flag) 3539 max_zeroout = sbi->s_extent_max_zeroout_kb >> 3540 (inode->i_sb->s_blocksize_bits - 10); 3541 3542 /* If extent is less than s_max_zeroout_kb, zeroout directly */ 3543 if (max_zeroout && (ee_len <= max_zeroout)) { 3544 err = ext4_ext_zeroout(inode, ex); 3545 if (err) 3546 goto out; 3547 zero_ex.ee_block = ex->ee_block; 3548 zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)); 3549 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex)); 3550 3551 err = ext4_ext_get_access(handle, inode, path + depth); 3552 if (err) 3553 goto out; 3554 ext4_ext_mark_initialized(ex); 3555 ext4_ext_try_to_merge(handle, inode, path, ex); 3556 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3557 goto out; 3558 } 3559 3560 /* 3561 * four cases: 3562 * 1. split the extent into three extents. 3563 * 2. split the extent into two extents, zeroout the first half. 3564 * 3. split the extent into two extents, zeroout the second half. 3565 * 4. split the extent into two extents with out zeroout. 3566 */ 3567 split_map.m_lblk = map->m_lblk; 3568 split_map.m_len = map->m_len; 3569 3570 if (max_zeroout && (allocated > map->m_len)) { 3571 if (allocated <= max_zeroout) { 3572 /* case 3 */ 3573 zero_ex.ee_block = 3574 cpu_to_le32(map->m_lblk); 3575 zero_ex.ee_len = cpu_to_le16(allocated); 3576 ext4_ext_store_pblock(&zero_ex, 3577 ext4_ext_pblock(ex) + map->m_lblk - ee_block); 3578 err = ext4_ext_zeroout(inode, &zero_ex); 3579 if (err) 3580 goto out; 3581 split_map.m_lblk = map->m_lblk; 3582 split_map.m_len = allocated; 3583 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) { 3584 /* case 2 */ 3585 if (map->m_lblk != ee_block) { 3586 zero_ex.ee_block = ex->ee_block; 3587 zero_ex.ee_len = cpu_to_le16(map->m_lblk - 3588 ee_block); 3589 ext4_ext_store_pblock(&zero_ex, 3590 ext4_ext_pblock(ex)); 3591 err = ext4_ext_zeroout(inode, &zero_ex); 3592 if (err) 3593 goto out; 3594 } 3595 3596 split_map.m_lblk = ee_block; 3597 split_map.m_len = map->m_lblk - ee_block + map->m_len; 3598 allocated = map->m_len; 3599 } 3600 } 3601 3602 allocated = ext4_split_extent(handle, inode, path, 3603 &split_map, split_flag, flags); 3604 if (allocated < 0) 3605 err = allocated; 3606 3607 out: 3608 /* If we have gotten a failure, don't zero out status tree */ 3609 if (!err) 3610 err = ext4_zeroout_es(inode, &zero_ex); 3611 return err ? err : allocated; 3612 } 3613 3614 /* 3615 * This function is called by ext4_ext_map_blocks() from 3616 * ext4_get_blocks_dio_write() when DIO to write 3617 * to an unwritten extent. 3618 * 3619 * Writing to an unwritten extent may result in splitting the unwritten 3620 * extent into multiple initialized/unwritten extents (up to three) 3621 * There are three possibilities: 3622 * a> There is no split required: Entire extent should be unwritten 3623 * b> Splits in two extents: Write is happening at either end of the extent 3624 * c> Splits in three extents: Somone is writing in middle of the extent 3625 * 3626 * This works the same way in the case of initialized -> unwritten conversion. 3627 * 3628 * One of more index blocks maybe needed if the extent tree grow after 3629 * the unwritten extent split. To prevent ENOSPC occur at the IO 3630 * complete, we need to split the unwritten extent before DIO submit 3631 * the IO. The unwritten extent called at this time will be split 3632 * into three unwritten extent(at most). After IO complete, the part 3633 * being filled will be convert to initialized by the end_io callback function 3634 * via ext4_convert_unwritten_extents(). 3635 * 3636 * Returns the size of unwritten extent to be written on success. 3637 */ 3638 static int ext4_split_convert_extents(handle_t *handle, 3639 struct inode *inode, 3640 struct ext4_map_blocks *map, 3641 struct ext4_ext_path *path, 3642 int flags) 3643 { 3644 ext4_lblk_t eof_block; 3645 ext4_lblk_t ee_block; 3646 struct ext4_extent *ex; 3647 unsigned int ee_len; 3648 int split_flag = 0, depth; 3649 3650 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n", 3651 __func__, inode->i_ino, 3652 (unsigned long long)map->m_lblk, map->m_len); 3653 3654 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3655 inode->i_sb->s_blocksize_bits; 3656 if (eof_block < map->m_lblk + map->m_len) 3657 eof_block = map->m_lblk + map->m_len; 3658 /* 3659 * It is safe to convert extent to initialized via explicit 3660 * zeroout only if extent is fully insde i_size or new_size. 3661 */ 3662 depth = ext_depth(inode); 3663 ex = path[depth].p_ext; 3664 ee_block = le32_to_cpu(ex->ee_block); 3665 ee_len = ext4_ext_get_actual_len(ex); 3666 3667 /* Convert to unwritten */ 3668 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) { 3669 split_flag |= EXT4_EXT_DATA_VALID1; 3670 /* Convert to initialized */ 3671 } else if (flags & EXT4_GET_BLOCKS_CONVERT) { 3672 split_flag |= ee_block + ee_len <= eof_block ? 3673 EXT4_EXT_MAY_ZEROOUT : 0; 3674 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2); 3675 } 3676 flags |= EXT4_GET_BLOCKS_PRE_IO; 3677 return ext4_split_extent(handle, inode, path, map, split_flag, flags); 3678 } 3679 3680 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3681 struct inode *inode, 3682 struct ext4_map_blocks *map, 3683 struct ext4_ext_path *path) 3684 { 3685 struct ext4_extent *ex; 3686 ext4_lblk_t ee_block; 3687 unsigned int ee_len; 3688 int depth; 3689 int err = 0; 3690 3691 depth = ext_depth(inode); 3692 ex = path[depth].p_ext; 3693 ee_block = le32_to_cpu(ex->ee_block); 3694 ee_len = ext4_ext_get_actual_len(ex); 3695 3696 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3697 "block %llu, max_blocks %u\n", inode->i_ino, 3698 (unsigned long long)ee_block, ee_len); 3699 3700 /* If extent is larger than requested it is a clear sign that we still 3701 * have some extent state machine issues left. So extent_split is still 3702 * required. 3703 * TODO: Once all related issues will be fixed this situation should be 3704 * illegal. 3705 */ 3706 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3707 #ifdef EXT4_DEBUG 3708 ext4_warning("Inode (%ld) finished: extent logical block %llu," 3709 " len %u; IO logical block %llu, len %u\n", 3710 inode->i_ino, (unsigned long long)ee_block, ee_len, 3711 (unsigned long long)map->m_lblk, map->m_len); 3712 #endif 3713 err = ext4_split_convert_extents(handle, inode, map, path, 3714 EXT4_GET_BLOCKS_CONVERT); 3715 if (err < 0) 3716 goto out; 3717 ext4_ext_drop_refs(path); 3718 path = ext4_ext_find_extent(inode, map->m_lblk, &path, 3719 EXT4_EX_NOFREE_ON_ERR); 3720 if (IS_ERR(path)) { 3721 err = PTR_ERR(path); 3722 goto out; 3723 } 3724 depth = ext_depth(inode); 3725 ex = path[depth].p_ext; 3726 } 3727 3728 err = ext4_ext_get_access(handle, inode, path + depth); 3729 if (err) 3730 goto out; 3731 /* first mark the extent as initialized */ 3732 ext4_ext_mark_initialized(ex); 3733 3734 /* note: ext4_ext_correct_indexes() isn't needed here because 3735 * borders are not changed 3736 */ 3737 ext4_ext_try_to_merge(handle, inode, path, ex); 3738 3739 /* Mark modified extent as dirty */ 3740 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3741 out: 3742 ext4_ext_show_leaf(inode, path); 3743 return err; 3744 } 3745 3746 static void unmap_underlying_metadata_blocks(struct block_device *bdev, 3747 sector_t block, int count) 3748 { 3749 int i; 3750 for (i = 0; i < count; i++) 3751 unmap_underlying_metadata(bdev, block + i); 3752 } 3753 3754 /* 3755 * Handle EOFBLOCKS_FL flag, clearing it if necessary 3756 */ 3757 static int check_eofblocks_fl(handle_t *handle, struct inode *inode, 3758 ext4_lblk_t lblk, 3759 struct ext4_ext_path *path, 3760 unsigned int len) 3761 { 3762 int i, depth; 3763 struct ext4_extent_header *eh; 3764 struct ext4_extent *last_ex; 3765 3766 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3767 return 0; 3768 3769 depth = ext_depth(inode); 3770 eh = path[depth].p_hdr; 3771 3772 /* 3773 * We're going to remove EOFBLOCKS_FL entirely in future so we 3774 * do not care for this case anymore. Simply remove the flag 3775 * if there are no extents. 3776 */ 3777 if (unlikely(!eh->eh_entries)) 3778 goto out; 3779 last_ex = EXT_LAST_EXTENT(eh); 3780 /* 3781 * We should clear the EOFBLOCKS_FL flag if we are writing the 3782 * last block in the last extent in the file. We test this by 3783 * first checking to see if the caller to 3784 * ext4_ext_get_blocks() was interested in the last block (or 3785 * a block beyond the last block) in the current extent. If 3786 * this turns out to be false, we can bail out from this 3787 * function immediately. 3788 */ 3789 if (lblk + len < le32_to_cpu(last_ex->ee_block) + 3790 ext4_ext_get_actual_len(last_ex)) 3791 return 0; 3792 /* 3793 * If the caller does appear to be planning to write at or 3794 * beyond the end of the current extent, we then test to see 3795 * if the current extent is the last extent in the file, by 3796 * checking to make sure it was reached via the rightmost node 3797 * at each level of the tree. 3798 */ 3799 for (i = depth-1; i >= 0; i--) 3800 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) 3801 return 0; 3802 out: 3803 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3804 return ext4_mark_inode_dirty(handle, inode); 3805 } 3806 3807 /** 3808 * ext4_find_delalloc_range: find delayed allocated block in the given range. 3809 * 3810 * Return 1 if there is a delalloc block in the range, otherwise 0. 3811 */ 3812 int ext4_find_delalloc_range(struct inode *inode, 3813 ext4_lblk_t lblk_start, 3814 ext4_lblk_t lblk_end) 3815 { 3816 struct extent_status es; 3817 3818 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es); 3819 if (es.es_len == 0) 3820 return 0; /* there is no delay extent in this tree */ 3821 else if (es.es_lblk <= lblk_start && 3822 lblk_start < es.es_lblk + es.es_len) 3823 return 1; 3824 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end) 3825 return 1; 3826 else 3827 return 0; 3828 } 3829 3830 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk) 3831 { 3832 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3833 ext4_lblk_t lblk_start, lblk_end; 3834 lblk_start = EXT4_LBLK_CMASK(sbi, lblk); 3835 lblk_end = lblk_start + sbi->s_cluster_ratio - 1; 3836 3837 return ext4_find_delalloc_range(inode, lblk_start, lblk_end); 3838 } 3839 3840 /** 3841 * Determines how many complete clusters (out of those specified by the 'map') 3842 * are under delalloc and were reserved quota for. 3843 * This function is called when we are writing out the blocks that were 3844 * originally written with their allocation delayed, but then the space was 3845 * allocated using fallocate() before the delayed allocation could be resolved. 3846 * The cases to look for are: 3847 * ('=' indicated delayed allocated blocks 3848 * '-' indicates non-delayed allocated blocks) 3849 * (a) partial clusters towards beginning and/or end outside of allocated range 3850 * are not delalloc'ed. 3851 * Ex: 3852 * |----c---=|====c====|====c====|===-c----| 3853 * |++++++ allocated ++++++| 3854 * ==> 4 complete clusters in above example 3855 * 3856 * (b) partial cluster (outside of allocated range) towards either end is 3857 * marked for delayed allocation. In this case, we will exclude that 3858 * cluster. 3859 * Ex: 3860 * |----====c========|========c========| 3861 * |++++++ allocated ++++++| 3862 * ==> 1 complete clusters in above example 3863 * 3864 * Ex: 3865 * |================c================| 3866 * |++++++ allocated ++++++| 3867 * ==> 0 complete clusters in above example 3868 * 3869 * The ext4_da_update_reserve_space will be called only if we 3870 * determine here that there were some "entire" clusters that span 3871 * this 'allocated' range. 3872 * In the non-bigalloc case, this function will just end up returning num_blks 3873 * without ever calling ext4_find_delalloc_range. 3874 */ 3875 static unsigned int 3876 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start, 3877 unsigned int num_blks) 3878 { 3879 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3880 ext4_lblk_t alloc_cluster_start, alloc_cluster_end; 3881 ext4_lblk_t lblk_from, lblk_to, c_offset; 3882 unsigned int allocated_clusters = 0; 3883 3884 alloc_cluster_start = EXT4_B2C(sbi, lblk_start); 3885 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1); 3886 3887 /* max possible clusters for this allocation */ 3888 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1; 3889 3890 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks); 3891 3892 /* Check towards left side */ 3893 c_offset = EXT4_LBLK_COFF(sbi, lblk_start); 3894 if (c_offset) { 3895 lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start); 3896 lblk_to = lblk_from + c_offset - 1; 3897 3898 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3899 allocated_clusters--; 3900 } 3901 3902 /* Now check towards right. */ 3903 c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks); 3904 if (allocated_clusters && c_offset) { 3905 lblk_from = lblk_start + num_blks; 3906 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1; 3907 3908 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3909 allocated_clusters--; 3910 } 3911 3912 return allocated_clusters; 3913 } 3914 3915 static int 3916 convert_initialized_extent(handle_t *handle, struct inode *inode, 3917 struct ext4_map_blocks *map, 3918 struct ext4_ext_path *path, int flags, 3919 unsigned int allocated, ext4_fsblk_t newblock) 3920 { 3921 struct ext4_extent *ex; 3922 ext4_lblk_t ee_block; 3923 unsigned int ee_len; 3924 int depth; 3925 int err = 0; 3926 3927 /* 3928 * Make sure that the extent is no bigger than we support with 3929 * unwritten extent 3930 */ 3931 if (map->m_len > EXT_UNWRITTEN_MAX_LEN) 3932 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2; 3933 3934 depth = ext_depth(inode); 3935 ex = path[depth].p_ext; 3936 ee_block = le32_to_cpu(ex->ee_block); 3937 ee_len = ext4_ext_get_actual_len(ex); 3938 3939 ext_debug("%s: inode %lu, logical" 3940 "block %llu, max_blocks %u\n", __func__, inode->i_ino, 3941 (unsigned long long)ee_block, ee_len); 3942 3943 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3944 err = ext4_split_convert_extents(handle, inode, map, path, 3945 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN); 3946 if (err < 0) 3947 return err; 3948 ext4_ext_drop_refs(path); 3949 path = ext4_ext_find_extent(inode, map->m_lblk, &path, 3950 EXT4_EX_NOFREE_ON_ERR); 3951 if (IS_ERR(path)) 3952 return PTR_ERR(path); 3953 depth = ext_depth(inode); 3954 ex = path[depth].p_ext; 3955 if (!ex) { 3956 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3957 (unsigned long) map->m_lblk); 3958 return -EIO; 3959 } 3960 } 3961 3962 err = ext4_ext_get_access(handle, inode, path + depth); 3963 if (err) 3964 return err; 3965 /* first mark the extent as unwritten */ 3966 ext4_ext_mark_unwritten(ex); 3967 3968 /* note: ext4_ext_correct_indexes() isn't needed here because 3969 * borders are not changed 3970 */ 3971 ext4_ext_try_to_merge(handle, inode, path, ex); 3972 3973 /* Mark modified extent as dirty */ 3974 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3975 if (err) 3976 return err; 3977 ext4_ext_show_leaf(inode, path); 3978 3979 ext4_update_inode_fsync_trans(handle, inode, 1); 3980 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len); 3981 if (err) 3982 return err; 3983 map->m_flags |= EXT4_MAP_UNWRITTEN; 3984 if (allocated > map->m_len) 3985 allocated = map->m_len; 3986 map->m_len = allocated; 3987 return allocated; 3988 } 3989 3990 static int 3991 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode, 3992 struct ext4_map_blocks *map, 3993 struct ext4_ext_path *path, int flags, 3994 unsigned int allocated, ext4_fsblk_t newblock) 3995 { 3996 int ret = 0; 3997 int err = 0; 3998 ext4_io_end_t *io = ext4_inode_aio(inode); 3999 4000 ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical " 4001 "block %llu, max_blocks %u, flags %x, allocated %u\n", 4002 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 4003 flags, allocated); 4004 ext4_ext_show_leaf(inode, path); 4005 4006 /* 4007 * When writing into unwritten space, we should not fail to 4008 * allocate metadata blocks for the new extent block if needed. 4009 */ 4010 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL; 4011 4012 trace_ext4_ext_handle_unwritten_extents(inode, map, flags, 4013 allocated, newblock); 4014 4015 /* get_block() before submit the IO, split the extent */ 4016 if (flags & EXT4_GET_BLOCKS_PRE_IO) { 4017 ret = ext4_split_convert_extents(handle, inode, map, 4018 path, flags | EXT4_GET_BLOCKS_CONVERT); 4019 if (ret <= 0) 4020 goto out; 4021 /* 4022 * Flag the inode(non aio case) or end_io struct (aio case) 4023 * that this IO needs to conversion to written when IO is 4024 * completed 4025 */ 4026 if (io) 4027 ext4_set_io_unwritten_flag(inode, io); 4028 else 4029 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 4030 map->m_flags |= EXT4_MAP_UNWRITTEN; 4031 goto out; 4032 } 4033 /* IO end_io complete, convert the filled extent to written */ 4034 if (flags & EXT4_GET_BLOCKS_CONVERT) { 4035 ret = ext4_convert_unwritten_extents_endio(handle, inode, map, 4036 path); 4037 if (ret >= 0) { 4038 ext4_update_inode_fsync_trans(handle, inode, 1); 4039 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4040 path, map->m_len); 4041 } else 4042 err = ret; 4043 map->m_flags |= EXT4_MAP_MAPPED; 4044 map->m_pblk = newblock; 4045 if (allocated > map->m_len) 4046 allocated = map->m_len; 4047 map->m_len = allocated; 4048 goto out2; 4049 } 4050 /* buffered IO case */ 4051 /* 4052 * repeat fallocate creation request 4053 * we already have an unwritten extent 4054 */ 4055 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) { 4056 map->m_flags |= EXT4_MAP_UNWRITTEN; 4057 goto map_out; 4058 } 4059 4060 /* buffered READ or buffered write_begin() lookup */ 4061 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4062 /* 4063 * We have blocks reserved already. We 4064 * return allocated blocks so that delalloc 4065 * won't do block reservation for us. But 4066 * the buffer head will be unmapped so that 4067 * a read from the block returns 0s. 4068 */ 4069 map->m_flags |= EXT4_MAP_UNWRITTEN; 4070 goto out1; 4071 } 4072 4073 /* buffered write, writepage time, convert*/ 4074 ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags); 4075 if (ret >= 0) 4076 ext4_update_inode_fsync_trans(handle, inode, 1); 4077 out: 4078 if (ret <= 0) { 4079 err = ret; 4080 goto out2; 4081 } else 4082 allocated = ret; 4083 map->m_flags |= EXT4_MAP_NEW; 4084 /* 4085 * if we allocated more blocks than requested 4086 * we need to make sure we unmap the extra block 4087 * allocated. The actual needed block will get 4088 * unmapped later when we find the buffer_head marked 4089 * new. 4090 */ 4091 if (allocated > map->m_len) { 4092 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev, 4093 newblock + map->m_len, 4094 allocated - map->m_len); 4095 allocated = map->m_len; 4096 } 4097 map->m_len = allocated; 4098 4099 /* 4100 * If we have done fallocate with the offset that is already 4101 * delayed allocated, we would have block reservation 4102 * and quota reservation done in the delayed write path. 4103 * But fallocate would have already updated quota and block 4104 * count for this offset. So cancel these reservation 4105 */ 4106 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4107 unsigned int reserved_clusters; 4108 reserved_clusters = get_reserved_cluster_alloc(inode, 4109 map->m_lblk, map->m_len); 4110 if (reserved_clusters) 4111 ext4_da_update_reserve_space(inode, 4112 reserved_clusters, 4113 0); 4114 } 4115 4116 map_out: 4117 map->m_flags |= EXT4_MAP_MAPPED; 4118 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { 4119 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, 4120 map->m_len); 4121 if (err < 0) 4122 goto out2; 4123 } 4124 out1: 4125 if (allocated > map->m_len) 4126 allocated = map->m_len; 4127 ext4_ext_show_leaf(inode, path); 4128 map->m_pblk = newblock; 4129 map->m_len = allocated; 4130 out2: 4131 return err ? err : allocated; 4132 } 4133 4134 /* 4135 * get_implied_cluster_alloc - check to see if the requested 4136 * allocation (in the map structure) overlaps with a cluster already 4137 * allocated in an extent. 4138 * @sb The filesystem superblock structure 4139 * @map The requested lblk->pblk mapping 4140 * @ex The extent structure which might contain an implied 4141 * cluster allocation 4142 * 4143 * This function is called by ext4_ext_map_blocks() after we failed to 4144 * find blocks that were already in the inode's extent tree. Hence, 4145 * we know that the beginning of the requested region cannot overlap 4146 * the extent from the inode's extent tree. There are three cases we 4147 * want to catch. The first is this case: 4148 * 4149 * |--- cluster # N--| 4150 * |--- extent ---| |---- requested region ---| 4151 * |==========| 4152 * 4153 * The second case that we need to test for is this one: 4154 * 4155 * |--------- cluster # N ----------------| 4156 * |--- requested region --| |------- extent ----| 4157 * |=======================| 4158 * 4159 * The third case is when the requested region lies between two extents 4160 * within the same cluster: 4161 * |------------- cluster # N-------------| 4162 * |----- ex -----| |---- ex_right ----| 4163 * |------ requested region ------| 4164 * |================| 4165 * 4166 * In each of the above cases, we need to set the map->m_pblk and 4167 * map->m_len so it corresponds to the return the extent labelled as 4168 * "|====|" from cluster #N, since it is already in use for data in 4169 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 4170 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 4171 * as a new "allocated" block region. Otherwise, we will return 0 and 4172 * ext4_ext_map_blocks() will then allocate one or more new clusters 4173 * by calling ext4_mb_new_blocks(). 4174 */ 4175 static int get_implied_cluster_alloc(struct super_block *sb, 4176 struct ext4_map_blocks *map, 4177 struct ext4_extent *ex, 4178 struct ext4_ext_path *path) 4179 { 4180 struct ext4_sb_info *sbi = EXT4_SB(sb); 4181 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4182 ext4_lblk_t ex_cluster_start, ex_cluster_end; 4183 ext4_lblk_t rr_cluster_start; 4184 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4185 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4186 unsigned short ee_len = ext4_ext_get_actual_len(ex); 4187 4188 /* The extent passed in that we are trying to match */ 4189 ex_cluster_start = EXT4_B2C(sbi, ee_block); 4190 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 4191 4192 /* The requested region passed into ext4_map_blocks() */ 4193 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 4194 4195 if ((rr_cluster_start == ex_cluster_end) || 4196 (rr_cluster_start == ex_cluster_start)) { 4197 if (rr_cluster_start == ex_cluster_end) 4198 ee_start += ee_len - 1; 4199 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset; 4200 map->m_len = min(map->m_len, 4201 (unsigned) sbi->s_cluster_ratio - c_offset); 4202 /* 4203 * Check for and handle this case: 4204 * 4205 * |--------- cluster # N-------------| 4206 * |------- extent ----| 4207 * |--- requested region ---| 4208 * |===========| 4209 */ 4210 4211 if (map->m_lblk < ee_block) 4212 map->m_len = min(map->m_len, ee_block - map->m_lblk); 4213 4214 /* 4215 * Check for the case where there is already another allocated 4216 * block to the right of 'ex' but before the end of the cluster. 4217 * 4218 * |------------- cluster # N-------------| 4219 * |----- ex -----| |---- ex_right ----| 4220 * |------ requested region ------| 4221 * |================| 4222 */ 4223 if (map->m_lblk > ee_block) { 4224 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 4225 map->m_len = min(map->m_len, next - map->m_lblk); 4226 } 4227 4228 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 4229 return 1; 4230 } 4231 4232 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 4233 return 0; 4234 } 4235 4236 4237 /* 4238 * Block allocation/map/preallocation routine for extents based files 4239 * 4240 * 4241 * Need to be called with 4242 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 4243 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 4244 * 4245 * return > 0, number of of blocks already mapped/allocated 4246 * if create == 0 and these are pre-allocated blocks 4247 * buffer head is unmapped 4248 * otherwise blocks are mapped 4249 * 4250 * return = 0, if plain look up failed (blocks have not been allocated) 4251 * buffer head is unmapped 4252 * 4253 * return < 0, error case. 4254 */ 4255 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 4256 struct ext4_map_blocks *map, int flags) 4257 { 4258 struct ext4_ext_path *path = NULL; 4259 struct ext4_extent newex, *ex, *ex2; 4260 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4261 ext4_fsblk_t newblock = 0; 4262 int free_on_err = 0, err = 0, depth, ret; 4263 unsigned int allocated = 0, offset = 0; 4264 unsigned int allocated_clusters = 0; 4265 struct ext4_allocation_request ar; 4266 ext4_io_end_t *io = ext4_inode_aio(inode); 4267 ext4_lblk_t cluster_offset; 4268 int set_unwritten = 0; 4269 4270 ext_debug("blocks %u/%u requested for inode %lu\n", 4271 map->m_lblk, map->m_len, inode->i_ino); 4272 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 4273 4274 /* find extent for this block */ 4275 path = ext4_ext_find_extent(inode, map->m_lblk, NULL, 0); 4276 if (IS_ERR(path)) { 4277 err = PTR_ERR(path); 4278 path = NULL; 4279 goto out2; 4280 } 4281 4282 depth = ext_depth(inode); 4283 4284 /* 4285 * consistent leaf must not be empty; 4286 * this situation is possible, though, _during_ tree modification; 4287 * this is why assert can't be put in ext4_ext_find_extent() 4288 */ 4289 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 4290 EXT4_ERROR_INODE(inode, "bad extent address " 4291 "lblock: %lu, depth: %d pblock %lld", 4292 (unsigned long) map->m_lblk, depth, 4293 path[depth].p_block); 4294 err = -EIO; 4295 goto out2; 4296 } 4297 4298 ex = path[depth].p_ext; 4299 if (ex) { 4300 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4301 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4302 unsigned short ee_len; 4303 4304 4305 /* 4306 * unwritten extents are treated as holes, except that 4307 * we split out initialized portions during a write. 4308 */ 4309 ee_len = ext4_ext_get_actual_len(ex); 4310 4311 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 4312 4313 /* if found extent covers block, simply return it */ 4314 if (in_range(map->m_lblk, ee_block, ee_len)) { 4315 newblock = map->m_lblk - ee_block + ee_start; 4316 /* number of remaining blocks in the extent */ 4317 allocated = ee_len - (map->m_lblk - ee_block); 4318 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 4319 ee_block, ee_len, newblock); 4320 4321 /* 4322 * If the extent is initialized check whether the 4323 * caller wants to convert it to unwritten. 4324 */ 4325 if ((!ext4_ext_is_unwritten(ex)) && 4326 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) { 4327 allocated = convert_initialized_extent( 4328 handle, inode, map, path, flags, 4329 allocated, newblock); 4330 goto out2; 4331 } else if (!ext4_ext_is_unwritten(ex)) 4332 goto out; 4333 4334 ret = ext4_ext_handle_unwritten_extents( 4335 handle, inode, map, path, flags, 4336 allocated, newblock); 4337 if (ret < 0) 4338 err = ret; 4339 else 4340 allocated = ret; 4341 goto out2; 4342 } 4343 } 4344 4345 if ((sbi->s_cluster_ratio > 1) && 4346 ext4_find_delalloc_cluster(inode, map->m_lblk)) 4347 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4348 4349 /* 4350 * requested block isn't allocated yet; 4351 * we couldn't try to create block if create flag is zero 4352 */ 4353 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4354 /* 4355 * put just found gap into cache to speed up 4356 * subsequent requests 4357 */ 4358 if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0) 4359 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk); 4360 goto out2; 4361 } 4362 4363 /* 4364 * Okay, we need to do block allocation. 4365 */ 4366 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 4367 newex.ee_block = cpu_to_le32(map->m_lblk); 4368 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4369 4370 /* 4371 * If we are doing bigalloc, check to see if the extent returned 4372 * by ext4_ext_find_extent() implies a cluster we can use. 4373 */ 4374 if (cluster_offset && ex && 4375 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 4376 ar.len = allocated = map->m_len; 4377 newblock = map->m_pblk; 4378 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4379 goto got_allocated_blocks; 4380 } 4381 4382 /* find neighbour allocated blocks */ 4383 ar.lleft = map->m_lblk; 4384 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 4385 if (err) 4386 goto out2; 4387 ar.lright = map->m_lblk; 4388 ex2 = NULL; 4389 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 4390 if (err) 4391 goto out2; 4392 4393 /* Check if the extent after searching to the right implies a 4394 * cluster we can use. */ 4395 if ((sbi->s_cluster_ratio > 1) && ex2 && 4396 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 4397 ar.len = allocated = map->m_len; 4398 newblock = map->m_pblk; 4399 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4400 goto got_allocated_blocks; 4401 } 4402 4403 /* 4404 * See if request is beyond maximum number of blocks we can have in 4405 * a single extent. For an initialized extent this limit is 4406 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is 4407 * EXT_UNWRITTEN_MAX_LEN. 4408 */ 4409 if (map->m_len > EXT_INIT_MAX_LEN && 4410 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4411 map->m_len = EXT_INIT_MAX_LEN; 4412 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN && 4413 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4414 map->m_len = EXT_UNWRITTEN_MAX_LEN; 4415 4416 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 4417 newex.ee_len = cpu_to_le16(map->m_len); 4418 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 4419 if (err) 4420 allocated = ext4_ext_get_actual_len(&newex); 4421 else 4422 allocated = map->m_len; 4423 4424 /* allocate new block */ 4425 ar.inode = inode; 4426 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 4427 ar.logical = map->m_lblk; 4428 /* 4429 * We calculate the offset from the beginning of the cluster 4430 * for the logical block number, since when we allocate a 4431 * physical cluster, the physical block should start at the 4432 * same offset from the beginning of the cluster. This is 4433 * needed so that future calls to get_implied_cluster_alloc() 4434 * work correctly. 4435 */ 4436 offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4437 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 4438 ar.goal -= offset; 4439 ar.logical -= offset; 4440 if (S_ISREG(inode->i_mode)) 4441 ar.flags = EXT4_MB_HINT_DATA; 4442 else 4443 /* disable in-core preallocation for non-regular files */ 4444 ar.flags = 0; 4445 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4446 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4447 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4448 if (!newblock) 4449 goto out2; 4450 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 4451 ar.goal, newblock, allocated); 4452 free_on_err = 1; 4453 allocated_clusters = ar.len; 4454 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4455 if (ar.len > allocated) 4456 ar.len = allocated; 4457 4458 got_allocated_blocks: 4459 /* try to insert new extent into found leaf and return */ 4460 ext4_ext_store_pblock(&newex, newblock + offset); 4461 newex.ee_len = cpu_to_le16(ar.len); 4462 /* Mark unwritten */ 4463 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){ 4464 ext4_ext_mark_unwritten(&newex); 4465 map->m_flags |= EXT4_MAP_UNWRITTEN; 4466 /* 4467 * io_end structure was created for every IO write to an 4468 * unwritten extent. To avoid unnecessary conversion, 4469 * here we flag the IO that really needs the conversion. 4470 * For non asycn direct IO case, flag the inode state 4471 * that we need to perform conversion when IO is done. 4472 */ 4473 if (flags & EXT4_GET_BLOCKS_PRE_IO) 4474 set_unwritten = 1; 4475 } 4476 4477 err = 0; 4478 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) 4479 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4480 path, ar.len); 4481 if (!err) 4482 err = ext4_ext_insert_extent(handle, inode, path, 4483 &newex, flags); 4484 4485 if (!err && set_unwritten) { 4486 if (io) 4487 ext4_set_io_unwritten_flag(inode, io); 4488 else 4489 ext4_set_inode_state(inode, 4490 EXT4_STATE_DIO_UNWRITTEN); 4491 } 4492 4493 if (err && free_on_err) { 4494 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? 4495 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; 4496 /* free data blocks we just allocated */ 4497 /* not a good idea to call discard here directly, 4498 * but otherwise we'd need to call it every free() */ 4499 ext4_discard_preallocations(inode); 4500 ext4_free_blocks(handle, inode, NULL, newblock, 4501 EXT4_C2B(sbi, allocated_clusters), fb_flags); 4502 goto out2; 4503 } 4504 4505 /* previous routine could use block we allocated */ 4506 newblock = ext4_ext_pblock(&newex); 4507 allocated = ext4_ext_get_actual_len(&newex); 4508 if (allocated > map->m_len) 4509 allocated = map->m_len; 4510 map->m_flags |= EXT4_MAP_NEW; 4511 4512 /* 4513 * Update reserved blocks/metadata blocks after successful 4514 * block allocation which had been deferred till now. 4515 */ 4516 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4517 unsigned int reserved_clusters; 4518 /* 4519 * Check how many clusters we had reserved this allocated range 4520 */ 4521 reserved_clusters = get_reserved_cluster_alloc(inode, 4522 map->m_lblk, allocated); 4523 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) { 4524 if (reserved_clusters) { 4525 /* 4526 * We have clusters reserved for this range. 4527 * But since we are not doing actual allocation 4528 * and are simply using blocks from previously 4529 * allocated cluster, we should release the 4530 * reservation and not claim quota. 4531 */ 4532 ext4_da_update_reserve_space(inode, 4533 reserved_clusters, 0); 4534 } 4535 } else { 4536 BUG_ON(allocated_clusters < reserved_clusters); 4537 if (reserved_clusters < allocated_clusters) { 4538 struct ext4_inode_info *ei = EXT4_I(inode); 4539 int reservation = allocated_clusters - 4540 reserved_clusters; 4541 /* 4542 * It seems we claimed few clusters outside of 4543 * the range of this allocation. We should give 4544 * it back to the reservation pool. This can 4545 * happen in the following case: 4546 * 4547 * * Suppose s_cluster_ratio is 4 (i.e., each 4548 * cluster has 4 blocks. Thus, the clusters 4549 * are [0-3],[4-7],[8-11]... 4550 * * First comes delayed allocation write for 4551 * logical blocks 10 & 11. Since there were no 4552 * previous delayed allocated blocks in the 4553 * range [8-11], we would reserve 1 cluster 4554 * for this write. 4555 * * Next comes write for logical blocks 3 to 8. 4556 * In this case, we will reserve 2 clusters 4557 * (for [0-3] and [4-7]; and not for [8-11] as 4558 * that range has a delayed allocated blocks. 4559 * Thus total reserved clusters now becomes 3. 4560 * * Now, during the delayed allocation writeout 4561 * time, we will first write blocks [3-8] and 4562 * allocate 3 clusters for writing these 4563 * blocks. Also, we would claim all these 4564 * three clusters above. 4565 * * Now when we come here to writeout the 4566 * blocks [10-11], we would expect to claim 4567 * the reservation of 1 cluster we had made 4568 * (and we would claim it since there are no 4569 * more delayed allocated blocks in the range 4570 * [8-11]. But our reserved cluster count had 4571 * already gone to 0. 4572 * 4573 * Thus, at the step 4 above when we determine 4574 * that there are still some unwritten delayed 4575 * allocated blocks outside of our current 4576 * block range, we should increment the 4577 * reserved clusters count so that when the 4578 * remaining blocks finally gets written, we 4579 * could claim them. 4580 */ 4581 dquot_reserve_block(inode, 4582 EXT4_C2B(sbi, reservation)); 4583 spin_lock(&ei->i_block_reservation_lock); 4584 ei->i_reserved_data_blocks += reservation; 4585 spin_unlock(&ei->i_block_reservation_lock); 4586 } 4587 /* 4588 * We will claim quota for all newly allocated blocks. 4589 * We're updating the reserved space *after* the 4590 * correction above so we do not accidentally free 4591 * all the metadata reservation because we might 4592 * actually need it later on. 4593 */ 4594 ext4_da_update_reserve_space(inode, allocated_clusters, 4595 1); 4596 } 4597 } 4598 4599 /* 4600 * Cache the extent and update transaction to commit on fdatasync only 4601 * when it is _not_ an unwritten extent. 4602 */ 4603 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0) 4604 ext4_update_inode_fsync_trans(handle, inode, 1); 4605 else 4606 ext4_update_inode_fsync_trans(handle, inode, 0); 4607 out: 4608 if (allocated > map->m_len) 4609 allocated = map->m_len; 4610 ext4_ext_show_leaf(inode, path); 4611 map->m_flags |= EXT4_MAP_MAPPED; 4612 map->m_pblk = newblock; 4613 map->m_len = allocated; 4614 out2: 4615 if (path) { 4616 ext4_ext_drop_refs(path); 4617 kfree(path); 4618 } 4619 4620 trace_ext4_ext_map_blocks_exit(inode, flags, map, 4621 err ? err : allocated); 4622 ext4_es_lru_add(inode); 4623 return err ? err : allocated; 4624 } 4625 4626 void ext4_ext_truncate(handle_t *handle, struct inode *inode) 4627 { 4628 struct super_block *sb = inode->i_sb; 4629 ext4_lblk_t last_block; 4630 int err = 0; 4631 4632 /* 4633 * TODO: optimization is possible here. 4634 * Probably we need not scan at all, 4635 * because page truncation is enough. 4636 */ 4637 4638 /* we have to know where to truncate from in crash case */ 4639 EXT4_I(inode)->i_disksize = inode->i_size; 4640 ext4_mark_inode_dirty(handle, inode); 4641 4642 last_block = (inode->i_size + sb->s_blocksize - 1) 4643 >> EXT4_BLOCK_SIZE_BITS(sb); 4644 retry: 4645 err = ext4_es_remove_extent(inode, last_block, 4646 EXT_MAX_BLOCKS - last_block); 4647 if (err == -ENOMEM) { 4648 cond_resched(); 4649 congestion_wait(BLK_RW_ASYNC, HZ/50); 4650 goto retry; 4651 } 4652 if (err) { 4653 ext4_std_error(inode->i_sb, err); 4654 return; 4655 } 4656 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4657 ext4_std_error(inode->i_sb, err); 4658 } 4659 4660 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset, 4661 ext4_lblk_t len, loff_t new_size, 4662 int flags, int mode) 4663 { 4664 struct inode *inode = file_inode(file); 4665 handle_t *handle; 4666 int ret = 0; 4667 int ret2 = 0; 4668 int retries = 0; 4669 struct ext4_map_blocks map; 4670 unsigned int credits; 4671 loff_t epos; 4672 4673 map.m_lblk = offset; 4674 map.m_len = len; 4675 /* 4676 * Don't normalize the request if it can fit in one extent so 4677 * that it doesn't get unnecessarily split into multiple 4678 * extents. 4679 */ 4680 if (len <= EXT_UNWRITTEN_MAX_LEN) 4681 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4682 4683 /* 4684 * credits to insert 1 extent into extent tree 4685 */ 4686 credits = ext4_chunk_trans_blocks(inode, len); 4687 4688 retry: 4689 while (ret >= 0 && len) { 4690 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4691 credits); 4692 if (IS_ERR(handle)) { 4693 ret = PTR_ERR(handle); 4694 break; 4695 } 4696 ret = ext4_map_blocks(handle, inode, &map, flags); 4697 if (ret <= 0) { 4698 ext4_debug("inode #%lu: block %u: len %u: " 4699 "ext4_ext_map_blocks returned %d", 4700 inode->i_ino, map.m_lblk, 4701 map.m_len, ret); 4702 ext4_mark_inode_dirty(handle, inode); 4703 ret2 = ext4_journal_stop(handle); 4704 break; 4705 } 4706 map.m_lblk += ret; 4707 map.m_len = len = len - ret; 4708 epos = (loff_t)map.m_lblk << inode->i_blkbits; 4709 inode->i_ctime = ext4_current_time(inode); 4710 if (new_size) { 4711 if (epos > new_size) 4712 epos = new_size; 4713 if (ext4_update_inode_size(inode, epos) & 0x1) 4714 inode->i_mtime = inode->i_ctime; 4715 } else { 4716 if (epos > inode->i_size) 4717 ext4_set_inode_flag(inode, 4718 EXT4_INODE_EOFBLOCKS); 4719 } 4720 ext4_mark_inode_dirty(handle, inode); 4721 ret2 = ext4_journal_stop(handle); 4722 if (ret2) 4723 break; 4724 } 4725 if (ret == -ENOSPC && 4726 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4727 ret = 0; 4728 goto retry; 4729 } 4730 4731 return ret > 0 ? ret2 : ret; 4732 } 4733 4734 static long ext4_zero_range(struct file *file, loff_t offset, 4735 loff_t len, int mode) 4736 { 4737 struct inode *inode = file_inode(file); 4738 handle_t *handle = NULL; 4739 unsigned int max_blocks; 4740 loff_t new_size = 0; 4741 int ret = 0; 4742 int flags; 4743 int credits; 4744 int partial_begin, partial_end; 4745 loff_t start, end; 4746 ext4_lblk_t lblk; 4747 struct address_space *mapping = inode->i_mapping; 4748 unsigned int blkbits = inode->i_blkbits; 4749 4750 trace_ext4_zero_range(inode, offset, len, mode); 4751 4752 if (!S_ISREG(inode->i_mode)) 4753 return -EINVAL; 4754 4755 /* Call ext4_force_commit to flush all data in case of data=journal. */ 4756 if (ext4_should_journal_data(inode)) { 4757 ret = ext4_force_commit(inode->i_sb); 4758 if (ret) 4759 return ret; 4760 } 4761 4762 /* 4763 * Write out all dirty pages to avoid race conditions 4764 * Then release them. 4765 */ 4766 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4767 ret = filemap_write_and_wait_range(mapping, offset, 4768 offset + len - 1); 4769 if (ret) 4770 return ret; 4771 } 4772 4773 /* 4774 * Round up offset. This is not fallocate, we neet to zero out 4775 * blocks, so convert interior block aligned part of the range to 4776 * unwritten and possibly manually zero out unaligned parts of the 4777 * range. 4778 */ 4779 start = round_up(offset, 1 << blkbits); 4780 end = round_down((offset + len), 1 << blkbits); 4781 4782 if (start < offset || end > offset + len) 4783 return -EINVAL; 4784 partial_begin = offset & ((1 << blkbits) - 1); 4785 partial_end = (offset + len) & ((1 << blkbits) - 1); 4786 4787 lblk = start >> blkbits; 4788 max_blocks = (end >> blkbits); 4789 if (max_blocks < lblk) 4790 max_blocks = 0; 4791 else 4792 max_blocks -= lblk; 4793 4794 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT | 4795 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN | 4796 EXT4_EX_NOCACHE; 4797 if (mode & FALLOC_FL_KEEP_SIZE) 4798 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4799 4800 mutex_lock(&inode->i_mutex); 4801 4802 /* 4803 * Indirect files do not support unwritten extnets 4804 */ 4805 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4806 ret = -EOPNOTSUPP; 4807 goto out_mutex; 4808 } 4809 4810 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4811 offset + len > i_size_read(inode)) { 4812 new_size = offset + len; 4813 ret = inode_newsize_ok(inode, new_size); 4814 if (ret) 4815 goto out_mutex; 4816 /* 4817 * If we have a partial block after EOF we have to allocate 4818 * the entire block. 4819 */ 4820 if (partial_end) 4821 max_blocks += 1; 4822 } 4823 4824 if (max_blocks > 0) { 4825 4826 /* Now release the pages and zero block aligned part of pages*/ 4827 truncate_pagecache_range(inode, start, end - 1); 4828 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4829 4830 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4831 ext4_inode_block_unlocked_dio(inode); 4832 inode_dio_wait(inode); 4833 4834 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, 4835 flags, mode); 4836 if (ret) 4837 goto out_dio; 4838 /* 4839 * Remove entire range from the extent status tree. 4840 * 4841 * ext4_es_remove_extent(inode, lblk, max_blocks) is 4842 * NOT sufficient. I'm not sure why this is the case, 4843 * but let's be conservative and remove the extent 4844 * status tree for the entire inode. There should be 4845 * no outstanding delalloc extents thanks to the 4846 * filemap_write_and_wait_range() call above. 4847 */ 4848 ret = ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 4849 if (ret) 4850 goto out_dio; 4851 } 4852 if (!partial_begin && !partial_end) 4853 goto out_dio; 4854 4855 /* 4856 * In worst case we have to writeout two nonadjacent unwritten 4857 * blocks and update the inode 4858 */ 4859 credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1; 4860 if (ext4_should_journal_data(inode)) 4861 credits += 2; 4862 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 4863 if (IS_ERR(handle)) { 4864 ret = PTR_ERR(handle); 4865 ext4_std_error(inode->i_sb, ret); 4866 goto out_dio; 4867 } 4868 4869 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4870 if (new_size) { 4871 ext4_update_inode_size(inode, new_size); 4872 } else { 4873 /* 4874 * Mark that we allocate beyond EOF so the subsequent truncate 4875 * can proceed even if the new size is the same as i_size. 4876 */ 4877 if ((offset + len) > i_size_read(inode)) 4878 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4879 } 4880 ext4_mark_inode_dirty(handle, inode); 4881 4882 /* Zero out partial block at the edges of the range */ 4883 ret = ext4_zero_partial_blocks(handle, inode, offset, len); 4884 4885 if (file->f_flags & O_SYNC) 4886 ext4_handle_sync(handle); 4887 4888 ext4_journal_stop(handle); 4889 out_dio: 4890 ext4_inode_resume_unlocked_dio(inode); 4891 out_mutex: 4892 mutex_unlock(&inode->i_mutex); 4893 return ret; 4894 } 4895 4896 /* 4897 * preallocate space for a file. This implements ext4's fallocate file 4898 * operation, which gets called from sys_fallocate system call. 4899 * For block-mapped files, posix_fallocate should fall back to the method 4900 * of writing zeroes to the required new blocks (the same behavior which is 4901 * expected for file systems which do not support fallocate() system call). 4902 */ 4903 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4904 { 4905 struct inode *inode = file_inode(file); 4906 loff_t new_size = 0; 4907 unsigned int max_blocks; 4908 int ret = 0; 4909 int flags; 4910 ext4_lblk_t lblk; 4911 unsigned int blkbits = inode->i_blkbits; 4912 4913 /* Return error if mode is not supported */ 4914 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 4915 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE)) 4916 return -EOPNOTSUPP; 4917 4918 if (mode & FALLOC_FL_PUNCH_HOLE) 4919 return ext4_punch_hole(inode, offset, len); 4920 4921 ret = ext4_convert_inline_data(inode); 4922 if (ret) 4923 return ret; 4924 4925 /* 4926 * currently supporting (pre)allocate mode for extent-based 4927 * files _only_ 4928 */ 4929 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4930 return -EOPNOTSUPP; 4931 4932 if (mode & FALLOC_FL_COLLAPSE_RANGE) 4933 return ext4_collapse_range(inode, offset, len); 4934 4935 if (mode & FALLOC_FL_ZERO_RANGE) 4936 return ext4_zero_range(file, offset, len, mode); 4937 4938 trace_ext4_fallocate_enter(inode, offset, len, mode); 4939 lblk = offset >> blkbits; 4940 /* 4941 * We can't just convert len to max_blocks because 4942 * If blocksize = 4096 offset = 3072 and len = 2048 4943 */ 4944 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 4945 - lblk; 4946 4947 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4948 if (mode & FALLOC_FL_KEEP_SIZE) 4949 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4950 4951 mutex_lock(&inode->i_mutex); 4952 4953 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4954 offset + len > i_size_read(inode)) { 4955 new_size = offset + len; 4956 ret = inode_newsize_ok(inode, new_size); 4957 if (ret) 4958 goto out; 4959 } 4960 4961 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, 4962 flags, mode); 4963 if (ret) 4964 goto out; 4965 4966 if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) { 4967 ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 4968 EXT4_I(inode)->i_sync_tid); 4969 } 4970 out: 4971 mutex_unlock(&inode->i_mutex); 4972 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 4973 return ret; 4974 } 4975 4976 /* 4977 * This function convert a range of blocks to written extents 4978 * The caller of this function will pass the start offset and the size. 4979 * all unwritten extents within this range will be converted to 4980 * written extents. 4981 * 4982 * This function is called from the direct IO end io call back 4983 * function, to convert the fallocated extents after IO is completed. 4984 * Returns 0 on success. 4985 */ 4986 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode, 4987 loff_t offset, ssize_t len) 4988 { 4989 unsigned int max_blocks; 4990 int ret = 0; 4991 int ret2 = 0; 4992 struct ext4_map_blocks map; 4993 unsigned int credits, blkbits = inode->i_blkbits; 4994 4995 map.m_lblk = offset >> blkbits; 4996 /* 4997 * We can't just convert len to max_blocks because 4998 * If blocksize = 4096 offset = 3072 and len = 2048 4999 */ 5000 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) - 5001 map.m_lblk); 5002 /* 5003 * This is somewhat ugly but the idea is clear: When transaction is 5004 * reserved, everything goes into it. Otherwise we rather start several 5005 * smaller transactions for conversion of each extent separately. 5006 */ 5007 if (handle) { 5008 handle = ext4_journal_start_reserved(handle, 5009 EXT4_HT_EXT_CONVERT); 5010 if (IS_ERR(handle)) 5011 return PTR_ERR(handle); 5012 credits = 0; 5013 } else { 5014 /* 5015 * credits to insert 1 extent into extent tree 5016 */ 5017 credits = ext4_chunk_trans_blocks(inode, max_blocks); 5018 } 5019 while (ret >= 0 && ret < max_blocks) { 5020 map.m_lblk += ret; 5021 map.m_len = (max_blocks -= ret); 5022 if (credits) { 5023 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 5024 credits); 5025 if (IS_ERR(handle)) { 5026 ret = PTR_ERR(handle); 5027 break; 5028 } 5029 } 5030 ret = ext4_map_blocks(handle, inode, &map, 5031 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 5032 if (ret <= 0) 5033 ext4_warning(inode->i_sb, 5034 "inode #%lu: block %u: len %u: " 5035 "ext4_ext_map_blocks returned %d", 5036 inode->i_ino, map.m_lblk, 5037 map.m_len, ret); 5038 ext4_mark_inode_dirty(handle, inode); 5039 if (credits) 5040 ret2 = ext4_journal_stop(handle); 5041 if (ret <= 0 || ret2) 5042 break; 5043 } 5044 if (!credits) 5045 ret2 = ext4_journal_stop(handle); 5046 return ret > 0 ? ret2 : ret; 5047 } 5048 5049 /* 5050 * If newes is not existing extent (newes->ec_pblk equals zero) find 5051 * delayed extent at start of newes and update newes accordingly and 5052 * return start of the next delayed extent. 5053 * 5054 * If newes is existing extent (newes->ec_pblk is not equal zero) 5055 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed 5056 * extent found. Leave newes unmodified. 5057 */ 5058 static int ext4_find_delayed_extent(struct inode *inode, 5059 struct extent_status *newes) 5060 { 5061 struct extent_status es; 5062 ext4_lblk_t block, next_del; 5063 5064 if (newes->es_pblk == 0) { 5065 ext4_es_find_delayed_extent_range(inode, newes->es_lblk, 5066 newes->es_lblk + newes->es_len - 1, &es); 5067 5068 /* 5069 * No extent in extent-tree contains block @newes->es_pblk, 5070 * then the block may stay in 1)a hole or 2)delayed-extent. 5071 */ 5072 if (es.es_len == 0) 5073 /* A hole found. */ 5074 return 0; 5075 5076 if (es.es_lblk > newes->es_lblk) { 5077 /* A hole found. */ 5078 newes->es_len = min(es.es_lblk - newes->es_lblk, 5079 newes->es_len); 5080 return 0; 5081 } 5082 5083 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk; 5084 } 5085 5086 block = newes->es_lblk + newes->es_len; 5087 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es); 5088 if (es.es_len == 0) 5089 next_del = EXT_MAX_BLOCKS; 5090 else 5091 next_del = es.es_lblk; 5092 5093 return next_del; 5094 } 5095 /* fiemap flags we can handle specified here */ 5096 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 5097 5098 static int ext4_xattr_fiemap(struct inode *inode, 5099 struct fiemap_extent_info *fieinfo) 5100 { 5101 __u64 physical = 0; 5102 __u64 length; 5103 __u32 flags = FIEMAP_EXTENT_LAST; 5104 int blockbits = inode->i_sb->s_blocksize_bits; 5105 int error = 0; 5106 5107 /* in-inode? */ 5108 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 5109 struct ext4_iloc iloc; 5110 int offset; /* offset of xattr in inode */ 5111 5112 error = ext4_get_inode_loc(inode, &iloc); 5113 if (error) 5114 return error; 5115 physical = (__u64)iloc.bh->b_blocknr << blockbits; 5116 offset = EXT4_GOOD_OLD_INODE_SIZE + 5117 EXT4_I(inode)->i_extra_isize; 5118 physical += offset; 5119 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 5120 flags |= FIEMAP_EXTENT_DATA_INLINE; 5121 brelse(iloc.bh); 5122 } else { /* external block */ 5123 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits; 5124 length = inode->i_sb->s_blocksize; 5125 } 5126 5127 if (physical) 5128 error = fiemap_fill_next_extent(fieinfo, 0, physical, 5129 length, flags); 5130 return (error < 0 ? error : 0); 5131 } 5132 5133 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 5134 __u64 start, __u64 len) 5135 { 5136 ext4_lblk_t start_blk; 5137 int error = 0; 5138 5139 if (ext4_has_inline_data(inode)) { 5140 int has_inline = 1; 5141 5142 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline); 5143 5144 if (has_inline) 5145 return error; 5146 } 5147 5148 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 5149 error = ext4_ext_precache(inode); 5150 if (error) 5151 return error; 5152 } 5153 5154 /* fallback to generic here if not in extents fmt */ 5155 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5156 return generic_block_fiemap(inode, fieinfo, start, len, 5157 ext4_get_block); 5158 5159 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 5160 return -EBADR; 5161 5162 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 5163 error = ext4_xattr_fiemap(inode, fieinfo); 5164 } else { 5165 ext4_lblk_t len_blks; 5166 __u64 last_blk; 5167 5168 start_blk = start >> inode->i_sb->s_blocksize_bits; 5169 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 5170 if (last_blk >= EXT_MAX_BLOCKS) 5171 last_blk = EXT_MAX_BLOCKS-1; 5172 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 5173 5174 /* 5175 * Walk the extent tree gathering extent information 5176 * and pushing extents back to the user. 5177 */ 5178 error = ext4_fill_fiemap_extents(inode, start_blk, 5179 len_blks, fieinfo); 5180 } 5181 ext4_es_lru_add(inode); 5182 return error; 5183 } 5184 5185 /* 5186 * ext4_access_path: 5187 * Function to access the path buffer for marking it dirty. 5188 * It also checks if there are sufficient credits left in the journal handle 5189 * to update path. 5190 */ 5191 static int 5192 ext4_access_path(handle_t *handle, struct inode *inode, 5193 struct ext4_ext_path *path) 5194 { 5195 int credits, err; 5196 5197 if (!ext4_handle_valid(handle)) 5198 return 0; 5199 5200 /* 5201 * Check if need to extend journal credits 5202 * 3 for leaf, sb, and inode plus 2 (bmap and group 5203 * descriptor) for each block group; assume two block 5204 * groups 5205 */ 5206 if (handle->h_buffer_credits < 7) { 5207 credits = ext4_writepage_trans_blocks(inode); 5208 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 5209 /* EAGAIN is success */ 5210 if (err && err != -EAGAIN) 5211 return err; 5212 } 5213 5214 err = ext4_ext_get_access(handle, inode, path); 5215 return err; 5216 } 5217 5218 /* 5219 * ext4_ext_shift_path_extents: 5220 * Shift the extents of a path structure lying between path[depth].p_ext 5221 * and EXT_LAST_EXTENT(path[depth].p_hdr) downwards, by subtracting shift 5222 * from starting block for each extent. 5223 */ 5224 static int 5225 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift, 5226 struct inode *inode, handle_t *handle, 5227 ext4_lblk_t *start) 5228 { 5229 int depth, err = 0; 5230 struct ext4_extent *ex_start, *ex_last; 5231 bool update = 0; 5232 depth = path->p_depth; 5233 5234 while (depth >= 0) { 5235 if (depth == path->p_depth) { 5236 ex_start = path[depth].p_ext; 5237 if (!ex_start) 5238 return -EIO; 5239 5240 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr); 5241 if (!ex_last) 5242 return -EIO; 5243 5244 err = ext4_access_path(handle, inode, path + depth); 5245 if (err) 5246 goto out; 5247 5248 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr)) 5249 update = 1; 5250 5251 *start = le32_to_cpu(ex_last->ee_block) + 5252 ext4_ext_get_actual_len(ex_last); 5253 5254 while (ex_start <= ex_last) { 5255 le32_add_cpu(&ex_start->ee_block, -shift); 5256 /* Try to merge to the left. */ 5257 if ((ex_start > 5258 EXT_FIRST_EXTENT(path[depth].p_hdr)) && 5259 ext4_ext_try_to_merge_right(inode, 5260 path, ex_start - 1)) 5261 ex_last--; 5262 else 5263 ex_start++; 5264 } 5265 err = ext4_ext_dirty(handle, inode, path + depth); 5266 if (err) 5267 goto out; 5268 5269 if (--depth < 0 || !update) 5270 break; 5271 } 5272 5273 /* Update index too */ 5274 err = ext4_access_path(handle, inode, path + depth); 5275 if (err) 5276 goto out; 5277 5278 le32_add_cpu(&path[depth].p_idx->ei_block, -shift); 5279 err = ext4_ext_dirty(handle, inode, path + depth); 5280 if (err) 5281 goto out; 5282 5283 /* we are done if current index is not a starting index */ 5284 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr)) 5285 break; 5286 5287 depth--; 5288 } 5289 5290 out: 5291 return err; 5292 } 5293 5294 /* 5295 * ext4_ext_shift_extents: 5296 * All the extents which lies in the range from start to the last allocated 5297 * block for the file are shifted downwards by shift blocks. 5298 * On success, 0 is returned, error otherwise. 5299 */ 5300 static int 5301 ext4_ext_shift_extents(struct inode *inode, handle_t *handle, 5302 ext4_lblk_t start, ext4_lblk_t shift) 5303 { 5304 struct ext4_ext_path *path; 5305 int ret = 0, depth; 5306 struct ext4_extent *extent; 5307 ext4_lblk_t stop_block; 5308 ext4_lblk_t ex_start, ex_end; 5309 5310 /* Let path point to the last extent */ 5311 path = ext4_ext_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 0); 5312 if (IS_ERR(path)) 5313 return PTR_ERR(path); 5314 5315 depth = path->p_depth; 5316 extent = path[depth].p_ext; 5317 if (!extent) { 5318 ext4_ext_drop_refs(path); 5319 kfree(path); 5320 return ret; 5321 } 5322 5323 stop_block = le32_to_cpu(extent->ee_block) + 5324 ext4_ext_get_actual_len(extent); 5325 ext4_ext_drop_refs(path); 5326 kfree(path); 5327 5328 /* Nothing to shift, if hole is at the end of file */ 5329 if (start >= stop_block) 5330 return ret; 5331 5332 /* 5333 * Don't start shifting extents until we make sure the hole is big 5334 * enough to accomodate the shift. 5335 */ 5336 path = ext4_ext_find_extent(inode, start - 1, NULL, 0); 5337 if (IS_ERR(path)) 5338 return PTR_ERR(path); 5339 depth = path->p_depth; 5340 extent = path[depth].p_ext; 5341 if (extent) { 5342 ex_start = le32_to_cpu(extent->ee_block); 5343 ex_end = le32_to_cpu(extent->ee_block) + 5344 ext4_ext_get_actual_len(extent); 5345 } else { 5346 ex_start = 0; 5347 ex_end = 0; 5348 } 5349 ext4_ext_drop_refs(path); 5350 kfree(path); 5351 5352 if ((start == ex_start && shift > ex_start) || 5353 (shift > start - ex_end)) 5354 return -EINVAL; 5355 5356 /* Its safe to start updating extents */ 5357 while (start < stop_block) { 5358 path = ext4_ext_find_extent(inode, start, NULL, 0); 5359 if (IS_ERR(path)) 5360 return PTR_ERR(path); 5361 depth = path->p_depth; 5362 extent = path[depth].p_ext; 5363 if (!extent) { 5364 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 5365 (unsigned long) start); 5366 return -EIO; 5367 } 5368 if (start > le32_to_cpu(extent->ee_block)) { 5369 /* Hole, move to the next extent */ 5370 if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) { 5371 path[depth].p_ext++; 5372 } else { 5373 start = ext4_ext_next_allocated_block(path); 5374 ext4_ext_drop_refs(path); 5375 kfree(path); 5376 continue; 5377 } 5378 } 5379 ret = ext4_ext_shift_path_extents(path, shift, inode, 5380 handle, &start); 5381 ext4_ext_drop_refs(path); 5382 kfree(path); 5383 if (ret) 5384 break; 5385 } 5386 5387 return ret; 5388 } 5389 5390 /* 5391 * ext4_collapse_range: 5392 * This implements the fallocate's collapse range functionality for ext4 5393 * Returns: 0 and non-zero on error. 5394 */ 5395 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len) 5396 { 5397 struct super_block *sb = inode->i_sb; 5398 ext4_lblk_t punch_start, punch_stop; 5399 handle_t *handle; 5400 unsigned int credits; 5401 loff_t new_size, ioffset; 5402 int ret; 5403 5404 /* Collapse range works only on fs block size aligned offsets. */ 5405 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) || 5406 len & (EXT4_CLUSTER_SIZE(sb) - 1)) 5407 return -EINVAL; 5408 5409 if (!S_ISREG(inode->i_mode)) 5410 return -EINVAL; 5411 5412 trace_ext4_collapse_range(inode, offset, len); 5413 5414 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5415 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb); 5416 5417 /* Call ext4_force_commit to flush all data in case of data=journal. */ 5418 if (ext4_should_journal_data(inode)) { 5419 ret = ext4_force_commit(inode->i_sb); 5420 if (ret) 5421 return ret; 5422 } 5423 5424 /* 5425 * Need to round down offset to be aligned with page size boundary 5426 * for page size > block size. 5427 */ 5428 ioffset = round_down(offset, PAGE_SIZE); 5429 5430 /* Write out all dirty pages */ 5431 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, 5432 LLONG_MAX); 5433 if (ret) 5434 return ret; 5435 5436 /* Take mutex lock */ 5437 mutex_lock(&inode->i_mutex); 5438 5439 /* 5440 * There is no need to overlap collapse range with EOF, in which case 5441 * it is effectively a truncate operation 5442 */ 5443 if (offset + len >= i_size_read(inode)) { 5444 ret = -EINVAL; 5445 goto out_mutex; 5446 } 5447 5448 /* Currently just for extent based files */ 5449 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5450 ret = -EOPNOTSUPP; 5451 goto out_mutex; 5452 } 5453 5454 truncate_pagecache(inode, ioffset); 5455 5456 /* Wait for existing dio to complete */ 5457 ext4_inode_block_unlocked_dio(inode); 5458 inode_dio_wait(inode); 5459 5460 credits = ext4_writepage_trans_blocks(inode); 5461 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5462 if (IS_ERR(handle)) { 5463 ret = PTR_ERR(handle); 5464 goto out_dio; 5465 } 5466 5467 down_write(&EXT4_I(inode)->i_data_sem); 5468 ext4_discard_preallocations(inode); 5469 5470 ret = ext4_es_remove_extent(inode, punch_start, 5471 EXT_MAX_BLOCKS - punch_start); 5472 if (ret) { 5473 up_write(&EXT4_I(inode)->i_data_sem); 5474 goto out_stop; 5475 } 5476 5477 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1); 5478 if (ret) { 5479 up_write(&EXT4_I(inode)->i_data_sem); 5480 goto out_stop; 5481 } 5482 ext4_discard_preallocations(inode); 5483 5484 ret = ext4_ext_shift_extents(inode, handle, punch_stop, 5485 punch_stop - punch_start); 5486 if (ret) { 5487 up_write(&EXT4_I(inode)->i_data_sem); 5488 goto out_stop; 5489 } 5490 5491 new_size = i_size_read(inode) - len; 5492 i_size_write(inode, new_size); 5493 EXT4_I(inode)->i_disksize = new_size; 5494 5495 up_write(&EXT4_I(inode)->i_data_sem); 5496 if (IS_SYNC(inode)) 5497 ext4_handle_sync(handle); 5498 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 5499 ext4_mark_inode_dirty(handle, inode); 5500 5501 out_stop: 5502 ext4_journal_stop(handle); 5503 out_dio: 5504 ext4_inode_resume_unlocked_dio(inode); 5505 out_mutex: 5506 mutex_unlock(&inode->i_mutex); 5507 return ret; 5508 } 5509 5510 /** 5511 * ext4_swap_extents - Swap extents between two inodes 5512 * 5513 * @inode1: First inode 5514 * @inode2: Second inode 5515 * @lblk1: Start block for first inode 5516 * @lblk2: Start block for second inode 5517 * @count: Number of blocks to swap 5518 * @mark_unwritten: Mark second inode's extents as unwritten after swap 5519 * @erp: Pointer to save error value 5520 * 5521 * This helper routine does exactly what is promise "swap extents". All other 5522 * stuff such as page-cache locking consistency, bh mapping consistency or 5523 * extent's data copying must be performed by caller. 5524 * Locking: 5525 * i_mutex is held for both inodes 5526 * i_data_sem is locked for write for both inodes 5527 * Assumptions: 5528 * All pages from requested range are locked for both inodes 5529 */ 5530 int 5531 ext4_swap_extents(handle_t *handle, struct inode *inode1, 5532 struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2, 5533 ext4_lblk_t count, int unwritten, int *erp) 5534 { 5535 struct ext4_ext_path *path1 = NULL; 5536 struct ext4_ext_path *path2 = NULL; 5537 int replaced_count = 0; 5538 5539 BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem)); 5540 BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem)); 5541 BUG_ON(!mutex_is_locked(&inode1->i_mutex)); 5542 BUG_ON(!mutex_is_locked(&inode1->i_mutex)); 5543 5544 *erp = ext4_es_remove_extent(inode1, lblk1, count); 5545 if (unlikely(*erp)) 5546 return 0; 5547 *erp = ext4_es_remove_extent(inode2, lblk2, count); 5548 if (unlikely(*erp)) 5549 return 0; 5550 5551 while (count) { 5552 struct ext4_extent *ex1, *ex2, tmp_ex; 5553 ext4_lblk_t e1_blk, e2_blk; 5554 int e1_len, e2_len, len; 5555 int split = 0; 5556 5557 path1 = ext4_ext_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE); 5558 if (unlikely(IS_ERR(path1))) { 5559 *erp = PTR_ERR(path1); 5560 path1 = NULL; 5561 finish: 5562 count = 0; 5563 goto repeat; 5564 } 5565 path2 = ext4_ext_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE); 5566 if (unlikely(IS_ERR(path2))) { 5567 *erp = PTR_ERR(path2); 5568 path2 = NULL; 5569 goto finish; 5570 } 5571 ex1 = path1[path1->p_depth].p_ext; 5572 ex2 = path2[path2->p_depth].p_ext; 5573 /* Do we have somthing to swap ? */ 5574 if (unlikely(!ex2 || !ex1)) 5575 goto finish; 5576 5577 e1_blk = le32_to_cpu(ex1->ee_block); 5578 e2_blk = le32_to_cpu(ex2->ee_block); 5579 e1_len = ext4_ext_get_actual_len(ex1); 5580 e2_len = ext4_ext_get_actual_len(ex2); 5581 5582 /* Hole handling */ 5583 if (!in_range(lblk1, e1_blk, e1_len) || 5584 !in_range(lblk2, e2_blk, e2_len)) { 5585 ext4_lblk_t next1, next2; 5586 5587 /* if hole after extent, then go to next extent */ 5588 next1 = ext4_ext_next_allocated_block(path1); 5589 next2 = ext4_ext_next_allocated_block(path2); 5590 /* If hole before extent, then shift to that extent */ 5591 if (e1_blk > lblk1) 5592 next1 = e1_blk; 5593 if (e2_blk > lblk2) 5594 next2 = e1_blk; 5595 /* Do we have something to swap */ 5596 if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS) 5597 goto finish; 5598 /* Move to the rightest boundary */ 5599 len = next1 - lblk1; 5600 if (len < next2 - lblk2) 5601 len = next2 - lblk2; 5602 if (len > count) 5603 len = count; 5604 lblk1 += len; 5605 lblk2 += len; 5606 count -= len; 5607 goto repeat; 5608 } 5609 5610 /* Prepare left boundary */ 5611 if (e1_blk < lblk1) { 5612 split = 1; 5613 *erp = ext4_force_split_extent_at(handle, inode1, 5614 path1, lblk1, 0); 5615 if (unlikely(*erp)) 5616 goto finish; 5617 } 5618 if (e2_blk < lblk2) { 5619 split = 1; 5620 *erp = ext4_force_split_extent_at(handle, inode2, 5621 path2, lblk2, 0); 5622 if (unlikely(*erp)) 5623 goto finish; 5624 } 5625 /* ext4_split_extent_at() may retult in leaf extent split, 5626 * path must to be revalidated. */ 5627 if (split) 5628 goto repeat; 5629 5630 /* Prepare right boundary */ 5631 len = count; 5632 if (len > e1_blk + e1_len - lblk1) 5633 len = e1_blk + e1_len - lblk1; 5634 if (len > e2_blk + e2_len - lblk2) 5635 len = e2_blk + e2_len - lblk2; 5636 5637 if (len != e1_len) { 5638 split = 1; 5639 *erp = ext4_force_split_extent_at(handle, inode1, 5640 path1, lblk1 + len, 0); 5641 if (unlikely(*erp)) 5642 goto finish; 5643 } 5644 if (len != e2_len) { 5645 split = 1; 5646 *erp = ext4_force_split_extent_at(handle, inode2, 5647 path2, lblk2 + len, 0); 5648 if (*erp) 5649 goto finish; 5650 } 5651 /* ext4_split_extent_at() may retult in leaf extent split, 5652 * path must to be revalidated. */ 5653 if (split) 5654 goto repeat; 5655 5656 BUG_ON(e2_len != e1_len); 5657 *erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth); 5658 if (unlikely(*erp)) 5659 goto finish; 5660 *erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth); 5661 if (unlikely(*erp)) 5662 goto finish; 5663 5664 /* Both extents are fully inside boundaries. Swap it now */ 5665 tmp_ex = *ex1; 5666 ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2)); 5667 ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex)); 5668 ex1->ee_len = cpu_to_le16(e2_len); 5669 ex2->ee_len = cpu_to_le16(e1_len); 5670 if (unwritten) 5671 ext4_ext_mark_unwritten(ex2); 5672 if (ext4_ext_is_unwritten(&tmp_ex)) 5673 ext4_ext_mark_unwritten(ex1); 5674 5675 ext4_ext_try_to_merge(handle, inode2, path2, ex2); 5676 ext4_ext_try_to_merge(handle, inode1, path1, ex1); 5677 *erp = ext4_ext_dirty(handle, inode2, path2 + 5678 path2->p_depth); 5679 if (unlikely(*erp)) 5680 goto finish; 5681 *erp = ext4_ext_dirty(handle, inode1, path1 + 5682 path1->p_depth); 5683 /* 5684 * Looks scarry ah..? second inode already points to new blocks, 5685 * and it was successfully dirtied. But luckily error may happen 5686 * only due to journal error, so full transaction will be 5687 * aborted anyway. 5688 */ 5689 if (unlikely(*erp)) 5690 goto finish; 5691 lblk1 += len; 5692 lblk2 += len; 5693 replaced_count += len; 5694 count -= len; 5695 5696 repeat: 5697 if (path1) { 5698 ext4_ext_drop_refs(path1); 5699 kfree(path1); 5700 path1 = NULL; 5701 } 5702 if (path2) { 5703 ext4_ext_drop_refs(path2); 5704 kfree(path2); 5705 path2 = NULL; 5706 } 5707 } 5708 return replaced_count; 5709 } 5710