1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public Licens 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/fs.h> 33 #include <linux/time.h> 34 #include <linux/jbd2.h> 35 #include <linux/highuid.h> 36 #include <linux/pagemap.h> 37 #include <linux/quotaops.h> 38 #include <linux/string.h> 39 #include <linux/slab.h> 40 #include <linux/falloc.h> 41 #include <asm/uaccess.h> 42 #include <linux/fiemap.h> 43 #include "ext4_jbd2.h" 44 45 #include <trace/events/ext4.h> 46 47 /* 48 * used by extent splitting. 49 */ 50 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 51 due to ENOSPC */ 52 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */ 53 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */ 54 55 static int ext4_split_extent(handle_t *handle, 56 struct inode *inode, 57 struct ext4_ext_path *path, 58 struct ext4_map_blocks *map, 59 int split_flag, 60 int flags); 61 62 static int ext4_split_extent_at(handle_t *handle, 63 struct inode *inode, 64 struct ext4_ext_path *path, 65 ext4_lblk_t split, 66 int split_flag, 67 int flags); 68 69 static int ext4_ext_truncate_extend_restart(handle_t *handle, 70 struct inode *inode, 71 int needed) 72 { 73 int err; 74 75 if (!ext4_handle_valid(handle)) 76 return 0; 77 if (handle->h_buffer_credits > needed) 78 return 0; 79 err = ext4_journal_extend(handle, needed); 80 if (err <= 0) 81 return err; 82 err = ext4_truncate_restart_trans(handle, inode, needed); 83 if (err == 0) 84 err = -EAGAIN; 85 86 return err; 87 } 88 89 /* 90 * could return: 91 * - EROFS 92 * - ENOMEM 93 */ 94 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 95 struct ext4_ext_path *path) 96 { 97 if (path->p_bh) { 98 /* path points to block */ 99 return ext4_journal_get_write_access(handle, path->p_bh); 100 } 101 /* path points to leaf/index in inode body */ 102 /* we use in-core data, no need to protect them */ 103 return 0; 104 } 105 106 /* 107 * could return: 108 * - EROFS 109 * - ENOMEM 110 * - EIO 111 */ 112 #define ext4_ext_dirty(handle, inode, path) \ 113 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path)) 114 static int __ext4_ext_dirty(const char *where, unsigned int line, 115 handle_t *handle, struct inode *inode, 116 struct ext4_ext_path *path) 117 { 118 int err; 119 if (path->p_bh) { 120 /* path points to block */ 121 err = __ext4_handle_dirty_metadata(where, line, handle, 122 inode, path->p_bh); 123 } else { 124 /* path points to leaf/index in inode body */ 125 err = ext4_mark_inode_dirty(handle, inode); 126 } 127 return err; 128 } 129 130 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 131 struct ext4_ext_path *path, 132 ext4_lblk_t block) 133 { 134 if (path) { 135 int depth = path->p_depth; 136 struct ext4_extent *ex; 137 138 /* 139 * Try to predict block placement assuming that we are 140 * filling in a file which will eventually be 141 * non-sparse --- i.e., in the case of libbfd writing 142 * an ELF object sections out-of-order but in a way 143 * the eventually results in a contiguous object or 144 * executable file, or some database extending a table 145 * space file. However, this is actually somewhat 146 * non-ideal if we are writing a sparse file such as 147 * qemu or KVM writing a raw image file that is going 148 * to stay fairly sparse, since it will end up 149 * fragmenting the file system's free space. Maybe we 150 * should have some hueristics or some way to allow 151 * userspace to pass a hint to file system, 152 * especially if the latter case turns out to be 153 * common. 154 */ 155 ex = path[depth].p_ext; 156 if (ex) { 157 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 158 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 159 160 if (block > ext_block) 161 return ext_pblk + (block - ext_block); 162 else 163 return ext_pblk - (ext_block - block); 164 } 165 166 /* it looks like index is empty; 167 * try to find starting block from index itself */ 168 if (path[depth].p_bh) 169 return path[depth].p_bh->b_blocknr; 170 } 171 172 /* OK. use inode's group */ 173 return ext4_inode_to_goal_block(inode); 174 } 175 176 /* 177 * Allocation for a meta data block 178 */ 179 static ext4_fsblk_t 180 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 181 struct ext4_ext_path *path, 182 struct ext4_extent *ex, int *err, unsigned int flags) 183 { 184 ext4_fsblk_t goal, newblock; 185 186 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 187 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 188 NULL, err); 189 return newblock; 190 } 191 192 static inline int ext4_ext_space_block(struct inode *inode, int check) 193 { 194 int size; 195 196 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 197 / sizeof(struct ext4_extent); 198 #ifdef AGGRESSIVE_TEST 199 if (!check && size > 6) 200 size = 6; 201 #endif 202 return size; 203 } 204 205 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 206 { 207 int size; 208 209 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 210 / sizeof(struct ext4_extent_idx); 211 #ifdef AGGRESSIVE_TEST 212 if (!check && size > 5) 213 size = 5; 214 #endif 215 return size; 216 } 217 218 static inline int ext4_ext_space_root(struct inode *inode, int check) 219 { 220 int size; 221 222 size = sizeof(EXT4_I(inode)->i_data); 223 size -= sizeof(struct ext4_extent_header); 224 size /= sizeof(struct ext4_extent); 225 #ifdef AGGRESSIVE_TEST 226 if (!check && size > 3) 227 size = 3; 228 #endif 229 return size; 230 } 231 232 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 233 { 234 int size; 235 236 size = sizeof(EXT4_I(inode)->i_data); 237 size -= sizeof(struct ext4_extent_header); 238 size /= sizeof(struct ext4_extent_idx); 239 #ifdef AGGRESSIVE_TEST 240 if (!check && size > 4) 241 size = 4; 242 #endif 243 return size; 244 } 245 246 /* 247 * Calculate the number of metadata blocks needed 248 * to allocate @blocks 249 * Worse case is one block per extent 250 */ 251 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 252 { 253 struct ext4_inode_info *ei = EXT4_I(inode); 254 int idxs; 255 256 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 257 / sizeof(struct ext4_extent_idx)); 258 259 /* 260 * If the new delayed allocation block is contiguous with the 261 * previous da block, it can share index blocks with the 262 * previous block, so we only need to allocate a new index 263 * block every idxs leaf blocks. At ldxs**2 blocks, we need 264 * an additional index block, and at ldxs**3 blocks, yet 265 * another index blocks. 266 */ 267 if (ei->i_da_metadata_calc_len && 268 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 269 int num = 0; 270 271 if ((ei->i_da_metadata_calc_len % idxs) == 0) 272 num++; 273 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 274 num++; 275 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 276 num++; 277 ei->i_da_metadata_calc_len = 0; 278 } else 279 ei->i_da_metadata_calc_len++; 280 ei->i_da_metadata_calc_last_lblock++; 281 return num; 282 } 283 284 /* 285 * In the worst case we need a new set of index blocks at 286 * every level of the inode's extent tree. 287 */ 288 ei->i_da_metadata_calc_len = 1; 289 ei->i_da_metadata_calc_last_lblock = lblock; 290 return ext_depth(inode) + 1; 291 } 292 293 static int 294 ext4_ext_max_entries(struct inode *inode, int depth) 295 { 296 int max; 297 298 if (depth == ext_depth(inode)) { 299 if (depth == 0) 300 max = ext4_ext_space_root(inode, 1); 301 else 302 max = ext4_ext_space_root_idx(inode, 1); 303 } else { 304 if (depth == 0) 305 max = ext4_ext_space_block(inode, 1); 306 else 307 max = ext4_ext_space_block_idx(inode, 1); 308 } 309 310 return max; 311 } 312 313 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 314 { 315 ext4_fsblk_t block = ext4_ext_pblock(ext); 316 int len = ext4_ext_get_actual_len(ext); 317 318 if (len == 0) 319 return 0; 320 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 321 } 322 323 static int ext4_valid_extent_idx(struct inode *inode, 324 struct ext4_extent_idx *ext_idx) 325 { 326 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 327 328 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 329 } 330 331 static int ext4_valid_extent_entries(struct inode *inode, 332 struct ext4_extent_header *eh, 333 int depth) 334 { 335 unsigned short entries; 336 if (eh->eh_entries == 0) 337 return 1; 338 339 entries = le16_to_cpu(eh->eh_entries); 340 341 if (depth == 0) { 342 /* leaf entries */ 343 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 344 while (entries) { 345 if (!ext4_valid_extent(inode, ext)) 346 return 0; 347 ext++; 348 entries--; 349 } 350 } else { 351 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 352 while (entries) { 353 if (!ext4_valid_extent_idx(inode, ext_idx)) 354 return 0; 355 ext_idx++; 356 entries--; 357 } 358 } 359 return 1; 360 } 361 362 static int __ext4_ext_check(const char *function, unsigned int line, 363 struct inode *inode, struct ext4_extent_header *eh, 364 int depth) 365 { 366 const char *error_msg; 367 int max = 0; 368 369 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 370 error_msg = "invalid magic"; 371 goto corrupted; 372 } 373 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 374 error_msg = "unexpected eh_depth"; 375 goto corrupted; 376 } 377 if (unlikely(eh->eh_max == 0)) { 378 error_msg = "invalid eh_max"; 379 goto corrupted; 380 } 381 max = ext4_ext_max_entries(inode, depth); 382 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 383 error_msg = "too large eh_max"; 384 goto corrupted; 385 } 386 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 387 error_msg = "invalid eh_entries"; 388 goto corrupted; 389 } 390 if (!ext4_valid_extent_entries(inode, eh, depth)) { 391 error_msg = "invalid extent entries"; 392 goto corrupted; 393 } 394 return 0; 395 396 corrupted: 397 ext4_error_inode(inode, function, line, 0, 398 "bad header/extent: %s - magic %x, " 399 "entries %u, max %u(%u), depth %u(%u)", 400 error_msg, le16_to_cpu(eh->eh_magic), 401 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 402 max, le16_to_cpu(eh->eh_depth), depth); 403 404 return -EIO; 405 } 406 407 #define ext4_ext_check(inode, eh, depth) \ 408 __ext4_ext_check(__func__, __LINE__, inode, eh, depth) 409 410 int ext4_ext_check_inode(struct inode *inode) 411 { 412 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode)); 413 } 414 415 #ifdef EXT_DEBUG 416 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 417 { 418 int k, l = path->p_depth; 419 420 ext_debug("path:"); 421 for (k = 0; k <= l; k++, path++) { 422 if (path->p_idx) { 423 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 424 ext4_idx_pblock(path->p_idx)); 425 } else if (path->p_ext) { 426 ext_debug(" %d:[%d]%d:%llu ", 427 le32_to_cpu(path->p_ext->ee_block), 428 ext4_ext_is_uninitialized(path->p_ext), 429 ext4_ext_get_actual_len(path->p_ext), 430 ext4_ext_pblock(path->p_ext)); 431 } else 432 ext_debug(" []"); 433 } 434 ext_debug("\n"); 435 } 436 437 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 438 { 439 int depth = ext_depth(inode); 440 struct ext4_extent_header *eh; 441 struct ext4_extent *ex; 442 int i; 443 444 if (!path) 445 return; 446 447 eh = path[depth].p_hdr; 448 ex = EXT_FIRST_EXTENT(eh); 449 450 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 451 452 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 453 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 454 ext4_ext_is_uninitialized(ex), 455 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 456 } 457 ext_debug("\n"); 458 } 459 460 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 461 ext4_fsblk_t newblock, int level) 462 { 463 int depth = ext_depth(inode); 464 struct ext4_extent *ex; 465 466 if (depth != level) { 467 struct ext4_extent_idx *idx; 468 idx = path[level].p_idx; 469 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 470 ext_debug("%d: move %d:%llu in new index %llu\n", level, 471 le32_to_cpu(idx->ei_block), 472 ext4_idx_pblock(idx), 473 newblock); 474 idx++; 475 } 476 477 return; 478 } 479 480 ex = path[depth].p_ext; 481 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 482 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 483 le32_to_cpu(ex->ee_block), 484 ext4_ext_pblock(ex), 485 ext4_ext_is_uninitialized(ex), 486 ext4_ext_get_actual_len(ex), 487 newblock); 488 ex++; 489 } 490 } 491 492 #else 493 #define ext4_ext_show_path(inode, path) 494 #define ext4_ext_show_leaf(inode, path) 495 #define ext4_ext_show_move(inode, path, newblock, level) 496 #endif 497 498 void ext4_ext_drop_refs(struct ext4_ext_path *path) 499 { 500 int depth = path->p_depth; 501 int i; 502 503 for (i = 0; i <= depth; i++, path++) 504 if (path->p_bh) { 505 brelse(path->p_bh); 506 path->p_bh = NULL; 507 } 508 } 509 510 /* 511 * ext4_ext_binsearch_idx: 512 * binary search for the closest index of the given block 513 * the header must be checked before calling this 514 */ 515 static void 516 ext4_ext_binsearch_idx(struct inode *inode, 517 struct ext4_ext_path *path, ext4_lblk_t block) 518 { 519 struct ext4_extent_header *eh = path->p_hdr; 520 struct ext4_extent_idx *r, *l, *m; 521 522 523 ext_debug("binsearch for %u(idx): ", block); 524 525 l = EXT_FIRST_INDEX(eh) + 1; 526 r = EXT_LAST_INDEX(eh); 527 while (l <= r) { 528 m = l + (r - l) / 2; 529 if (block < le32_to_cpu(m->ei_block)) 530 r = m - 1; 531 else 532 l = m + 1; 533 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 534 m, le32_to_cpu(m->ei_block), 535 r, le32_to_cpu(r->ei_block)); 536 } 537 538 path->p_idx = l - 1; 539 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block), 540 ext4_idx_pblock(path->p_idx)); 541 542 #ifdef CHECK_BINSEARCH 543 { 544 struct ext4_extent_idx *chix, *ix; 545 int k; 546 547 chix = ix = EXT_FIRST_INDEX(eh); 548 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 549 if (k != 0 && 550 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 551 printk(KERN_DEBUG "k=%d, ix=0x%p, " 552 "first=0x%p\n", k, 553 ix, EXT_FIRST_INDEX(eh)); 554 printk(KERN_DEBUG "%u <= %u\n", 555 le32_to_cpu(ix->ei_block), 556 le32_to_cpu(ix[-1].ei_block)); 557 } 558 BUG_ON(k && le32_to_cpu(ix->ei_block) 559 <= le32_to_cpu(ix[-1].ei_block)); 560 if (block < le32_to_cpu(ix->ei_block)) 561 break; 562 chix = ix; 563 } 564 BUG_ON(chix != path->p_idx); 565 } 566 #endif 567 568 } 569 570 /* 571 * ext4_ext_binsearch: 572 * binary search for closest extent of the given block 573 * the header must be checked before calling this 574 */ 575 static void 576 ext4_ext_binsearch(struct inode *inode, 577 struct ext4_ext_path *path, ext4_lblk_t block) 578 { 579 struct ext4_extent_header *eh = path->p_hdr; 580 struct ext4_extent *r, *l, *m; 581 582 if (eh->eh_entries == 0) { 583 /* 584 * this leaf is empty: 585 * we get such a leaf in split/add case 586 */ 587 return; 588 } 589 590 ext_debug("binsearch for %u: ", block); 591 592 l = EXT_FIRST_EXTENT(eh) + 1; 593 r = EXT_LAST_EXTENT(eh); 594 595 while (l <= r) { 596 m = l + (r - l) / 2; 597 if (block < le32_to_cpu(m->ee_block)) 598 r = m - 1; 599 else 600 l = m + 1; 601 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 602 m, le32_to_cpu(m->ee_block), 603 r, le32_to_cpu(r->ee_block)); 604 } 605 606 path->p_ext = l - 1; 607 ext_debug(" -> %d:%llu:[%d]%d ", 608 le32_to_cpu(path->p_ext->ee_block), 609 ext4_ext_pblock(path->p_ext), 610 ext4_ext_is_uninitialized(path->p_ext), 611 ext4_ext_get_actual_len(path->p_ext)); 612 613 #ifdef CHECK_BINSEARCH 614 { 615 struct ext4_extent *chex, *ex; 616 int k; 617 618 chex = ex = EXT_FIRST_EXTENT(eh); 619 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 620 BUG_ON(k && le32_to_cpu(ex->ee_block) 621 <= le32_to_cpu(ex[-1].ee_block)); 622 if (block < le32_to_cpu(ex->ee_block)) 623 break; 624 chex = ex; 625 } 626 BUG_ON(chex != path->p_ext); 627 } 628 #endif 629 630 } 631 632 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 633 { 634 struct ext4_extent_header *eh; 635 636 eh = ext_inode_hdr(inode); 637 eh->eh_depth = 0; 638 eh->eh_entries = 0; 639 eh->eh_magic = EXT4_EXT_MAGIC; 640 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 641 ext4_mark_inode_dirty(handle, inode); 642 ext4_ext_invalidate_cache(inode); 643 return 0; 644 } 645 646 struct ext4_ext_path * 647 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block, 648 struct ext4_ext_path *path) 649 { 650 struct ext4_extent_header *eh; 651 struct buffer_head *bh; 652 short int depth, i, ppos = 0, alloc = 0; 653 654 eh = ext_inode_hdr(inode); 655 depth = ext_depth(inode); 656 657 /* account possible depth increase */ 658 if (!path) { 659 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 660 GFP_NOFS); 661 if (!path) 662 return ERR_PTR(-ENOMEM); 663 alloc = 1; 664 } 665 path[0].p_hdr = eh; 666 path[0].p_bh = NULL; 667 668 i = depth; 669 /* walk through the tree */ 670 while (i) { 671 int need_to_validate = 0; 672 673 ext_debug("depth %d: num %d, max %d\n", 674 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 675 676 ext4_ext_binsearch_idx(inode, path + ppos, block); 677 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 678 path[ppos].p_depth = i; 679 path[ppos].p_ext = NULL; 680 681 bh = sb_getblk(inode->i_sb, path[ppos].p_block); 682 if (unlikely(!bh)) 683 goto err; 684 if (!bh_uptodate_or_lock(bh)) { 685 trace_ext4_ext_load_extent(inode, block, 686 path[ppos].p_block); 687 if (bh_submit_read(bh) < 0) { 688 put_bh(bh); 689 goto err; 690 } 691 /* validate the extent entries */ 692 need_to_validate = 1; 693 } 694 eh = ext_block_hdr(bh); 695 ppos++; 696 if (unlikely(ppos > depth)) { 697 put_bh(bh); 698 EXT4_ERROR_INODE(inode, 699 "ppos %d > depth %d", ppos, depth); 700 goto err; 701 } 702 path[ppos].p_bh = bh; 703 path[ppos].p_hdr = eh; 704 i--; 705 706 if (need_to_validate && ext4_ext_check(inode, eh, i)) 707 goto err; 708 } 709 710 path[ppos].p_depth = i; 711 path[ppos].p_ext = NULL; 712 path[ppos].p_idx = NULL; 713 714 /* find extent */ 715 ext4_ext_binsearch(inode, path + ppos, block); 716 /* if not an empty leaf */ 717 if (path[ppos].p_ext) 718 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 719 720 ext4_ext_show_path(inode, path); 721 722 return path; 723 724 err: 725 ext4_ext_drop_refs(path); 726 if (alloc) 727 kfree(path); 728 return ERR_PTR(-EIO); 729 } 730 731 /* 732 * ext4_ext_insert_index: 733 * insert new index [@logical;@ptr] into the block at @curp; 734 * check where to insert: before @curp or after @curp 735 */ 736 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 737 struct ext4_ext_path *curp, 738 int logical, ext4_fsblk_t ptr) 739 { 740 struct ext4_extent_idx *ix; 741 int len, err; 742 743 err = ext4_ext_get_access(handle, inode, curp); 744 if (err) 745 return err; 746 747 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 748 EXT4_ERROR_INODE(inode, 749 "logical %d == ei_block %d!", 750 logical, le32_to_cpu(curp->p_idx->ei_block)); 751 return -EIO; 752 } 753 754 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 755 >= le16_to_cpu(curp->p_hdr->eh_max))) { 756 EXT4_ERROR_INODE(inode, 757 "eh_entries %d >= eh_max %d!", 758 le16_to_cpu(curp->p_hdr->eh_entries), 759 le16_to_cpu(curp->p_hdr->eh_max)); 760 return -EIO; 761 } 762 763 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 764 /* insert after */ 765 ext_debug("insert new index %d after: %llu\n", logical, ptr); 766 ix = curp->p_idx + 1; 767 } else { 768 /* insert before */ 769 ext_debug("insert new index %d before: %llu\n", logical, ptr); 770 ix = curp->p_idx; 771 } 772 773 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 774 BUG_ON(len < 0); 775 if (len > 0) { 776 ext_debug("insert new index %d: " 777 "move %d indices from 0x%p to 0x%p\n", 778 logical, len, ix, ix + 1); 779 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 780 } 781 782 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 783 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 784 return -EIO; 785 } 786 787 ix->ei_block = cpu_to_le32(logical); 788 ext4_idx_store_pblock(ix, ptr); 789 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 790 791 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 792 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 793 return -EIO; 794 } 795 796 err = ext4_ext_dirty(handle, inode, curp); 797 ext4_std_error(inode->i_sb, err); 798 799 return err; 800 } 801 802 /* 803 * ext4_ext_split: 804 * inserts new subtree into the path, using free index entry 805 * at depth @at: 806 * - allocates all needed blocks (new leaf and all intermediate index blocks) 807 * - makes decision where to split 808 * - moves remaining extents and index entries (right to the split point) 809 * into the newly allocated blocks 810 * - initializes subtree 811 */ 812 static int ext4_ext_split(handle_t *handle, struct inode *inode, 813 unsigned int flags, 814 struct ext4_ext_path *path, 815 struct ext4_extent *newext, int at) 816 { 817 struct buffer_head *bh = NULL; 818 int depth = ext_depth(inode); 819 struct ext4_extent_header *neh; 820 struct ext4_extent_idx *fidx; 821 int i = at, k, m, a; 822 ext4_fsblk_t newblock, oldblock; 823 __le32 border; 824 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 825 int err = 0; 826 827 /* make decision: where to split? */ 828 /* FIXME: now decision is simplest: at current extent */ 829 830 /* if current leaf will be split, then we should use 831 * border from split point */ 832 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 833 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 834 return -EIO; 835 } 836 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 837 border = path[depth].p_ext[1].ee_block; 838 ext_debug("leaf will be split." 839 " next leaf starts at %d\n", 840 le32_to_cpu(border)); 841 } else { 842 border = newext->ee_block; 843 ext_debug("leaf will be added." 844 " next leaf starts at %d\n", 845 le32_to_cpu(border)); 846 } 847 848 /* 849 * If error occurs, then we break processing 850 * and mark filesystem read-only. index won't 851 * be inserted and tree will be in consistent 852 * state. Next mount will repair buffers too. 853 */ 854 855 /* 856 * Get array to track all allocated blocks. 857 * We need this to handle errors and free blocks 858 * upon them. 859 */ 860 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 861 if (!ablocks) 862 return -ENOMEM; 863 864 /* allocate all needed blocks */ 865 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 866 for (a = 0; a < depth - at; a++) { 867 newblock = ext4_ext_new_meta_block(handle, inode, path, 868 newext, &err, flags); 869 if (newblock == 0) 870 goto cleanup; 871 ablocks[a] = newblock; 872 } 873 874 /* initialize new leaf */ 875 newblock = ablocks[--a]; 876 if (unlikely(newblock == 0)) { 877 EXT4_ERROR_INODE(inode, "newblock == 0!"); 878 err = -EIO; 879 goto cleanup; 880 } 881 bh = sb_getblk(inode->i_sb, newblock); 882 if (!bh) { 883 err = -EIO; 884 goto cleanup; 885 } 886 lock_buffer(bh); 887 888 err = ext4_journal_get_create_access(handle, bh); 889 if (err) 890 goto cleanup; 891 892 neh = ext_block_hdr(bh); 893 neh->eh_entries = 0; 894 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 895 neh->eh_magic = EXT4_EXT_MAGIC; 896 neh->eh_depth = 0; 897 898 /* move remainder of path[depth] to the new leaf */ 899 if (unlikely(path[depth].p_hdr->eh_entries != 900 path[depth].p_hdr->eh_max)) { 901 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 902 path[depth].p_hdr->eh_entries, 903 path[depth].p_hdr->eh_max); 904 err = -EIO; 905 goto cleanup; 906 } 907 /* start copy from next extent */ 908 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 909 ext4_ext_show_move(inode, path, newblock, depth); 910 if (m) { 911 struct ext4_extent *ex; 912 ex = EXT_FIRST_EXTENT(neh); 913 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 914 le16_add_cpu(&neh->eh_entries, m); 915 } 916 917 set_buffer_uptodate(bh); 918 unlock_buffer(bh); 919 920 err = ext4_handle_dirty_metadata(handle, inode, bh); 921 if (err) 922 goto cleanup; 923 brelse(bh); 924 bh = NULL; 925 926 /* correct old leaf */ 927 if (m) { 928 err = ext4_ext_get_access(handle, inode, path + depth); 929 if (err) 930 goto cleanup; 931 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 932 err = ext4_ext_dirty(handle, inode, path + depth); 933 if (err) 934 goto cleanup; 935 936 } 937 938 /* create intermediate indexes */ 939 k = depth - at - 1; 940 if (unlikely(k < 0)) { 941 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 942 err = -EIO; 943 goto cleanup; 944 } 945 if (k) 946 ext_debug("create %d intermediate indices\n", k); 947 /* insert new index into current index block */ 948 /* current depth stored in i var */ 949 i = depth - 1; 950 while (k--) { 951 oldblock = newblock; 952 newblock = ablocks[--a]; 953 bh = sb_getblk(inode->i_sb, newblock); 954 if (!bh) { 955 err = -EIO; 956 goto cleanup; 957 } 958 lock_buffer(bh); 959 960 err = ext4_journal_get_create_access(handle, bh); 961 if (err) 962 goto cleanup; 963 964 neh = ext_block_hdr(bh); 965 neh->eh_entries = cpu_to_le16(1); 966 neh->eh_magic = EXT4_EXT_MAGIC; 967 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 968 neh->eh_depth = cpu_to_le16(depth - i); 969 fidx = EXT_FIRST_INDEX(neh); 970 fidx->ei_block = border; 971 ext4_idx_store_pblock(fidx, oldblock); 972 973 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 974 i, newblock, le32_to_cpu(border), oldblock); 975 976 /* move remainder of path[i] to the new index block */ 977 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 978 EXT_LAST_INDEX(path[i].p_hdr))) { 979 EXT4_ERROR_INODE(inode, 980 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 981 le32_to_cpu(path[i].p_ext->ee_block)); 982 err = -EIO; 983 goto cleanup; 984 } 985 /* start copy indexes */ 986 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 987 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 988 EXT_MAX_INDEX(path[i].p_hdr)); 989 ext4_ext_show_move(inode, path, newblock, i); 990 if (m) { 991 memmove(++fidx, path[i].p_idx, 992 sizeof(struct ext4_extent_idx) * m); 993 le16_add_cpu(&neh->eh_entries, m); 994 } 995 set_buffer_uptodate(bh); 996 unlock_buffer(bh); 997 998 err = ext4_handle_dirty_metadata(handle, inode, bh); 999 if (err) 1000 goto cleanup; 1001 brelse(bh); 1002 bh = NULL; 1003 1004 /* correct old index */ 1005 if (m) { 1006 err = ext4_ext_get_access(handle, inode, path + i); 1007 if (err) 1008 goto cleanup; 1009 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1010 err = ext4_ext_dirty(handle, inode, path + i); 1011 if (err) 1012 goto cleanup; 1013 } 1014 1015 i--; 1016 } 1017 1018 /* insert new index */ 1019 err = ext4_ext_insert_index(handle, inode, path + at, 1020 le32_to_cpu(border), newblock); 1021 1022 cleanup: 1023 if (bh) { 1024 if (buffer_locked(bh)) 1025 unlock_buffer(bh); 1026 brelse(bh); 1027 } 1028 1029 if (err) { 1030 /* free all allocated blocks in error case */ 1031 for (i = 0; i < depth; i++) { 1032 if (!ablocks[i]) 1033 continue; 1034 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1035 EXT4_FREE_BLOCKS_METADATA); 1036 } 1037 } 1038 kfree(ablocks); 1039 1040 return err; 1041 } 1042 1043 /* 1044 * ext4_ext_grow_indepth: 1045 * implements tree growing procedure: 1046 * - allocates new block 1047 * - moves top-level data (index block or leaf) into the new block 1048 * - initializes new top-level, creating index that points to the 1049 * just created block 1050 */ 1051 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1052 unsigned int flags, 1053 struct ext4_extent *newext) 1054 { 1055 struct ext4_extent_header *neh; 1056 struct buffer_head *bh; 1057 ext4_fsblk_t newblock; 1058 int err = 0; 1059 1060 newblock = ext4_ext_new_meta_block(handle, inode, NULL, 1061 newext, &err, flags); 1062 if (newblock == 0) 1063 return err; 1064 1065 bh = sb_getblk(inode->i_sb, newblock); 1066 if (!bh) { 1067 err = -EIO; 1068 ext4_std_error(inode->i_sb, err); 1069 return err; 1070 } 1071 lock_buffer(bh); 1072 1073 err = ext4_journal_get_create_access(handle, bh); 1074 if (err) { 1075 unlock_buffer(bh); 1076 goto out; 1077 } 1078 1079 /* move top-level index/leaf into new block */ 1080 memmove(bh->b_data, EXT4_I(inode)->i_data, 1081 sizeof(EXT4_I(inode)->i_data)); 1082 1083 /* set size of new block */ 1084 neh = ext_block_hdr(bh); 1085 /* old root could have indexes or leaves 1086 * so calculate e_max right way */ 1087 if (ext_depth(inode)) 1088 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1089 else 1090 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1091 neh->eh_magic = EXT4_EXT_MAGIC; 1092 set_buffer_uptodate(bh); 1093 unlock_buffer(bh); 1094 1095 err = ext4_handle_dirty_metadata(handle, inode, bh); 1096 if (err) 1097 goto out; 1098 1099 /* Update top-level index: num,max,pointer */ 1100 neh = ext_inode_hdr(inode); 1101 neh->eh_entries = cpu_to_le16(1); 1102 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1103 if (neh->eh_depth == 0) { 1104 /* Root extent block becomes index block */ 1105 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1106 EXT_FIRST_INDEX(neh)->ei_block = 1107 EXT_FIRST_EXTENT(neh)->ee_block; 1108 } 1109 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1110 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1111 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1112 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1113 1114 neh->eh_depth = cpu_to_le16(le16_to_cpu(neh->eh_depth) + 1); 1115 ext4_mark_inode_dirty(handle, inode); 1116 out: 1117 brelse(bh); 1118 1119 return err; 1120 } 1121 1122 /* 1123 * ext4_ext_create_new_leaf: 1124 * finds empty index and adds new leaf. 1125 * if no free index is found, then it requests in-depth growing. 1126 */ 1127 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1128 unsigned int flags, 1129 struct ext4_ext_path *path, 1130 struct ext4_extent *newext) 1131 { 1132 struct ext4_ext_path *curp; 1133 int depth, i, err = 0; 1134 1135 repeat: 1136 i = depth = ext_depth(inode); 1137 1138 /* walk up to the tree and look for free index entry */ 1139 curp = path + depth; 1140 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1141 i--; 1142 curp--; 1143 } 1144 1145 /* we use already allocated block for index block, 1146 * so subsequent data blocks should be contiguous */ 1147 if (EXT_HAS_FREE_INDEX(curp)) { 1148 /* if we found index with free entry, then use that 1149 * entry: create all needed subtree and add new leaf */ 1150 err = ext4_ext_split(handle, inode, flags, path, newext, i); 1151 if (err) 1152 goto out; 1153 1154 /* refill path */ 1155 ext4_ext_drop_refs(path); 1156 path = ext4_ext_find_extent(inode, 1157 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1158 path); 1159 if (IS_ERR(path)) 1160 err = PTR_ERR(path); 1161 } else { 1162 /* tree is full, time to grow in depth */ 1163 err = ext4_ext_grow_indepth(handle, inode, flags, newext); 1164 if (err) 1165 goto out; 1166 1167 /* refill path */ 1168 ext4_ext_drop_refs(path); 1169 path = ext4_ext_find_extent(inode, 1170 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1171 path); 1172 if (IS_ERR(path)) { 1173 err = PTR_ERR(path); 1174 goto out; 1175 } 1176 1177 /* 1178 * only first (depth 0 -> 1) produces free space; 1179 * in all other cases we have to split the grown tree 1180 */ 1181 depth = ext_depth(inode); 1182 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1183 /* now we need to split */ 1184 goto repeat; 1185 } 1186 } 1187 1188 out: 1189 return err; 1190 } 1191 1192 /* 1193 * search the closest allocated block to the left for *logical 1194 * and returns it at @logical + it's physical address at @phys 1195 * if *logical is the smallest allocated block, the function 1196 * returns 0 at @phys 1197 * return value contains 0 (success) or error code 1198 */ 1199 static int ext4_ext_search_left(struct inode *inode, 1200 struct ext4_ext_path *path, 1201 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1202 { 1203 struct ext4_extent_idx *ix; 1204 struct ext4_extent *ex; 1205 int depth, ee_len; 1206 1207 if (unlikely(path == NULL)) { 1208 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1209 return -EIO; 1210 } 1211 depth = path->p_depth; 1212 *phys = 0; 1213 1214 if (depth == 0 && path->p_ext == NULL) 1215 return 0; 1216 1217 /* usually extent in the path covers blocks smaller 1218 * then *logical, but it can be that extent is the 1219 * first one in the file */ 1220 1221 ex = path[depth].p_ext; 1222 ee_len = ext4_ext_get_actual_len(ex); 1223 if (*logical < le32_to_cpu(ex->ee_block)) { 1224 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1225 EXT4_ERROR_INODE(inode, 1226 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1227 *logical, le32_to_cpu(ex->ee_block)); 1228 return -EIO; 1229 } 1230 while (--depth >= 0) { 1231 ix = path[depth].p_idx; 1232 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1233 EXT4_ERROR_INODE(inode, 1234 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1235 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1236 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1237 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1238 depth); 1239 return -EIO; 1240 } 1241 } 1242 return 0; 1243 } 1244 1245 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1246 EXT4_ERROR_INODE(inode, 1247 "logical %d < ee_block %d + ee_len %d!", 1248 *logical, le32_to_cpu(ex->ee_block), ee_len); 1249 return -EIO; 1250 } 1251 1252 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1253 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1254 return 0; 1255 } 1256 1257 /* 1258 * search the closest allocated block to the right for *logical 1259 * and returns it at @logical + it's physical address at @phys 1260 * if *logical is the largest allocated block, the function 1261 * returns 0 at @phys 1262 * return value contains 0 (success) or error code 1263 */ 1264 static int ext4_ext_search_right(struct inode *inode, 1265 struct ext4_ext_path *path, 1266 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1267 struct ext4_extent **ret_ex) 1268 { 1269 struct buffer_head *bh = NULL; 1270 struct ext4_extent_header *eh; 1271 struct ext4_extent_idx *ix; 1272 struct ext4_extent *ex; 1273 ext4_fsblk_t block; 1274 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1275 int ee_len; 1276 1277 if (unlikely(path == NULL)) { 1278 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1279 return -EIO; 1280 } 1281 depth = path->p_depth; 1282 *phys = 0; 1283 1284 if (depth == 0 && path->p_ext == NULL) 1285 return 0; 1286 1287 /* usually extent in the path covers blocks smaller 1288 * then *logical, but it can be that extent is the 1289 * first one in the file */ 1290 1291 ex = path[depth].p_ext; 1292 ee_len = ext4_ext_get_actual_len(ex); 1293 if (*logical < le32_to_cpu(ex->ee_block)) { 1294 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1295 EXT4_ERROR_INODE(inode, 1296 "first_extent(path[%d].p_hdr) != ex", 1297 depth); 1298 return -EIO; 1299 } 1300 while (--depth >= 0) { 1301 ix = path[depth].p_idx; 1302 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1303 EXT4_ERROR_INODE(inode, 1304 "ix != EXT_FIRST_INDEX *logical %d!", 1305 *logical); 1306 return -EIO; 1307 } 1308 } 1309 goto found_extent; 1310 } 1311 1312 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1313 EXT4_ERROR_INODE(inode, 1314 "logical %d < ee_block %d + ee_len %d!", 1315 *logical, le32_to_cpu(ex->ee_block), ee_len); 1316 return -EIO; 1317 } 1318 1319 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1320 /* next allocated block in this leaf */ 1321 ex++; 1322 goto found_extent; 1323 } 1324 1325 /* go up and search for index to the right */ 1326 while (--depth >= 0) { 1327 ix = path[depth].p_idx; 1328 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1329 goto got_index; 1330 } 1331 1332 /* we've gone up to the root and found no index to the right */ 1333 return 0; 1334 1335 got_index: 1336 /* we've found index to the right, let's 1337 * follow it and find the closest allocated 1338 * block to the right */ 1339 ix++; 1340 block = ext4_idx_pblock(ix); 1341 while (++depth < path->p_depth) { 1342 bh = sb_bread(inode->i_sb, block); 1343 if (bh == NULL) 1344 return -EIO; 1345 eh = ext_block_hdr(bh); 1346 /* subtract from p_depth to get proper eh_depth */ 1347 if (ext4_ext_check(inode, eh, path->p_depth - depth)) { 1348 put_bh(bh); 1349 return -EIO; 1350 } 1351 ix = EXT_FIRST_INDEX(eh); 1352 block = ext4_idx_pblock(ix); 1353 put_bh(bh); 1354 } 1355 1356 bh = sb_bread(inode->i_sb, block); 1357 if (bh == NULL) 1358 return -EIO; 1359 eh = ext_block_hdr(bh); 1360 if (ext4_ext_check(inode, eh, path->p_depth - depth)) { 1361 put_bh(bh); 1362 return -EIO; 1363 } 1364 ex = EXT_FIRST_EXTENT(eh); 1365 found_extent: 1366 *logical = le32_to_cpu(ex->ee_block); 1367 *phys = ext4_ext_pblock(ex); 1368 *ret_ex = ex; 1369 if (bh) 1370 put_bh(bh); 1371 return 0; 1372 } 1373 1374 /* 1375 * ext4_ext_next_allocated_block: 1376 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1377 * NOTE: it considers block number from index entry as 1378 * allocated block. Thus, index entries have to be consistent 1379 * with leaves. 1380 */ 1381 static ext4_lblk_t 1382 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1383 { 1384 int depth; 1385 1386 BUG_ON(path == NULL); 1387 depth = path->p_depth; 1388 1389 if (depth == 0 && path->p_ext == NULL) 1390 return EXT_MAX_BLOCKS; 1391 1392 while (depth >= 0) { 1393 if (depth == path->p_depth) { 1394 /* leaf */ 1395 if (path[depth].p_ext && 1396 path[depth].p_ext != 1397 EXT_LAST_EXTENT(path[depth].p_hdr)) 1398 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1399 } else { 1400 /* index */ 1401 if (path[depth].p_idx != 1402 EXT_LAST_INDEX(path[depth].p_hdr)) 1403 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1404 } 1405 depth--; 1406 } 1407 1408 return EXT_MAX_BLOCKS; 1409 } 1410 1411 /* 1412 * ext4_ext_next_leaf_block: 1413 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1414 */ 1415 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1416 { 1417 int depth; 1418 1419 BUG_ON(path == NULL); 1420 depth = path->p_depth; 1421 1422 /* zero-tree has no leaf blocks at all */ 1423 if (depth == 0) 1424 return EXT_MAX_BLOCKS; 1425 1426 /* go to index block */ 1427 depth--; 1428 1429 while (depth >= 0) { 1430 if (path[depth].p_idx != 1431 EXT_LAST_INDEX(path[depth].p_hdr)) 1432 return (ext4_lblk_t) 1433 le32_to_cpu(path[depth].p_idx[1].ei_block); 1434 depth--; 1435 } 1436 1437 return EXT_MAX_BLOCKS; 1438 } 1439 1440 /* 1441 * ext4_ext_correct_indexes: 1442 * if leaf gets modified and modified extent is first in the leaf, 1443 * then we have to correct all indexes above. 1444 * TODO: do we need to correct tree in all cases? 1445 */ 1446 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1447 struct ext4_ext_path *path) 1448 { 1449 struct ext4_extent_header *eh; 1450 int depth = ext_depth(inode); 1451 struct ext4_extent *ex; 1452 __le32 border; 1453 int k, err = 0; 1454 1455 eh = path[depth].p_hdr; 1456 ex = path[depth].p_ext; 1457 1458 if (unlikely(ex == NULL || eh == NULL)) { 1459 EXT4_ERROR_INODE(inode, 1460 "ex %p == NULL or eh %p == NULL", ex, eh); 1461 return -EIO; 1462 } 1463 1464 if (depth == 0) { 1465 /* there is no tree at all */ 1466 return 0; 1467 } 1468 1469 if (ex != EXT_FIRST_EXTENT(eh)) { 1470 /* we correct tree if first leaf got modified only */ 1471 return 0; 1472 } 1473 1474 /* 1475 * TODO: we need correction if border is smaller than current one 1476 */ 1477 k = depth - 1; 1478 border = path[depth].p_ext->ee_block; 1479 err = ext4_ext_get_access(handle, inode, path + k); 1480 if (err) 1481 return err; 1482 path[k].p_idx->ei_block = border; 1483 err = ext4_ext_dirty(handle, inode, path + k); 1484 if (err) 1485 return err; 1486 1487 while (k--) { 1488 /* change all left-side indexes */ 1489 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1490 break; 1491 err = ext4_ext_get_access(handle, inode, path + k); 1492 if (err) 1493 break; 1494 path[k].p_idx->ei_block = border; 1495 err = ext4_ext_dirty(handle, inode, path + k); 1496 if (err) 1497 break; 1498 } 1499 1500 return err; 1501 } 1502 1503 int 1504 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1505 struct ext4_extent *ex2) 1506 { 1507 unsigned short ext1_ee_len, ext2_ee_len, max_len; 1508 1509 /* 1510 * Make sure that either both extents are uninitialized, or 1511 * both are _not_. 1512 */ 1513 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2)) 1514 return 0; 1515 1516 if (ext4_ext_is_uninitialized(ex1)) 1517 max_len = EXT_UNINIT_MAX_LEN; 1518 else 1519 max_len = EXT_INIT_MAX_LEN; 1520 1521 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1522 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1523 1524 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1525 le32_to_cpu(ex2->ee_block)) 1526 return 0; 1527 1528 /* 1529 * To allow future support for preallocated extents to be added 1530 * as an RO_COMPAT feature, refuse to merge to extents if 1531 * this can result in the top bit of ee_len being set. 1532 */ 1533 if (ext1_ee_len + ext2_ee_len > max_len) 1534 return 0; 1535 #ifdef AGGRESSIVE_TEST 1536 if (ext1_ee_len >= 4) 1537 return 0; 1538 #endif 1539 1540 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1541 return 1; 1542 return 0; 1543 } 1544 1545 /* 1546 * This function tries to merge the "ex" extent to the next extent in the tree. 1547 * It always tries to merge towards right. If you want to merge towards 1548 * left, pass "ex - 1" as argument instead of "ex". 1549 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1550 * 1 if they got merged. 1551 */ 1552 static int ext4_ext_try_to_merge_right(struct inode *inode, 1553 struct ext4_ext_path *path, 1554 struct ext4_extent *ex) 1555 { 1556 struct ext4_extent_header *eh; 1557 unsigned int depth, len; 1558 int merge_done = 0; 1559 int uninitialized = 0; 1560 1561 depth = ext_depth(inode); 1562 BUG_ON(path[depth].p_hdr == NULL); 1563 eh = path[depth].p_hdr; 1564 1565 while (ex < EXT_LAST_EXTENT(eh)) { 1566 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1567 break; 1568 /* merge with next extent! */ 1569 if (ext4_ext_is_uninitialized(ex)) 1570 uninitialized = 1; 1571 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1572 + ext4_ext_get_actual_len(ex + 1)); 1573 if (uninitialized) 1574 ext4_ext_mark_uninitialized(ex); 1575 1576 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1577 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1578 * sizeof(struct ext4_extent); 1579 memmove(ex + 1, ex + 2, len); 1580 } 1581 le16_add_cpu(&eh->eh_entries, -1); 1582 merge_done = 1; 1583 WARN_ON(eh->eh_entries == 0); 1584 if (!eh->eh_entries) 1585 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1586 } 1587 1588 return merge_done; 1589 } 1590 1591 /* 1592 * This function tries to merge the @ex extent to neighbours in the tree. 1593 * return 1 if merge left else 0. 1594 */ 1595 static int ext4_ext_try_to_merge(struct inode *inode, 1596 struct ext4_ext_path *path, 1597 struct ext4_extent *ex) { 1598 struct ext4_extent_header *eh; 1599 unsigned int depth; 1600 int merge_done = 0; 1601 int ret = 0; 1602 1603 depth = ext_depth(inode); 1604 BUG_ON(path[depth].p_hdr == NULL); 1605 eh = path[depth].p_hdr; 1606 1607 if (ex > EXT_FIRST_EXTENT(eh)) 1608 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1609 1610 if (!merge_done) 1611 ret = ext4_ext_try_to_merge_right(inode, path, ex); 1612 1613 return ret; 1614 } 1615 1616 /* 1617 * check if a portion of the "newext" extent overlaps with an 1618 * existing extent. 1619 * 1620 * If there is an overlap discovered, it updates the length of the newext 1621 * such that there will be no overlap, and then returns 1. 1622 * If there is no overlap found, it returns 0. 1623 */ 1624 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1625 struct inode *inode, 1626 struct ext4_extent *newext, 1627 struct ext4_ext_path *path) 1628 { 1629 ext4_lblk_t b1, b2; 1630 unsigned int depth, len1; 1631 unsigned int ret = 0; 1632 1633 b1 = le32_to_cpu(newext->ee_block); 1634 len1 = ext4_ext_get_actual_len(newext); 1635 depth = ext_depth(inode); 1636 if (!path[depth].p_ext) 1637 goto out; 1638 b2 = le32_to_cpu(path[depth].p_ext->ee_block); 1639 b2 &= ~(sbi->s_cluster_ratio - 1); 1640 1641 /* 1642 * get the next allocated block if the extent in the path 1643 * is before the requested block(s) 1644 */ 1645 if (b2 < b1) { 1646 b2 = ext4_ext_next_allocated_block(path); 1647 if (b2 == EXT_MAX_BLOCKS) 1648 goto out; 1649 b2 &= ~(sbi->s_cluster_ratio - 1); 1650 } 1651 1652 /* check for wrap through zero on extent logical start block*/ 1653 if (b1 + len1 < b1) { 1654 len1 = EXT_MAX_BLOCKS - b1; 1655 newext->ee_len = cpu_to_le16(len1); 1656 ret = 1; 1657 } 1658 1659 /* check for overlap */ 1660 if (b1 + len1 > b2) { 1661 newext->ee_len = cpu_to_le16(b2 - b1); 1662 ret = 1; 1663 } 1664 out: 1665 return ret; 1666 } 1667 1668 /* 1669 * ext4_ext_insert_extent: 1670 * tries to merge requsted extent into the existing extent or 1671 * inserts requested extent as new one into the tree, 1672 * creating new leaf in the no-space case. 1673 */ 1674 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1675 struct ext4_ext_path *path, 1676 struct ext4_extent *newext, int flag) 1677 { 1678 struct ext4_extent_header *eh; 1679 struct ext4_extent *ex, *fex; 1680 struct ext4_extent *nearex; /* nearest extent */ 1681 struct ext4_ext_path *npath = NULL; 1682 int depth, len, err; 1683 ext4_lblk_t next; 1684 unsigned uninitialized = 0; 1685 int flags = 0; 1686 1687 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1688 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1689 return -EIO; 1690 } 1691 depth = ext_depth(inode); 1692 ex = path[depth].p_ext; 1693 if (unlikely(path[depth].p_hdr == NULL)) { 1694 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1695 return -EIO; 1696 } 1697 1698 /* try to insert block into found extent and return */ 1699 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO) 1700 && ext4_can_extents_be_merged(inode, ex, newext)) { 1701 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n", 1702 ext4_ext_is_uninitialized(newext), 1703 ext4_ext_get_actual_len(newext), 1704 le32_to_cpu(ex->ee_block), 1705 ext4_ext_is_uninitialized(ex), 1706 ext4_ext_get_actual_len(ex), 1707 ext4_ext_pblock(ex)); 1708 err = ext4_ext_get_access(handle, inode, path + depth); 1709 if (err) 1710 return err; 1711 1712 /* 1713 * ext4_can_extents_be_merged should have checked that either 1714 * both extents are uninitialized, or both aren't. Thus we 1715 * need to check only one of them here. 1716 */ 1717 if (ext4_ext_is_uninitialized(ex)) 1718 uninitialized = 1; 1719 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1720 + ext4_ext_get_actual_len(newext)); 1721 if (uninitialized) 1722 ext4_ext_mark_uninitialized(ex); 1723 eh = path[depth].p_hdr; 1724 nearex = ex; 1725 goto merge; 1726 } 1727 1728 depth = ext_depth(inode); 1729 eh = path[depth].p_hdr; 1730 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 1731 goto has_space; 1732 1733 /* probably next leaf has space for us? */ 1734 fex = EXT_LAST_EXTENT(eh); 1735 next = EXT_MAX_BLOCKS; 1736 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 1737 next = ext4_ext_next_leaf_block(path); 1738 if (next != EXT_MAX_BLOCKS) { 1739 ext_debug("next leaf block - %u\n", next); 1740 BUG_ON(npath != NULL); 1741 npath = ext4_ext_find_extent(inode, next, NULL); 1742 if (IS_ERR(npath)) 1743 return PTR_ERR(npath); 1744 BUG_ON(npath->p_depth != path->p_depth); 1745 eh = npath[depth].p_hdr; 1746 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 1747 ext_debug("next leaf isn't full(%d)\n", 1748 le16_to_cpu(eh->eh_entries)); 1749 path = npath; 1750 goto has_space; 1751 } 1752 ext_debug("next leaf has no free space(%d,%d)\n", 1753 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 1754 } 1755 1756 /* 1757 * There is no free space in the found leaf. 1758 * We're gonna add a new leaf in the tree. 1759 */ 1760 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) 1761 flags = EXT4_MB_USE_ROOT_BLOCKS; 1762 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext); 1763 if (err) 1764 goto cleanup; 1765 depth = ext_depth(inode); 1766 eh = path[depth].p_hdr; 1767 1768 has_space: 1769 nearex = path[depth].p_ext; 1770 1771 err = ext4_ext_get_access(handle, inode, path + depth); 1772 if (err) 1773 goto cleanup; 1774 1775 if (!nearex) { 1776 /* there is no extent in this leaf, create first one */ 1777 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 1778 le32_to_cpu(newext->ee_block), 1779 ext4_ext_pblock(newext), 1780 ext4_ext_is_uninitialized(newext), 1781 ext4_ext_get_actual_len(newext)); 1782 nearex = EXT_FIRST_EXTENT(eh); 1783 } else { 1784 if (le32_to_cpu(newext->ee_block) 1785 > le32_to_cpu(nearex->ee_block)) { 1786 /* Insert after */ 1787 ext_debug("insert %u:%llu:[%d]%d before: " 1788 "nearest %p\n", 1789 le32_to_cpu(newext->ee_block), 1790 ext4_ext_pblock(newext), 1791 ext4_ext_is_uninitialized(newext), 1792 ext4_ext_get_actual_len(newext), 1793 nearex); 1794 nearex++; 1795 } else { 1796 /* Insert before */ 1797 BUG_ON(newext->ee_block == nearex->ee_block); 1798 ext_debug("insert %u:%llu:[%d]%d after: " 1799 "nearest %p\n", 1800 le32_to_cpu(newext->ee_block), 1801 ext4_ext_pblock(newext), 1802 ext4_ext_is_uninitialized(newext), 1803 ext4_ext_get_actual_len(newext), 1804 nearex); 1805 } 1806 len = EXT_LAST_EXTENT(eh) - nearex + 1; 1807 if (len > 0) { 1808 ext_debug("insert %u:%llu:[%d]%d: " 1809 "move %d extents from 0x%p to 0x%p\n", 1810 le32_to_cpu(newext->ee_block), 1811 ext4_ext_pblock(newext), 1812 ext4_ext_is_uninitialized(newext), 1813 ext4_ext_get_actual_len(newext), 1814 len, nearex, nearex + 1); 1815 memmove(nearex + 1, nearex, 1816 len * sizeof(struct ext4_extent)); 1817 } 1818 } 1819 1820 le16_add_cpu(&eh->eh_entries, 1); 1821 path[depth].p_ext = nearex; 1822 nearex->ee_block = newext->ee_block; 1823 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 1824 nearex->ee_len = newext->ee_len; 1825 1826 merge: 1827 /* try to merge extents to the right */ 1828 if (!(flag & EXT4_GET_BLOCKS_PRE_IO)) 1829 ext4_ext_try_to_merge(inode, path, nearex); 1830 1831 /* try to merge extents to the left */ 1832 1833 /* time to correct all indexes above */ 1834 err = ext4_ext_correct_indexes(handle, inode, path); 1835 if (err) 1836 goto cleanup; 1837 1838 err = ext4_ext_dirty(handle, inode, path + depth); 1839 1840 cleanup: 1841 if (npath) { 1842 ext4_ext_drop_refs(npath); 1843 kfree(npath); 1844 } 1845 ext4_ext_invalidate_cache(inode); 1846 return err; 1847 } 1848 1849 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block, 1850 ext4_lblk_t num, ext_prepare_callback func, 1851 void *cbdata) 1852 { 1853 struct ext4_ext_path *path = NULL; 1854 struct ext4_ext_cache cbex; 1855 struct ext4_extent *ex; 1856 ext4_lblk_t next, start = 0, end = 0; 1857 ext4_lblk_t last = block + num; 1858 int depth, exists, err = 0; 1859 1860 BUG_ON(func == NULL); 1861 BUG_ON(inode == NULL); 1862 1863 while (block < last && block != EXT_MAX_BLOCKS) { 1864 num = last - block; 1865 /* find extent for this block */ 1866 down_read(&EXT4_I(inode)->i_data_sem); 1867 path = ext4_ext_find_extent(inode, block, path); 1868 up_read(&EXT4_I(inode)->i_data_sem); 1869 if (IS_ERR(path)) { 1870 err = PTR_ERR(path); 1871 path = NULL; 1872 break; 1873 } 1874 1875 depth = ext_depth(inode); 1876 if (unlikely(path[depth].p_hdr == NULL)) { 1877 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1878 err = -EIO; 1879 break; 1880 } 1881 ex = path[depth].p_ext; 1882 next = ext4_ext_next_allocated_block(path); 1883 1884 exists = 0; 1885 if (!ex) { 1886 /* there is no extent yet, so try to allocate 1887 * all requested space */ 1888 start = block; 1889 end = block + num; 1890 } else if (le32_to_cpu(ex->ee_block) > block) { 1891 /* need to allocate space before found extent */ 1892 start = block; 1893 end = le32_to_cpu(ex->ee_block); 1894 if (block + num < end) 1895 end = block + num; 1896 } else if (block >= le32_to_cpu(ex->ee_block) 1897 + ext4_ext_get_actual_len(ex)) { 1898 /* need to allocate space after found extent */ 1899 start = block; 1900 end = block + num; 1901 if (end >= next) 1902 end = next; 1903 } else if (block >= le32_to_cpu(ex->ee_block)) { 1904 /* 1905 * some part of requested space is covered 1906 * by found extent 1907 */ 1908 start = block; 1909 end = le32_to_cpu(ex->ee_block) 1910 + ext4_ext_get_actual_len(ex); 1911 if (block + num < end) 1912 end = block + num; 1913 exists = 1; 1914 } else { 1915 BUG(); 1916 } 1917 BUG_ON(end <= start); 1918 1919 if (!exists) { 1920 cbex.ec_block = start; 1921 cbex.ec_len = end - start; 1922 cbex.ec_start = 0; 1923 } else { 1924 cbex.ec_block = le32_to_cpu(ex->ee_block); 1925 cbex.ec_len = ext4_ext_get_actual_len(ex); 1926 cbex.ec_start = ext4_ext_pblock(ex); 1927 } 1928 1929 if (unlikely(cbex.ec_len == 0)) { 1930 EXT4_ERROR_INODE(inode, "cbex.ec_len == 0"); 1931 err = -EIO; 1932 break; 1933 } 1934 err = func(inode, next, &cbex, ex, cbdata); 1935 ext4_ext_drop_refs(path); 1936 1937 if (err < 0) 1938 break; 1939 1940 if (err == EXT_REPEAT) 1941 continue; 1942 else if (err == EXT_BREAK) { 1943 err = 0; 1944 break; 1945 } 1946 1947 if (ext_depth(inode) != depth) { 1948 /* depth was changed. we have to realloc path */ 1949 kfree(path); 1950 path = NULL; 1951 } 1952 1953 block = cbex.ec_block + cbex.ec_len; 1954 } 1955 1956 if (path) { 1957 ext4_ext_drop_refs(path); 1958 kfree(path); 1959 } 1960 1961 return err; 1962 } 1963 1964 static void 1965 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block, 1966 __u32 len, ext4_fsblk_t start) 1967 { 1968 struct ext4_ext_cache *cex; 1969 BUG_ON(len == 0); 1970 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1971 trace_ext4_ext_put_in_cache(inode, block, len, start); 1972 cex = &EXT4_I(inode)->i_cached_extent; 1973 cex->ec_block = block; 1974 cex->ec_len = len; 1975 cex->ec_start = start; 1976 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1977 } 1978 1979 /* 1980 * ext4_ext_put_gap_in_cache: 1981 * calculate boundaries of the gap that the requested block fits into 1982 * and cache this gap 1983 */ 1984 static void 1985 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, 1986 ext4_lblk_t block) 1987 { 1988 int depth = ext_depth(inode); 1989 unsigned long len; 1990 ext4_lblk_t lblock; 1991 struct ext4_extent *ex; 1992 1993 ex = path[depth].p_ext; 1994 if (ex == NULL) { 1995 /* there is no extent yet, so gap is [0;-] */ 1996 lblock = 0; 1997 len = EXT_MAX_BLOCKS; 1998 ext_debug("cache gap(whole file):"); 1999 } else if (block < le32_to_cpu(ex->ee_block)) { 2000 lblock = block; 2001 len = le32_to_cpu(ex->ee_block) - block; 2002 ext_debug("cache gap(before): %u [%u:%u]", 2003 block, 2004 le32_to_cpu(ex->ee_block), 2005 ext4_ext_get_actual_len(ex)); 2006 } else if (block >= le32_to_cpu(ex->ee_block) 2007 + ext4_ext_get_actual_len(ex)) { 2008 ext4_lblk_t next; 2009 lblock = le32_to_cpu(ex->ee_block) 2010 + ext4_ext_get_actual_len(ex); 2011 2012 next = ext4_ext_next_allocated_block(path); 2013 ext_debug("cache gap(after): [%u:%u] %u", 2014 le32_to_cpu(ex->ee_block), 2015 ext4_ext_get_actual_len(ex), 2016 block); 2017 BUG_ON(next == lblock); 2018 len = next - lblock; 2019 } else { 2020 lblock = len = 0; 2021 BUG(); 2022 } 2023 2024 ext_debug(" -> %u:%lu\n", lblock, len); 2025 ext4_ext_put_in_cache(inode, lblock, len, 0); 2026 } 2027 2028 /* 2029 * ext4_ext_check_cache() 2030 * Checks to see if the given block is in the cache. 2031 * If it is, the cached extent is stored in the given 2032 * cache extent pointer. If the cached extent is a hole, 2033 * this routine should be used instead of 2034 * ext4_ext_in_cache if the calling function needs to 2035 * know the size of the hole. 2036 * 2037 * @inode: The files inode 2038 * @block: The block to look for in the cache 2039 * @ex: Pointer where the cached extent will be stored 2040 * if it contains block 2041 * 2042 * Return 0 if cache is invalid; 1 if the cache is valid 2043 */ 2044 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block, 2045 struct ext4_ext_cache *ex){ 2046 struct ext4_ext_cache *cex; 2047 struct ext4_sb_info *sbi; 2048 int ret = 0; 2049 2050 /* 2051 * We borrow i_block_reservation_lock to protect i_cached_extent 2052 */ 2053 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 2054 cex = &EXT4_I(inode)->i_cached_extent; 2055 sbi = EXT4_SB(inode->i_sb); 2056 2057 /* has cache valid data? */ 2058 if (cex->ec_len == 0) 2059 goto errout; 2060 2061 if (in_range(block, cex->ec_block, cex->ec_len)) { 2062 memcpy(ex, cex, sizeof(struct ext4_ext_cache)); 2063 ext_debug("%u cached by %u:%u:%llu\n", 2064 block, 2065 cex->ec_block, cex->ec_len, cex->ec_start); 2066 ret = 1; 2067 } 2068 errout: 2069 if (!ret) 2070 sbi->extent_cache_misses++; 2071 else 2072 sbi->extent_cache_hits++; 2073 trace_ext4_ext_in_cache(inode, block, ret); 2074 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 2075 return ret; 2076 } 2077 2078 /* 2079 * ext4_ext_in_cache() 2080 * Checks to see if the given block is in the cache. 2081 * If it is, the cached extent is stored in the given 2082 * extent pointer. 2083 * 2084 * @inode: The files inode 2085 * @block: The block to look for in the cache 2086 * @ex: Pointer where the cached extent will be stored 2087 * if it contains block 2088 * 2089 * Return 0 if cache is invalid; 1 if the cache is valid 2090 */ 2091 static int 2092 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block, 2093 struct ext4_extent *ex) 2094 { 2095 struct ext4_ext_cache cex; 2096 int ret = 0; 2097 2098 if (ext4_ext_check_cache(inode, block, &cex)) { 2099 ex->ee_block = cpu_to_le32(cex.ec_block); 2100 ext4_ext_store_pblock(ex, cex.ec_start); 2101 ex->ee_len = cpu_to_le16(cex.ec_len); 2102 ret = 1; 2103 } 2104 2105 return ret; 2106 } 2107 2108 2109 /* 2110 * ext4_ext_rm_idx: 2111 * removes index from the index block. 2112 */ 2113 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2114 struct ext4_ext_path *path) 2115 { 2116 int err; 2117 ext4_fsblk_t leaf; 2118 2119 /* free index block */ 2120 path--; 2121 leaf = ext4_idx_pblock(path->p_idx); 2122 if (unlikely(path->p_hdr->eh_entries == 0)) { 2123 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2124 return -EIO; 2125 } 2126 err = ext4_ext_get_access(handle, inode, path); 2127 if (err) 2128 return err; 2129 2130 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2131 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2132 len *= sizeof(struct ext4_extent_idx); 2133 memmove(path->p_idx, path->p_idx + 1, len); 2134 } 2135 2136 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2137 err = ext4_ext_dirty(handle, inode, path); 2138 if (err) 2139 return err; 2140 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2141 trace_ext4_ext_rm_idx(inode, leaf); 2142 2143 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2144 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2145 return err; 2146 } 2147 2148 /* 2149 * ext4_ext_calc_credits_for_single_extent: 2150 * This routine returns max. credits that needed to insert an extent 2151 * to the extent tree. 2152 * When pass the actual path, the caller should calculate credits 2153 * under i_data_sem. 2154 */ 2155 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2156 struct ext4_ext_path *path) 2157 { 2158 if (path) { 2159 int depth = ext_depth(inode); 2160 int ret = 0; 2161 2162 /* probably there is space in leaf? */ 2163 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2164 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2165 2166 /* 2167 * There are some space in the leaf tree, no 2168 * need to account for leaf block credit 2169 * 2170 * bitmaps and block group descriptor blocks 2171 * and other metadata blocks still need to be 2172 * accounted. 2173 */ 2174 /* 1 bitmap, 1 block group descriptor */ 2175 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2176 return ret; 2177 } 2178 } 2179 2180 return ext4_chunk_trans_blocks(inode, nrblocks); 2181 } 2182 2183 /* 2184 * How many index/leaf blocks need to change/allocate to modify nrblocks? 2185 * 2186 * if nrblocks are fit in a single extent (chunk flag is 1), then 2187 * in the worse case, each tree level index/leaf need to be changed 2188 * if the tree split due to insert a new extent, then the old tree 2189 * index/leaf need to be updated too 2190 * 2191 * If the nrblocks are discontiguous, they could cause 2192 * the whole tree split more than once, but this is really rare. 2193 */ 2194 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 2195 { 2196 int index; 2197 int depth = ext_depth(inode); 2198 2199 if (chunk) 2200 index = depth * 2; 2201 else 2202 index = depth * 3; 2203 2204 return index; 2205 } 2206 2207 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2208 struct ext4_extent *ex, 2209 ext4_fsblk_t *partial_cluster, 2210 ext4_lblk_t from, ext4_lblk_t to) 2211 { 2212 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2213 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2214 ext4_fsblk_t pblk; 2215 int flags = EXT4_FREE_BLOCKS_FORGET; 2216 2217 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2218 flags |= EXT4_FREE_BLOCKS_METADATA; 2219 /* 2220 * For bigalloc file systems, we never free a partial cluster 2221 * at the beginning of the extent. Instead, we make a note 2222 * that we tried freeing the cluster, and check to see if we 2223 * need to free it on a subsequent call to ext4_remove_blocks, 2224 * or at the end of the ext4_truncate() operation. 2225 */ 2226 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2227 2228 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster); 2229 /* 2230 * If we have a partial cluster, and it's different from the 2231 * cluster of the last block, we need to explicitly free the 2232 * partial cluster here. 2233 */ 2234 pblk = ext4_ext_pblock(ex) + ee_len - 1; 2235 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) { 2236 ext4_free_blocks(handle, inode, NULL, 2237 EXT4_C2B(sbi, *partial_cluster), 2238 sbi->s_cluster_ratio, flags); 2239 *partial_cluster = 0; 2240 } 2241 2242 #ifdef EXTENTS_STATS 2243 { 2244 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2245 spin_lock(&sbi->s_ext_stats_lock); 2246 sbi->s_ext_blocks += ee_len; 2247 sbi->s_ext_extents++; 2248 if (ee_len < sbi->s_ext_min) 2249 sbi->s_ext_min = ee_len; 2250 if (ee_len > sbi->s_ext_max) 2251 sbi->s_ext_max = ee_len; 2252 if (ext_depth(inode) > sbi->s_depth_max) 2253 sbi->s_depth_max = ext_depth(inode); 2254 spin_unlock(&sbi->s_ext_stats_lock); 2255 } 2256 #endif 2257 if (from >= le32_to_cpu(ex->ee_block) 2258 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 2259 /* tail removal */ 2260 ext4_lblk_t num; 2261 2262 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2263 pblk = ext4_ext_pblock(ex) + ee_len - num; 2264 ext_debug("free last %u blocks starting %llu\n", num, pblk); 2265 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2266 /* 2267 * If the block range to be freed didn't start at the 2268 * beginning of a cluster, and we removed the entire 2269 * extent, save the partial cluster here, since we 2270 * might need to delete if we determine that the 2271 * truncate operation has removed all of the blocks in 2272 * the cluster. 2273 */ 2274 if (pblk & (sbi->s_cluster_ratio - 1) && 2275 (ee_len == num)) 2276 *partial_cluster = EXT4_B2C(sbi, pblk); 2277 else 2278 *partial_cluster = 0; 2279 } else if (from == le32_to_cpu(ex->ee_block) 2280 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) { 2281 /* head removal */ 2282 ext4_lblk_t num; 2283 ext4_fsblk_t start; 2284 2285 num = to - from; 2286 start = ext4_ext_pblock(ex); 2287 2288 ext_debug("free first %u blocks starting %llu\n", num, start); 2289 ext4_free_blocks(handle, inode, NULL, start, num, flags); 2290 2291 } else { 2292 printk(KERN_INFO "strange request: removal(2) " 2293 "%u-%u from %u:%u\n", 2294 from, to, le32_to_cpu(ex->ee_block), ee_len); 2295 } 2296 return 0; 2297 } 2298 2299 2300 /* 2301 * ext4_ext_rm_leaf() Removes the extents associated with the 2302 * blocks appearing between "start" and "end", and splits the extents 2303 * if "start" and "end" appear in the same extent 2304 * 2305 * @handle: The journal handle 2306 * @inode: The files inode 2307 * @path: The path to the leaf 2308 * @start: The first block to remove 2309 * @end: The last block to remove 2310 */ 2311 static int 2312 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2313 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster, 2314 ext4_lblk_t start, ext4_lblk_t end) 2315 { 2316 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2317 int err = 0, correct_index = 0; 2318 int depth = ext_depth(inode), credits; 2319 struct ext4_extent_header *eh; 2320 ext4_lblk_t a, b; 2321 unsigned num; 2322 ext4_lblk_t ex_ee_block; 2323 unsigned short ex_ee_len; 2324 unsigned uninitialized = 0; 2325 struct ext4_extent *ex; 2326 2327 /* the header must be checked already in ext4_ext_remove_space() */ 2328 ext_debug("truncate since %u in leaf to %u\n", start, end); 2329 if (!path[depth].p_hdr) 2330 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2331 eh = path[depth].p_hdr; 2332 if (unlikely(path[depth].p_hdr == NULL)) { 2333 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2334 return -EIO; 2335 } 2336 /* find where to start removing */ 2337 ex = EXT_LAST_EXTENT(eh); 2338 2339 ex_ee_block = le32_to_cpu(ex->ee_block); 2340 ex_ee_len = ext4_ext_get_actual_len(ex); 2341 2342 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster); 2343 2344 while (ex >= EXT_FIRST_EXTENT(eh) && 2345 ex_ee_block + ex_ee_len > start) { 2346 2347 if (ext4_ext_is_uninitialized(ex)) 2348 uninitialized = 1; 2349 else 2350 uninitialized = 0; 2351 2352 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2353 uninitialized, ex_ee_len); 2354 path[depth].p_ext = ex; 2355 2356 a = ex_ee_block > start ? ex_ee_block : start; 2357 b = ex_ee_block+ex_ee_len - 1 < end ? 2358 ex_ee_block+ex_ee_len - 1 : end; 2359 2360 ext_debug(" border %u:%u\n", a, b); 2361 2362 /* If this extent is beyond the end of the hole, skip it */ 2363 if (end < ex_ee_block) { 2364 ex--; 2365 ex_ee_block = le32_to_cpu(ex->ee_block); 2366 ex_ee_len = ext4_ext_get_actual_len(ex); 2367 continue; 2368 } else if (b != ex_ee_block + ex_ee_len - 1) { 2369 EXT4_ERROR_INODE(inode, 2370 "can not handle truncate %u:%u " 2371 "on extent %u:%u", 2372 start, end, ex_ee_block, 2373 ex_ee_block + ex_ee_len - 1); 2374 err = -EIO; 2375 goto out; 2376 } else if (a != ex_ee_block) { 2377 /* remove tail of the extent */ 2378 num = a - ex_ee_block; 2379 } else { 2380 /* remove whole extent: excellent! */ 2381 num = 0; 2382 } 2383 /* 2384 * 3 for leaf, sb, and inode plus 2 (bmap and group 2385 * descriptor) for each block group; assume two block 2386 * groups plus ex_ee_len/blocks_per_block_group for 2387 * the worst case 2388 */ 2389 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2390 if (ex == EXT_FIRST_EXTENT(eh)) { 2391 correct_index = 1; 2392 credits += (ext_depth(inode)) + 1; 2393 } 2394 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2395 2396 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2397 if (err) 2398 goto out; 2399 2400 err = ext4_ext_get_access(handle, inode, path + depth); 2401 if (err) 2402 goto out; 2403 2404 err = ext4_remove_blocks(handle, inode, ex, partial_cluster, 2405 a, b); 2406 if (err) 2407 goto out; 2408 2409 if (num == 0) 2410 /* this extent is removed; mark slot entirely unused */ 2411 ext4_ext_store_pblock(ex, 0); 2412 2413 ex->ee_len = cpu_to_le16(num); 2414 /* 2415 * Do not mark uninitialized if all the blocks in the 2416 * extent have been removed. 2417 */ 2418 if (uninitialized && num) 2419 ext4_ext_mark_uninitialized(ex); 2420 /* 2421 * If the extent was completely released, 2422 * we need to remove it from the leaf 2423 */ 2424 if (num == 0) { 2425 if (end != EXT_MAX_BLOCKS - 1) { 2426 /* 2427 * For hole punching, we need to scoot all the 2428 * extents up when an extent is removed so that 2429 * we dont have blank extents in the middle 2430 */ 2431 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2432 sizeof(struct ext4_extent)); 2433 2434 /* Now get rid of the one at the end */ 2435 memset(EXT_LAST_EXTENT(eh), 0, 2436 sizeof(struct ext4_extent)); 2437 } 2438 le16_add_cpu(&eh->eh_entries, -1); 2439 } else 2440 *partial_cluster = 0; 2441 2442 err = ext4_ext_dirty(handle, inode, path + depth); 2443 if (err) 2444 goto out; 2445 2446 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, 2447 ext4_ext_pblock(ex)); 2448 ex--; 2449 ex_ee_block = le32_to_cpu(ex->ee_block); 2450 ex_ee_len = ext4_ext_get_actual_len(ex); 2451 } 2452 2453 if (correct_index && eh->eh_entries) 2454 err = ext4_ext_correct_indexes(handle, inode, path); 2455 2456 /* 2457 * If there is still a entry in the leaf node, check to see if 2458 * it references the partial cluster. This is the only place 2459 * where it could; if it doesn't, we can free the cluster. 2460 */ 2461 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) && 2462 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) != 2463 *partial_cluster)) { 2464 int flags = EXT4_FREE_BLOCKS_FORGET; 2465 2466 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2467 flags |= EXT4_FREE_BLOCKS_METADATA; 2468 2469 ext4_free_blocks(handle, inode, NULL, 2470 EXT4_C2B(sbi, *partial_cluster), 2471 sbi->s_cluster_ratio, flags); 2472 *partial_cluster = 0; 2473 } 2474 2475 /* if this leaf is free, then we should 2476 * remove it from index block above */ 2477 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2478 err = ext4_ext_rm_idx(handle, inode, path + depth); 2479 2480 out: 2481 return err; 2482 } 2483 2484 /* 2485 * ext4_ext_more_to_rm: 2486 * returns 1 if current index has to be freed (even partial) 2487 */ 2488 static int 2489 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2490 { 2491 BUG_ON(path->p_idx == NULL); 2492 2493 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2494 return 0; 2495 2496 /* 2497 * if truncate on deeper level happened, it wasn't partial, 2498 * so we have to consider current index for truncation 2499 */ 2500 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2501 return 0; 2502 return 1; 2503 } 2504 2505 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2506 ext4_lblk_t end) 2507 { 2508 struct super_block *sb = inode->i_sb; 2509 int depth = ext_depth(inode); 2510 struct ext4_ext_path *path; 2511 ext4_fsblk_t partial_cluster = 0; 2512 handle_t *handle; 2513 int i, err; 2514 2515 ext_debug("truncate since %u to %u\n", start, end); 2516 2517 /* probably first extent we're gonna free will be last in block */ 2518 handle = ext4_journal_start(inode, depth + 1); 2519 if (IS_ERR(handle)) 2520 return PTR_ERR(handle); 2521 2522 again: 2523 ext4_ext_invalidate_cache(inode); 2524 2525 trace_ext4_ext_remove_space(inode, start, depth); 2526 2527 /* 2528 * Check if we are removing extents inside the extent tree. If that 2529 * is the case, we are going to punch a hole inside the extent tree 2530 * so we have to check whether we need to split the extent covering 2531 * the last block to remove so we can easily remove the part of it 2532 * in ext4_ext_rm_leaf(). 2533 */ 2534 if (end < EXT_MAX_BLOCKS - 1) { 2535 struct ext4_extent *ex; 2536 ext4_lblk_t ee_block; 2537 2538 /* find extent for this block */ 2539 path = ext4_ext_find_extent(inode, end, NULL); 2540 if (IS_ERR(path)) { 2541 ext4_journal_stop(handle); 2542 return PTR_ERR(path); 2543 } 2544 depth = ext_depth(inode); 2545 ex = path[depth].p_ext; 2546 if (!ex) 2547 goto cont; 2548 2549 ee_block = le32_to_cpu(ex->ee_block); 2550 2551 /* 2552 * See if the last block is inside the extent, if so split 2553 * the extent at 'end' block so we can easily remove the 2554 * tail of the first part of the split extent in 2555 * ext4_ext_rm_leaf(). 2556 */ 2557 if (end >= ee_block && 2558 end < ee_block + ext4_ext_get_actual_len(ex) - 1) { 2559 int split_flag = 0; 2560 2561 if (ext4_ext_is_uninitialized(ex)) 2562 split_flag = EXT4_EXT_MARK_UNINIT1 | 2563 EXT4_EXT_MARK_UNINIT2; 2564 2565 /* 2566 * Split the extent in two so that 'end' is the last 2567 * block in the first new extent 2568 */ 2569 err = ext4_split_extent_at(handle, inode, path, 2570 end + 1, split_flag, 2571 EXT4_GET_BLOCKS_PRE_IO | 2572 EXT4_GET_BLOCKS_PUNCH_OUT_EXT); 2573 2574 if (err < 0) 2575 goto out; 2576 } 2577 ext4_ext_drop_refs(path); 2578 kfree(path); 2579 } 2580 cont: 2581 2582 /* 2583 * We start scanning from right side, freeing all the blocks 2584 * after i_size and walking into the tree depth-wise. 2585 */ 2586 depth = ext_depth(inode); 2587 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS); 2588 if (path == NULL) { 2589 ext4_journal_stop(handle); 2590 return -ENOMEM; 2591 } 2592 path[0].p_depth = depth; 2593 path[0].p_hdr = ext_inode_hdr(inode); 2594 2595 if (ext4_ext_check(inode, path[0].p_hdr, depth)) { 2596 err = -EIO; 2597 goto out; 2598 } 2599 i = err = 0; 2600 2601 while (i >= 0 && err == 0) { 2602 if (i == depth) { 2603 /* this is leaf block */ 2604 err = ext4_ext_rm_leaf(handle, inode, path, 2605 &partial_cluster, start, 2606 end); 2607 /* root level has p_bh == NULL, brelse() eats this */ 2608 brelse(path[i].p_bh); 2609 path[i].p_bh = NULL; 2610 i--; 2611 continue; 2612 } 2613 2614 /* this is index block */ 2615 if (!path[i].p_hdr) { 2616 ext_debug("initialize header\n"); 2617 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2618 } 2619 2620 if (!path[i].p_idx) { 2621 /* this level hasn't been touched yet */ 2622 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2623 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2624 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2625 path[i].p_hdr, 2626 le16_to_cpu(path[i].p_hdr->eh_entries)); 2627 } else { 2628 /* we were already here, see at next index */ 2629 path[i].p_idx--; 2630 } 2631 2632 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2633 i, EXT_FIRST_INDEX(path[i].p_hdr), 2634 path[i].p_idx); 2635 if (ext4_ext_more_to_rm(path + i)) { 2636 struct buffer_head *bh; 2637 /* go to the next level */ 2638 ext_debug("move to level %d (block %llu)\n", 2639 i + 1, ext4_idx_pblock(path[i].p_idx)); 2640 memset(path + i + 1, 0, sizeof(*path)); 2641 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx)); 2642 if (!bh) { 2643 /* should we reset i_size? */ 2644 err = -EIO; 2645 break; 2646 } 2647 if (WARN_ON(i + 1 > depth)) { 2648 err = -EIO; 2649 break; 2650 } 2651 if (ext4_ext_check(inode, ext_block_hdr(bh), 2652 depth - i - 1)) { 2653 err = -EIO; 2654 break; 2655 } 2656 path[i + 1].p_bh = bh; 2657 2658 /* save actual number of indexes since this 2659 * number is changed at the next iteration */ 2660 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2661 i++; 2662 } else { 2663 /* we finished processing this index, go up */ 2664 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2665 /* index is empty, remove it; 2666 * handle must be already prepared by the 2667 * truncatei_leaf() */ 2668 err = ext4_ext_rm_idx(handle, inode, path + i); 2669 } 2670 /* root level has p_bh == NULL, brelse() eats this */ 2671 brelse(path[i].p_bh); 2672 path[i].p_bh = NULL; 2673 i--; 2674 ext_debug("return to level %d\n", i); 2675 } 2676 } 2677 2678 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster, 2679 path->p_hdr->eh_entries); 2680 2681 /* If we still have something in the partial cluster and we have removed 2682 * even the first extent, then we should free the blocks in the partial 2683 * cluster as well. */ 2684 if (partial_cluster && path->p_hdr->eh_entries == 0) { 2685 int flags = EXT4_FREE_BLOCKS_FORGET; 2686 2687 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2688 flags |= EXT4_FREE_BLOCKS_METADATA; 2689 2690 ext4_free_blocks(handle, inode, NULL, 2691 EXT4_C2B(EXT4_SB(sb), partial_cluster), 2692 EXT4_SB(sb)->s_cluster_ratio, flags); 2693 partial_cluster = 0; 2694 } 2695 2696 /* TODO: flexible tree reduction should be here */ 2697 if (path->p_hdr->eh_entries == 0) { 2698 /* 2699 * truncate to zero freed all the tree, 2700 * so we need to correct eh_depth 2701 */ 2702 err = ext4_ext_get_access(handle, inode, path); 2703 if (err == 0) { 2704 ext_inode_hdr(inode)->eh_depth = 0; 2705 ext_inode_hdr(inode)->eh_max = 2706 cpu_to_le16(ext4_ext_space_root(inode, 0)); 2707 err = ext4_ext_dirty(handle, inode, path); 2708 } 2709 } 2710 out: 2711 ext4_ext_drop_refs(path); 2712 kfree(path); 2713 if (err == -EAGAIN) 2714 goto again; 2715 ext4_journal_stop(handle); 2716 2717 return err; 2718 } 2719 2720 /* 2721 * called at mount time 2722 */ 2723 void ext4_ext_init(struct super_block *sb) 2724 { 2725 /* 2726 * possible initialization would be here 2727 */ 2728 2729 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2730 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 2731 printk(KERN_INFO "EXT4-fs: file extents enabled"); 2732 #ifdef AGGRESSIVE_TEST 2733 printk(", aggressive tests"); 2734 #endif 2735 #ifdef CHECK_BINSEARCH 2736 printk(", check binsearch"); 2737 #endif 2738 #ifdef EXTENTS_STATS 2739 printk(", stats"); 2740 #endif 2741 printk("\n"); 2742 #endif 2743 #ifdef EXTENTS_STATS 2744 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 2745 EXT4_SB(sb)->s_ext_min = 1 << 30; 2746 EXT4_SB(sb)->s_ext_max = 0; 2747 #endif 2748 } 2749 } 2750 2751 /* 2752 * called at umount time 2753 */ 2754 void ext4_ext_release(struct super_block *sb) 2755 { 2756 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 2757 return; 2758 2759 #ifdef EXTENTS_STATS 2760 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 2761 struct ext4_sb_info *sbi = EXT4_SB(sb); 2762 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 2763 sbi->s_ext_blocks, sbi->s_ext_extents, 2764 sbi->s_ext_blocks / sbi->s_ext_extents); 2765 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 2766 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 2767 } 2768 #endif 2769 } 2770 2771 /* FIXME!! we need to try to merge to left or right after zero-out */ 2772 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 2773 { 2774 ext4_fsblk_t ee_pblock; 2775 unsigned int ee_len; 2776 int ret; 2777 2778 ee_len = ext4_ext_get_actual_len(ex); 2779 ee_pblock = ext4_ext_pblock(ex); 2780 2781 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS); 2782 if (ret > 0) 2783 ret = 0; 2784 2785 return ret; 2786 } 2787 2788 /* 2789 * ext4_split_extent_at() splits an extent at given block. 2790 * 2791 * @handle: the journal handle 2792 * @inode: the file inode 2793 * @path: the path to the extent 2794 * @split: the logical block where the extent is splitted. 2795 * @split_flags: indicates if the extent could be zeroout if split fails, and 2796 * the states(init or uninit) of new extents. 2797 * @flags: flags used to insert new extent to extent tree. 2798 * 2799 * 2800 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 2801 * of which are deterimined by split_flag. 2802 * 2803 * There are two cases: 2804 * a> the extent are splitted into two extent. 2805 * b> split is not needed, and just mark the extent. 2806 * 2807 * return 0 on success. 2808 */ 2809 static int ext4_split_extent_at(handle_t *handle, 2810 struct inode *inode, 2811 struct ext4_ext_path *path, 2812 ext4_lblk_t split, 2813 int split_flag, 2814 int flags) 2815 { 2816 ext4_fsblk_t newblock; 2817 ext4_lblk_t ee_block; 2818 struct ext4_extent *ex, newex, orig_ex; 2819 struct ext4_extent *ex2 = NULL; 2820 unsigned int ee_len, depth; 2821 int err = 0; 2822 2823 ext_debug("ext4_split_extents_at: inode %lu, logical" 2824 "block %llu\n", inode->i_ino, (unsigned long long)split); 2825 2826 ext4_ext_show_leaf(inode, path); 2827 2828 depth = ext_depth(inode); 2829 ex = path[depth].p_ext; 2830 ee_block = le32_to_cpu(ex->ee_block); 2831 ee_len = ext4_ext_get_actual_len(ex); 2832 newblock = split - ee_block + ext4_ext_pblock(ex); 2833 2834 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 2835 2836 err = ext4_ext_get_access(handle, inode, path + depth); 2837 if (err) 2838 goto out; 2839 2840 if (split == ee_block) { 2841 /* 2842 * case b: block @split is the block that the extent begins with 2843 * then we just change the state of the extent, and splitting 2844 * is not needed. 2845 */ 2846 if (split_flag & EXT4_EXT_MARK_UNINIT2) 2847 ext4_ext_mark_uninitialized(ex); 2848 else 2849 ext4_ext_mark_initialized(ex); 2850 2851 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 2852 ext4_ext_try_to_merge(inode, path, ex); 2853 2854 err = ext4_ext_dirty(handle, inode, path + depth); 2855 goto out; 2856 } 2857 2858 /* case a */ 2859 memcpy(&orig_ex, ex, sizeof(orig_ex)); 2860 ex->ee_len = cpu_to_le16(split - ee_block); 2861 if (split_flag & EXT4_EXT_MARK_UNINIT1) 2862 ext4_ext_mark_uninitialized(ex); 2863 2864 /* 2865 * path may lead to new leaf, not to original leaf any more 2866 * after ext4_ext_insert_extent() returns, 2867 */ 2868 err = ext4_ext_dirty(handle, inode, path + depth); 2869 if (err) 2870 goto fix_extent_len; 2871 2872 ex2 = &newex; 2873 ex2->ee_block = cpu_to_le32(split); 2874 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 2875 ext4_ext_store_pblock(ex2, newblock); 2876 if (split_flag & EXT4_EXT_MARK_UNINIT2) 2877 ext4_ext_mark_uninitialized(ex2); 2878 2879 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags); 2880 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 2881 err = ext4_ext_zeroout(inode, &orig_ex); 2882 if (err) 2883 goto fix_extent_len; 2884 /* update the extent length and mark as initialized */ 2885 ex->ee_len = cpu_to_le32(ee_len); 2886 ext4_ext_try_to_merge(inode, path, ex); 2887 err = ext4_ext_dirty(handle, inode, path + depth); 2888 goto out; 2889 } else if (err) 2890 goto fix_extent_len; 2891 2892 out: 2893 ext4_ext_show_leaf(inode, path); 2894 return err; 2895 2896 fix_extent_len: 2897 ex->ee_len = orig_ex.ee_len; 2898 ext4_ext_dirty(handle, inode, path + depth); 2899 return err; 2900 } 2901 2902 /* 2903 * ext4_split_extents() splits an extent and mark extent which is covered 2904 * by @map as split_flags indicates 2905 * 2906 * It may result in splitting the extent into multiple extents (upto three) 2907 * There are three possibilities: 2908 * a> There is no split required 2909 * b> Splits in two extents: Split is happening at either end of the extent 2910 * c> Splits in three extents: Somone is splitting in middle of the extent 2911 * 2912 */ 2913 static int ext4_split_extent(handle_t *handle, 2914 struct inode *inode, 2915 struct ext4_ext_path *path, 2916 struct ext4_map_blocks *map, 2917 int split_flag, 2918 int flags) 2919 { 2920 ext4_lblk_t ee_block; 2921 struct ext4_extent *ex; 2922 unsigned int ee_len, depth; 2923 int err = 0; 2924 int uninitialized; 2925 int split_flag1, flags1; 2926 2927 depth = ext_depth(inode); 2928 ex = path[depth].p_ext; 2929 ee_block = le32_to_cpu(ex->ee_block); 2930 ee_len = ext4_ext_get_actual_len(ex); 2931 uninitialized = ext4_ext_is_uninitialized(ex); 2932 2933 if (map->m_lblk + map->m_len < ee_block + ee_len) { 2934 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ? 2935 EXT4_EXT_MAY_ZEROOUT : 0; 2936 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 2937 if (uninitialized) 2938 split_flag1 |= EXT4_EXT_MARK_UNINIT1 | 2939 EXT4_EXT_MARK_UNINIT2; 2940 err = ext4_split_extent_at(handle, inode, path, 2941 map->m_lblk + map->m_len, split_flag1, flags1); 2942 if (err) 2943 goto out; 2944 } 2945 2946 ext4_ext_drop_refs(path); 2947 path = ext4_ext_find_extent(inode, map->m_lblk, path); 2948 if (IS_ERR(path)) 2949 return PTR_ERR(path); 2950 2951 if (map->m_lblk >= ee_block) { 2952 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ? 2953 EXT4_EXT_MAY_ZEROOUT : 0; 2954 if (uninitialized) 2955 split_flag1 |= EXT4_EXT_MARK_UNINIT1; 2956 if (split_flag & EXT4_EXT_MARK_UNINIT2) 2957 split_flag1 |= EXT4_EXT_MARK_UNINIT2; 2958 err = ext4_split_extent_at(handle, inode, path, 2959 map->m_lblk, split_flag1, flags); 2960 if (err) 2961 goto out; 2962 } 2963 2964 ext4_ext_show_leaf(inode, path); 2965 out: 2966 return err ? err : map->m_len; 2967 } 2968 2969 #define EXT4_EXT_ZERO_LEN 7 2970 /* 2971 * This function is called by ext4_ext_map_blocks() if someone tries to write 2972 * to an uninitialized extent. It may result in splitting the uninitialized 2973 * extent into multiple extents (up to three - one initialized and two 2974 * uninitialized). 2975 * There are three possibilities: 2976 * a> There is no split required: Entire extent should be initialized 2977 * b> Splits in two extents: Write is happening at either end of the extent 2978 * c> Splits in three extents: Somone is writing in middle of the extent 2979 * 2980 * Pre-conditions: 2981 * - The extent pointed to by 'path' is uninitialized. 2982 * - The extent pointed to by 'path' contains a superset 2983 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 2984 * 2985 * Post-conditions on success: 2986 * - the returned value is the number of blocks beyond map->l_lblk 2987 * that are allocated and initialized. 2988 * It is guaranteed to be >= map->m_len. 2989 */ 2990 static int ext4_ext_convert_to_initialized(handle_t *handle, 2991 struct inode *inode, 2992 struct ext4_map_blocks *map, 2993 struct ext4_ext_path *path) 2994 { 2995 struct ext4_extent_header *eh; 2996 struct ext4_map_blocks split_map; 2997 struct ext4_extent zero_ex; 2998 struct ext4_extent *ex; 2999 ext4_lblk_t ee_block, eof_block; 3000 unsigned int ee_len, depth; 3001 int allocated; 3002 int err = 0; 3003 int split_flag = 0; 3004 3005 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 3006 "block %llu, max_blocks %u\n", inode->i_ino, 3007 (unsigned long long)map->m_lblk, map->m_len); 3008 3009 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3010 inode->i_sb->s_blocksize_bits; 3011 if (eof_block < map->m_lblk + map->m_len) 3012 eof_block = map->m_lblk + map->m_len; 3013 3014 depth = ext_depth(inode); 3015 eh = path[depth].p_hdr; 3016 ex = path[depth].p_ext; 3017 ee_block = le32_to_cpu(ex->ee_block); 3018 ee_len = ext4_ext_get_actual_len(ex); 3019 allocated = ee_len - (map->m_lblk - ee_block); 3020 3021 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3022 3023 /* Pre-conditions */ 3024 BUG_ON(!ext4_ext_is_uninitialized(ex)); 3025 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3026 3027 /* 3028 * Attempt to transfer newly initialized blocks from the currently 3029 * uninitialized extent to its left neighbor. This is much cheaper 3030 * than an insertion followed by a merge as those involve costly 3031 * memmove() calls. This is the common case in steady state for 3032 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append 3033 * writes. 3034 * 3035 * Limitations of the current logic: 3036 * - L1: we only deal with writes at the start of the extent. 3037 * The approach could be extended to writes at the end 3038 * of the extent but this scenario was deemed less common. 3039 * - L2: we do not deal with writes covering the whole extent. 3040 * This would require removing the extent if the transfer 3041 * is possible. 3042 * - L3: we only attempt to merge with an extent stored in the 3043 * same extent tree node. 3044 */ 3045 if ((map->m_lblk == ee_block) && /*L1*/ 3046 (map->m_len < ee_len) && /*L2*/ 3047 (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/ 3048 struct ext4_extent *prev_ex; 3049 ext4_lblk_t prev_lblk; 3050 ext4_fsblk_t prev_pblk, ee_pblk; 3051 unsigned int prev_len, write_len; 3052 3053 prev_ex = ex - 1; 3054 prev_lblk = le32_to_cpu(prev_ex->ee_block); 3055 prev_len = ext4_ext_get_actual_len(prev_ex); 3056 prev_pblk = ext4_ext_pblock(prev_ex); 3057 ee_pblk = ext4_ext_pblock(ex); 3058 write_len = map->m_len; 3059 3060 /* 3061 * A transfer of blocks from 'ex' to 'prev_ex' is allowed 3062 * upon those conditions: 3063 * - C1: prev_ex is initialized, 3064 * - C2: prev_ex is logically abutting ex, 3065 * - C3: prev_ex is physically abutting ex, 3066 * - C4: prev_ex can receive the additional blocks without 3067 * overflowing the (initialized) length limit. 3068 */ 3069 if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/ 3070 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3071 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3072 (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/ 3073 err = ext4_ext_get_access(handle, inode, path + depth); 3074 if (err) 3075 goto out; 3076 3077 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3078 map, ex, prev_ex); 3079 3080 /* Shift the start of ex by 'write_len' blocks */ 3081 ex->ee_block = cpu_to_le32(ee_block + write_len); 3082 ext4_ext_store_pblock(ex, ee_pblk + write_len); 3083 ex->ee_len = cpu_to_le16(ee_len - write_len); 3084 ext4_ext_mark_uninitialized(ex); /* Restore the flag */ 3085 3086 /* Extend prev_ex by 'write_len' blocks */ 3087 prev_ex->ee_len = cpu_to_le16(prev_len + write_len); 3088 3089 /* Mark the block containing both extents as dirty */ 3090 ext4_ext_dirty(handle, inode, path + depth); 3091 3092 /* Update path to point to the right extent */ 3093 path[depth].p_ext = prev_ex; 3094 3095 /* Result: number of initialized blocks past m_lblk */ 3096 allocated = write_len; 3097 goto out; 3098 } 3099 } 3100 3101 WARN_ON(map->m_lblk < ee_block); 3102 /* 3103 * It is safe to convert extent to initialized via explicit 3104 * zeroout only if extent is fully insde i_size or new_size. 3105 */ 3106 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3107 3108 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */ 3109 if (ee_len <= 2*EXT4_EXT_ZERO_LEN && 3110 (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3111 err = ext4_ext_zeroout(inode, ex); 3112 if (err) 3113 goto out; 3114 3115 err = ext4_ext_get_access(handle, inode, path + depth); 3116 if (err) 3117 goto out; 3118 ext4_ext_mark_initialized(ex); 3119 ext4_ext_try_to_merge(inode, path, ex); 3120 err = ext4_ext_dirty(handle, inode, path + depth); 3121 goto out; 3122 } 3123 3124 /* 3125 * four cases: 3126 * 1. split the extent into three extents. 3127 * 2. split the extent into two extents, zeroout the first half. 3128 * 3. split the extent into two extents, zeroout the second half. 3129 * 4. split the extent into two extents with out zeroout. 3130 */ 3131 split_map.m_lblk = map->m_lblk; 3132 split_map.m_len = map->m_len; 3133 3134 if (allocated > map->m_len) { 3135 if (allocated <= EXT4_EXT_ZERO_LEN && 3136 (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3137 /* case 3 */ 3138 zero_ex.ee_block = 3139 cpu_to_le32(map->m_lblk); 3140 zero_ex.ee_len = cpu_to_le16(allocated); 3141 ext4_ext_store_pblock(&zero_ex, 3142 ext4_ext_pblock(ex) + map->m_lblk - ee_block); 3143 err = ext4_ext_zeroout(inode, &zero_ex); 3144 if (err) 3145 goto out; 3146 split_map.m_lblk = map->m_lblk; 3147 split_map.m_len = allocated; 3148 } else if ((map->m_lblk - ee_block + map->m_len < 3149 EXT4_EXT_ZERO_LEN) && 3150 (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3151 /* case 2 */ 3152 if (map->m_lblk != ee_block) { 3153 zero_ex.ee_block = ex->ee_block; 3154 zero_ex.ee_len = cpu_to_le16(map->m_lblk - 3155 ee_block); 3156 ext4_ext_store_pblock(&zero_ex, 3157 ext4_ext_pblock(ex)); 3158 err = ext4_ext_zeroout(inode, &zero_ex); 3159 if (err) 3160 goto out; 3161 } 3162 3163 split_map.m_lblk = ee_block; 3164 split_map.m_len = map->m_lblk - ee_block + map->m_len; 3165 allocated = map->m_len; 3166 } 3167 } 3168 3169 allocated = ext4_split_extent(handle, inode, path, 3170 &split_map, split_flag, 0); 3171 if (allocated < 0) 3172 err = allocated; 3173 3174 out: 3175 return err ? err : allocated; 3176 } 3177 3178 /* 3179 * This function is called by ext4_ext_map_blocks() from 3180 * ext4_get_blocks_dio_write() when DIO to write 3181 * to an uninitialized extent. 3182 * 3183 * Writing to an uninitialized extent may result in splitting the uninitialized 3184 * extent into multiple /initialized uninitialized extents (up to three) 3185 * There are three possibilities: 3186 * a> There is no split required: Entire extent should be uninitialized 3187 * b> Splits in two extents: Write is happening at either end of the extent 3188 * c> Splits in three extents: Somone is writing in middle of the extent 3189 * 3190 * One of more index blocks maybe needed if the extent tree grow after 3191 * the uninitialized extent split. To prevent ENOSPC occur at the IO 3192 * complete, we need to split the uninitialized extent before DIO submit 3193 * the IO. The uninitialized extent called at this time will be split 3194 * into three uninitialized extent(at most). After IO complete, the part 3195 * being filled will be convert to initialized by the end_io callback function 3196 * via ext4_convert_unwritten_extents(). 3197 * 3198 * Returns the size of uninitialized extent to be written on success. 3199 */ 3200 static int ext4_split_unwritten_extents(handle_t *handle, 3201 struct inode *inode, 3202 struct ext4_map_blocks *map, 3203 struct ext4_ext_path *path, 3204 int flags) 3205 { 3206 ext4_lblk_t eof_block; 3207 ext4_lblk_t ee_block; 3208 struct ext4_extent *ex; 3209 unsigned int ee_len; 3210 int split_flag = 0, depth; 3211 3212 ext_debug("ext4_split_unwritten_extents: inode %lu, logical" 3213 "block %llu, max_blocks %u\n", inode->i_ino, 3214 (unsigned long long)map->m_lblk, map->m_len); 3215 3216 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3217 inode->i_sb->s_blocksize_bits; 3218 if (eof_block < map->m_lblk + map->m_len) 3219 eof_block = map->m_lblk + map->m_len; 3220 /* 3221 * It is safe to convert extent to initialized via explicit 3222 * zeroout only if extent is fully insde i_size or new_size. 3223 */ 3224 depth = ext_depth(inode); 3225 ex = path[depth].p_ext; 3226 ee_block = le32_to_cpu(ex->ee_block); 3227 ee_len = ext4_ext_get_actual_len(ex); 3228 3229 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3230 split_flag |= EXT4_EXT_MARK_UNINIT2; 3231 3232 flags |= EXT4_GET_BLOCKS_PRE_IO; 3233 return ext4_split_extent(handle, inode, path, map, split_flag, flags); 3234 } 3235 3236 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3237 struct inode *inode, 3238 struct ext4_ext_path *path) 3239 { 3240 struct ext4_extent *ex; 3241 int depth; 3242 int err = 0; 3243 3244 depth = ext_depth(inode); 3245 ex = path[depth].p_ext; 3246 3247 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3248 "block %llu, max_blocks %u\n", inode->i_ino, 3249 (unsigned long long)le32_to_cpu(ex->ee_block), 3250 ext4_ext_get_actual_len(ex)); 3251 3252 err = ext4_ext_get_access(handle, inode, path + depth); 3253 if (err) 3254 goto out; 3255 /* first mark the extent as initialized */ 3256 ext4_ext_mark_initialized(ex); 3257 3258 /* note: ext4_ext_correct_indexes() isn't needed here because 3259 * borders are not changed 3260 */ 3261 ext4_ext_try_to_merge(inode, path, ex); 3262 3263 /* Mark modified extent as dirty */ 3264 err = ext4_ext_dirty(handle, inode, path + depth); 3265 out: 3266 ext4_ext_show_leaf(inode, path); 3267 return err; 3268 } 3269 3270 static void unmap_underlying_metadata_blocks(struct block_device *bdev, 3271 sector_t block, int count) 3272 { 3273 int i; 3274 for (i = 0; i < count; i++) 3275 unmap_underlying_metadata(bdev, block + i); 3276 } 3277 3278 /* 3279 * Handle EOFBLOCKS_FL flag, clearing it if necessary 3280 */ 3281 static int check_eofblocks_fl(handle_t *handle, struct inode *inode, 3282 ext4_lblk_t lblk, 3283 struct ext4_ext_path *path, 3284 unsigned int len) 3285 { 3286 int i, depth; 3287 struct ext4_extent_header *eh; 3288 struct ext4_extent *last_ex; 3289 3290 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3291 return 0; 3292 3293 depth = ext_depth(inode); 3294 eh = path[depth].p_hdr; 3295 3296 if (unlikely(!eh->eh_entries)) { 3297 EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and " 3298 "EOFBLOCKS_FL set"); 3299 return -EIO; 3300 } 3301 last_ex = EXT_LAST_EXTENT(eh); 3302 /* 3303 * We should clear the EOFBLOCKS_FL flag if we are writing the 3304 * last block in the last extent in the file. We test this by 3305 * first checking to see if the caller to 3306 * ext4_ext_get_blocks() was interested in the last block (or 3307 * a block beyond the last block) in the current extent. If 3308 * this turns out to be false, we can bail out from this 3309 * function immediately. 3310 */ 3311 if (lblk + len < le32_to_cpu(last_ex->ee_block) + 3312 ext4_ext_get_actual_len(last_ex)) 3313 return 0; 3314 /* 3315 * If the caller does appear to be planning to write at or 3316 * beyond the end of the current extent, we then test to see 3317 * if the current extent is the last extent in the file, by 3318 * checking to make sure it was reached via the rightmost node 3319 * at each level of the tree. 3320 */ 3321 for (i = depth-1; i >= 0; i--) 3322 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) 3323 return 0; 3324 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3325 return ext4_mark_inode_dirty(handle, inode); 3326 } 3327 3328 /** 3329 * ext4_find_delalloc_range: find delayed allocated block in the given range. 3330 * 3331 * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns 3332 * whether there are any buffers marked for delayed allocation. It returns '1' 3333 * on the first delalloc'ed buffer head found. If no buffer head in the given 3334 * range is marked for delalloc, it returns 0. 3335 * lblk_start should always be <= lblk_end. 3336 * search_hint_reverse is to indicate that searching in reverse from lblk_end to 3337 * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed 3338 * block sooner). This is useful when blocks are truncated sequentially from 3339 * lblk_start towards lblk_end. 3340 */ 3341 static int ext4_find_delalloc_range(struct inode *inode, 3342 ext4_lblk_t lblk_start, 3343 ext4_lblk_t lblk_end, 3344 int search_hint_reverse) 3345 { 3346 struct address_space *mapping = inode->i_mapping; 3347 struct buffer_head *head, *bh = NULL; 3348 struct page *page; 3349 ext4_lblk_t i, pg_lblk; 3350 pgoff_t index; 3351 3352 if (!test_opt(inode->i_sb, DELALLOC)) 3353 return 0; 3354 3355 /* reverse search wont work if fs block size is less than page size */ 3356 if (inode->i_blkbits < PAGE_CACHE_SHIFT) 3357 search_hint_reverse = 0; 3358 3359 if (search_hint_reverse) 3360 i = lblk_end; 3361 else 3362 i = lblk_start; 3363 3364 index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 3365 3366 while ((i >= lblk_start) && (i <= lblk_end)) { 3367 page = find_get_page(mapping, index); 3368 if (!page) 3369 goto nextpage; 3370 3371 if (!page_has_buffers(page)) 3372 goto nextpage; 3373 3374 head = page_buffers(page); 3375 if (!head) 3376 goto nextpage; 3377 3378 bh = head; 3379 pg_lblk = index << (PAGE_CACHE_SHIFT - 3380 inode->i_blkbits); 3381 do { 3382 if (unlikely(pg_lblk < lblk_start)) { 3383 /* 3384 * This is possible when fs block size is less 3385 * than page size and our cluster starts/ends in 3386 * middle of the page. So we need to skip the 3387 * initial few blocks till we reach the 'lblk' 3388 */ 3389 pg_lblk++; 3390 continue; 3391 } 3392 3393 /* Check if the buffer is delayed allocated and that it 3394 * is not yet mapped. (when da-buffers are mapped during 3395 * their writeout, their da_mapped bit is set.) 3396 */ 3397 if (buffer_delay(bh) && !buffer_da_mapped(bh)) { 3398 page_cache_release(page); 3399 trace_ext4_find_delalloc_range(inode, 3400 lblk_start, lblk_end, 3401 search_hint_reverse, 3402 1, i); 3403 return 1; 3404 } 3405 if (search_hint_reverse) 3406 i--; 3407 else 3408 i++; 3409 } while ((i >= lblk_start) && (i <= lblk_end) && 3410 ((bh = bh->b_this_page) != head)); 3411 nextpage: 3412 if (page) 3413 page_cache_release(page); 3414 /* 3415 * Move to next page. 'i' will be the first lblk in the next 3416 * page. 3417 */ 3418 if (search_hint_reverse) 3419 index--; 3420 else 3421 index++; 3422 i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 3423 } 3424 3425 trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end, 3426 search_hint_reverse, 0, 0); 3427 return 0; 3428 } 3429 3430 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk, 3431 int search_hint_reverse) 3432 { 3433 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3434 ext4_lblk_t lblk_start, lblk_end; 3435 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1)); 3436 lblk_end = lblk_start + sbi->s_cluster_ratio - 1; 3437 3438 return ext4_find_delalloc_range(inode, lblk_start, lblk_end, 3439 search_hint_reverse); 3440 } 3441 3442 /** 3443 * Determines how many complete clusters (out of those specified by the 'map') 3444 * are under delalloc and were reserved quota for. 3445 * This function is called when we are writing out the blocks that were 3446 * originally written with their allocation delayed, but then the space was 3447 * allocated using fallocate() before the delayed allocation could be resolved. 3448 * The cases to look for are: 3449 * ('=' indicated delayed allocated blocks 3450 * '-' indicates non-delayed allocated blocks) 3451 * (a) partial clusters towards beginning and/or end outside of allocated range 3452 * are not delalloc'ed. 3453 * Ex: 3454 * |----c---=|====c====|====c====|===-c----| 3455 * |++++++ allocated ++++++| 3456 * ==> 4 complete clusters in above example 3457 * 3458 * (b) partial cluster (outside of allocated range) towards either end is 3459 * marked for delayed allocation. In this case, we will exclude that 3460 * cluster. 3461 * Ex: 3462 * |----====c========|========c========| 3463 * |++++++ allocated ++++++| 3464 * ==> 1 complete clusters in above example 3465 * 3466 * Ex: 3467 * |================c================| 3468 * |++++++ allocated ++++++| 3469 * ==> 0 complete clusters in above example 3470 * 3471 * The ext4_da_update_reserve_space will be called only if we 3472 * determine here that there were some "entire" clusters that span 3473 * this 'allocated' range. 3474 * In the non-bigalloc case, this function will just end up returning num_blks 3475 * without ever calling ext4_find_delalloc_range. 3476 */ 3477 static unsigned int 3478 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start, 3479 unsigned int num_blks) 3480 { 3481 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3482 ext4_lblk_t alloc_cluster_start, alloc_cluster_end; 3483 ext4_lblk_t lblk_from, lblk_to, c_offset; 3484 unsigned int allocated_clusters = 0; 3485 3486 alloc_cluster_start = EXT4_B2C(sbi, lblk_start); 3487 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1); 3488 3489 /* max possible clusters for this allocation */ 3490 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1; 3491 3492 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks); 3493 3494 /* Check towards left side */ 3495 c_offset = lblk_start & (sbi->s_cluster_ratio - 1); 3496 if (c_offset) { 3497 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1)); 3498 lblk_to = lblk_from + c_offset - 1; 3499 3500 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0)) 3501 allocated_clusters--; 3502 } 3503 3504 /* Now check towards right. */ 3505 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1); 3506 if (allocated_clusters && c_offset) { 3507 lblk_from = lblk_start + num_blks; 3508 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1; 3509 3510 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0)) 3511 allocated_clusters--; 3512 } 3513 3514 return allocated_clusters; 3515 } 3516 3517 static int 3518 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode, 3519 struct ext4_map_blocks *map, 3520 struct ext4_ext_path *path, int flags, 3521 unsigned int allocated, ext4_fsblk_t newblock) 3522 { 3523 int ret = 0; 3524 int err = 0; 3525 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio; 3526 3527 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical " 3528 "block %llu, max_blocks %u, flags %x, allocated %u\n", 3529 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 3530 flags, allocated); 3531 ext4_ext_show_leaf(inode, path); 3532 3533 trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated, 3534 newblock); 3535 3536 /* get_block() before submit the IO, split the extent */ 3537 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) { 3538 ret = ext4_split_unwritten_extents(handle, inode, map, 3539 path, flags); 3540 /* 3541 * Flag the inode(non aio case) or end_io struct (aio case) 3542 * that this IO needs to conversion to written when IO is 3543 * completed 3544 */ 3545 if (io) 3546 ext4_set_io_unwritten_flag(inode, io); 3547 else 3548 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3549 if (ext4_should_dioread_nolock(inode)) 3550 map->m_flags |= EXT4_MAP_UNINIT; 3551 goto out; 3552 } 3553 /* IO end_io complete, convert the filled extent to written */ 3554 if ((flags & EXT4_GET_BLOCKS_CONVERT)) { 3555 ret = ext4_convert_unwritten_extents_endio(handle, inode, 3556 path); 3557 if (ret >= 0) { 3558 ext4_update_inode_fsync_trans(handle, inode, 1); 3559 err = check_eofblocks_fl(handle, inode, map->m_lblk, 3560 path, map->m_len); 3561 } else 3562 err = ret; 3563 goto out2; 3564 } 3565 /* buffered IO case */ 3566 /* 3567 * repeat fallocate creation request 3568 * we already have an unwritten extent 3569 */ 3570 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) 3571 goto map_out; 3572 3573 /* buffered READ or buffered write_begin() lookup */ 3574 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3575 /* 3576 * We have blocks reserved already. We 3577 * return allocated blocks so that delalloc 3578 * won't do block reservation for us. But 3579 * the buffer head will be unmapped so that 3580 * a read from the block returns 0s. 3581 */ 3582 map->m_flags |= EXT4_MAP_UNWRITTEN; 3583 goto out1; 3584 } 3585 3586 /* buffered write, writepage time, convert*/ 3587 ret = ext4_ext_convert_to_initialized(handle, inode, map, path); 3588 if (ret >= 0) 3589 ext4_update_inode_fsync_trans(handle, inode, 1); 3590 out: 3591 if (ret <= 0) { 3592 err = ret; 3593 goto out2; 3594 } else 3595 allocated = ret; 3596 map->m_flags |= EXT4_MAP_NEW; 3597 /* 3598 * if we allocated more blocks than requested 3599 * we need to make sure we unmap the extra block 3600 * allocated. The actual needed block will get 3601 * unmapped later when we find the buffer_head marked 3602 * new. 3603 */ 3604 if (allocated > map->m_len) { 3605 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev, 3606 newblock + map->m_len, 3607 allocated - map->m_len); 3608 allocated = map->m_len; 3609 } 3610 3611 /* 3612 * If we have done fallocate with the offset that is already 3613 * delayed allocated, we would have block reservation 3614 * and quota reservation done in the delayed write path. 3615 * But fallocate would have already updated quota and block 3616 * count for this offset. So cancel these reservation 3617 */ 3618 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 3619 unsigned int reserved_clusters; 3620 reserved_clusters = get_reserved_cluster_alloc(inode, 3621 map->m_lblk, map->m_len); 3622 if (reserved_clusters) 3623 ext4_da_update_reserve_space(inode, 3624 reserved_clusters, 3625 0); 3626 } 3627 3628 map_out: 3629 map->m_flags |= EXT4_MAP_MAPPED; 3630 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { 3631 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, 3632 map->m_len); 3633 if (err < 0) 3634 goto out2; 3635 } 3636 out1: 3637 if (allocated > map->m_len) 3638 allocated = map->m_len; 3639 ext4_ext_show_leaf(inode, path); 3640 map->m_pblk = newblock; 3641 map->m_len = allocated; 3642 out2: 3643 if (path) { 3644 ext4_ext_drop_refs(path); 3645 kfree(path); 3646 } 3647 return err ? err : allocated; 3648 } 3649 3650 /* 3651 * get_implied_cluster_alloc - check to see if the requested 3652 * allocation (in the map structure) overlaps with a cluster already 3653 * allocated in an extent. 3654 * @sb The filesystem superblock structure 3655 * @map The requested lblk->pblk mapping 3656 * @ex The extent structure which might contain an implied 3657 * cluster allocation 3658 * 3659 * This function is called by ext4_ext_map_blocks() after we failed to 3660 * find blocks that were already in the inode's extent tree. Hence, 3661 * we know that the beginning of the requested region cannot overlap 3662 * the extent from the inode's extent tree. There are three cases we 3663 * want to catch. The first is this case: 3664 * 3665 * |--- cluster # N--| 3666 * |--- extent ---| |---- requested region ---| 3667 * |==========| 3668 * 3669 * The second case that we need to test for is this one: 3670 * 3671 * |--------- cluster # N ----------------| 3672 * |--- requested region --| |------- extent ----| 3673 * |=======================| 3674 * 3675 * The third case is when the requested region lies between two extents 3676 * within the same cluster: 3677 * |------------- cluster # N-------------| 3678 * |----- ex -----| |---- ex_right ----| 3679 * |------ requested region ------| 3680 * |================| 3681 * 3682 * In each of the above cases, we need to set the map->m_pblk and 3683 * map->m_len so it corresponds to the return the extent labelled as 3684 * "|====|" from cluster #N, since it is already in use for data in 3685 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 3686 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 3687 * as a new "allocated" block region. Otherwise, we will return 0 and 3688 * ext4_ext_map_blocks() will then allocate one or more new clusters 3689 * by calling ext4_mb_new_blocks(). 3690 */ 3691 static int get_implied_cluster_alloc(struct super_block *sb, 3692 struct ext4_map_blocks *map, 3693 struct ext4_extent *ex, 3694 struct ext4_ext_path *path) 3695 { 3696 struct ext4_sb_info *sbi = EXT4_SB(sb); 3697 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1); 3698 ext4_lblk_t ex_cluster_start, ex_cluster_end; 3699 ext4_lblk_t rr_cluster_start; 3700 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 3701 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 3702 unsigned short ee_len = ext4_ext_get_actual_len(ex); 3703 3704 /* The extent passed in that we are trying to match */ 3705 ex_cluster_start = EXT4_B2C(sbi, ee_block); 3706 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 3707 3708 /* The requested region passed into ext4_map_blocks() */ 3709 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 3710 3711 if ((rr_cluster_start == ex_cluster_end) || 3712 (rr_cluster_start == ex_cluster_start)) { 3713 if (rr_cluster_start == ex_cluster_end) 3714 ee_start += ee_len - 1; 3715 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) + 3716 c_offset; 3717 map->m_len = min(map->m_len, 3718 (unsigned) sbi->s_cluster_ratio - c_offset); 3719 /* 3720 * Check for and handle this case: 3721 * 3722 * |--------- cluster # N-------------| 3723 * |------- extent ----| 3724 * |--- requested region ---| 3725 * |===========| 3726 */ 3727 3728 if (map->m_lblk < ee_block) 3729 map->m_len = min(map->m_len, ee_block - map->m_lblk); 3730 3731 /* 3732 * Check for the case where there is already another allocated 3733 * block to the right of 'ex' but before the end of the cluster. 3734 * 3735 * |------------- cluster # N-------------| 3736 * |----- ex -----| |---- ex_right ----| 3737 * |------ requested region ------| 3738 * |================| 3739 */ 3740 if (map->m_lblk > ee_block) { 3741 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 3742 map->m_len = min(map->m_len, next - map->m_lblk); 3743 } 3744 3745 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 3746 return 1; 3747 } 3748 3749 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 3750 return 0; 3751 } 3752 3753 3754 /* 3755 * Block allocation/map/preallocation routine for extents based files 3756 * 3757 * 3758 * Need to be called with 3759 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 3760 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 3761 * 3762 * return > 0, number of of blocks already mapped/allocated 3763 * if create == 0 and these are pre-allocated blocks 3764 * buffer head is unmapped 3765 * otherwise blocks are mapped 3766 * 3767 * return = 0, if plain look up failed (blocks have not been allocated) 3768 * buffer head is unmapped 3769 * 3770 * return < 0, error case. 3771 */ 3772 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 3773 struct ext4_map_blocks *map, int flags) 3774 { 3775 struct ext4_ext_path *path = NULL; 3776 struct ext4_extent newex, *ex, *ex2; 3777 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3778 ext4_fsblk_t newblock = 0; 3779 int free_on_err = 0, err = 0, depth, ret; 3780 unsigned int allocated = 0, offset = 0; 3781 unsigned int allocated_clusters = 0; 3782 struct ext4_allocation_request ar; 3783 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio; 3784 ext4_lblk_t cluster_offset; 3785 3786 ext_debug("blocks %u/%u requested for inode %lu\n", 3787 map->m_lblk, map->m_len, inode->i_ino); 3788 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 3789 3790 /* check in cache */ 3791 if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) { 3792 if (!newex.ee_start_lo && !newex.ee_start_hi) { 3793 if ((sbi->s_cluster_ratio > 1) && 3794 ext4_find_delalloc_cluster(inode, map->m_lblk, 0)) 3795 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3796 3797 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3798 /* 3799 * block isn't allocated yet and 3800 * user doesn't want to allocate it 3801 */ 3802 goto out2; 3803 } 3804 /* we should allocate requested block */ 3805 } else { 3806 /* block is already allocated */ 3807 if (sbi->s_cluster_ratio > 1) 3808 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3809 newblock = map->m_lblk 3810 - le32_to_cpu(newex.ee_block) 3811 + ext4_ext_pblock(&newex); 3812 /* number of remaining blocks in the extent */ 3813 allocated = ext4_ext_get_actual_len(&newex) - 3814 (map->m_lblk - le32_to_cpu(newex.ee_block)); 3815 goto out; 3816 } 3817 } 3818 3819 /* find extent for this block */ 3820 path = ext4_ext_find_extent(inode, map->m_lblk, NULL); 3821 if (IS_ERR(path)) { 3822 err = PTR_ERR(path); 3823 path = NULL; 3824 goto out2; 3825 } 3826 3827 depth = ext_depth(inode); 3828 3829 /* 3830 * consistent leaf must not be empty; 3831 * this situation is possible, though, _during_ tree modification; 3832 * this is why assert can't be put in ext4_ext_find_extent() 3833 */ 3834 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 3835 EXT4_ERROR_INODE(inode, "bad extent address " 3836 "lblock: %lu, depth: %d pblock %lld", 3837 (unsigned long) map->m_lblk, depth, 3838 path[depth].p_block); 3839 err = -EIO; 3840 goto out2; 3841 } 3842 3843 ex = path[depth].p_ext; 3844 if (ex) { 3845 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 3846 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 3847 unsigned short ee_len; 3848 3849 /* 3850 * Uninitialized extents are treated as holes, except that 3851 * we split out initialized portions during a write. 3852 */ 3853 ee_len = ext4_ext_get_actual_len(ex); 3854 3855 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 3856 3857 /* if found extent covers block, simply return it */ 3858 if (in_range(map->m_lblk, ee_block, ee_len)) { 3859 newblock = map->m_lblk - ee_block + ee_start; 3860 /* number of remaining blocks in the extent */ 3861 allocated = ee_len - (map->m_lblk - ee_block); 3862 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 3863 ee_block, ee_len, newblock); 3864 3865 /* 3866 * Do not put uninitialized extent 3867 * in the cache 3868 */ 3869 if (!ext4_ext_is_uninitialized(ex)) { 3870 ext4_ext_put_in_cache(inode, ee_block, 3871 ee_len, ee_start); 3872 goto out; 3873 } 3874 ret = ext4_ext_handle_uninitialized_extents( 3875 handle, inode, map, path, flags, 3876 allocated, newblock); 3877 return ret; 3878 } 3879 } 3880 3881 if ((sbi->s_cluster_ratio > 1) && 3882 ext4_find_delalloc_cluster(inode, map->m_lblk, 0)) 3883 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3884 3885 /* 3886 * requested block isn't allocated yet; 3887 * we couldn't try to create block if create flag is zero 3888 */ 3889 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3890 /* 3891 * put just found gap into cache to speed up 3892 * subsequent requests 3893 */ 3894 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk); 3895 goto out2; 3896 } 3897 3898 /* 3899 * Okay, we need to do block allocation. 3900 */ 3901 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 3902 newex.ee_block = cpu_to_le32(map->m_lblk); 3903 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1); 3904 3905 /* 3906 * If we are doing bigalloc, check to see if the extent returned 3907 * by ext4_ext_find_extent() implies a cluster we can use. 3908 */ 3909 if (cluster_offset && ex && 3910 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 3911 ar.len = allocated = map->m_len; 3912 newblock = map->m_pblk; 3913 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3914 goto got_allocated_blocks; 3915 } 3916 3917 /* find neighbour allocated blocks */ 3918 ar.lleft = map->m_lblk; 3919 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 3920 if (err) 3921 goto out2; 3922 ar.lright = map->m_lblk; 3923 ex2 = NULL; 3924 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 3925 if (err) 3926 goto out2; 3927 3928 /* Check if the extent after searching to the right implies a 3929 * cluster we can use. */ 3930 if ((sbi->s_cluster_ratio > 1) && ex2 && 3931 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 3932 ar.len = allocated = map->m_len; 3933 newblock = map->m_pblk; 3934 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3935 goto got_allocated_blocks; 3936 } 3937 3938 /* 3939 * See if request is beyond maximum number of blocks we can have in 3940 * a single extent. For an initialized extent this limit is 3941 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is 3942 * EXT_UNINIT_MAX_LEN. 3943 */ 3944 if (map->m_len > EXT_INIT_MAX_LEN && 3945 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 3946 map->m_len = EXT_INIT_MAX_LEN; 3947 else if (map->m_len > EXT_UNINIT_MAX_LEN && 3948 (flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 3949 map->m_len = EXT_UNINIT_MAX_LEN; 3950 3951 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 3952 newex.ee_len = cpu_to_le16(map->m_len); 3953 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 3954 if (err) 3955 allocated = ext4_ext_get_actual_len(&newex); 3956 else 3957 allocated = map->m_len; 3958 3959 /* allocate new block */ 3960 ar.inode = inode; 3961 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 3962 ar.logical = map->m_lblk; 3963 /* 3964 * We calculate the offset from the beginning of the cluster 3965 * for the logical block number, since when we allocate a 3966 * physical cluster, the physical block should start at the 3967 * same offset from the beginning of the cluster. This is 3968 * needed so that future calls to get_implied_cluster_alloc() 3969 * work correctly. 3970 */ 3971 offset = map->m_lblk & (sbi->s_cluster_ratio - 1); 3972 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 3973 ar.goal -= offset; 3974 ar.logical -= offset; 3975 if (S_ISREG(inode->i_mode)) 3976 ar.flags = EXT4_MB_HINT_DATA; 3977 else 3978 /* disable in-core preallocation for non-regular files */ 3979 ar.flags = 0; 3980 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 3981 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 3982 newblock = ext4_mb_new_blocks(handle, &ar, &err); 3983 if (!newblock) 3984 goto out2; 3985 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 3986 ar.goal, newblock, allocated); 3987 free_on_err = 1; 3988 allocated_clusters = ar.len; 3989 ar.len = EXT4_C2B(sbi, ar.len) - offset; 3990 if (ar.len > allocated) 3991 ar.len = allocated; 3992 3993 got_allocated_blocks: 3994 /* try to insert new extent into found leaf and return */ 3995 ext4_ext_store_pblock(&newex, newblock + offset); 3996 newex.ee_len = cpu_to_le16(ar.len); 3997 /* Mark uninitialized */ 3998 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){ 3999 ext4_ext_mark_uninitialized(&newex); 4000 /* 4001 * io_end structure was created for every IO write to an 4002 * uninitialized extent. To avoid unnecessary conversion, 4003 * here we flag the IO that really needs the conversion. 4004 * For non asycn direct IO case, flag the inode state 4005 * that we need to perform conversion when IO is done. 4006 */ 4007 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) { 4008 if (io) 4009 ext4_set_io_unwritten_flag(inode, io); 4010 else 4011 ext4_set_inode_state(inode, 4012 EXT4_STATE_DIO_UNWRITTEN); 4013 } 4014 if (ext4_should_dioread_nolock(inode)) 4015 map->m_flags |= EXT4_MAP_UNINIT; 4016 } 4017 4018 err = 0; 4019 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) 4020 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4021 path, ar.len); 4022 if (!err) 4023 err = ext4_ext_insert_extent(handle, inode, path, 4024 &newex, flags); 4025 if (err && free_on_err) { 4026 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? 4027 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; 4028 /* free data blocks we just allocated */ 4029 /* not a good idea to call discard here directly, 4030 * but otherwise we'd need to call it every free() */ 4031 ext4_discard_preallocations(inode); 4032 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex), 4033 ext4_ext_get_actual_len(&newex), fb_flags); 4034 goto out2; 4035 } 4036 4037 /* previous routine could use block we allocated */ 4038 newblock = ext4_ext_pblock(&newex); 4039 allocated = ext4_ext_get_actual_len(&newex); 4040 if (allocated > map->m_len) 4041 allocated = map->m_len; 4042 map->m_flags |= EXT4_MAP_NEW; 4043 4044 /* 4045 * Update reserved blocks/metadata blocks after successful 4046 * block allocation which had been deferred till now. 4047 */ 4048 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4049 unsigned int reserved_clusters; 4050 /* 4051 * Check how many clusters we had reserved this allocated range 4052 */ 4053 reserved_clusters = get_reserved_cluster_alloc(inode, 4054 map->m_lblk, allocated); 4055 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) { 4056 if (reserved_clusters) { 4057 /* 4058 * We have clusters reserved for this range. 4059 * But since we are not doing actual allocation 4060 * and are simply using blocks from previously 4061 * allocated cluster, we should release the 4062 * reservation and not claim quota. 4063 */ 4064 ext4_da_update_reserve_space(inode, 4065 reserved_clusters, 0); 4066 } 4067 } else { 4068 BUG_ON(allocated_clusters < reserved_clusters); 4069 /* We will claim quota for all newly allocated blocks.*/ 4070 ext4_da_update_reserve_space(inode, allocated_clusters, 4071 1); 4072 if (reserved_clusters < allocated_clusters) { 4073 struct ext4_inode_info *ei = EXT4_I(inode); 4074 int reservation = allocated_clusters - 4075 reserved_clusters; 4076 /* 4077 * It seems we claimed few clusters outside of 4078 * the range of this allocation. We should give 4079 * it back to the reservation pool. This can 4080 * happen in the following case: 4081 * 4082 * * Suppose s_cluster_ratio is 4 (i.e., each 4083 * cluster has 4 blocks. Thus, the clusters 4084 * are [0-3],[4-7],[8-11]... 4085 * * First comes delayed allocation write for 4086 * logical blocks 10 & 11. Since there were no 4087 * previous delayed allocated blocks in the 4088 * range [8-11], we would reserve 1 cluster 4089 * for this write. 4090 * * Next comes write for logical blocks 3 to 8. 4091 * In this case, we will reserve 2 clusters 4092 * (for [0-3] and [4-7]; and not for [8-11] as 4093 * that range has a delayed allocated blocks. 4094 * Thus total reserved clusters now becomes 3. 4095 * * Now, during the delayed allocation writeout 4096 * time, we will first write blocks [3-8] and 4097 * allocate 3 clusters for writing these 4098 * blocks. Also, we would claim all these 4099 * three clusters above. 4100 * * Now when we come here to writeout the 4101 * blocks [10-11], we would expect to claim 4102 * the reservation of 1 cluster we had made 4103 * (and we would claim it since there are no 4104 * more delayed allocated blocks in the range 4105 * [8-11]. But our reserved cluster count had 4106 * already gone to 0. 4107 * 4108 * Thus, at the step 4 above when we determine 4109 * that there are still some unwritten delayed 4110 * allocated blocks outside of our current 4111 * block range, we should increment the 4112 * reserved clusters count so that when the 4113 * remaining blocks finally gets written, we 4114 * could claim them. 4115 */ 4116 dquot_reserve_block(inode, 4117 EXT4_C2B(sbi, reservation)); 4118 spin_lock(&ei->i_block_reservation_lock); 4119 ei->i_reserved_data_blocks += reservation; 4120 spin_unlock(&ei->i_block_reservation_lock); 4121 } 4122 } 4123 } 4124 4125 /* 4126 * Cache the extent and update transaction to commit on fdatasync only 4127 * when it is _not_ an uninitialized extent. 4128 */ 4129 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) { 4130 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock); 4131 ext4_update_inode_fsync_trans(handle, inode, 1); 4132 } else 4133 ext4_update_inode_fsync_trans(handle, inode, 0); 4134 out: 4135 if (allocated > map->m_len) 4136 allocated = map->m_len; 4137 ext4_ext_show_leaf(inode, path); 4138 map->m_flags |= EXT4_MAP_MAPPED; 4139 map->m_pblk = newblock; 4140 map->m_len = allocated; 4141 out2: 4142 if (path) { 4143 ext4_ext_drop_refs(path); 4144 kfree(path); 4145 } 4146 4147 trace_ext4_ext_map_blocks_exit(inode, map->m_lblk, 4148 newblock, map->m_len, err ? err : allocated); 4149 4150 return err ? err : allocated; 4151 } 4152 4153 void ext4_ext_truncate(struct inode *inode) 4154 { 4155 struct address_space *mapping = inode->i_mapping; 4156 struct super_block *sb = inode->i_sb; 4157 ext4_lblk_t last_block; 4158 handle_t *handle; 4159 loff_t page_len; 4160 int err = 0; 4161 4162 /* 4163 * finish any pending end_io work so we won't run the risk of 4164 * converting any truncated blocks to initialized later 4165 */ 4166 ext4_flush_completed_IO(inode); 4167 4168 /* 4169 * probably first extent we're gonna free will be last in block 4170 */ 4171 err = ext4_writepage_trans_blocks(inode); 4172 handle = ext4_journal_start(inode, err); 4173 if (IS_ERR(handle)) 4174 return; 4175 4176 if (inode->i_size % PAGE_CACHE_SIZE != 0) { 4177 page_len = PAGE_CACHE_SIZE - 4178 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 4179 4180 err = ext4_discard_partial_page_buffers(handle, 4181 mapping, inode->i_size, page_len, 0); 4182 4183 if (err) 4184 goto out_stop; 4185 } 4186 4187 if (ext4_orphan_add(handle, inode)) 4188 goto out_stop; 4189 4190 down_write(&EXT4_I(inode)->i_data_sem); 4191 ext4_ext_invalidate_cache(inode); 4192 4193 ext4_discard_preallocations(inode); 4194 4195 /* 4196 * TODO: optimization is possible here. 4197 * Probably we need not scan at all, 4198 * because page truncation is enough. 4199 */ 4200 4201 /* we have to know where to truncate from in crash case */ 4202 EXT4_I(inode)->i_disksize = inode->i_size; 4203 ext4_mark_inode_dirty(handle, inode); 4204 4205 last_block = (inode->i_size + sb->s_blocksize - 1) 4206 >> EXT4_BLOCK_SIZE_BITS(sb); 4207 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4208 4209 /* In a multi-transaction truncate, we only make the final 4210 * transaction synchronous. 4211 */ 4212 if (IS_SYNC(inode)) 4213 ext4_handle_sync(handle); 4214 4215 up_write(&EXT4_I(inode)->i_data_sem); 4216 4217 out_stop: 4218 /* 4219 * If this was a simple ftruncate() and the file will remain alive, 4220 * then we need to clear up the orphan record which we created above. 4221 * However, if this was a real unlink then we were called by 4222 * ext4_delete_inode(), and we allow that function to clean up the 4223 * orphan info for us. 4224 */ 4225 if (inode->i_nlink) 4226 ext4_orphan_del(handle, inode); 4227 4228 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4229 ext4_mark_inode_dirty(handle, inode); 4230 ext4_journal_stop(handle); 4231 } 4232 4233 static void ext4_falloc_update_inode(struct inode *inode, 4234 int mode, loff_t new_size, int update_ctime) 4235 { 4236 struct timespec now; 4237 4238 if (update_ctime) { 4239 now = current_fs_time(inode->i_sb); 4240 if (!timespec_equal(&inode->i_ctime, &now)) 4241 inode->i_ctime = now; 4242 } 4243 /* 4244 * Update only when preallocation was requested beyond 4245 * the file size. 4246 */ 4247 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 4248 if (new_size > i_size_read(inode)) 4249 i_size_write(inode, new_size); 4250 if (new_size > EXT4_I(inode)->i_disksize) 4251 ext4_update_i_disksize(inode, new_size); 4252 } else { 4253 /* 4254 * Mark that we allocate beyond EOF so the subsequent truncate 4255 * can proceed even if the new size is the same as i_size. 4256 */ 4257 if (new_size > i_size_read(inode)) 4258 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4259 } 4260 4261 } 4262 4263 /* 4264 * preallocate space for a file. This implements ext4's fallocate file 4265 * operation, which gets called from sys_fallocate system call. 4266 * For block-mapped files, posix_fallocate should fall back to the method 4267 * of writing zeroes to the required new blocks (the same behavior which is 4268 * expected for file systems which do not support fallocate() system call). 4269 */ 4270 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4271 { 4272 struct inode *inode = file->f_path.dentry->d_inode; 4273 handle_t *handle; 4274 loff_t new_size; 4275 unsigned int max_blocks; 4276 int ret = 0; 4277 int ret2 = 0; 4278 int retries = 0; 4279 int flags; 4280 struct ext4_map_blocks map; 4281 unsigned int credits, blkbits = inode->i_blkbits; 4282 4283 /* 4284 * currently supporting (pre)allocate mode for extent-based 4285 * files _only_ 4286 */ 4287 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4288 return -EOPNOTSUPP; 4289 4290 /* Return error if mode is not supported */ 4291 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 4292 return -EOPNOTSUPP; 4293 4294 if (mode & FALLOC_FL_PUNCH_HOLE) 4295 return ext4_punch_hole(file, offset, len); 4296 4297 trace_ext4_fallocate_enter(inode, offset, len, mode); 4298 map.m_lblk = offset >> blkbits; 4299 /* 4300 * We can't just convert len to max_blocks because 4301 * If blocksize = 4096 offset = 3072 and len = 2048 4302 */ 4303 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 4304 - map.m_lblk; 4305 /* 4306 * credits to insert 1 extent into extent tree 4307 */ 4308 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4309 mutex_lock(&inode->i_mutex); 4310 ret = inode_newsize_ok(inode, (len + offset)); 4311 if (ret) { 4312 mutex_unlock(&inode->i_mutex); 4313 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 4314 return ret; 4315 } 4316 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT; 4317 if (mode & FALLOC_FL_KEEP_SIZE) 4318 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4319 /* 4320 * Don't normalize the request if it can fit in one extent so 4321 * that it doesn't get unnecessarily split into multiple 4322 * extents. 4323 */ 4324 if (len <= EXT_UNINIT_MAX_LEN << blkbits) 4325 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4326 retry: 4327 while (ret >= 0 && ret < max_blocks) { 4328 map.m_lblk = map.m_lblk + ret; 4329 map.m_len = max_blocks = max_blocks - ret; 4330 handle = ext4_journal_start(inode, credits); 4331 if (IS_ERR(handle)) { 4332 ret = PTR_ERR(handle); 4333 break; 4334 } 4335 ret = ext4_map_blocks(handle, inode, &map, flags); 4336 if (ret <= 0) { 4337 #ifdef EXT4FS_DEBUG 4338 WARN_ON(ret <= 0); 4339 printk(KERN_ERR "%s: ext4_ext_map_blocks " 4340 "returned error inode#%lu, block=%u, " 4341 "max_blocks=%u", __func__, 4342 inode->i_ino, map.m_lblk, max_blocks); 4343 #endif 4344 ext4_mark_inode_dirty(handle, inode); 4345 ret2 = ext4_journal_stop(handle); 4346 break; 4347 } 4348 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len, 4349 blkbits) >> blkbits)) 4350 new_size = offset + len; 4351 else 4352 new_size = ((loff_t) map.m_lblk + ret) << blkbits; 4353 4354 ext4_falloc_update_inode(inode, mode, new_size, 4355 (map.m_flags & EXT4_MAP_NEW)); 4356 ext4_mark_inode_dirty(handle, inode); 4357 ret2 = ext4_journal_stop(handle); 4358 if (ret2) 4359 break; 4360 } 4361 if (ret == -ENOSPC && 4362 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4363 ret = 0; 4364 goto retry; 4365 } 4366 mutex_unlock(&inode->i_mutex); 4367 trace_ext4_fallocate_exit(inode, offset, max_blocks, 4368 ret > 0 ? ret2 : ret); 4369 return ret > 0 ? ret2 : ret; 4370 } 4371 4372 /* 4373 * This function convert a range of blocks to written extents 4374 * The caller of this function will pass the start offset and the size. 4375 * all unwritten extents within this range will be converted to 4376 * written extents. 4377 * 4378 * This function is called from the direct IO end io call back 4379 * function, to convert the fallocated extents after IO is completed. 4380 * Returns 0 on success. 4381 */ 4382 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset, 4383 ssize_t len) 4384 { 4385 handle_t *handle; 4386 unsigned int max_blocks; 4387 int ret = 0; 4388 int ret2 = 0; 4389 struct ext4_map_blocks map; 4390 unsigned int credits, blkbits = inode->i_blkbits; 4391 4392 map.m_lblk = offset >> blkbits; 4393 /* 4394 * We can't just convert len to max_blocks because 4395 * If blocksize = 4096 offset = 3072 and len = 2048 4396 */ 4397 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) - 4398 map.m_lblk); 4399 /* 4400 * credits to insert 1 extent into extent tree 4401 */ 4402 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4403 while (ret >= 0 && ret < max_blocks) { 4404 map.m_lblk += ret; 4405 map.m_len = (max_blocks -= ret); 4406 handle = ext4_journal_start(inode, credits); 4407 if (IS_ERR(handle)) { 4408 ret = PTR_ERR(handle); 4409 break; 4410 } 4411 ret = ext4_map_blocks(handle, inode, &map, 4412 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 4413 if (ret <= 0) { 4414 WARN_ON(ret <= 0); 4415 printk(KERN_ERR "%s: ext4_ext_map_blocks " 4416 "returned error inode#%lu, block=%u, " 4417 "max_blocks=%u", __func__, 4418 inode->i_ino, map.m_lblk, map.m_len); 4419 } 4420 ext4_mark_inode_dirty(handle, inode); 4421 ret2 = ext4_journal_stop(handle); 4422 if (ret <= 0 || ret2 ) 4423 break; 4424 } 4425 return ret > 0 ? ret2 : ret; 4426 } 4427 4428 /* 4429 * Callback function called for each extent to gather FIEMAP information. 4430 */ 4431 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next, 4432 struct ext4_ext_cache *newex, struct ext4_extent *ex, 4433 void *data) 4434 { 4435 __u64 logical; 4436 __u64 physical; 4437 __u64 length; 4438 __u32 flags = 0; 4439 int ret = 0; 4440 struct fiemap_extent_info *fieinfo = data; 4441 unsigned char blksize_bits; 4442 4443 blksize_bits = inode->i_sb->s_blocksize_bits; 4444 logical = (__u64)newex->ec_block << blksize_bits; 4445 4446 if (newex->ec_start == 0) { 4447 /* 4448 * No extent in extent-tree contains block @newex->ec_start, 4449 * then the block may stay in 1)a hole or 2)delayed-extent. 4450 * 4451 * Holes or delayed-extents are processed as follows. 4452 * 1. lookup dirty pages with specified range in pagecache. 4453 * If no page is got, then there is no delayed-extent and 4454 * return with EXT_CONTINUE. 4455 * 2. find the 1st mapped buffer, 4456 * 3. check if the mapped buffer is both in the request range 4457 * and a delayed buffer. If not, there is no delayed-extent, 4458 * then return. 4459 * 4. a delayed-extent is found, the extent will be collected. 4460 */ 4461 ext4_lblk_t end = 0; 4462 pgoff_t last_offset; 4463 pgoff_t offset; 4464 pgoff_t index; 4465 pgoff_t start_index = 0; 4466 struct page **pages = NULL; 4467 struct buffer_head *bh = NULL; 4468 struct buffer_head *head = NULL; 4469 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *); 4470 4471 pages = kmalloc(PAGE_SIZE, GFP_KERNEL); 4472 if (pages == NULL) 4473 return -ENOMEM; 4474 4475 offset = logical >> PAGE_SHIFT; 4476 repeat: 4477 last_offset = offset; 4478 head = NULL; 4479 ret = find_get_pages_tag(inode->i_mapping, &offset, 4480 PAGECACHE_TAG_DIRTY, nr_pages, pages); 4481 4482 if (!(flags & FIEMAP_EXTENT_DELALLOC)) { 4483 /* First time, try to find a mapped buffer. */ 4484 if (ret == 0) { 4485 out: 4486 for (index = 0; index < ret; index++) 4487 page_cache_release(pages[index]); 4488 /* just a hole. */ 4489 kfree(pages); 4490 return EXT_CONTINUE; 4491 } 4492 index = 0; 4493 4494 next_page: 4495 /* Try to find the 1st mapped buffer. */ 4496 end = ((__u64)pages[index]->index << PAGE_SHIFT) >> 4497 blksize_bits; 4498 if (!page_has_buffers(pages[index])) 4499 goto out; 4500 head = page_buffers(pages[index]); 4501 if (!head) 4502 goto out; 4503 4504 index++; 4505 bh = head; 4506 do { 4507 if (end >= newex->ec_block + 4508 newex->ec_len) 4509 /* The buffer is out of 4510 * the request range. 4511 */ 4512 goto out; 4513 4514 if (buffer_mapped(bh) && 4515 end >= newex->ec_block) { 4516 start_index = index - 1; 4517 /* get the 1st mapped buffer. */ 4518 goto found_mapped_buffer; 4519 } 4520 4521 bh = bh->b_this_page; 4522 end++; 4523 } while (bh != head); 4524 4525 /* No mapped buffer in the range found in this page, 4526 * We need to look up next page. 4527 */ 4528 if (index >= ret) { 4529 /* There is no page left, but we need to limit 4530 * newex->ec_len. 4531 */ 4532 newex->ec_len = end - newex->ec_block; 4533 goto out; 4534 } 4535 goto next_page; 4536 } else { 4537 /*Find contiguous delayed buffers. */ 4538 if (ret > 0 && pages[0]->index == last_offset) 4539 head = page_buffers(pages[0]); 4540 bh = head; 4541 index = 1; 4542 start_index = 0; 4543 } 4544 4545 found_mapped_buffer: 4546 if (bh != NULL && buffer_delay(bh)) { 4547 /* 1st or contiguous delayed buffer found. */ 4548 if (!(flags & FIEMAP_EXTENT_DELALLOC)) { 4549 /* 4550 * 1st delayed buffer found, record 4551 * the start of extent. 4552 */ 4553 flags |= FIEMAP_EXTENT_DELALLOC; 4554 newex->ec_block = end; 4555 logical = (__u64)end << blksize_bits; 4556 } 4557 /* Find contiguous delayed buffers. */ 4558 do { 4559 if (!buffer_delay(bh)) 4560 goto found_delayed_extent; 4561 bh = bh->b_this_page; 4562 end++; 4563 } while (bh != head); 4564 4565 for (; index < ret; index++) { 4566 if (!page_has_buffers(pages[index])) { 4567 bh = NULL; 4568 break; 4569 } 4570 head = page_buffers(pages[index]); 4571 if (!head) { 4572 bh = NULL; 4573 break; 4574 } 4575 4576 if (pages[index]->index != 4577 pages[start_index]->index + index 4578 - start_index) { 4579 /* Blocks are not contiguous. */ 4580 bh = NULL; 4581 break; 4582 } 4583 bh = head; 4584 do { 4585 if (!buffer_delay(bh)) 4586 /* Delayed-extent ends. */ 4587 goto found_delayed_extent; 4588 bh = bh->b_this_page; 4589 end++; 4590 } while (bh != head); 4591 } 4592 } else if (!(flags & FIEMAP_EXTENT_DELALLOC)) 4593 /* a hole found. */ 4594 goto out; 4595 4596 found_delayed_extent: 4597 newex->ec_len = min(end - newex->ec_block, 4598 (ext4_lblk_t)EXT_INIT_MAX_LEN); 4599 if (ret == nr_pages && bh != NULL && 4600 newex->ec_len < EXT_INIT_MAX_LEN && 4601 buffer_delay(bh)) { 4602 /* Have not collected an extent and continue. */ 4603 for (index = 0; index < ret; index++) 4604 page_cache_release(pages[index]); 4605 goto repeat; 4606 } 4607 4608 for (index = 0; index < ret; index++) 4609 page_cache_release(pages[index]); 4610 kfree(pages); 4611 } 4612 4613 physical = (__u64)newex->ec_start << blksize_bits; 4614 length = (__u64)newex->ec_len << blksize_bits; 4615 4616 if (ex && ext4_ext_is_uninitialized(ex)) 4617 flags |= FIEMAP_EXTENT_UNWRITTEN; 4618 4619 if (next == EXT_MAX_BLOCKS) 4620 flags |= FIEMAP_EXTENT_LAST; 4621 4622 ret = fiemap_fill_next_extent(fieinfo, logical, physical, 4623 length, flags); 4624 if (ret < 0) 4625 return ret; 4626 if (ret == 1) 4627 return EXT_BREAK; 4628 return EXT_CONTINUE; 4629 } 4630 /* fiemap flags we can handle specified here */ 4631 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 4632 4633 static int ext4_xattr_fiemap(struct inode *inode, 4634 struct fiemap_extent_info *fieinfo) 4635 { 4636 __u64 physical = 0; 4637 __u64 length; 4638 __u32 flags = FIEMAP_EXTENT_LAST; 4639 int blockbits = inode->i_sb->s_blocksize_bits; 4640 int error = 0; 4641 4642 /* in-inode? */ 4643 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4644 struct ext4_iloc iloc; 4645 int offset; /* offset of xattr in inode */ 4646 4647 error = ext4_get_inode_loc(inode, &iloc); 4648 if (error) 4649 return error; 4650 physical = iloc.bh->b_blocknr << blockbits; 4651 offset = EXT4_GOOD_OLD_INODE_SIZE + 4652 EXT4_I(inode)->i_extra_isize; 4653 physical += offset; 4654 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 4655 flags |= FIEMAP_EXTENT_DATA_INLINE; 4656 brelse(iloc.bh); 4657 } else { /* external block */ 4658 physical = EXT4_I(inode)->i_file_acl << blockbits; 4659 length = inode->i_sb->s_blocksize; 4660 } 4661 4662 if (physical) 4663 error = fiemap_fill_next_extent(fieinfo, 0, physical, 4664 length, flags); 4665 return (error < 0 ? error : 0); 4666 } 4667 4668 /* 4669 * ext4_ext_punch_hole 4670 * 4671 * Punches a hole of "length" bytes in a file starting 4672 * at byte "offset" 4673 * 4674 * @inode: The inode of the file to punch a hole in 4675 * @offset: The starting byte offset of the hole 4676 * @length: The length of the hole 4677 * 4678 * Returns the number of blocks removed or negative on err 4679 */ 4680 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length) 4681 { 4682 struct inode *inode = file->f_path.dentry->d_inode; 4683 struct super_block *sb = inode->i_sb; 4684 ext4_lblk_t first_block, stop_block; 4685 struct address_space *mapping = inode->i_mapping; 4686 handle_t *handle; 4687 loff_t first_page, last_page, page_len; 4688 loff_t first_page_offset, last_page_offset; 4689 int credits, err = 0; 4690 4691 /* No need to punch hole beyond i_size */ 4692 if (offset >= inode->i_size) 4693 return 0; 4694 4695 /* 4696 * If the hole extends beyond i_size, set the hole 4697 * to end after the page that contains i_size 4698 */ 4699 if (offset + length > inode->i_size) { 4700 length = inode->i_size + 4701 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 4702 offset; 4703 } 4704 4705 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 4706 last_page = (offset + length) >> PAGE_CACHE_SHIFT; 4707 4708 first_page_offset = first_page << PAGE_CACHE_SHIFT; 4709 last_page_offset = last_page << PAGE_CACHE_SHIFT; 4710 4711 /* 4712 * Write out all dirty pages to avoid race conditions 4713 * Then release them. 4714 */ 4715 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4716 err = filemap_write_and_wait_range(mapping, 4717 offset, offset + length - 1); 4718 4719 if (err) 4720 return err; 4721 } 4722 4723 /* Now release the pages */ 4724 if (last_page_offset > first_page_offset) { 4725 truncate_inode_pages_range(mapping, first_page_offset, 4726 last_page_offset-1); 4727 } 4728 4729 /* finish any pending end_io work */ 4730 ext4_flush_completed_IO(inode); 4731 4732 credits = ext4_writepage_trans_blocks(inode); 4733 handle = ext4_journal_start(inode, credits); 4734 if (IS_ERR(handle)) 4735 return PTR_ERR(handle); 4736 4737 err = ext4_orphan_add(handle, inode); 4738 if (err) 4739 goto out; 4740 4741 /* 4742 * Now we need to zero out the non-page-aligned data in the 4743 * pages at the start and tail of the hole, and unmap the buffer 4744 * heads for the block aligned regions of the page that were 4745 * completely zeroed. 4746 */ 4747 if (first_page > last_page) { 4748 /* 4749 * If the file space being truncated is contained within a page 4750 * just zero out and unmap the middle of that page 4751 */ 4752 err = ext4_discard_partial_page_buffers(handle, 4753 mapping, offset, length, 0); 4754 4755 if (err) 4756 goto out; 4757 } else { 4758 /* 4759 * zero out and unmap the partial page that contains 4760 * the start of the hole 4761 */ 4762 page_len = first_page_offset - offset; 4763 if (page_len > 0) { 4764 err = ext4_discard_partial_page_buffers(handle, mapping, 4765 offset, page_len, 0); 4766 if (err) 4767 goto out; 4768 } 4769 4770 /* 4771 * zero out and unmap the partial page that contains 4772 * the end of the hole 4773 */ 4774 page_len = offset + length - last_page_offset; 4775 if (page_len > 0) { 4776 err = ext4_discard_partial_page_buffers(handle, mapping, 4777 last_page_offset, page_len, 0); 4778 if (err) 4779 goto out; 4780 } 4781 } 4782 4783 /* 4784 * If i_size is contained in the last page, we need to 4785 * unmap and zero the partial page after i_size 4786 */ 4787 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page && 4788 inode->i_size % PAGE_CACHE_SIZE != 0) { 4789 4790 page_len = PAGE_CACHE_SIZE - 4791 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 4792 4793 if (page_len > 0) { 4794 err = ext4_discard_partial_page_buffers(handle, 4795 mapping, inode->i_size, page_len, 0); 4796 4797 if (err) 4798 goto out; 4799 } 4800 } 4801 4802 first_block = (offset + sb->s_blocksize - 1) >> 4803 EXT4_BLOCK_SIZE_BITS(sb); 4804 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4805 4806 /* If there are no blocks to remove, return now */ 4807 if (first_block >= stop_block) 4808 goto out; 4809 4810 down_write(&EXT4_I(inode)->i_data_sem); 4811 ext4_ext_invalidate_cache(inode); 4812 ext4_discard_preallocations(inode); 4813 4814 err = ext4_ext_remove_space(inode, first_block, stop_block - 1); 4815 4816 ext4_ext_invalidate_cache(inode); 4817 ext4_discard_preallocations(inode); 4818 4819 if (IS_SYNC(inode)) 4820 ext4_handle_sync(handle); 4821 4822 up_write(&EXT4_I(inode)->i_data_sem); 4823 4824 out: 4825 ext4_orphan_del(handle, inode); 4826 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4827 ext4_mark_inode_dirty(handle, inode); 4828 ext4_journal_stop(handle); 4829 return err; 4830 } 4831 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4832 __u64 start, __u64 len) 4833 { 4834 ext4_lblk_t start_blk; 4835 int error = 0; 4836 4837 /* fallback to generic here if not in extents fmt */ 4838 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4839 return generic_block_fiemap(inode, fieinfo, start, len, 4840 ext4_get_block); 4841 4842 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 4843 return -EBADR; 4844 4845 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 4846 error = ext4_xattr_fiemap(inode, fieinfo); 4847 } else { 4848 ext4_lblk_t len_blks; 4849 __u64 last_blk; 4850 4851 start_blk = start >> inode->i_sb->s_blocksize_bits; 4852 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 4853 if (last_blk >= EXT_MAX_BLOCKS) 4854 last_blk = EXT_MAX_BLOCKS-1; 4855 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 4856 4857 /* 4858 * Walk the extent tree gathering extent information. 4859 * ext4_ext_fiemap_cb will push extents back to user. 4860 */ 4861 error = ext4_ext_walk_space(inode, start_blk, len_blks, 4862 ext4_ext_fiemap_cb, fieinfo); 4863 } 4864 4865 return error; 4866 } 4867