1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public Licens 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/module.h> 33 #include <linux/fs.h> 34 #include <linux/time.h> 35 #include <linux/ext4_jbd2.h> 36 #include <linux/jbd2.h> 37 #include <linux/highuid.h> 38 #include <linux/pagemap.h> 39 #include <linux/quotaops.h> 40 #include <linux/string.h> 41 #include <linux/slab.h> 42 #include <linux/falloc.h> 43 #include <linux/ext4_fs_extents.h> 44 #include <asm/uaccess.h> 45 46 47 /* 48 * ext_pblock: 49 * combine low and high parts of physical block number into ext4_fsblk_t 50 */ 51 static ext4_fsblk_t ext_pblock(struct ext4_extent *ex) 52 { 53 ext4_fsblk_t block; 54 55 block = le32_to_cpu(ex->ee_start_lo); 56 block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1; 57 return block; 58 } 59 60 /* 61 * idx_pblock: 62 * combine low and high parts of a leaf physical block number into ext4_fsblk_t 63 */ 64 static ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix) 65 { 66 ext4_fsblk_t block; 67 68 block = le32_to_cpu(ix->ei_leaf_lo); 69 block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1; 70 return block; 71 } 72 73 /* 74 * ext4_ext_store_pblock: 75 * stores a large physical block number into an extent struct, 76 * breaking it into parts 77 */ 78 static void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb) 79 { 80 ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff)); 81 ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff); 82 } 83 84 /* 85 * ext4_idx_store_pblock: 86 * stores a large physical block number into an index struct, 87 * breaking it into parts 88 */ 89 static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb) 90 { 91 ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff)); 92 ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff); 93 } 94 95 static handle_t *ext4_ext_journal_restart(handle_t *handle, int needed) 96 { 97 int err; 98 99 if (handle->h_buffer_credits > needed) 100 return handle; 101 if (!ext4_journal_extend(handle, needed)) 102 return handle; 103 err = ext4_journal_restart(handle, needed); 104 105 return handle; 106 } 107 108 /* 109 * could return: 110 * - EROFS 111 * - ENOMEM 112 */ 113 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 114 struct ext4_ext_path *path) 115 { 116 if (path->p_bh) { 117 /* path points to block */ 118 return ext4_journal_get_write_access(handle, path->p_bh); 119 } 120 /* path points to leaf/index in inode body */ 121 /* we use in-core data, no need to protect them */ 122 return 0; 123 } 124 125 /* 126 * could return: 127 * - EROFS 128 * - ENOMEM 129 * - EIO 130 */ 131 static int ext4_ext_dirty(handle_t *handle, struct inode *inode, 132 struct ext4_ext_path *path) 133 { 134 int err; 135 if (path->p_bh) { 136 /* path points to block */ 137 err = ext4_journal_dirty_metadata(handle, path->p_bh); 138 } else { 139 /* path points to leaf/index in inode body */ 140 err = ext4_mark_inode_dirty(handle, inode); 141 } 142 return err; 143 } 144 145 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 146 struct ext4_ext_path *path, 147 ext4_fsblk_t block) 148 { 149 struct ext4_inode_info *ei = EXT4_I(inode); 150 ext4_fsblk_t bg_start; 151 ext4_grpblk_t colour; 152 int depth; 153 154 if (path) { 155 struct ext4_extent *ex; 156 depth = path->p_depth; 157 158 /* try to predict block placement */ 159 ex = path[depth].p_ext; 160 if (ex) 161 return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block)); 162 163 /* it looks like index is empty; 164 * try to find starting block from index itself */ 165 if (path[depth].p_bh) 166 return path[depth].p_bh->b_blocknr; 167 } 168 169 /* OK. use inode's group */ 170 bg_start = (ei->i_block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) + 171 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block); 172 colour = (current->pid % 16) * 173 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 174 return bg_start + colour + block; 175 } 176 177 static ext4_fsblk_t 178 ext4_ext_new_block(handle_t *handle, struct inode *inode, 179 struct ext4_ext_path *path, 180 struct ext4_extent *ex, int *err) 181 { 182 ext4_fsblk_t goal, newblock; 183 184 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 185 newblock = ext4_new_block(handle, inode, goal, err); 186 return newblock; 187 } 188 189 static int ext4_ext_space_block(struct inode *inode) 190 { 191 int size; 192 193 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 194 / sizeof(struct ext4_extent); 195 #ifdef AGGRESSIVE_TEST 196 if (size > 6) 197 size = 6; 198 #endif 199 return size; 200 } 201 202 static int ext4_ext_space_block_idx(struct inode *inode) 203 { 204 int size; 205 206 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 207 / sizeof(struct ext4_extent_idx); 208 #ifdef AGGRESSIVE_TEST 209 if (size > 5) 210 size = 5; 211 #endif 212 return size; 213 } 214 215 static int ext4_ext_space_root(struct inode *inode) 216 { 217 int size; 218 219 size = sizeof(EXT4_I(inode)->i_data); 220 size -= sizeof(struct ext4_extent_header); 221 size /= sizeof(struct ext4_extent); 222 #ifdef AGGRESSIVE_TEST 223 if (size > 3) 224 size = 3; 225 #endif 226 return size; 227 } 228 229 static int ext4_ext_space_root_idx(struct inode *inode) 230 { 231 int size; 232 233 size = sizeof(EXT4_I(inode)->i_data); 234 size -= sizeof(struct ext4_extent_header); 235 size /= sizeof(struct ext4_extent_idx); 236 #ifdef AGGRESSIVE_TEST 237 if (size > 4) 238 size = 4; 239 #endif 240 return size; 241 } 242 243 static int 244 ext4_ext_max_entries(struct inode *inode, int depth) 245 { 246 int max; 247 248 if (depth == ext_depth(inode)) { 249 if (depth == 0) 250 max = ext4_ext_space_root(inode); 251 else 252 max = ext4_ext_space_root_idx(inode); 253 } else { 254 if (depth == 0) 255 max = ext4_ext_space_block(inode); 256 else 257 max = ext4_ext_space_block_idx(inode); 258 } 259 260 return max; 261 } 262 263 static int __ext4_ext_check_header(const char *function, struct inode *inode, 264 struct ext4_extent_header *eh, 265 int depth) 266 { 267 const char *error_msg; 268 int max = 0; 269 270 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 271 error_msg = "invalid magic"; 272 goto corrupted; 273 } 274 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 275 error_msg = "unexpected eh_depth"; 276 goto corrupted; 277 } 278 if (unlikely(eh->eh_max == 0)) { 279 error_msg = "invalid eh_max"; 280 goto corrupted; 281 } 282 max = ext4_ext_max_entries(inode, depth); 283 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 284 error_msg = "too large eh_max"; 285 goto corrupted; 286 } 287 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 288 error_msg = "invalid eh_entries"; 289 goto corrupted; 290 } 291 return 0; 292 293 corrupted: 294 ext4_error(inode->i_sb, function, 295 "bad header in inode #%lu: %s - magic %x, " 296 "entries %u, max %u(%u), depth %u(%u)", 297 inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic), 298 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 299 max, le16_to_cpu(eh->eh_depth), depth); 300 301 return -EIO; 302 } 303 304 #define ext4_ext_check_header(inode, eh, depth) \ 305 __ext4_ext_check_header(__FUNCTION__, inode, eh, depth) 306 307 #ifdef EXT_DEBUG 308 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 309 { 310 int k, l = path->p_depth; 311 312 ext_debug("path:"); 313 for (k = 0; k <= l; k++, path++) { 314 if (path->p_idx) { 315 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 316 idx_pblock(path->p_idx)); 317 } else if (path->p_ext) { 318 ext_debug(" %d:%d:%llu ", 319 le32_to_cpu(path->p_ext->ee_block), 320 ext4_ext_get_actual_len(path->p_ext), 321 ext_pblock(path->p_ext)); 322 } else 323 ext_debug(" []"); 324 } 325 ext_debug("\n"); 326 } 327 328 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 329 { 330 int depth = ext_depth(inode); 331 struct ext4_extent_header *eh; 332 struct ext4_extent *ex; 333 int i; 334 335 if (!path) 336 return; 337 338 eh = path[depth].p_hdr; 339 ex = EXT_FIRST_EXTENT(eh); 340 341 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 342 ext_debug("%d:%d:%llu ", le32_to_cpu(ex->ee_block), 343 ext4_ext_get_actual_len(ex), ext_pblock(ex)); 344 } 345 ext_debug("\n"); 346 } 347 #else 348 #define ext4_ext_show_path(inode,path) 349 #define ext4_ext_show_leaf(inode,path) 350 #endif 351 352 static void ext4_ext_drop_refs(struct ext4_ext_path *path) 353 { 354 int depth = path->p_depth; 355 int i; 356 357 for (i = 0; i <= depth; i++, path++) 358 if (path->p_bh) { 359 brelse(path->p_bh); 360 path->p_bh = NULL; 361 } 362 } 363 364 /* 365 * ext4_ext_binsearch_idx: 366 * binary search for the closest index of the given block 367 * the header must be checked before calling this 368 */ 369 static void 370 ext4_ext_binsearch_idx(struct inode *inode, struct ext4_ext_path *path, int block) 371 { 372 struct ext4_extent_header *eh = path->p_hdr; 373 struct ext4_extent_idx *r, *l, *m; 374 375 376 ext_debug("binsearch for %d(idx): ", block); 377 378 l = EXT_FIRST_INDEX(eh) + 1; 379 r = EXT_LAST_INDEX(eh); 380 while (l <= r) { 381 m = l + (r - l) / 2; 382 if (block < le32_to_cpu(m->ei_block)) 383 r = m - 1; 384 else 385 l = m + 1; 386 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 387 m, le32_to_cpu(m->ei_block), 388 r, le32_to_cpu(r->ei_block)); 389 } 390 391 path->p_idx = l - 1; 392 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block), 393 idx_pblock(path->p_idx)); 394 395 #ifdef CHECK_BINSEARCH 396 { 397 struct ext4_extent_idx *chix, *ix; 398 int k; 399 400 chix = ix = EXT_FIRST_INDEX(eh); 401 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 402 if (k != 0 && 403 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 404 printk("k=%d, ix=0x%p, first=0x%p\n", k, 405 ix, EXT_FIRST_INDEX(eh)); 406 printk("%u <= %u\n", 407 le32_to_cpu(ix->ei_block), 408 le32_to_cpu(ix[-1].ei_block)); 409 } 410 BUG_ON(k && le32_to_cpu(ix->ei_block) 411 <= le32_to_cpu(ix[-1].ei_block)); 412 if (block < le32_to_cpu(ix->ei_block)) 413 break; 414 chix = ix; 415 } 416 BUG_ON(chix != path->p_idx); 417 } 418 #endif 419 420 } 421 422 /* 423 * ext4_ext_binsearch: 424 * binary search for closest extent of the given block 425 * the header must be checked before calling this 426 */ 427 static void 428 ext4_ext_binsearch(struct inode *inode, struct ext4_ext_path *path, int block) 429 { 430 struct ext4_extent_header *eh = path->p_hdr; 431 struct ext4_extent *r, *l, *m; 432 433 if (eh->eh_entries == 0) { 434 /* 435 * this leaf is empty: 436 * we get such a leaf in split/add case 437 */ 438 return; 439 } 440 441 ext_debug("binsearch for %d: ", block); 442 443 l = EXT_FIRST_EXTENT(eh) + 1; 444 r = EXT_LAST_EXTENT(eh); 445 446 while (l <= r) { 447 m = l + (r - l) / 2; 448 if (block < le32_to_cpu(m->ee_block)) 449 r = m - 1; 450 else 451 l = m + 1; 452 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 453 m, le32_to_cpu(m->ee_block), 454 r, le32_to_cpu(r->ee_block)); 455 } 456 457 path->p_ext = l - 1; 458 ext_debug(" -> %d:%llu:%d ", 459 le32_to_cpu(path->p_ext->ee_block), 460 ext_pblock(path->p_ext), 461 ext4_ext_get_actual_len(path->p_ext)); 462 463 #ifdef CHECK_BINSEARCH 464 { 465 struct ext4_extent *chex, *ex; 466 int k; 467 468 chex = ex = EXT_FIRST_EXTENT(eh); 469 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 470 BUG_ON(k && le32_to_cpu(ex->ee_block) 471 <= le32_to_cpu(ex[-1].ee_block)); 472 if (block < le32_to_cpu(ex->ee_block)) 473 break; 474 chex = ex; 475 } 476 BUG_ON(chex != path->p_ext); 477 } 478 #endif 479 480 } 481 482 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 483 { 484 struct ext4_extent_header *eh; 485 486 eh = ext_inode_hdr(inode); 487 eh->eh_depth = 0; 488 eh->eh_entries = 0; 489 eh->eh_magic = EXT4_EXT_MAGIC; 490 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode)); 491 ext4_mark_inode_dirty(handle, inode); 492 ext4_ext_invalidate_cache(inode); 493 return 0; 494 } 495 496 struct ext4_ext_path * 497 ext4_ext_find_extent(struct inode *inode, int block, struct ext4_ext_path *path) 498 { 499 struct ext4_extent_header *eh; 500 struct buffer_head *bh; 501 short int depth, i, ppos = 0, alloc = 0; 502 503 eh = ext_inode_hdr(inode); 504 depth = ext_depth(inode); 505 if (ext4_ext_check_header(inode, eh, depth)) 506 return ERR_PTR(-EIO); 507 508 509 /* account possible depth increase */ 510 if (!path) { 511 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 512 GFP_NOFS); 513 if (!path) 514 return ERR_PTR(-ENOMEM); 515 alloc = 1; 516 } 517 path[0].p_hdr = eh; 518 519 i = depth; 520 /* walk through the tree */ 521 while (i) { 522 ext_debug("depth %d: num %d, max %d\n", 523 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 524 525 ext4_ext_binsearch_idx(inode, path + ppos, block); 526 path[ppos].p_block = idx_pblock(path[ppos].p_idx); 527 path[ppos].p_depth = i; 528 path[ppos].p_ext = NULL; 529 530 bh = sb_bread(inode->i_sb, path[ppos].p_block); 531 if (!bh) 532 goto err; 533 534 eh = ext_block_hdr(bh); 535 ppos++; 536 BUG_ON(ppos > depth); 537 path[ppos].p_bh = bh; 538 path[ppos].p_hdr = eh; 539 i--; 540 541 if (ext4_ext_check_header(inode, eh, i)) 542 goto err; 543 } 544 545 path[ppos].p_depth = i; 546 path[ppos].p_hdr = eh; 547 path[ppos].p_ext = NULL; 548 path[ppos].p_idx = NULL; 549 550 /* find extent */ 551 ext4_ext_binsearch(inode, path + ppos, block); 552 553 ext4_ext_show_path(inode, path); 554 555 return path; 556 557 err: 558 ext4_ext_drop_refs(path); 559 if (alloc) 560 kfree(path); 561 return ERR_PTR(-EIO); 562 } 563 564 /* 565 * ext4_ext_insert_index: 566 * insert new index [@logical;@ptr] into the block at @curp; 567 * check where to insert: before @curp or after @curp 568 */ 569 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 570 struct ext4_ext_path *curp, 571 int logical, ext4_fsblk_t ptr) 572 { 573 struct ext4_extent_idx *ix; 574 int len, err; 575 576 err = ext4_ext_get_access(handle, inode, curp); 577 if (err) 578 return err; 579 580 BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block)); 581 len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx; 582 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 583 /* insert after */ 584 if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) { 585 len = (len - 1) * sizeof(struct ext4_extent_idx); 586 len = len < 0 ? 0 : len; 587 ext_debug("insert new index %d after: %llu. " 588 "move %d from 0x%p to 0x%p\n", 589 logical, ptr, len, 590 (curp->p_idx + 1), (curp->p_idx + 2)); 591 memmove(curp->p_idx + 2, curp->p_idx + 1, len); 592 } 593 ix = curp->p_idx + 1; 594 } else { 595 /* insert before */ 596 len = len * sizeof(struct ext4_extent_idx); 597 len = len < 0 ? 0 : len; 598 ext_debug("insert new index %d before: %llu. " 599 "move %d from 0x%p to 0x%p\n", 600 logical, ptr, len, 601 curp->p_idx, (curp->p_idx + 1)); 602 memmove(curp->p_idx + 1, curp->p_idx, len); 603 ix = curp->p_idx; 604 } 605 606 ix->ei_block = cpu_to_le32(logical); 607 ext4_idx_store_pblock(ix, ptr); 608 curp->p_hdr->eh_entries = cpu_to_le16(le16_to_cpu(curp->p_hdr->eh_entries)+1); 609 610 BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries) 611 > le16_to_cpu(curp->p_hdr->eh_max)); 612 BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr)); 613 614 err = ext4_ext_dirty(handle, inode, curp); 615 ext4_std_error(inode->i_sb, err); 616 617 return err; 618 } 619 620 /* 621 * ext4_ext_split: 622 * inserts new subtree into the path, using free index entry 623 * at depth @at: 624 * - allocates all needed blocks (new leaf and all intermediate index blocks) 625 * - makes decision where to split 626 * - moves remaining extents and index entries (right to the split point) 627 * into the newly allocated blocks 628 * - initializes subtree 629 */ 630 static int ext4_ext_split(handle_t *handle, struct inode *inode, 631 struct ext4_ext_path *path, 632 struct ext4_extent *newext, int at) 633 { 634 struct buffer_head *bh = NULL; 635 int depth = ext_depth(inode); 636 struct ext4_extent_header *neh; 637 struct ext4_extent_idx *fidx; 638 struct ext4_extent *ex; 639 int i = at, k, m, a; 640 ext4_fsblk_t newblock, oldblock; 641 __le32 border; 642 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 643 int err = 0; 644 645 /* make decision: where to split? */ 646 /* FIXME: now decision is simplest: at current extent */ 647 648 /* if current leaf will be split, then we should use 649 * border from split point */ 650 BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr)); 651 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 652 border = path[depth].p_ext[1].ee_block; 653 ext_debug("leaf will be split." 654 " next leaf starts at %d\n", 655 le32_to_cpu(border)); 656 } else { 657 border = newext->ee_block; 658 ext_debug("leaf will be added." 659 " next leaf starts at %d\n", 660 le32_to_cpu(border)); 661 } 662 663 /* 664 * If error occurs, then we break processing 665 * and mark filesystem read-only. index won't 666 * be inserted and tree will be in consistent 667 * state. Next mount will repair buffers too. 668 */ 669 670 /* 671 * Get array to track all allocated blocks. 672 * We need this to handle errors and free blocks 673 * upon them. 674 */ 675 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 676 if (!ablocks) 677 return -ENOMEM; 678 679 /* allocate all needed blocks */ 680 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 681 for (a = 0; a < depth - at; a++) { 682 newblock = ext4_ext_new_block(handle, inode, path, newext, &err); 683 if (newblock == 0) 684 goto cleanup; 685 ablocks[a] = newblock; 686 } 687 688 /* initialize new leaf */ 689 newblock = ablocks[--a]; 690 BUG_ON(newblock == 0); 691 bh = sb_getblk(inode->i_sb, newblock); 692 if (!bh) { 693 err = -EIO; 694 goto cleanup; 695 } 696 lock_buffer(bh); 697 698 err = ext4_journal_get_create_access(handle, bh); 699 if (err) 700 goto cleanup; 701 702 neh = ext_block_hdr(bh); 703 neh->eh_entries = 0; 704 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode)); 705 neh->eh_magic = EXT4_EXT_MAGIC; 706 neh->eh_depth = 0; 707 ex = EXT_FIRST_EXTENT(neh); 708 709 /* move remainder of path[depth] to the new leaf */ 710 BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max); 711 /* start copy from next extent */ 712 /* TODO: we could do it by single memmove */ 713 m = 0; 714 path[depth].p_ext++; 715 while (path[depth].p_ext <= 716 EXT_MAX_EXTENT(path[depth].p_hdr)) { 717 ext_debug("move %d:%llu:%d in new leaf %llu\n", 718 le32_to_cpu(path[depth].p_ext->ee_block), 719 ext_pblock(path[depth].p_ext), 720 ext4_ext_get_actual_len(path[depth].p_ext), 721 newblock); 722 /*memmove(ex++, path[depth].p_ext++, 723 sizeof(struct ext4_extent)); 724 neh->eh_entries++;*/ 725 path[depth].p_ext++; 726 m++; 727 } 728 if (m) { 729 memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m); 730 neh->eh_entries = cpu_to_le16(le16_to_cpu(neh->eh_entries)+m); 731 } 732 733 set_buffer_uptodate(bh); 734 unlock_buffer(bh); 735 736 err = ext4_journal_dirty_metadata(handle, bh); 737 if (err) 738 goto cleanup; 739 brelse(bh); 740 bh = NULL; 741 742 /* correct old leaf */ 743 if (m) { 744 err = ext4_ext_get_access(handle, inode, path + depth); 745 if (err) 746 goto cleanup; 747 path[depth].p_hdr->eh_entries = 748 cpu_to_le16(le16_to_cpu(path[depth].p_hdr->eh_entries)-m); 749 err = ext4_ext_dirty(handle, inode, path + depth); 750 if (err) 751 goto cleanup; 752 753 } 754 755 /* create intermediate indexes */ 756 k = depth - at - 1; 757 BUG_ON(k < 0); 758 if (k) 759 ext_debug("create %d intermediate indices\n", k); 760 /* insert new index into current index block */ 761 /* current depth stored in i var */ 762 i = depth - 1; 763 while (k--) { 764 oldblock = newblock; 765 newblock = ablocks[--a]; 766 bh = sb_getblk(inode->i_sb, (ext4_fsblk_t)newblock); 767 if (!bh) { 768 err = -EIO; 769 goto cleanup; 770 } 771 lock_buffer(bh); 772 773 err = ext4_journal_get_create_access(handle, bh); 774 if (err) 775 goto cleanup; 776 777 neh = ext_block_hdr(bh); 778 neh->eh_entries = cpu_to_le16(1); 779 neh->eh_magic = EXT4_EXT_MAGIC; 780 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode)); 781 neh->eh_depth = cpu_to_le16(depth - i); 782 fidx = EXT_FIRST_INDEX(neh); 783 fidx->ei_block = border; 784 ext4_idx_store_pblock(fidx, oldblock); 785 786 ext_debug("int.index at %d (block %llu): %lu -> %llu\n", i, 787 newblock, (unsigned long) le32_to_cpu(border), 788 oldblock); 789 /* copy indexes */ 790 m = 0; 791 path[i].p_idx++; 792 793 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 794 EXT_MAX_INDEX(path[i].p_hdr)); 795 BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) != 796 EXT_LAST_INDEX(path[i].p_hdr)); 797 while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) { 798 ext_debug("%d: move %d:%llu in new index %llu\n", i, 799 le32_to_cpu(path[i].p_idx->ei_block), 800 idx_pblock(path[i].p_idx), 801 newblock); 802 /*memmove(++fidx, path[i].p_idx++, 803 sizeof(struct ext4_extent_idx)); 804 neh->eh_entries++; 805 BUG_ON(neh->eh_entries > neh->eh_max);*/ 806 path[i].p_idx++; 807 m++; 808 } 809 if (m) { 810 memmove(++fidx, path[i].p_idx - m, 811 sizeof(struct ext4_extent_idx) * m); 812 neh->eh_entries = 813 cpu_to_le16(le16_to_cpu(neh->eh_entries) + m); 814 } 815 set_buffer_uptodate(bh); 816 unlock_buffer(bh); 817 818 err = ext4_journal_dirty_metadata(handle, bh); 819 if (err) 820 goto cleanup; 821 brelse(bh); 822 bh = NULL; 823 824 /* correct old index */ 825 if (m) { 826 err = ext4_ext_get_access(handle, inode, path + i); 827 if (err) 828 goto cleanup; 829 path[i].p_hdr->eh_entries = cpu_to_le16(le16_to_cpu(path[i].p_hdr->eh_entries)-m); 830 err = ext4_ext_dirty(handle, inode, path + i); 831 if (err) 832 goto cleanup; 833 } 834 835 i--; 836 } 837 838 /* insert new index */ 839 err = ext4_ext_insert_index(handle, inode, path + at, 840 le32_to_cpu(border), newblock); 841 842 cleanup: 843 if (bh) { 844 if (buffer_locked(bh)) 845 unlock_buffer(bh); 846 brelse(bh); 847 } 848 849 if (err) { 850 /* free all allocated blocks in error case */ 851 for (i = 0; i < depth; i++) { 852 if (!ablocks[i]) 853 continue; 854 ext4_free_blocks(handle, inode, ablocks[i], 1); 855 } 856 } 857 kfree(ablocks); 858 859 return err; 860 } 861 862 /* 863 * ext4_ext_grow_indepth: 864 * implements tree growing procedure: 865 * - allocates new block 866 * - moves top-level data (index block or leaf) into the new block 867 * - initializes new top-level, creating index that points to the 868 * just created block 869 */ 870 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 871 struct ext4_ext_path *path, 872 struct ext4_extent *newext) 873 { 874 struct ext4_ext_path *curp = path; 875 struct ext4_extent_header *neh; 876 struct ext4_extent_idx *fidx; 877 struct buffer_head *bh; 878 ext4_fsblk_t newblock; 879 int err = 0; 880 881 newblock = ext4_ext_new_block(handle, inode, path, newext, &err); 882 if (newblock == 0) 883 return err; 884 885 bh = sb_getblk(inode->i_sb, newblock); 886 if (!bh) { 887 err = -EIO; 888 ext4_std_error(inode->i_sb, err); 889 return err; 890 } 891 lock_buffer(bh); 892 893 err = ext4_journal_get_create_access(handle, bh); 894 if (err) { 895 unlock_buffer(bh); 896 goto out; 897 } 898 899 /* move top-level index/leaf into new block */ 900 memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data)); 901 902 /* set size of new block */ 903 neh = ext_block_hdr(bh); 904 /* old root could have indexes or leaves 905 * so calculate e_max right way */ 906 if (ext_depth(inode)) 907 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode)); 908 else 909 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode)); 910 neh->eh_magic = EXT4_EXT_MAGIC; 911 set_buffer_uptodate(bh); 912 unlock_buffer(bh); 913 914 err = ext4_journal_dirty_metadata(handle, bh); 915 if (err) 916 goto out; 917 918 /* create index in new top-level index: num,max,pointer */ 919 err = ext4_ext_get_access(handle, inode, curp); 920 if (err) 921 goto out; 922 923 curp->p_hdr->eh_magic = EXT4_EXT_MAGIC; 924 curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode)); 925 curp->p_hdr->eh_entries = cpu_to_le16(1); 926 curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr); 927 928 if (path[0].p_hdr->eh_depth) 929 curp->p_idx->ei_block = 930 EXT_FIRST_INDEX(path[0].p_hdr)->ei_block; 931 else 932 curp->p_idx->ei_block = 933 EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block; 934 ext4_idx_store_pblock(curp->p_idx, newblock); 935 936 neh = ext_inode_hdr(inode); 937 fidx = EXT_FIRST_INDEX(neh); 938 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 939 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 940 le32_to_cpu(fidx->ei_block), idx_pblock(fidx)); 941 942 neh->eh_depth = cpu_to_le16(path->p_depth + 1); 943 err = ext4_ext_dirty(handle, inode, curp); 944 out: 945 brelse(bh); 946 947 return err; 948 } 949 950 /* 951 * ext4_ext_create_new_leaf: 952 * finds empty index and adds new leaf. 953 * if no free index is found, then it requests in-depth growing. 954 */ 955 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 956 struct ext4_ext_path *path, 957 struct ext4_extent *newext) 958 { 959 struct ext4_ext_path *curp; 960 int depth, i, err = 0; 961 962 repeat: 963 i = depth = ext_depth(inode); 964 965 /* walk up to the tree and look for free index entry */ 966 curp = path + depth; 967 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 968 i--; 969 curp--; 970 } 971 972 /* we use already allocated block for index block, 973 * so subsequent data blocks should be contiguous */ 974 if (EXT_HAS_FREE_INDEX(curp)) { 975 /* if we found index with free entry, then use that 976 * entry: create all needed subtree and add new leaf */ 977 err = ext4_ext_split(handle, inode, path, newext, i); 978 979 /* refill path */ 980 ext4_ext_drop_refs(path); 981 path = ext4_ext_find_extent(inode, 982 le32_to_cpu(newext->ee_block), 983 path); 984 if (IS_ERR(path)) 985 err = PTR_ERR(path); 986 } else { 987 /* tree is full, time to grow in depth */ 988 err = ext4_ext_grow_indepth(handle, inode, path, newext); 989 if (err) 990 goto out; 991 992 /* refill path */ 993 ext4_ext_drop_refs(path); 994 path = ext4_ext_find_extent(inode, 995 le32_to_cpu(newext->ee_block), 996 path); 997 if (IS_ERR(path)) { 998 err = PTR_ERR(path); 999 goto out; 1000 } 1001 1002 /* 1003 * only first (depth 0 -> 1) produces free space; 1004 * in all other cases we have to split the grown tree 1005 */ 1006 depth = ext_depth(inode); 1007 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1008 /* now we need to split */ 1009 goto repeat; 1010 } 1011 } 1012 1013 out: 1014 return err; 1015 } 1016 1017 /* 1018 * ext4_ext_next_allocated_block: 1019 * returns allocated block in subsequent extent or EXT_MAX_BLOCK. 1020 * NOTE: it considers block number from index entry as 1021 * allocated block. Thus, index entries have to be consistent 1022 * with leaves. 1023 */ 1024 static unsigned long 1025 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1026 { 1027 int depth; 1028 1029 BUG_ON(path == NULL); 1030 depth = path->p_depth; 1031 1032 if (depth == 0 && path->p_ext == NULL) 1033 return EXT_MAX_BLOCK; 1034 1035 while (depth >= 0) { 1036 if (depth == path->p_depth) { 1037 /* leaf */ 1038 if (path[depth].p_ext != 1039 EXT_LAST_EXTENT(path[depth].p_hdr)) 1040 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1041 } else { 1042 /* index */ 1043 if (path[depth].p_idx != 1044 EXT_LAST_INDEX(path[depth].p_hdr)) 1045 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1046 } 1047 depth--; 1048 } 1049 1050 return EXT_MAX_BLOCK; 1051 } 1052 1053 /* 1054 * ext4_ext_next_leaf_block: 1055 * returns first allocated block from next leaf or EXT_MAX_BLOCK 1056 */ 1057 static unsigned ext4_ext_next_leaf_block(struct inode *inode, 1058 struct ext4_ext_path *path) 1059 { 1060 int depth; 1061 1062 BUG_ON(path == NULL); 1063 depth = path->p_depth; 1064 1065 /* zero-tree has no leaf blocks at all */ 1066 if (depth == 0) 1067 return EXT_MAX_BLOCK; 1068 1069 /* go to index block */ 1070 depth--; 1071 1072 while (depth >= 0) { 1073 if (path[depth].p_idx != 1074 EXT_LAST_INDEX(path[depth].p_hdr)) 1075 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1076 depth--; 1077 } 1078 1079 return EXT_MAX_BLOCK; 1080 } 1081 1082 /* 1083 * ext4_ext_correct_indexes: 1084 * if leaf gets modified and modified extent is first in the leaf, 1085 * then we have to correct all indexes above. 1086 * TODO: do we need to correct tree in all cases? 1087 */ 1088 int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1089 struct ext4_ext_path *path) 1090 { 1091 struct ext4_extent_header *eh; 1092 int depth = ext_depth(inode); 1093 struct ext4_extent *ex; 1094 __le32 border; 1095 int k, err = 0; 1096 1097 eh = path[depth].p_hdr; 1098 ex = path[depth].p_ext; 1099 BUG_ON(ex == NULL); 1100 BUG_ON(eh == NULL); 1101 1102 if (depth == 0) { 1103 /* there is no tree at all */ 1104 return 0; 1105 } 1106 1107 if (ex != EXT_FIRST_EXTENT(eh)) { 1108 /* we correct tree if first leaf got modified only */ 1109 return 0; 1110 } 1111 1112 /* 1113 * TODO: we need correction if border is smaller than current one 1114 */ 1115 k = depth - 1; 1116 border = path[depth].p_ext->ee_block; 1117 err = ext4_ext_get_access(handle, inode, path + k); 1118 if (err) 1119 return err; 1120 path[k].p_idx->ei_block = border; 1121 err = ext4_ext_dirty(handle, inode, path + k); 1122 if (err) 1123 return err; 1124 1125 while (k--) { 1126 /* change all left-side indexes */ 1127 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1128 break; 1129 err = ext4_ext_get_access(handle, inode, path + k); 1130 if (err) 1131 break; 1132 path[k].p_idx->ei_block = border; 1133 err = ext4_ext_dirty(handle, inode, path + k); 1134 if (err) 1135 break; 1136 } 1137 1138 return err; 1139 } 1140 1141 static int 1142 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1143 struct ext4_extent *ex2) 1144 { 1145 unsigned short ext1_ee_len, ext2_ee_len, max_len; 1146 1147 /* 1148 * Make sure that either both extents are uninitialized, or 1149 * both are _not_. 1150 */ 1151 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2)) 1152 return 0; 1153 1154 if (ext4_ext_is_uninitialized(ex1)) 1155 max_len = EXT_UNINIT_MAX_LEN; 1156 else 1157 max_len = EXT_INIT_MAX_LEN; 1158 1159 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1160 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1161 1162 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1163 le32_to_cpu(ex2->ee_block)) 1164 return 0; 1165 1166 /* 1167 * To allow future support for preallocated extents to be added 1168 * as an RO_COMPAT feature, refuse to merge to extents if 1169 * this can result in the top bit of ee_len being set. 1170 */ 1171 if (ext1_ee_len + ext2_ee_len > max_len) 1172 return 0; 1173 #ifdef AGGRESSIVE_TEST 1174 if (le16_to_cpu(ex1->ee_len) >= 4) 1175 return 0; 1176 #endif 1177 1178 if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2)) 1179 return 1; 1180 return 0; 1181 } 1182 1183 /* 1184 * This function tries to merge the "ex" extent to the next extent in the tree. 1185 * It always tries to merge towards right. If you want to merge towards 1186 * left, pass "ex - 1" as argument instead of "ex". 1187 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1188 * 1 if they got merged. 1189 */ 1190 int ext4_ext_try_to_merge(struct inode *inode, 1191 struct ext4_ext_path *path, 1192 struct ext4_extent *ex) 1193 { 1194 struct ext4_extent_header *eh; 1195 unsigned int depth, len; 1196 int merge_done = 0; 1197 int uninitialized = 0; 1198 1199 depth = ext_depth(inode); 1200 BUG_ON(path[depth].p_hdr == NULL); 1201 eh = path[depth].p_hdr; 1202 1203 while (ex < EXT_LAST_EXTENT(eh)) { 1204 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1205 break; 1206 /* merge with next extent! */ 1207 if (ext4_ext_is_uninitialized(ex)) 1208 uninitialized = 1; 1209 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1210 + ext4_ext_get_actual_len(ex + 1)); 1211 if (uninitialized) 1212 ext4_ext_mark_uninitialized(ex); 1213 1214 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1215 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1216 * sizeof(struct ext4_extent); 1217 memmove(ex + 1, ex + 2, len); 1218 } 1219 eh->eh_entries = cpu_to_le16(le16_to_cpu(eh->eh_entries) - 1); 1220 merge_done = 1; 1221 WARN_ON(eh->eh_entries == 0); 1222 if (!eh->eh_entries) 1223 ext4_error(inode->i_sb, "ext4_ext_try_to_merge", 1224 "inode#%lu, eh->eh_entries = 0!", inode->i_ino); 1225 } 1226 1227 return merge_done; 1228 } 1229 1230 /* 1231 * check if a portion of the "newext" extent overlaps with an 1232 * existing extent. 1233 * 1234 * If there is an overlap discovered, it updates the length of the newext 1235 * such that there will be no overlap, and then returns 1. 1236 * If there is no overlap found, it returns 0. 1237 */ 1238 unsigned int ext4_ext_check_overlap(struct inode *inode, 1239 struct ext4_extent *newext, 1240 struct ext4_ext_path *path) 1241 { 1242 unsigned long b1, b2; 1243 unsigned int depth, len1; 1244 unsigned int ret = 0; 1245 1246 b1 = le32_to_cpu(newext->ee_block); 1247 len1 = ext4_ext_get_actual_len(newext); 1248 depth = ext_depth(inode); 1249 if (!path[depth].p_ext) 1250 goto out; 1251 b2 = le32_to_cpu(path[depth].p_ext->ee_block); 1252 1253 /* 1254 * get the next allocated block if the extent in the path 1255 * is before the requested block(s) 1256 */ 1257 if (b2 < b1) { 1258 b2 = ext4_ext_next_allocated_block(path); 1259 if (b2 == EXT_MAX_BLOCK) 1260 goto out; 1261 } 1262 1263 /* check for wrap through zero */ 1264 if (b1 + len1 < b1) { 1265 len1 = EXT_MAX_BLOCK - b1; 1266 newext->ee_len = cpu_to_le16(len1); 1267 ret = 1; 1268 } 1269 1270 /* check for overlap */ 1271 if (b1 + len1 > b2) { 1272 newext->ee_len = cpu_to_le16(b2 - b1); 1273 ret = 1; 1274 } 1275 out: 1276 return ret; 1277 } 1278 1279 /* 1280 * ext4_ext_insert_extent: 1281 * tries to merge requsted extent into the existing extent or 1282 * inserts requested extent as new one into the tree, 1283 * creating new leaf in the no-space case. 1284 */ 1285 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1286 struct ext4_ext_path *path, 1287 struct ext4_extent *newext) 1288 { 1289 struct ext4_extent_header * eh; 1290 struct ext4_extent *ex, *fex; 1291 struct ext4_extent *nearex; /* nearest extent */ 1292 struct ext4_ext_path *npath = NULL; 1293 int depth, len, err, next; 1294 unsigned uninitialized = 0; 1295 1296 BUG_ON(ext4_ext_get_actual_len(newext) == 0); 1297 depth = ext_depth(inode); 1298 ex = path[depth].p_ext; 1299 BUG_ON(path[depth].p_hdr == NULL); 1300 1301 /* try to insert block into found extent and return */ 1302 if (ex && ext4_can_extents_be_merged(inode, ex, newext)) { 1303 ext_debug("append %d block to %d:%d (from %llu)\n", 1304 ext4_ext_get_actual_len(newext), 1305 le32_to_cpu(ex->ee_block), 1306 ext4_ext_get_actual_len(ex), ext_pblock(ex)); 1307 err = ext4_ext_get_access(handle, inode, path + depth); 1308 if (err) 1309 return err; 1310 1311 /* 1312 * ext4_can_extents_be_merged should have checked that either 1313 * both extents are uninitialized, or both aren't. Thus we 1314 * need to check only one of them here. 1315 */ 1316 if (ext4_ext_is_uninitialized(ex)) 1317 uninitialized = 1; 1318 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1319 + ext4_ext_get_actual_len(newext)); 1320 if (uninitialized) 1321 ext4_ext_mark_uninitialized(ex); 1322 eh = path[depth].p_hdr; 1323 nearex = ex; 1324 goto merge; 1325 } 1326 1327 repeat: 1328 depth = ext_depth(inode); 1329 eh = path[depth].p_hdr; 1330 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 1331 goto has_space; 1332 1333 /* probably next leaf has space for us? */ 1334 fex = EXT_LAST_EXTENT(eh); 1335 next = ext4_ext_next_leaf_block(inode, path); 1336 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block) 1337 && next != EXT_MAX_BLOCK) { 1338 ext_debug("next leaf block - %d\n", next); 1339 BUG_ON(npath != NULL); 1340 npath = ext4_ext_find_extent(inode, next, NULL); 1341 if (IS_ERR(npath)) 1342 return PTR_ERR(npath); 1343 BUG_ON(npath->p_depth != path->p_depth); 1344 eh = npath[depth].p_hdr; 1345 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 1346 ext_debug("next leaf isnt full(%d)\n", 1347 le16_to_cpu(eh->eh_entries)); 1348 path = npath; 1349 goto repeat; 1350 } 1351 ext_debug("next leaf has no free space(%d,%d)\n", 1352 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 1353 } 1354 1355 /* 1356 * There is no free space in the found leaf. 1357 * We're gonna add a new leaf in the tree. 1358 */ 1359 err = ext4_ext_create_new_leaf(handle, inode, path, newext); 1360 if (err) 1361 goto cleanup; 1362 depth = ext_depth(inode); 1363 eh = path[depth].p_hdr; 1364 1365 has_space: 1366 nearex = path[depth].p_ext; 1367 1368 err = ext4_ext_get_access(handle, inode, path + depth); 1369 if (err) 1370 goto cleanup; 1371 1372 if (!nearex) { 1373 /* there is no extent in this leaf, create first one */ 1374 ext_debug("first extent in the leaf: %d:%llu:%d\n", 1375 le32_to_cpu(newext->ee_block), 1376 ext_pblock(newext), 1377 ext4_ext_get_actual_len(newext)); 1378 path[depth].p_ext = EXT_FIRST_EXTENT(eh); 1379 } else if (le32_to_cpu(newext->ee_block) 1380 > le32_to_cpu(nearex->ee_block)) { 1381 /* BUG_ON(newext->ee_block == nearex->ee_block); */ 1382 if (nearex != EXT_LAST_EXTENT(eh)) { 1383 len = EXT_MAX_EXTENT(eh) - nearex; 1384 len = (len - 1) * sizeof(struct ext4_extent); 1385 len = len < 0 ? 0 : len; 1386 ext_debug("insert %d:%llu:%d after: nearest 0x%p, " 1387 "move %d from 0x%p to 0x%p\n", 1388 le32_to_cpu(newext->ee_block), 1389 ext_pblock(newext), 1390 ext4_ext_get_actual_len(newext), 1391 nearex, len, nearex + 1, nearex + 2); 1392 memmove(nearex + 2, nearex + 1, len); 1393 } 1394 path[depth].p_ext = nearex + 1; 1395 } else { 1396 BUG_ON(newext->ee_block == nearex->ee_block); 1397 len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent); 1398 len = len < 0 ? 0 : len; 1399 ext_debug("insert %d:%llu:%d before: nearest 0x%p, " 1400 "move %d from 0x%p to 0x%p\n", 1401 le32_to_cpu(newext->ee_block), 1402 ext_pblock(newext), 1403 ext4_ext_get_actual_len(newext), 1404 nearex, len, nearex + 1, nearex + 2); 1405 memmove(nearex + 1, nearex, len); 1406 path[depth].p_ext = nearex; 1407 } 1408 1409 eh->eh_entries = cpu_to_le16(le16_to_cpu(eh->eh_entries)+1); 1410 nearex = path[depth].p_ext; 1411 nearex->ee_block = newext->ee_block; 1412 ext4_ext_store_pblock(nearex, ext_pblock(newext)); 1413 nearex->ee_len = newext->ee_len; 1414 1415 merge: 1416 /* try to merge extents to the right */ 1417 ext4_ext_try_to_merge(inode, path, nearex); 1418 1419 /* try to merge extents to the left */ 1420 1421 /* time to correct all indexes above */ 1422 err = ext4_ext_correct_indexes(handle, inode, path); 1423 if (err) 1424 goto cleanup; 1425 1426 err = ext4_ext_dirty(handle, inode, path + depth); 1427 1428 cleanup: 1429 if (npath) { 1430 ext4_ext_drop_refs(npath); 1431 kfree(npath); 1432 } 1433 ext4_ext_tree_changed(inode); 1434 ext4_ext_invalidate_cache(inode); 1435 return err; 1436 } 1437 1438 int ext4_ext_walk_space(struct inode *inode, unsigned long block, 1439 unsigned long num, ext_prepare_callback func, 1440 void *cbdata) 1441 { 1442 struct ext4_ext_path *path = NULL; 1443 struct ext4_ext_cache cbex; 1444 struct ext4_extent *ex; 1445 unsigned long next, start = 0, end = 0; 1446 unsigned long last = block + num; 1447 int depth, exists, err = 0; 1448 1449 BUG_ON(func == NULL); 1450 BUG_ON(inode == NULL); 1451 1452 while (block < last && block != EXT_MAX_BLOCK) { 1453 num = last - block; 1454 /* find extent for this block */ 1455 path = ext4_ext_find_extent(inode, block, path); 1456 if (IS_ERR(path)) { 1457 err = PTR_ERR(path); 1458 path = NULL; 1459 break; 1460 } 1461 1462 depth = ext_depth(inode); 1463 BUG_ON(path[depth].p_hdr == NULL); 1464 ex = path[depth].p_ext; 1465 next = ext4_ext_next_allocated_block(path); 1466 1467 exists = 0; 1468 if (!ex) { 1469 /* there is no extent yet, so try to allocate 1470 * all requested space */ 1471 start = block; 1472 end = block + num; 1473 } else if (le32_to_cpu(ex->ee_block) > block) { 1474 /* need to allocate space before found extent */ 1475 start = block; 1476 end = le32_to_cpu(ex->ee_block); 1477 if (block + num < end) 1478 end = block + num; 1479 } else if (block >= le32_to_cpu(ex->ee_block) 1480 + ext4_ext_get_actual_len(ex)) { 1481 /* need to allocate space after found extent */ 1482 start = block; 1483 end = block + num; 1484 if (end >= next) 1485 end = next; 1486 } else if (block >= le32_to_cpu(ex->ee_block)) { 1487 /* 1488 * some part of requested space is covered 1489 * by found extent 1490 */ 1491 start = block; 1492 end = le32_to_cpu(ex->ee_block) 1493 + ext4_ext_get_actual_len(ex); 1494 if (block + num < end) 1495 end = block + num; 1496 exists = 1; 1497 } else { 1498 BUG(); 1499 } 1500 BUG_ON(end <= start); 1501 1502 if (!exists) { 1503 cbex.ec_block = start; 1504 cbex.ec_len = end - start; 1505 cbex.ec_start = 0; 1506 cbex.ec_type = EXT4_EXT_CACHE_GAP; 1507 } else { 1508 cbex.ec_block = le32_to_cpu(ex->ee_block); 1509 cbex.ec_len = ext4_ext_get_actual_len(ex); 1510 cbex.ec_start = ext_pblock(ex); 1511 cbex.ec_type = EXT4_EXT_CACHE_EXTENT; 1512 } 1513 1514 BUG_ON(cbex.ec_len == 0); 1515 err = func(inode, path, &cbex, cbdata); 1516 ext4_ext_drop_refs(path); 1517 1518 if (err < 0) 1519 break; 1520 if (err == EXT_REPEAT) 1521 continue; 1522 else if (err == EXT_BREAK) { 1523 err = 0; 1524 break; 1525 } 1526 1527 if (ext_depth(inode) != depth) { 1528 /* depth was changed. we have to realloc path */ 1529 kfree(path); 1530 path = NULL; 1531 } 1532 1533 block = cbex.ec_block + cbex.ec_len; 1534 } 1535 1536 if (path) { 1537 ext4_ext_drop_refs(path); 1538 kfree(path); 1539 } 1540 1541 return err; 1542 } 1543 1544 static void 1545 ext4_ext_put_in_cache(struct inode *inode, __u32 block, 1546 __u32 len, ext4_fsblk_t start, int type) 1547 { 1548 struct ext4_ext_cache *cex; 1549 BUG_ON(len == 0); 1550 cex = &EXT4_I(inode)->i_cached_extent; 1551 cex->ec_type = type; 1552 cex->ec_block = block; 1553 cex->ec_len = len; 1554 cex->ec_start = start; 1555 } 1556 1557 /* 1558 * ext4_ext_put_gap_in_cache: 1559 * calculate boundaries of the gap that the requested block fits into 1560 * and cache this gap 1561 */ 1562 static void 1563 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, 1564 unsigned long block) 1565 { 1566 int depth = ext_depth(inode); 1567 unsigned long lblock, len; 1568 struct ext4_extent *ex; 1569 1570 ex = path[depth].p_ext; 1571 if (ex == NULL) { 1572 /* there is no extent yet, so gap is [0;-] */ 1573 lblock = 0; 1574 len = EXT_MAX_BLOCK; 1575 ext_debug("cache gap(whole file):"); 1576 } else if (block < le32_to_cpu(ex->ee_block)) { 1577 lblock = block; 1578 len = le32_to_cpu(ex->ee_block) - block; 1579 ext_debug("cache gap(before): %lu [%lu:%lu]", 1580 (unsigned long) block, 1581 (unsigned long) le32_to_cpu(ex->ee_block), 1582 (unsigned long) ext4_ext_get_actual_len(ex)); 1583 } else if (block >= le32_to_cpu(ex->ee_block) 1584 + ext4_ext_get_actual_len(ex)) { 1585 lblock = le32_to_cpu(ex->ee_block) 1586 + ext4_ext_get_actual_len(ex); 1587 len = ext4_ext_next_allocated_block(path); 1588 ext_debug("cache gap(after): [%lu:%lu] %lu", 1589 (unsigned long) le32_to_cpu(ex->ee_block), 1590 (unsigned long) ext4_ext_get_actual_len(ex), 1591 (unsigned long) block); 1592 BUG_ON(len == lblock); 1593 len = len - lblock; 1594 } else { 1595 lblock = len = 0; 1596 BUG(); 1597 } 1598 1599 ext_debug(" -> %lu:%lu\n", (unsigned long) lblock, len); 1600 ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP); 1601 } 1602 1603 static int 1604 ext4_ext_in_cache(struct inode *inode, unsigned long block, 1605 struct ext4_extent *ex) 1606 { 1607 struct ext4_ext_cache *cex; 1608 1609 cex = &EXT4_I(inode)->i_cached_extent; 1610 1611 /* has cache valid data? */ 1612 if (cex->ec_type == EXT4_EXT_CACHE_NO) 1613 return EXT4_EXT_CACHE_NO; 1614 1615 BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP && 1616 cex->ec_type != EXT4_EXT_CACHE_EXTENT); 1617 if (block >= cex->ec_block && block < cex->ec_block + cex->ec_len) { 1618 ex->ee_block = cpu_to_le32(cex->ec_block); 1619 ext4_ext_store_pblock(ex, cex->ec_start); 1620 ex->ee_len = cpu_to_le16(cex->ec_len); 1621 ext_debug("%lu cached by %lu:%lu:%llu\n", 1622 (unsigned long) block, 1623 (unsigned long) cex->ec_block, 1624 (unsigned long) cex->ec_len, 1625 cex->ec_start); 1626 return cex->ec_type; 1627 } 1628 1629 /* not in cache */ 1630 return EXT4_EXT_CACHE_NO; 1631 } 1632 1633 /* 1634 * ext4_ext_rm_idx: 1635 * removes index from the index block. 1636 * It's used in truncate case only, thus all requests are for 1637 * last index in the block only. 1638 */ 1639 int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 1640 struct ext4_ext_path *path) 1641 { 1642 struct buffer_head *bh; 1643 int err; 1644 ext4_fsblk_t leaf; 1645 1646 /* free index block */ 1647 path--; 1648 leaf = idx_pblock(path->p_idx); 1649 BUG_ON(path->p_hdr->eh_entries == 0); 1650 err = ext4_ext_get_access(handle, inode, path); 1651 if (err) 1652 return err; 1653 path->p_hdr->eh_entries = cpu_to_le16(le16_to_cpu(path->p_hdr->eh_entries)-1); 1654 err = ext4_ext_dirty(handle, inode, path); 1655 if (err) 1656 return err; 1657 ext_debug("index is empty, remove it, free block %llu\n", leaf); 1658 bh = sb_find_get_block(inode->i_sb, leaf); 1659 ext4_forget(handle, 1, inode, bh, leaf); 1660 ext4_free_blocks(handle, inode, leaf, 1); 1661 return err; 1662 } 1663 1664 /* 1665 * ext4_ext_calc_credits_for_insert: 1666 * This routine returns max. credits that the extent tree can consume. 1667 * It should be OK for low-performance paths like ->writepage() 1668 * To allow many writing processes to fit into a single transaction, 1669 * the caller should calculate credits under truncate_mutex and 1670 * pass the actual path. 1671 */ 1672 int ext4_ext_calc_credits_for_insert(struct inode *inode, 1673 struct ext4_ext_path *path) 1674 { 1675 int depth, needed; 1676 1677 if (path) { 1678 /* probably there is space in leaf? */ 1679 depth = ext_depth(inode); 1680 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 1681 < le16_to_cpu(path[depth].p_hdr->eh_max)) 1682 return 1; 1683 } 1684 1685 /* 1686 * given 32-bit logical block (4294967296 blocks), max. tree 1687 * can be 4 levels in depth -- 4 * 340^4 == 53453440000. 1688 * Let's also add one more level for imbalance. 1689 */ 1690 depth = 5; 1691 1692 /* allocation of new data block(s) */ 1693 needed = 2; 1694 1695 /* 1696 * tree can be full, so it would need to grow in depth: 1697 * we need one credit to modify old root, credits for 1698 * new root will be added in split accounting 1699 */ 1700 needed += 1; 1701 1702 /* 1703 * Index split can happen, we would need: 1704 * allocate intermediate indexes (bitmap + group) 1705 * + change two blocks at each level, but root (already included) 1706 */ 1707 needed += (depth * 2) + (depth * 2); 1708 1709 /* any allocation modifies superblock */ 1710 needed += 1; 1711 1712 return needed; 1713 } 1714 1715 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 1716 struct ext4_extent *ex, 1717 unsigned long from, unsigned long to) 1718 { 1719 struct buffer_head *bh; 1720 unsigned short ee_len = ext4_ext_get_actual_len(ex); 1721 int i; 1722 1723 #ifdef EXTENTS_STATS 1724 { 1725 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1726 spin_lock(&sbi->s_ext_stats_lock); 1727 sbi->s_ext_blocks += ee_len; 1728 sbi->s_ext_extents++; 1729 if (ee_len < sbi->s_ext_min) 1730 sbi->s_ext_min = ee_len; 1731 if (ee_len > sbi->s_ext_max) 1732 sbi->s_ext_max = ee_len; 1733 if (ext_depth(inode) > sbi->s_depth_max) 1734 sbi->s_depth_max = ext_depth(inode); 1735 spin_unlock(&sbi->s_ext_stats_lock); 1736 } 1737 #endif 1738 if (from >= le32_to_cpu(ex->ee_block) 1739 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 1740 /* tail removal */ 1741 unsigned long num; 1742 ext4_fsblk_t start; 1743 num = le32_to_cpu(ex->ee_block) + ee_len - from; 1744 start = ext_pblock(ex) + ee_len - num; 1745 ext_debug("free last %lu blocks starting %llu\n", num, start); 1746 for (i = 0; i < num; i++) { 1747 bh = sb_find_get_block(inode->i_sb, start + i); 1748 ext4_forget(handle, 0, inode, bh, start + i); 1749 } 1750 ext4_free_blocks(handle, inode, start, num); 1751 } else if (from == le32_to_cpu(ex->ee_block) 1752 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) { 1753 printk("strange request: removal %lu-%lu from %u:%u\n", 1754 from, to, le32_to_cpu(ex->ee_block), ee_len); 1755 } else { 1756 printk("strange request: removal(2) %lu-%lu from %u:%u\n", 1757 from, to, le32_to_cpu(ex->ee_block), ee_len); 1758 } 1759 return 0; 1760 } 1761 1762 static int 1763 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 1764 struct ext4_ext_path *path, unsigned long start) 1765 { 1766 int err = 0, correct_index = 0; 1767 int depth = ext_depth(inode), credits; 1768 struct ext4_extent_header *eh; 1769 unsigned a, b, block, num; 1770 unsigned long ex_ee_block; 1771 unsigned short ex_ee_len; 1772 unsigned uninitialized = 0; 1773 struct ext4_extent *ex; 1774 1775 /* the header must be checked already in ext4_ext_remove_space() */ 1776 ext_debug("truncate since %lu in leaf\n", start); 1777 if (!path[depth].p_hdr) 1778 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 1779 eh = path[depth].p_hdr; 1780 BUG_ON(eh == NULL); 1781 1782 /* find where to start removing */ 1783 ex = EXT_LAST_EXTENT(eh); 1784 1785 ex_ee_block = le32_to_cpu(ex->ee_block); 1786 if (ext4_ext_is_uninitialized(ex)) 1787 uninitialized = 1; 1788 ex_ee_len = ext4_ext_get_actual_len(ex); 1789 1790 while (ex >= EXT_FIRST_EXTENT(eh) && 1791 ex_ee_block + ex_ee_len > start) { 1792 ext_debug("remove ext %lu:%u\n", ex_ee_block, ex_ee_len); 1793 path[depth].p_ext = ex; 1794 1795 a = ex_ee_block > start ? ex_ee_block : start; 1796 b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ? 1797 ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK; 1798 1799 ext_debug(" border %u:%u\n", a, b); 1800 1801 if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) { 1802 block = 0; 1803 num = 0; 1804 BUG(); 1805 } else if (a != ex_ee_block) { 1806 /* remove tail of the extent */ 1807 block = ex_ee_block; 1808 num = a - block; 1809 } else if (b != ex_ee_block + ex_ee_len - 1) { 1810 /* remove head of the extent */ 1811 block = a; 1812 num = b - a; 1813 /* there is no "make a hole" API yet */ 1814 BUG(); 1815 } else { 1816 /* remove whole extent: excellent! */ 1817 block = ex_ee_block; 1818 num = 0; 1819 BUG_ON(a != ex_ee_block); 1820 BUG_ON(b != ex_ee_block + ex_ee_len - 1); 1821 } 1822 1823 /* at present, extent can't cross block group: */ 1824 /* leaf + bitmap + group desc + sb + inode */ 1825 credits = 5; 1826 if (ex == EXT_FIRST_EXTENT(eh)) { 1827 correct_index = 1; 1828 credits += (ext_depth(inode)) + 1; 1829 } 1830 #ifdef CONFIG_QUOTA 1831 credits += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb); 1832 #endif 1833 1834 handle = ext4_ext_journal_restart(handle, credits); 1835 if (IS_ERR(handle)) { 1836 err = PTR_ERR(handle); 1837 goto out; 1838 } 1839 1840 err = ext4_ext_get_access(handle, inode, path + depth); 1841 if (err) 1842 goto out; 1843 1844 err = ext4_remove_blocks(handle, inode, ex, a, b); 1845 if (err) 1846 goto out; 1847 1848 if (num == 0) { 1849 /* this extent is removed; mark slot entirely unused */ 1850 ext4_ext_store_pblock(ex, 0); 1851 eh->eh_entries = cpu_to_le16(le16_to_cpu(eh->eh_entries)-1); 1852 } 1853 1854 ex->ee_block = cpu_to_le32(block); 1855 ex->ee_len = cpu_to_le16(num); 1856 /* 1857 * Do not mark uninitialized if all the blocks in the 1858 * extent have been removed. 1859 */ 1860 if (uninitialized && num) 1861 ext4_ext_mark_uninitialized(ex); 1862 1863 err = ext4_ext_dirty(handle, inode, path + depth); 1864 if (err) 1865 goto out; 1866 1867 ext_debug("new extent: %u:%u:%llu\n", block, num, 1868 ext_pblock(ex)); 1869 ex--; 1870 ex_ee_block = le32_to_cpu(ex->ee_block); 1871 ex_ee_len = ext4_ext_get_actual_len(ex); 1872 } 1873 1874 if (correct_index && eh->eh_entries) 1875 err = ext4_ext_correct_indexes(handle, inode, path); 1876 1877 /* if this leaf is free, then we should 1878 * remove it from index block above */ 1879 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 1880 err = ext4_ext_rm_idx(handle, inode, path + depth); 1881 1882 out: 1883 return err; 1884 } 1885 1886 /* 1887 * ext4_ext_more_to_rm: 1888 * returns 1 if current index has to be freed (even partial) 1889 */ 1890 static int 1891 ext4_ext_more_to_rm(struct ext4_ext_path *path) 1892 { 1893 BUG_ON(path->p_idx == NULL); 1894 1895 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 1896 return 0; 1897 1898 /* 1899 * if truncate on deeper level happened, it wasn't partial, 1900 * so we have to consider current index for truncation 1901 */ 1902 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 1903 return 0; 1904 return 1; 1905 } 1906 1907 int ext4_ext_remove_space(struct inode *inode, unsigned long start) 1908 { 1909 struct super_block *sb = inode->i_sb; 1910 int depth = ext_depth(inode); 1911 struct ext4_ext_path *path; 1912 handle_t *handle; 1913 int i = 0, err = 0; 1914 1915 ext_debug("truncate since %lu\n", start); 1916 1917 /* probably first extent we're gonna free will be last in block */ 1918 handle = ext4_journal_start(inode, depth + 1); 1919 if (IS_ERR(handle)) 1920 return PTR_ERR(handle); 1921 1922 ext4_ext_invalidate_cache(inode); 1923 1924 /* 1925 * We start scanning from right side, freeing all the blocks 1926 * after i_size and walking into the tree depth-wise. 1927 */ 1928 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_KERNEL); 1929 if (path == NULL) { 1930 ext4_journal_stop(handle); 1931 return -ENOMEM; 1932 } 1933 path[0].p_hdr = ext_inode_hdr(inode); 1934 if (ext4_ext_check_header(inode, path[0].p_hdr, depth)) { 1935 err = -EIO; 1936 goto out; 1937 } 1938 path[0].p_depth = depth; 1939 1940 while (i >= 0 && err == 0) { 1941 if (i == depth) { 1942 /* this is leaf block */ 1943 err = ext4_ext_rm_leaf(handle, inode, path, start); 1944 /* root level has p_bh == NULL, brelse() eats this */ 1945 brelse(path[i].p_bh); 1946 path[i].p_bh = NULL; 1947 i--; 1948 continue; 1949 } 1950 1951 /* this is index block */ 1952 if (!path[i].p_hdr) { 1953 ext_debug("initialize header\n"); 1954 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 1955 } 1956 1957 if (!path[i].p_idx) { 1958 /* this level hasn't been touched yet */ 1959 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 1960 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 1961 ext_debug("init index ptr: hdr 0x%p, num %d\n", 1962 path[i].p_hdr, 1963 le16_to_cpu(path[i].p_hdr->eh_entries)); 1964 } else { 1965 /* we were already here, see at next index */ 1966 path[i].p_idx--; 1967 } 1968 1969 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 1970 i, EXT_FIRST_INDEX(path[i].p_hdr), 1971 path[i].p_idx); 1972 if (ext4_ext_more_to_rm(path + i)) { 1973 struct buffer_head *bh; 1974 /* go to the next level */ 1975 ext_debug("move to level %d (block %llu)\n", 1976 i + 1, idx_pblock(path[i].p_idx)); 1977 memset(path + i + 1, 0, sizeof(*path)); 1978 bh = sb_bread(sb, idx_pblock(path[i].p_idx)); 1979 if (!bh) { 1980 /* should we reset i_size? */ 1981 err = -EIO; 1982 break; 1983 } 1984 if (WARN_ON(i + 1 > depth)) { 1985 err = -EIO; 1986 break; 1987 } 1988 if (ext4_ext_check_header(inode, ext_block_hdr(bh), 1989 depth - i - 1)) { 1990 err = -EIO; 1991 break; 1992 } 1993 path[i + 1].p_bh = bh; 1994 1995 /* save actual number of indexes since this 1996 * number is changed at the next iteration */ 1997 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 1998 i++; 1999 } else { 2000 /* we finished processing this index, go up */ 2001 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2002 /* index is empty, remove it; 2003 * handle must be already prepared by the 2004 * truncatei_leaf() */ 2005 err = ext4_ext_rm_idx(handle, inode, path + i); 2006 } 2007 /* root level has p_bh == NULL, brelse() eats this */ 2008 brelse(path[i].p_bh); 2009 path[i].p_bh = NULL; 2010 i--; 2011 ext_debug("return to level %d\n", i); 2012 } 2013 } 2014 2015 /* TODO: flexible tree reduction should be here */ 2016 if (path->p_hdr->eh_entries == 0) { 2017 /* 2018 * truncate to zero freed all the tree, 2019 * so we need to correct eh_depth 2020 */ 2021 err = ext4_ext_get_access(handle, inode, path); 2022 if (err == 0) { 2023 ext_inode_hdr(inode)->eh_depth = 0; 2024 ext_inode_hdr(inode)->eh_max = 2025 cpu_to_le16(ext4_ext_space_root(inode)); 2026 err = ext4_ext_dirty(handle, inode, path); 2027 } 2028 } 2029 out: 2030 ext4_ext_tree_changed(inode); 2031 ext4_ext_drop_refs(path); 2032 kfree(path); 2033 ext4_journal_stop(handle); 2034 2035 return err; 2036 } 2037 2038 /* 2039 * called at mount time 2040 */ 2041 void ext4_ext_init(struct super_block *sb) 2042 { 2043 /* 2044 * possible initialization would be here 2045 */ 2046 2047 if (test_opt(sb, EXTENTS)) { 2048 printk("EXT4-fs: file extents enabled"); 2049 #ifdef AGGRESSIVE_TEST 2050 printk(", aggressive tests"); 2051 #endif 2052 #ifdef CHECK_BINSEARCH 2053 printk(", check binsearch"); 2054 #endif 2055 #ifdef EXTENTS_STATS 2056 printk(", stats"); 2057 #endif 2058 printk("\n"); 2059 #ifdef EXTENTS_STATS 2060 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 2061 EXT4_SB(sb)->s_ext_min = 1 << 30; 2062 EXT4_SB(sb)->s_ext_max = 0; 2063 #endif 2064 } 2065 } 2066 2067 /* 2068 * called at umount time 2069 */ 2070 void ext4_ext_release(struct super_block *sb) 2071 { 2072 if (!test_opt(sb, EXTENTS)) 2073 return; 2074 2075 #ifdef EXTENTS_STATS 2076 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 2077 struct ext4_sb_info *sbi = EXT4_SB(sb); 2078 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 2079 sbi->s_ext_blocks, sbi->s_ext_extents, 2080 sbi->s_ext_blocks / sbi->s_ext_extents); 2081 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 2082 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 2083 } 2084 #endif 2085 } 2086 2087 /* 2088 * This function is called by ext4_ext_get_blocks() if someone tries to write 2089 * to an uninitialized extent. It may result in splitting the uninitialized 2090 * extent into multiple extents (upto three - one initialized and two 2091 * uninitialized). 2092 * There are three possibilities: 2093 * a> There is no split required: Entire extent should be initialized 2094 * b> Splits in two extents: Write is happening at either end of the extent 2095 * c> Splits in three extents: Somone is writing in middle of the extent 2096 */ 2097 int ext4_ext_convert_to_initialized(handle_t *handle, struct inode *inode, 2098 struct ext4_ext_path *path, 2099 ext4_fsblk_t iblock, 2100 unsigned long max_blocks) 2101 { 2102 struct ext4_extent *ex, newex; 2103 struct ext4_extent *ex1 = NULL; 2104 struct ext4_extent *ex2 = NULL; 2105 struct ext4_extent *ex3 = NULL; 2106 struct ext4_extent_header *eh; 2107 unsigned int allocated, ee_block, ee_len, depth; 2108 ext4_fsblk_t newblock; 2109 int err = 0; 2110 int ret = 0; 2111 2112 depth = ext_depth(inode); 2113 eh = path[depth].p_hdr; 2114 ex = path[depth].p_ext; 2115 ee_block = le32_to_cpu(ex->ee_block); 2116 ee_len = ext4_ext_get_actual_len(ex); 2117 allocated = ee_len - (iblock - ee_block); 2118 newblock = iblock - ee_block + ext_pblock(ex); 2119 ex2 = ex; 2120 2121 /* ex1: ee_block to iblock - 1 : uninitialized */ 2122 if (iblock > ee_block) { 2123 ex1 = ex; 2124 ex1->ee_len = cpu_to_le16(iblock - ee_block); 2125 ext4_ext_mark_uninitialized(ex1); 2126 ex2 = &newex; 2127 } 2128 /* 2129 * for sanity, update the length of the ex2 extent before 2130 * we insert ex3, if ex1 is NULL. This is to avoid temporary 2131 * overlap of blocks. 2132 */ 2133 if (!ex1 && allocated > max_blocks) 2134 ex2->ee_len = cpu_to_le16(max_blocks); 2135 /* ex3: to ee_block + ee_len : uninitialised */ 2136 if (allocated > max_blocks) { 2137 unsigned int newdepth; 2138 ex3 = &newex; 2139 ex3->ee_block = cpu_to_le32(iblock + max_blocks); 2140 ext4_ext_store_pblock(ex3, newblock + max_blocks); 2141 ex3->ee_len = cpu_to_le16(allocated - max_blocks); 2142 ext4_ext_mark_uninitialized(ex3); 2143 err = ext4_ext_insert_extent(handle, inode, path, ex3); 2144 if (err) 2145 goto out; 2146 /* 2147 * The depth, and hence eh & ex might change 2148 * as part of the insert above. 2149 */ 2150 newdepth = ext_depth(inode); 2151 if (newdepth != depth) { 2152 depth = newdepth; 2153 path = ext4_ext_find_extent(inode, iblock, NULL); 2154 if (IS_ERR(path)) { 2155 err = PTR_ERR(path); 2156 path = NULL; 2157 goto out; 2158 } 2159 eh = path[depth].p_hdr; 2160 ex = path[depth].p_ext; 2161 if (ex2 != &newex) 2162 ex2 = ex; 2163 } 2164 allocated = max_blocks; 2165 } 2166 /* 2167 * If there was a change of depth as part of the 2168 * insertion of ex3 above, we need to update the length 2169 * of the ex1 extent again here 2170 */ 2171 if (ex1 && ex1 != ex) { 2172 ex1 = ex; 2173 ex1->ee_len = cpu_to_le16(iblock - ee_block); 2174 ext4_ext_mark_uninitialized(ex1); 2175 ex2 = &newex; 2176 } 2177 /* ex2: iblock to iblock + maxblocks-1 : initialised */ 2178 ex2->ee_block = cpu_to_le32(iblock); 2179 ext4_ext_store_pblock(ex2, newblock); 2180 ex2->ee_len = cpu_to_le16(allocated); 2181 if (ex2 != ex) 2182 goto insert; 2183 err = ext4_ext_get_access(handle, inode, path + depth); 2184 if (err) 2185 goto out; 2186 /* 2187 * New (initialized) extent starts from the first block 2188 * in the current extent. i.e., ex2 == ex 2189 * We have to see if it can be merged with the extent 2190 * on the left. 2191 */ 2192 if (ex2 > EXT_FIRST_EXTENT(eh)) { 2193 /* 2194 * To merge left, pass "ex2 - 1" to try_to_merge(), 2195 * since it merges towards right _only_. 2196 */ 2197 ret = ext4_ext_try_to_merge(inode, path, ex2 - 1); 2198 if (ret) { 2199 err = ext4_ext_correct_indexes(handle, inode, path); 2200 if (err) 2201 goto out; 2202 depth = ext_depth(inode); 2203 ex2--; 2204 } 2205 } 2206 /* 2207 * Try to Merge towards right. This might be required 2208 * only when the whole extent is being written to. 2209 * i.e. ex2 == ex and ex3 == NULL. 2210 */ 2211 if (!ex3) { 2212 ret = ext4_ext_try_to_merge(inode, path, ex2); 2213 if (ret) { 2214 err = ext4_ext_correct_indexes(handle, inode, path); 2215 if (err) 2216 goto out; 2217 } 2218 } 2219 /* Mark modified extent as dirty */ 2220 err = ext4_ext_dirty(handle, inode, path + depth); 2221 goto out; 2222 insert: 2223 err = ext4_ext_insert_extent(handle, inode, path, &newex); 2224 out: 2225 return err ? err : allocated; 2226 } 2227 2228 int ext4_ext_get_blocks(handle_t *handle, struct inode *inode, 2229 ext4_fsblk_t iblock, 2230 unsigned long max_blocks, struct buffer_head *bh_result, 2231 int create, int extend_disksize) 2232 { 2233 struct ext4_ext_path *path = NULL; 2234 struct ext4_extent_header *eh; 2235 struct ext4_extent newex, *ex; 2236 ext4_fsblk_t goal, newblock; 2237 int err = 0, depth, ret; 2238 unsigned long allocated = 0; 2239 2240 __clear_bit(BH_New, &bh_result->b_state); 2241 ext_debug("blocks %d/%lu requested for inode %u\n", (int) iblock, 2242 max_blocks, (unsigned) inode->i_ino); 2243 mutex_lock(&EXT4_I(inode)->truncate_mutex); 2244 2245 /* check in cache */ 2246 goal = ext4_ext_in_cache(inode, iblock, &newex); 2247 if (goal) { 2248 if (goal == EXT4_EXT_CACHE_GAP) { 2249 if (!create) { 2250 /* 2251 * block isn't allocated yet and 2252 * user doesn't want to allocate it 2253 */ 2254 goto out2; 2255 } 2256 /* we should allocate requested block */ 2257 } else if (goal == EXT4_EXT_CACHE_EXTENT) { 2258 /* block is already allocated */ 2259 newblock = iblock 2260 - le32_to_cpu(newex.ee_block) 2261 + ext_pblock(&newex); 2262 /* number of remaining blocks in the extent */ 2263 allocated = le16_to_cpu(newex.ee_len) - 2264 (iblock - le32_to_cpu(newex.ee_block)); 2265 goto out; 2266 } else { 2267 BUG(); 2268 } 2269 } 2270 2271 /* find extent for this block */ 2272 path = ext4_ext_find_extent(inode, iblock, NULL); 2273 if (IS_ERR(path)) { 2274 err = PTR_ERR(path); 2275 path = NULL; 2276 goto out2; 2277 } 2278 2279 depth = ext_depth(inode); 2280 2281 /* 2282 * consistent leaf must not be empty; 2283 * this situation is possible, though, _during_ tree modification; 2284 * this is why assert can't be put in ext4_ext_find_extent() 2285 */ 2286 BUG_ON(path[depth].p_ext == NULL && depth != 0); 2287 eh = path[depth].p_hdr; 2288 2289 ex = path[depth].p_ext; 2290 if (ex) { 2291 unsigned long ee_block = le32_to_cpu(ex->ee_block); 2292 ext4_fsblk_t ee_start = ext_pblock(ex); 2293 unsigned short ee_len; 2294 2295 /* 2296 * Uninitialized extents are treated as holes, except that 2297 * we split out initialized portions during a write. 2298 */ 2299 ee_len = ext4_ext_get_actual_len(ex); 2300 /* if found extent covers block, simply return it */ 2301 if (iblock >= ee_block && iblock < ee_block + ee_len) { 2302 newblock = iblock - ee_block + ee_start; 2303 /* number of remaining blocks in the extent */ 2304 allocated = ee_len - (iblock - ee_block); 2305 ext_debug("%d fit into %lu:%d -> %llu\n", (int) iblock, 2306 ee_block, ee_len, newblock); 2307 2308 /* Do not put uninitialized extent in the cache */ 2309 if (!ext4_ext_is_uninitialized(ex)) { 2310 ext4_ext_put_in_cache(inode, ee_block, 2311 ee_len, ee_start, 2312 EXT4_EXT_CACHE_EXTENT); 2313 goto out; 2314 } 2315 if (create == EXT4_CREATE_UNINITIALIZED_EXT) 2316 goto out; 2317 if (!create) 2318 goto out2; 2319 2320 ret = ext4_ext_convert_to_initialized(handle, inode, 2321 path, iblock, 2322 max_blocks); 2323 if (ret <= 0) 2324 goto out2; 2325 else 2326 allocated = ret; 2327 goto outnew; 2328 } 2329 } 2330 2331 /* 2332 * requested block isn't allocated yet; 2333 * we couldn't try to create block if create flag is zero 2334 */ 2335 if (!create) { 2336 /* 2337 * put just found gap into cache to speed up 2338 * subsequent requests 2339 */ 2340 ext4_ext_put_gap_in_cache(inode, path, iblock); 2341 goto out2; 2342 } 2343 /* 2344 * Okay, we need to do block allocation. Lazily initialize the block 2345 * allocation info here if necessary. 2346 */ 2347 if (S_ISREG(inode->i_mode) && (!EXT4_I(inode)->i_block_alloc_info)) 2348 ext4_init_block_alloc_info(inode); 2349 2350 /* allocate new block */ 2351 goal = ext4_ext_find_goal(inode, path, iblock); 2352 2353 /* 2354 * See if request is beyond maximum number of blocks we can have in 2355 * a single extent. For an initialized extent this limit is 2356 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is 2357 * EXT_UNINIT_MAX_LEN. 2358 */ 2359 if (max_blocks > EXT_INIT_MAX_LEN && 2360 create != EXT4_CREATE_UNINITIALIZED_EXT) 2361 max_blocks = EXT_INIT_MAX_LEN; 2362 else if (max_blocks > EXT_UNINIT_MAX_LEN && 2363 create == EXT4_CREATE_UNINITIALIZED_EXT) 2364 max_blocks = EXT_UNINIT_MAX_LEN; 2365 2366 /* Check if we can really insert (iblock)::(iblock+max_blocks) extent */ 2367 newex.ee_block = cpu_to_le32(iblock); 2368 newex.ee_len = cpu_to_le16(max_blocks); 2369 err = ext4_ext_check_overlap(inode, &newex, path); 2370 if (err) 2371 allocated = le16_to_cpu(newex.ee_len); 2372 else 2373 allocated = max_blocks; 2374 newblock = ext4_new_blocks(handle, inode, goal, &allocated, &err); 2375 if (!newblock) 2376 goto out2; 2377 ext_debug("allocate new block: goal %llu, found %llu/%lu\n", 2378 goal, newblock, allocated); 2379 2380 /* try to insert new extent into found leaf and return */ 2381 ext4_ext_store_pblock(&newex, newblock); 2382 newex.ee_len = cpu_to_le16(allocated); 2383 if (create == EXT4_CREATE_UNINITIALIZED_EXT) /* Mark uninitialized */ 2384 ext4_ext_mark_uninitialized(&newex); 2385 err = ext4_ext_insert_extent(handle, inode, path, &newex); 2386 if (err) { 2387 /* free data blocks we just allocated */ 2388 ext4_free_blocks(handle, inode, ext_pblock(&newex), 2389 le16_to_cpu(newex.ee_len)); 2390 goto out2; 2391 } 2392 2393 if (extend_disksize && inode->i_size > EXT4_I(inode)->i_disksize) 2394 EXT4_I(inode)->i_disksize = inode->i_size; 2395 2396 /* previous routine could use block we allocated */ 2397 newblock = ext_pblock(&newex); 2398 outnew: 2399 __set_bit(BH_New, &bh_result->b_state); 2400 2401 /* Cache only when it is _not_ an uninitialized extent */ 2402 if (create != EXT4_CREATE_UNINITIALIZED_EXT) 2403 ext4_ext_put_in_cache(inode, iblock, allocated, newblock, 2404 EXT4_EXT_CACHE_EXTENT); 2405 out: 2406 if (allocated > max_blocks) 2407 allocated = max_blocks; 2408 ext4_ext_show_leaf(inode, path); 2409 __set_bit(BH_Mapped, &bh_result->b_state); 2410 bh_result->b_bdev = inode->i_sb->s_bdev; 2411 bh_result->b_blocknr = newblock; 2412 out2: 2413 if (path) { 2414 ext4_ext_drop_refs(path); 2415 kfree(path); 2416 } 2417 mutex_unlock(&EXT4_I(inode)->truncate_mutex); 2418 2419 return err ? err : allocated; 2420 } 2421 2422 void ext4_ext_truncate(struct inode * inode, struct page *page) 2423 { 2424 struct address_space *mapping = inode->i_mapping; 2425 struct super_block *sb = inode->i_sb; 2426 unsigned long last_block; 2427 handle_t *handle; 2428 int err = 0; 2429 2430 /* 2431 * probably first extent we're gonna free will be last in block 2432 */ 2433 err = ext4_writepage_trans_blocks(inode) + 3; 2434 handle = ext4_journal_start(inode, err); 2435 if (IS_ERR(handle)) { 2436 if (page) { 2437 clear_highpage(page); 2438 flush_dcache_page(page); 2439 unlock_page(page); 2440 page_cache_release(page); 2441 } 2442 return; 2443 } 2444 2445 if (page) 2446 ext4_block_truncate_page(handle, page, mapping, inode->i_size); 2447 2448 mutex_lock(&EXT4_I(inode)->truncate_mutex); 2449 ext4_ext_invalidate_cache(inode); 2450 2451 /* 2452 * TODO: optimization is possible here. 2453 * Probably we need not scan at all, 2454 * because page truncation is enough. 2455 */ 2456 if (ext4_orphan_add(handle, inode)) 2457 goto out_stop; 2458 2459 /* we have to know where to truncate from in crash case */ 2460 EXT4_I(inode)->i_disksize = inode->i_size; 2461 ext4_mark_inode_dirty(handle, inode); 2462 2463 last_block = (inode->i_size + sb->s_blocksize - 1) 2464 >> EXT4_BLOCK_SIZE_BITS(sb); 2465 err = ext4_ext_remove_space(inode, last_block); 2466 2467 /* In a multi-transaction truncate, we only make the final 2468 * transaction synchronous. 2469 */ 2470 if (IS_SYNC(inode)) 2471 handle->h_sync = 1; 2472 2473 out_stop: 2474 /* 2475 * If this was a simple ftruncate() and the file will remain alive, 2476 * then we need to clear up the orphan record which we created above. 2477 * However, if this was a real unlink then we were called by 2478 * ext4_delete_inode(), and we allow that function to clean up the 2479 * orphan info for us. 2480 */ 2481 if (inode->i_nlink) 2482 ext4_orphan_del(handle, inode); 2483 2484 mutex_unlock(&EXT4_I(inode)->truncate_mutex); 2485 ext4_journal_stop(handle); 2486 } 2487 2488 /* 2489 * ext4_ext_writepage_trans_blocks: 2490 * calculate max number of blocks we could modify 2491 * in order to allocate new block for an inode 2492 */ 2493 int ext4_ext_writepage_trans_blocks(struct inode *inode, int num) 2494 { 2495 int needed; 2496 2497 needed = ext4_ext_calc_credits_for_insert(inode, NULL); 2498 2499 /* caller wants to allocate num blocks, but note it includes sb */ 2500 needed = needed * num - (num - 1); 2501 2502 #ifdef CONFIG_QUOTA 2503 needed += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb); 2504 #endif 2505 2506 return needed; 2507 } 2508 2509 /* 2510 * preallocate space for a file. This implements ext4's fallocate inode 2511 * operation, which gets called from sys_fallocate system call. 2512 * For block-mapped files, posix_fallocate should fall back to the method 2513 * of writing zeroes to the required new blocks (the same behavior which is 2514 * expected for file systems which do not support fallocate() system call). 2515 */ 2516 long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len) 2517 { 2518 handle_t *handle; 2519 ext4_fsblk_t block, max_blocks; 2520 ext4_fsblk_t nblocks = 0; 2521 int ret = 0; 2522 int ret2 = 0; 2523 int retries = 0; 2524 struct buffer_head map_bh; 2525 unsigned int credits, blkbits = inode->i_blkbits; 2526 2527 /* 2528 * currently supporting (pre)allocate mode for extent-based 2529 * files _only_ 2530 */ 2531 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) 2532 return -EOPNOTSUPP; 2533 2534 /* preallocation to directories is currently not supported */ 2535 if (S_ISDIR(inode->i_mode)) 2536 return -ENODEV; 2537 2538 block = offset >> blkbits; 2539 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 2540 - block; 2541 2542 /* 2543 * credits to insert 1 extent into extent tree + buffers to be able to 2544 * modify 1 super block, 1 block bitmap and 1 group descriptor. 2545 */ 2546 credits = EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + 3; 2547 retry: 2548 while (ret >= 0 && ret < max_blocks) { 2549 block = block + ret; 2550 max_blocks = max_blocks - ret; 2551 handle = ext4_journal_start(inode, credits); 2552 if (IS_ERR(handle)) { 2553 ret = PTR_ERR(handle); 2554 break; 2555 } 2556 2557 ret = ext4_ext_get_blocks(handle, inode, block, 2558 max_blocks, &map_bh, 2559 EXT4_CREATE_UNINITIALIZED_EXT, 0); 2560 WARN_ON(!ret); 2561 if (!ret) { 2562 ext4_error(inode->i_sb, "ext4_fallocate", 2563 "ext4_ext_get_blocks returned 0! inode#%lu" 2564 ", block=%llu, max_blocks=%llu", 2565 inode->i_ino, block, max_blocks); 2566 ret = -EIO; 2567 ext4_mark_inode_dirty(handle, inode); 2568 ret2 = ext4_journal_stop(handle); 2569 break; 2570 } 2571 if (ret > 0) { 2572 /* check wrap through sign-bit/zero here */ 2573 if ((block + ret) < 0 || (block + ret) < block) { 2574 ret = -EIO; 2575 ext4_mark_inode_dirty(handle, inode); 2576 ret2 = ext4_journal_stop(handle); 2577 break; 2578 } 2579 if (buffer_new(&map_bh) && ((block + ret) > 2580 (EXT4_BLOCK_ALIGN(i_size_read(inode), blkbits) 2581 >> blkbits))) 2582 nblocks = nblocks + ret; 2583 } 2584 2585 /* Update ctime if new blocks get allocated */ 2586 if (nblocks) { 2587 struct timespec now; 2588 2589 now = current_fs_time(inode->i_sb); 2590 if (!timespec_equal(&inode->i_ctime, &now)) 2591 inode->i_ctime = now; 2592 } 2593 2594 ext4_mark_inode_dirty(handle, inode); 2595 ret2 = ext4_journal_stop(handle); 2596 if (ret2) 2597 break; 2598 } 2599 2600 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 2601 goto retry; 2602 2603 /* 2604 * Time to update the file size. 2605 * Update only when preallocation was requested beyond the file size. 2606 */ 2607 if (!(mode & FALLOC_FL_KEEP_SIZE) && 2608 (offset + len) > i_size_read(inode)) { 2609 if (ret > 0) { 2610 /* 2611 * if no error, we assume preallocation succeeded 2612 * completely 2613 */ 2614 mutex_lock(&inode->i_mutex); 2615 i_size_write(inode, offset + len); 2616 EXT4_I(inode)->i_disksize = i_size_read(inode); 2617 mutex_unlock(&inode->i_mutex); 2618 } else if (ret < 0 && nblocks) { 2619 /* Handle partial allocation scenario */ 2620 loff_t newsize; 2621 2622 mutex_lock(&inode->i_mutex); 2623 newsize = (nblocks << blkbits) + i_size_read(inode); 2624 i_size_write(inode, EXT4_BLOCK_ALIGN(newsize, blkbits)); 2625 EXT4_I(inode)->i_disksize = i_size_read(inode); 2626 mutex_unlock(&inode->i_mutex); 2627 } 2628 } 2629 2630 return ret > 0 ? ret2 : ret; 2631 } 2632