1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public Licens 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/module.h> 33 #include <linux/fs.h> 34 #include <linux/time.h> 35 #include <linux/jbd2.h> 36 #include <linux/highuid.h> 37 #include <linux/pagemap.h> 38 #include <linux/quotaops.h> 39 #include <linux/string.h> 40 #include <linux/slab.h> 41 #include <linux/falloc.h> 42 #include <asm/uaccess.h> 43 #include <linux/fiemap.h> 44 #include "ext4_jbd2.h" 45 #include "ext4_extents.h" 46 47 48 /* 49 * ext_pblock: 50 * combine low and high parts of physical block number into ext4_fsblk_t 51 */ 52 ext4_fsblk_t ext_pblock(struct ext4_extent *ex) 53 { 54 ext4_fsblk_t block; 55 56 block = le32_to_cpu(ex->ee_start_lo); 57 block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1; 58 return block; 59 } 60 61 /* 62 * idx_pblock: 63 * combine low and high parts of a leaf physical block number into ext4_fsblk_t 64 */ 65 ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix) 66 { 67 ext4_fsblk_t block; 68 69 block = le32_to_cpu(ix->ei_leaf_lo); 70 block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1; 71 return block; 72 } 73 74 /* 75 * ext4_ext_store_pblock: 76 * stores a large physical block number into an extent struct, 77 * breaking it into parts 78 */ 79 void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb) 80 { 81 ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff)); 82 ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff); 83 } 84 85 /* 86 * ext4_idx_store_pblock: 87 * stores a large physical block number into an index struct, 88 * breaking it into parts 89 */ 90 static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb) 91 { 92 ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff)); 93 ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff); 94 } 95 96 static int ext4_ext_journal_restart(handle_t *handle, int needed) 97 { 98 int err; 99 100 if (!ext4_handle_valid(handle)) 101 return 0; 102 if (handle->h_buffer_credits > needed) 103 return 0; 104 err = ext4_journal_extend(handle, needed); 105 if (err <= 0) 106 return err; 107 return ext4_journal_restart(handle, needed); 108 } 109 110 /* 111 * could return: 112 * - EROFS 113 * - ENOMEM 114 */ 115 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 116 struct ext4_ext_path *path) 117 { 118 if (path->p_bh) { 119 /* path points to block */ 120 return ext4_journal_get_write_access(handle, path->p_bh); 121 } 122 /* path points to leaf/index in inode body */ 123 /* we use in-core data, no need to protect them */ 124 return 0; 125 } 126 127 /* 128 * could return: 129 * - EROFS 130 * - ENOMEM 131 * - EIO 132 */ 133 static int ext4_ext_dirty(handle_t *handle, struct inode *inode, 134 struct ext4_ext_path *path) 135 { 136 int err; 137 if (path->p_bh) { 138 /* path points to block */ 139 err = ext4_handle_dirty_metadata(handle, inode, path->p_bh); 140 } else { 141 /* path points to leaf/index in inode body */ 142 err = ext4_mark_inode_dirty(handle, inode); 143 } 144 return err; 145 } 146 147 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 148 struct ext4_ext_path *path, 149 ext4_lblk_t block) 150 { 151 struct ext4_inode_info *ei = EXT4_I(inode); 152 ext4_fsblk_t bg_start; 153 ext4_fsblk_t last_block; 154 ext4_grpblk_t colour; 155 ext4_group_t block_group; 156 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb)); 157 int depth; 158 159 if (path) { 160 struct ext4_extent *ex; 161 depth = path->p_depth; 162 163 /* try to predict block placement */ 164 ex = path[depth].p_ext; 165 if (ex) 166 return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block)); 167 168 /* it looks like index is empty; 169 * try to find starting block from index itself */ 170 if (path[depth].p_bh) 171 return path[depth].p_bh->b_blocknr; 172 } 173 174 /* OK. use inode's group */ 175 block_group = ei->i_block_group; 176 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) { 177 /* 178 * If there are at least EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME 179 * block groups per flexgroup, reserve the first block 180 * group for directories and special files. Regular 181 * files will start at the second block group. This 182 * tends to speed up directory access and improves 183 * fsck times. 184 */ 185 block_group &= ~(flex_size-1); 186 if (S_ISREG(inode->i_mode)) 187 block_group++; 188 } 189 bg_start = (block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) + 190 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block); 191 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 192 193 /* 194 * If we are doing delayed allocation, we don't need take 195 * colour into account. 196 */ 197 if (test_opt(inode->i_sb, DELALLOC)) 198 return bg_start; 199 200 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 201 colour = (current->pid % 16) * 202 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 203 else 204 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 205 return bg_start + colour + block; 206 } 207 208 /* 209 * Allocation for a meta data block 210 */ 211 static ext4_fsblk_t 212 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 213 struct ext4_ext_path *path, 214 struct ext4_extent *ex, int *err) 215 { 216 ext4_fsblk_t goal, newblock; 217 218 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 219 newblock = ext4_new_meta_blocks(handle, inode, goal, NULL, err); 220 return newblock; 221 } 222 223 static int ext4_ext_space_block(struct inode *inode) 224 { 225 int size; 226 227 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 228 / sizeof(struct ext4_extent); 229 #ifdef AGGRESSIVE_TEST 230 if (size > 6) 231 size = 6; 232 #endif 233 return size; 234 } 235 236 static int ext4_ext_space_block_idx(struct inode *inode) 237 { 238 int size; 239 240 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 241 / sizeof(struct ext4_extent_idx); 242 #ifdef AGGRESSIVE_TEST 243 if (size > 5) 244 size = 5; 245 #endif 246 return size; 247 } 248 249 static int ext4_ext_space_root(struct inode *inode) 250 { 251 int size; 252 253 size = sizeof(EXT4_I(inode)->i_data); 254 size -= sizeof(struct ext4_extent_header); 255 size /= sizeof(struct ext4_extent); 256 #ifdef AGGRESSIVE_TEST 257 if (size > 3) 258 size = 3; 259 #endif 260 return size; 261 } 262 263 static int ext4_ext_space_root_idx(struct inode *inode) 264 { 265 int size; 266 267 size = sizeof(EXT4_I(inode)->i_data); 268 size -= sizeof(struct ext4_extent_header); 269 size /= sizeof(struct ext4_extent_idx); 270 #ifdef AGGRESSIVE_TEST 271 if (size > 4) 272 size = 4; 273 #endif 274 return size; 275 } 276 277 /* 278 * Calculate the number of metadata blocks needed 279 * to allocate @blocks 280 * Worse case is one block per extent 281 */ 282 int ext4_ext_calc_metadata_amount(struct inode *inode, int blocks) 283 { 284 int lcap, icap, rcap, leafs, idxs, num; 285 int newextents = blocks; 286 287 rcap = ext4_ext_space_root_idx(inode); 288 lcap = ext4_ext_space_block(inode); 289 icap = ext4_ext_space_block_idx(inode); 290 291 /* number of new leaf blocks needed */ 292 num = leafs = (newextents + lcap - 1) / lcap; 293 294 /* 295 * Worse case, we need separate index block(s) 296 * to link all new leaf blocks 297 */ 298 idxs = (leafs + icap - 1) / icap; 299 do { 300 num += idxs; 301 idxs = (idxs + icap - 1) / icap; 302 } while (idxs > rcap); 303 304 return num; 305 } 306 307 static int 308 ext4_ext_max_entries(struct inode *inode, int depth) 309 { 310 int max; 311 312 if (depth == ext_depth(inode)) { 313 if (depth == 0) 314 max = ext4_ext_space_root(inode); 315 else 316 max = ext4_ext_space_root_idx(inode); 317 } else { 318 if (depth == 0) 319 max = ext4_ext_space_block(inode); 320 else 321 max = ext4_ext_space_block_idx(inode); 322 } 323 324 return max; 325 } 326 327 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 328 { 329 ext4_fsblk_t block = ext_pblock(ext); 330 int len = ext4_ext_get_actual_len(ext); 331 332 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 333 } 334 335 static int ext4_valid_extent_idx(struct inode *inode, 336 struct ext4_extent_idx *ext_idx) 337 { 338 ext4_fsblk_t block = idx_pblock(ext_idx); 339 340 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 341 } 342 343 static int ext4_valid_extent_entries(struct inode *inode, 344 struct ext4_extent_header *eh, 345 int depth) 346 { 347 struct ext4_extent *ext; 348 struct ext4_extent_idx *ext_idx; 349 unsigned short entries; 350 if (eh->eh_entries == 0) 351 return 1; 352 353 entries = le16_to_cpu(eh->eh_entries); 354 355 if (depth == 0) { 356 /* leaf entries */ 357 ext = EXT_FIRST_EXTENT(eh); 358 while (entries) { 359 if (!ext4_valid_extent(inode, ext)) 360 return 0; 361 ext++; 362 entries--; 363 } 364 } else { 365 ext_idx = EXT_FIRST_INDEX(eh); 366 while (entries) { 367 if (!ext4_valid_extent_idx(inode, ext_idx)) 368 return 0; 369 ext_idx++; 370 entries--; 371 } 372 } 373 return 1; 374 } 375 376 static int __ext4_ext_check(const char *function, struct inode *inode, 377 struct ext4_extent_header *eh, 378 int depth) 379 { 380 const char *error_msg; 381 int max = 0; 382 383 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 384 error_msg = "invalid magic"; 385 goto corrupted; 386 } 387 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 388 error_msg = "unexpected eh_depth"; 389 goto corrupted; 390 } 391 if (unlikely(eh->eh_max == 0)) { 392 error_msg = "invalid eh_max"; 393 goto corrupted; 394 } 395 max = ext4_ext_max_entries(inode, depth); 396 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 397 error_msg = "too large eh_max"; 398 goto corrupted; 399 } 400 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 401 error_msg = "invalid eh_entries"; 402 goto corrupted; 403 } 404 if (!ext4_valid_extent_entries(inode, eh, depth)) { 405 error_msg = "invalid extent entries"; 406 goto corrupted; 407 } 408 return 0; 409 410 corrupted: 411 ext4_error(inode->i_sb, function, 412 "bad header/extent in inode #%lu: %s - magic %x, " 413 "entries %u, max %u(%u), depth %u(%u)", 414 inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic), 415 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 416 max, le16_to_cpu(eh->eh_depth), depth); 417 418 return -EIO; 419 } 420 421 #define ext4_ext_check(inode, eh, depth) \ 422 __ext4_ext_check(__func__, inode, eh, depth) 423 424 int ext4_ext_check_inode(struct inode *inode) 425 { 426 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode)); 427 } 428 429 #ifdef EXT_DEBUG 430 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 431 { 432 int k, l = path->p_depth; 433 434 ext_debug("path:"); 435 for (k = 0; k <= l; k++, path++) { 436 if (path->p_idx) { 437 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 438 idx_pblock(path->p_idx)); 439 } else if (path->p_ext) { 440 ext_debug(" %d:%d:%llu ", 441 le32_to_cpu(path->p_ext->ee_block), 442 ext4_ext_get_actual_len(path->p_ext), 443 ext_pblock(path->p_ext)); 444 } else 445 ext_debug(" []"); 446 } 447 ext_debug("\n"); 448 } 449 450 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 451 { 452 int depth = ext_depth(inode); 453 struct ext4_extent_header *eh; 454 struct ext4_extent *ex; 455 int i; 456 457 if (!path) 458 return; 459 460 eh = path[depth].p_hdr; 461 ex = EXT_FIRST_EXTENT(eh); 462 463 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 464 ext_debug("%d:%d:%llu ", le32_to_cpu(ex->ee_block), 465 ext4_ext_get_actual_len(ex), ext_pblock(ex)); 466 } 467 ext_debug("\n"); 468 } 469 #else 470 #define ext4_ext_show_path(inode, path) 471 #define ext4_ext_show_leaf(inode, path) 472 #endif 473 474 void ext4_ext_drop_refs(struct ext4_ext_path *path) 475 { 476 int depth = path->p_depth; 477 int i; 478 479 for (i = 0; i <= depth; i++, path++) 480 if (path->p_bh) { 481 brelse(path->p_bh); 482 path->p_bh = NULL; 483 } 484 } 485 486 /* 487 * ext4_ext_binsearch_idx: 488 * binary search for the closest index of the given block 489 * the header must be checked before calling this 490 */ 491 static void 492 ext4_ext_binsearch_idx(struct inode *inode, 493 struct ext4_ext_path *path, ext4_lblk_t block) 494 { 495 struct ext4_extent_header *eh = path->p_hdr; 496 struct ext4_extent_idx *r, *l, *m; 497 498 499 ext_debug("binsearch for %u(idx): ", block); 500 501 l = EXT_FIRST_INDEX(eh) + 1; 502 r = EXT_LAST_INDEX(eh); 503 while (l <= r) { 504 m = l + (r - l) / 2; 505 if (block < le32_to_cpu(m->ei_block)) 506 r = m - 1; 507 else 508 l = m + 1; 509 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 510 m, le32_to_cpu(m->ei_block), 511 r, le32_to_cpu(r->ei_block)); 512 } 513 514 path->p_idx = l - 1; 515 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block), 516 idx_pblock(path->p_idx)); 517 518 #ifdef CHECK_BINSEARCH 519 { 520 struct ext4_extent_idx *chix, *ix; 521 int k; 522 523 chix = ix = EXT_FIRST_INDEX(eh); 524 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 525 if (k != 0 && 526 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 527 printk(KERN_DEBUG "k=%d, ix=0x%p, " 528 "first=0x%p\n", k, 529 ix, EXT_FIRST_INDEX(eh)); 530 printk(KERN_DEBUG "%u <= %u\n", 531 le32_to_cpu(ix->ei_block), 532 le32_to_cpu(ix[-1].ei_block)); 533 } 534 BUG_ON(k && le32_to_cpu(ix->ei_block) 535 <= le32_to_cpu(ix[-1].ei_block)); 536 if (block < le32_to_cpu(ix->ei_block)) 537 break; 538 chix = ix; 539 } 540 BUG_ON(chix != path->p_idx); 541 } 542 #endif 543 544 } 545 546 /* 547 * ext4_ext_binsearch: 548 * binary search for closest extent of the given block 549 * the header must be checked before calling this 550 */ 551 static void 552 ext4_ext_binsearch(struct inode *inode, 553 struct ext4_ext_path *path, ext4_lblk_t block) 554 { 555 struct ext4_extent_header *eh = path->p_hdr; 556 struct ext4_extent *r, *l, *m; 557 558 if (eh->eh_entries == 0) { 559 /* 560 * this leaf is empty: 561 * we get such a leaf in split/add case 562 */ 563 return; 564 } 565 566 ext_debug("binsearch for %u: ", block); 567 568 l = EXT_FIRST_EXTENT(eh) + 1; 569 r = EXT_LAST_EXTENT(eh); 570 571 while (l <= r) { 572 m = l + (r - l) / 2; 573 if (block < le32_to_cpu(m->ee_block)) 574 r = m - 1; 575 else 576 l = m + 1; 577 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 578 m, le32_to_cpu(m->ee_block), 579 r, le32_to_cpu(r->ee_block)); 580 } 581 582 path->p_ext = l - 1; 583 ext_debug(" -> %d:%llu:%d ", 584 le32_to_cpu(path->p_ext->ee_block), 585 ext_pblock(path->p_ext), 586 ext4_ext_get_actual_len(path->p_ext)); 587 588 #ifdef CHECK_BINSEARCH 589 { 590 struct ext4_extent *chex, *ex; 591 int k; 592 593 chex = ex = EXT_FIRST_EXTENT(eh); 594 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 595 BUG_ON(k && le32_to_cpu(ex->ee_block) 596 <= le32_to_cpu(ex[-1].ee_block)); 597 if (block < le32_to_cpu(ex->ee_block)) 598 break; 599 chex = ex; 600 } 601 BUG_ON(chex != path->p_ext); 602 } 603 #endif 604 605 } 606 607 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 608 { 609 struct ext4_extent_header *eh; 610 611 eh = ext_inode_hdr(inode); 612 eh->eh_depth = 0; 613 eh->eh_entries = 0; 614 eh->eh_magic = EXT4_EXT_MAGIC; 615 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode)); 616 ext4_mark_inode_dirty(handle, inode); 617 ext4_ext_invalidate_cache(inode); 618 return 0; 619 } 620 621 struct ext4_ext_path * 622 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block, 623 struct ext4_ext_path *path) 624 { 625 struct ext4_extent_header *eh; 626 struct buffer_head *bh; 627 short int depth, i, ppos = 0, alloc = 0; 628 629 eh = ext_inode_hdr(inode); 630 depth = ext_depth(inode); 631 632 /* account possible depth increase */ 633 if (!path) { 634 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 635 GFP_NOFS); 636 if (!path) 637 return ERR_PTR(-ENOMEM); 638 alloc = 1; 639 } 640 path[0].p_hdr = eh; 641 path[0].p_bh = NULL; 642 643 i = depth; 644 /* walk through the tree */ 645 while (i) { 646 int need_to_validate = 0; 647 648 ext_debug("depth %d: num %d, max %d\n", 649 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 650 651 ext4_ext_binsearch_idx(inode, path + ppos, block); 652 path[ppos].p_block = idx_pblock(path[ppos].p_idx); 653 path[ppos].p_depth = i; 654 path[ppos].p_ext = NULL; 655 656 bh = sb_getblk(inode->i_sb, path[ppos].p_block); 657 if (unlikely(!bh)) 658 goto err; 659 if (!bh_uptodate_or_lock(bh)) { 660 if (bh_submit_read(bh) < 0) { 661 put_bh(bh); 662 goto err; 663 } 664 /* validate the extent entries */ 665 need_to_validate = 1; 666 } 667 eh = ext_block_hdr(bh); 668 ppos++; 669 BUG_ON(ppos > depth); 670 path[ppos].p_bh = bh; 671 path[ppos].p_hdr = eh; 672 i--; 673 674 if (need_to_validate && ext4_ext_check(inode, eh, i)) 675 goto err; 676 } 677 678 path[ppos].p_depth = i; 679 path[ppos].p_ext = NULL; 680 path[ppos].p_idx = NULL; 681 682 /* find extent */ 683 ext4_ext_binsearch(inode, path + ppos, block); 684 /* if not an empty leaf */ 685 if (path[ppos].p_ext) 686 path[ppos].p_block = ext_pblock(path[ppos].p_ext); 687 688 ext4_ext_show_path(inode, path); 689 690 return path; 691 692 err: 693 ext4_ext_drop_refs(path); 694 if (alloc) 695 kfree(path); 696 return ERR_PTR(-EIO); 697 } 698 699 /* 700 * ext4_ext_insert_index: 701 * insert new index [@logical;@ptr] into the block at @curp; 702 * check where to insert: before @curp or after @curp 703 */ 704 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 705 struct ext4_ext_path *curp, 706 int logical, ext4_fsblk_t ptr) 707 { 708 struct ext4_extent_idx *ix; 709 int len, err; 710 711 err = ext4_ext_get_access(handle, inode, curp); 712 if (err) 713 return err; 714 715 BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block)); 716 len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx; 717 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 718 /* insert after */ 719 if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) { 720 len = (len - 1) * sizeof(struct ext4_extent_idx); 721 len = len < 0 ? 0 : len; 722 ext_debug("insert new index %d after: %llu. " 723 "move %d from 0x%p to 0x%p\n", 724 logical, ptr, len, 725 (curp->p_idx + 1), (curp->p_idx + 2)); 726 memmove(curp->p_idx + 2, curp->p_idx + 1, len); 727 } 728 ix = curp->p_idx + 1; 729 } else { 730 /* insert before */ 731 len = len * sizeof(struct ext4_extent_idx); 732 len = len < 0 ? 0 : len; 733 ext_debug("insert new index %d before: %llu. " 734 "move %d from 0x%p to 0x%p\n", 735 logical, ptr, len, 736 curp->p_idx, (curp->p_idx + 1)); 737 memmove(curp->p_idx + 1, curp->p_idx, len); 738 ix = curp->p_idx; 739 } 740 741 ix->ei_block = cpu_to_le32(logical); 742 ext4_idx_store_pblock(ix, ptr); 743 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 744 745 BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries) 746 > le16_to_cpu(curp->p_hdr->eh_max)); 747 BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr)); 748 749 err = ext4_ext_dirty(handle, inode, curp); 750 ext4_std_error(inode->i_sb, err); 751 752 return err; 753 } 754 755 /* 756 * ext4_ext_split: 757 * inserts new subtree into the path, using free index entry 758 * at depth @at: 759 * - allocates all needed blocks (new leaf and all intermediate index blocks) 760 * - makes decision where to split 761 * - moves remaining extents and index entries (right to the split point) 762 * into the newly allocated blocks 763 * - initializes subtree 764 */ 765 static int ext4_ext_split(handle_t *handle, struct inode *inode, 766 struct ext4_ext_path *path, 767 struct ext4_extent *newext, int at) 768 { 769 struct buffer_head *bh = NULL; 770 int depth = ext_depth(inode); 771 struct ext4_extent_header *neh; 772 struct ext4_extent_idx *fidx; 773 struct ext4_extent *ex; 774 int i = at, k, m, a; 775 ext4_fsblk_t newblock, oldblock; 776 __le32 border; 777 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 778 int err = 0; 779 780 /* make decision: where to split? */ 781 /* FIXME: now decision is simplest: at current extent */ 782 783 /* if current leaf will be split, then we should use 784 * border from split point */ 785 BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr)); 786 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 787 border = path[depth].p_ext[1].ee_block; 788 ext_debug("leaf will be split." 789 " next leaf starts at %d\n", 790 le32_to_cpu(border)); 791 } else { 792 border = newext->ee_block; 793 ext_debug("leaf will be added." 794 " next leaf starts at %d\n", 795 le32_to_cpu(border)); 796 } 797 798 /* 799 * If error occurs, then we break processing 800 * and mark filesystem read-only. index won't 801 * be inserted and tree will be in consistent 802 * state. Next mount will repair buffers too. 803 */ 804 805 /* 806 * Get array to track all allocated blocks. 807 * We need this to handle errors and free blocks 808 * upon them. 809 */ 810 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 811 if (!ablocks) 812 return -ENOMEM; 813 814 /* allocate all needed blocks */ 815 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 816 for (a = 0; a < depth - at; a++) { 817 newblock = ext4_ext_new_meta_block(handle, inode, path, 818 newext, &err); 819 if (newblock == 0) 820 goto cleanup; 821 ablocks[a] = newblock; 822 } 823 824 /* initialize new leaf */ 825 newblock = ablocks[--a]; 826 BUG_ON(newblock == 0); 827 bh = sb_getblk(inode->i_sb, newblock); 828 if (!bh) { 829 err = -EIO; 830 goto cleanup; 831 } 832 lock_buffer(bh); 833 834 err = ext4_journal_get_create_access(handle, bh); 835 if (err) 836 goto cleanup; 837 838 neh = ext_block_hdr(bh); 839 neh->eh_entries = 0; 840 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode)); 841 neh->eh_magic = EXT4_EXT_MAGIC; 842 neh->eh_depth = 0; 843 ex = EXT_FIRST_EXTENT(neh); 844 845 /* move remainder of path[depth] to the new leaf */ 846 BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max); 847 /* start copy from next extent */ 848 /* TODO: we could do it by single memmove */ 849 m = 0; 850 path[depth].p_ext++; 851 while (path[depth].p_ext <= 852 EXT_MAX_EXTENT(path[depth].p_hdr)) { 853 ext_debug("move %d:%llu:%d in new leaf %llu\n", 854 le32_to_cpu(path[depth].p_ext->ee_block), 855 ext_pblock(path[depth].p_ext), 856 ext4_ext_get_actual_len(path[depth].p_ext), 857 newblock); 858 /*memmove(ex++, path[depth].p_ext++, 859 sizeof(struct ext4_extent)); 860 neh->eh_entries++;*/ 861 path[depth].p_ext++; 862 m++; 863 } 864 if (m) { 865 memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m); 866 le16_add_cpu(&neh->eh_entries, m); 867 } 868 869 set_buffer_uptodate(bh); 870 unlock_buffer(bh); 871 872 err = ext4_handle_dirty_metadata(handle, inode, bh); 873 if (err) 874 goto cleanup; 875 brelse(bh); 876 bh = NULL; 877 878 /* correct old leaf */ 879 if (m) { 880 err = ext4_ext_get_access(handle, inode, path + depth); 881 if (err) 882 goto cleanup; 883 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 884 err = ext4_ext_dirty(handle, inode, path + depth); 885 if (err) 886 goto cleanup; 887 888 } 889 890 /* create intermediate indexes */ 891 k = depth - at - 1; 892 BUG_ON(k < 0); 893 if (k) 894 ext_debug("create %d intermediate indices\n", k); 895 /* insert new index into current index block */ 896 /* current depth stored in i var */ 897 i = depth - 1; 898 while (k--) { 899 oldblock = newblock; 900 newblock = ablocks[--a]; 901 bh = sb_getblk(inode->i_sb, newblock); 902 if (!bh) { 903 err = -EIO; 904 goto cleanup; 905 } 906 lock_buffer(bh); 907 908 err = ext4_journal_get_create_access(handle, bh); 909 if (err) 910 goto cleanup; 911 912 neh = ext_block_hdr(bh); 913 neh->eh_entries = cpu_to_le16(1); 914 neh->eh_magic = EXT4_EXT_MAGIC; 915 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode)); 916 neh->eh_depth = cpu_to_le16(depth - i); 917 fidx = EXT_FIRST_INDEX(neh); 918 fidx->ei_block = border; 919 ext4_idx_store_pblock(fidx, oldblock); 920 921 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 922 i, newblock, le32_to_cpu(border), oldblock); 923 /* copy indexes */ 924 m = 0; 925 path[i].p_idx++; 926 927 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 928 EXT_MAX_INDEX(path[i].p_hdr)); 929 BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) != 930 EXT_LAST_INDEX(path[i].p_hdr)); 931 while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) { 932 ext_debug("%d: move %d:%llu in new index %llu\n", i, 933 le32_to_cpu(path[i].p_idx->ei_block), 934 idx_pblock(path[i].p_idx), 935 newblock); 936 /*memmove(++fidx, path[i].p_idx++, 937 sizeof(struct ext4_extent_idx)); 938 neh->eh_entries++; 939 BUG_ON(neh->eh_entries > neh->eh_max);*/ 940 path[i].p_idx++; 941 m++; 942 } 943 if (m) { 944 memmove(++fidx, path[i].p_idx - m, 945 sizeof(struct ext4_extent_idx) * m); 946 le16_add_cpu(&neh->eh_entries, m); 947 } 948 set_buffer_uptodate(bh); 949 unlock_buffer(bh); 950 951 err = ext4_handle_dirty_metadata(handle, inode, bh); 952 if (err) 953 goto cleanup; 954 brelse(bh); 955 bh = NULL; 956 957 /* correct old index */ 958 if (m) { 959 err = ext4_ext_get_access(handle, inode, path + i); 960 if (err) 961 goto cleanup; 962 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 963 err = ext4_ext_dirty(handle, inode, path + i); 964 if (err) 965 goto cleanup; 966 } 967 968 i--; 969 } 970 971 /* insert new index */ 972 err = ext4_ext_insert_index(handle, inode, path + at, 973 le32_to_cpu(border), newblock); 974 975 cleanup: 976 if (bh) { 977 if (buffer_locked(bh)) 978 unlock_buffer(bh); 979 brelse(bh); 980 } 981 982 if (err) { 983 /* free all allocated blocks in error case */ 984 for (i = 0; i < depth; i++) { 985 if (!ablocks[i]) 986 continue; 987 ext4_free_blocks(handle, inode, ablocks[i], 1, 1); 988 } 989 } 990 kfree(ablocks); 991 992 return err; 993 } 994 995 /* 996 * ext4_ext_grow_indepth: 997 * implements tree growing procedure: 998 * - allocates new block 999 * - moves top-level data (index block or leaf) into the new block 1000 * - initializes new top-level, creating index that points to the 1001 * just created block 1002 */ 1003 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1004 struct ext4_ext_path *path, 1005 struct ext4_extent *newext) 1006 { 1007 struct ext4_ext_path *curp = path; 1008 struct ext4_extent_header *neh; 1009 struct ext4_extent_idx *fidx; 1010 struct buffer_head *bh; 1011 ext4_fsblk_t newblock; 1012 int err = 0; 1013 1014 newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err); 1015 if (newblock == 0) 1016 return err; 1017 1018 bh = sb_getblk(inode->i_sb, newblock); 1019 if (!bh) { 1020 err = -EIO; 1021 ext4_std_error(inode->i_sb, err); 1022 return err; 1023 } 1024 lock_buffer(bh); 1025 1026 err = ext4_journal_get_create_access(handle, bh); 1027 if (err) { 1028 unlock_buffer(bh); 1029 goto out; 1030 } 1031 1032 /* move top-level index/leaf into new block */ 1033 memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data)); 1034 1035 /* set size of new block */ 1036 neh = ext_block_hdr(bh); 1037 /* old root could have indexes or leaves 1038 * so calculate e_max right way */ 1039 if (ext_depth(inode)) 1040 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode)); 1041 else 1042 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode)); 1043 neh->eh_magic = EXT4_EXT_MAGIC; 1044 set_buffer_uptodate(bh); 1045 unlock_buffer(bh); 1046 1047 err = ext4_handle_dirty_metadata(handle, inode, bh); 1048 if (err) 1049 goto out; 1050 1051 /* create index in new top-level index: num,max,pointer */ 1052 err = ext4_ext_get_access(handle, inode, curp); 1053 if (err) 1054 goto out; 1055 1056 curp->p_hdr->eh_magic = EXT4_EXT_MAGIC; 1057 curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode)); 1058 curp->p_hdr->eh_entries = cpu_to_le16(1); 1059 curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr); 1060 1061 if (path[0].p_hdr->eh_depth) 1062 curp->p_idx->ei_block = 1063 EXT_FIRST_INDEX(path[0].p_hdr)->ei_block; 1064 else 1065 curp->p_idx->ei_block = 1066 EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block; 1067 ext4_idx_store_pblock(curp->p_idx, newblock); 1068 1069 neh = ext_inode_hdr(inode); 1070 fidx = EXT_FIRST_INDEX(neh); 1071 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1072 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1073 le32_to_cpu(fidx->ei_block), idx_pblock(fidx)); 1074 1075 neh->eh_depth = cpu_to_le16(path->p_depth + 1); 1076 err = ext4_ext_dirty(handle, inode, curp); 1077 out: 1078 brelse(bh); 1079 1080 return err; 1081 } 1082 1083 /* 1084 * ext4_ext_create_new_leaf: 1085 * finds empty index and adds new leaf. 1086 * if no free index is found, then it requests in-depth growing. 1087 */ 1088 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1089 struct ext4_ext_path *path, 1090 struct ext4_extent *newext) 1091 { 1092 struct ext4_ext_path *curp; 1093 int depth, i, err = 0; 1094 1095 repeat: 1096 i = depth = ext_depth(inode); 1097 1098 /* walk up to the tree and look for free index entry */ 1099 curp = path + depth; 1100 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1101 i--; 1102 curp--; 1103 } 1104 1105 /* we use already allocated block for index block, 1106 * so subsequent data blocks should be contiguous */ 1107 if (EXT_HAS_FREE_INDEX(curp)) { 1108 /* if we found index with free entry, then use that 1109 * entry: create all needed subtree and add new leaf */ 1110 err = ext4_ext_split(handle, inode, path, newext, i); 1111 if (err) 1112 goto out; 1113 1114 /* refill path */ 1115 ext4_ext_drop_refs(path); 1116 path = ext4_ext_find_extent(inode, 1117 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1118 path); 1119 if (IS_ERR(path)) 1120 err = PTR_ERR(path); 1121 } else { 1122 /* tree is full, time to grow in depth */ 1123 err = ext4_ext_grow_indepth(handle, inode, path, newext); 1124 if (err) 1125 goto out; 1126 1127 /* refill path */ 1128 ext4_ext_drop_refs(path); 1129 path = ext4_ext_find_extent(inode, 1130 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1131 path); 1132 if (IS_ERR(path)) { 1133 err = PTR_ERR(path); 1134 goto out; 1135 } 1136 1137 /* 1138 * only first (depth 0 -> 1) produces free space; 1139 * in all other cases we have to split the grown tree 1140 */ 1141 depth = ext_depth(inode); 1142 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1143 /* now we need to split */ 1144 goto repeat; 1145 } 1146 } 1147 1148 out: 1149 return err; 1150 } 1151 1152 /* 1153 * search the closest allocated block to the left for *logical 1154 * and returns it at @logical + it's physical address at @phys 1155 * if *logical is the smallest allocated block, the function 1156 * returns 0 at @phys 1157 * return value contains 0 (success) or error code 1158 */ 1159 int 1160 ext4_ext_search_left(struct inode *inode, struct ext4_ext_path *path, 1161 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1162 { 1163 struct ext4_extent_idx *ix; 1164 struct ext4_extent *ex; 1165 int depth, ee_len; 1166 1167 BUG_ON(path == NULL); 1168 depth = path->p_depth; 1169 *phys = 0; 1170 1171 if (depth == 0 && path->p_ext == NULL) 1172 return 0; 1173 1174 /* usually extent in the path covers blocks smaller 1175 * then *logical, but it can be that extent is the 1176 * first one in the file */ 1177 1178 ex = path[depth].p_ext; 1179 ee_len = ext4_ext_get_actual_len(ex); 1180 if (*logical < le32_to_cpu(ex->ee_block)) { 1181 BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex); 1182 while (--depth >= 0) { 1183 ix = path[depth].p_idx; 1184 BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr)); 1185 } 1186 return 0; 1187 } 1188 1189 BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len)); 1190 1191 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1192 *phys = ext_pblock(ex) + ee_len - 1; 1193 return 0; 1194 } 1195 1196 /* 1197 * search the closest allocated block to the right for *logical 1198 * and returns it at @logical + it's physical address at @phys 1199 * if *logical is the smallest allocated block, the function 1200 * returns 0 at @phys 1201 * return value contains 0 (success) or error code 1202 */ 1203 int 1204 ext4_ext_search_right(struct inode *inode, struct ext4_ext_path *path, 1205 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1206 { 1207 struct buffer_head *bh = NULL; 1208 struct ext4_extent_header *eh; 1209 struct ext4_extent_idx *ix; 1210 struct ext4_extent *ex; 1211 ext4_fsblk_t block; 1212 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1213 int ee_len; 1214 1215 BUG_ON(path == NULL); 1216 depth = path->p_depth; 1217 *phys = 0; 1218 1219 if (depth == 0 && path->p_ext == NULL) 1220 return 0; 1221 1222 /* usually extent in the path covers blocks smaller 1223 * then *logical, but it can be that extent is the 1224 * first one in the file */ 1225 1226 ex = path[depth].p_ext; 1227 ee_len = ext4_ext_get_actual_len(ex); 1228 if (*logical < le32_to_cpu(ex->ee_block)) { 1229 BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex); 1230 while (--depth >= 0) { 1231 ix = path[depth].p_idx; 1232 BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr)); 1233 } 1234 *logical = le32_to_cpu(ex->ee_block); 1235 *phys = ext_pblock(ex); 1236 return 0; 1237 } 1238 1239 BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len)); 1240 1241 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1242 /* next allocated block in this leaf */ 1243 ex++; 1244 *logical = le32_to_cpu(ex->ee_block); 1245 *phys = ext_pblock(ex); 1246 return 0; 1247 } 1248 1249 /* go up and search for index to the right */ 1250 while (--depth >= 0) { 1251 ix = path[depth].p_idx; 1252 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1253 goto got_index; 1254 } 1255 1256 /* we've gone up to the root and found no index to the right */ 1257 return 0; 1258 1259 got_index: 1260 /* we've found index to the right, let's 1261 * follow it and find the closest allocated 1262 * block to the right */ 1263 ix++; 1264 block = idx_pblock(ix); 1265 while (++depth < path->p_depth) { 1266 bh = sb_bread(inode->i_sb, block); 1267 if (bh == NULL) 1268 return -EIO; 1269 eh = ext_block_hdr(bh); 1270 /* subtract from p_depth to get proper eh_depth */ 1271 if (ext4_ext_check(inode, eh, path->p_depth - depth)) { 1272 put_bh(bh); 1273 return -EIO; 1274 } 1275 ix = EXT_FIRST_INDEX(eh); 1276 block = idx_pblock(ix); 1277 put_bh(bh); 1278 } 1279 1280 bh = sb_bread(inode->i_sb, block); 1281 if (bh == NULL) 1282 return -EIO; 1283 eh = ext_block_hdr(bh); 1284 if (ext4_ext_check(inode, eh, path->p_depth - depth)) { 1285 put_bh(bh); 1286 return -EIO; 1287 } 1288 ex = EXT_FIRST_EXTENT(eh); 1289 *logical = le32_to_cpu(ex->ee_block); 1290 *phys = ext_pblock(ex); 1291 put_bh(bh); 1292 return 0; 1293 } 1294 1295 /* 1296 * ext4_ext_next_allocated_block: 1297 * returns allocated block in subsequent extent or EXT_MAX_BLOCK. 1298 * NOTE: it considers block number from index entry as 1299 * allocated block. Thus, index entries have to be consistent 1300 * with leaves. 1301 */ 1302 static ext4_lblk_t 1303 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1304 { 1305 int depth; 1306 1307 BUG_ON(path == NULL); 1308 depth = path->p_depth; 1309 1310 if (depth == 0 && path->p_ext == NULL) 1311 return EXT_MAX_BLOCK; 1312 1313 while (depth >= 0) { 1314 if (depth == path->p_depth) { 1315 /* leaf */ 1316 if (path[depth].p_ext != 1317 EXT_LAST_EXTENT(path[depth].p_hdr)) 1318 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1319 } else { 1320 /* index */ 1321 if (path[depth].p_idx != 1322 EXT_LAST_INDEX(path[depth].p_hdr)) 1323 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1324 } 1325 depth--; 1326 } 1327 1328 return EXT_MAX_BLOCK; 1329 } 1330 1331 /* 1332 * ext4_ext_next_leaf_block: 1333 * returns first allocated block from next leaf or EXT_MAX_BLOCK 1334 */ 1335 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode, 1336 struct ext4_ext_path *path) 1337 { 1338 int depth; 1339 1340 BUG_ON(path == NULL); 1341 depth = path->p_depth; 1342 1343 /* zero-tree has no leaf blocks at all */ 1344 if (depth == 0) 1345 return EXT_MAX_BLOCK; 1346 1347 /* go to index block */ 1348 depth--; 1349 1350 while (depth >= 0) { 1351 if (path[depth].p_idx != 1352 EXT_LAST_INDEX(path[depth].p_hdr)) 1353 return (ext4_lblk_t) 1354 le32_to_cpu(path[depth].p_idx[1].ei_block); 1355 depth--; 1356 } 1357 1358 return EXT_MAX_BLOCK; 1359 } 1360 1361 /* 1362 * ext4_ext_correct_indexes: 1363 * if leaf gets modified and modified extent is first in the leaf, 1364 * then we have to correct all indexes above. 1365 * TODO: do we need to correct tree in all cases? 1366 */ 1367 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1368 struct ext4_ext_path *path) 1369 { 1370 struct ext4_extent_header *eh; 1371 int depth = ext_depth(inode); 1372 struct ext4_extent *ex; 1373 __le32 border; 1374 int k, err = 0; 1375 1376 eh = path[depth].p_hdr; 1377 ex = path[depth].p_ext; 1378 BUG_ON(ex == NULL); 1379 BUG_ON(eh == NULL); 1380 1381 if (depth == 0) { 1382 /* there is no tree at all */ 1383 return 0; 1384 } 1385 1386 if (ex != EXT_FIRST_EXTENT(eh)) { 1387 /* we correct tree if first leaf got modified only */ 1388 return 0; 1389 } 1390 1391 /* 1392 * TODO: we need correction if border is smaller than current one 1393 */ 1394 k = depth - 1; 1395 border = path[depth].p_ext->ee_block; 1396 err = ext4_ext_get_access(handle, inode, path + k); 1397 if (err) 1398 return err; 1399 path[k].p_idx->ei_block = border; 1400 err = ext4_ext_dirty(handle, inode, path + k); 1401 if (err) 1402 return err; 1403 1404 while (k--) { 1405 /* change all left-side indexes */ 1406 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1407 break; 1408 err = ext4_ext_get_access(handle, inode, path + k); 1409 if (err) 1410 break; 1411 path[k].p_idx->ei_block = border; 1412 err = ext4_ext_dirty(handle, inode, path + k); 1413 if (err) 1414 break; 1415 } 1416 1417 return err; 1418 } 1419 1420 int 1421 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1422 struct ext4_extent *ex2) 1423 { 1424 unsigned short ext1_ee_len, ext2_ee_len, max_len; 1425 1426 /* 1427 * Make sure that either both extents are uninitialized, or 1428 * both are _not_. 1429 */ 1430 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2)) 1431 return 0; 1432 1433 if (ext4_ext_is_uninitialized(ex1)) 1434 max_len = EXT_UNINIT_MAX_LEN; 1435 else 1436 max_len = EXT_INIT_MAX_LEN; 1437 1438 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1439 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1440 1441 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1442 le32_to_cpu(ex2->ee_block)) 1443 return 0; 1444 1445 /* 1446 * To allow future support for preallocated extents to be added 1447 * as an RO_COMPAT feature, refuse to merge to extents if 1448 * this can result in the top bit of ee_len being set. 1449 */ 1450 if (ext1_ee_len + ext2_ee_len > max_len) 1451 return 0; 1452 #ifdef AGGRESSIVE_TEST 1453 if (ext1_ee_len >= 4) 1454 return 0; 1455 #endif 1456 1457 if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2)) 1458 return 1; 1459 return 0; 1460 } 1461 1462 /* 1463 * This function tries to merge the "ex" extent to the next extent in the tree. 1464 * It always tries to merge towards right. If you want to merge towards 1465 * left, pass "ex - 1" as argument instead of "ex". 1466 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1467 * 1 if they got merged. 1468 */ 1469 int ext4_ext_try_to_merge(struct inode *inode, 1470 struct ext4_ext_path *path, 1471 struct ext4_extent *ex) 1472 { 1473 struct ext4_extent_header *eh; 1474 unsigned int depth, len; 1475 int merge_done = 0; 1476 int uninitialized = 0; 1477 1478 depth = ext_depth(inode); 1479 BUG_ON(path[depth].p_hdr == NULL); 1480 eh = path[depth].p_hdr; 1481 1482 while (ex < EXT_LAST_EXTENT(eh)) { 1483 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1484 break; 1485 /* merge with next extent! */ 1486 if (ext4_ext_is_uninitialized(ex)) 1487 uninitialized = 1; 1488 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1489 + ext4_ext_get_actual_len(ex + 1)); 1490 if (uninitialized) 1491 ext4_ext_mark_uninitialized(ex); 1492 1493 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1494 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1495 * sizeof(struct ext4_extent); 1496 memmove(ex + 1, ex + 2, len); 1497 } 1498 le16_add_cpu(&eh->eh_entries, -1); 1499 merge_done = 1; 1500 WARN_ON(eh->eh_entries == 0); 1501 if (!eh->eh_entries) 1502 ext4_error(inode->i_sb, "ext4_ext_try_to_merge", 1503 "inode#%lu, eh->eh_entries = 0!", inode->i_ino); 1504 } 1505 1506 return merge_done; 1507 } 1508 1509 /* 1510 * check if a portion of the "newext" extent overlaps with an 1511 * existing extent. 1512 * 1513 * If there is an overlap discovered, it updates the length of the newext 1514 * such that there will be no overlap, and then returns 1. 1515 * If there is no overlap found, it returns 0. 1516 */ 1517 unsigned int ext4_ext_check_overlap(struct inode *inode, 1518 struct ext4_extent *newext, 1519 struct ext4_ext_path *path) 1520 { 1521 ext4_lblk_t b1, b2; 1522 unsigned int depth, len1; 1523 unsigned int ret = 0; 1524 1525 b1 = le32_to_cpu(newext->ee_block); 1526 len1 = ext4_ext_get_actual_len(newext); 1527 depth = ext_depth(inode); 1528 if (!path[depth].p_ext) 1529 goto out; 1530 b2 = le32_to_cpu(path[depth].p_ext->ee_block); 1531 1532 /* 1533 * get the next allocated block if the extent in the path 1534 * is before the requested block(s) 1535 */ 1536 if (b2 < b1) { 1537 b2 = ext4_ext_next_allocated_block(path); 1538 if (b2 == EXT_MAX_BLOCK) 1539 goto out; 1540 } 1541 1542 /* check for wrap through zero on extent logical start block*/ 1543 if (b1 + len1 < b1) { 1544 len1 = EXT_MAX_BLOCK - b1; 1545 newext->ee_len = cpu_to_le16(len1); 1546 ret = 1; 1547 } 1548 1549 /* check for overlap */ 1550 if (b1 + len1 > b2) { 1551 newext->ee_len = cpu_to_le16(b2 - b1); 1552 ret = 1; 1553 } 1554 out: 1555 return ret; 1556 } 1557 1558 /* 1559 * ext4_ext_insert_extent: 1560 * tries to merge requsted extent into the existing extent or 1561 * inserts requested extent as new one into the tree, 1562 * creating new leaf in the no-space case. 1563 */ 1564 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1565 struct ext4_ext_path *path, 1566 struct ext4_extent *newext) 1567 { 1568 struct ext4_extent_header *eh; 1569 struct ext4_extent *ex, *fex; 1570 struct ext4_extent *nearex; /* nearest extent */ 1571 struct ext4_ext_path *npath = NULL; 1572 int depth, len, err; 1573 ext4_lblk_t next; 1574 unsigned uninitialized = 0; 1575 1576 BUG_ON(ext4_ext_get_actual_len(newext) == 0); 1577 depth = ext_depth(inode); 1578 ex = path[depth].p_ext; 1579 BUG_ON(path[depth].p_hdr == NULL); 1580 1581 /* try to insert block into found extent and return */ 1582 if (ex && ext4_can_extents_be_merged(inode, ex, newext)) { 1583 ext_debug("append %d block to %d:%d (from %llu)\n", 1584 ext4_ext_get_actual_len(newext), 1585 le32_to_cpu(ex->ee_block), 1586 ext4_ext_get_actual_len(ex), ext_pblock(ex)); 1587 err = ext4_ext_get_access(handle, inode, path + depth); 1588 if (err) 1589 return err; 1590 1591 /* 1592 * ext4_can_extents_be_merged should have checked that either 1593 * both extents are uninitialized, or both aren't. Thus we 1594 * need to check only one of them here. 1595 */ 1596 if (ext4_ext_is_uninitialized(ex)) 1597 uninitialized = 1; 1598 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1599 + ext4_ext_get_actual_len(newext)); 1600 if (uninitialized) 1601 ext4_ext_mark_uninitialized(ex); 1602 eh = path[depth].p_hdr; 1603 nearex = ex; 1604 goto merge; 1605 } 1606 1607 repeat: 1608 depth = ext_depth(inode); 1609 eh = path[depth].p_hdr; 1610 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 1611 goto has_space; 1612 1613 /* probably next leaf has space for us? */ 1614 fex = EXT_LAST_EXTENT(eh); 1615 next = ext4_ext_next_leaf_block(inode, path); 1616 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block) 1617 && next != EXT_MAX_BLOCK) { 1618 ext_debug("next leaf block - %d\n", next); 1619 BUG_ON(npath != NULL); 1620 npath = ext4_ext_find_extent(inode, next, NULL); 1621 if (IS_ERR(npath)) 1622 return PTR_ERR(npath); 1623 BUG_ON(npath->p_depth != path->p_depth); 1624 eh = npath[depth].p_hdr; 1625 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 1626 ext_debug("next leaf isnt full(%d)\n", 1627 le16_to_cpu(eh->eh_entries)); 1628 path = npath; 1629 goto repeat; 1630 } 1631 ext_debug("next leaf has no free space(%d,%d)\n", 1632 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 1633 } 1634 1635 /* 1636 * There is no free space in the found leaf. 1637 * We're gonna add a new leaf in the tree. 1638 */ 1639 err = ext4_ext_create_new_leaf(handle, inode, path, newext); 1640 if (err) 1641 goto cleanup; 1642 depth = ext_depth(inode); 1643 eh = path[depth].p_hdr; 1644 1645 has_space: 1646 nearex = path[depth].p_ext; 1647 1648 err = ext4_ext_get_access(handle, inode, path + depth); 1649 if (err) 1650 goto cleanup; 1651 1652 if (!nearex) { 1653 /* there is no extent in this leaf, create first one */ 1654 ext_debug("first extent in the leaf: %d:%llu:%d\n", 1655 le32_to_cpu(newext->ee_block), 1656 ext_pblock(newext), 1657 ext4_ext_get_actual_len(newext)); 1658 path[depth].p_ext = EXT_FIRST_EXTENT(eh); 1659 } else if (le32_to_cpu(newext->ee_block) 1660 > le32_to_cpu(nearex->ee_block)) { 1661 /* BUG_ON(newext->ee_block == nearex->ee_block); */ 1662 if (nearex != EXT_LAST_EXTENT(eh)) { 1663 len = EXT_MAX_EXTENT(eh) - nearex; 1664 len = (len - 1) * sizeof(struct ext4_extent); 1665 len = len < 0 ? 0 : len; 1666 ext_debug("insert %d:%llu:%d after: nearest 0x%p, " 1667 "move %d from 0x%p to 0x%p\n", 1668 le32_to_cpu(newext->ee_block), 1669 ext_pblock(newext), 1670 ext4_ext_get_actual_len(newext), 1671 nearex, len, nearex + 1, nearex + 2); 1672 memmove(nearex + 2, nearex + 1, len); 1673 } 1674 path[depth].p_ext = nearex + 1; 1675 } else { 1676 BUG_ON(newext->ee_block == nearex->ee_block); 1677 len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent); 1678 len = len < 0 ? 0 : len; 1679 ext_debug("insert %d:%llu:%d before: nearest 0x%p, " 1680 "move %d from 0x%p to 0x%p\n", 1681 le32_to_cpu(newext->ee_block), 1682 ext_pblock(newext), 1683 ext4_ext_get_actual_len(newext), 1684 nearex, len, nearex + 1, nearex + 2); 1685 memmove(nearex + 1, nearex, len); 1686 path[depth].p_ext = nearex; 1687 } 1688 1689 le16_add_cpu(&eh->eh_entries, 1); 1690 nearex = path[depth].p_ext; 1691 nearex->ee_block = newext->ee_block; 1692 ext4_ext_store_pblock(nearex, ext_pblock(newext)); 1693 nearex->ee_len = newext->ee_len; 1694 1695 merge: 1696 /* try to merge extents to the right */ 1697 ext4_ext_try_to_merge(inode, path, nearex); 1698 1699 /* try to merge extents to the left */ 1700 1701 /* time to correct all indexes above */ 1702 err = ext4_ext_correct_indexes(handle, inode, path); 1703 if (err) 1704 goto cleanup; 1705 1706 err = ext4_ext_dirty(handle, inode, path + depth); 1707 1708 cleanup: 1709 if (npath) { 1710 ext4_ext_drop_refs(npath); 1711 kfree(npath); 1712 } 1713 ext4_ext_invalidate_cache(inode); 1714 return err; 1715 } 1716 1717 int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block, 1718 ext4_lblk_t num, ext_prepare_callback func, 1719 void *cbdata) 1720 { 1721 struct ext4_ext_path *path = NULL; 1722 struct ext4_ext_cache cbex; 1723 struct ext4_extent *ex; 1724 ext4_lblk_t next, start = 0, end = 0; 1725 ext4_lblk_t last = block + num; 1726 int depth, exists, err = 0; 1727 1728 BUG_ON(func == NULL); 1729 BUG_ON(inode == NULL); 1730 1731 while (block < last && block != EXT_MAX_BLOCK) { 1732 num = last - block; 1733 /* find extent for this block */ 1734 path = ext4_ext_find_extent(inode, block, path); 1735 if (IS_ERR(path)) { 1736 err = PTR_ERR(path); 1737 path = NULL; 1738 break; 1739 } 1740 1741 depth = ext_depth(inode); 1742 BUG_ON(path[depth].p_hdr == NULL); 1743 ex = path[depth].p_ext; 1744 next = ext4_ext_next_allocated_block(path); 1745 1746 exists = 0; 1747 if (!ex) { 1748 /* there is no extent yet, so try to allocate 1749 * all requested space */ 1750 start = block; 1751 end = block + num; 1752 } else if (le32_to_cpu(ex->ee_block) > block) { 1753 /* need to allocate space before found extent */ 1754 start = block; 1755 end = le32_to_cpu(ex->ee_block); 1756 if (block + num < end) 1757 end = block + num; 1758 } else if (block >= le32_to_cpu(ex->ee_block) 1759 + ext4_ext_get_actual_len(ex)) { 1760 /* need to allocate space after found extent */ 1761 start = block; 1762 end = block + num; 1763 if (end >= next) 1764 end = next; 1765 } else if (block >= le32_to_cpu(ex->ee_block)) { 1766 /* 1767 * some part of requested space is covered 1768 * by found extent 1769 */ 1770 start = block; 1771 end = le32_to_cpu(ex->ee_block) 1772 + ext4_ext_get_actual_len(ex); 1773 if (block + num < end) 1774 end = block + num; 1775 exists = 1; 1776 } else { 1777 BUG(); 1778 } 1779 BUG_ON(end <= start); 1780 1781 if (!exists) { 1782 cbex.ec_block = start; 1783 cbex.ec_len = end - start; 1784 cbex.ec_start = 0; 1785 cbex.ec_type = EXT4_EXT_CACHE_GAP; 1786 } else { 1787 cbex.ec_block = le32_to_cpu(ex->ee_block); 1788 cbex.ec_len = ext4_ext_get_actual_len(ex); 1789 cbex.ec_start = ext_pblock(ex); 1790 cbex.ec_type = EXT4_EXT_CACHE_EXTENT; 1791 } 1792 1793 BUG_ON(cbex.ec_len == 0); 1794 err = func(inode, path, &cbex, ex, cbdata); 1795 ext4_ext_drop_refs(path); 1796 1797 if (err < 0) 1798 break; 1799 1800 if (err == EXT_REPEAT) 1801 continue; 1802 else if (err == EXT_BREAK) { 1803 err = 0; 1804 break; 1805 } 1806 1807 if (ext_depth(inode) != depth) { 1808 /* depth was changed. we have to realloc path */ 1809 kfree(path); 1810 path = NULL; 1811 } 1812 1813 block = cbex.ec_block + cbex.ec_len; 1814 } 1815 1816 if (path) { 1817 ext4_ext_drop_refs(path); 1818 kfree(path); 1819 } 1820 1821 return err; 1822 } 1823 1824 static void 1825 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block, 1826 __u32 len, ext4_fsblk_t start, int type) 1827 { 1828 struct ext4_ext_cache *cex; 1829 BUG_ON(len == 0); 1830 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1831 cex = &EXT4_I(inode)->i_cached_extent; 1832 cex->ec_type = type; 1833 cex->ec_block = block; 1834 cex->ec_len = len; 1835 cex->ec_start = start; 1836 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1837 } 1838 1839 /* 1840 * ext4_ext_put_gap_in_cache: 1841 * calculate boundaries of the gap that the requested block fits into 1842 * and cache this gap 1843 */ 1844 static void 1845 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, 1846 ext4_lblk_t block) 1847 { 1848 int depth = ext_depth(inode); 1849 unsigned long len; 1850 ext4_lblk_t lblock; 1851 struct ext4_extent *ex; 1852 1853 ex = path[depth].p_ext; 1854 if (ex == NULL) { 1855 /* there is no extent yet, so gap is [0;-] */ 1856 lblock = 0; 1857 len = EXT_MAX_BLOCK; 1858 ext_debug("cache gap(whole file):"); 1859 } else if (block < le32_to_cpu(ex->ee_block)) { 1860 lblock = block; 1861 len = le32_to_cpu(ex->ee_block) - block; 1862 ext_debug("cache gap(before): %u [%u:%u]", 1863 block, 1864 le32_to_cpu(ex->ee_block), 1865 ext4_ext_get_actual_len(ex)); 1866 } else if (block >= le32_to_cpu(ex->ee_block) 1867 + ext4_ext_get_actual_len(ex)) { 1868 ext4_lblk_t next; 1869 lblock = le32_to_cpu(ex->ee_block) 1870 + ext4_ext_get_actual_len(ex); 1871 1872 next = ext4_ext_next_allocated_block(path); 1873 ext_debug("cache gap(after): [%u:%u] %u", 1874 le32_to_cpu(ex->ee_block), 1875 ext4_ext_get_actual_len(ex), 1876 block); 1877 BUG_ON(next == lblock); 1878 len = next - lblock; 1879 } else { 1880 lblock = len = 0; 1881 BUG(); 1882 } 1883 1884 ext_debug(" -> %u:%lu\n", lblock, len); 1885 ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP); 1886 } 1887 1888 static int 1889 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block, 1890 struct ext4_extent *ex) 1891 { 1892 struct ext4_ext_cache *cex; 1893 int ret = EXT4_EXT_CACHE_NO; 1894 1895 /* 1896 * We borrow i_block_reservation_lock to protect i_cached_extent 1897 */ 1898 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1899 cex = &EXT4_I(inode)->i_cached_extent; 1900 1901 /* has cache valid data? */ 1902 if (cex->ec_type == EXT4_EXT_CACHE_NO) 1903 goto errout; 1904 1905 BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP && 1906 cex->ec_type != EXT4_EXT_CACHE_EXTENT); 1907 if (block >= cex->ec_block && block < cex->ec_block + cex->ec_len) { 1908 ex->ee_block = cpu_to_le32(cex->ec_block); 1909 ext4_ext_store_pblock(ex, cex->ec_start); 1910 ex->ee_len = cpu_to_le16(cex->ec_len); 1911 ext_debug("%u cached by %u:%u:%llu\n", 1912 block, 1913 cex->ec_block, cex->ec_len, cex->ec_start); 1914 ret = cex->ec_type; 1915 } 1916 errout: 1917 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1918 return ret; 1919 } 1920 1921 /* 1922 * ext4_ext_rm_idx: 1923 * removes index from the index block. 1924 * It's used in truncate case only, thus all requests are for 1925 * last index in the block only. 1926 */ 1927 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 1928 struct ext4_ext_path *path) 1929 { 1930 struct buffer_head *bh; 1931 int err; 1932 ext4_fsblk_t leaf; 1933 1934 /* free index block */ 1935 path--; 1936 leaf = idx_pblock(path->p_idx); 1937 BUG_ON(path->p_hdr->eh_entries == 0); 1938 err = ext4_ext_get_access(handle, inode, path); 1939 if (err) 1940 return err; 1941 le16_add_cpu(&path->p_hdr->eh_entries, -1); 1942 err = ext4_ext_dirty(handle, inode, path); 1943 if (err) 1944 return err; 1945 ext_debug("index is empty, remove it, free block %llu\n", leaf); 1946 bh = sb_find_get_block(inode->i_sb, leaf); 1947 ext4_forget(handle, 1, inode, bh, leaf); 1948 ext4_free_blocks(handle, inode, leaf, 1, 1); 1949 return err; 1950 } 1951 1952 /* 1953 * ext4_ext_calc_credits_for_single_extent: 1954 * This routine returns max. credits that needed to insert an extent 1955 * to the extent tree. 1956 * When pass the actual path, the caller should calculate credits 1957 * under i_data_sem. 1958 */ 1959 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 1960 struct ext4_ext_path *path) 1961 { 1962 if (path) { 1963 int depth = ext_depth(inode); 1964 int ret = 0; 1965 1966 /* probably there is space in leaf? */ 1967 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 1968 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 1969 1970 /* 1971 * There are some space in the leaf tree, no 1972 * need to account for leaf block credit 1973 * 1974 * bitmaps and block group descriptor blocks 1975 * and other metadat blocks still need to be 1976 * accounted. 1977 */ 1978 /* 1 bitmap, 1 block group descriptor */ 1979 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 1980 return ret; 1981 } 1982 } 1983 1984 return ext4_chunk_trans_blocks(inode, nrblocks); 1985 } 1986 1987 /* 1988 * How many index/leaf blocks need to change/allocate to modify nrblocks? 1989 * 1990 * if nrblocks are fit in a single extent (chunk flag is 1), then 1991 * in the worse case, each tree level index/leaf need to be changed 1992 * if the tree split due to insert a new extent, then the old tree 1993 * index/leaf need to be updated too 1994 * 1995 * If the nrblocks are discontiguous, they could cause 1996 * the whole tree split more than once, but this is really rare. 1997 */ 1998 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 1999 { 2000 int index; 2001 int depth = ext_depth(inode); 2002 2003 if (chunk) 2004 index = depth * 2; 2005 else 2006 index = depth * 3; 2007 2008 return index; 2009 } 2010 2011 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2012 struct ext4_extent *ex, 2013 ext4_lblk_t from, ext4_lblk_t to) 2014 { 2015 struct buffer_head *bh; 2016 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2017 int i, metadata = 0; 2018 2019 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2020 metadata = 1; 2021 #ifdef EXTENTS_STATS 2022 { 2023 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2024 spin_lock(&sbi->s_ext_stats_lock); 2025 sbi->s_ext_blocks += ee_len; 2026 sbi->s_ext_extents++; 2027 if (ee_len < sbi->s_ext_min) 2028 sbi->s_ext_min = ee_len; 2029 if (ee_len > sbi->s_ext_max) 2030 sbi->s_ext_max = ee_len; 2031 if (ext_depth(inode) > sbi->s_depth_max) 2032 sbi->s_depth_max = ext_depth(inode); 2033 spin_unlock(&sbi->s_ext_stats_lock); 2034 } 2035 #endif 2036 if (from >= le32_to_cpu(ex->ee_block) 2037 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 2038 /* tail removal */ 2039 ext4_lblk_t num; 2040 ext4_fsblk_t start; 2041 2042 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2043 start = ext_pblock(ex) + ee_len - num; 2044 ext_debug("free last %u blocks starting %llu\n", num, start); 2045 for (i = 0; i < num; i++) { 2046 bh = sb_find_get_block(inode->i_sb, start + i); 2047 ext4_forget(handle, 0, inode, bh, start + i); 2048 } 2049 ext4_free_blocks(handle, inode, start, num, metadata); 2050 } else if (from == le32_to_cpu(ex->ee_block) 2051 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) { 2052 printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n", 2053 from, to, le32_to_cpu(ex->ee_block), ee_len); 2054 } else { 2055 printk(KERN_INFO "strange request: removal(2) " 2056 "%u-%u from %u:%u\n", 2057 from, to, le32_to_cpu(ex->ee_block), ee_len); 2058 } 2059 return 0; 2060 } 2061 2062 static int 2063 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2064 struct ext4_ext_path *path, ext4_lblk_t start) 2065 { 2066 int err = 0, correct_index = 0; 2067 int depth = ext_depth(inode), credits; 2068 struct ext4_extent_header *eh; 2069 ext4_lblk_t a, b, block; 2070 unsigned num; 2071 ext4_lblk_t ex_ee_block; 2072 unsigned short ex_ee_len; 2073 unsigned uninitialized = 0; 2074 struct ext4_extent *ex; 2075 2076 /* the header must be checked already in ext4_ext_remove_space() */ 2077 ext_debug("truncate since %u in leaf\n", start); 2078 if (!path[depth].p_hdr) 2079 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2080 eh = path[depth].p_hdr; 2081 BUG_ON(eh == NULL); 2082 2083 /* find where to start removing */ 2084 ex = EXT_LAST_EXTENT(eh); 2085 2086 ex_ee_block = le32_to_cpu(ex->ee_block); 2087 ex_ee_len = ext4_ext_get_actual_len(ex); 2088 2089 while (ex >= EXT_FIRST_EXTENT(eh) && 2090 ex_ee_block + ex_ee_len > start) { 2091 2092 if (ext4_ext_is_uninitialized(ex)) 2093 uninitialized = 1; 2094 else 2095 uninitialized = 0; 2096 2097 ext_debug("remove ext %lu:%u\n", ex_ee_block, ex_ee_len); 2098 path[depth].p_ext = ex; 2099 2100 a = ex_ee_block > start ? ex_ee_block : start; 2101 b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ? 2102 ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK; 2103 2104 ext_debug(" border %u:%u\n", a, b); 2105 2106 if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) { 2107 block = 0; 2108 num = 0; 2109 BUG(); 2110 } else if (a != ex_ee_block) { 2111 /* remove tail of the extent */ 2112 block = ex_ee_block; 2113 num = a - block; 2114 } else if (b != ex_ee_block + ex_ee_len - 1) { 2115 /* remove head of the extent */ 2116 block = a; 2117 num = b - a; 2118 /* there is no "make a hole" API yet */ 2119 BUG(); 2120 } else { 2121 /* remove whole extent: excellent! */ 2122 block = ex_ee_block; 2123 num = 0; 2124 BUG_ON(a != ex_ee_block); 2125 BUG_ON(b != ex_ee_block + ex_ee_len - 1); 2126 } 2127 2128 /* 2129 * 3 for leaf, sb, and inode plus 2 (bmap and group 2130 * descriptor) for each block group; assume two block 2131 * groups plus ex_ee_len/blocks_per_block_group for 2132 * the worst case 2133 */ 2134 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2135 if (ex == EXT_FIRST_EXTENT(eh)) { 2136 correct_index = 1; 2137 credits += (ext_depth(inode)) + 1; 2138 } 2139 credits += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb); 2140 2141 err = ext4_ext_journal_restart(handle, credits); 2142 if (err) 2143 goto out; 2144 2145 err = ext4_ext_get_access(handle, inode, path + depth); 2146 if (err) 2147 goto out; 2148 2149 err = ext4_remove_blocks(handle, inode, ex, a, b); 2150 if (err) 2151 goto out; 2152 2153 if (num == 0) { 2154 /* this extent is removed; mark slot entirely unused */ 2155 ext4_ext_store_pblock(ex, 0); 2156 le16_add_cpu(&eh->eh_entries, -1); 2157 } 2158 2159 ex->ee_block = cpu_to_le32(block); 2160 ex->ee_len = cpu_to_le16(num); 2161 /* 2162 * Do not mark uninitialized if all the blocks in the 2163 * extent have been removed. 2164 */ 2165 if (uninitialized && num) 2166 ext4_ext_mark_uninitialized(ex); 2167 2168 err = ext4_ext_dirty(handle, inode, path + depth); 2169 if (err) 2170 goto out; 2171 2172 ext_debug("new extent: %u:%u:%llu\n", block, num, 2173 ext_pblock(ex)); 2174 ex--; 2175 ex_ee_block = le32_to_cpu(ex->ee_block); 2176 ex_ee_len = ext4_ext_get_actual_len(ex); 2177 } 2178 2179 if (correct_index && eh->eh_entries) 2180 err = ext4_ext_correct_indexes(handle, inode, path); 2181 2182 /* if this leaf is free, then we should 2183 * remove it from index block above */ 2184 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2185 err = ext4_ext_rm_idx(handle, inode, path + depth); 2186 2187 out: 2188 return err; 2189 } 2190 2191 /* 2192 * ext4_ext_more_to_rm: 2193 * returns 1 if current index has to be freed (even partial) 2194 */ 2195 static int 2196 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2197 { 2198 BUG_ON(path->p_idx == NULL); 2199 2200 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2201 return 0; 2202 2203 /* 2204 * if truncate on deeper level happened, it wasn't partial, 2205 * so we have to consider current index for truncation 2206 */ 2207 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2208 return 0; 2209 return 1; 2210 } 2211 2212 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start) 2213 { 2214 struct super_block *sb = inode->i_sb; 2215 int depth = ext_depth(inode); 2216 struct ext4_ext_path *path; 2217 handle_t *handle; 2218 int i = 0, err = 0; 2219 2220 ext_debug("truncate since %u\n", start); 2221 2222 /* probably first extent we're gonna free will be last in block */ 2223 handle = ext4_journal_start(inode, depth + 1); 2224 if (IS_ERR(handle)) 2225 return PTR_ERR(handle); 2226 2227 ext4_ext_invalidate_cache(inode); 2228 2229 /* 2230 * We start scanning from right side, freeing all the blocks 2231 * after i_size and walking into the tree depth-wise. 2232 */ 2233 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS); 2234 if (path == NULL) { 2235 ext4_journal_stop(handle); 2236 return -ENOMEM; 2237 } 2238 path[0].p_hdr = ext_inode_hdr(inode); 2239 if (ext4_ext_check(inode, path[0].p_hdr, depth)) { 2240 err = -EIO; 2241 goto out; 2242 } 2243 path[0].p_depth = depth; 2244 2245 while (i >= 0 && err == 0) { 2246 if (i == depth) { 2247 /* this is leaf block */ 2248 err = ext4_ext_rm_leaf(handle, inode, path, start); 2249 /* root level has p_bh == NULL, brelse() eats this */ 2250 brelse(path[i].p_bh); 2251 path[i].p_bh = NULL; 2252 i--; 2253 continue; 2254 } 2255 2256 /* this is index block */ 2257 if (!path[i].p_hdr) { 2258 ext_debug("initialize header\n"); 2259 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2260 } 2261 2262 if (!path[i].p_idx) { 2263 /* this level hasn't been touched yet */ 2264 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2265 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2266 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2267 path[i].p_hdr, 2268 le16_to_cpu(path[i].p_hdr->eh_entries)); 2269 } else { 2270 /* we were already here, see at next index */ 2271 path[i].p_idx--; 2272 } 2273 2274 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2275 i, EXT_FIRST_INDEX(path[i].p_hdr), 2276 path[i].p_idx); 2277 if (ext4_ext_more_to_rm(path + i)) { 2278 struct buffer_head *bh; 2279 /* go to the next level */ 2280 ext_debug("move to level %d (block %llu)\n", 2281 i + 1, idx_pblock(path[i].p_idx)); 2282 memset(path + i + 1, 0, sizeof(*path)); 2283 bh = sb_bread(sb, idx_pblock(path[i].p_idx)); 2284 if (!bh) { 2285 /* should we reset i_size? */ 2286 err = -EIO; 2287 break; 2288 } 2289 if (WARN_ON(i + 1 > depth)) { 2290 err = -EIO; 2291 break; 2292 } 2293 if (ext4_ext_check(inode, ext_block_hdr(bh), 2294 depth - i - 1)) { 2295 err = -EIO; 2296 break; 2297 } 2298 path[i + 1].p_bh = bh; 2299 2300 /* save actual number of indexes since this 2301 * number is changed at the next iteration */ 2302 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2303 i++; 2304 } else { 2305 /* we finished processing this index, go up */ 2306 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2307 /* index is empty, remove it; 2308 * handle must be already prepared by the 2309 * truncatei_leaf() */ 2310 err = ext4_ext_rm_idx(handle, inode, path + i); 2311 } 2312 /* root level has p_bh == NULL, brelse() eats this */ 2313 brelse(path[i].p_bh); 2314 path[i].p_bh = NULL; 2315 i--; 2316 ext_debug("return to level %d\n", i); 2317 } 2318 } 2319 2320 /* TODO: flexible tree reduction should be here */ 2321 if (path->p_hdr->eh_entries == 0) { 2322 /* 2323 * truncate to zero freed all the tree, 2324 * so we need to correct eh_depth 2325 */ 2326 err = ext4_ext_get_access(handle, inode, path); 2327 if (err == 0) { 2328 ext_inode_hdr(inode)->eh_depth = 0; 2329 ext_inode_hdr(inode)->eh_max = 2330 cpu_to_le16(ext4_ext_space_root(inode)); 2331 err = ext4_ext_dirty(handle, inode, path); 2332 } 2333 } 2334 out: 2335 ext4_ext_drop_refs(path); 2336 kfree(path); 2337 ext4_journal_stop(handle); 2338 2339 return err; 2340 } 2341 2342 /* 2343 * called at mount time 2344 */ 2345 void ext4_ext_init(struct super_block *sb) 2346 { 2347 /* 2348 * possible initialization would be here 2349 */ 2350 2351 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2352 printk(KERN_INFO "EXT4-fs: file extents enabled"); 2353 #ifdef AGGRESSIVE_TEST 2354 printk(", aggressive tests"); 2355 #endif 2356 #ifdef CHECK_BINSEARCH 2357 printk(", check binsearch"); 2358 #endif 2359 #ifdef EXTENTS_STATS 2360 printk(", stats"); 2361 #endif 2362 printk("\n"); 2363 #ifdef EXTENTS_STATS 2364 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 2365 EXT4_SB(sb)->s_ext_min = 1 << 30; 2366 EXT4_SB(sb)->s_ext_max = 0; 2367 #endif 2368 } 2369 } 2370 2371 /* 2372 * called at umount time 2373 */ 2374 void ext4_ext_release(struct super_block *sb) 2375 { 2376 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 2377 return; 2378 2379 #ifdef EXTENTS_STATS 2380 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 2381 struct ext4_sb_info *sbi = EXT4_SB(sb); 2382 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 2383 sbi->s_ext_blocks, sbi->s_ext_extents, 2384 sbi->s_ext_blocks / sbi->s_ext_extents); 2385 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 2386 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 2387 } 2388 #endif 2389 } 2390 2391 static void bi_complete(struct bio *bio, int error) 2392 { 2393 complete((struct completion *)bio->bi_private); 2394 } 2395 2396 /* FIXME!! we need to try to merge to left or right after zero-out */ 2397 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 2398 { 2399 int ret = -EIO; 2400 struct bio *bio; 2401 int blkbits, blocksize; 2402 sector_t ee_pblock; 2403 struct completion event; 2404 unsigned int ee_len, len, done, offset; 2405 2406 2407 blkbits = inode->i_blkbits; 2408 blocksize = inode->i_sb->s_blocksize; 2409 ee_len = ext4_ext_get_actual_len(ex); 2410 ee_pblock = ext_pblock(ex); 2411 2412 /* convert ee_pblock to 512 byte sectors */ 2413 ee_pblock = ee_pblock << (blkbits - 9); 2414 2415 while (ee_len > 0) { 2416 2417 if (ee_len > BIO_MAX_PAGES) 2418 len = BIO_MAX_PAGES; 2419 else 2420 len = ee_len; 2421 2422 bio = bio_alloc(GFP_NOIO, len); 2423 bio->bi_sector = ee_pblock; 2424 bio->bi_bdev = inode->i_sb->s_bdev; 2425 2426 done = 0; 2427 offset = 0; 2428 while (done < len) { 2429 ret = bio_add_page(bio, ZERO_PAGE(0), 2430 blocksize, offset); 2431 if (ret != blocksize) { 2432 /* 2433 * We can't add any more pages because of 2434 * hardware limitations. Start a new bio. 2435 */ 2436 break; 2437 } 2438 done++; 2439 offset += blocksize; 2440 if (offset >= PAGE_CACHE_SIZE) 2441 offset = 0; 2442 } 2443 2444 init_completion(&event); 2445 bio->bi_private = &event; 2446 bio->bi_end_io = bi_complete; 2447 submit_bio(WRITE, bio); 2448 wait_for_completion(&event); 2449 2450 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 2451 ret = 0; 2452 else { 2453 ret = -EIO; 2454 break; 2455 } 2456 bio_put(bio); 2457 ee_len -= done; 2458 ee_pblock += done << (blkbits - 9); 2459 } 2460 return ret; 2461 } 2462 2463 #define EXT4_EXT_ZERO_LEN 7 2464 2465 /* 2466 * This function is called by ext4_ext_get_blocks() if someone tries to write 2467 * to an uninitialized extent. It may result in splitting the uninitialized 2468 * extent into multiple extents (upto three - one initialized and two 2469 * uninitialized). 2470 * There are three possibilities: 2471 * a> There is no split required: Entire extent should be initialized 2472 * b> Splits in two extents: Write is happening at either end of the extent 2473 * c> Splits in three extents: Somone is writing in middle of the extent 2474 */ 2475 static int ext4_ext_convert_to_initialized(handle_t *handle, 2476 struct inode *inode, 2477 struct ext4_ext_path *path, 2478 ext4_lblk_t iblock, 2479 unsigned int max_blocks) 2480 { 2481 struct ext4_extent *ex, newex, orig_ex; 2482 struct ext4_extent *ex1 = NULL; 2483 struct ext4_extent *ex2 = NULL; 2484 struct ext4_extent *ex3 = NULL; 2485 struct ext4_extent_header *eh; 2486 ext4_lblk_t ee_block; 2487 unsigned int allocated, ee_len, depth; 2488 ext4_fsblk_t newblock; 2489 int err = 0; 2490 int ret = 0; 2491 2492 depth = ext_depth(inode); 2493 eh = path[depth].p_hdr; 2494 ex = path[depth].p_ext; 2495 ee_block = le32_to_cpu(ex->ee_block); 2496 ee_len = ext4_ext_get_actual_len(ex); 2497 allocated = ee_len - (iblock - ee_block); 2498 newblock = iblock - ee_block + ext_pblock(ex); 2499 ex2 = ex; 2500 orig_ex.ee_block = ex->ee_block; 2501 orig_ex.ee_len = cpu_to_le16(ee_len); 2502 ext4_ext_store_pblock(&orig_ex, ext_pblock(ex)); 2503 2504 err = ext4_ext_get_access(handle, inode, path + depth); 2505 if (err) 2506 goto out; 2507 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */ 2508 if (ee_len <= 2*EXT4_EXT_ZERO_LEN) { 2509 err = ext4_ext_zeroout(inode, &orig_ex); 2510 if (err) 2511 goto fix_extent_len; 2512 /* update the extent length and mark as initialized */ 2513 ex->ee_block = orig_ex.ee_block; 2514 ex->ee_len = orig_ex.ee_len; 2515 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2516 ext4_ext_dirty(handle, inode, path + depth); 2517 /* zeroed the full extent */ 2518 return allocated; 2519 } 2520 2521 /* ex1: ee_block to iblock - 1 : uninitialized */ 2522 if (iblock > ee_block) { 2523 ex1 = ex; 2524 ex1->ee_len = cpu_to_le16(iblock - ee_block); 2525 ext4_ext_mark_uninitialized(ex1); 2526 ex2 = &newex; 2527 } 2528 /* 2529 * for sanity, update the length of the ex2 extent before 2530 * we insert ex3, if ex1 is NULL. This is to avoid temporary 2531 * overlap of blocks. 2532 */ 2533 if (!ex1 && allocated > max_blocks) 2534 ex2->ee_len = cpu_to_le16(max_blocks); 2535 /* ex3: to ee_block + ee_len : uninitialised */ 2536 if (allocated > max_blocks) { 2537 unsigned int newdepth; 2538 /* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */ 2539 if (allocated <= EXT4_EXT_ZERO_LEN) { 2540 /* 2541 * iblock == ee_block is handled by the zerouout 2542 * at the beginning. 2543 * Mark first half uninitialized. 2544 * Mark second half initialized and zero out the 2545 * initialized extent 2546 */ 2547 ex->ee_block = orig_ex.ee_block; 2548 ex->ee_len = cpu_to_le16(ee_len - allocated); 2549 ext4_ext_mark_uninitialized(ex); 2550 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2551 ext4_ext_dirty(handle, inode, path + depth); 2552 2553 ex3 = &newex; 2554 ex3->ee_block = cpu_to_le32(iblock); 2555 ext4_ext_store_pblock(ex3, newblock); 2556 ex3->ee_len = cpu_to_le16(allocated); 2557 err = ext4_ext_insert_extent(handle, inode, path, ex3); 2558 if (err == -ENOSPC) { 2559 err = ext4_ext_zeroout(inode, &orig_ex); 2560 if (err) 2561 goto fix_extent_len; 2562 ex->ee_block = orig_ex.ee_block; 2563 ex->ee_len = orig_ex.ee_len; 2564 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2565 ext4_ext_dirty(handle, inode, path + depth); 2566 /* blocks available from iblock */ 2567 return allocated; 2568 2569 } else if (err) 2570 goto fix_extent_len; 2571 2572 /* 2573 * We need to zero out the second half because 2574 * an fallocate request can update file size and 2575 * converting the second half to initialized extent 2576 * implies that we can leak some junk data to user 2577 * space. 2578 */ 2579 err = ext4_ext_zeroout(inode, ex3); 2580 if (err) { 2581 /* 2582 * We should actually mark the 2583 * second half as uninit and return error 2584 * Insert would have changed the extent 2585 */ 2586 depth = ext_depth(inode); 2587 ext4_ext_drop_refs(path); 2588 path = ext4_ext_find_extent(inode, 2589 iblock, path); 2590 if (IS_ERR(path)) { 2591 err = PTR_ERR(path); 2592 return err; 2593 } 2594 /* get the second half extent details */ 2595 ex = path[depth].p_ext; 2596 err = ext4_ext_get_access(handle, inode, 2597 path + depth); 2598 if (err) 2599 return err; 2600 ext4_ext_mark_uninitialized(ex); 2601 ext4_ext_dirty(handle, inode, path + depth); 2602 return err; 2603 } 2604 2605 /* zeroed the second half */ 2606 return allocated; 2607 } 2608 ex3 = &newex; 2609 ex3->ee_block = cpu_to_le32(iblock + max_blocks); 2610 ext4_ext_store_pblock(ex3, newblock + max_blocks); 2611 ex3->ee_len = cpu_to_le16(allocated - max_blocks); 2612 ext4_ext_mark_uninitialized(ex3); 2613 err = ext4_ext_insert_extent(handle, inode, path, ex3); 2614 if (err == -ENOSPC) { 2615 err = ext4_ext_zeroout(inode, &orig_ex); 2616 if (err) 2617 goto fix_extent_len; 2618 /* update the extent length and mark as initialized */ 2619 ex->ee_block = orig_ex.ee_block; 2620 ex->ee_len = orig_ex.ee_len; 2621 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2622 ext4_ext_dirty(handle, inode, path + depth); 2623 /* zeroed the full extent */ 2624 /* blocks available from iblock */ 2625 return allocated; 2626 2627 } else if (err) 2628 goto fix_extent_len; 2629 /* 2630 * The depth, and hence eh & ex might change 2631 * as part of the insert above. 2632 */ 2633 newdepth = ext_depth(inode); 2634 /* 2635 * update the extent length after successful insert of the 2636 * split extent 2637 */ 2638 orig_ex.ee_len = cpu_to_le16(ee_len - 2639 ext4_ext_get_actual_len(ex3)); 2640 depth = newdepth; 2641 ext4_ext_drop_refs(path); 2642 path = ext4_ext_find_extent(inode, iblock, path); 2643 if (IS_ERR(path)) { 2644 err = PTR_ERR(path); 2645 goto out; 2646 } 2647 eh = path[depth].p_hdr; 2648 ex = path[depth].p_ext; 2649 if (ex2 != &newex) 2650 ex2 = ex; 2651 2652 err = ext4_ext_get_access(handle, inode, path + depth); 2653 if (err) 2654 goto out; 2655 2656 allocated = max_blocks; 2657 2658 /* If extent has less than EXT4_EXT_ZERO_LEN and we are trying 2659 * to insert a extent in the middle zerout directly 2660 * otherwise give the extent a chance to merge to left 2661 */ 2662 if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN && 2663 iblock != ee_block) { 2664 err = ext4_ext_zeroout(inode, &orig_ex); 2665 if (err) 2666 goto fix_extent_len; 2667 /* update the extent length and mark as initialized */ 2668 ex->ee_block = orig_ex.ee_block; 2669 ex->ee_len = orig_ex.ee_len; 2670 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2671 ext4_ext_dirty(handle, inode, path + depth); 2672 /* zero out the first half */ 2673 /* blocks available from iblock */ 2674 return allocated; 2675 } 2676 } 2677 /* 2678 * If there was a change of depth as part of the 2679 * insertion of ex3 above, we need to update the length 2680 * of the ex1 extent again here 2681 */ 2682 if (ex1 && ex1 != ex) { 2683 ex1 = ex; 2684 ex1->ee_len = cpu_to_le16(iblock - ee_block); 2685 ext4_ext_mark_uninitialized(ex1); 2686 ex2 = &newex; 2687 } 2688 /* ex2: iblock to iblock + maxblocks-1 : initialised */ 2689 ex2->ee_block = cpu_to_le32(iblock); 2690 ext4_ext_store_pblock(ex2, newblock); 2691 ex2->ee_len = cpu_to_le16(allocated); 2692 if (ex2 != ex) 2693 goto insert; 2694 /* 2695 * New (initialized) extent starts from the first block 2696 * in the current extent. i.e., ex2 == ex 2697 * We have to see if it can be merged with the extent 2698 * on the left. 2699 */ 2700 if (ex2 > EXT_FIRST_EXTENT(eh)) { 2701 /* 2702 * To merge left, pass "ex2 - 1" to try_to_merge(), 2703 * since it merges towards right _only_. 2704 */ 2705 ret = ext4_ext_try_to_merge(inode, path, ex2 - 1); 2706 if (ret) { 2707 err = ext4_ext_correct_indexes(handle, inode, path); 2708 if (err) 2709 goto out; 2710 depth = ext_depth(inode); 2711 ex2--; 2712 } 2713 } 2714 /* 2715 * Try to Merge towards right. This might be required 2716 * only when the whole extent is being written to. 2717 * i.e. ex2 == ex and ex3 == NULL. 2718 */ 2719 if (!ex3) { 2720 ret = ext4_ext_try_to_merge(inode, path, ex2); 2721 if (ret) { 2722 err = ext4_ext_correct_indexes(handle, inode, path); 2723 if (err) 2724 goto out; 2725 } 2726 } 2727 /* Mark modified extent as dirty */ 2728 err = ext4_ext_dirty(handle, inode, path + depth); 2729 goto out; 2730 insert: 2731 err = ext4_ext_insert_extent(handle, inode, path, &newex); 2732 if (err == -ENOSPC) { 2733 err = ext4_ext_zeroout(inode, &orig_ex); 2734 if (err) 2735 goto fix_extent_len; 2736 /* update the extent length and mark as initialized */ 2737 ex->ee_block = orig_ex.ee_block; 2738 ex->ee_len = orig_ex.ee_len; 2739 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2740 ext4_ext_dirty(handle, inode, path + depth); 2741 /* zero out the first half */ 2742 return allocated; 2743 } else if (err) 2744 goto fix_extent_len; 2745 out: 2746 return err ? err : allocated; 2747 2748 fix_extent_len: 2749 ex->ee_block = orig_ex.ee_block; 2750 ex->ee_len = orig_ex.ee_len; 2751 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2752 ext4_ext_mark_uninitialized(ex); 2753 ext4_ext_dirty(handle, inode, path + depth); 2754 return err; 2755 } 2756 2757 /* 2758 * Block allocation/map/preallocation routine for extents based files 2759 * 2760 * 2761 * Need to be called with 2762 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 2763 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 2764 * 2765 * return > 0, number of of blocks already mapped/allocated 2766 * if create == 0 and these are pre-allocated blocks 2767 * buffer head is unmapped 2768 * otherwise blocks are mapped 2769 * 2770 * return = 0, if plain look up failed (blocks have not been allocated) 2771 * buffer head is unmapped 2772 * 2773 * return < 0, error case. 2774 */ 2775 int ext4_ext_get_blocks(handle_t *handle, struct inode *inode, 2776 ext4_lblk_t iblock, 2777 unsigned int max_blocks, struct buffer_head *bh_result, 2778 int flags) 2779 { 2780 struct ext4_ext_path *path = NULL; 2781 struct ext4_extent_header *eh; 2782 struct ext4_extent newex, *ex; 2783 ext4_fsblk_t newblock; 2784 int err = 0, depth, ret, cache_type; 2785 unsigned int allocated = 0; 2786 struct ext4_allocation_request ar; 2787 2788 __clear_bit(BH_New, &bh_result->b_state); 2789 ext_debug("blocks %u/%u requested for inode %u\n", 2790 iblock, max_blocks, inode->i_ino); 2791 2792 /* check in cache */ 2793 cache_type = ext4_ext_in_cache(inode, iblock, &newex); 2794 if (cache_type) { 2795 if (cache_type == EXT4_EXT_CACHE_GAP) { 2796 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 2797 /* 2798 * block isn't allocated yet and 2799 * user doesn't want to allocate it 2800 */ 2801 goto out2; 2802 } 2803 /* we should allocate requested block */ 2804 } else if (cache_type == EXT4_EXT_CACHE_EXTENT) { 2805 /* block is already allocated */ 2806 newblock = iblock 2807 - le32_to_cpu(newex.ee_block) 2808 + ext_pblock(&newex); 2809 /* number of remaining blocks in the extent */ 2810 allocated = ext4_ext_get_actual_len(&newex) - 2811 (iblock - le32_to_cpu(newex.ee_block)); 2812 goto out; 2813 } else { 2814 BUG(); 2815 } 2816 } 2817 2818 /* find extent for this block */ 2819 path = ext4_ext_find_extent(inode, iblock, NULL); 2820 if (IS_ERR(path)) { 2821 err = PTR_ERR(path); 2822 path = NULL; 2823 goto out2; 2824 } 2825 2826 depth = ext_depth(inode); 2827 2828 /* 2829 * consistent leaf must not be empty; 2830 * this situation is possible, though, _during_ tree modification; 2831 * this is why assert can't be put in ext4_ext_find_extent() 2832 */ 2833 BUG_ON(path[depth].p_ext == NULL && depth != 0); 2834 eh = path[depth].p_hdr; 2835 2836 ex = path[depth].p_ext; 2837 if (ex) { 2838 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 2839 ext4_fsblk_t ee_start = ext_pblock(ex); 2840 unsigned short ee_len; 2841 2842 /* 2843 * Uninitialized extents are treated as holes, except that 2844 * we split out initialized portions during a write. 2845 */ 2846 ee_len = ext4_ext_get_actual_len(ex); 2847 /* if found extent covers block, simply return it */ 2848 if (iblock >= ee_block && iblock < ee_block + ee_len) { 2849 newblock = iblock - ee_block + ee_start; 2850 /* number of remaining blocks in the extent */ 2851 allocated = ee_len - (iblock - ee_block); 2852 ext_debug("%u fit into %lu:%d -> %llu\n", iblock, 2853 ee_block, ee_len, newblock); 2854 2855 /* Do not put uninitialized extent in the cache */ 2856 if (!ext4_ext_is_uninitialized(ex)) { 2857 ext4_ext_put_in_cache(inode, ee_block, 2858 ee_len, ee_start, 2859 EXT4_EXT_CACHE_EXTENT); 2860 goto out; 2861 } 2862 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) 2863 goto out; 2864 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 2865 if (allocated > max_blocks) 2866 allocated = max_blocks; 2867 /* 2868 * We have blocks reserved already. We 2869 * return allocated blocks so that delalloc 2870 * won't do block reservation for us. But 2871 * the buffer head will be unmapped so that 2872 * a read from the block returns 0s. 2873 */ 2874 set_buffer_unwritten(bh_result); 2875 bh_result->b_bdev = inode->i_sb->s_bdev; 2876 bh_result->b_blocknr = newblock; 2877 goto out2; 2878 } 2879 2880 ret = ext4_ext_convert_to_initialized(handle, inode, 2881 path, iblock, 2882 max_blocks); 2883 if (ret <= 0) { 2884 err = ret; 2885 goto out2; 2886 } else 2887 allocated = ret; 2888 goto outnew; 2889 } 2890 } 2891 2892 /* 2893 * requested block isn't allocated yet; 2894 * we couldn't try to create block if create flag is zero 2895 */ 2896 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 2897 /* 2898 * put just found gap into cache to speed up 2899 * subsequent requests 2900 */ 2901 ext4_ext_put_gap_in_cache(inode, path, iblock); 2902 goto out2; 2903 } 2904 /* 2905 * Okay, we need to do block allocation. 2906 */ 2907 2908 /* find neighbour allocated blocks */ 2909 ar.lleft = iblock; 2910 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 2911 if (err) 2912 goto out2; 2913 ar.lright = iblock; 2914 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright); 2915 if (err) 2916 goto out2; 2917 2918 /* 2919 * See if request is beyond maximum number of blocks we can have in 2920 * a single extent. For an initialized extent this limit is 2921 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is 2922 * EXT_UNINIT_MAX_LEN. 2923 */ 2924 if (max_blocks > EXT_INIT_MAX_LEN && 2925 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 2926 max_blocks = EXT_INIT_MAX_LEN; 2927 else if (max_blocks > EXT_UNINIT_MAX_LEN && 2928 (flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 2929 max_blocks = EXT_UNINIT_MAX_LEN; 2930 2931 /* Check if we can really insert (iblock)::(iblock+max_blocks) extent */ 2932 newex.ee_block = cpu_to_le32(iblock); 2933 newex.ee_len = cpu_to_le16(max_blocks); 2934 err = ext4_ext_check_overlap(inode, &newex, path); 2935 if (err) 2936 allocated = ext4_ext_get_actual_len(&newex); 2937 else 2938 allocated = max_blocks; 2939 2940 /* allocate new block */ 2941 ar.inode = inode; 2942 ar.goal = ext4_ext_find_goal(inode, path, iblock); 2943 ar.logical = iblock; 2944 ar.len = allocated; 2945 if (S_ISREG(inode->i_mode)) 2946 ar.flags = EXT4_MB_HINT_DATA; 2947 else 2948 /* disable in-core preallocation for non-regular files */ 2949 ar.flags = 0; 2950 newblock = ext4_mb_new_blocks(handle, &ar, &err); 2951 if (!newblock) 2952 goto out2; 2953 ext_debug("allocate new block: goal %llu, found %llu/%lu\n", 2954 ar.goal, newblock, allocated); 2955 2956 /* try to insert new extent into found leaf and return */ 2957 ext4_ext_store_pblock(&newex, newblock); 2958 newex.ee_len = cpu_to_le16(ar.len); 2959 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) /* Mark uninitialized */ 2960 ext4_ext_mark_uninitialized(&newex); 2961 err = ext4_ext_insert_extent(handle, inode, path, &newex); 2962 if (err) { 2963 /* free data blocks we just allocated */ 2964 /* not a good idea to call discard here directly, 2965 * but otherwise we'd need to call it every free() */ 2966 ext4_discard_preallocations(inode); 2967 ext4_free_blocks(handle, inode, ext_pblock(&newex), 2968 ext4_ext_get_actual_len(&newex), 0); 2969 goto out2; 2970 } 2971 2972 /* previous routine could use block we allocated */ 2973 newblock = ext_pblock(&newex); 2974 allocated = ext4_ext_get_actual_len(&newex); 2975 outnew: 2976 set_buffer_new(bh_result); 2977 2978 /* Cache only when it is _not_ an uninitialized extent */ 2979 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) 2980 ext4_ext_put_in_cache(inode, iblock, allocated, newblock, 2981 EXT4_EXT_CACHE_EXTENT); 2982 out: 2983 if (allocated > max_blocks) 2984 allocated = max_blocks; 2985 ext4_ext_show_leaf(inode, path); 2986 set_buffer_mapped(bh_result); 2987 bh_result->b_bdev = inode->i_sb->s_bdev; 2988 bh_result->b_blocknr = newblock; 2989 out2: 2990 if (path) { 2991 ext4_ext_drop_refs(path); 2992 kfree(path); 2993 } 2994 return err ? err : allocated; 2995 } 2996 2997 void ext4_ext_truncate(struct inode *inode) 2998 { 2999 struct address_space *mapping = inode->i_mapping; 3000 struct super_block *sb = inode->i_sb; 3001 ext4_lblk_t last_block; 3002 handle_t *handle; 3003 int err = 0; 3004 3005 /* 3006 * probably first extent we're gonna free will be last in block 3007 */ 3008 err = ext4_writepage_trans_blocks(inode); 3009 handle = ext4_journal_start(inode, err); 3010 if (IS_ERR(handle)) 3011 return; 3012 3013 if (inode->i_size & (sb->s_blocksize - 1)) 3014 ext4_block_truncate_page(handle, mapping, inode->i_size); 3015 3016 if (ext4_orphan_add(handle, inode)) 3017 goto out_stop; 3018 3019 down_write(&EXT4_I(inode)->i_data_sem); 3020 ext4_ext_invalidate_cache(inode); 3021 3022 ext4_discard_preallocations(inode); 3023 3024 /* 3025 * TODO: optimization is possible here. 3026 * Probably we need not scan at all, 3027 * because page truncation is enough. 3028 */ 3029 3030 /* we have to know where to truncate from in crash case */ 3031 EXT4_I(inode)->i_disksize = inode->i_size; 3032 ext4_mark_inode_dirty(handle, inode); 3033 3034 last_block = (inode->i_size + sb->s_blocksize - 1) 3035 >> EXT4_BLOCK_SIZE_BITS(sb); 3036 err = ext4_ext_remove_space(inode, last_block); 3037 3038 /* In a multi-transaction truncate, we only make the final 3039 * transaction synchronous. 3040 */ 3041 if (IS_SYNC(inode)) 3042 ext4_handle_sync(handle); 3043 3044 out_stop: 3045 up_write(&EXT4_I(inode)->i_data_sem); 3046 /* 3047 * If this was a simple ftruncate() and the file will remain alive, 3048 * then we need to clear up the orphan record which we created above. 3049 * However, if this was a real unlink then we were called by 3050 * ext4_delete_inode(), and we allow that function to clean up the 3051 * orphan info for us. 3052 */ 3053 if (inode->i_nlink) 3054 ext4_orphan_del(handle, inode); 3055 3056 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3057 ext4_mark_inode_dirty(handle, inode); 3058 ext4_journal_stop(handle); 3059 } 3060 3061 static void ext4_falloc_update_inode(struct inode *inode, 3062 int mode, loff_t new_size, int update_ctime) 3063 { 3064 struct timespec now; 3065 3066 if (update_ctime) { 3067 now = current_fs_time(inode->i_sb); 3068 if (!timespec_equal(&inode->i_ctime, &now)) 3069 inode->i_ctime = now; 3070 } 3071 /* 3072 * Update only when preallocation was requested beyond 3073 * the file size. 3074 */ 3075 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 3076 if (new_size > i_size_read(inode)) 3077 i_size_write(inode, new_size); 3078 if (new_size > EXT4_I(inode)->i_disksize) 3079 ext4_update_i_disksize(inode, new_size); 3080 } 3081 3082 } 3083 3084 /* 3085 * preallocate space for a file. This implements ext4's fallocate inode 3086 * operation, which gets called from sys_fallocate system call. 3087 * For block-mapped files, posix_fallocate should fall back to the method 3088 * of writing zeroes to the required new blocks (the same behavior which is 3089 * expected for file systems which do not support fallocate() system call). 3090 */ 3091 long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len) 3092 { 3093 handle_t *handle; 3094 ext4_lblk_t block; 3095 loff_t new_size; 3096 unsigned int max_blocks; 3097 int ret = 0; 3098 int ret2 = 0; 3099 int retries = 0; 3100 struct buffer_head map_bh; 3101 unsigned int credits, blkbits = inode->i_blkbits; 3102 3103 /* 3104 * currently supporting (pre)allocate mode for extent-based 3105 * files _only_ 3106 */ 3107 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) 3108 return -EOPNOTSUPP; 3109 3110 /* preallocation to directories is currently not supported */ 3111 if (S_ISDIR(inode->i_mode)) 3112 return -ENODEV; 3113 3114 block = offset >> blkbits; 3115 /* 3116 * We can't just convert len to max_blocks because 3117 * If blocksize = 4096 offset = 3072 and len = 2048 3118 */ 3119 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 3120 - block; 3121 /* 3122 * credits to insert 1 extent into extent tree 3123 */ 3124 credits = ext4_chunk_trans_blocks(inode, max_blocks); 3125 mutex_lock(&inode->i_mutex); 3126 retry: 3127 while (ret >= 0 && ret < max_blocks) { 3128 block = block + ret; 3129 max_blocks = max_blocks - ret; 3130 handle = ext4_journal_start(inode, credits); 3131 if (IS_ERR(handle)) { 3132 ret = PTR_ERR(handle); 3133 break; 3134 } 3135 map_bh.b_state = 0; 3136 ret = ext4_get_blocks(handle, inode, block, 3137 max_blocks, &map_bh, 3138 EXT4_GET_BLOCKS_CREATE_UNINIT_EXT); 3139 if (ret <= 0) { 3140 #ifdef EXT4FS_DEBUG 3141 WARN_ON(ret <= 0); 3142 printk(KERN_ERR "%s: ext4_ext_get_blocks " 3143 "returned error inode#%lu, block=%u, " 3144 "max_blocks=%u", __func__, 3145 inode->i_ino, block, max_blocks); 3146 #endif 3147 ext4_mark_inode_dirty(handle, inode); 3148 ret2 = ext4_journal_stop(handle); 3149 break; 3150 } 3151 if ((block + ret) >= (EXT4_BLOCK_ALIGN(offset + len, 3152 blkbits) >> blkbits)) 3153 new_size = offset + len; 3154 else 3155 new_size = (block + ret) << blkbits; 3156 3157 ext4_falloc_update_inode(inode, mode, new_size, 3158 buffer_new(&map_bh)); 3159 ext4_mark_inode_dirty(handle, inode); 3160 ret2 = ext4_journal_stop(handle); 3161 if (ret2) 3162 break; 3163 } 3164 if (ret == -ENOSPC && 3165 ext4_should_retry_alloc(inode->i_sb, &retries)) { 3166 ret = 0; 3167 goto retry; 3168 } 3169 mutex_unlock(&inode->i_mutex); 3170 return ret > 0 ? ret2 : ret; 3171 } 3172 3173 /* 3174 * Callback function called for each extent to gather FIEMAP information. 3175 */ 3176 static int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path, 3177 struct ext4_ext_cache *newex, struct ext4_extent *ex, 3178 void *data) 3179 { 3180 struct fiemap_extent_info *fieinfo = data; 3181 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 3182 __u64 logical; 3183 __u64 physical; 3184 __u64 length; 3185 __u32 flags = 0; 3186 int error; 3187 3188 logical = (__u64)newex->ec_block << blksize_bits; 3189 3190 if (newex->ec_type == EXT4_EXT_CACHE_GAP) { 3191 pgoff_t offset; 3192 struct page *page; 3193 struct buffer_head *bh = NULL; 3194 3195 offset = logical >> PAGE_SHIFT; 3196 page = find_get_page(inode->i_mapping, offset); 3197 if (!page || !page_has_buffers(page)) 3198 return EXT_CONTINUE; 3199 3200 bh = page_buffers(page); 3201 3202 if (!bh) 3203 return EXT_CONTINUE; 3204 3205 if (buffer_delay(bh)) { 3206 flags |= FIEMAP_EXTENT_DELALLOC; 3207 page_cache_release(page); 3208 } else { 3209 page_cache_release(page); 3210 return EXT_CONTINUE; 3211 } 3212 } 3213 3214 physical = (__u64)newex->ec_start << blksize_bits; 3215 length = (__u64)newex->ec_len << blksize_bits; 3216 3217 if (ex && ext4_ext_is_uninitialized(ex)) 3218 flags |= FIEMAP_EXTENT_UNWRITTEN; 3219 3220 /* 3221 * If this extent reaches EXT_MAX_BLOCK, it must be last. 3222 * 3223 * Or if ext4_ext_next_allocated_block is EXT_MAX_BLOCK, 3224 * this also indicates no more allocated blocks. 3225 * 3226 * XXX this might miss a single-block extent at EXT_MAX_BLOCK 3227 */ 3228 if (ext4_ext_next_allocated_block(path) == EXT_MAX_BLOCK || 3229 newex->ec_block + newex->ec_len - 1 == EXT_MAX_BLOCK) { 3230 loff_t size = i_size_read(inode); 3231 loff_t bs = EXT4_BLOCK_SIZE(inode->i_sb); 3232 3233 flags |= FIEMAP_EXTENT_LAST; 3234 if ((flags & FIEMAP_EXTENT_DELALLOC) && 3235 logical+length > size) 3236 length = (size - logical + bs - 1) & ~(bs-1); 3237 } 3238 3239 error = fiemap_fill_next_extent(fieinfo, logical, physical, 3240 length, flags); 3241 if (error < 0) 3242 return error; 3243 if (error == 1) 3244 return EXT_BREAK; 3245 3246 return EXT_CONTINUE; 3247 } 3248 3249 /* fiemap flags we can handle specified here */ 3250 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 3251 3252 static int ext4_xattr_fiemap(struct inode *inode, 3253 struct fiemap_extent_info *fieinfo) 3254 { 3255 __u64 physical = 0; 3256 __u64 length; 3257 __u32 flags = FIEMAP_EXTENT_LAST; 3258 int blockbits = inode->i_sb->s_blocksize_bits; 3259 int error = 0; 3260 3261 /* in-inode? */ 3262 if (EXT4_I(inode)->i_state & EXT4_STATE_XATTR) { 3263 struct ext4_iloc iloc; 3264 int offset; /* offset of xattr in inode */ 3265 3266 error = ext4_get_inode_loc(inode, &iloc); 3267 if (error) 3268 return error; 3269 physical = iloc.bh->b_blocknr << blockbits; 3270 offset = EXT4_GOOD_OLD_INODE_SIZE + 3271 EXT4_I(inode)->i_extra_isize; 3272 physical += offset; 3273 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 3274 flags |= FIEMAP_EXTENT_DATA_INLINE; 3275 } else { /* external block */ 3276 physical = EXT4_I(inode)->i_file_acl << blockbits; 3277 length = inode->i_sb->s_blocksize; 3278 } 3279 3280 if (physical) 3281 error = fiemap_fill_next_extent(fieinfo, 0, physical, 3282 length, flags); 3283 return (error < 0 ? error : 0); 3284 } 3285 3286 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3287 __u64 start, __u64 len) 3288 { 3289 ext4_lblk_t start_blk; 3290 ext4_lblk_t len_blks; 3291 int error = 0; 3292 3293 /* fallback to generic here if not in extents fmt */ 3294 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) 3295 return generic_block_fiemap(inode, fieinfo, start, len, 3296 ext4_get_block); 3297 3298 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 3299 return -EBADR; 3300 3301 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 3302 error = ext4_xattr_fiemap(inode, fieinfo); 3303 } else { 3304 start_blk = start >> inode->i_sb->s_blocksize_bits; 3305 len_blks = len >> inode->i_sb->s_blocksize_bits; 3306 3307 /* 3308 * Walk the extent tree gathering extent information. 3309 * ext4_ext_fiemap_cb will push extents back to user. 3310 */ 3311 down_read(&EXT4_I(inode)->i_data_sem); 3312 error = ext4_ext_walk_space(inode, start_blk, len_blks, 3313 ext4_ext_fiemap_cb, fieinfo); 3314 up_read(&EXT4_I(inode)->i_data_sem); 3315 } 3316 3317 return error; 3318 } 3319 3320