xref: /openbmc/linux/fs/ext4/extents.c (revision 55ad63bf3a30936aced50f13452735c2f58b234c)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
46 
47 
48 /*
49  * ext_pblock:
50  * combine low and high parts of physical block number into ext4_fsblk_t
51  */
52 ext4_fsblk_t ext_pblock(struct ext4_extent *ex)
53 {
54 	ext4_fsblk_t block;
55 
56 	block = le32_to_cpu(ex->ee_start_lo);
57 	block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1;
58 	return block;
59 }
60 
61 /*
62  * idx_pblock:
63  * combine low and high parts of a leaf physical block number into ext4_fsblk_t
64  */
65 ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix)
66 {
67 	ext4_fsblk_t block;
68 
69 	block = le32_to_cpu(ix->ei_leaf_lo);
70 	block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1;
71 	return block;
72 }
73 
74 /*
75  * ext4_ext_store_pblock:
76  * stores a large physical block number into an extent struct,
77  * breaking it into parts
78  */
79 void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb)
80 {
81 	ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
82 	ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
83 }
84 
85 /*
86  * ext4_idx_store_pblock:
87  * stores a large physical block number into an index struct,
88  * breaking it into parts
89  */
90 static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb)
91 {
92 	ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
93 	ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
94 }
95 
96 static int ext4_ext_truncate_extend_restart(handle_t *handle,
97 					    struct inode *inode,
98 					    int needed)
99 {
100 	int err;
101 
102 	if (!ext4_handle_valid(handle))
103 		return 0;
104 	if (handle->h_buffer_credits > needed)
105 		return 0;
106 	err = ext4_journal_extend(handle, needed);
107 	if (err <= 0)
108 		return err;
109 	err = ext4_truncate_restart_trans(handle, inode, needed);
110 	/*
111 	 * We have dropped i_data_sem so someone might have cached again
112 	 * an extent we are going to truncate.
113 	 */
114 	ext4_ext_invalidate_cache(inode);
115 
116 	return err;
117 }
118 
119 /*
120  * could return:
121  *  - EROFS
122  *  - ENOMEM
123  */
124 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
125 				struct ext4_ext_path *path)
126 {
127 	if (path->p_bh) {
128 		/* path points to block */
129 		return ext4_journal_get_write_access(handle, path->p_bh);
130 	}
131 	/* path points to leaf/index in inode body */
132 	/* we use in-core data, no need to protect them */
133 	return 0;
134 }
135 
136 /*
137  * could return:
138  *  - EROFS
139  *  - ENOMEM
140  *  - EIO
141  */
142 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
143 				struct ext4_ext_path *path)
144 {
145 	int err;
146 	if (path->p_bh) {
147 		/* path points to block */
148 		err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
149 	} else {
150 		/* path points to leaf/index in inode body */
151 		err = ext4_mark_inode_dirty(handle, inode);
152 	}
153 	return err;
154 }
155 
156 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
157 			      struct ext4_ext_path *path,
158 			      ext4_lblk_t block)
159 {
160 	struct ext4_inode_info *ei = EXT4_I(inode);
161 	ext4_fsblk_t bg_start;
162 	ext4_fsblk_t last_block;
163 	ext4_grpblk_t colour;
164 	ext4_group_t block_group;
165 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
166 	int depth;
167 
168 	if (path) {
169 		struct ext4_extent *ex;
170 		depth = path->p_depth;
171 
172 		/* try to predict block placement */
173 		ex = path[depth].p_ext;
174 		if (ex)
175 			return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block));
176 
177 		/* it looks like index is empty;
178 		 * try to find starting block from index itself */
179 		if (path[depth].p_bh)
180 			return path[depth].p_bh->b_blocknr;
181 	}
182 
183 	/* OK. use inode's group */
184 	block_group = ei->i_block_group;
185 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
186 		/*
187 		 * If there are at least EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
188 		 * block groups per flexgroup, reserve the first block
189 		 * group for directories and special files.  Regular
190 		 * files will start at the second block group.  This
191 		 * tends to speed up directory access and improves
192 		 * fsck times.
193 		 */
194 		block_group &= ~(flex_size-1);
195 		if (S_ISREG(inode->i_mode))
196 			block_group++;
197 	}
198 	bg_start = (block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) +
199 		le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block);
200 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
201 
202 	/*
203 	 * If we are doing delayed allocation, we don't need take
204 	 * colour into account.
205 	 */
206 	if (test_opt(inode->i_sb, DELALLOC))
207 		return bg_start;
208 
209 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
210 		colour = (current->pid % 16) *
211 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
212 	else
213 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
214 	return bg_start + colour + block;
215 }
216 
217 /*
218  * Allocation for a meta data block
219  */
220 static ext4_fsblk_t
221 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
222 			struct ext4_ext_path *path,
223 			struct ext4_extent *ex, int *err)
224 {
225 	ext4_fsblk_t goal, newblock;
226 
227 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
228 	newblock = ext4_new_meta_blocks(handle, inode, goal, NULL, err);
229 	return newblock;
230 }
231 
232 static inline int ext4_ext_space_block(struct inode *inode, int check)
233 {
234 	int size;
235 
236 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
237 			/ sizeof(struct ext4_extent);
238 	if (!check) {
239 #ifdef AGGRESSIVE_TEST
240 		if (size > 6)
241 			size = 6;
242 #endif
243 	}
244 	return size;
245 }
246 
247 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
248 {
249 	int size;
250 
251 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
252 			/ sizeof(struct ext4_extent_idx);
253 	if (!check) {
254 #ifdef AGGRESSIVE_TEST
255 		if (size > 5)
256 			size = 5;
257 #endif
258 	}
259 	return size;
260 }
261 
262 static inline int ext4_ext_space_root(struct inode *inode, int check)
263 {
264 	int size;
265 
266 	size = sizeof(EXT4_I(inode)->i_data);
267 	size -= sizeof(struct ext4_extent_header);
268 	size /= sizeof(struct ext4_extent);
269 	if (!check) {
270 #ifdef AGGRESSIVE_TEST
271 		if (size > 3)
272 			size = 3;
273 #endif
274 	}
275 	return size;
276 }
277 
278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
279 {
280 	int size;
281 
282 	size = sizeof(EXT4_I(inode)->i_data);
283 	size -= sizeof(struct ext4_extent_header);
284 	size /= sizeof(struct ext4_extent_idx);
285 	if (!check) {
286 #ifdef AGGRESSIVE_TEST
287 		if (size > 4)
288 			size = 4;
289 #endif
290 	}
291 	return size;
292 }
293 
294 /*
295  * Calculate the number of metadata blocks needed
296  * to allocate @blocks
297  * Worse case is one block per extent
298  */
299 int ext4_ext_calc_metadata_amount(struct inode *inode, int blocks)
300 {
301 	int lcap, icap, rcap, leafs, idxs, num;
302 	int newextents = blocks;
303 
304 	rcap = ext4_ext_space_root_idx(inode, 0);
305 	lcap = ext4_ext_space_block(inode, 0);
306 	icap = ext4_ext_space_block_idx(inode, 0);
307 
308 	/* number of new leaf blocks needed */
309 	num = leafs = (newextents + lcap - 1) / lcap;
310 
311 	/*
312 	 * Worse case, we need separate index block(s)
313 	 * to link all new leaf blocks
314 	 */
315 	idxs = (leafs + icap - 1) / icap;
316 	do {
317 		num += idxs;
318 		idxs = (idxs + icap - 1) / icap;
319 	} while (idxs > rcap);
320 
321 	return num;
322 }
323 
324 static int
325 ext4_ext_max_entries(struct inode *inode, int depth)
326 {
327 	int max;
328 
329 	if (depth == ext_depth(inode)) {
330 		if (depth == 0)
331 			max = ext4_ext_space_root(inode, 1);
332 		else
333 			max = ext4_ext_space_root_idx(inode, 1);
334 	} else {
335 		if (depth == 0)
336 			max = ext4_ext_space_block(inode, 1);
337 		else
338 			max = ext4_ext_space_block_idx(inode, 1);
339 	}
340 
341 	return max;
342 }
343 
344 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
345 {
346 	ext4_fsblk_t block = ext_pblock(ext);
347 	int len = ext4_ext_get_actual_len(ext);
348 
349 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
350 }
351 
352 static int ext4_valid_extent_idx(struct inode *inode,
353 				struct ext4_extent_idx *ext_idx)
354 {
355 	ext4_fsblk_t block = idx_pblock(ext_idx);
356 
357 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
358 }
359 
360 static int ext4_valid_extent_entries(struct inode *inode,
361 				struct ext4_extent_header *eh,
362 				int depth)
363 {
364 	struct ext4_extent *ext;
365 	struct ext4_extent_idx *ext_idx;
366 	unsigned short entries;
367 	if (eh->eh_entries == 0)
368 		return 1;
369 
370 	entries = le16_to_cpu(eh->eh_entries);
371 
372 	if (depth == 0) {
373 		/* leaf entries */
374 		ext = EXT_FIRST_EXTENT(eh);
375 		while (entries) {
376 			if (!ext4_valid_extent(inode, ext))
377 				return 0;
378 			ext++;
379 			entries--;
380 		}
381 	} else {
382 		ext_idx = EXT_FIRST_INDEX(eh);
383 		while (entries) {
384 			if (!ext4_valid_extent_idx(inode, ext_idx))
385 				return 0;
386 			ext_idx++;
387 			entries--;
388 		}
389 	}
390 	return 1;
391 }
392 
393 static int __ext4_ext_check(const char *function, struct inode *inode,
394 					struct ext4_extent_header *eh,
395 					int depth)
396 {
397 	const char *error_msg;
398 	int max = 0;
399 
400 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
401 		error_msg = "invalid magic";
402 		goto corrupted;
403 	}
404 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
405 		error_msg = "unexpected eh_depth";
406 		goto corrupted;
407 	}
408 	if (unlikely(eh->eh_max == 0)) {
409 		error_msg = "invalid eh_max";
410 		goto corrupted;
411 	}
412 	max = ext4_ext_max_entries(inode, depth);
413 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
414 		error_msg = "too large eh_max";
415 		goto corrupted;
416 	}
417 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
418 		error_msg = "invalid eh_entries";
419 		goto corrupted;
420 	}
421 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
422 		error_msg = "invalid extent entries";
423 		goto corrupted;
424 	}
425 	return 0;
426 
427 corrupted:
428 	ext4_error(inode->i_sb, function,
429 			"bad header/extent in inode #%lu: %s - magic %x, "
430 			"entries %u, max %u(%u), depth %u(%u)",
431 			inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic),
432 			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
433 			max, le16_to_cpu(eh->eh_depth), depth);
434 
435 	return -EIO;
436 }
437 
438 #define ext4_ext_check(inode, eh, depth)	\
439 	__ext4_ext_check(__func__, inode, eh, depth)
440 
441 int ext4_ext_check_inode(struct inode *inode)
442 {
443 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
444 }
445 
446 #ifdef EXT_DEBUG
447 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
448 {
449 	int k, l = path->p_depth;
450 
451 	ext_debug("path:");
452 	for (k = 0; k <= l; k++, path++) {
453 		if (path->p_idx) {
454 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
455 			    idx_pblock(path->p_idx));
456 		} else if (path->p_ext) {
457 			ext_debug("  %d:[%d]%d:%llu ",
458 				  le32_to_cpu(path->p_ext->ee_block),
459 				  ext4_ext_is_uninitialized(path->p_ext),
460 				  ext4_ext_get_actual_len(path->p_ext),
461 				  ext_pblock(path->p_ext));
462 		} else
463 			ext_debug("  []");
464 	}
465 	ext_debug("\n");
466 }
467 
468 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
469 {
470 	int depth = ext_depth(inode);
471 	struct ext4_extent_header *eh;
472 	struct ext4_extent *ex;
473 	int i;
474 
475 	if (!path)
476 		return;
477 
478 	eh = path[depth].p_hdr;
479 	ex = EXT_FIRST_EXTENT(eh);
480 
481 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
482 
483 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
484 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
485 			  ext4_ext_is_uninitialized(ex),
486 			  ext4_ext_get_actual_len(ex), ext_pblock(ex));
487 	}
488 	ext_debug("\n");
489 }
490 #else
491 #define ext4_ext_show_path(inode, path)
492 #define ext4_ext_show_leaf(inode, path)
493 #endif
494 
495 void ext4_ext_drop_refs(struct ext4_ext_path *path)
496 {
497 	int depth = path->p_depth;
498 	int i;
499 
500 	for (i = 0; i <= depth; i++, path++)
501 		if (path->p_bh) {
502 			brelse(path->p_bh);
503 			path->p_bh = NULL;
504 		}
505 }
506 
507 /*
508  * ext4_ext_binsearch_idx:
509  * binary search for the closest index of the given block
510  * the header must be checked before calling this
511  */
512 static void
513 ext4_ext_binsearch_idx(struct inode *inode,
514 			struct ext4_ext_path *path, ext4_lblk_t block)
515 {
516 	struct ext4_extent_header *eh = path->p_hdr;
517 	struct ext4_extent_idx *r, *l, *m;
518 
519 
520 	ext_debug("binsearch for %u(idx):  ", block);
521 
522 	l = EXT_FIRST_INDEX(eh) + 1;
523 	r = EXT_LAST_INDEX(eh);
524 	while (l <= r) {
525 		m = l + (r - l) / 2;
526 		if (block < le32_to_cpu(m->ei_block))
527 			r = m - 1;
528 		else
529 			l = m + 1;
530 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
531 				m, le32_to_cpu(m->ei_block),
532 				r, le32_to_cpu(r->ei_block));
533 	}
534 
535 	path->p_idx = l - 1;
536 	ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
537 		  idx_pblock(path->p_idx));
538 
539 #ifdef CHECK_BINSEARCH
540 	{
541 		struct ext4_extent_idx *chix, *ix;
542 		int k;
543 
544 		chix = ix = EXT_FIRST_INDEX(eh);
545 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
546 		  if (k != 0 &&
547 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
548 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
549 				       "first=0x%p\n", k,
550 				       ix, EXT_FIRST_INDEX(eh));
551 				printk(KERN_DEBUG "%u <= %u\n",
552 				       le32_to_cpu(ix->ei_block),
553 				       le32_to_cpu(ix[-1].ei_block));
554 			}
555 			BUG_ON(k && le32_to_cpu(ix->ei_block)
556 					   <= le32_to_cpu(ix[-1].ei_block));
557 			if (block < le32_to_cpu(ix->ei_block))
558 				break;
559 			chix = ix;
560 		}
561 		BUG_ON(chix != path->p_idx);
562 	}
563 #endif
564 
565 }
566 
567 /*
568  * ext4_ext_binsearch:
569  * binary search for closest extent of the given block
570  * the header must be checked before calling this
571  */
572 static void
573 ext4_ext_binsearch(struct inode *inode,
574 		struct ext4_ext_path *path, ext4_lblk_t block)
575 {
576 	struct ext4_extent_header *eh = path->p_hdr;
577 	struct ext4_extent *r, *l, *m;
578 
579 	if (eh->eh_entries == 0) {
580 		/*
581 		 * this leaf is empty:
582 		 * we get such a leaf in split/add case
583 		 */
584 		return;
585 	}
586 
587 	ext_debug("binsearch for %u:  ", block);
588 
589 	l = EXT_FIRST_EXTENT(eh) + 1;
590 	r = EXT_LAST_EXTENT(eh);
591 
592 	while (l <= r) {
593 		m = l + (r - l) / 2;
594 		if (block < le32_to_cpu(m->ee_block))
595 			r = m - 1;
596 		else
597 			l = m + 1;
598 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
599 				m, le32_to_cpu(m->ee_block),
600 				r, le32_to_cpu(r->ee_block));
601 	}
602 
603 	path->p_ext = l - 1;
604 	ext_debug("  -> %d:%llu:[%d]%d ",
605 			le32_to_cpu(path->p_ext->ee_block),
606 			ext_pblock(path->p_ext),
607 			ext4_ext_is_uninitialized(path->p_ext),
608 			ext4_ext_get_actual_len(path->p_ext));
609 
610 #ifdef CHECK_BINSEARCH
611 	{
612 		struct ext4_extent *chex, *ex;
613 		int k;
614 
615 		chex = ex = EXT_FIRST_EXTENT(eh);
616 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
617 			BUG_ON(k && le32_to_cpu(ex->ee_block)
618 					  <= le32_to_cpu(ex[-1].ee_block));
619 			if (block < le32_to_cpu(ex->ee_block))
620 				break;
621 			chex = ex;
622 		}
623 		BUG_ON(chex != path->p_ext);
624 	}
625 #endif
626 
627 }
628 
629 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
630 {
631 	struct ext4_extent_header *eh;
632 
633 	eh = ext_inode_hdr(inode);
634 	eh->eh_depth = 0;
635 	eh->eh_entries = 0;
636 	eh->eh_magic = EXT4_EXT_MAGIC;
637 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
638 	ext4_mark_inode_dirty(handle, inode);
639 	ext4_ext_invalidate_cache(inode);
640 	return 0;
641 }
642 
643 struct ext4_ext_path *
644 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
645 					struct ext4_ext_path *path)
646 {
647 	struct ext4_extent_header *eh;
648 	struct buffer_head *bh;
649 	short int depth, i, ppos = 0, alloc = 0;
650 
651 	eh = ext_inode_hdr(inode);
652 	depth = ext_depth(inode);
653 
654 	/* account possible depth increase */
655 	if (!path) {
656 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
657 				GFP_NOFS);
658 		if (!path)
659 			return ERR_PTR(-ENOMEM);
660 		alloc = 1;
661 	}
662 	path[0].p_hdr = eh;
663 	path[0].p_bh = NULL;
664 
665 	i = depth;
666 	/* walk through the tree */
667 	while (i) {
668 		int need_to_validate = 0;
669 
670 		ext_debug("depth %d: num %d, max %d\n",
671 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
672 
673 		ext4_ext_binsearch_idx(inode, path + ppos, block);
674 		path[ppos].p_block = idx_pblock(path[ppos].p_idx);
675 		path[ppos].p_depth = i;
676 		path[ppos].p_ext = NULL;
677 
678 		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
679 		if (unlikely(!bh))
680 			goto err;
681 		if (!bh_uptodate_or_lock(bh)) {
682 			if (bh_submit_read(bh) < 0) {
683 				put_bh(bh);
684 				goto err;
685 			}
686 			/* validate the extent entries */
687 			need_to_validate = 1;
688 		}
689 		eh = ext_block_hdr(bh);
690 		ppos++;
691 		BUG_ON(ppos > depth);
692 		path[ppos].p_bh = bh;
693 		path[ppos].p_hdr = eh;
694 		i--;
695 
696 		if (need_to_validate && ext4_ext_check(inode, eh, i))
697 			goto err;
698 	}
699 
700 	path[ppos].p_depth = i;
701 	path[ppos].p_ext = NULL;
702 	path[ppos].p_idx = NULL;
703 
704 	/* find extent */
705 	ext4_ext_binsearch(inode, path + ppos, block);
706 	/* if not an empty leaf */
707 	if (path[ppos].p_ext)
708 		path[ppos].p_block = ext_pblock(path[ppos].p_ext);
709 
710 	ext4_ext_show_path(inode, path);
711 
712 	return path;
713 
714 err:
715 	ext4_ext_drop_refs(path);
716 	if (alloc)
717 		kfree(path);
718 	return ERR_PTR(-EIO);
719 }
720 
721 /*
722  * ext4_ext_insert_index:
723  * insert new index [@logical;@ptr] into the block at @curp;
724  * check where to insert: before @curp or after @curp
725  */
726 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
727 				struct ext4_ext_path *curp,
728 				int logical, ext4_fsblk_t ptr)
729 {
730 	struct ext4_extent_idx *ix;
731 	int len, err;
732 
733 	err = ext4_ext_get_access(handle, inode, curp);
734 	if (err)
735 		return err;
736 
737 	BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block));
738 	len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
739 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
740 		/* insert after */
741 		if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
742 			len = (len - 1) * sizeof(struct ext4_extent_idx);
743 			len = len < 0 ? 0 : len;
744 			ext_debug("insert new index %d after: %llu. "
745 					"move %d from 0x%p to 0x%p\n",
746 					logical, ptr, len,
747 					(curp->p_idx + 1), (curp->p_idx + 2));
748 			memmove(curp->p_idx + 2, curp->p_idx + 1, len);
749 		}
750 		ix = curp->p_idx + 1;
751 	} else {
752 		/* insert before */
753 		len = len * sizeof(struct ext4_extent_idx);
754 		len = len < 0 ? 0 : len;
755 		ext_debug("insert new index %d before: %llu. "
756 				"move %d from 0x%p to 0x%p\n",
757 				logical, ptr, len,
758 				curp->p_idx, (curp->p_idx + 1));
759 		memmove(curp->p_idx + 1, curp->p_idx, len);
760 		ix = curp->p_idx;
761 	}
762 
763 	ix->ei_block = cpu_to_le32(logical);
764 	ext4_idx_store_pblock(ix, ptr);
765 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
766 
767 	BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries)
768 			     > le16_to_cpu(curp->p_hdr->eh_max));
769 	BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr));
770 
771 	err = ext4_ext_dirty(handle, inode, curp);
772 	ext4_std_error(inode->i_sb, err);
773 
774 	return err;
775 }
776 
777 /*
778  * ext4_ext_split:
779  * inserts new subtree into the path, using free index entry
780  * at depth @at:
781  * - allocates all needed blocks (new leaf and all intermediate index blocks)
782  * - makes decision where to split
783  * - moves remaining extents and index entries (right to the split point)
784  *   into the newly allocated blocks
785  * - initializes subtree
786  */
787 static int ext4_ext_split(handle_t *handle, struct inode *inode,
788 				struct ext4_ext_path *path,
789 				struct ext4_extent *newext, int at)
790 {
791 	struct buffer_head *bh = NULL;
792 	int depth = ext_depth(inode);
793 	struct ext4_extent_header *neh;
794 	struct ext4_extent_idx *fidx;
795 	struct ext4_extent *ex;
796 	int i = at, k, m, a;
797 	ext4_fsblk_t newblock, oldblock;
798 	__le32 border;
799 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
800 	int err = 0;
801 
802 	/* make decision: where to split? */
803 	/* FIXME: now decision is simplest: at current extent */
804 
805 	/* if current leaf will be split, then we should use
806 	 * border from split point */
807 	BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr));
808 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
809 		border = path[depth].p_ext[1].ee_block;
810 		ext_debug("leaf will be split."
811 				" next leaf starts at %d\n",
812 				  le32_to_cpu(border));
813 	} else {
814 		border = newext->ee_block;
815 		ext_debug("leaf will be added."
816 				" next leaf starts at %d\n",
817 				le32_to_cpu(border));
818 	}
819 
820 	/*
821 	 * If error occurs, then we break processing
822 	 * and mark filesystem read-only. index won't
823 	 * be inserted and tree will be in consistent
824 	 * state. Next mount will repair buffers too.
825 	 */
826 
827 	/*
828 	 * Get array to track all allocated blocks.
829 	 * We need this to handle errors and free blocks
830 	 * upon them.
831 	 */
832 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
833 	if (!ablocks)
834 		return -ENOMEM;
835 
836 	/* allocate all needed blocks */
837 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
838 	for (a = 0; a < depth - at; a++) {
839 		newblock = ext4_ext_new_meta_block(handle, inode, path,
840 						   newext, &err);
841 		if (newblock == 0)
842 			goto cleanup;
843 		ablocks[a] = newblock;
844 	}
845 
846 	/* initialize new leaf */
847 	newblock = ablocks[--a];
848 	BUG_ON(newblock == 0);
849 	bh = sb_getblk(inode->i_sb, newblock);
850 	if (!bh) {
851 		err = -EIO;
852 		goto cleanup;
853 	}
854 	lock_buffer(bh);
855 
856 	err = ext4_journal_get_create_access(handle, bh);
857 	if (err)
858 		goto cleanup;
859 
860 	neh = ext_block_hdr(bh);
861 	neh->eh_entries = 0;
862 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
863 	neh->eh_magic = EXT4_EXT_MAGIC;
864 	neh->eh_depth = 0;
865 	ex = EXT_FIRST_EXTENT(neh);
866 
867 	/* move remainder of path[depth] to the new leaf */
868 	BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max);
869 	/* start copy from next extent */
870 	/* TODO: we could do it by single memmove */
871 	m = 0;
872 	path[depth].p_ext++;
873 	while (path[depth].p_ext <=
874 			EXT_MAX_EXTENT(path[depth].p_hdr)) {
875 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
876 				le32_to_cpu(path[depth].p_ext->ee_block),
877 				ext_pblock(path[depth].p_ext),
878 				ext4_ext_is_uninitialized(path[depth].p_ext),
879 				ext4_ext_get_actual_len(path[depth].p_ext),
880 				newblock);
881 		/*memmove(ex++, path[depth].p_ext++,
882 				sizeof(struct ext4_extent));
883 		neh->eh_entries++;*/
884 		path[depth].p_ext++;
885 		m++;
886 	}
887 	if (m) {
888 		memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
889 		le16_add_cpu(&neh->eh_entries, m);
890 	}
891 
892 	set_buffer_uptodate(bh);
893 	unlock_buffer(bh);
894 
895 	err = ext4_handle_dirty_metadata(handle, inode, bh);
896 	if (err)
897 		goto cleanup;
898 	brelse(bh);
899 	bh = NULL;
900 
901 	/* correct old leaf */
902 	if (m) {
903 		err = ext4_ext_get_access(handle, inode, path + depth);
904 		if (err)
905 			goto cleanup;
906 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
907 		err = ext4_ext_dirty(handle, inode, path + depth);
908 		if (err)
909 			goto cleanup;
910 
911 	}
912 
913 	/* create intermediate indexes */
914 	k = depth - at - 1;
915 	BUG_ON(k < 0);
916 	if (k)
917 		ext_debug("create %d intermediate indices\n", k);
918 	/* insert new index into current index block */
919 	/* current depth stored in i var */
920 	i = depth - 1;
921 	while (k--) {
922 		oldblock = newblock;
923 		newblock = ablocks[--a];
924 		bh = sb_getblk(inode->i_sb, newblock);
925 		if (!bh) {
926 			err = -EIO;
927 			goto cleanup;
928 		}
929 		lock_buffer(bh);
930 
931 		err = ext4_journal_get_create_access(handle, bh);
932 		if (err)
933 			goto cleanup;
934 
935 		neh = ext_block_hdr(bh);
936 		neh->eh_entries = cpu_to_le16(1);
937 		neh->eh_magic = EXT4_EXT_MAGIC;
938 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
939 		neh->eh_depth = cpu_to_le16(depth - i);
940 		fidx = EXT_FIRST_INDEX(neh);
941 		fidx->ei_block = border;
942 		ext4_idx_store_pblock(fidx, oldblock);
943 
944 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
945 				i, newblock, le32_to_cpu(border), oldblock);
946 		/* copy indexes */
947 		m = 0;
948 		path[i].p_idx++;
949 
950 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
951 				EXT_MAX_INDEX(path[i].p_hdr));
952 		BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) !=
953 				EXT_LAST_INDEX(path[i].p_hdr));
954 		while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
955 			ext_debug("%d: move %d:%llu in new index %llu\n", i,
956 					le32_to_cpu(path[i].p_idx->ei_block),
957 					idx_pblock(path[i].p_idx),
958 					newblock);
959 			/*memmove(++fidx, path[i].p_idx++,
960 					sizeof(struct ext4_extent_idx));
961 			neh->eh_entries++;
962 			BUG_ON(neh->eh_entries > neh->eh_max);*/
963 			path[i].p_idx++;
964 			m++;
965 		}
966 		if (m) {
967 			memmove(++fidx, path[i].p_idx - m,
968 				sizeof(struct ext4_extent_idx) * m);
969 			le16_add_cpu(&neh->eh_entries, m);
970 		}
971 		set_buffer_uptodate(bh);
972 		unlock_buffer(bh);
973 
974 		err = ext4_handle_dirty_metadata(handle, inode, bh);
975 		if (err)
976 			goto cleanup;
977 		brelse(bh);
978 		bh = NULL;
979 
980 		/* correct old index */
981 		if (m) {
982 			err = ext4_ext_get_access(handle, inode, path + i);
983 			if (err)
984 				goto cleanup;
985 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
986 			err = ext4_ext_dirty(handle, inode, path + i);
987 			if (err)
988 				goto cleanup;
989 		}
990 
991 		i--;
992 	}
993 
994 	/* insert new index */
995 	err = ext4_ext_insert_index(handle, inode, path + at,
996 				    le32_to_cpu(border), newblock);
997 
998 cleanup:
999 	if (bh) {
1000 		if (buffer_locked(bh))
1001 			unlock_buffer(bh);
1002 		brelse(bh);
1003 	}
1004 
1005 	if (err) {
1006 		/* free all allocated blocks in error case */
1007 		for (i = 0; i < depth; i++) {
1008 			if (!ablocks[i])
1009 				continue;
1010 			ext4_free_blocks(handle, inode, ablocks[i], 1, 1);
1011 		}
1012 	}
1013 	kfree(ablocks);
1014 
1015 	return err;
1016 }
1017 
1018 /*
1019  * ext4_ext_grow_indepth:
1020  * implements tree growing procedure:
1021  * - allocates new block
1022  * - moves top-level data (index block or leaf) into the new block
1023  * - initializes new top-level, creating index that points to the
1024  *   just created block
1025  */
1026 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1027 					struct ext4_ext_path *path,
1028 					struct ext4_extent *newext)
1029 {
1030 	struct ext4_ext_path *curp = path;
1031 	struct ext4_extent_header *neh;
1032 	struct ext4_extent_idx *fidx;
1033 	struct buffer_head *bh;
1034 	ext4_fsblk_t newblock;
1035 	int err = 0;
1036 
1037 	newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err);
1038 	if (newblock == 0)
1039 		return err;
1040 
1041 	bh = sb_getblk(inode->i_sb, newblock);
1042 	if (!bh) {
1043 		err = -EIO;
1044 		ext4_std_error(inode->i_sb, err);
1045 		return err;
1046 	}
1047 	lock_buffer(bh);
1048 
1049 	err = ext4_journal_get_create_access(handle, bh);
1050 	if (err) {
1051 		unlock_buffer(bh);
1052 		goto out;
1053 	}
1054 
1055 	/* move top-level index/leaf into new block */
1056 	memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
1057 
1058 	/* set size of new block */
1059 	neh = ext_block_hdr(bh);
1060 	/* old root could have indexes or leaves
1061 	 * so calculate e_max right way */
1062 	if (ext_depth(inode))
1063 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1064 	else
1065 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1066 	neh->eh_magic = EXT4_EXT_MAGIC;
1067 	set_buffer_uptodate(bh);
1068 	unlock_buffer(bh);
1069 
1070 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1071 	if (err)
1072 		goto out;
1073 
1074 	/* create index in new top-level index: num,max,pointer */
1075 	err = ext4_ext_get_access(handle, inode, curp);
1076 	if (err)
1077 		goto out;
1078 
1079 	curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1080 	curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1081 	curp->p_hdr->eh_entries = cpu_to_le16(1);
1082 	curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1083 
1084 	if (path[0].p_hdr->eh_depth)
1085 		curp->p_idx->ei_block =
1086 			EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1087 	else
1088 		curp->p_idx->ei_block =
1089 			EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1090 	ext4_idx_store_pblock(curp->p_idx, newblock);
1091 
1092 	neh = ext_inode_hdr(inode);
1093 	fidx = EXT_FIRST_INDEX(neh);
1094 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1095 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1096 		  le32_to_cpu(fidx->ei_block), idx_pblock(fidx));
1097 
1098 	neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1099 	err = ext4_ext_dirty(handle, inode, curp);
1100 out:
1101 	brelse(bh);
1102 
1103 	return err;
1104 }
1105 
1106 /*
1107  * ext4_ext_create_new_leaf:
1108  * finds empty index and adds new leaf.
1109  * if no free index is found, then it requests in-depth growing.
1110  */
1111 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1112 					struct ext4_ext_path *path,
1113 					struct ext4_extent *newext)
1114 {
1115 	struct ext4_ext_path *curp;
1116 	int depth, i, err = 0;
1117 
1118 repeat:
1119 	i = depth = ext_depth(inode);
1120 
1121 	/* walk up to the tree and look for free index entry */
1122 	curp = path + depth;
1123 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1124 		i--;
1125 		curp--;
1126 	}
1127 
1128 	/* we use already allocated block for index block,
1129 	 * so subsequent data blocks should be contiguous */
1130 	if (EXT_HAS_FREE_INDEX(curp)) {
1131 		/* if we found index with free entry, then use that
1132 		 * entry: create all needed subtree and add new leaf */
1133 		err = ext4_ext_split(handle, inode, path, newext, i);
1134 		if (err)
1135 			goto out;
1136 
1137 		/* refill path */
1138 		ext4_ext_drop_refs(path);
1139 		path = ext4_ext_find_extent(inode,
1140 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1141 				    path);
1142 		if (IS_ERR(path))
1143 			err = PTR_ERR(path);
1144 	} else {
1145 		/* tree is full, time to grow in depth */
1146 		err = ext4_ext_grow_indepth(handle, inode, path, newext);
1147 		if (err)
1148 			goto out;
1149 
1150 		/* refill path */
1151 		ext4_ext_drop_refs(path);
1152 		path = ext4_ext_find_extent(inode,
1153 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1154 				    path);
1155 		if (IS_ERR(path)) {
1156 			err = PTR_ERR(path);
1157 			goto out;
1158 		}
1159 
1160 		/*
1161 		 * only first (depth 0 -> 1) produces free space;
1162 		 * in all other cases we have to split the grown tree
1163 		 */
1164 		depth = ext_depth(inode);
1165 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1166 			/* now we need to split */
1167 			goto repeat;
1168 		}
1169 	}
1170 
1171 out:
1172 	return err;
1173 }
1174 
1175 /*
1176  * search the closest allocated block to the left for *logical
1177  * and returns it at @logical + it's physical address at @phys
1178  * if *logical is the smallest allocated block, the function
1179  * returns 0 at @phys
1180  * return value contains 0 (success) or error code
1181  */
1182 int
1183 ext4_ext_search_left(struct inode *inode, struct ext4_ext_path *path,
1184 			ext4_lblk_t *logical, ext4_fsblk_t *phys)
1185 {
1186 	struct ext4_extent_idx *ix;
1187 	struct ext4_extent *ex;
1188 	int depth, ee_len;
1189 
1190 	BUG_ON(path == NULL);
1191 	depth = path->p_depth;
1192 	*phys = 0;
1193 
1194 	if (depth == 0 && path->p_ext == NULL)
1195 		return 0;
1196 
1197 	/* usually extent in the path covers blocks smaller
1198 	 * then *logical, but it can be that extent is the
1199 	 * first one in the file */
1200 
1201 	ex = path[depth].p_ext;
1202 	ee_len = ext4_ext_get_actual_len(ex);
1203 	if (*logical < le32_to_cpu(ex->ee_block)) {
1204 		BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1205 		while (--depth >= 0) {
1206 			ix = path[depth].p_idx;
1207 			BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1208 		}
1209 		return 0;
1210 	}
1211 
1212 	BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1213 
1214 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1215 	*phys = ext_pblock(ex) + ee_len - 1;
1216 	return 0;
1217 }
1218 
1219 /*
1220  * search the closest allocated block to the right for *logical
1221  * and returns it at @logical + it's physical address at @phys
1222  * if *logical is the smallest allocated block, the function
1223  * returns 0 at @phys
1224  * return value contains 0 (success) or error code
1225  */
1226 int
1227 ext4_ext_search_right(struct inode *inode, struct ext4_ext_path *path,
1228 			ext4_lblk_t *logical, ext4_fsblk_t *phys)
1229 {
1230 	struct buffer_head *bh = NULL;
1231 	struct ext4_extent_header *eh;
1232 	struct ext4_extent_idx *ix;
1233 	struct ext4_extent *ex;
1234 	ext4_fsblk_t block;
1235 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1236 	int ee_len;
1237 
1238 	BUG_ON(path == NULL);
1239 	depth = path->p_depth;
1240 	*phys = 0;
1241 
1242 	if (depth == 0 && path->p_ext == NULL)
1243 		return 0;
1244 
1245 	/* usually extent in the path covers blocks smaller
1246 	 * then *logical, but it can be that extent is the
1247 	 * first one in the file */
1248 
1249 	ex = path[depth].p_ext;
1250 	ee_len = ext4_ext_get_actual_len(ex);
1251 	if (*logical < le32_to_cpu(ex->ee_block)) {
1252 		BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1253 		while (--depth >= 0) {
1254 			ix = path[depth].p_idx;
1255 			BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1256 		}
1257 		*logical = le32_to_cpu(ex->ee_block);
1258 		*phys = ext_pblock(ex);
1259 		return 0;
1260 	}
1261 
1262 	BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1263 
1264 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1265 		/* next allocated block in this leaf */
1266 		ex++;
1267 		*logical = le32_to_cpu(ex->ee_block);
1268 		*phys = ext_pblock(ex);
1269 		return 0;
1270 	}
1271 
1272 	/* go up and search for index to the right */
1273 	while (--depth >= 0) {
1274 		ix = path[depth].p_idx;
1275 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1276 			goto got_index;
1277 	}
1278 
1279 	/* we've gone up to the root and found no index to the right */
1280 	return 0;
1281 
1282 got_index:
1283 	/* we've found index to the right, let's
1284 	 * follow it and find the closest allocated
1285 	 * block to the right */
1286 	ix++;
1287 	block = idx_pblock(ix);
1288 	while (++depth < path->p_depth) {
1289 		bh = sb_bread(inode->i_sb, block);
1290 		if (bh == NULL)
1291 			return -EIO;
1292 		eh = ext_block_hdr(bh);
1293 		/* subtract from p_depth to get proper eh_depth */
1294 		if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1295 			put_bh(bh);
1296 			return -EIO;
1297 		}
1298 		ix = EXT_FIRST_INDEX(eh);
1299 		block = idx_pblock(ix);
1300 		put_bh(bh);
1301 	}
1302 
1303 	bh = sb_bread(inode->i_sb, block);
1304 	if (bh == NULL)
1305 		return -EIO;
1306 	eh = ext_block_hdr(bh);
1307 	if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1308 		put_bh(bh);
1309 		return -EIO;
1310 	}
1311 	ex = EXT_FIRST_EXTENT(eh);
1312 	*logical = le32_to_cpu(ex->ee_block);
1313 	*phys = ext_pblock(ex);
1314 	put_bh(bh);
1315 	return 0;
1316 }
1317 
1318 /*
1319  * ext4_ext_next_allocated_block:
1320  * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1321  * NOTE: it considers block number from index entry as
1322  * allocated block. Thus, index entries have to be consistent
1323  * with leaves.
1324  */
1325 static ext4_lblk_t
1326 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1327 {
1328 	int depth;
1329 
1330 	BUG_ON(path == NULL);
1331 	depth = path->p_depth;
1332 
1333 	if (depth == 0 && path->p_ext == NULL)
1334 		return EXT_MAX_BLOCK;
1335 
1336 	while (depth >= 0) {
1337 		if (depth == path->p_depth) {
1338 			/* leaf */
1339 			if (path[depth].p_ext !=
1340 					EXT_LAST_EXTENT(path[depth].p_hdr))
1341 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1342 		} else {
1343 			/* index */
1344 			if (path[depth].p_idx !=
1345 					EXT_LAST_INDEX(path[depth].p_hdr))
1346 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1347 		}
1348 		depth--;
1349 	}
1350 
1351 	return EXT_MAX_BLOCK;
1352 }
1353 
1354 /*
1355  * ext4_ext_next_leaf_block:
1356  * returns first allocated block from next leaf or EXT_MAX_BLOCK
1357  */
1358 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1359 					struct ext4_ext_path *path)
1360 {
1361 	int depth;
1362 
1363 	BUG_ON(path == NULL);
1364 	depth = path->p_depth;
1365 
1366 	/* zero-tree has no leaf blocks at all */
1367 	if (depth == 0)
1368 		return EXT_MAX_BLOCK;
1369 
1370 	/* go to index block */
1371 	depth--;
1372 
1373 	while (depth >= 0) {
1374 		if (path[depth].p_idx !=
1375 				EXT_LAST_INDEX(path[depth].p_hdr))
1376 			return (ext4_lblk_t)
1377 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1378 		depth--;
1379 	}
1380 
1381 	return EXT_MAX_BLOCK;
1382 }
1383 
1384 /*
1385  * ext4_ext_correct_indexes:
1386  * if leaf gets modified and modified extent is first in the leaf,
1387  * then we have to correct all indexes above.
1388  * TODO: do we need to correct tree in all cases?
1389  */
1390 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1391 				struct ext4_ext_path *path)
1392 {
1393 	struct ext4_extent_header *eh;
1394 	int depth = ext_depth(inode);
1395 	struct ext4_extent *ex;
1396 	__le32 border;
1397 	int k, err = 0;
1398 
1399 	eh = path[depth].p_hdr;
1400 	ex = path[depth].p_ext;
1401 	BUG_ON(ex == NULL);
1402 	BUG_ON(eh == NULL);
1403 
1404 	if (depth == 0) {
1405 		/* there is no tree at all */
1406 		return 0;
1407 	}
1408 
1409 	if (ex != EXT_FIRST_EXTENT(eh)) {
1410 		/* we correct tree if first leaf got modified only */
1411 		return 0;
1412 	}
1413 
1414 	/*
1415 	 * TODO: we need correction if border is smaller than current one
1416 	 */
1417 	k = depth - 1;
1418 	border = path[depth].p_ext->ee_block;
1419 	err = ext4_ext_get_access(handle, inode, path + k);
1420 	if (err)
1421 		return err;
1422 	path[k].p_idx->ei_block = border;
1423 	err = ext4_ext_dirty(handle, inode, path + k);
1424 	if (err)
1425 		return err;
1426 
1427 	while (k--) {
1428 		/* change all left-side indexes */
1429 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1430 			break;
1431 		err = ext4_ext_get_access(handle, inode, path + k);
1432 		if (err)
1433 			break;
1434 		path[k].p_idx->ei_block = border;
1435 		err = ext4_ext_dirty(handle, inode, path + k);
1436 		if (err)
1437 			break;
1438 	}
1439 
1440 	return err;
1441 }
1442 
1443 int
1444 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1445 				struct ext4_extent *ex2)
1446 {
1447 	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1448 
1449 	/*
1450 	 * Make sure that either both extents are uninitialized, or
1451 	 * both are _not_.
1452 	 */
1453 	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1454 		return 0;
1455 
1456 	if (ext4_ext_is_uninitialized(ex1))
1457 		max_len = EXT_UNINIT_MAX_LEN;
1458 	else
1459 		max_len = EXT_INIT_MAX_LEN;
1460 
1461 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1462 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1463 
1464 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1465 			le32_to_cpu(ex2->ee_block))
1466 		return 0;
1467 
1468 	/*
1469 	 * To allow future support for preallocated extents to be added
1470 	 * as an RO_COMPAT feature, refuse to merge to extents if
1471 	 * this can result in the top bit of ee_len being set.
1472 	 */
1473 	if (ext1_ee_len + ext2_ee_len > max_len)
1474 		return 0;
1475 #ifdef AGGRESSIVE_TEST
1476 	if (ext1_ee_len >= 4)
1477 		return 0;
1478 #endif
1479 
1480 	if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2))
1481 		return 1;
1482 	return 0;
1483 }
1484 
1485 /*
1486  * This function tries to merge the "ex" extent to the next extent in the tree.
1487  * It always tries to merge towards right. If you want to merge towards
1488  * left, pass "ex - 1" as argument instead of "ex".
1489  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1490  * 1 if they got merged.
1491  */
1492 int ext4_ext_try_to_merge(struct inode *inode,
1493 			  struct ext4_ext_path *path,
1494 			  struct ext4_extent *ex)
1495 {
1496 	struct ext4_extent_header *eh;
1497 	unsigned int depth, len;
1498 	int merge_done = 0;
1499 	int uninitialized = 0;
1500 
1501 	depth = ext_depth(inode);
1502 	BUG_ON(path[depth].p_hdr == NULL);
1503 	eh = path[depth].p_hdr;
1504 
1505 	while (ex < EXT_LAST_EXTENT(eh)) {
1506 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1507 			break;
1508 		/* merge with next extent! */
1509 		if (ext4_ext_is_uninitialized(ex))
1510 			uninitialized = 1;
1511 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1512 				+ ext4_ext_get_actual_len(ex + 1));
1513 		if (uninitialized)
1514 			ext4_ext_mark_uninitialized(ex);
1515 
1516 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1517 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1518 				* sizeof(struct ext4_extent);
1519 			memmove(ex + 1, ex + 2, len);
1520 		}
1521 		le16_add_cpu(&eh->eh_entries, -1);
1522 		merge_done = 1;
1523 		WARN_ON(eh->eh_entries == 0);
1524 		if (!eh->eh_entries)
1525 			ext4_error(inode->i_sb, "ext4_ext_try_to_merge",
1526 			   "inode#%lu, eh->eh_entries = 0!", inode->i_ino);
1527 	}
1528 
1529 	return merge_done;
1530 }
1531 
1532 /*
1533  * check if a portion of the "newext" extent overlaps with an
1534  * existing extent.
1535  *
1536  * If there is an overlap discovered, it updates the length of the newext
1537  * such that there will be no overlap, and then returns 1.
1538  * If there is no overlap found, it returns 0.
1539  */
1540 unsigned int ext4_ext_check_overlap(struct inode *inode,
1541 				    struct ext4_extent *newext,
1542 				    struct ext4_ext_path *path)
1543 {
1544 	ext4_lblk_t b1, b2;
1545 	unsigned int depth, len1;
1546 	unsigned int ret = 0;
1547 
1548 	b1 = le32_to_cpu(newext->ee_block);
1549 	len1 = ext4_ext_get_actual_len(newext);
1550 	depth = ext_depth(inode);
1551 	if (!path[depth].p_ext)
1552 		goto out;
1553 	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1554 
1555 	/*
1556 	 * get the next allocated block if the extent in the path
1557 	 * is before the requested block(s)
1558 	 */
1559 	if (b2 < b1) {
1560 		b2 = ext4_ext_next_allocated_block(path);
1561 		if (b2 == EXT_MAX_BLOCK)
1562 			goto out;
1563 	}
1564 
1565 	/* check for wrap through zero on extent logical start block*/
1566 	if (b1 + len1 < b1) {
1567 		len1 = EXT_MAX_BLOCK - b1;
1568 		newext->ee_len = cpu_to_le16(len1);
1569 		ret = 1;
1570 	}
1571 
1572 	/* check for overlap */
1573 	if (b1 + len1 > b2) {
1574 		newext->ee_len = cpu_to_le16(b2 - b1);
1575 		ret = 1;
1576 	}
1577 out:
1578 	return ret;
1579 }
1580 
1581 /*
1582  * ext4_ext_insert_extent:
1583  * tries to merge requsted extent into the existing extent or
1584  * inserts requested extent as new one into the tree,
1585  * creating new leaf in the no-space case.
1586  */
1587 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1588 				struct ext4_ext_path *path,
1589 				struct ext4_extent *newext)
1590 {
1591 	struct ext4_extent_header *eh;
1592 	struct ext4_extent *ex, *fex;
1593 	struct ext4_extent *nearex; /* nearest extent */
1594 	struct ext4_ext_path *npath = NULL;
1595 	int depth, len, err;
1596 	ext4_lblk_t next;
1597 	unsigned uninitialized = 0;
1598 
1599 	BUG_ON(ext4_ext_get_actual_len(newext) == 0);
1600 	depth = ext_depth(inode);
1601 	ex = path[depth].p_ext;
1602 	BUG_ON(path[depth].p_hdr == NULL);
1603 
1604 	/* try to insert block into found extent and return */
1605 	if (ex && ext4_can_extents_be_merged(inode, ex, newext)) {
1606 		ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n",
1607 				ext4_ext_is_uninitialized(newext),
1608 				ext4_ext_get_actual_len(newext),
1609 				le32_to_cpu(ex->ee_block),
1610 				ext4_ext_is_uninitialized(ex),
1611 				ext4_ext_get_actual_len(ex), ext_pblock(ex));
1612 		err = ext4_ext_get_access(handle, inode, path + depth);
1613 		if (err)
1614 			return err;
1615 
1616 		/*
1617 		 * ext4_can_extents_be_merged should have checked that either
1618 		 * both extents are uninitialized, or both aren't. Thus we
1619 		 * need to check only one of them here.
1620 		 */
1621 		if (ext4_ext_is_uninitialized(ex))
1622 			uninitialized = 1;
1623 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1624 					+ ext4_ext_get_actual_len(newext));
1625 		if (uninitialized)
1626 			ext4_ext_mark_uninitialized(ex);
1627 		eh = path[depth].p_hdr;
1628 		nearex = ex;
1629 		goto merge;
1630 	}
1631 
1632 repeat:
1633 	depth = ext_depth(inode);
1634 	eh = path[depth].p_hdr;
1635 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1636 		goto has_space;
1637 
1638 	/* probably next leaf has space for us? */
1639 	fex = EXT_LAST_EXTENT(eh);
1640 	next = ext4_ext_next_leaf_block(inode, path);
1641 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1642 	    && next != EXT_MAX_BLOCK) {
1643 		ext_debug("next leaf block - %d\n", next);
1644 		BUG_ON(npath != NULL);
1645 		npath = ext4_ext_find_extent(inode, next, NULL);
1646 		if (IS_ERR(npath))
1647 			return PTR_ERR(npath);
1648 		BUG_ON(npath->p_depth != path->p_depth);
1649 		eh = npath[depth].p_hdr;
1650 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1651 			ext_debug("next leaf isnt full(%d)\n",
1652 				  le16_to_cpu(eh->eh_entries));
1653 			path = npath;
1654 			goto repeat;
1655 		}
1656 		ext_debug("next leaf has no free space(%d,%d)\n",
1657 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1658 	}
1659 
1660 	/*
1661 	 * There is no free space in the found leaf.
1662 	 * We're gonna add a new leaf in the tree.
1663 	 */
1664 	err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1665 	if (err)
1666 		goto cleanup;
1667 	depth = ext_depth(inode);
1668 	eh = path[depth].p_hdr;
1669 
1670 has_space:
1671 	nearex = path[depth].p_ext;
1672 
1673 	err = ext4_ext_get_access(handle, inode, path + depth);
1674 	if (err)
1675 		goto cleanup;
1676 
1677 	if (!nearex) {
1678 		/* there is no extent in this leaf, create first one */
1679 		ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n",
1680 				le32_to_cpu(newext->ee_block),
1681 				ext_pblock(newext),
1682 				ext4_ext_is_uninitialized(newext),
1683 				ext4_ext_get_actual_len(newext));
1684 		path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1685 	} else if (le32_to_cpu(newext->ee_block)
1686 			   > le32_to_cpu(nearex->ee_block)) {
1687 /*		BUG_ON(newext->ee_block == nearex->ee_block); */
1688 		if (nearex != EXT_LAST_EXTENT(eh)) {
1689 			len = EXT_MAX_EXTENT(eh) - nearex;
1690 			len = (len - 1) * sizeof(struct ext4_extent);
1691 			len = len < 0 ? 0 : len;
1692 			ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, "
1693 					"move %d from 0x%p to 0x%p\n",
1694 					le32_to_cpu(newext->ee_block),
1695 					ext_pblock(newext),
1696 					ext4_ext_is_uninitialized(newext),
1697 					ext4_ext_get_actual_len(newext),
1698 					nearex, len, nearex + 1, nearex + 2);
1699 			memmove(nearex + 2, nearex + 1, len);
1700 		}
1701 		path[depth].p_ext = nearex + 1;
1702 	} else {
1703 		BUG_ON(newext->ee_block == nearex->ee_block);
1704 		len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1705 		len = len < 0 ? 0 : len;
1706 		ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, "
1707 				"move %d from 0x%p to 0x%p\n",
1708 				le32_to_cpu(newext->ee_block),
1709 				ext_pblock(newext),
1710 				ext4_ext_is_uninitialized(newext),
1711 				ext4_ext_get_actual_len(newext),
1712 				nearex, len, nearex + 1, nearex + 2);
1713 		memmove(nearex + 1, nearex, len);
1714 		path[depth].p_ext = nearex;
1715 	}
1716 
1717 	le16_add_cpu(&eh->eh_entries, 1);
1718 	nearex = path[depth].p_ext;
1719 	nearex->ee_block = newext->ee_block;
1720 	ext4_ext_store_pblock(nearex, ext_pblock(newext));
1721 	nearex->ee_len = newext->ee_len;
1722 
1723 merge:
1724 	/* try to merge extents to the right */
1725 	ext4_ext_try_to_merge(inode, path, nearex);
1726 
1727 	/* try to merge extents to the left */
1728 
1729 	/* time to correct all indexes above */
1730 	err = ext4_ext_correct_indexes(handle, inode, path);
1731 	if (err)
1732 		goto cleanup;
1733 
1734 	err = ext4_ext_dirty(handle, inode, path + depth);
1735 
1736 cleanup:
1737 	if (npath) {
1738 		ext4_ext_drop_refs(npath);
1739 		kfree(npath);
1740 	}
1741 	ext4_ext_invalidate_cache(inode);
1742 	return err;
1743 }
1744 
1745 int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1746 			ext4_lblk_t num, ext_prepare_callback func,
1747 			void *cbdata)
1748 {
1749 	struct ext4_ext_path *path = NULL;
1750 	struct ext4_ext_cache cbex;
1751 	struct ext4_extent *ex;
1752 	ext4_lblk_t next, start = 0, end = 0;
1753 	ext4_lblk_t last = block + num;
1754 	int depth, exists, err = 0;
1755 
1756 	BUG_ON(func == NULL);
1757 	BUG_ON(inode == NULL);
1758 
1759 	while (block < last && block != EXT_MAX_BLOCK) {
1760 		num = last - block;
1761 		/* find extent for this block */
1762 		path = ext4_ext_find_extent(inode, block, path);
1763 		if (IS_ERR(path)) {
1764 			err = PTR_ERR(path);
1765 			path = NULL;
1766 			break;
1767 		}
1768 
1769 		depth = ext_depth(inode);
1770 		BUG_ON(path[depth].p_hdr == NULL);
1771 		ex = path[depth].p_ext;
1772 		next = ext4_ext_next_allocated_block(path);
1773 
1774 		exists = 0;
1775 		if (!ex) {
1776 			/* there is no extent yet, so try to allocate
1777 			 * all requested space */
1778 			start = block;
1779 			end = block + num;
1780 		} else if (le32_to_cpu(ex->ee_block) > block) {
1781 			/* need to allocate space before found extent */
1782 			start = block;
1783 			end = le32_to_cpu(ex->ee_block);
1784 			if (block + num < end)
1785 				end = block + num;
1786 		} else if (block >= le32_to_cpu(ex->ee_block)
1787 					+ ext4_ext_get_actual_len(ex)) {
1788 			/* need to allocate space after found extent */
1789 			start = block;
1790 			end = block + num;
1791 			if (end >= next)
1792 				end = next;
1793 		} else if (block >= le32_to_cpu(ex->ee_block)) {
1794 			/*
1795 			 * some part of requested space is covered
1796 			 * by found extent
1797 			 */
1798 			start = block;
1799 			end = le32_to_cpu(ex->ee_block)
1800 				+ ext4_ext_get_actual_len(ex);
1801 			if (block + num < end)
1802 				end = block + num;
1803 			exists = 1;
1804 		} else {
1805 			BUG();
1806 		}
1807 		BUG_ON(end <= start);
1808 
1809 		if (!exists) {
1810 			cbex.ec_block = start;
1811 			cbex.ec_len = end - start;
1812 			cbex.ec_start = 0;
1813 			cbex.ec_type = EXT4_EXT_CACHE_GAP;
1814 		} else {
1815 			cbex.ec_block = le32_to_cpu(ex->ee_block);
1816 			cbex.ec_len = ext4_ext_get_actual_len(ex);
1817 			cbex.ec_start = ext_pblock(ex);
1818 			cbex.ec_type = EXT4_EXT_CACHE_EXTENT;
1819 		}
1820 
1821 		BUG_ON(cbex.ec_len == 0);
1822 		err = func(inode, path, &cbex, ex, cbdata);
1823 		ext4_ext_drop_refs(path);
1824 
1825 		if (err < 0)
1826 			break;
1827 
1828 		if (err == EXT_REPEAT)
1829 			continue;
1830 		else if (err == EXT_BREAK) {
1831 			err = 0;
1832 			break;
1833 		}
1834 
1835 		if (ext_depth(inode) != depth) {
1836 			/* depth was changed. we have to realloc path */
1837 			kfree(path);
1838 			path = NULL;
1839 		}
1840 
1841 		block = cbex.ec_block + cbex.ec_len;
1842 	}
1843 
1844 	if (path) {
1845 		ext4_ext_drop_refs(path);
1846 		kfree(path);
1847 	}
1848 
1849 	return err;
1850 }
1851 
1852 static void
1853 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1854 			__u32 len, ext4_fsblk_t start, int type)
1855 {
1856 	struct ext4_ext_cache *cex;
1857 	BUG_ON(len == 0);
1858 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1859 	cex = &EXT4_I(inode)->i_cached_extent;
1860 	cex->ec_type = type;
1861 	cex->ec_block = block;
1862 	cex->ec_len = len;
1863 	cex->ec_start = start;
1864 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1865 }
1866 
1867 /*
1868  * ext4_ext_put_gap_in_cache:
1869  * calculate boundaries of the gap that the requested block fits into
1870  * and cache this gap
1871  */
1872 static void
1873 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1874 				ext4_lblk_t block)
1875 {
1876 	int depth = ext_depth(inode);
1877 	unsigned long len;
1878 	ext4_lblk_t lblock;
1879 	struct ext4_extent *ex;
1880 
1881 	ex = path[depth].p_ext;
1882 	if (ex == NULL) {
1883 		/* there is no extent yet, so gap is [0;-] */
1884 		lblock = 0;
1885 		len = EXT_MAX_BLOCK;
1886 		ext_debug("cache gap(whole file):");
1887 	} else if (block < le32_to_cpu(ex->ee_block)) {
1888 		lblock = block;
1889 		len = le32_to_cpu(ex->ee_block) - block;
1890 		ext_debug("cache gap(before): %u [%u:%u]",
1891 				block,
1892 				le32_to_cpu(ex->ee_block),
1893 				 ext4_ext_get_actual_len(ex));
1894 	} else if (block >= le32_to_cpu(ex->ee_block)
1895 			+ ext4_ext_get_actual_len(ex)) {
1896 		ext4_lblk_t next;
1897 		lblock = le32_to_cpu(ex->ee_block)
1898 			+ ext4_ext_get_actual_len(ex);
1899 
1900 		next = ext4_ext_next_allocated_block(path);
1901 		ext_debug("cache gap(after): [%u:%u] %u",
1902 				le32_to_cpu(ex->ee_block),
1903 				ext4_ext_get_actual_len(ex),
1904 				block);
1905 		BUG_ON(next == lblock);
1906 		len = next - lblock;
1907 	} else {
1908 		lblock = len = 0;
1909 		BUG();
1910 	}
1911 
1912 	ext_debug(" -> %u:%lu\n", lblock, len);
1913 	ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP);
1914 }
1915 
1916 static int
1917 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
1918 			struct ext4_extent *ex)
1919 {
1920 	struct ext4_ext_cache *cex;
1921 	int ret = EXT4_EXT_CACHE_NO;
1922 
1923 	/*
1924 	 * We borrow i_block_reservation_lock to protect i_cached_extent
1925 	 */
1926 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1927 	cex = &EXT4_I(inode)->i_cached_extent;
1928 
1929 	/* has cache valid data? */
1930 	if (cex->ec_type == EXT4_EXT_CACHE_NO)
1931 		goto errout;
1932 
1933 	BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP &&
1934 			cex->ec_type != EXT4_EXT_CACHE_EXTENT);
1935 	if (block >= cex->ec_block && block < cex->ec_block + cex->ec_len) {
1936 		ex->ee_block = cpu_to_le32(cex->ec_block);
1937 		ext4_ext_store_pblock(ex, cex->ec_start);
1938 		ex->ee_len = cpu_to_le16(cex->ec_len);
1939 		ext_debug("%u cached by %u:%u:%llu\n",
1940 				block,
1941 				cex->ec_block, cex->ec_len, cex->ec_start);
1942 		ret = cex->ec_type;
1943 	}
1944 errout:
1945 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1946 	return ret;
1947 }
1948 
1949 /*
1950  * ext4_ext_rm_idx:
1951  * removes index from the index block.
1952  * It's used in truncate case only, thus all requests are for
1953  * last index in the block only.
1954  */
1955 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
1956 			struct ext4_ext_path *path)
1957 {
1958 	struct buffer_head *bh;
1959 	int err;
1960 	ext4_fsblk_t leaf;
1961 
1962 	/* free index block */
1963 	path--;
1964 	leaf = idx_pblock(path->p_idx);
1965 	BUG_ON(path->p_hdr->eh_entries == 0);
1966 	err = ext4_ext_get_access(handle, inode, path);
1967 	if (err)
1968 		return err;
1969 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
1970 	err = ext4_ext_dirty(handle, inode, path);
1971 	if (err)
1972 		return err;
1973 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
1974 	bh = sb_find_get_block(inode->i_sb, leaf);
1975 	ext4_forget(handle, 1, inode, bh, leaf);
1976 	ext4_free_blocks(handle, inode, leaf, 1, 1);
1977 	return err;
1978 }
1979 
1980 /*
1981  * ext4_ext_calc_credits_for_single_extent:
1982  * This routine returns max. credits that needed to insert an extent
1983  * to the extent tree.
1984  * When pass the actual path, the caller should calculate credits
1985  * under i_data_sem.
1986  */
1987 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
1988 						struct ext4_ext_path *path)
1989 {
1990 	if (path) {
1991 		int depth = ext_depth(inode);
1992 		int ret = 0;
1993 
1994 		/* probably there is space in leaf? */
1995 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
1996 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
1997 
1998 			/*
1999 			 *  There are some space in the leaf tree, no
2000 			 *  need to account for leaf block credit
2001 			 *
2002 			 *  bitmaps and block group descriptor blocks
2003 			 *  and other metadat blocks still need to be
2004 			 *  accounted.
2005 			 */
2006 			/* 1 bitmap, 1 block group descriptor */
2007 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2008 			return ret;
2009 		}
2010 	}
2011 
2012 	return ext4_chunk_trans_blocks(inode, nrblocks);
2013 }
2014 
2015 /*
2016  * How many index/leaf blocks need to change/allocate to modify nrblocks?
2017  *
2018  * if nrblocks are fit in a single extent (chunk flag is 1), then
2019  * in the worse case, each tree level index/leaf need to be changed
2020  * if the tree split due to insert a new extent, then the old tree
2021  * index/leaf need to be updated too
2022  *
2023  * If the nrblocks are discontiguous, they could cause
2024  * the whole tree split more than once, but this is really rare.
2025  */
2026 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2027 {
2028 	int index;
2029 	int depth = ext_depth(inode);
2030 
2031 	if (chunk)
2032 		index = depth * 2;
2033 	else
2034 		index = depth * 3;
2035 
2036 	return index;
2037 }
2038 
2039 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2040 				struct ext4_extent *ex,
2041 				ext4_lblk_t from, ext4_lblk_t to)
2042 {
2043 	struct buffer_head *bh;
2044 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2045 	int i, metadata = 0;
2046 
2047 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2048 		metadata = 1;
2049 #ifdef EXTENTS_STATS
2050 	{
2051 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2052 		spin_lock(&sbi->s_ext_stats_lock);
2053 		sbi->s_ext_blocks += ee_len;
2054 		sbi->s_ext_extents++;
2055 		if (ee_len < sbi->s_ext_min)
2056 			sbi->s_ext_min = ee_len;
2057 		if (ee_len > sbi->s_ext_max)
2058 			sbi->s_ext_max = ee_len;
2059 		if (ext_depth(inode) > sbi->s_depth_max)
2060 			sbi->s_depth_max = ext_depth(inode);
2061 		spin_unlock(&sbi->s_ext_stats_lock);
2062 	}
2063 #endif
2064 	if (from >= le32_to_cpu(ex->ee_block)
2065 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2066 		/* tail removal */
2067 		ext4_lblk_t num;
2068 		ext4_fsblk_t start;
2069 
2070 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2071 		start = ext_pblock(ex) + ee_len - num;
2072 		ext_debug("free last %u blocks starting %llu\n", num, start);
2073 		for (i = 0; i < num; i++) {
2074 			bh = sb_find_get_block(inode->i_sb, start + i);
2075 			ext4_forget(handle, 0, inode, bh, start + i);
2076 		}
2077 		ext4_free_blocks(handle, inode, start, num, metadata);
2078 	} else if (from == le32_to_cpu(ex->ee_block)
2079 		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2080 		printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n",
2081 			from, to, le32_to_cpu(ex->ee_block), ee_len);
2082 	} else {
2083 		printk(KERN_INFO "strange request: removal(2) "
2084 				"%u-%u from %u:%u\n",
2085 				from, to, le32_to_cpu(ex->ee_block), ee_len);
2086 	}
2087 	return 0;
2088 }
2089 
2090 static int
2091 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2092 		struct ext4_ext_path *path, ext4_lblk_t start)
2093 {
2094 	int err = 0, correct_index = 0;
2095 	int depth = ext_depth(inode), credits;
2096 	struct ext4_extent_header *eh;
2097 	ext4_lblk_t a, b, block;
2098 	unsigned num;
2099 	ext4_lblk_t ex_ee_block;
2100 	unsigned short ex_ee_len;
2101 	unsigned uninitialized = 0;
2102 	struct ext4_extent *ex;
2103 
2104 	/* the header must be checked already in ext4_ext_remove_space() */
2105 	ext_debug("truncate since %u in leaf\n", start);
2106 	if (!path[depth].p_hdr)
2107 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2108 	eh = path[depth].p_hdr;
2109 	BUG_ON(eh == NULL);
2110 
2111 	/* find where to start removing */
2112 	ex = EXT_LAST_EXTENT(eh);
2113 
2114 	ex_ee_block = le32_to_cpu(ex->ee_block);
2115 	ex_ee_len = ext4_ext_get_actual_len(ex);
2116 
2117 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2118 			ex_ee_block + ex_ee_len > start) {
2119 
2120 		if (ext4_ext_is_uninitialized(ex))
2121 			uninitialized = 1;
2122 		else
2123 			uninitialized = 0;
2124 
2125 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2126 			 uninitialized, ex_ee_len);
2127 		path[depth].p_ext = ex;
2128 
2129 		a = ex_ee_block > start ? ex_ee_block : start;
2130 		b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
2131 			ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
2132 
2133 		ext_debug("  border %u:%u\n", a, b);
2134 
2135 		if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
2136 			block = 0;
2137 			num = 0;
2138 			BUG();
2139 		} else if (a != ex_ee_block) {
2140 			/* remove tail of the extent */
2141 			block = ex_ee_block;
2142 			num = a - block;
2143 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2144 			/* remove head of the extent */
2145 			block = a;
2146 			num = b - a;
2147 			/* there is no "make a hole" API yet */
2148 			BUG();
2149 		} else {
2150 			/* remove whole extent: excellent! */
2151 			block = ex_ee_block;
2152 			num = 0;
2153 			BUG_ON(a != ex_ee_block);
2154 			BUG_ON(b != ex_ee_block + ex_ee_len - 1);
2155 		}
2156 
2157 		/*
2158 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2159 		 * descriptor) for each block group; assume two block
2160 		 * groups plus ex_ee_len/blocks_per_block_group for
2161 		 * the worst case
2162 		 */
2163 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2164 		if (ex == EXT_FIRST_EXTENT(eh)) {
2165 			correct_index = 1;
2166 			credits += (ext_depth(inode)) + 1;
2167 		}
2168 		credits += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
2169 
2170 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2171 		if (err)
2172 			goto out;
2173 
2174 		err = ext4_ext_get_access(handle, inode, path + depth);
2175 		if (err)
2176 			goto out;
2177 
2178 		err = ext4_remove_blocks(handle, inode, ex, a, b);
2179 		if (err)
2180 			goto out;
2181 
2182 		if (num == 0) {
2183 			/* this extent is removed; mark slot entirely unused */
2184 			ext4_ext_store_pblock(ex, 0);
2185 			le16_add_cpu(&eh->eh_entries, -1);
2186 		}
2187 
2188 		ex->ee_block = cpu_to_le32(block);
2189 		ex->ee_len = cpu_to_le16(num);
2190 		/*
2191 		 * Do not mark uninitialized if all the blocks in the
2192 		 * extent have been removed.
2193 		 */
2194 		if (uninitialized && num)
2195 			ext4_ext_mark_uninitialized(ex);
2196 
2197 		err = ext4_ext_dirty(handle, inode, path + depth);
2198 		if (err)
2199 			goto out;
2200 
2201 		ext_debug("new extent: %u:%u:%llu\n", block, num,
2202 				ext_pblock(ex));
2203 		ex--;
2204 		ex_ee_block = le32_to_cpu(ex->ee_block);
2205 		ex_ee_len = ext4_ext_get_actual_len(ex);
2206 	}
2207 
2208 	if (correct_index && eh->eh_entries)
2209 		err = ext4_ext_correct_indexes(handle, inode, path);
2210 
2211 	/* if this leaf is free, then we should
2212 	 * remove it from index block above */
2213 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2214 		err = ext4_ext_rm_idx(handle, inode, path + depth);
2215 
2216 out:
2217 	return err;
2218 }
2219 
2220 /*
2221  * ext4_ext_more_to_rm:
2222  * returns 1 if current index has to be freed (even partial)
2223  */
2224 static int
2225 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2226 {
2227 	BUG_ON(path->p_idx == NULL);
2228 
2229 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2230 		return 0;
2231 
2232 	/*
2233 	 * if truncate on deeper level happened, it wasn't partial,
2234 	 * so we have to consider current index for truncation
2235 	 */
2236 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2237 		return 0;
2238 	return 1;
2239 }
2240 
2241 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2242 {
2243 	struct super_block *sb = inode->i_sb;
2244 	int depth = ext_depth(inode);
2245 	struct ext4_ext_path *path;
2246 	handle_t *handle;
2247 	int i = 0, err = 0;
2248 
2249 	ext_debug("truncate since %u\n", start);
2250 
2251 	/* probably first extent we're gonna free will be last in block */
2252 	handle = ext4_journal_start(inode, depth + 1);
2253 	if (IS_ERR(handle))
2254 		return PTR_ERR(handle);
2255 
2256 	ext4_ext_invalidate_cache(inode);
2257 
2258 	/*
2259 	 * We start scanning from right side, freeing all the blocks
2260 	 * after i_size and walking into the tree depth-wise.
2261 	 */
2262 	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2263 	if (path == NULL) {
2264 		ext4_journal_stop(handle);
2265 		return -ENOMEM;
2266 	}
2267 	path[0].p_hdr = ext_inode_hdr(inode);
2268 	if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2269 		err = -EIO;
2270 		goto out;
2271 	}
2272 	path[0].p_depth = depth;
2273 
2274 	while (i >= 0 && err == 0) {
2275 		if (i == depth) {
2276 			/* this is leaf block */
2277 			err = ext4_ext_rm_leaf(handle, inode, path, start);
2278 			/* root level has p_bh == NULL, brelse() eats this */
2279 			brelse(path[i].p_bh);
2280 			path[i].p_bh = NULL;
2281 			i--;
2282 			continue;
2283 		}
2284 
2285 		/* this is index block */
2286 		if (!path[i].p_hdr) {
2287 			ext_debug("initialize header\n");
2288 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2289 		}
2290 
2291 		if (!path[i].p_idx) {
2292 			/* this level hasn't been touched yet */
2293 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2294 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2295 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2296 				  path[i].p_hdr,
2297 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2298 		} else {
2299 			/* we were already here, see at next index */
2300 			path[i].p_idx--;
2301 		}
2302 
2303 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2304 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2305 				path[i].p_idx);
2306 		if (ext4_ext_more_to_rm(path + i)) {
2307 			struct buffer_head *bh;
2308 			/* go to the next level */
2309 			ext_debug("move to level %d (block %llu)\n",
2310 				  i + 1, idx_pblock(path[i].p_idx));
2311 			memset(path + i + 1, 0, sizeof(*path));
2312 			bh = sb_bread(sb, idx_pblock(path[i].p_idx));
2313 			if (!bh) {
2314 				/* should we reset i_size? */
2315 				err = -EIO;
2316 				break;
2317 			}
2318 			if (WARN_ON(i + 1 > depth)) {
2319 				err = -EIO;
2320 				break;
2321 			}
2322 			if (ext4_ext_check(inode, ext_block_hdr(bh),
2323 							depth - i - 1)) {
2324 				err = -EIO;
2325 				break;
2326 			}
2327 			path[i + 1].p_bh = bh;
2328 
2329 			/* save actual number of indexes since this
2330 			 * number is changed at the next iteration */
2331 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2332 			i++;
2333 		} else {
2334 			/* we finished processing this index, go up */
2335 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2336 				/* index is empty, remove it;
2337 				 * handle must be already prepared by the
2338 				 * truncatei_leaf() */
2339 				err = ext4_ext_rm_idx(handle, inode, path + i);
2340 			}
2341 			/* root level has p_bh == NULL, brelse() eats this */
2342 			brelse(path[i].p_bh);
2343 			path[i].p_bh = NULL;
2344 			i--;
2345 			ext_debug("return to level %d\n", i);
2346 		}
2347 	}
2348 
2349 	/* TODO: flexible tree reduction should be here */
2350 	if (path->p_hdr->eh_entries == 0) {
2351 		/*
2352 		 * truncate to zero freed all the tree,
2353 		 * so we need to correct eh_depth
2354 		 */
2355 		err = ext4_ext_get_access(handle, inode, path);
2356 		if (err == 0) {
2357 			ext_inode_hdr(inode)->eh_depth = 0;
2358 			ext_inode_hdr(inode)->eh_max =
2359 				cpu_to_le16(ext4_ext_space_root(inode, 0));
2360 			err = ext4_ext_dirty(handle, inode, path);
2361 		}
2362 	}
2363 out:
2364 	ext4_ext_drop_refs(path);
2365 	kfree(path);
2366 	ext4_journal_stop(handle);
2367 
2368 	return err;
2369 }
2370 
2371 /*
2372  * called at mount time
2373  */
2374 void ext4_ext_init(struct super_block *sb)
2375 {
2376 	/*
2377 	 * possible initialization would be here
2378 	 */
2379 
2380 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2381 		printk(KERN_INFO "EXT4-fs: file extents enabled");
2382 #ifdef AGGRESSIVE_TEST
2383 		printk(", aggressive tests");
2384 #endif
2385 #ifdef CHECK_BINSEARCH
2386 		printk(", check binsearch");
2387 #endif
2388 #ifdef EXTENTS_STATS
2389 		printk(", stats");
2390 #endif
2391 		printk("\n");
2392 #ifdef EXTENTS_STATS
2393 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2394 		EXT4_SB(sb)->s_ext_min = 1 << 30;
2395 		EXT4_SB(sb)->s_ext_max = 0;
2396 #endif
2397 	}
2398 }
2399 
2400 /*
2401  * called at umount time
2402  */
2403 void ext4_ext_release(struct super_block *sb)
2404 {
2405 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2406 		return;
2407 
2408 #ifdef EXTENTS_STATS
2409 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2410 		struct ext4_sb_info *sbi = EXT4_SB(sb);
2411 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2412 			sbi->s_ext_blocks, sbi->s_ext_extents,
2413 			sbi->s_ext_blocks / sbi->s_ext_extents);
2414 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2415 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2416 	}
2417 #endif
2418 }
2419 
2420 static void bi_complete(struct bio *bio, int error)
2421 {
2422 	complete((struct completion *)bio->bi_private);
2423 }
2424 
2425 /* FIXME!! we need to try to merge to left or right after zero-out  */
2426 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2427 {
2428 	int ret = -EIO;
2429 	struct bio *bio;
2430 	int blkbits, blocksize;
2431 	sector_t ee_pblock;
2432 	struct completion event;
2433 	unsigned int ee_len, len, done, offset;
2434 
2435 
2436 	blkbits   = inode->i_blkbits;
2437 	blocksize = inode->i_sb->s_blocksize;
2438 	ee_len    = ext4_ext_get_actual_len(ex);
2439 	ee_pblock = ext_pblock(ex);
2440 
2441 	/* convert ee_pblock to 512 byte sectors */
2442 	ee_pblock = ee_pblock << (blkbits - 9);
2443 
2444 	while (ee_len > 0) {
2445 
2446 		if (ee_len > BIO_MAX_PAGES)
2447 			len = BIO_MAX_PAGES;
2448 		else
2449 			len = ee_len;
2450 
2451 		bio = bio_alloc(GFP_NOIO, len);
2452 		bio->bi_sector = ee_pblock;
2453 		bio->bi_bdev   = inode->i_sb->s_bdev;
2454 
2455 		done = 0;
2456 		offset = 0;
2457 		while (done < len) {
2458 			ret = bio_add_page(bio, ZERO_PAGE(0),
2459 							blocksize, offset);
2460 			if (ret != blocksize) {
2461 				/*
2462 				 * We can't add any more pages because of
2463 				 * hardware limitations.  Start a new bio.
2464 				 */
2465 				break;
2466 			}
2467 			done++;
2468 			offset += blocksize;
2469 			if (offset >= PAGE_CACHE_SIZE)
2470 				offset = 0;
2471 		}
2472 
2473 		init_completion(&event);
2474 		bio->bi_private = &event;
2475 		bio->bi_end_io = bi_complete;
2476 		submit_bio(WRITE, bio);
2477 		wait_for_completion(&event);
2478 
2479 		if (test_bit(BIO_UPTODATE, &bio->bi_flags))
2480 			ret = 0;
2481 		else {
2482 			ret = -EIO;
2483 			break;
2484 		}
2485 		bio_put(bio);
2486 		ee_len    -= done;
2487 		ee_pblock += done  << (blkbits - 9);
2488 	}
2489 	return ret;
2490 }
2491 
2492 #define EXT4_EXT_ZERO_LEN 7
2493 
2494 /*
2495  * This function is called by ext4_ext_get_blocks() if someone tries to write
2496  * to an uninitialized extent. It may result in splitting the uninitialized
2497  * extent into multiple extents (upto three - one initialized and two
2498  * uninitialized).
2499  * There are three possibilities:
2500  *   a> There is no split required: Entire extent should be initialized
2501  *   b> Splits in two extents: Write is happening at either end of the extent
2502  *   c> Splits in three extents: Somone is writing in middle of the extent
2503  */
2504 static int ext4_ext_convert_to_initialized(handle_t *handle,
2505 						struct inode *inode,
2506 						struct ext4_ext_path *path,
2507 						ext4_lblk_t iblock,
2508 						unsigned int max_blocks)
2509 {
2510 	struct ext4_extent *ex, newex, orig_ex;
2511 	struct ext4_extent *ex1 = NULL;
2512 	struct ext4_extent *ex2 = NULL;
2513 	struct ext4_extent *ex3 = NULL;
2514 	struct ext4_extent_header *eh;
2515 	ext4_lblk_t ee_block;
2516 	unsigned int allocated, ee_len, depth;
2517 	ext4_fsblk_t newblock;
2518 	int err = 0;
2519 	int ret = 0;
2520 
2521 	depth = ext_depth(inode);
2522 	eh = path[depth].p_hdr;
2523 	ex = path[depth].p_ext;
2524 	ee_block = le32_to_cpu(ex->ee_block);
2525 	ee_len = ext4_ext_get_actual_len(ex);
2526 	allocated = ee_len - (iblock - ee_block);
2527 	newblock = iblock - ee_block + ext_pblock(ex);
2528 	ex2 = ex;
2529 	orig_ex.ee_block = ex->ee_block;
2530 	orig_ex.ee_len   = cpu_to_le16(ee_len);
2531 	ext4_ext_store_pblock(&orig_ex, ext_pblock(ex));
2532 
2533 	err = ext4_ext_get_access(handle, inode, path + depth);
2534 	if (err)
2535 		goto out;
2536 	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2537 	if (ee_len <= 2*EXT4_EXT_ZERO_LEN) {
2538 		err =  ext4_ext_zeroout(inode, &orig_ex);
2539 		if (err)
2540 			goto fix_extent_len;
2541 		/* update the extent length and mark as initialized */
2542 		ex->ee_block = orig_ex.ee_block;
2543 		ex->ee_len   = orig_ex.ee_len;
2544 		ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2545 		ext4_ext_dirty(handle, inode, path + depth);
2546 		/* zeroed the full extent */
2547 		return allocated;
2548 	}
2549 
2550 	/* ex1: ee_block to iblock - 1 : uninitialized */
2551 	if (iblock > ee_block) {
2552 		ex1 = ex;
2553 		ex1->ee_len = cpu_to_le16(iblock - ee_block);
2554 		ext4_ext_mark_uninitialized(ex1);
2555 		ex2 = &newex;
2556 	}
2557 	/*
2558 	 * for sanity, update the length of the ex2 extent before
2559 	 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2560 	 * overlap of blocks.
2561 	 */
2562 	if (!ex1 && allocated > max_blocks)
2563 		ex2->ee_len = cpu_to_le16(max_blocks);
2564 	/* ex3: to ee_block + ee_len : uninitialised */
2565 	if (allocated > max_blocks) {
2566 		unsigned int newdepth;
2567 		/* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */
2568 		if (allocated <= EXT4_EXT_ZERO_LEN) {
2569 			/*
2570 			 * iblock == ee_block is handled by the zerouout
2571 			 * at the beginning.
2572 			 * Mark first half uninitialized.
2573 			 * Mark second half initialized and zero out the
2574 			 * initialized extent
2575 			 */
2576 			ex->ee_block = orig_ex.ee_block;
2577 			ex->ee_len   = cpu_to_le16(ee_len - allocated);
2578 			ext4_ext_mark_uninitialized(ex);
2579 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2580 			ext4_ext_dirty(handle, inode, path + depth);
2581 
2582 			ex3 = &newex;
2583 			ex3->ee_block = cpu_to_le32(iblock);
2584 			ext4_ext_store_pblock(ex3, newblock);
2585 			ex3->ee_len = cpu_to_le16(allocated);
2586 			err = ext4_ext_insert_extent(handle, inode, path, ex3);
2587 			if (err == -ENOSPC) {
2588 				err =  ext4_ext_zeroout(inode, &orig_ex);
2589 				if (err)
2590 					goto fix_extent_len;
2591 				ex->ee_block = orig_ex.ee_block;
2592 				ex->ee_len   = orig_ex.ee_len;
2593 				ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2594 				ext4_ext_dirty(handle, inode, path + depth);
2595 				/* blocks available from iblock */
2596 				return allocated;
2597 
2598 			} else if (err)
2599 				goto fix_extent_len;
2600 
2601 			/*
2602 			 * We need to zero out the second half because
2603 			 * an fallocate request can update file size and
2604 			 * converting the second half to initialized extent
2605 			 * implies that we can leak some junk data to user
2606 			 * space.
2607 			 */
2608 			err =  ext4_ext_zeroout(inode, ex3);
2609 			if (err) {
2610 				/*
2611 				 * We should actually mark the
2612 				 * second half as uninit and return error
2613 				 * Insert would have changed the extent
2614 				 */
2615 				depth = ext_depth(inode);
2616 				ext4_ext_drop_refs(path);
2617 				path = ext4_ext_find_extent(inode,
2618 								iblock, path);
2619 				if (IS_ERR(path)) {
2620 					err = PTR_ERR(path);
2621 					return err;
2622 				}
2623 				/* get the second half extent details */
2624 				ex = path[depth].p_ext;
2625 				err = ext4_ext_get_access(handle, inode,
2626 								path + depth);
2627 				if (err)
2628 					return err;
2629 				ext4_ext_mark_uninitialized(ex);
2630 				ext4_ext_dirty(handle, inode, path + depth);
2631 				return err;
2632 			}
2633 
2634 			/* zeroed the second half */
2635 			return allocated;
2636 		}
2637 		ex3 = &newex;
2638 		ex3->ee_block = cpu_to_le32(iblock + max_blocks);
2639 		ext4_ext_store_pblock(ex3, newblock + max_blocks);
2640 		ex3->ee_len = cpu_to_le16(allocated - max_blocks);
2641 		ext4_ext_mark_uninitialized(ex3);
2642 		err = ext4_ext_insert_extent(handle, inode, path, ex3);
2643 		if (err == -ENOSPC) {
2644 			err =  ext4_ext_zeroout(inode, &orig_ex);
2645 			if (err)
2646 				goto fix_extent_len;
2647 			/* update the extent length and mark as initialized */
2648 			ex->ee_block = orig_ex.ee_block;
2649 			ex->ee_len   = orig_ex.ee_len;
2650 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2651 			ext4_ext_dirty(handle, inode, path + depth);
2652 			/* zeroed the full extent */
2653 			/* blocks available from iblock */
2654 			return allocated;
2655 
2656 		} else if (err)
2657 			goto fix_extent_len;
2658 		/*
2659 		 * The depth, and hence eh & ex might change
2660 		 * as part of the insert above.
2661 		 */
2662 		newdepth = ext_depth(inode);
2663 		/*
2664 		 * update the extent length after successful insert of the
2665 		 * split extent
2666 		 */
2667 		orig_ex.ee_len = cpu_to_le16(ee_len -
2668 						ext4_ext_get_actual_len(ex3));
2669 		depth = newdepth;
2670 		ext4_ext_drop_refs(path);
2671 		path = ext4_ext_find_extent(inode, iblock, path);
2672 		if (IS_ERR(path)) {
2673 			err = PTR_ERR(path);
2674 			goto out;
2675 		}
2676 		eh = path[depth].p_hdr;
2677 		ex = path[depth].p_ext;
2678 		if (ex2 != &newex)
2679 			ex2 = ex;
2680 
2681 		err = ext4_ext_get_access(handle, inode, path + depth);
2682 		if (err)
2683 			goto out;
2684 
2685 		allocated = max_blocks;
2686 
2687 		/* If extent has less than EXT4_EXT_ZERO_LEN and we are trying
2688 		 * to insert a extent in the middle zerout directly
2689 		 * otherwise give the extent a chance to merge to left
2690 		 */
2691 		if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN &&
2692 							iblock != ee_block) {
2693 			err =  ext4_ext_zeroout(inode, &orig_ex);
2694 			if (err)
2695 				goto fix_extent_len;
2696 			/* update the extent length and mark as initialized */
2697 			ex->ee_block = orig_ex.ee_block;
2698 			ex->ee_len   = orig_ex.ee_len;
2699 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2700 			ext4_ext_dirty(handle, inode, path + depth);
2701 			/* zero out the first half */
2702 			/* blocks available from iblock */
2703 			return allocated;
2704 		}
2705 	}
2706 	/*
2707 	 * If there was a change of depth as part of the
2708 	 * insertion of ex3 above, we need to update the length
2709 	 * of the ex1 extent again here
2710 	 */
2711 	if (ex1 && ex1 != ex) {
2712 		ex1 = ex;
2713 		ex1->ee_len = cpu_to_le16(iblock - ee_block);
2714 		ext4_ext_mark_uninitialized(ex1);
2715 		ex2 = &newex;
2716 	}
2717 	/* ex2: iblock to iblock + maxblocks-1 : initialised */
2718 	ex2->ee_block = cpu_to_le32(iblock);
2719 	ext4_ext_store_pblock(ex2, newblock);
2720 	ex2->ee_len = cpu_to_le16(allocated);
2721 	if (ex2 != ex)
2722 		goto insert;
2723 	/*
2724 	 * New (initialized) extent starts from the first block
2725 	 * in the current extent. i.e., ex2 == ex
2726 	 * We have to see if it can be merged with the extent
2727 	 * on the left.
2728 	 */
2729 	if (ex2 > EXT_FIRST_EXTENT(eh)) {
2730 		/*
2731 		 * To merge left, pass "ex2 - 1" to try_to_merge(),
2732 		 * since it merges towards right _only_.
2733 		 */
2734 		ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
2735 		if (ret) {
2736 			err = ext4_ext_correct_indexes(handle, inode, path);
2737 			if (err)
2738 				goto out;
2739 			depth = ext_depth(inode);
2740 			ex2--;
2741 		}
2742 	}
2743 	/*
2744 	 * Try to Merge towards right. This might be required
2745 	 * only when the whole extent is being written to.
2746 	 * i.e. ex2 == ex and ex3 == NULL.
2747 	 */
2748 	if (!ex3) {
2749 		ret = ext4_ext_try_to_merge(inode, path, ex2);
2750 		if (ret) {
2751 			err = ext4_ext_correct_indexes(handle, inode, path);
2752 			if (err)
2753 				goto out;
2754 		}
2755 	}
2756 	/* Mark modified extent as dirty */
2757 	err = ext4_ext_dirty(handle, inode, path + depth);
2758 	goto out;
2759 insert:
2760 	err = ext4_ext_insert_extent(handle, inode, path, &newex);
2761 	if (err == -ENOSPC) {
2762 		err =  ext4_ext_zeroout(inode, &orig_ex);
2763 		if (err)
2764 			goto fix_extent_len;
2765 		/* update the extent length and mark as initialized */
2766 		ex->ee_block = orig_ex.ee_block;
2767 		ex->ee_len   = orig_ex.ee_len;
2768 		ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2769 		ext4_ext_dirty(handle, inode, path + depth);
2770 		/* zero out the first half */
2771 		return allocated;
2772 	} else if (err)
2773 		goto fix_extent_len;
2774 out:
2775 	ext4_ext_show_leaf(inode, path);
2776 	return err ? err : allocated;
2777 
2778 fix_extent_len:
2779 	ex->ee_block = orig_ex.ee_block;
2780 	ex->ee_len   = orig_ex.ee_len;
2781 	ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2782 	ext4_ext_mark_uninitialized(ex);
2783 	ext4_ext_dirty(handle, inode, path + depth);
2784 	return err;
2785 }
2786 
2787 /*
2788  * Block allocation/map/preallocation routine for extents based files
2789  *
2790  *
2791  * Need to be called with
2792  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
2793  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
2794  *
2795  * return > 0, number of of blocks already mapped/allocated
2796  *          if create == 0 and these are pre-allocated blocks
2797  *          	buffer head is unmapped
2798  *          otherwise blocks are mapped
2799  *
2800  * return = 0, if plain look up failed (blocks have not been allocated)
2801  *          buffer head is unmapped
2802  *
2803  * return < 0, error case.
2804  */
2805 int ext4_ext_get_blocks(handle_t *handle, struct inode *inode,
2806 			ext4_lblk_t iblock,
2807 			unsigned int max_blocks, struct buffer_head *bh_result,
2808 			int flags)
2809 {
2810 	struct ext4_ext_path *path = NULL;
2811 	struct ext4_extent_header *eh;
2812 	struct ext4_extent newex, *ex;
2813 	ext4_fsblk_t newblock;
2814 	int err = 0, depth, ret, cache_type;
2815 	unsigned int allocated = 0;
2816 	struct ext4_allocation_request ar;
2817 
2818 	__clear_bit(BH_New, &bh_result->b_state);
2819 	ext_debug("blocks %u/%u requested for inode %lu\n",
2820 			iblock, max_blocks, inode->i_ino);
2821 
2822 	/* check in cache */
2823 	cache_type = ext4_ext_in_cache(inode, iblock, &newex);
2824 	if (cache_type) {
2825 		if (cache_type == EXT4_EXT_CACHE_GAP) {
2826 			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
2827 				/*
2828 				 * block isn't allocated yet and
2829 				 * user doesn't want to allocate it
2830 				 */
2831 				goto out2;
2832 			}
2833 			/* we should allocate requested block */
2834 		} else if (cache_type == EXT4_EXT_CACHE_EXTENT) {
2835 			/* block is already allocated */
2836 			newblock = iblock
2837 				   - le32_to_cpu(newex.ee_block)
2838 				   + ext_pblock(&newex);
2839 			/* number of remaining blocks in the extent */
2840 			allocated = ext4_ext_get_actual_len(&newex) -
2841 					(iblock - le32_to_cpu(newex.ee_block));
2842 			goto out;
2843 		} else {
2844 			BUG();
2845 		}
2846 	}
2847 
2848 	/* find extent for this block */
2849 	path = ext4_ext_find_extent(inode, iblock, NULL);
2850 	if (IS_ERR(path)) {
2851 		err = PTR_ERR(path);
2852 		path = NULL;
2853 		goto out2;
2854 	}
2855 
2856 	depth = ext_depth(inode);
2857 
2858 	/*
2859 	 * consistent leaf must not be empty;
2860 	 * this situation is possible, though, _during_ tree modification;
2861 	 * this is why assert can't be put in ext4_ext_find_extent()
2862 	 */
2863 	BUG_ON(path[depth].p_ext == NULL && depth != 0);
2864 	eh = path[depth].p_hdr;
2865 
2866 	ex = path[depth].p_ext;
2867 	if (ex) {
2868 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
2869 		ext4_fsblk_t ee_start = ext_pblock(ex);
2870 		unsigned short ee_len;
2871 
2872 		/*
2873 		 * Uninitialized extents are treated as holes, except that
2874 		 * we split out initialized portions during a write.
2875 		 */
2876 		ee_len = ext4_ext_get_actual_len(ex);
2877 		/* if found extent covers block, simply return it */
2878 		if (iblock >= ee_block && iblock < ee_block + ee_len) {
2879 			newblock = iblock - ee_block + ee_start;
2880 			/* number of remaining blocks in the extent */
2881 			allocated = ee_len - (iblock - ee_block);
2882 			ext_debug("%u fit into %u:%d -> %llu\n", iblock,
2883 					ee_block, ee_len, newblock);
2884 
2885 			/* Do not put uninitialized extent in the cache */
2886 			if (!ext4_ext_is_uninitialized(ex)) {
2887 				ext4_ext_put_in_cache(inode, ee_block,
2888 							ee_len, ee_start,
2889 							EXT4_EXT_CACHE_EXTENT);
2890 				goto out;
2891 			}
2892 			if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
2893 				goto out;
2894 			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
2895 				if (allocated > max_blocks)
2896 					allocated = max_blocks;
2897 				/*
2898 				 * We have blocks reserved already.  We
2899 				 * return allocated blocks so that delalloc
2900 				 * won't do block reservation for us.  But
2901 				 * the buffer head will be unmapped so that
2902 				 * a read from the block returns 0s.
2903 				 */
2904 				set_buffer_unwritten(bh_result);
2905 				bh_result->b_bdev = inode->i_sb->s_bdev;
2906 				bh_result->b_blocknr = newblock;
2907 				goto out2;
2908 			}
2909 
2910 			ret = ext4_ext_convert_to_initialized(handle, inode,
2911 								path, iblock,
2912 								max_blocks);
2913 			if (ret <= 0) {
2914 				err = ret;
2915 				goto out2;
2916 			} else
2917 				allocated = ret;
2918 			goto outnew;
2919 		}
2920 	}
2921 
2922 	/*
2923 	 * requested block isn't allocated yet;
2924 	 * we couldn't try to create block if create flag is zero
2925 	 */
2926 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
2927 		/*
2928 		 * put just found gap into cache to speed up
2929 		 * subsequent requests
2930 		 */
2931 		ext4_ext_put_gap_in_cache(inode, path, iblock);
2932 		goto out2;
2933 	}
2934 	/*
2935 	 * Okay, we need to do block allocation.
2936 	 */
2937 
2938 	/* find neighbour allocated blocks */
2939 	ar.lleft = iblock;
2940 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
2941 	if (err)
2942 		goto out2;
2943 	ar.lright = iblock;
2944 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
2945 	if (err)
2946 		goto out2;
2947 
2948 	/*
2949 	 * See if request is beyond maximum number of blocks we can have in
2950 	 * a single extent. For an initialized extent this limit is
2951 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
2952 	 * EXT_UNINIT_MAX_LEN.
2953 	 */
2954 	if (max_blocks > EXT_INIT_MAX_LEN &&
2955 	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
2956 		max_blocks = EXT_INIT_MAX_LEN;
2957 	else if (max_blocks > EXT_UNINIT_MAX_LEN &&
2958 		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
2959 		max_blocks = EXT_UNINIT_MAX_LEN;
2960 
2961 	/* Check if we can really insert (iblock)::(iblock+max_blocks) extent */
2962 	newex.ee_block = cpu_to_le32(iblock);
2963 	newex.ee_len = cpu_to_le16(max_blocks);
2964 	err = ext4_ext_check_overlap(inode, &newex, path);
2965 	if (err)
2966 		allocated = ext4_ext_get_actual_len(&newex);
2967 	else
2968 		allocated = max_blocks;
2969 
2970 	/* allocate new block */
2971 	ar.inode = inode;
2972 	ar.goal = ext4_ext_find_goal(inode, path, iblock);
2973 	ar.logical = iblock;
2974 	ar.len = allocated;
2975 	if (S_ISREG(inode->i_mode))
2976 		ar.flags = EXT4_MB_HINT_DATA;
2977 	else
2978 		/* disable in-core preallocation for non-regular files */
2979 		ar.flags = 0;
2980 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
2981 	if (!newblock)
2982 		goto out2;
2983 	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
2984 		  ar.goal, newblock, allocated);
2985 
2986 	/* try to insert new extent into found leaf and return */
2987 	ext4_ext_store_pblock(&newex, newblock);
2988 	newex.ee_len = cpu_to_le16(ar.len);
2989 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)  /* Mark uninitialized */
2990 		ext4_ext_mark_uninitialized(&newex);
2991 	err = ext4_ext_insert_extent(handle, inode, path, &newex);
2992 	if (err) {
2993 		/* free data blocks we just allocated */
2994 		/* not a good idea to call discard here directly,
2995 		 * but otherwise we'd need to call it every free() */
2996 		ext4_discard_preallocations(inode);
2997 		ext4_free_blocks(handle, inode, ext_pblock(&newex),
2998 					ext4_ext_get_actual_len(&newex), 0);
2999 		goto out2;
3000 	}
3001 
3002 	/* previous routine could use block we allocated */
3003 	newblock = ext_pblock(&newex);
3004 	allocated = ext4_ext_get_actual_len(&newex);
3005 outnew:
3006 	set_buffer_new(bh_result);
3007 
3008 	/* Cache only when it is _not_ an uninitialized extent */
3009 	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
3010 		ext4_ext_put_in_cache(inode, iblock, allocated, newblock,
3011 						EXT4_EXT_CACHE_EXTENT);
3012 out:
3013 	if (allocated > max_blocks)
3014 		allocated = max_blocks;
3015 	ext4_ext_show_leaf(inode, path);
3016 	set_buffer_mapped(bh_result);
3017 	bh_result->b_bdev = inode->i_sb->s_bdev;
3018 	bh_result->b_blocknr = newblock;
3019 out2:
3020 	if (path) {
3021 		ext4_ext_drop_refs(path);
3022 		kfree(path);
3023 	}
3024 	return err ? err : allocated;
3025 }
3026 
3027 void ext4_ext_truncate(struct inode *inode)
3028 {
3029 	struct address_space *mapping = inode->i_mapping;
3030 	struct super_block *sb = inode->i_sb;
3031 	ext4_lblk_t last_block;
3032 	handle_t *handle;
3033 	int err = 0;
3034 
3035 	/*
3036 	 * probably first extent we're gonna free will be last in block
3037 	 */
3038 	err = ext4_writepage_trans_blocks(inode);
3039 	handle = ext4_journal_start(inode, err);
3040 	if (IS_ERR(handle))
3041 		return;
3042 
3043 	if (inode->i_size & (sb->s_blocksize - 1))
3044 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3045 
3046 	if (ext4_orphan_add(handle, inode))
3047 		goto out_stop;
3048 
3049 	down_write(&EXT4_I(inode)->i_data_sem);
3050 	ext4_ext_invalidate_cache(inode);
3051 
3052 	ext4_discard_preallocations(inode);
3053 
3054 	/*
3055 	 * TODO: optimization is possible here.
3056 	 * Probably we need not scan at all,
3057 	 * because page truncation is enough.
3058 	 */
3059 
3060 	/* we have to know where to truncate from in crash case */
3061 	EXT4_I(inode)->i_disksize = inode->i_size;
3062 	ext4_mark_inode_dirty(handle, inode);
3063 
3064 	last_block = (inode->i_size + sb->s_blocksize - 1)
3065 			>> EXT4_BLOCK_SIZE_BITS(sb);
3066 	err = ext4_ext_remove_space(inode, last_block);
3067 
3068 	/* In a multi-transaction truncate, we only make the final
3069 	 * transaction synchronous.
3070 	 */
3071 	if (IS_SYNC(inode))
3072 		ext4_handle_sync(handle);
3073 
3074 out_stop:
3075 	up_write(&EXT4_I(inode)->i_data_sem);
3076 	/*
3077 	 * If this was a simple ftruncate() and the file will remain alive,
3078 	 * then we need to clear up the orphan record which we created above.
3079 	 * However, if this was a real unlink then we were called by
3080 	 * ext4_delete_inode(), and we allow that function to clean up the
3081 	 * orphan info for us.
3082 	 */
3083 	if (inode->i_nlink)
3084 		ext4_orphan_del(handle, inode);
3085 
3086 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3087 	ext4_mark_inode_dirty(handle, inode);
3088 	ext4_journal_stop(handle);
3089 }
3090 
3091 static void ext4_falloc_update_inode(struct inode *inode,
3092 				int mode, loff_t new_size, int update_ctime)
3093 {
3094 	struct timespec now;
3095 
3096 	if (update_ctime) {
3097 		now = current_fs_time(inode->i_sb);
3098 		if (!timespec_equal(&inode->i_ctime, &now))
3099 			inode->i_ctime = now;
3100 	}
3101 	/*
3102 	 * Update only when preallocation was requested beyond
3103 	 * the file size.
3104 	 */
3105 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3106 		if (new_size > i_size_read(inode))
3107 			i_size_write(inode, new_size);
3108 		if (new_size > EXT4_I(inode)->i_disksize)
3109 			ext4_update_i_disksize(inode, new_size);
3110 	}
3111 
3112 }
3113 
3114 /*
3115  * preallocate space for a file. This implements ext4's fallocate inode
3116  * operation, which gets called from sys_fallocate system call.
3117  * For block-mapped files, posix_fallocate should fall back to the method
3118  * of writing zeroes to the required new blocks (the same behavior which is
3119  * expected for file systems which do not support fallocate() system call).
3120  */
3121 long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len)
3122 {
3123 	handle_t *handle;
3124 	ext4_lblk_t block;
3125 	loff_t new_size;
3126 	unsigned int max_blocks;
3127 	int ret = 0;
3128 	int ret2 = 0;
3129 	int retries = 0;
3130 	struct buffer_head map_bh;
3131 	unsigned int credits, blkbits = inode->i_blkbits;
3132 
3133 	/*
3134 	 * currently supporting (pre)allocate mode for extent-based
3135 	 * files _only_
3136 	 */
3137 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3138 		return -EOPNOTSUPP;
3139 
3140 	/* preallocation to directories is currently not supported */
3141 	if (S_ISDIR(inode->i_mode))
3142 		return -ENODEV;
3143 
3144 	block = offset >> blkbits;
3145 	/*
3146 	 * We can't just convert len to max_blocks because
3147 	 * If blocksize = 4096 offset = 3072 and len = 2048
3148 	 */
3149 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3150 							- block;
3151 	/*
3152 	 * credits to insert 1 extent into extent tree
3153 	 */
3154 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3155 	mutex_lock(&inode->i_mutex);
3156 retry:
3157 	while (ret >= 0 && ret < max_blocks) {
3158 		block = block + ret;
3159 		max_blocks = max_blocks - ret;
3160 		handle = ext4_journal_start(inode, credits);
3161 		if (IS_ERR(handle)) {
3162 			ret = PTR_ERR(handle);
3163 			break;
3164 		}
3165 		map_bh.b_state = 0;
3166 		ret = ext4_get_blocks(handle, inode, block,
3167 				      max_blocks, &map_bh,
3168 				      EXT4_GET_BLOCKS_CREATE_UNINIT_EXT);
3169 		if (ret <= 0) {
3170 #ifdef EXT4FS_DEBUG
3171 			WARN_ON(ret <= 0);
3172 			printk(KERN_ERR "%s: ext4_ext_get_blocks "
3173 				    "returned error inode#%lu, block=%u, "
3174 				    "max_blocks=%u", __func__,
3175 				    inode->i_ino, block, max_blocks);
3176 #endif
3177 			ext4_mark_inode_dirty(handle, inode);
3178 			ret2 = ext4_journal_stop(handle);
3179 			break;
3180 		}
3181 		if ((block + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3182 						blkbits) >> blkbits))
3183 			new_size = offset + len;
3184 		else
3185 			new_size = (block + ret) << blkbits;
3186 
3187 		ext4_falloc_update_inode(inode, mode, new_size,
3188 						buffer_new(&map_bh));
3189 		ext4_mark_inode_dirty(handle, inode);
3190 		ret2 = ext4_journal_stop(handle);
3191 		if (ret2)
3192 			break;
3193 	}
3194 	if (ret == -ENOSPC &&
3195 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
3196 		ret = 0;
3197 		goto retry;
3198 	}
3199 	mutex_unlock(&inode->i_mutex);
3200 	return ret > 0 ? ret2 : ret;
3201 }
3202 
3203 /*
3204  * Callback function called for each extent to gather FIEMAP information.
3205  */
3206 static int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path,
3207 		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
3208 		       void *data)
3209 {
3210 	struct fiemap_extent_info *fieinfo = data;
3211 	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
3212 	__u64	logical;
3213 	__u64	physical;
3214 	__u64	length;
3215 	__u32	flags = 0;
3216 	int	error;
3217 
3218 	logical =  (__u64)newex->ec_block << blksize_bits;
3219 
3220 	if (newex->ec_type == EXT4_EXT_CACHE_GAP) {
3221 		pgoff_t offset;
3222 		struct page *page;
3223 		struct buffer_head *bh = NULL;
3224 
3225 		offset = logical >> PAGE_SHIFT;
3226 		page = find_get_page(inode->i_mapping, offset);
3227 		if (!page || !page_has_buffers(page))
3228 			return EXT_CONTINUE;
3229 
3230 		bh = page_buffers(page);
3231 
3232 		if (!bh)
3233 			return EXT_CONTINUE;
3234 
3235 		if (buffer_delay(bh)) {
3236 			flags |= FIEMAP_EXTENT_DELALLOC;
3237 			page_cache_release(page);
3238 		} else {
3239 			page_cache_release(page);
3240 			return EXT_CONTINUE;
3241 		}
3242 	}
3243 
3244 	physical = (__u64)newex->ec_start << blksize_bits;
3245 	length =   (__u64)newex->ec_len << blksize_bits;
3246 
3247 	if (ex && ext4_ext_is_uninitialized(ex))
3248 		flags |= FIEMAP_EXTENT_UNWRITTEN;
3249 
3250 	/*
3251 	 * If this extent reaches EXT_MAX_BLOCK, it must be last.
3252 	 *
3253 	 * Or if ext4_ext_next_allocated_block is EXT_MAX_BLOCK,
3254 	 * this also indicates no more allocated blocks.
3255 	 *
3256 	 * XXX this might miss a single-block extent at EXT_MAX_BLOCK
3257 	 */
3258 	if (ext4_ext_next_allocated_block(path) == EXT_MAX_BLOCK ||
3259 	    newex->ec_block + newex->ec_len - 1 == EXT_MAX_BLOCK) {
3260 		loff_t size = i_size_read(inode);
3261 		loff_t bs = EXT4_BLOCK_SIZE(inode->i_sb);
3262 
3263 		flags |= FIEMAP_EXTENT_LAST;
3264 		if ((flags & FIEMAP_EXTENT_DELALLOC) &&
3265 		    logical+length > size)
3266 			length = (size - logical + bs - 1) & ~(bs-1);
3267 	}
3268 
3269 	error = fiemap_fill_next_extent(fieinfo, logical, physical,
3270 					length, flags);
3271 	if (error < 0)
3272 		return error;
3273 	if (error == 1)
3274 		return EXT_BREAK;
3275 
3276 	return EXT_CONTINUE;
3277 }
3278 
3279 /* fiemap flags we can handle specified here */
3280 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
3281 
3282 static int ext4_xattr_fiemap(struct inode *inode,
3283 				struct fiemap_extent_info *fieinfo)
3284 {
3285 	__u64 physical = 0;
3286 	__u64 length;
3287 	__u32 flags = FIEMAP_EXTENT_LAST;
3288 	int blockbits = inode->i_sb->s_blocksize_bits;
3289 	int error = 0;
3290 
3291 	/* in-inode? */
3292 	if (EXT4_I(inode)->i_state & EXT4_STATE_XATTR) {
3293 		struct ext4_iloc iloc;
3294 		int offset;	/* offset of xattr in inode */
3295 
3296 		error = ext4_get_inode_loc(inode, &iloc);
3297 		if (error)
3298 			return error;
3299 		physical = iloc.bh->b_blocknr << blockbits;
3300 		offset = EXT4_GOOD_OLD_INODE_SIZE +
3301 				EXT4_I(inode)->i_extra_isize;
3302 		physical += offset;
3303 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
3304 		flags |= FIEMAP_EXTENT_DATA_INLINE;
3305 	} else { /* external block */
3306 		physical = EXT4_I(inode)->i_file_acl << blockbits;
3307 		length = inode->i_sb->s_blocksize;
3308 	}
3309 
3310 	if (physical)
3311 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
3312 						length, flags);
3313 	return (error < 0 ? error : 0);
3314 }
3315 
3316 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3317 		__u64 start, __u64 len)
3318 {
3319 	ext4_lblk_t start_blk;
3320 	ext4_lblk_t len_blks;
3321 	int error = 0;
3322 
3323 	/* fallback to generic here if not in extents fmt */
3324 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3325 		return generic_block_fiemap(inode, fieinfo, start, len,
3326 			ext4_get_block);
3327 
3328 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
3329 		return -EBADR;
3330 
3331 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
3332 		error = ext4_xattr_fiemap(inode, fieinfo);
3333 	} else {
3334 		start_blk = start >> inode->i_sb->s_blocksize_bits;
3335 		len_blks = len >> inode->i_sb->s_blocksize_bits;
3336 
3337 		/*
3338 		 * Walk the extent tree gathering extent information.
3339 		 * ext4_ext_fiemap_cb will push extents back to user.
3340 		 */
3341 		down_read(&EXT4_I(inode)->i_data_sem);
3342 		error = ext4_ext_walk_space(inode, start_blk, len_blks,
3343 					  ext4_ext_fiemap_cb, fieinfo);
3344 		up_read(&EXT4_I(inode)->i_data_sem);
3345 	}
3346 
3347 	return error;
3348 }
3349 
3350