xref: /openbmc/linux/fs/ext4/extents.c (revision 4f42f80a8f08d4c3f52c4267361241885d5dee3a)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
45 #include "xattr.h"
46 
47 #include <trace/events/ext4.h>
48 
49 /*
50  * used by extent splitting.
51  */
52 #define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
53 					due to ENOSPC */
54 #define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
55 #define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
56 
57 #define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
58 #define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
59 
60 static __le32 ext4_extent_block_csum(struct inode *inode,
61 				     struct ext4_extent_header *eh)
62 {
63 	struct ext4_inode_info *ei = EXT4_I(inode);
64 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65 	__u32 csum;
66 
67 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68 			   EXT4_EXTENT_TAIL_OFFSET(eh));
69 	return cpu_to_le32(csum);
70 }
71 
72 static int ext4_extent_block_csum_verify(struct inode *inode,
73 					 struct ext4_extent_header *eh)
74 {
75 	struct ext4_extent_tail *et;
76 
77 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
78 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
79 		return 1;
80 
81 	et = find_ext4_extent_tail(eh);
82 	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
83 		return 0;
84 	return 1;
85 }
86 
87 static void ext4_extent_block_csum_set(struct inode *inode,
88 				       struct ext4_extent_header *eh)
89 {
90 	struct ext4_extent_tail *et;
91 
92 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
93 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
94 		return;
95 
96 	et = find_ext4_extent_tail(eh);
97 	et->et_checksum = ext4_extent_block_csum(inode, eh);
98 }
99 
100 static int ext4_split_extent(handle_t *handle,
101 				struct inode *inode,
102 				struct ext4_ext_path *path,
103 				struct ext4_map_blocks *map,
104 				int split_flag,
105 				int flags);
106 
107 static int ext4_split_extent_at(handle_t *handle,
108 			     struct inode *inode,
109 			     struct ext4_ext_path *path,
110 			     ext4_lblk_t split,
111 			     int split_flag,
112 			     int flags);
113 
114 static int ext4_find_delayed_extent(struct inode *inode,
115 				    struct extent_status *newes);
116 
117 static int ext4_ext_truncate_extend_restart(handle_t *handle,
118 					    struct inode *inode,
119 					    int needed)
120 {
121 	int err;
122 
123 	if (!ext4_handle_valid(handle))
124 		return 0;
125 	if (handle->h_buffer_credits > needed)
126 		return 0;
127 	err = ext4_journal_extend(handle, needed);
128 	if (err <= 0)
129 		return err;
130 	err = ext4_truncate_restart_trans(handle, inode, needed);
131 	if (err == 0)
132 		err = -EAGAIN;
133 
134 	return err;
135 }
136 
137 /*
138  * could return:
139  *  - EROFS
140  *  - ENOMEM
141  */
142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
143 				struct ext4_ext_path *path)
144 {
145 	if (path->p_bh) {
146 		/* path points to block */
147 		return ext4_journal_get_write_access(handle, path->p_bh);
148 	}
149 	/* path points to leaf/index in inode body */
150 	/* we use in-core data, no need to protect them */
151 	return 0;
152 }
153 
154 /*
155  * could return:
156  *  - EROFS
157  *  - ENOMEM
158  *  - EIO
159  */
160 #define ext4_ext_dirty(handle, inode, path) \
161 		__ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
162 static int __ext4_ext_dirty(const char *where, unsigned int line,
163 			    handle_t *handle, struct inode *inode,
164 			    struct ext4_ext_path *path)
165 {
166 	int err;
167 	if (path->p_bh) {
168 		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
169 		/* path points to block */
170 		err = __ext4_handle_dirty_metadata(where, line, handle,
171 						   inode, path->p_bh);
172 	} else {
173 		/* path points to leaf/index in inode body */
174 		err = ext4_mark_inode_dirty(handle, inode);
175 	}
176 	return err;
177 }
178 
179 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
180 			      struct ext4_ext_path *path,
181 			      ext4_lblk_t block)
182 {
183 	if (path) {
184 		int depth = path->p_depth;
185 		struct ext4_extent *ex;
186 
187 		/*
188 		 * Try to predict block placement assuming that we are
189 		 * filling in a file which will eventually be
190 		 * non-sparse --- i.e., in the case of libbfd writing
191 		 * an ELF object sections out-of-order but in a way
192 		 * the eventually results in a contiguous object or
193 		 * executable file, or some database extending a table
194 		 * space file.  However, this is actually somewhat
195 		 * non-ideal if we are writing a sparse file such as
196 		 * qemu or KVM writing a raw image file that is going
197 		 * to stay fairly sparse, since it will end up
198 		 * fragmenting the file system's free space.  Maybe we
199 		 * should have some hueristics or some way to allow
200 		 * userspace to pass a hint to file system,
201 		 * especially if the latter case turns out to be
202 		 * common.
203 		 */
204 		ex = path[depth].p_ext;
205 		if (ex) {
206 			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
207 			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
208 
209 			if (block > ext_block)
210 				return ext_pblk + (block - ext_block);
211 			else
212 				return ext_pblk - (ext_block - block);
213 		}
214 
215 		/* it looks like index is empty;
216 		 * try to find starting block from index itself */
217 		if (path[depth].p_bh)
218 			return path[depth].p_bh->b_blocknr;
219 	}
220 
221 	/* OK. use inode's group */
222 	return ext4_inode_to_goal_block(inode);
223 }
224 
225 /*
226  * Allocation for a meta data block
227  */
228 static ext4_fsblk_t
229 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
230 			struct ext4_ext_path *path,
231 			struct ext4_extent *ex, int *err, unsigned int flags)
232 {
233 	ext4_fsblk_t goal, newblock;
234 
235 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
236 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
237 					NULL, err);
238 	return newblock;
239 }
240 
241 static inline int ext4_ext_space_block(struct inode *inode, int check)
242 {
243 	int size;
244 
245 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
246 			/ sizeof(struct ext4_extent);
247 #ifdef AGGRESSIVE_TEST
248 	if (!check && size > 6)
249 		size = 6;
250 #endif
251 	return size;
252 }
253 
254 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
255 {
256 	int size;
257 
258 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
259 			/ sizeof(struct ext4_extent_idx);
260 #ifdef AGGRESSIVE_TEST
261 	if (!check && size > 5)
262 		size = 5;
263 #endif
264 	return size;
265 }
266 
267 static inline int ext4_ext_space_root(struct inode *inode, int check)
268 {
269 	int size;
270 
271 	size = sizeof(EXT4_I(inode)->i_data);
272 	size -= sizeof(struct ext4_extent_header);
273 	size /= sizeof(struct ext4_extent);
274 #ifdef AGGRESSIVE_TEST
275 	if (!check && size > 3)
276 		size = 3;
277 #endif
278 	return size;
279 }
280 
281 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
282 {
283 	int size;
284 
285 	size = sizeof(EXT4_I(inode)->i_data);
286 	size -= sizeof(struct ext4_extent_header);
287 	size /= sizeof(struct ext4_extent_idx);
288 #ifdef AGGRESSIVE_TEST
289 	if (!check && size > 4)
290 		size = 4;
291 #endif
292 	return size;
293 }
294 
295 /*
296  * Calculate the number of metadata blocks needed
297  * to allocate @blocks
298  * Worse case is one block per extent
299  */
300 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
301 {
302 	struct ext4_inode_info *ei = EXT4_I(inode);
303 	int idxs;
304 
305 	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
306 		/ sizeof(struct ext4_extent_idx));
307 
308 	/*
309 	 * If the new delayed allocation block is contiguous with the
310 	 * previous da block, it can share index blocks with the
311 	 * previous block, so we only need to allocate a new index
312 	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
313 	 * an additional index block, and at ldxs**3 blocks, yet
314 	 * another index blocks.
315 	 */
316 	if (ei->i_da_metadata_calc_len &&
317 	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
318 		int num = 0;
319 
320 		if ((ei->i_da_metadata_calc_len % idxs) == 0)
321 			num++;
322 		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
323 			num++;
324 		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
325 			num++;
326 			ei->i_da_metadata_calc_len = 0;
327 		} else
328 			ei->i_da_metadata_calc_len++;
329 		ei->i_da_metadata_calc_last_lblock++;
330 		return num;
331 	}
332 
333 	/*
334 	 * In the worst case we need a new set of index blocks at
335 	 * every level of the inode's extent tree.
336 	 */
337 	ei->i_da_metadata_calc_len = 1;
338 	ei->i_da_metadata_calc_last_lblock = lblock;
339 	return ext_depth(inode) + 1;
340 }
341 
342 static int
343 ext4_ext_max_entries(struct inode *inode, int depth)
344 {
345 	int max;
346 
347 	if (depth == ext_depth(inode)) {
348 		if (depth == 0)
349 			max = ext4_ext_space_root(inode, 1);
350 		else
351 			max = ext4_ext_space_root_idx(inode, 1);
352 	} else {
353 		if (depth == 0)
354 			max = ext4_ext_space_block(inode, 1);
355 		else
356 			max = ext4_ext_space_block_idx(inode, 1);
357 	}
358 
359 	return max;
360 }
361 
362 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
363 {
364 	ext4_fsblk_t block = ext4_ext_pblock(ext);
365 	int len = ext4_ext_get_actual_len(ext);
366 
367 	if (len == 0)
368 		return 0;
369 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
370 }
371 
372 static int ext4_valid_extent_idx(struct inode *inode,
373 				struct ext4_extent_idx *ext_idx)
374 {
375 	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
376 
377 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
378 }
379 
380 static int ext4_valid_extent_entries(struct inode *inode,
381 				struct ext4_extent_header *eh,
382 				int depth)
383 {
384 	unsigned short entries;
385 	if (eh->eh_entries == 0)
386 		return 1;
387 
388 	entries = le16_to_cpu(eh->eh_entries);
389 
390 	if (depth == 0) {
391 		/* leaf entries */
392 		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
393 		while (entries) {
394 			if (!ext4_valid_extent(inode, ext))
395 				return 0;
396 			ext++;
397 			entries--;
398 		}
399 	} else {
400 		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
401 		while (entries) {
402 			if (!ext4_valid_extent_idx(inode, ext_idx))
403 				return 0;
404 			ext_idx++;
405 			entries--;
406 		}
407 	}
408 	return 1;
409 }
410 
411 static int __ext4_ext_check(const char *function, unsigned int line,
412 			    struct inode *inode, struct ext4_extent_header *eh,
413 			    int depth)
414 {
415 	const char *error_msg;
416 	int max = 0;
417 
418 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
419 		error_msg = "invalid magic";
420 		goto corrupted;
421 	}
422 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
423 		error_msg = "unexpected eh_depth";
424 		goto corrupted;
425 	}
426 	if (unlikely(eh->eh_max == 0)) {
427 		error_msg = "invalid eh_max";
428 		goto corrupted;
429 	}
430 	max = ext4_ext_max_entries(inode, depth);
431 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
432 		error_msg = "too large eh_max";
433 		goto corrupted;
434 	}
435 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
436 		error_msg = "invalid eh_entries";
437 		goto corrupted;
438 	}
439 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
440 		error_msg = "invalid extent entries";
441 		goto corrupted;
442 	}
443 	/* Verify checksum on non-root extent tree nodes */
444 	if (ext_depth(inode) != depth &&
445 	    !ext4_extent_block_csum_verify(inode, eh)) {
446 		error_msg = "extent tree corrupted";
447 		goto corrupted;
448 	}
449 	return 0;
450 
451 corrupted:
452 	ext4_error_inode(inode, function, line, 0,
453 			"bad header/extent: %s - magic %x, "
454 			"entries %u, max %u(%u), depth %u(%u)",
455 			error_msg, le16_to_cpu(eh->eh_magic),
456 			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
457 			max, le16_to_cpu(eh->eh_depth), depth);
458 
459 	return -EIO;
460 }
461 
462 #define ext4_ext_check(inode, eh, depth)	\
463 	__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
464 
465 int ext4_ext_check_inode(struct inode *inode)
466 {
467 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
468 }
469 
470 static int __ext4_ext_check_block(const char *function, unsigned int line,
471 				  struct inode *inode,
472 				  struct ext4_extent_header *eh,
473 				  int depth,
474 				  struct buffer_head *bh)
475 {
476 	int ret;
477 
478 	if (buffer_verified(bh))
479 		return 0;
480 	ret = ext4_ext_check(inode, eh, depth);
481 	if (ret)
482 		return ret;
483 	set_buffer_verified(bh);
484 	return ret;
485 }
486 
487 #define ext4_ext_check_block(inode, eh, depth, bh)	\
488 	__ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
489 
490 #ifdef EXT_DEBUG
491 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
492 {
493 	int k, l = path->p_depth;
494 
495 	ext_debug("path:");
496 	for (k = 0; k <= l; k++, path++) {
497 		if (path->p_idx) {
498 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
499 			    ext4_idx_pblock(path->p_idx));
500 		} else if (path->p_ext) {
501 			ext_debug("  %d:[%d]%d:%llu ",
502 				  le32_to_cpu(path->p_ext->ee_block),
503 				  ext4_ext_is_uninitialized(path->p_ext),
504 				  ext4_ext_get_actual_len(path->p_ext),
505 				  ext4_ext_pblock(path->p_ext));
506 		} else
507 			ext_debug("  []");
508 	}
509 	ext_debug("\n");
510 }
511 
512 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
513 {
514 	int depth = ext_depth(inode);
515 	struct ext4_extent_header *eh;
516 	struct ext4_extent *ex;
517 	int i;
518 
519 	if (!path)
520 		return;
521 
522 	eh = path[depth].p_hdr;
523 	ex = EXT_FIRST_EXTENT(eh);
524 
525 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
526 
527 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
528 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
529 			  ext4_ext_is_uninitialized(ex),
530 			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
531 	}
532 	ext_debug("\n");
533 }
534 
535 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
536 			ext4_fsblk_t newblock, int level)
537 {
538 	int depth = ext_depth(inode);
539 	struct ext4_extent *ex;
540 
541 	if (depth != level) {
542 		struct ext4_extent_idx *idx;
543 		idx = path[level].p_idx;
544 		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
545 			ext_debug("%d: move %d:%llu in new index %llu\n", level,
546 					le32_to_cpu(idx->ei_block),
547 					ext4_idx_pblock(idx),
548 					newblock);
549 			idx++;
550 		}
551 
552 		return;
553 	}
554 
555 	ex = path[depth].p_ext;
556 	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
557 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
558 				le32_to_cpu(ex->ee_block),
559 				ext4_ext_pblock(ex),
560 				ext4_ext_is_uninitialized(ex),
561 				ext4_ext_get_actual_len(ex),
562 				newblock);
563 		ex++;
564 	}
565 }
566 
567 #else
568 #define ext4_ext_show_path(inode, path)
569 #define ext4_ext_show_leaf(inode, path)
570 #define ext4_ext_show_move(inode, path, newblock, level)
571 #endif
572 
573 void ext4_ext_drop_refs(struct ext4_ext_path *path)
574 {
575 	int depth = path->p_depth;
576 	int i;
577 
578 	for (i = 0; i <= depth; i++, path++)
579 		if (path->p_bh) {
580 			brelse(path->p_bh);
581 			path->p_bh = NULL;
582 		}
583 }
584 
585 /*
586  * ext4_ext_binsearch_idx:
587  * binary search for the closest index of the given block
588  * the header must be checked before calling this
589  */
590 static void
591 ext4_ext_binsearch_idx(struct inode *inode,
592 			struct ext4_ext_path *path, ext4_lblk_t block)
593 {
594 	struct ext4_extent_header *eh = path->p_hdr;
595 	struct ext4_extent_idx *r, *l, *m;
596 
597 
598 	ext_debug("binsearch for %u(idx):  ", block);
599 
600 	l = EXT_FIRST_INDEX(eh) + 1;
601 	r = EXT_LAST_INDEX(eh);
602 	while (l <= r) {
603 		m = l + (r - l) / 2;
604 		if (block < le32_to_cpu(m->ei_block))
605 			r = m - 1;
606 		else
607 			l = m + 1;
608 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
609 				m, le32_to_cpu(m->ei_block),
610 				r, le32_to_cpu(r->ei_block));
611 	}
612 
613 	path->p_idx = l - 1;
614 	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
615 		  ext4_idx_pblock(path->p_idx));
616 
617 #ifdef CHECK_BINSEARCH
618 	{
619 		struct ext4_extent_idx *chix, *ix;
620 		int k;
621 
622 		chix = ix = EXT_FIRST_INDEX(eh);
623 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
624 		  if (k != 0 &&
625 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
626 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
627 				       "first=0x%p\n", k,
628 				       ix, EXT_FIRST_INDEX(eh));
629 				printk(KERN_DEBUG "%u <= %u\n",
630 				       le32_to_cpu(ix->ei_block),
631 				       le32_to_cpu(ix[-1].ei_block));
632 			}
633 			BUG_ON(k && le32_to_cpu(ix->ei_block)
634 					   <= le32_to_cpu(ix[-1].ei_block));
635 			if (block < le32_to_cpu(ix->ei_block))
636 				break;
637 			chix = ix;
638 		}
639 		BUG_ON(chix != path->p_idx);
640 	}
641 #endif
642 
643 }
644 
645 /*
646  * ext4_ext_binsearch:
647  * binary search for closest extent of the given block
648  * the header must be checked before calling this
649  */
650 static void
651 ext4_ext_binsearch(struct inode *inode,
652 		struct ext4_ext_path *path, ext4_lblk_t block)
653 {
654 	struct ext4_extent_header *eh = path->p_hdr;
655 	struct ext4_extent *r, *l, *m;
656 
657 	if (eh->eh_entries == 0) {
658 		/*
659 		 * this leaf is empty:
660 		 * we get such a leaf in split/add case
661 		 */
662 		return;
663 	}
664 
665 	ext_debug("binsearch for %u:  ", block);
666 
667 	l = EXT_FIRST_EXTENT(eh) + 1;
668 	r = EXT_LAST_EXTENT(eh);
669 
670 	while (l <= r) {
671 		m = l + (r - l) / 2;
672 		if (block < le32_to_cpu(m->ee_block))
673 			r = m - 1;
674 		else
675 			l = m + 1;
676 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
677 				m, le32_to_cpu(m->ee_block),
678 				r, le32_to_cpu(r->ee_block));
679 	}
680 
681 	path->p_ext = l - 1;
682 	ext_debug("  -> %d:%llu:[%d]%d ",
683 			le32_to_cpu(path->p_ext->ee_block),
684 			ext4_ext_pblock(path->p_ext),
685 			ext4_ext_is_uninitialized(path->p_ext),
686 			ext4_ext_get_actual_len(path->p_ext));
687 
688 #ifdef CHECK_BINSEARCH
689 	{
690 		struct ext4_extent *chex, *ex;
691 		int k;
692 
693 		chex = ex = EXT_FIRST_EXTENT(eh);
694 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
695 			BUG_ON(k && le32_to_cpu(ex->ee_block)
696 					  <= le32_to_cpu(ex[-1].ee_block));
697 			if (block < le32_to_cpu(ex->ee_block))
698 				break;
699 			chex = ex;
700 		}
701 		BUG_ON(chex != path->p_ext);
702 	}
703 #endif
704 
705 }
706 
707 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
708 {
709 	struct ext4_extent_header *eh;
710 
711 	eh = ext_inode_hdr(inode);
712 	eh->eh_depth = 0;
713 	eh->eh_entries = 0;
714 	eh->eh_magic = EXT4_EXT_MAGIC;
715 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
716 	ext4_mark_inode_dirty(handle, inode);
717 	return 0;
718 }
719 
720 struct ext4_ext_path *
721 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
722 					struct ext4_ext_path *path)
723 {
724 	struct ext4_extent_header *eh;
725 	struct buffer_head *bh;
726 	short int depth, i, ppos = 0, alloc = 0;
727 	int ret;
728 
729 	eh = ext_inode_hdr(inode);
730 	depth = ext_depth(inode);
731 
732 	/* account possible depth increase */
733 	if (!path) {
734 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
735 				GFP_NOFS);
736 		if (!path)
737 			return ERR_PTR(-ENOMEM);
738 		alloc = 1;
739 	}
740 	path[0].p_hdr = eh;
741 	path[0].p_bh = NULL;
742 
743 	i = depth;
744 	/* walk through the tree */
745 	while (i) {
746 		ext_debug("depth %d: num %d, max %d\n",
747 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
748 
749 		ext4_ext_binsearch_idx(inode, path + ppos, block);
750 		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
751 		path[ppos].p_depth = i;
752 		path[ppos].p_ext = NULL;
753 
754 		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
755 		if (unlikely(!bh)) {
756 			ret = -ENOMEM;
757 			goto err;
758 		}
759 		if (!bh_uptodate_or_lock(bh)) {
760 			trace_ext4_ext_load_extent(inode, block,
761 						path[ppos].p_block);
762 			ret = bh_submit_read(bh);
763 			if (ret < 0) {
764 				put_bh(bh);
765 				goto err;
766 			}
767 		}
768 		eh = ext_block_hdr(bh);
769 		ppos++;
770 		if (unlikely(ppos > depth)) {
771 			put_bh(bh);
772 			EXT4_ERROR_INODE(inode,
773 					 "ppos %d > depth %d", ppos, depth);
774 			ret = -EIO;
775 			goto err;
776 		}
777 		path[ppos].p_bh = bh;
778 		path[ppos].p_hdr = eh;
779 		i--;
780 
781 		ret = ext4_ext_check_block(inode, eh, i, bh);
782 		if (ret < 0)
783 			goto err;
784 	}
785 
786 	path[ppos].p_depth = i;
787 	path[ppos].p_ext = NULL;
788 	path[ppos].p_idx = NULL;
789 
790 	/* find extent */
791 	ext4_ext_binsearch(inode, path + ppos, block);
792 	/* if not an empty leaf */
793 	if (path[ppos].p_ext)
794 		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
795 
796 	ext4_ext_show_path(inode, path);
797 
798 	return path;
799 
800 err:
801 	ext4_ext_drop_refs(path);
802 	if (alloc)
803 		kfree(path);
804 	return ERR_PTR(ret);
805 }
806 
807 /*
808  * ext4_ext_insert_index:
809  * insert new index [@logical;@ptr] into the block at @curp;
810  * check where to insert: before @curp or after @curp
811  */
812 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
813 				 struct ext4_ext_path *curp,
814 				 int logical, ext4_fsblk_t ptr)
815 {
816 	struct ext4_extent_idx *ix;
817 	int len, err;
818 
819 	err = ext4_ext_get_access(handle, inode, curp);
820 	if (err)
821 		return err;
822 
823 	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
824 		EXT4_ERROR_INODE(inode,
825 				 "logical %d == ei_block %d!",
826 				 logical, le32_to_cpu(curp->p_idx->ei_block));
827 		return -EIO;
828 	}
829 
830 	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
831 			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
832 		EXT4_ERROR_INODE(inode,
833 				 "eh_entries %d >= eh_max %d!",
834 				 le16_to_cpu(curp->p_hdr->eh_entries),
835 				 le16_to_cpu(curp->p_hdr->eh_max));
836 		return -EIO;
837 	}
838 
839 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
840 		/* insert after */
841 		ext_debug("insert new index %d after: %llu\n", logical, ptr);
842 		ix = curp->p_idx + 1;
843 	} else {
844 		/* insert before */
845 		ext_debug("insert new index %d before: %llu\n", logical, ptr);
846 		ix = curp->p_idx;
847 	}
848 
849 	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
850 	BUG_ON(len < 0);
851 	if (len > 0) {
852 		ext_debug("insert new index %d: "
853 				"move %d indices from 0x%p to 0x%p\n",
854 				logical, len, ix, ix + 1);
855 		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
856 	}
857 
858 	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
859 		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
860 		return -EIO;
861 	}
862 
863 	ix->ei_block = cpu_to_le32(logical);
864 	ext4_idx_store_pblock(ix, ptr);
865 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
866 
867 	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
868 		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
869 		return -EIO;
870 	}
871 
872 	err = ext4_ext_dirty(handle, inode, curp);
873 	ext4_std_error(inode->i_sb, err);
874 
875 	return err;
876 }
877 
878 /*
879  * ext4_ext_split:
880  * inserts new subtree into the path, using free index entry
881  * at depth @at:
882  * - allocates all needed blocks (new leaf and all intermediate index blocks)
883  * - makes decision where to split
884  * - moves remaining extents and index entries (right to the split point)
885  *   into the newly allocated blocks
886  * - initializes subtree
887  */
888 static int ext4_ext_split(handle_t *handle, struct inode *inode,
889 			  unsigned int flags,
890 			  struct ext4_ext_path *path,
891 			  struct ext4_extent *newext, int at)
892 {
893 	struct buffer_head *bh = NULL;
894 	int depth = ext_depth(inode);
895 	struct ext4_extent_header *neh;
896 	struct ext4_extent_idx *fidx;
897 	int i = at, k, m, a;
898 	ext4_fsblk_t newblock, oldblock;
899 	__le32 border;
900 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
901 	int err = 0;
902 
903 	/* make decision: where to split? */
904 	/* FIXME: now decision is simplest: at current extent */
905 
906 	/* if current leaf will be split, then we should use
907 	 * border from split point */
908 	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
909 		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
910 		return -EIO;
911 	}
912 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
913 		border = path[depth].p_ext[1].ee_block;
914 		ext_debug("leaf will be split."
915 				" next leaf starts at %d\n",
916 				  le32_to_cpu(border));
917 	} else {
918 		border = newext->ee_block;
919 		ext_debug("leaf will be added."
920 				" next leaf starts at %d\n",
921 				le32_to_cpu(border));
922 	}
923 
924 	/*
925 	 * If error occurs, then we break processing
926 	 * and mark filesystem read-only. index won't
927 	 * be inserted and tree will be in consistent
928 	 * state. Next mount will repair buffers too.
929 	 */
930 
931 	/*
932 	 * Get array to track all allocated blocks.
933 	 * We need this to handle errors and free blocks
934 	 * upon them.
935 	 */
936 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
937 	if (!ablocks)
938 		return -ENOMEM;
939 
940 	/* allocate all needed blocks */
941 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
942 	for (a = 0; a < depth - at; a++) {
943 		newblock = ext4_ext_new_meta_block(handle, inode, path,
944 						   newext, &err, flags);
945 		if (newblock == 0)
946 			goto cleanup;
947 		ablocks[a] = newblock;
948 	}
949 
950 	/* initialize new leaf */
951 	newblock = ablocks[--a];
952 	if (unlikely(newblock == 0)) {
953 		EXT4_ERROR_INODE(inode, "newblock == 0!");
954 		err = -EIO;
955 		goto cleanup;
956 	}
957 	bh = sb_getblk(inode->i_sb, newblock);
958 	if (unlikely(!bh)) {
959 		err = -ENOMEM;
960 		goto cleanup;
961 	}
962 	lock_buffer(bh);
963 
964 	err = ext4_journal_get_create_access(handle, bh);
965 	if (err)
966 		goto cleanup;
967 
968 	neh = ext_block_hdr(bh);
969 	neh->eh_entries = 0;
970 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
971 	neh->eh_magic = EXT4_EXT_MAGIC;
972 	neh->eh_depth = 0;
973 
974 	/* move remainder of path[depth] to the new leaf */
975 	if (unlikely(path[depth].p_hdr->eh_entries !=
976 		     path[depth].p_hdr->eh_max)) {
977 		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
978 				 path[depth].p_hdr->eh_entries,
979 				 path[depth].p_hdr->eh_max);
980 		err = -EIO;
981 		goto cleanup;
982 	}
983 	/* start copy from next extent */
984 	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
985 	ext4_ext_show_move(inode, path, newblock, depth);
986 	if (m) {
987 		struct ext4_extent *ex;
988 		ex = EXT_FIRST_EXTENT(neh);
989 		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
990 		le16_add_cpu(&neh->eh_entries, m);
991 	}
992 
993 	ext4_extent_block_csum_set(inode, neh);
994 	set_buffer_uptodate(bh);
995 	unlock_buffer(bh);
996 
997 	err = ext4_handle_dirty_metadata(handle, inode, bh);
998 	if (err)
999 		goto cleanup;
1000 	brelse(bh);
1001 	bh = NULL;
1002 
1003 	/* correct old leaf */
1004 	if (m) {
1005 		err = ext4_ext_get_access(handle, inode, path + depth);
1006 		if (err)
1007 			goto cleanup;
1008 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1009 		err = ext4_ext_dirty(handle, inode, path + depth);
1010 		if (err)
1011 			goto cleanup;
1012 
1013 	}
1014 
1015 	/* create intermediate indexes */
1016 	k = depth - at - 1;
1017 	if (unlikely(k < 0)) {
1018 		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1019 		err = -EIO;
1020 		goto cleanup;
1021 	}
1022 	if (k)
1023 		ext_debug("create %d intermediate indices\n", k);
1024 	/* insert new index into current index block */
1025 	/* current depth stored in i var */
1026 	i = depth - 1;
1027 	while (k--) {
1028 		oldblock = newblock;
1029 		newblock = ablocks[--a];
1030 		bh = sb_getblk(inode->i_sb, newblock);
1031 		if (unlikely(!bh)) {
1032 			err = -ENOMEM;
1033 			goto cleanup;
1034 		}
1035 		lock_buffer(bh);
1036 
1037 		err = ext4_journal_get_create_access(handle, bh);
1038 		if (err)
1039 			goto cleanup;
1040 
1041 		neh = ext_block_hdr(bh);
1042 		neh->eh_entries = cpu_to_le16(1);
1043 		neh->eh_magic = EXT4_EXT_MAGIC;
1044 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1045 		neh->eh_depth = cpu_to_le16(depth - i);
1046 		fidx = EXT_FIRST_INDEX(neh);
1047 		fidx->ei_block = border;
1048 		ext4_idx_store_pblock(fidx, oldblock);
1049 
1050 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1051 				i, newblock, le32_to_cpu(border), oldblock);
1052 
1053 		/* move remainder of path[i] to the new index block */
1054 		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1055 					EXT_LAST_INDEX(path[i].p_hdr))) {
1056 			EXT4_ERROR_INODE(inode,
1057 					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1058 					 le32_to_cpu(path[i].p_ext->ee_block));
1059 			err = -EIO;
1060 			goto cleanup;
1061 		}
1062 		/* start copy indexes */
1063 		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1064 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1065 				EXT_MAX_INDEX(path[i].p_hdr));
1066 		ext4_ext_show_move(inode, path, newblock, i);
1067 		if (m) {
1068 			memmove(++fidx, path[i].p_idx,
1069 				sizeof(struct ext4_extent_idx) * m);
1070 			le16_add_cpu(&neh->eh_entries, m);
1071 		}
1072 		ext4_extent_block_csum_set(inode, neh);
1073 		set_buffer_uptodate(bh);
1074 		unlock_buffer(bh);
1075 
1076 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1077 		if (err)
1078 			goto cleanup;
1079 		brelse(bh);
1080 		bh = NULL;
1081 
1082 		/* correct old index */
1083 		if (m) {
1084 			err = ext4_ext_get_access(handle, inode, path + i);
1085 			if (err)
1086 				goto cleanup;
1087 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1088 			err = ext4_ext_dirty(handle, inode, path + i);
1089 			if (err)
1090 				goto cleanup;
1091 		}
1092 
1093 		i--;
1094 	}
1095 
1096 	/* insert new index */
1097 	err = ext4_ext_insert_index(handle, inode, path + at,
1098 				    le32_to_cpu(border), newblock);
1099 
1100 cleanup:
1101 	if (bh) {
1102 		if (buffer_locked(bh))
1103 			unlock_buffer(bh);
1104 		brelse(bh);
1105 	}
1106 
1107 	if (err) {
1108 		/* free all allocated blocks in error case */
1109 		for (i = 0; i < depth; i++) {
1110 			if (!ablocks[i])
1111 				continue;
1112 			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1113 					 EXT4_FREE_BLOCKS_METADATA);
1114 		}
1115 	}
1116 	kfree(ablocks);
1117 
1118 	return err;
1119 }
1120 
1121 /*
1122  * ext4_ext_grow_indepth:
1123  * implements tree growing procedure:
1124  * - allocates new block
1125  * - moves top-level data (index block or leaf) into the new block
1126  * - initializes new top-level, creating index that points to the
1127  *   just created block
1128  */
1129 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1130 				 unsigned int flags,
1131 				 struct ext4_extent *newext)
1132 {
1133 	struct ext4_extent_header *neh;
1134 	struct buffer_head *bh;
1135 	ext4_fsblk_t newblock;
1136 	int err = 0;
1137 
1138 	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1139 		newext, &err, flags);
1140 	if (newblock == 0)
1141 		return err;
1142 
1143 	bh = sb_getblk(inode->i_sb, newblock);
1144 	if (unlikely(!bh))
1145 		return -ENOMEM;
1146 	lock_buffer(bh);
1147 
1148 	err = ext4_journal_get_create_access(handle, bh);
1149 	if (err) {
1150 		unlock_buffer(bh);
1151 		goto out;
1152 	}
1153 
1154 	/* move top-level index/leaf into new block */
1155 	memmove(bh->b_data, EXT4_I(inode)->i_data,
1156 		sizeof(EXT4_I(inode)->i_data));
1157 
1158 	/* set size of new block */
1159 	neh = ext_block_hdr(bh);
1160 	/* old root could have indexes or leaves
1161 	 * so calculate e_max right way */
1162 	if (ext_depth(inode))
1163 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1164 	else
1165 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1166 	neh->eh_magic = EXT4_EXT_MAGIC;
1167 	ext4_extent_block_csum_set(inode, neh);
1168 	set_buffer_uptodate(bh);
1169 	unlock_buffer(bh);
1170 
1171 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1172 	if (err)
1173 		goto out;
1174 
1175 	/* Update top-level index: num,max,pointer */
1176 	neh = ext_inode_hdr(inode);
1177 	neh->eh_entries = cpu_to_le16(1);
1178 	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1179 	if (neh->eh_depth == 0) {
1180 		/* Root extent block becomes index block */
1181 		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1182 		EXT_FIRST_INDEX(neh)->ei_block =
1183 			EXT_FIRST_EXTENT(neh)->ee_block;
1184 	}
1185 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1186 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1187 		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1188 		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1189 
1190 	le16_add_cpu(&neh->eh_depth, 1);
1191 	ext4_mark_inode_dirty(handle, inode);
1192 out:
1193 	brelse(bh);
1194 
1195 	return err;
1196 }
1197 
1198 /*
1199  * ext4_ext_create_new_leaf:
1200  * finds empty index and adds new leaf.
1201  * if no free index is found, then it requests in-depth growing.
1202  */
1203 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1204 				    unsigned int flags,
1205 				    struct ext4_ext_path *path,
1206 				    struct ext4_extent *newext)
1207 {
1208 	struct ext4_ext_path *curp;
1209 	int depth, i, err = 0;
1210 
1211 repeat:
1212 	i = depth = ext_depth(inode);
1213 
1214 	/* walk up to the tree and look for free index entry */
1215 	curp = path + depth;
1216 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1217 		i--;
1218 		curp--;
1219 	}
1220 
1221 	/* we use already allocated block for index block,
1222 	 * so subsequent data blocks should be contiguous */
1223 	if (EXT_HAS_FREE_INDEX(curp)) {
1224 		/* if we found index with free entry, then use that
1225 		 * entry: create all needed subtree and add new leaf */
1226 		err = ext4_ext_split(handle, inode, flags, path, newext, i);
1227 		if (err)
1228 			goto out;
1229 
1230 		/* refill path */
1231 		ext4_ext_drop_refs(path);
1232 		path = ext4_ext_find_extent(inode,
1233 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1234 				    path);
1235 		if (IS_ERR(path))
1236 			err = PTR_ERR(path);
1237 	} else {
1238 		/* tree is full, time to grow in depth */
1239 		err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1240 		if (err)
1241 			goto out;
1242 
1243 		/* refill path */
1244 		ext4_ext_drop_refs(path);
1245 		path = ext4_ext_find_extent(inode,
1246 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1247 				    path);
1248 		if (IS_ERR(path)) {
1249 			err = PTR_ERR(path);
1250 			goto out;
1251 		}
1252 
1253 		/*
1254 		 * only first (depth 0 -> 1) produces free space;
1255 		 * in all other cases we have to split the grown tree
1256 		 */
1257 		depth = ext_depth(inode);
1258 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1259 			/* now we need to split */
1260 			goto repeat;
1261 		}
1262 	}
1263 
1264 out:
1265 	return err;
1266 }
1267 
1268 /*
1269  * search the closest allocated block to the left for *logical
1270  * and returns it at @logical + it's physical address at @phys
1271  * if *logical is the smallest allocated block, the function
1272  * returns 0 at @phys
1273  * return value contains 0 (success) or error code
1274  */
1275 static int ext4_ext_search_left(struct inode *inode,
1276 				struct ext4_ext_path *path,
1277 				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1278 {
1279 	struct ext4_extent_idx *ix;
1280 	struct ext4_extent *ex;
1281 	int depth, ee_len;
1282 
1283 	if (unlikely(path == NULL)) {
1284 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1285 		return -EIO;
1286 	}
1287 	depth = path->p_depth;
1288 	*phys = 0;
1289 
1290 	if (depth == 0 && path->p_ext == NULL)
1291 		return 0;
1292 
1293 	/* usually extent in the path covers blocks smaller
1294 	 * then *logical, but it can be that extent is the
1295 	 * first one in the file */
1296 
1297 	ex = path[depth].p_ext;
1298 	ee_len = ext4_ext_get_actual_len(ex);
1299 	if (*logical < le32_to_cpu(ex->ee_block)) {
1300 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1301 			EXT4_ERROR_INODE(inode,
1302 					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1303 					 *logical, le32_to_cpu(ex->ee_block));
1304 			return -EIO;
1305 		}
1306 		while (--depth >= 0) {
1307 			ix = path[depth].p_idx;
1308 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1309 				EXT4_ERROR_INODE(inode,
1310 				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1311 				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1312 				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1313 		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1314 				  depth);
1315 				return -EIO;
1316 			}
1317 		}
1318 		return 0;
1319 	}
1320 
1321 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1322 		EXT4_ERROR_INODE(inode,
1323 				 "logical %d < ee_block %d + ee_len %d!",
1324 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1325 		return -EIO;
1326 	}
1327 
1328 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1329 	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1330 	return 0;
1331 }
1332 
1333 /*
1334  * search the closest allocated block to the right for *logical
1335  * and returns it at @logical + it's physical address at @phys
1336  * if *logical is the largest allocated block, the function
1337  * returns 0 at @phys
1338  * return value contains 0 (success) or error code
1339  */
1340 static int ext4_ext_search_right(struct inode *inode,
1341 				 struct ext4_ext_path *path,
1342 				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1343 				 struct ext4_extent **ret_ex)
1344 {
1345 	struct buffer_head *bh = NULL;
1346 	struct ext4_extent_header *eh;
1347 	struct ext4_extent_idx *ix;
1348 	struct ext4_extent *ex;
1349 	ext4_fsblk_t block;
1350 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1351 	int ee_len;
1352 
1353 	if (unlikely(path == NULL)) {
1354 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1355 		return -EIO;
1356 	}
1357 	depth = path->p_depth;
1358 	*phys = 0;
1359 
1360 	if (depth == 0 && path->p_ext == NULL)
1361 		return 0;
1362 
1363 	/* usually extent in the path covers blocks smaller
1364 	 * then *logical, but it can be that extent is the
1365 	 * first one in the file */
1366 
1367 	ex = path[depth].p_ext;
1368 	ee_len = ext4_ext_get_actual_len(ex);
1369 	if (*logical < le32_to_cpu(ex->ee_block)) {
1370 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1371 			EXT4_ERROR_INODE(inode,
1372 					 "first_extent(path[%d].p_hdr) != ex",
1373 					 depth);
1374 			return -EIO;
1375 		}
1376 		while (--depth >= 0) {
1377 			ix = path[depth].p_idx;
1378 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1379 				EXT4_ERROR_INODE(inode,
1380 						 "ix != EXT_FIRST_INDEX *logical %d!",
1381 						 *logical);
1382 				return -EIO;
1383 			}
1384 		}
1385 		goto found_extent;
1386 	}
1387 
1388 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1389 		EXT4_ERROR_INODE(inode,
1390 				 "logical %d < ee_block %d + ee_len %d!",
1391 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1392 		return -EIO;
1393 	}
1394 
1395 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1396 		/* next allocated block in this leaf */
1397 		ex++;
1398 		goto found_extent;
1399 	}
1400 
1401 	/* go up and search for index to the right */
1402 	while (--depth >= 0) {
1403 		ix = path[depth].p_idx;
1404 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1405 			goto got_index;
1406 	}
1407 
1408 	/* we've gone up to the root and found no index to the right */
1409 	return 0;
1410 
1411 got_index:
1412 	/* we've found index to the right, let's
1413 	 * follow it and find the closest allocated
1414 	 * block to the right */
1415 	ix++;
1416 	block = ext4_idx_pblock(ix);
1417 	while (++depth < path->p_depth) {
1418 		bh = sb_bread(inode->i_sb, block);
1419 		if (bh == NULL)
1420 			return -EIO;
1421 		eh = ext_block_hdr(bh);
1422 		/* subtract from p_depth to get proper eh_depth */
1423 		if (ext4_ext_check_block(inode, eh,
1424 					 path->p_depth - depth, bh)) {
1425 			put_bh(bh);
1426 			return -EIO;
1427 		}
1428 		ix = EXT_FIRST_INDEX(eh);
1429 		block = ext4_idx_pblock(ix);
1430 		put_bh(bh);
1431 	}
1432 
1433 	bh = sb_bread(inode->i_sb, block);
1434 	if (bh == NULL)
1435 		return -EIO;
1436 	eh = ext_block_hdr(bh);
1437 	if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1438 		put_bh(bh);
1439 		return -EIO;
1440 	}
1441 	ex = EXT_FIRST_EXTENT(eh);
1442 found_extent:
1443 	*logical = le32_to_cpu(ex->ee_block);
1444 	*phys = ext4_ext_pblock(ex);
1445 	*ret_ex = ex;
1446 	if (bh)
1447 		put_bh(bh);
1448 	return 0;
1449 }
1450 
1451 /*
1452  * ext4_ext_next_allocated_block:
1453  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1454  * NOTE: it considers block number from index entry as
1455  * allocated block. Thus, index entries have to be consistent
1456  * with leaves.
1457  */
1458 static ext4_lblk_t
1459 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1460 {
1461 	int depth;
1462 
1463 	BUG_ON(path == NULL);
1464 	depth = path->p_depth;
1465 
1466 	if (depth == 0 && path->p_ext == NULL)
1467 		return EXT_MAX_BLOCKS;
1468 
1469 	while (depth >= 0) {
1470 		if (depth == path->p_depth) {
1471 			/* leaf */
1472 			if (path[depth].p_ext &&
1473 				path[depth].p_ext !=
1474 					EXT_LAST_EXTENT(path[depth].p_hdr))
1475 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1476 		} else {
1477 			/* index */
1478 			if (path[depth].p_idx !=
1479 					EXT_LAST_INDEX(path[depth].p_hdr))
1480 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1481 		}
1482 		depth--;
1483 	}
1484 
1485 	return EXT_MAX_BLOCKS;
1486 }
1487 
1488 /*
1489  * ext4_ext_next_leaf_block:
1490  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1491  */
1492 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1493 {
1494 	int depth;
1495 
1496 	BUG_ON(path == NULL);
1497 	depth = path->p_depth;
1498 
1499 	/* zero-tree has no leaf blocks at all */
1500 	if (depth == 0)
1501 		return EXT_MAX_BLOCKS;
1502 
1503 	/* go to index block */
1504 	depth--;
1505 
1506 	while (depth >= 0) {
1507 		if (path[depth].p_idx !=
1508 				EXT_LAST_INDEX(path[depth].p_hdr))
1509 			return (ext4_lblk_t)
1510 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1511 		depth--;
1512 	}
1513 
1514 	return EXT_MAX_BLOCKS;
1515 }
1516 
1517 /*
1518  * ext4_ext_correct_indexes:
1519  * if leaf gets modified and modified extent is first in the leaf,
1520  * then we have to correct all indexes above.
1521  * TODO: do we need to correct tree in all cases?
1522  */
1523 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1524 				struct ext4_ext_path *path)
1525 {
1526 	struct ext4_extent_header *eh;
1527 	int depth = ext_depth(inode);
1528 	struct ext4_extent *ex;
1529 	__le32 border;
1530 	int k, err = 0;
1531 
1532 	eh = path[depth].p_hdr;
1533 	ex = path[depth].p_ext;
1534 
1535 	if (unlikely(ex == NULL || eh == NULL)) {
1536 		EXT4_ERROR_INODE(inode,
1537 				 "ex %p == NULL or eh %p == NULL", ex, eh);
1538 		return -EIO;
1539 	}
1540 
1541 	if (depth == 0) {
1542 		/* there is no tree at all */
1543 		return 0;
1544 	}
1545 
1546 	if (ex != EXT_FIRST_EXTENT(eh)) {
1547 		/* we correct tree if first leaf got modified only */
1548 		return 0;
1549 	}
1550 
1551 	/*
1552 	 * TODO: we need correction if border is smaller than current one
1553 	 */
1554 	k = depth - 1;
1555 	border = path[depth].p_ext->ee_block;
1556 	err = ext4_ext_get_access(handle, inode, path + k);
1557 	if (err)
1558 		return err;
1559 	path[k].p_idx->ei_block = border;
1560 	err = ext4_ext_dirty(handle, inode, path + k);
1561 	if (err)
1562 		return err;
1563 
1564 	while (k--) {
1565 		/* change all left-side indexes */
1566 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1567 			break;
1568 		err = ext4_ext_get_access(handle, inode, path + k);
1569 		if (err)
1570 			break;
1571 		path[k].p_idx->ei_block = border;
1572 		err = ext4_ext_dirty(handle, inode, path + k);
1573 		if (err)
1574 			break;
1575 	}
1576 
1577 	return err;
1578 }
1579 
1580 int
1581 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1582 				struct ext4_extent *ex2)
1583 {
1584 	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1585 
1586 	/*
1587 	 * Make sure that both extents are initialized. We don't merge
1588 	 * uninitialized extents so that we can be sure that end_io code has
1589 	 * the extent that was written properly split out and conversion to
1590 	 * initialized is trivial.
1591 	 */
1592 	if (ext4_ext_is_uninitialized(ex1) || ext4_ext_is_uninitialized(ex2))
1593 		return 0;
1594 
1595 	if (ext4_ext_is_uninitialized(ex1))
1596 		max_len = EXT_UNINIT_MAX_LEN;
1597 	else
1598 		max_len = EXT_INIT_MAX_LEN;
1599 
1600 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1601 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1602 
1603 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1604 			le32_to_cpu(ex2->ee_block))
1605 		return 0;
1606 
1607 	/*
1608 	 * To allow future support for preallocated extents to be added
1609 	 * as an RO_COMPAT feature, refuse to merge to extents if
1610 	 * this can result in the top bit of ee_len being set.
1611 	 */
1612 	if (ext1_ee_len + ext2_ee_len > max_len)
1613 		return 0;
1614 #ifdef AGGRESSIVE_TEST
1615 	if (ext1_ee_len >= 4)
1616 		return 0;
1617 #endif
1618 
1619 	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1620 		return 1;
1621 	return 0;
1622 }
1623 
1624 /*
1625  * This function tries to merge the "ex" extent to the next extent in the tree.
1626  * It always tries to merge towards right. If you want to merge towards
1627  * left, pass "ex - 1" as argument instead of "ex".
1628  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1629  * 1 if they got merged.
1630  */
1631 static int ext4_ext_try_to_merge_right(struct inode *inode,
1632 				 struct ext4_ext_path *path,
1633 				 struct ext4_extent *ex)
1634 {
1635 	struct ext4_extent_header *eh;
1636 	unsigned int depth, len;
1637 	int merge_done = 0;
1638 	int uninitialized = 0;
1639 
1640 	depth = ext_depth(inode);
1641 	BUG_ON(path[depth].p_hdr == NULL);
1642 	eh = path[depth].p_hdr;
1643 
1644 	while (ex < EXT_LAST_EXTENT(eh)) {
1645 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1646 			break;
1647 		/* merge with next extent! */
1648 		if (ext4_ext_is_uninitialized(ex))
1649 			uninitialized = 1;
1650 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1651 				+ ext4_ext_get_actual_len(ex + 1));
1652 		if (uninitialized)
1653 			ext4_ext_mark_uninitialized(ex);
1654 
1655 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1656 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1657 				* sizeof(struct ext4_extent);
1658 			memmove(ex + 1, ex + 2, len);
1659 		}
1660 		le16_add_cpu(&eh->eh_entries, -1);
1661 		merge_done = 1;
1662 		WARN_ON(eh->eh_entries == 0);
1663 		if (!eh->eh_entries)
1664 			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1665 	}
1666 
1667 	return merge_done;
1668 }
1669 
1670 /*
1671  * This function does a very simple check to see if we can collapse
1672  * an extent tree with a single extent tree leaf block into the inode.
1673  */
1674 static void ext4_ext_try_to_merge_up(handle_t *handle,
1675 				     struct inode *inode,
1676 				     struct ext4_ext_path *path)
1677 {
1678 	size_t s;
1679 	unsigned max_root = ext4_ext_space_root(inode, 0);
1680 	ext4_fsblk_t blk;
1681 
1682 	if ((path[0].p_depth != 1) ||
1683 	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1684 	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1685 		return;
1686 
1687 	/*
1688 	 * We need to modify the block allocation bitmap and the block
1689 	 * group descriptor to release the extent tree block.  If we
1690 	 * can't get the journal credits, give up.
1691 	 */
1692 	if (ext4_journal_extend(handle, 2))
1693 		return;
1694 
1695 	/*
1696 	 * Copy the extent data up to the inode
1697 	 */
1698 	blk = ext4_idx_pblock(path[0].p_idx);
1699 	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1700 		sizeof(struct ext4_extent_idx);
1701 	s += sizeof(struct ext4_extent_header);
1702 
1703 	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1704 	path[0].p_depth = 0;
1705 	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1706 		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1707 	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1708 
1709 	brelse(path[1].p_bh);
1710 	ext4_free_blocks(handle, inode, NULL, blk, 1,
1711 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1712 }
1713 
1714 /*
1715  * This function tries to merge the @ex extent to neighbours in the tree.
1716  * return 1 if merge left else 0.
1717  */
1718 static void ext4_ext_try_to_merge(handle_t *handle,
1719 				  struct inode *inode,
1720 				  struct ext4_ext_path *path,
1721 				  struct ext4_extent *ex) {
1722 	struct ext4_extent_header *eh;
1723 	unsigned int depth;
1724 	int merge_done = 0;
1725 
1726 	depth = ext_depth(inode);
1727 	BUG_ON(path[depth].p_hdr == NULL);
1728 	eh = path[depth].p_hdr;
1729 
1730 	if (ex > EXT_FIRST_EXTENT(eh))
1731 		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1732 
1733 	if (!merge_done)
1734 		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1735 
1736 	ext4_ext_try_to_merge_up(handle, inode, path);
1737 }
1738 
1739 /*
1740  * check if a portion of the "newext" extent overlaps with an
1741  * existing extent.
1742  *
1743  * If there is an overlap discovered, it updates the length of the newext
1744  * such that there will be no overlap, and then returns 1.
1745  * If there is no overlap found, it returns 0.
1746  */
1747 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1748 					   struct inode *inode,
1749 					   struct ext4_extent *newext,
1750 					   struct ext4_ext_path *path)
1751 {
1752 	ext4_lblk_t b1, b2;
1753 	unsigned int depth, len1;
1754 	unsigned int ret = 0;
1755 
1756 	b1 = le32_to_cpu(newext->ee_block);
1757 	len1 = ext4_ext_get_actual_len(newext);
1758 	depth = ext_depth(inode);
1759 	if (!path[depth].p_ext)
1760 		goto out;
1761 	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1762 	b2 &= ~(sbi->s_cluster_ratio - 1);
1763 
1764 	/*
1765 	 * get the next allocated block if the extent in the path
1766 	 * is before the requested block(s)
1767 	 */
1768 	if (b2 < b1) {
1769 		b2 = ext4_ext_next_allocated_block(path);
1770 		if (b2 == EXT_MAX_BLOCKS)
1771 			goto out;
1772 		b2 &= ~(sbi->s_cluster_ratio - 1);
1773 	}
1774 
1775 	/* check for wrap through zero on extent logical start block*/
1776 	if (b1 + len1 < b1) {
1777 		len1 = EXT_MAX_BLOCKS - b1;
1778 		newext->ee_len = cpu_to_le16(len1);
1779 		ret = 1;
1780 	}
1781 
1782 	/* check for overlap */
1783 	if (b1 + len1 > b2) {
1784 		newext->ee_len = cpu_to_le16(b2 - b1);
1785 		ret = 1;
1786 	}
1787 out:
1788 	return ret;
1789 }
1790 
1791 /*
1792  * ext4_ext_insert_extent:
1793  * tries to merge requsted extent into the existing extent or
1794  * inserts requested extent as new one into the tree,
1795  * creating new leaf in the no-space case.
1796  */
1797 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1798 				struct ext4_ext_path *path,
1799 				struct ext4_extent *newext, int flag)
1800 {
1801 	struct ext4_extent_header *eh;
1802 	struct ext4_extent *ex, *fex;
1803 	struct ext4_extent *nearex; /* nearest extent */
1804 	struct ext4_ext_path *npath = NULL;
1805 	int depth, len, err;
1806 	ext4_lblk_t next;
1807 	unsigned uninitialized = 0;
1808 	int flags = 0;
1809 
1810 	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1811 		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1812 		return -EIO;
1813 	}
1814 	depth = ext_depth(inode);
1815 	ex = path[depth].p_ext;
1816 	if (unlikely(path[depth].p_hdr == NULL)) {
1817 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1818 		return -EIO;
1819 	}
1820 
1821 	/* try to insert block into found extent and return */
1822 	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1823 		&& ext4_can_extents_be_merged(inode, ex, newext)) {
1824 		ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1825 			  ext4_ext_is_uninitialized(newext),
1826 			  ext4_ext_get_actual_len(newext),
1827 			  le32_to_cpu(ex->ee_block),
1828 			  ext4_ext_is_uninitialized(ex),
1829 			  ext4_ext_get_actual_len(ex),
1830 			  ext4_ext_pblock(ex));
1831 		err = ext4_ext_get_access(handle, inode, path + depth);
1832 		if (err)
1833 			return err;
1834 
1835 		/*
1836 		 * ext4_can_extents_be_merged should have checked that either
1837 		 * both extents are uninitialized, or both aren't. Thus we
1838 		 * need to check only one of them here.
1839 		 */
1840 		if (ext4_ext_is_uninitialized(ex))
1841 			uninitialized = 1;
1842 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1843 					+ ext4_ext_get_actual_len(newext));
1844 		if (uninitialized)
1845 			ext4_ext_mark_uninitialized(ex);
1846 		eh = path[depth].p_hdr;
1847 		nearex = ex;
1848 		goto merge;
1849 	}
1850 
1851 	depth = ext_depth(inode);
1852 	eh = path[depth].p_hdr;
1853 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1854 		goto has_space;
1855 
1856 	/* probably next leaf has space for us? */
1857 	fex = EXT_LAST_EXTENT(eh);
1858 	next = EXT_MAX_BLOCKS;
1859 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1860 		next = ext4_ext_next_leaf_block(path);
1861 	if (next != EXT_MAX_BLOCKS) {
1862 		ext_debug("next leaf block - %u\n", next);
1863 		BUG_ON(npath != NULL);
1864 		npath = ext4_ext_find_extent(inode, next, NULL);
1865 		if (IS_ERR(npath))
1866 			return PTR_ERR(npath);
1867 		BUG_ON(npath->p_depth != path->p_depth);
1868 		eh = npath[depth].p_hdr;
1869 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1870 			ext_debug("next leaf isn't full(%d)\n",
1871 				  le16_to_cpu(eh->eh_entries));
1872 			path = npath;
1873 			goto has_space;
1874 		}
1875 		ext_debug("next leaf has no free space(%d,%d)\n",
1876 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1877 	}
1878 
1879 	/*
1880 	 * There is no free space in the found leaf.
1881 	 * We're gonna add a new leaf in the tree.
1882 	 */
1883 	if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1884 		flags = EXT4_MB_USE_ROOT_BLOCKS;
1885 	err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1886 	if (err)
1887 		goto cleanup;
1888 	depth = ext_depth(inode);
1889 	eh = path[depth].p_hdr;
1890 
1891 has_space:
1892 	nearex = path[depth].p_ext;
1893 
1894 	err = ext4_ext_get_access(handle, inode, path + depth);
1895 	if (err)
1896 		goto cleanup;
1897 
1898 	if (!nearex) {
1899 		/* there is no extent in this leaf, create first one */
1900 		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1901 				le32_to_cpu(newext->ee_block),
1902 				ext4_ext_pblock(newext),
1903 				ext4_ext_is_uninitialized(newext),
1904 				ext4_ext_get_actual_len(newext));
1905 		nearex = EXT_FIRST_EXTENT(eh);
1906 	} else {
1907 		if (le32_to_cpu(newext->ee_block)
1908 			   > le32_to_cpu(nearex->ee_block)) {
1909 			/* Insert after */
1910 			ext_debug("insert %u:%llu:[%d]%d before: "
1911 					"nearest %p\n",
1912 					le32_to_cpu(newext->ee_block),
1913 					ext4_ext_pblock(newext),
1914 					ext4_ext_is_uninitialized(newext),
1915 					ext4_ext_get_actual_len(newext),
1916 					nearex);
1917 			nearex++;
1918 		} else {
1919 			/* Insert before */
1920 			BUG_ON(newext->ee_block == nearex->ee_block);
1921 			ext_debug("insert %u:%llu:[%d]%d after: "
1922 					"nearest %p\n",
1923 					le32_to_cpu(newext->ee_block),
1924 					ext4_ext_pblock(newext),
1925 					ext4_ext_is_uninitialized(newext),
1926 					ext4_ext_get_actual_len(newext),
1927 					nearex);
1928 		}
1929 		len = EXT_LAST_EXTENT(eh) - nearex + 1;
1930 		if (len > 0) {
1931 			ext_debug("insert %u:%llu:[%d]%d: "
1932 					"move %d extents from 0x%p to 0x%p\n",
1933 					le32_to_cpu(newext->ee_block),
1934 					ext4_ext_pblock(newext),
1935 					ext4_ext_is_uninitialized(newext),
1936 					ext4_ext_get_actual_len(newext),
1937 					len, nearex, nearex + 1);
1938 			memmove(nearex + 1, nearex,
1939 				len * sizeof(struct ext4_extent));
1940 		}
1941 	}
1942 
1943 	le16_add_cpu(&eh->eh_entries, 1);
1944 	path[depth].p_ext = nearex;
1945 	nearex->ee_block = newext->ee_block;
1946 	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1947 	nearex->ee_len = newext->ee_len;
1948 
1949 merge:
1950 	/* try to merge extents */
1951 	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1952 		ext4_ext_try_to_merge(handle, inode, path, nearex);
1953 
1954 
1955 	/* time to correct all indexes above */
1956 	err = ext4_ext_correct_indexes(handle, inode, path);
1957 	if (err)
1958 		goto cleanup;
1959 
1960 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
1961 
1962 cleanup:
1963 	if (npath) {
1964 		ext4_ext_drop_refs(npath);
1965 		kfree(npath);
1966 	}
1967 	return err;
1968 }
1969 
1970 static int ext4_fill_fiemap_extents(struct inode *inode,
1971 				    ext4_lblk_t block, ext4_lblk_t num,
1972 				    struct fiemap_extent_info *fieinfo)
1973 {
1974 	struct ext4_ext_path *path = NULL;
1975 	struct ext4_extent *ex;
1976 	struct extent_status es;
1977 	ext4_lblk_t next, next_del, start = 0, end = 0;
1978 	ext4_lblk_t last = block + num;
1979 	int exists, depth = 0, err = 0;
1980 	unsigned int flags = 0;
1981 	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
1982 
1983 	while (block < last && block != EXT_MAX_BLOCKS) {
1984 		num = last - block;
1985 		/* find extent for this block */
1986 		down_read(&EXT4_I(inode)->i_data_sem);
1987 
1988 		if (path && ext_depth(inode) != depth) {
1989 			/* depth was changed. we have to realloc path */
1990 			kfree(path);
1991 			path = NULL;
1992 		}
1993 
1994 		path = ext4_ext_find_extent(inode, block, path);
1995 		if (IS_ERR(path)) {
1996 			up_read(&EXT4_I(inode)->i_data_sem);
1997 			err = PTR_ERR(path);
1998 			path = NULL;
1999 			break;
2000 		}
2001 
2002 		depth = ext_depth(inode);
2003 		if (unlikely(path[depth].p_hdr == NULL)) {
2004 			up_read(&EXT4_I(inode)->i_data_sem);
2005 			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2006 			err = -EIO;
2007 			break;
2008 		}
2009 		ex = path[depth].p_ext;
2010 		next = ext4_ext_next_allocated_block(path);
2011 		ext4_ext_drop_refs(path);
2012 
2013 		flags = 0;
2014 		exists = 0;
2015 		if (!ex) {
2016 			/* there is no extent yet, so try to allocate
2017 			 * all requested space */
2018 			start = block;
2019 			end = block + num;
2020 		} else if (le32_to_cpu(ex->ee_block) > block) {
2021 			/* need to allocate space before found extent */
2022 			start = block;
2023 			end = le32_to_cpu(ex->ee_block);
2024 			if (block + num < end)
2025 				end = block + num;
2026 		} else if (block >= le32_to_cpu(ex->ee_block)
2027 					+ ext4_ext_get_actual_len(ex)) {
2028 			/* need to allocate space after found extent */
2029 			start = block;
2030 			end = block + num;
2031 			if (end >= next)
2032 				end = next;
2033 		} else if (block >= le32_to_cpu(ex->ee_block)) {
2034 			/*
2035 			 * some part of requested space is covered
2036 			 * by found extent
2037 			 */
2038 			start = block;
2039 			end = le32_to_cpu(ex->ee_block)
2040 				+ ext4_ext_get_actual_len(ex);
2041 			if (block + num < end)
2042 				end = block + num;
2043 			exists = 1;
2044 		} else {
2045 			BUG();
2046 		}
2047 		BUG_ON(end <= start);
2048 
2049 		if (!exists) {
2050 			es.es_lblk = start;
2051 			es.es_len = end - start;
2052 			es.es_pblk = 0;
2053 		} else {
2054 			es.es_lblk = le32_to_cpu(ex->ee_block);
2055 			es.es_len = ext4_ext_get_actual_len(ex);
2056 			es.es_pblk = ext4_ext_pblock(ex);
2057 			if (ext4_ext_is_uninitialized(ex))
2058 				flags |= FIEMAP_EXTENT_UNWRITTEN;
2059 		}
2060 
2061 		/*
2062 		 * Find delayed extent and update es accordingly. We call
2063 		 * it even in !exists case to find out whether es is the
2064 		 * last existing extent or not.
2065 		 */
2066 		next_del = ext4_find_delayed_extent(inode, &es);
2067 		if (!exists && next_del) {
2068 			exists = 1;
2069 			flags |= FIEMAP_EXTENT_DELALLOC;
2070 		}
2071 		up_read(&EXT4_I(inode)->i_data_sem);
2072 
2073 		if (unlikely(es.es_len == 0)) {
2074 			EXT4_ERROR_INODE(inode, "es.es_len == 0");
2075 			err = -EIO;
2076 			break;
2077 		}
2078 
2079 		/*
2080 		 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2081 		 * we need to check next == EXT_MAX_BLOCKS because it is
2082 		 * possible that an extent is with unwritten and delayed
2083 		 * status due to when an extent is delayed allocated and
2084 		 * is allocated by fallocate status tree will track both of
2085 		 * them in a extent.
2086 		 *
2087 		 * So we could return a unwritten and delayed extent, and
2088 		 * its block is equal to 'next'.
2089 		 */
2090 		if (next == next_del && next == EXT_MAX_BLOCKS) {
2091 			flags |= FIEMAP_EXTENT_LAST;
2092 			if (unlikely(next_del != EXT_MAX_BLOCKS ||
2093 				     next != EXT_MAX_BLOCKS)) {
2094 				EXT4_ERROR_INODE(inode,
2095 						 "next extent == %u, next "
2096 						 "delalloc extent = %u",
2097 						 next, next_del);
2098 				err = -EIO;
2099 				break;
2100 			}
2101 		}
2102 
2103 		if (exists) {
2104 			err = fiemap_fill_next_extent(fieinfo,
2105 				(__u64)es.es_lblk << blksize_bits,
2106 				(__u64)es.es_pblk << blksize_bits,
2107 				(__u64)es.es_len << blksize_bits,
2108 				flags);
2109 			if (err < 0)
2110 				break;
2111 			if (err == 1) {
2112 				err = 0;
2113 				break;
2114 			}
2115 		}
2116 
2117 		block = es.es_lblk + es.es_len;
2118 	}
2119 
2120 	if (path) {
2121 		ext4_ext_drop_refs(path);
2122 		kfree(path);
2123 	}
2124 
2125 	return err;
2126 }
2127 
2128 /*
2129  * ext4_ext_put_gap_in_cache:
2130  * calculate boundaries of the gap that the requested block fits into
2131  * and cache this gap
2132  */
2133 static void
2134 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2135 				ext4_lblk_t block)
2136 {
2137 	int depth = ext_depth(inode);
2138 	unsigned long len;
2139 	ext4_lblk_t lblock;
2140 	struct ext4_extent *ex;
2141 
2142 	ex = path[depth].p_ext;
2143 	if (ex == NULL) {
2144 		/*
2145 		 * there is no extent yet, so gap is [0;-] and we
2146 		 * don't cache it
2147 		 */
2148 		ext_debug("cache gap(whole file):");
2149 	} else if (block < le32_to_cpu(ex->ee_block)) {
2150 		lblock = block;
2151 		len = le32_to_cpu(ex->ee_block) - block;
2152 		ext_debug("cache gap(before): %u [%u:%u]",
2153 				block,
2154 				le32_to_cpu(ex->ee_block),
2155 				 ext4_ext_get_actual_len(ex));
2156 		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2157 			ext4_es_insert_extent(inode, lblock, len, ~0,
2158 					      EXTENT_STATUS_HOLE);
2159 	} else if (block >= le32_to_cpu(ex->ee_block)
2160 			+ ext4_ext_get_actual_len(ex)) {
2161 		ext4_lblk_t next;
2162 		lblock = le32_to_cpu(ex->ee_block)
2163 			+ ext4_ext_get_actual_len(ex);
2164 
2165 		next = ext4_ext_next_allocated_block(path);
2166 		ext_debug("cache gap(after): [%u:%u] %u",
2167 				le32_to_cpu(ex->ee_block),
2168 				ext4_ext_get_actual_len(ex),
2169 				block);
2170 		BUG_ON(next == lblock);
2171 		len = next - lblock;
2172 		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2173 			ext4_es_insert_extent(inode, lblock, len, ~0,
2174 					      EXTENT_STATUS_HOLE);
2175 	} else {
2176 		lblock = len = 0;
2177 		BUG();
2178 	}
2179 
2180 	ext_debug(" -> %u:%lu\n", lblock, len);
2181 }
2182 
2183 /*
2184  * ext4_ext_rm_idx:
2185  * removes index from the index block.
2186  */
2187 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2188 			struct ext4_ext_path *path, int depth)
2189 {
2190 	int err;
2191 	ext4_fsblk_t leaf;
2192 
2193 	/* free index block */
2194 	depth--;
2195 	path = path + depth;
2196 	leaf = ext4_idx_pblock(path->p_idx);
2197 	if (unlikely(path->p_hdr->eh_entries == 0)) {
2198 		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2199 		return -EIO;
2200 	}
2201 	err = ext4_ext_get_access(handle, inode, path);
2202 	if (err)
2203 		return err;
2204 
2205 	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2206 		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2207 		len *= sizeof(struct ext4_extent_idx);
2208 		memmove(path->p_idx, path->p_idx + 1, len);
2209 	}
2210 
2211 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2212 	err = ext4_ext_dirty(handle, inode, path);
2213 	if (err)
2214 		return err;
2215 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2216 	trace_ext4_ext_rm_idx(inode, leaf);
2217 
2218 	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2219 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2220 
2221 	while (--depth >= 0) {
2222 		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2223 			break;
2224 		path--;
2225 		err = ext4_ext_get_access(handle, inode, path);
2226 		if (err)
2227 			break;
2228 		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2229 		err = ext4_ext_dirty(handle, inode, path);
2230 		if (err)
2231 			break;
2232 	}
2233 	return err;
2234 }
2235 
2236 /*
2237  * ext4_ext_calc_credits_for_single_extent:
2238  * This routine returns max. credits that needed to insert an extent
2239  * to the extent tree.
2240  * When pass the actual path, the caller should calculate credits
2241  * under i_data_sem.
2242  */
2243 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2244 						struct ext4_ext_path *path)
2245 {
2246 	if (path) {
2247 		int depth = ext_depth(inode);
2248 		int ret = 0;
2249 
2250 		/* probably there is space in leaf? */
2251 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2252 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2253 
2254 			/*
2255 			 *  There are some space in the leaf tree, no
2256 			 *  need to account for leaf block credit
2257 			 *
2258 			 *  bitmaps and block group descriptor blocks
2259 			 *  and other metadata blocks still need to be
2260 			 *  accounted.
2261 			 */
2262 			/* 1 bitmap, 1 block group descriptor */
2263 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2264 			return ret;
2265 		}
2266 	}
2267 
2268 	return ext4_chunk_trans_blocks(inode, nrblocks);
2269 }
2270 
2271 /*
2272  * How many index/leaf blocks need to change/allocate to modify nrblocks?
2273  *
2274  * if nrblocks are fit in a single extent (chunk flag is 1), then
2275  * in the worse case, each tree level index/leaf need to be changed
2276  * if the tree split due to insert a new extent, then the old tree
2277  * index/leaf need to be updated too
2278  *
2279  * If the nrblocks are discontiguous, they could cause
2280  * the whole tree split more than once, but this is really rare.
2281  */
2282 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2283 {
2284 	int index;
2285 	int depth;
2286 
2287 	/* If we are converting the inline data, only one is needed here. */
2288 	if (ext4_has_inline_data(inode))
2289 		return 1;
2290 
2291 	depth = ext_depth(inode);
2292 
2293 	if (chunk)
2294 		index = depth * 2;
2295 	else
2296 		index = depth * 3;
2297 
2298 	return index;
2299 }
2300 
2301 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2302 			      struct ext4_extent *ex,
2303 			      ext4_fsblk_t *partial_cluster,
2304 			      ext4_lblk_t from, ext4_lblk_t to)
2305 {
2306 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2307 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2308 	ext4_fsblk_t pblk;
2309 	int flags = 0;
2310 
2311 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2312 		flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2313 	else if (ext4_should_journal_data(inode))
2314 		flags |= EXT4_FREE_BLOCKS_FORGET;
2315 
2316 	/*
2317 	 * For bigalloc file systems, we never free a partial cluster
2318 	 * at the beginning of the extent.  Instead, we make a note
2319 	 * that we tried freeing the cluster, and check to see if we
2320 	 * need to free it on a subsequent call to ext4_remove_blocks,
2321 	 * or at the end of the ext4_truncate() operation.
2322 	 */
2323 	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2324 
2325 	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2326 	/*
2327 	 * If we have a partial cluster, and it's different from the
2328 	 * cluster of the last block, we need to explicitly free the
2329 	 * partial cluster here.
2330 	 */
2331 	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2332 	if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2333 		ext4_free_blocks(handle, inode, NULL,
2334 				 EXT4_C2B(sbi, *partial_cluster),
2335 				 sbi->s_cluster_ratio, flags);
2336 		*partial_cluster = 0;
2337 	}
2338 
2339 #ifdef EXTENTS_STATS
2340 	{
2341 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2342 		spin_lock(&sbi->s_ext_stats_lock);
2343 		sbi->s_ext_blocks += ee_len;
2344 		sbi->s_ext_extents++;
2345 		if (ee_len < sbi->s_ext_min)
2346 			sbi->s_ext_min = ee_len;
2347 		if (ee_len > sbi->s_ext_max)
2348 			sbi->s_ext_max = ee_len;
2349 		if (ext_depth(inode) > sbi->s_depth_max)
2350 			sbi->s_depth_max = ext_depth(inode);
2351 		spin_unlock(&sbi->s_ext_stats_lock);
2352 	}
2353 #endif
2354 	if (from >= le32_to_cpu(ex->ee_block)
2355 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2356 		/* tail removal */
2357 		ext4_lblk_t num;
2358 
2359 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2360 		pblk = ext4_ext_pblock(ex) + ee_len - num;
2361 		ext_debug("free last %u blocks starting %llu\n", num, pblk);
2362 		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2363 		/*
2364 		 * If the block range to be freed didn't start at the
2365 		 * beginning of a cluster, and we removed the entire
2366 		 * extent, save the partial cluster here, since we
2367 		 * might need to delete if we determine that the
2368 		 * truncate operation has removed all of the blocks in
2369 		 * the cluster.
2370 		 */
2371 		if (pblk & (sbi->s_cluster_ratio - 1) &&
2372 		    (ee_len == num))
2373 			*partial_cluster = EXT4_B2C(sbi, pblk);
2374 		else
2375 			*partial_cluster = 0;
2376 	} else if (from == le32_to_cpu(ex->ee_block)
2377 		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2378 		/* head removal */
2379 		ext4_lblk_t num;
2380 		ext4_fsblk_t start;
2381 
2382 		num = to - from;
2383 		start = ext4_ext_pblock(ex);
2384 
2385 		ext_debug("free first %u blocks starting %llu\n", num, start);
2386 		ext4_free_blocks(handle, inode, NULL, start, num, flags);
2387 
2388 	} else {
2389 		printk(KERN_INFO "strange request: removal(2) "
2390 				"%u-%u from %u:%u\n",
2391 				from, to, le32_to_cpu(ex->ee_block), ee_len);
2392 	}
2393 	return 0;
2394 }
2395 
2396 
2397 /*
2398  * ext4_ext_rm_leaf() Removes the extents associated with the
2399  * blocks appearing between "start" and "end", and splits the extents
2400  * if "start" and "end" appear in the same extent
2401  *
2402  * @handle: The journal handle
2403  * @inode:  The files inode
2404  * @path:   The path to the leaf
2405  * @start:  The first block to remove
2406  * @end:   The last block to remove
2407  */
2408 static int
2409 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2410 		 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2411 		 ext4_lblk_t start, ext4_lblk_t end)
2412 {
2413 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2414 	int err = 0, correct_index = 0;
2415 	int depth = ext_depth(inode), credits;
2416 	struct ext4_extent_header *eh;
2417 	ext4_lblk_t a, b;
2418 	unsigned num;
2419 	ext4_lblk_t ex_ee_block;
2420 	unsigned short ex_ee_len;
2421 	unsigned uninitialized = 0;
2422 	struct ext4_extent *ex;
2423 
2424 	/* the header must be checked already in ext4_ext_remove_space() */
2425 	ext_debug("truncate since %u in leaf to %u\n", start, end);
2426 	if (!path[depth].p_hdr)
2427 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2428 	eh = path[depth].p_hdr;
2429 	if (unlikely(path[depth].p_hdr == NULL)) {
2430 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2431 		return -EIO;
2432 	}
2433 	/* find where to start removing */
2434 	ex = EXT_LAST_EXTENT(eh);
2435 
2436 	ex_ee_block = le32_to_cpu(ex->ee_block);
2437 	ex_ee_len = ext4_ext_get_actual_len(ex);
2438 
2439 	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2440 
2441 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2442 			ex_ee_block + ex_ee_len > start) {
2443 
2444 		if (ext4_ext_is_uninitialized(ex))
2445 			uninitialized = 1;
2446 		else
2447 			uninitialized = 0;
2448 
2449 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2450 			 uninitialized, ex_ee_len);
2451 		path[depth].p_ext = ex;
2452 
2453 		a = ex_ee_block > start ? ex_ee_block : start;
2454 		b = ex_ee_block+ex_ee_len - 1 < end ?
2455 			ex_ee_block+ex_ee_len - 1 : end;
2456 
2457 		ext_debug("  border %u:%u\n", a, b);
2458 
2459 		/* If this extent is beyond the end of the hole, skip it */
2460 		if (end < ex_ee_block) {
2461 			ex--;
2462 			ex_ee_block = le32_to_cpu(ex->ee_block);
2463 			ex_ee_len = ext4_ext_get_actual_len(ex);
2464 			continue;
2465 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2466 			EXT4_ERROR_INODE(inode,
2467 					 "can not handle truncate %u:%u "
2468 					 "on extent %u:%u",
2469 					 start, end, ex_ee_block,
2470 					 ex_ee_block + ex_ee_len - 1);
2471 			err = -EIO;
2472 			goto out;
2473 		} else if (a != ex_ee_block) {
2474 			/* remove tail of the extent */
2475 			num = a - ex_ee_block;
2476 		} else {
2477 			/* remove whole extent: excellent! */
2478 			num = 0;
2479 		}
2480 		/*
2481 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2482 		 * descriptor) for each block group; assume two block
2483 		 * groups plus ex_ee_len/blocks_per_block_group for
2484 		 * the worst case
2485 		 */
2486 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2487 		if (ex == EXT_FIRST_EXTENT(eh)) {
2488 			correct_index = 1;
2489 			credits += (ext_depth(inode)) + 1;
2490 		}
2491 		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2492 
2493 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2494 		if (err)
2495 			goto out;
2496 
2497 		err = ext4_ext_get_access(handle, inode, path + depth);
2498 		if (err)
2499 			goto out;
2500 
2501 		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2502 					 a, b);
2503 		if (err)
2504 			goto out;
2505 
2506 		if (num == 0)
2507 			/* this extent is removed; mark slot entirely unused */
2508 			ext4_ext_store_pblock(ex, 0);
2509 
2510 		ex->ee_len = cpu_to_le16(num);
2511 		/*
2512 		 * Do not mark uninitialized if all the blocks in the
2513 		 * extent have been removed.
2514 		 */
2515 		if (uninitialized && num)
2516 			ext4_ext_mark_uninitialized(ex);
2517 		/*
2518 		 * If the extent was completely released,
2519 		 * we need to remove it from the leaf
2520 		 */
2521 		if (num == 0) {
2522 			if (end != EXT_MAX_BLOCKS - 1) {
2523 				/*
2524 				 * For hole punching, we need to scoot all the
2525 				 * extents up when an extent is removed so that
2526 				 * we dont have blank extents in the middle
2527 				 */
2528 				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2529 					sizeof(struct ext4_extent));
2530 
2531 				/* Now get rid of the one at the end */
2532 				memset(EXT_LAST_EXTENT(eh), 0,
2533 					sizeof(struct ext4_extent));
2534 			}
2535 			le16_add_cpu(&eh->eh_entries, -1);
2536 		} else
2537 			*partial_cluster = 0;
2538 
2539 		err = ext4_ext_dirty(handle, inode, path + depth);
2540 		if (err)
2541 			goto out;
2542 
2543 		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2544 				ext4_ext_pblock(ex));
2545 		ex--;
2546 		ex_ee_block = le32_to_cpu(ex->ee_block);
2547 		ex_ee_len = ext4_ext_get_actual_len(ex);
2548 	}
2549 
2550 	if (correct_index && eh->eh_entries)
2551 		err = ext4_ext_correct_indexes(handle, inode, path);
2552 
2553 	/*
2554 	 * If there is still a entry in the leaf node, check to see if
2555 	 * it references the partial cluster.  This is the only place
2556 	 * where it could; if it doesn't, we can free the cluster.
2557 	 */
2558 	if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2559 	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2560 	     *partial_cluster)) {
2561 		int flags = EXT4_FREE_BLOCKS_FORGET;
2562 
2563 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2564 			flags |= EXT4_FREE_BLOCKS_METADATA;
2565 
2566 		ext4_free_blocks(handle, inode, NULL,
2567 				 EXT4_C2B(sbi, *partial_cluster),
2568 				 sbi->s_cluster_ratio, flags);
2569 		*partial_cluster = 0;
2570 	}
2571 
2572 	/* if this leaf is free, then we should
2573 	 * remove it from index block above */
2574 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2575 		err = ext4_ext_rm_idx(handle, inode, path, depth);
2576 
2577 out:
2578 	return err;
2579 }
2580 
2581 /*
2582  * ext4_ext_more_to_rm:
2583  * returns 1 if current index has to be freed (even partial)
2584  */
2585 static int
2586 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2587 {
2588 	BUG_ON(path->p_idx == NULL);
2589 
2590 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2591 		return 0;
2592 
2593 	/*
2594 	 * if truncate on deeper level happened, it wasn't partial,
2595 	 * so we have to consider current index for truncation
2596 	 */
2597 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2598 		return 0;
2599 	return 1;
2600 }
2601 
2602 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2603 				 ext4_lblk_t end)
2604 {
2605 	struct super_block *sb = inode->i_sb;
2606 	int depth = ext_depth(inode);
2607 	struct ext4_ext_path *path = NULL;
2608 	ext4_fsblk_t partial_cluster = 0;
2609 	handle_t *handle;
2610 	int i = 0, err = 0;
2611 
2612 	ext_debug("truncate since %u to %u\n", start, end);
2613 
2614 	/* probably first extent we're gonna free will be last in block */
2615 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2616 	if (IS_ERR(handle))
2617 		return PTR_ERR(handle);
2618 
2619 again:
2620 	trace_ext4_ext_remove_space(inode, start, depth);
2621 
2622 	/*
2623 	 * Check if we are removing extents inside the extent tree. If that
2624 	 * is the case, we are going to punch a hole inside the extent tree
2625 	 * so we have to check whether we need to split the extent covering
2626 	 * the last block to remove so we can easily remove the part of it
2627 	 * in ext4_ext_rm_leaf().
2628 	 */
2629 	if (end < EXT_MAX_BLOCKS - 1) {
2630 		struct ext4_extent *ex;
2631 		ext4_lblk_t ee_block;
2632 
2633 		/* find extent for this block */
2634 		path = ext4_ext_find_extent(inode, end, NULL);
2635 		if (IS_ERR(path)) {
2636 			ext4_journal_stop(handle);
2637 			return PTR_ERR(path);
2638 		}
2639 		depth = ext_depth(inode);
2640 		/* Leaf not may not exist only if inode has no blocks at all */
2641 		ex = path[depth].p_ext;
2642 		if (!ex) {
2643 			if (depth) {
2644 				EXT4_ERROR_INODE(inode,
2645 						 "path[%d].p_hdr == NULL",
2646 						 depth);
2647 				err = -EIO;
2648 			}
2649 			goto out;
2650 		}
2651 
2652 		ee_block = le32_to_cpu(ex->ee_block);
2653 
2654 		/*
2655 		 * See if the last block is inside the extent, if so split
2656 		 * the extent at 'end' block so we can easily remove the
2657 		 * tail of the first part of the split extent in
2658 		 * ext4_ext_rm_leaf().
2659 		 */
2660 		if (end >= ee_block &&
2661 		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2662 			int split_flag = 0;
2663 
2664 			if (ext4_ext_is_uninitialized(ex))
2665 				split_flag = EXT4_EXT_MARK_UNINIT1 |
2666 					     EXT4_EXT_MARK_UNINIT2;
2667 
2668 			/*
2669 			 * Split the extent in two so that 'end' is the last
2670 			 * block in the first new extent
2671 			 */
2672 			err = ext4_split_extent_at(handle, inode, path,
2673 						end + 1, split_flag,
2674 						EXT4_GET_BLOCKS_PRE_IO |
2675 						EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2676 
2677 			if (err < 0)
2678 				goto out;
2679 		}
2680 	}
2681 	/*
2682 	 * We start scanning from right side, freeing all the blocks
2683 	 * after i_size and walking into the tree depth-wise.
2684 	 */
2685 	depth = ext_depth(inode);
2686 	if (path) {
2687 		int k = i = depth;
2688 		while (--k > 0)
2689 			path[k].p_block =
2690 				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2691 	} else {
2692 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2693 			       GFP_NOFS);
2694 		if (path == NULL) {
2695 			ext4_journal_stop(handle);
2696 			return -ENOMEM;
2697 		}
2698 		path[0].p_depth = depth;
2699 		path[0].p_hdr = ext_inode_hdr(inode);
2700 		i = 0;
2701 
2702 		if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2703 			err = -EIO;
2704 			goto out;
2705 		}
2706 	}
2707 	err = 0;
2708 
2709 	while (i >= 0 && err == 0) {
2710 		if (i == depth) {
2711 			/* this is leaf block */
2712 			err = ext4_ext_rm_leaf(handle, inode, path,
2713 					       &partial_cluster, start,
2714 					       end);
2715 			/* root level has p_bh == NULL, brelse() eats this */
2716 			brelse(path[i].p_bh);
2717 			path[i].p_bh = NULL;
2718 			i--;
2719 			continue;
2720 		}
2721 
2722 		/* this is index block */
2723 		if (!path[i].p_hdr) {
2724 			ext_debug("initialize header\n");
2725 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2726 		}
2727 
2728 		if (!path[i].p_idx) {
2729 			/* this level hasn't been touched yet */
2730 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2731 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2732 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2733 				  path[i].p_hdr,
2734 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2735 		} else {
2736 			/* we were already here, see at next index */
2737 			path[i].p_idx--;
2738 		}
2739 
2740 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2741 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2742 				path[i].p_idx);
2743 		if (ext4_ext_more_to_rm(path + i)) {
2744 			struct buffer_head *bh;
2745 			/* go to the next level */
2746 			ext_debug("move to level %d (block %llu)\n",
2747 				  i + 1, ext4_idx_pblock(path[i].p_idx));
2748 			memset(path + i + 1, 0, sizeof(*path));
2749 			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2750 			if (!bh) {
2751 				/* should we reset i_size? */
2752 				err = -EIO;
2753 				break;
2754 			}
2755 			if (WARN_ON(i + 1 > depth)) {
2756 				err = -EIO;
2757 				break;
2758 			}
2759 			if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2760 							depth - i - 1, bh)) {
2761 				err = -EIO;
2762 				break;
2763 			}
2764 			path[i + 1].p_bh = bh;
2765 
2766 			/* save actual number of indexes since this
2767 			 * number is changed at the next iteration */
2768 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2769 			i++;
2770 		} else {
2771 			/* we finished processing this index, go up */
2772 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2773 				/* index is empty, remove it;
2774 				 * handle must be already prepared by the
2775 				 * truncatei_leaf() */
2776 				err = ext4_ext_rm_idx(handle, inode, path, i);
2777 			}
2778 			/* root level has p_bh == NULL, brelse() eats this */
2779 			brelse(path[i].p_bh);
2780 			path[i].p_bh = NULL;
2781 			i--;
2782 			ext_debug("return to level %d\n", i);
2783 		}
2784 	}
2785 
2786 	trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2787 			path->p_hdr->eh_entries);
2788 
2789 	/* If we still have something in the partial cluster and we have removed
2790 	 * even the first extent, then we should free the blocks in the partial
2791 	 * cluster as well. */
2792 	if (partial_cluster && path->p_hdr->eh_entries == 0) {
2793 		int flags = EXT4_FREE_BLOCKS_FORGET;
2794 
2795 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2796 			flags |= EXT4_FREE_BLOCKS_METADATA;
2797 
2798 		ext4_free_blocks(handle, inode, NULL,
2799 				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2800 				 EXT4_SB(sb)->s_cluster_ratio, flags);
2801 		partial_cluster = 0;
2802 	}
2803 
2804 	/* TODO: flexible tree reduction should be here */
2805 	if (path->p_hdr->eh_entries == 0) {
2806 		/*
2807 		 * truncate to zero freed all the tree,
2808 		 * so we need to correct eh_depth
2809 		 */
2810 		err = ext4_ext_get_access(handle, inode, path);
2811 		if (err == 0) {
2812 			ext_inode_hdr(inode)->eh_depth = 0;
2813 			ext_inode_hdr(inode)->eh_max =
2814 				cpu_to_le16(ext4_ext_space_root(inode, 0));
2815 			err = ext4_ext_dirty(handle, inode, path);
2816 		}
2817 	}
2818 out:
2819 	ext4_ext_drop_refs(path);
2820 	kfree(path);
2821 	if (err == -EAGAIN) {
2822 		path = NULL;
2823 		goto again;
2824 	}
2825 	ext4_journal_stop(handle);
2826 
2827 	return err;
2828 }
2829 
2830 /*
2831  * called at mount time
2832  */
2833 void ext4_ext_init(struct super_block *sb)
2834 {
2835 	/*
2836 	 * possible initialization would be here
2837 	 */
2838 
2839 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2840 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2841 		printk(KERN_INFO "EXT4-fs: file extents enabled"
2842 #ifdef AGGRESSIVE_TEST
2843 		       ", aggressive tests"
2844 #endif
2845 #ifdef CHECK_BINSEARCH
2846 		       ", check binsearch"
2847 #endif
2848 #ifdef EXTENTS_STATS
2849 		       ", stats"
2850 #endif
2851 		       "\n");
2852 #endif
2853 #ifdef EXTENTS_STATS
2854 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2855 		EXT4_SB(sb)->s_ext_min = 1 << 30;
2856 		EXT4_SB(sb)->s_ext_max = 0;
2857 #endif
2858 	}
2859 }
2860 
2861 /*
2862  * called at umount time
2863  */
2864 void ext4_ext_release(struct super_block *sb)
2865 {
2866 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2867 		return;
2868 
2869 #ifdef EXTENTS_STATS
2870 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2871 		struct ext4_sb_info *sbi = EXT4_SB(sb);
2872 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2873 			sbi->s_ext_blocks, sbi->s_ext_extents,
2874 			sbi->s_ext_blocks / sbi->s_ext_extents);
2875 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2876 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2877 	}
2878 #endif
2879 }
2880 
2881 /* FIXME!! we need to try to merge to left or right after zero-out  */
2882 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2883 {
2884 	ext4_fsblk_t ee_pblock;
2885 	unsigned int ee_len;
2886 	int ret;
2887 
2888 	ee_len    = ext4_ext_get_actual_len(ex);
2889 	ee_pblock = ext4_ext_pblock(ex);
2890 
2891 	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2892 	if (ret > 0)
2893 		ret = 0;
2894 
2895 	return ret;
2896 }
2897 
2898 /*
2899  * ext4_split_extent_at() splits an extent at given block.
2900  *
2901  * @handle: the journal handle
2902  * @inode: the file inode
2903  * @path: the path to the extent
2904  * @split: the logical block where the extent is splitted.
2905  * @split_flags: indicates if the extent could be zeroout if split fails, and
2906  *		 the states(init or uninit) of new extents.
2907  * @flags: flags used to insert new extent to extent tree.
2908  *
2909  *
2910  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2911  * of which are deterimined by split_flag.
2912  *
2913  * There are two cases:
2914  *  a> the extent are splitted into two extent.
2915  *  b> split is not needed, and just mark the extent.
2916  *
2917  * return 0 on success.
2918  */
2919 static int ext4_split_extent_at(handle_t *handle,
2920 			     struct inode *inode,
2921 			     struct ext4_ext_path *path,
2922 			     ext4_lblk_t split,
2923 			     int split_flag,
2924 			     int flags)
2925 {
2926 	ext4_fsblk_t newblock;
2927 	ext4_lblk_t ee_block;
2928 	struct ext4_extent *ex, newex, orig_ex, zero_ex;
2929 	struct ext4_extent *ex2 = NULL;
2930 	unsigned int ee_len, depth;
2931 	int err = 0;
2932 
2933 	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
2934 	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
2935 
2936 	ext_debug("ext4_split_extents_at: inode %lu, logical"
2937 		"block %llu\n", inode->i_ino, (unsigned long long)split);
2938 
2939 	ext4_ext_show_leaf(inode, path);
2940 
2941 	depth = ext_depth(inode);
2942 	ex = path[depth].p_ext;
2943 	ee_block = le32_to_cpu(ex->ee_block);
2944 	ee_len = ext4_ext_get_actual_len(ex);
2945 	newblock = split - ee_block + ext4_ext_pblock(ex);
2946 
2947 	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2948 	BUG_ON(!ext4_ext_is_uninitialized(ex) &&
2949 	       split_flag & (EXT4_EXT_MAY_ZEROOUT |
2950 			     EXT4_EXT_MARK_UNINIT1 |
2951 			     EXT4_EXT_MARK_UNINIT2));
2952 
2953 	err = ext4_ext_get_access(handle, inode, path + depth);
2954 	if (err)
2955 		goto out;
2956 
2957 	if (split == ee_block) {
2958 		/*
2959 		 * case b: block @split is the block that the extent begins with
2960 		 * then we just change the state of the extent, and splitting
2961 		 * is not needed.
2962 		 */
2963 		if (split_flag & EXT4_EXT_MARK_UNINIT2)
2964 			ext4_ext_mark_uninitialized(ex);
2965 		else
2966 			ext4_ext_mark_initialized(ex);
2967 
2968 		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2969 			ext4_ext_try_to_merge(handle, inode, path, ex);
2970 
2971 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2972 		goto out;
2973 	}
2974 
2975 	/* case a */
2976 	memcpy(&orig_ex, ex, sizeof(orig_ex));
2977 	ex->ee_len = cpu_to_le16(split - ee_block);
2978 	if (split_flag & EXT4_EXT_MARK_UNINIT1)
2979 		ext4_ext_mark_uninitialized(ex);
2980 
2981 	/*
2982 	 * path may lead to new leaf, not to original leaf any more
2983 	 * after ext4_ext_insert_extent() returns,
2984 	 */
2985 	err = ext4_ext_dirty(handle, inode, path + depth);
2986 	if (err)
2987 		goto fix_extent_len;
2988 
2989 	ex2 = &newex;
2990 	ex2->ee_block = cpu_to_le32(split);
2991 	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
2992 	ext4_ext_store_pblock(ex2, newblock);
2993 	if (split_flag & EXT4_EXT_MARK_UNINIT2)
2994 		ext4_ext_mark_uninitialized(ex2);
2995 
2996 	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2997 	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2998 		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
2999 			if (split_flag & EXT4_EXT_DATA_VALID1) {
3000 				err = ext4_ext_zeroout(inode, ex2);
3001 				zero_ex.ee_block = ex2->ee_block;
3002 				zero_ex.ee_len = ext4_ext_get_actual_len(ex2);
3003 				ext4_ext_store_pblock(&zero_ex,
3004 						      ext4_ext_pblock(ex2));
3005 			} else {
3006 				err = ext4_ext_zeroout(inode, ex);
3007 				zero_ex.ee_block = ex->ee_block;
3008 				zero_ex.ee_len = ext4_ext_get_actual_len(ex);
3009 				ext4_ext_store_pblock(&zero_ex,
3010 						      ext4_ext_pblock(ex));
3011 			}
3012 		} else {
3013 			err = ext4_ext_zeroout(inode, &orig_ex);
3014 			zero_ex.ee_block = orig_ex.ee_block;
3015 			zero_ex.ee_len = ext4_ext_get_actual_len(&orig_ex);
3016 			ext4_ext_store_pblock(&zero_ex,
3017 					      ext4_ext_pblock(&orig_ex));
3018 		}
3019 
3020 		if (err)
3021 			goto fix_extent_len;
3022 		/* update the extent length and mark as initialized */
3023 		ex->ee_len = cpu_to_le16(ee_len);
3024 		ext4_ext_try_to_merge(handle, inode, path, ex);
3025 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3026 		if (err)
3027 			goto fix_extent_len;
3028 
3029 		/* update extent status tree */
3030 		err = ext4_es_zeroout(inode, &zero_ex);
3031 
3032 		goto out;
3033 	} else if (err)
3034 		goto fix_extent_len;
3035 
3036 out:
3037 	ext4_ext_show_leaf(inode, path);
3038 	return err;
3039 
3040 fix_extent_len:
3041 	ex->ee_len = orig_ex.ee_len;
3042 	ext4_ext_dirty(handle, inode, path + depth);
3043 	return err;
3044 }
3045 
3046 /*
3047  * ext4_split_extents() splits an extent and mark extent which is covered
3048  * by @map as split_flags indicates
3049  *
3050  * It may result in splitting the extent into multiple extents (upto three)
3051  * There are three possibilities:
3052  *   a> There is no split required
3053  *   b> Splits in two extents: Split is happening at either end of the extent
3054  *   c> Splits in three extents: Somone is splitting in middle of the extent
3055  *
3056  */
3057 static int ext4_split_extent(handle_t *handle,
3058 			      struct inode *inode,
3059 			      struct ext4_ext_path *path,
3060 			      struct ext4_map_blocks *map,
3061 			      int split_flag,
3062 			      int flags)
3063 {
3064 	ext4_lblk_t ee_block;
3065 	struct ext4_extent *ex;
3066 	unsigned int ee_len, depth;
3067 	int err = 0;
3068 	int uninitialized;
3069 	int split_flag1, flags1;
3070 	int allocated = map->m_len;
3071 
3072 	depth = ext_depth(inode);
3073 	ex = path[depth].p_ext;
3074 	ee_block = le32_to_cpu(ex->ee_block);
3075 	ee_len = ext4_ext_get_actual_len(ex);
3076 	uninitialized = ext4_ext_is_uninitialized(ex);
3077 
3078 	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3079 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3080 		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3081 		if (uninitialized)
3082 			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3083 				       EXT4_EXT_MARK_UNINIT2;
3084 		if (split_flag & EXT4_EXT_DATA_VALID2)
3085 			split_flag1 |= EXT4_EXT_DATA_VALID1;
3086 		err = ext4_split_extent_at(handle, inode, path,
3087 				map->m_lblk + map->m_len, split_flag1, flags1);
3088 		if (err)
3089 			goto out;
3090 	} else {
3091 		allocated = ee_len - (map->m_lblk - ee_block);
3092 	}
3093 	/*
3094 	 * Update path is required because previous ext4_split_extent_at() may
3095 	 * result in split of original leaf or extent zeroout.
3096 	 */
3097 	ext4_ext_drop_refs(path);
3098 	path = ext4_ext_find_extent(inode, map->m_lblk, path);
3099 	if (IS_ERR(path))
3100 		return PTR_ERR(path);
3101 	depth = ext_depth(inode);
3102 	ex = path[depth].p_ext;
3103 	uninitialized = ext4_ext_is_uninitialized(ex);
3104 	split_flag1 = 0;
3105 
3106 	if (map->m_lblk >= ee_block) {
3107 		split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3108 		if (uninitialized) {
3109 			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3110 			split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3111 						     EXT4_EXT_MARK_UNINIT2);
3112 		}
3113 		err = ext4_split_extent_at(handle, inode, path,
3114 				map->m_lblk, split_flag1, flags);
3115 		if (err)
3116 			goto out;
3117 	}
3118 
3119 	ext4_ext_show_leaf(inode, path);
3120 out:
3121 	return err ? err : allocated;
3122 }
3123 
3124 /*
3125  * This function is called by ext4_ext_map_blocks() if someone tries to write
3126  * to an uninitialized extent. It may result in splitting the uninitialized
3127  * extent into multiple extents (up to three - one initialized and two
3128  * uninitialized).
3129  * There are three possibilities:
3130  *   a> There is no split required: Entire extent should be initialized
3131  *   b> Splits in two extents: Write is happening at either end of the extent
3132  *   c> Splits in three extents: Somone is writing in middle of the extent
3133  *
3134  * Pre-conditions:
3135  *  - The extent pointed to by 'path' is uninitialized.
3136  *  - The extent pointed to by 'path' contains a superset
3137  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3138  *
3139  * Post-conditions on success:
3140  *  - the returned value is the number of blocks beyond map->l_lblk
3141  *    that are allocated and initialized.
3142  *    It is guaranteed to be >= map->m_len.
3143  */
3144 static int ext4_ext_convert_to_initialized(handle_t *handle,
3145 					   struct inode *inode,
3146 					   struct ext4_map_blocks *map,
3147 					   struct ext4_ext_path *path)
3148 {
3149 	struct ext4_sb_info *sbi;
3150 	struct ext4_extent_header *eh;
3151 	struct ext4_map_blocks split_map;
3152 	struct ext4_extent zero_ex;
3153 	struct ext4_extent *ex;
3154 	ext4_lblk_t ee_block, eof_block;
3155 	unsigned int ee_len, depth;
3156 	int allocated, max_zeroout = 0;
3157 	int err = 0;
3158 	int split_flag = 0;
3159 
3160 	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3161 		"block %llu, max_blocks %u\n", inode->i_ino,
3162 		(unsigned long long)map->m_lblk, map->m_len);
3163 
3164 	sbi = EXT4_SB(inode->i_sb);
3165 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3166 		inode->i_sb->s_blocksize_bits;
3167 	if (eof_block < map->m_lblk + map->m_len)
3168 		eof_block = map->m_lblk + map->m_len;
3169 
3170 	depth = ext_depth(inode);
3171 	eh = path[depth].p_hdr;
3172 	ex = path[depth].p_ext;
3173 	ee_block = le32_to_cpu(ex->ee_block);
3174 	ee_len = ext4_ext_get_actual_len(ex);
3175 	allocated = ee_len - (map->m_lblk - ee_block);
3176 	zero_ex.ee_len = 0;
3177 
3178 	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3179 
3180 	/* Pre-conditions */
3181 	BUG_ON(!ext4_ext_is_uninitialized(ex));
3182 	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3183 
3184 	/*
3185 	 * Attempt to transfer newly initialized blocks from the currently
3186 	 * uninitialized extent to its left neighbor. This is much cheaper
3187 	 * than an insertion followed by a merge as those involve costly
3188 	 * memmove() calls. This is the common case in steady state for
3189 	 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3190 	 * writes.
3191 	 *
3192 	 * Limitations of the current logic:
3193 	 *  - L1: we only deal with writes at the start of the extent.
3194 	 *    The approach could be extended to writes at the end
3195 	 *    of the extent but this scenario was deemed less common.
3196 	 *  - L2: we do not deal with writes covering the whole extent.
3197 	 *    This would require removing the extent if the transfer
3198 	 *    is possible.
3199 	 *  - L3: we only attempt to merge with an extent stored in the
3200 	 *    same extent tree node.
3201 	 */
3202 	if ((map->m_lblk == ee_block) &&	/*L1*/
3203 		(map->m_len < ee_len) &&	/*L2*/
3204 		(ex > EXT_FIRST_EXTENT(eh))) {	/*L3*/
3205 		struct ext4_extent *prev_ex;
3206 		ext4_lblk_t prev_lblk;
3207 		ext4_fsblk_t prev_pblk, ee_pblk;
3208 		unsigned int prev_len, write_len;
3209 
3210 		prev_ex = ex - 1;
3211 		prev_lblk = le32_to_cpu(prev_ex->ee_block);
3212 		prev_len = ext4_ext_get_actual_len(prev_ex);
3213 		prev_pblk = ext4_ext_pblock(prev_ex);
3214 		ee_pblk = ext4_ext_pblock(ex);
3215 		write_len = map->m_len;
3216 
3217 		/*
3218 		 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3219 		 * upon those conditions:
3220 		 * - C1: prev_ex is initialized,
3221 		 * - C2: prev_ex is logically abutting ex,
3222 		 * - C3: prev_ex is physically abutting ex,
3223 		 * - C4: prev_ex can receive the additional blocks without
3224 		 *   overflowing the (initialized) length limit.
3225 		 */
3226 		if ((!ext4_ext_is_uninitialized(prev_ex)) &&		/*C1*/
3227 			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3228 			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3229 			(prev_len < (EXT_INIT_MAX_LEN - write_len))) {	/*C4*/
3230 			err = ext4_ext_get_access(handle, inode, path + depth);
3231 			if (err)
3232 				goto out;
3233 
3234 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3235 				map, ex, prev_ex);
3236 
3237 			/* Shift the start of ex by 'write_len' blocks */
3238 			ex->ee_block = cpu_to_le32(ee_block + write_len);
3239 			ext4_ext_store_pblock(ex, ee_pblk + write_len);
3240 			ex->ee_len = cpu_to_le16(ee_len - write_len);
3241 			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3242 
3243 			/* Extend prev_ex by 'write_len' blocks */
3244 			prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3245 
3246 			/* Mark the block containing both extents as dirty */
3247 			ext4_ext_dirty(handle, inode, path + depth);
3248 
3249 			/* Update path to point to the right extent */
3250 			path[depth].p_ext = prev_ex;
3251 
3252 			/* Result: number of initialized blocks past m_lblk */
3253 			allocated = write_len;
3254 			goto out;
3255 		}
3256 	}
3257 
3258 	WARN_ON(map->m_lblk < ee_block);
3259 	/*
3260 	 * It is safe to convert extent to initialized via explicit
3261 	 * zeroout only if extent is fully insde i_size or new_size.
3262 	 */
3263 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3264 
3265 	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3266 		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3267 			(inode->i_sb->s_blocksize_bits - 10);
3268 
3269 	/* If extent is less than s_max_zeroout_kb, zeroout directly */
3270 	if (max_zeroout && (ee_len <= max_zeroout)) {
3271 		err = ext4_ext_zeroout(inode, ex);
3272 		if (err)
3273 			goto out;
3274 		zero_ex.ee_block = ex->ee_block;
3275 		zero_ex.ee_len = ext4_ext_get_actual_len(ex);
3276 		ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3277 
3278 		err = ext4_ext_get_access(handle, inode, path + depth);
3279 		if (err)
3280 			goto out;
3281 		ext4_ext_mark_initialized(ex);
3282 		ext4_ext_try_to_merge(handle, inode, path, ex);
3283 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3284 		goto out;
3285 	}
3286 
3287 	/*
3288 	 * four cases:
3289 	 * 1. split the extent into three extents.
3290 	 * 2. split the extent into two extents, zeroout the first half.
3291 	 * 3. split the extent into two extents, zeroout the second half.
3292 	 * 4. split the extent into two extents with out zeroout.
3293 	 */
3294 	split_map.m_lblk = map->m_lblk;
3295 	split_map.m_len = map->m_len;
3296 
3297 	if (max_zeroout && (allocated > map->m_len)) {
3298 		if (allocated <= max_zeroout) {
3299 			/* case 3 */
3300 			zero_ex.ee_block =
3301 					 cpu_to_le32(map->m_lblk);
3302 			zero_ex.ee_len = cpu_to_le16(allocated);
3303 			ext4_ext_store_pblock(&zero_ex,
3304 				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3305 			err = ext4_ext_zeroout(inode, &zero_ex);
3306 			if (err)
3307 				goto out;
3308 			split_map.m_lblk = map->m_lblk;
3309 			split_map.m_len = allocated;
3310 		} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3311 			/* case 2 */
3312 			if (map->m_lblk != ee_block) {
3313 				zero_ex.ee_block = ex->ee_block;
3314 				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3315 							ee_block);
3316 				ext4_ext_store_pblock(&zero_ex,
3317 						      ext4_ext_pblock(ex));
3318 				err = ext4_ext_zeroout(inode, &zero_ex);
3319 				if (err)
3320 					goto out;
3321 			}
3322 
3323 			split_map.m_lblk = ee_block;
3324 			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3325 			allocated = map->m_len;
3326 		}
3327 	}
3328 
3329 	allocated = ext4_split_extent(handle, inode, path,
3330 				      &split_map, split_flag, 0);
3331 	if (allocated < 0)
3332 		err = allocated;
3333 
3334 out:
3335 	/* If we have gotten a failure, don't zero out status tree */
3336 	if (!err)
3337 		err = ext4_es_zeroout(inode, &zero_ex);
3338 	return err ? err : allocated;
3339 }
3340 
3341 /*
3342  * This function is called by ext4_ext_map_blocks() from
3343  * ext4_get_blocks_dio_write() when DIO to write
3344  * to an uninitialized extent.
3345  *
3346  * Writing to an uninitialized extent may result in splitting the uninitialized
3347  * extent into multiple initialized/uninitialized extents (up to three)
3348  * There are three possibilities:
3349  *   a> There is no split required: Entire extent should be uninitialized
3350  *   b> Splits in two extents: Write is happening at either end of the extent
3351  *   c> Splits in three extents: Somone is writing in middle of the extent
3352  *
3353  * One of more index blocks maybe needed if the extent tree grow after
3354  * the uninitialized extent split. To prevent ENOSPC occur at the IO
3355  * complete, we need to split the uninitialized extent before DIO submit
3356  * the IO. The uninitialized extent called at this time will be split
3357  * into three uninitialized extent(at most). After IO complete, the part
3358  * being filled will be convert to initialized by the end_io callback function
3359  * via ext4_convert_unwritten_extents().
3360  *
3361  * Returns the size of uninitialized extent to be written on success.
3362  */
3363 static int ext4_split_unwritten_extents(handle_t *handle,
3364 					struct inode *inode,
3365 					struct ext4_map_blocks *map,
3366 					struct ext4_ext_path *path,
3367 					int flags)
3368 {
3369 	ext4_lblk_t eof_block;
3370 	ext4_lblk_t ee_block;
3371 	struct ext4_extent *ex;
3372 	unsigned int ee_len;
3373 	int split_flag = 0, depth;
3374 
3375 	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3376 		"block %llu, max_blocks %u\n", inode->i_ino,
3377 		(unsigned long long)map->m_lblk, map->m_len);
3378 
3379 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3380 		inode->i_sb->s_blocksize_bits;
3381 	if (eof_block < map->m_lblk + map->m_len)
3382 		eof_block = map->m_lblk + map->m_len;
3383 	/*
3384 	 * It is safe to convert extent to initialized via explicit
3385 	 * zeroout only if extent is fully insde i_size or new_size.
3386 	 */
3387 	depth = ext_depth(inode);
3388 	ex = path[depth].p_ext;
3389 	ee_block = le32_to_cpu(ex->ee_block);
3390 	ee_len = ext4_ext_get_actual_len(ex);
3391 
3392 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3393 	split_flag |= EXT4_EXT_MARK_UNINIT2;
3394 	if (flags & EXT4_GET_BLOCKS_CONVERT)
3395 		split_flag |= EXT4_EXT_DATA_VALID2;
3396 	flags |= EXT4_GET_BLOCKS_PRE_IO;
3397 	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3398 }
3399 
3400 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3401 						struct inode *inode,
3402 						struct ext4_map_blocks *map,
3403 						struct ext4_ext_path *path)
3404 {
3405 	struct ext4_extent *ex;
3406 	ext4_lblk_t ee_block;
3407 	unsigned int ee_len;
3408 	int depth;
3409 	int err = 0;
3410 
3411 	depth = ext_depth(inode);
3412 	ex = path[depth].p_ext;
3413 	ee_block = le32_to_cpu(ex->ee_block);
3414 	ee_len = ext4_ext_get_actual_len(ex);
3415 
3416 	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3417 		"block %llu, max_blocks %u\n", inode->i_ino,
3418 		  (unsigned long long)ee_block, ee_len);
3419 
3420 	/* If extent is larger than requested it is a clear sign that we still
3421 	 * have some extent state machine issues left. So extent_split is still
3422 	 * required.
3423 	 * TODO: Once all related issues will be fixed this situation should be
3424 	 * illegal.
3425 	 */
3426 	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3427 #ifdef EXT4_DEBUG
3428 		ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3429 			     " len %u; IO logical block %llu, len %u\n",
3430 			     inode->i_ino, (unsigned long long)ee_block, ee_len,
3431 			     (unsigned long long)map->m_lblk, map->m_len);
3432 #endif
3433 		err = ext4_split_unwritten_extents(handle, inode, map, path,
3434 						   EXT4_GET_BLOCKS_CONVERT);
3435 		if (err < 0)
3436 			goto out;
3437 		ext4_ext_drop_refs(path);
3438 		path = ext4_ext_find_extent(inode, map->m_lblk, path);
3439 		if (IS_ERR(path)) {
3440 			err = PTR_ERR(path);
3441 			goto out;
3442 		}
3443 		depth = ext_depth(inode);
3444 		ex = path[depth].p_ext;
3445 	}
3446 
3447 	err = ext4_ext_get_access(handle, inode, path + depth);
3448 	if (err)
3449 		goto out;
3450 	/* first mark the extent as initialized */
3451 	ext4_ext_mark_initialized(ex);
3452 
3453 	/* note: ext4_ext_correct_indexes() isn't needed here because
3454 	 * borders are not changed
3455 	 */
3456 	ext4_ext_try_to_merge(handle, inode, path, ex);
3457 
3458 	/* Mark modified extent as dirty */
3459 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3460 out:
3461 	ext4_ext_show_leaf(inode, path);
3462 	return err;
3463 }
3464 
3465 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3466 			sector_t block, int count)
3467 {
3468 	int i;
3469 	for (i = 0; i < count; i++)
3470                 unmap_underlying_metadata(bdev, block + i);
3471 }
3472 
3473 /*
3474  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3475  */
3476 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3477 			      ext4_lblk_t lblk,
3478 			      struct ext4_ext_path *path,
3479 			      unsigned int len)
3480 {
3481 	int i, depth;
3482 	struct ext4_extent_header *eh;
3483 	struct ext4_extent *last_ex;
3484 
3485 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3486 		return 0;
3487 
3488 	depth = ext_depth(inode);
3489 	eh = path[depth].p_hdr;
3490 
3491 	/*
3492 	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3493 	 * do not care for this case anymore. Simply remove the flag
3494 	 * if there are no extents.
3495 	 */
3496 	if (unlikely(!eh->eh_entries))
3497 		goto out;
3498 	last_ex = EXT_LAST_EXTENT(eh);
3499 	/*
3500 	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3501 	 * last block in the last extent in the file.  We test this by
3502 	 * first checking to see if the caller to
3503 	 * ext4_ext_get_blocks() was interested in the last block (or
3504 	 * a block beyond the last block) in the current extent.  If
3505 	 * this turns out to be false, we can bail out from this
3506 	 * function immediately.
3507 	 */
3508 	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3509 	    ext4_ext_get_actual_len(last_ex))
3510 		return 0;
3511 	/*
3512 	 * If the caller does appear to be planning to write at or
3513 	 * beyond the end of the current extent, we then test to see
3514 	 * if the current extent is the last extent in the file, by
3515 	 * checking to make sure it was reached via the rightmost node
3516 	 * at each level of the tree.
3517 	 */
3518 	for (i = depth-1; i >= 0; i--)
3519 		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3520 			return 0;
3521 out:
3522 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3523 	return ext4_mark_inode_dirty(handle, inode);
3524 }
3525 
3526 /**
3527  * ext4_find_delalloc_range: find delayed allocated block in the given range.
3528  *
3529  * Return 1 if there is a delalloc block in the range, otherwise 0.
3530  */
3531 int ext4_find_delalloc_range(struct inode *inode,
3532 			     ext4_lblk_t lblk_start,
3533 			     ext4_lblk_t lblk_end)
3534 {
3535 	struct extent_status es;
3536 
3537 	ext4_es_find_delayed_extent(inode, lblk_start, &es);
3538 	if (es.es_len == 0)
3539 		return 0; /* there is no delay extent in this tree */
3540 	else if (es.es_lblk <= lblk_start &&
3541 		 lblk_start < es.es_lblk + es.es_len)
3542 		return 1;
3543 	else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3544 		return 1;
3545 	else
3546 		return 0;
3547 }
3548 
3549 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3550 {
3551 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3552 	ext4_lblk_t lblk_start, lblk_end;
3553 	lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3554 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3555 
3556 	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3557 }
3558 
3559 /**
3560  * Determines how many complete clusters (out of those specified by the 'map')
3561  * are under delalloc and were reserved quota for.
3562  * This function is called when we are writing out the blocks that were
3563  * originally written with their allocation delayed, but then the space was
3564  * allocated using fallocate() before the delayed allocation could be resolved.
3565  * The cases to look for are:
3566  * ('=' indicated delayed allocated blocks
3567  *  '-' indicates non-delayed allocated blocks)
3568  * (a) partial clusters towards beginning and/or end outside of allocated range
3569  *     are not delalloc'ed.
3570  *	Ex:
3571  *	|----c---=|====c====|====c====|===-c----|
3572  *	         |++++++ allocated ++++++|
3573  *	==> 4 complete clusters in above example
3574  *
3575  * (b) partial cluster (outside of allocated range) towards either end is
3576  *     marked for delayed allocation. In this case, we will exclude that
3577  *     cluster.
3578  *	Ex:
3579  *	|----====c========|========c========|
3580  *	     |++++++ allocated ++++++|
3581  *	==> 1 complete clusters in above example
3582  *
3583  *	Ex:
3584  *	|================c================|
3585  *            |++++++ allocated ++++++|
3586  *	==> 0 complete clusters in above example
3587  *
3588  * The ext4_da_update_reserve_space will be called only if we
3589  * determine here that there were some "entire" clusters that span
3590  * this 'allocated' range.
3591  * In the non-bigalloc case, this function will just end up returning num_blks
3592  * without ever calling ext4_find_delalloc_range.
3593  */
3594 static unsigned int
3595 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3596 			   unsigned int num_blks)
3597 {
3598 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3599 	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3600 	ext4_lblk_t lblk_from, lblk_to, c_offset;
3601 	unsigned int allocated_clusters = 0;
3602 
3603 	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3604 	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3605 
3606 	/* max possible clusters for this allocation */
3607 	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3608 
3609 	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3610 
3611 	/* Check towards left side */
3612 	c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3613 	if (c_offset) {
3614 		lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3615 		lblk_to = lblk_from + c_offset - 1;
3616 
3617 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3618 			allocated_clusters--;
3619 	}
3620 
3621 	/* Now check towards right. */
3622 	c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3623 	if (allocated_clusters && c_offset) {
3624 		lblk_from = lblk_start + num_blks;
3625 		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3626 
3627 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3628 			allocated_clusters--;
3629 	}
3630 
3631 	return allocated_clusters;
3632 }
3633 
3634 static int
3635 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3636 			struct ext4_map_blocks *map,
3637 			struct ext4_ext_path *path, int flags,
3638 			unsigned int allocated, ext4_fsblk_t newblock)
3639 {
3640 	int ret = 0;
3641 	int err = 0;
3642 	ext4_io_end_t *io = ext4_inode_aio(inode);
3643 
3644 	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3645 		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
3646 		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3647 		  flags, allocated);
3648 	ext4_ext_show_leaf(inode, path);
3649 
3650 	trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3651 						    allocated, newblock);
3652 
3653 	/* get_block() before submit the IO, split the extent */
3654 	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3655 		ret = ext4_split_unwritten_extents(handle, inode, map,
3656 						   path, flags);
3657 		if (ret <= 0)
3658 			goto out;
3659 		/*
3660 		 * Flag the inode(non aio case) or end_io struct (aio case)
3661 		 * that this IO needs to conversion to written when IO is
3662 		 * completed
3663 		 */
3664 		if (io)
3665 			ext4_set_io_unwritten_flag(inode, io);
3666 		else
3667 			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3668 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3669 		if (ext4_should_dioread_nolock(inode))
3670 			map->m_flags |= EXT4_MAP_UNINIT;
3671 		goto out;
3672 	}
3673 	/* IO end_io complete, convert the filled extent to written */
3674 	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3675 		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3676 							path);
3677 		if (ret >= 0) {
3678 			ext4_update_inode_fsync_trans(handle, inode, 1);
3679 			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3680 						 path, map->m_len);
3681 		} else
3682 			err = ret;
3683 		map->m_flags |= EXT4_MAP_MAPPED;
3684 		if (allocated > map->m_len)
3685 			allocated = map->m_len;
3686 		map->m_len = allocated;
3687 		goto out2;
3688 	}
3689 	/* buffered IO case */
3690 	/*
3691 	 * repeat fallocate creation request
3692 	 * we already have an unwritten extent
3693 	 */
3694 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
3695 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3696 		goto map_out;
3697 	}
3698 
3699 	/* buffered READ or buffered write_begin() lookup */
3700 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3701 		/*
3702 		 * We have blocks reserved already.  We
3703 		 * return allocated blocks so that delalloc
3704 		 * won't do block reservation for us.  But
3705 		 * the buffer head will be unmapped so that
3706 		 * a read from the block returns 0s.
3707 		 */
3708 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3709 		goto out1;
3710 	}
3711 
3712 	/* buffered write, writepage time, convert*/
3713 	ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3714 	if (ret >= 0)
3715 		ext4_update_inode_fsync_trans(handle, inode, 1);
3716 out:
3717 	if (ret <= 0) {
3718 		err = ret;
3719 		goto out2;
3720 	} else
3721 		allocated = ret;
3722 	map->m_flags |= EXT4_MAP_NEW;
3723 	/*
3724 	 * if we allocated more blocks than requested
3725 	 * we need to make sure we unmap the extra block
3726 	 * allocated. The actual needed block will get
3727 	 * unmapped later when we find the buffer_head marked
3728 	 * new.
3729 	 */
3730 	if (allocated > map->m_len) {
3731 		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3732 					newblock + map->m_len,
3733 					allocated - map->m_len);
3734 		allocated = map->m_len;
3735 	}
3736 	map->m_len = allocated;
3737 
3738 	/*
3739 	 * If we have done fallocate with the offset that is already
3740 	 * delayed allocated, we would have block reservation
3741 	 * and quota reservation done in the delayed write path.
3742 	 * But fallocate would have already updated quota and block
3743 	 * count for this offset. So cancel these reservation
3744 	 */
3745 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3746 		unsigned int reserved_clusters;
3747 		reserved_clusters = get_reserved_cluster_alloc(inode,
3748 				map->m_lblk, map->m_len);
3749 		if (reserved_clusters)
3750 			ext4_da_update_reserve_space(inode,
3751 						     reserved_clusters,
3752 						     0);
3753 	}
3754 
3755 map_out:
3756 	map->m_flags |= EXT4_MAP_MAPPED;
3757 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3758 		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3759 					 map->m_len);
3760 		if (err < 0)
3761 			goto out2;
3762 	}
3763 out1:
3764 	if (allocated > map->m_len)
3765 		allocated = map->m_len;
3766 	ext4_ext_show_leaf(inode, path);
3767 	map->m_pblk = newblock;
3768 	map->m_len = allocated;
3769 out2:
3770 	if (path) {
3771 		ext4_ext_drop_refs(path);
3772 		kfree(path);
3773 	}
3774 	return err ? err : allocated;
3775 }
3776 
3777 /*
3778  * get_implied_cluster_alloc - check to see if the requested
3779  * allocation (in the map structure) overlaps with a cluster already
3780  * allocated in an extent.
3781  *	@sb	The filesystem superblock structure
3782  *	@map	The requested lblk->pblk mapping
3783  *	@ex	The extent structure which might contain an implied
3784  *			cluster allocation
3785  *
3786  * This function is called by ext4_ext_map_blocks() after we failed to
3787  * find blocks that were already in the inode's extent tree.  Hence,
3788  * we know that the beginning of the requested region cannot overlap
3789  * the extent from the inode's extent tree.  There are three cases we
3790  * want to catch.  The first is this case:
3791  *
3792  *		 |--- cluster # N--|
3793  *    |--- extent ---|	|---- requested region ---|
3794  *			|==========|
3795  *
3796  * The second case that we need to test for is this one:
3797  *
3798  *   |--------- cluster # N ----------------|
3799  *	   |--- requested region --|   |------- extent ----|
3800  *	   |=======================|
3801  *
3802  * The third case is when the requested region lies between two extents
3803  * within the same cluster:
3804  *          |------------- cluster # N-------------|
3805  * |----- ex -----|                  |---- ex_right ----|
3806  *                  |------ requested region ------|
3807  *                  |================|
3808  *
3809  * In each of the above cases, we need to set the map->m_pblk and
3810  * map->m_len so it corresponds to the return the extent labelled as
3811  * "|====|" from cluster #N, since it is already in use for data in
3812  * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
3813  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3814  * as a new "allocated" block region.  Otherwise, we will return 0 and
3815  * ext4_ext_map_blocks() will then allocate one or more new clusters
3816  * by calling ext4_mb_new_blocks().
3817  */
3818 static int get_implied_cluster_alloc(struct super_block *sb,
3819 				     struct ext4_map_blocks *map,
3820 				     struct ext4_extent *ex,
3821 				     struct ext4_ext_path *path)
3822 {
3823 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3824 	ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3825 	ext4_lblk_t ex_cluster_start, ex_cluster_end;
3826 	ext4_lblk_t rr_cluster_start;
3827 	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3828 	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3829 	unsigned short ee_len = ext4_ext_get_actual_len(ex);
3830 
3831 	/* The extent passed in that we are trying to match */
3832 	ex_cluster_start = EXT4_B2C(sbi, ee_block);
3833 	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3834 
3835 	/* The requested region passed into ext4_map_blocks() */
3836 	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3837 
3838 	if ((rr_cluster_start == ex_cluster_end) ||
3839 	    (rr_cluster_start == ex_cluster_start)) {
3840 		if (rr_cluster_start == ex_cluster_end)
3841 			ee_start += ee_len - 1;
3842 		map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3843 			c_offset;
3844 		map->m_len = min(map->m_len,
3845 				 (unsigned) sbi->s_cluster_ratio - c_offset);
3846 		/*
3847 		 * Check for and handle this case:
3848 		 *
3849 		 *   |--------- cluster # N-------------|
3850 		 *		       |------- extent ----|
3851 		 *	   |--- requested region ---|
3852 		 *	   |===========|
3853 		 */
3854 
3855 		if (map->m_lblk < ee_block)
3856 			map->m_len = min(map->m_len, ee_block - map->m_lblk);
3857 
3858 		/*
3859 		 * Check for the case where there is already another allocated
3860 		 * block to the right of 'ex' but before the end of the cluster.
3861 		 *
3862 		 *          |------------- cluster # N-------------|
3863 		 * |----- ex -----|                  |---- ex_right ----|
3864 		 *                  |------ requested region ------|
3865 		 *                  |================|
3866 		 */
3867 		if (map->m_lblk > ee_block) {
3868 			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3869 			map->m_len = min(map->m_len, next - map->m_lblk);
3870 		}
3871 
3872 		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3873 		return 1;
3874 	}
3875 
3876 	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3877 	return 0;
3878 }
3879 
3880 
3881 /*
3882  * Block allocation/map/preallocation routine for extents based files
3883  *
3884  *
3885  * Need to be called with
3886  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3887  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3888  *
3889  * return > 0, number of of blocks already mapped/allocated
3890  *          if create == 0 and these are pre-allocated blocks
3891  *          	buffer head is unmapped
3892  *          otherwise blocks are mapped
3893  *
3894  * return = 0, if plain look up failed (blocks have not been allocated)
3895  *          buffer head is unmapped
3896  *
3897  * return < 0, error case.
3898  */
3899 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3900 			struct ext4_map_blocks *map, int flags)
3901 {
3902 	struct ext4_ext_path *path = NULL;
3903 	struct ext4_extent newex, *ex, *ex2;
3904 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3905 	ext4_fsblk_t newblock = 0;
3906 	int free_on_err = 0, err = 0, depth;
3907 	unsigned int allocated = 0, offset = 0;
3908 	unsigned int allocated_clusters = 0;
3909 	struct ext4_allocation_request ar;
3910 	ext4_io_end_t *io = ext4_inode_aio(inode);
3911 	ext4_lblk_t cluster_offset;
3912 	int set_unwritten = 0;
3913 
3914 	ext_debug("blocks %u/%u requested for inode %lu\n",
3915 		  map->m_lblk, map->m_len, inode->i_ino);
3916 	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3917 
3918 	/* find extent for this block */
3919 	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3920 	if (IS_ERR(path)) {
3921 		err = PTR_ERR(path);
3922 		path = NULL;
3923 		goto out2;
3924 	}
3925 
3926 	depth = ext_depth(inode);
3927 
3928 	/*
3929 	 * consistent leaf must not be empty;
3930 	 * this situation is possible, though, _during_ tree modification;
3931 	 * this is why assert can't be put in ext4_ext_find_extent()
3932 	 */
3933 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3934 		EXT4_ERROR_INODE(inode, "bad extent address "
3935 				 "lblock: %lu, depth: %d pblock %lld",
3936 				 (unsigned long) map->m_lblk, depth,
3937 				 path[depth].p_block);
3938 		err = -EIO;
3939 		goto out2;
3940 	}
3941 
3942 	ex = path[depth].p_ext;
3943 	if (ex) {
3944 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3945 		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3946 		unsigned short ee_len;
3947 
3948 		/*
3949 		 * Uninitialized extents are treated as holes, except that
3950 		 * we split out initialized portions during a write.
3951 		 */
3952 		ee_len = ext4_ext_get_actual_len(ex);
3953 
3954 		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3955 
3956 		/* if found extent covers block, simply return it */
3957 		if (in_range(map->m_lblk, ee_block, ee_len)) {
3958 			newblock = map->m_lblk - ee_block + ee_start;
3959 			/* number of remaining blocks in the extent */
3960 			allocated = ee_len - (map->m_lblk - ee_block);
3961 			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3962 				  ee_block, ee_len, newblock);
3963 
3964 			if (!ext4_ext_is_uninitialized(ex))
3965 				goto out;
3966 
3967 			allocated = ext4_ext_handle_uninitialized_extents(
3968 				handle, inode, map, path, flags,
3969 				allocated, newblock);
3970 			goto out3;
3971 		}
3972 	}
3973 
3974 	if ((sbi->s_cluster_ratio > 1) &&
3975 	    ext4_find_delalloc_cluster(inode, map->m_lblk))
3976 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3977 
3978 	/*
3979 	 * requested block isn't allocated yet;
3980 	 * we couldn't try to create block if create flag is zero
3981 	 */
3982 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3983 		/*
3984 		 * put just found gap into cache to speed up
3985 		 * subsequent requests
3986 		 */
3987 		if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
3988 			ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3989 		goto out2;
3990 	}
3991 
3992 	/*
3993 	 * Okay, we need to do block allocation.
3994 	 */
3995 	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
3996 	newex.ee_block = cpu_to_le32(map->m_lblk);
3997 	cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3998 
3999 	/*
4000 	 * If we are doing bigalloc, check to see if the extent returned
4001 	 * by ext4_ext_find_extent() implies a cluster we can use.
4002 	 */
4003 	if (cluster_offset && ex &&
4004 	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4005 		ar.len = allocated = map->m_len;
4006 		newblock = map->m_pblk;
4007 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4008 		goto got_allocated_blocks;
4009 	}
4010 
4011 	/* find neighbour allocated blocks */
4012 	ar.lleft = map->m_lblk;
4013 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4014 	if (err)
4015 		goto out2;
4016 	ar.lright = map->m_lblk;
4017 	ex2 = NULL;
4018 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4019 	if (err)
4020 		goto out2;
4021 
4022 	/* Check if the extent after searching to the right implies a
4023 	 * cluster we can use. */
4024 	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4025 	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4026 		ar.len = allocated = map->m_len;
4027 		newblock = map->m_pblk;
4028 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4029 		goto got_allocated_blocks;
4030 	}
4031 
4032 	/*
4033 	 * See if request is beyond maximum number of blocks we can have in
4034 	 * a single extent. For an initialized extent this limit is
4035 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4036 	 * EXT_UNINIT_MAX_LEN.
4037 	 */
4038 	if (map->m_len > EXT_INIT_MAX_LEN &&
4039 	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4040 		map->m_len = EXT_INIT_MAX_LEN;
4041 	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4042 		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4043 		map->m_len = EXT_UNINIT_MAX_LEN;
4044 
4045 	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4046 	newex.ee_len = cpu_to_le16(map->m_len);
4047 	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4048 	if (err)
4049 		allocated = ext4_ext_get_actual_len(&newex);
4050 	else
4051 		allocated = map->m_len;
4052 
4053 	/* allocate new block */
4054 	ar.inode = inode;
4055 	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4056 	ar.logical = map->m_lblk;
4057 	/*
4058 	 * We calculate the offset from the beginning of the cluster
4059 	 * for the logical block number, since when we allocate a
4060 	 * physical cluster, the physical block should start at the
4061 	 * same offset from the beginning of the cluster.  This is
4062 	 * needed so that future calls to get_implied_cluster_alloc()
4063 	 * work correctly.
4064 	 */
4065 	offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4066 	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4067 	ar.goal -= offset;
4068 	ar.logical -= offset;
4069 	if (S_ISREG(inode->i_mode))
4070 		ar.flags = EXT4_MB_HINT_DATA;
4071 	else
4072 		/* disable in-core preallocation for non-regular files */
4073 		ar.flags = 0;
4074 	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4075 		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4076 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4077 	if (!newblock)
4078 		goto out2;
4079 	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4080 		  ar.goal, newblock, allocated);
4081 	free_on_err = 1;
4082 	allocated_clusters = ar.len;
4083 	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4084 	if (ar.len > allocated)
4085 		ar.len = allocated;
4086 
4087 got_allocated_blocks:
4088 	/* try to insert new extent into found leaf and return */
4089 	ext4_ext_store_pblock(&newex, newblock + offset);
4090 	newex.ee_len = cpu_to_le16(ar.len);
4091 	/* Mark uninitialized */
4092 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4093 		ext4_ext_mark_uninitialized(&newex);
4094 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4095 		/*
4096 		 * io_end structure was created for every IO write to an
4097 		 * uninitialized extent. To avoid unnecessary conversion,
4098 		 * here we flag the IO that really needs the conversion.
4099 		 * For non asycn direct IO case, flag the inode state
4100 		 * that we need to perform conversion when IO is done.
4101 		 */
4102 		if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4103 			set_unwritten = 1;
4104 		if (ext4_should_dioread_nolock(inode))
4105 			map->m_flags |= EXT4_MAP_UNINIT;
4106 	}
4107 
4108 	err = 0;
4109 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4110 		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4111 					 path, ar.len);
4112 	if (!err)
4113 		err = ext4_ext_insert_extent(handle, inode, path,
4114 					     &newex, flags);
4115 
4116 	if (!err && set_unwritten) {
4117 		if (io)
4118 			ext4_set_io_unwritten_flag(inode, io);
4119 		else
4120 			ext4_set_inode_state(inode,
4121 					     EXT4_STATE_DIO_UNWRITTEN);
4122 	}
4123 
4124 	if (err && free_on_err) {
4125 		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4126 			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4127 		/* free data blocks we just allocated */
4128 		/* not a good idea to call discard here directly,
4129 		 * but otherwise we'd need to call it every free() */
4130 		ext4_discard_preallocations(inode);
4131 		ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4132 				 ext4_ext_get_actual_len(&newex), fb_flags);
4133 		goto out2;
4134 	}
4135 
4136 	/* previous routine could use block we allocated */
4137 	newblock = ext4_ext_pblock(&newex);
4138 	allocated = ext4_ext_get_actual_len(&newex);
4139 	if (allocated > map->m_len)
4140 		allocated = map->m_len;
4141 	map->m_flags |= EXT4_MAP_NEW;
4142 
4143 	/*
4144 	 * Update reserved blocks/metadata blocks after successful
4145 	 * block allocation which had been deferred till now.
4146 	 */
4147 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4148 		unsigned int reserved_clusters;
4149 		/*
4150 		 * Check how many clusters we had reserved this allocated range
4151 		 */
4152 		reserved_clusters = get_reserved_cluster_alloc(inode,
4153 						map->m_lblk, allocated);
4154 		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4155 			if (reserved_clusters) {
4156 				/*
4157 				 * We have clusters reserved for this range.
4158 				 * But since we are not doing actual allocation
4159 				 * and are simply using blocks from previously
4160 				 * allocated cluster, we should release the
4161 				 * reservation and not claim quota.
4162 				 */
4163 				ext4_da_update_reserve_space(inode,
4164 						reserved_clusters, 0);
4165 			}
4166 		} else {
4167 			BUG_ON(allocated_clusters < reserved_clusters);
4168 			if (reserved_clusters < allocated_clusters) {
4169 				struct ext4_inode_info *ei = EXT4_I(inode);
4170 				int reservation = allocated_clusters -
4171 						  reserved_clusters;
4172 				/*
4173 				 * It seems we claimed few clusters outside of
4174 				 * the range of this allocation. We should give
4175 				 * it back to the reservation pool. This can
4176 				 * happen in the following case:
4177 				 *
4178 				 * * Suppose s_cluster_ratio is 4 (i.e., each
4179 				 *   cluster has 4 blocks. Thus, the clusters
4180 				 *   are [0-3],[4-7],[8-11]...
4181 				 * * First comes delayed allocation write for
4182 				 *   logical blocks 10 & 11. Since there were no
4183 				 *   previous delayed allocated blocks in the
4184 				 *   range [8-11], we would reserve 1 cluster
4185 				 *   for this write.
4186 				 * * Next comes write for logical blocks 3 to 8.
4187 				 *   In this case, we will reserve 2 clusters
4188 				 *   (for [0-3] and [4-7]; and not for [8-11] as
4189 				 *   that range has a delayed allocated blocks.
4190 				 *   Thus total reserved clusters now becomes 3.
4191 				 * * Now, during the delayed allocation writeout
4192 				 *   time, we will first write blocks [3-8] and
4193 				 *   allocate 3 clusters for writing these
4194 				 *   blocks. Also, we would claim all these
4195 				 *   three clusters above.
4196 				 * * Now when we come here to writeout the
4197 				 *   blocks [10-11], we would expect to claim
4198 				 *   the reservation of 1 cluster we had made
4199 				 *   (and we would claim it since there are no
4200 				 *   more delayed allocated blocks in the range
4201 				 *   [8-11]. But our reserved cluster count had
4202 				 *   already gone to 0.
4203 				 *
4204 				 *   Thus, at the step 4 above when we determine
4205 				 *   that there are still some unwritten delayed
4206 				 *   allocated blocks outside of our current
4207 				 *   block range, we should increment the
4208 				 *   reserved clusters count so that when the
4209 				 *   remaining blocks finally gets written, we
4210 				 *   could claim them.
4211 				 */
4212 				dquot_reserve_block(inode,
4213 						EXT4_C2B(sbi, reservation));
4214 				spin_lock(&ei->i_block_reservation_lock);
4215 				ei->i_reserved_data_blocks += reservation;
4216 				spin_unlock(&ei->i_block_reservation_lock);
4217 			}
4218 			/*
4219 			 * We will claim quota for all newly allocated blocks.
4220 			 * We're updating the reserved space *after* the
4221 			 * correction above so we do not accidentally free
4222 			 * all the metadata reservation because we might
4223 			 * actually need it later on.
4224 			 */
4225 			ext4_da_update_reserve_space(inode, allocated_clusters,
4226 							1);
4227 		}
4228 	}
4229 
4230 	/*
4231 	 * Cache the extent and update transaction to commit on fdatasync only
4232 	 * when it is _not_ an uninitialized extent.
4233 	 */
4234 	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
4235 		ext4_update_inode_fsync_trans(handle, inode, 1);
4236 	else
4237 		ext4_update_inode_fsync_trans(handle, inode, 0);
4238 out:
4239 	if (allocated > map->m_len)
4240 		allocated = map->m_len;
4241 	ext4_ext_show_leaf(inode, path);
4242 	map->m_flags |= EXT4_MAP_MAPPED;
4243 	map->m_pblk = newblock;
4244 	map->m_len = allocated;
4245 out2:
4246 	if (path) {
4247 		ext4_ext_drop_refs(path);
4248 		kfree(path);
4249 	}
4250 
4251 out3:
4252 	trace_ext4_ext_map_blocks_exit(inode, map, err ? err : allocated);
4253 
4254 	return err ? err : allocated;
4255 }
4256 
4257 void ext4_ext_truncate(struct inode *inode)
4258 {
4259 	struct address_space *mapping = inode->i_mapping;
4260 	struct super_block *sb = inode->i_sb;
4261 	ext4_lblk_t last_block;
4262 	handle_t *handle;
4263 	loff_t page_len;
4264 	int err = 0;
4265 
4266 	/*
4267 	 * finish any pending end_io work so we won't run the risk of
4268 	 * converting any truncated blocks to initialized later
4269 	 */
4270 	ext4_flush_unwritten_io(inode);
4271 
4272 	/*
4273 	 * probably first extent we're gonna free will be last in block
4274 	 */
4275 	err = ext4_writepage_trans_blocks(inode);
4276 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, err);
4277 	if (IS_ERR(handle))
4278 		return;
4279 
4280 	if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4281 		page_len = PAGE_CACHE_SIZE -
4282 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
4283 
4284 		err = ext4_discard_partial_page_buffers(handle,
4285 			mapping, inode->i_size, page_len, 0);
4286 
4287 		if (err)
4288 			goto out_stop;
4289 	}
4290 
4291 	if (ext4_orphan_add(handle, inode))
4292 		goto out_stop;
4293 
4294 	down_write(&EXT4_I(inode)->i_data_sem);
4295 
4296 	ext4_discard_preallocations(inode);
4297 
4298 	/*
4299 	 * TODO: optimization is possible here.
4300 	 * Probably we need not scan at all,
4301 	 * because page truncation is enough.
4302 	 */
4303 
4304 	/* we have to know where to truncate from in crash case */
4305 	EXT4_I(inode)->i_disksize = inode->i_size;
4306 	ext4_mark_inode_dirty(handle, inode);
4307 
4308 	last_block = (inode->i_size + sb->s_blocksize - 1)
4309 			>> EXT4_BLOCK_SIZE_BITS(sb);
4310 	err = ext4_es_remove_extent(inode, last_block,
4311 				    EXT_MAX_BLOCKS - last_block);
4312 	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4313 
4314 	/* In a multi-transaction truncate, we only make the final
4315 	 * transaction synchronous.
4316 	 */
4317 	if (IS_SYNC(inode))
4318 		ext4_handle_sync(handle);
4319 
4320 	up_write(&EXT4_I(inode)->i_data_sem);
4321 
4322 out_stop:
4323 	/*
4324 	 * If this was a simple ftruncate() and the file will remain alive,
4325 	 * then we need to clear up the orphan record which we created above.
4326 	 * However, if this was a real unlink then we were called by
4327 	 * ext4_delete_inode(), and we allow that function to clean up the
4328 	 * orphan info for us.
4329 	 */
4330 	if (inode->i_nlink)
4331 		ext4_orphan_del(handle, inode);
4332 
4333 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4334 	ext4_mark_inode_dirty(handle, inode);
4335 	ext4_journal_stop(handle);
4336 }
4337 
4338 static void ext4_falloc_update_inode(struct inode *inode,
4339 				int mode, loff_t new_size, int update_ctime)
4340 {
4341 	struct timespec now;
4342 
4343 	if (update_ctime) {
4344 		now = current_fs_time(inode->i_sb);
4345 		if (!timespec_equal(&inode->i_ctime, &now))
4346 			inode->i_ctime = now;
4347 	}
4348 	/*
4349 	 * Update only when preallocation was requested beyond
4350 	 * the file size.
4351 	 */
4352 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4353 		if (new_size > i_size_read(inode))
4354 			i_size_write(inode, new_size);
4355 		if (new_size > EXT4_I(inode)->i_disksize)
4356 			ext4_update_i_disksize(inode, new_size);
4357 	} else {
4358 		/*
4359 		 * Mark that we allocate beyond EOF so the subsequent truncate
4360 		 * can proceed even if the new size is the same as i_size.
4361 		 */
4362 		if (new_size > i_size_read(inode))
4363 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4364 	}
4365 
4366 }
4367 
4368 /*
4369  * preallocate space for a file. This implements ext4's fallocate file
4370  * operation, which gets called from sys_fallocate system call.
4371  * For block-mapped files, posix_fallocate should fall back to the method
4372  * of writing zeroes to the required new blocks (the same behavior which is
4373  * expected for file systems which do not support fallocate() system call).
4374  */
4375 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4376 {
4377 	struct inode *inode = file->f_path.dentry->d_inode;
4378 	handle_t *handle;
4379 	loff_t new_size;
4380 	unsigned int max_blocks;
4381 	int ret = 0;
4382 	int ret2 = 0;
4383 	int retries = 0;
4384 	int flags;
4385 	struct ext4_map_blocks map;
4386 	unsigned int credits, blkbits = inode->i_blkbits;
4387 
4388 	/* Return error if mode is not supported */
4389 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4390 		return -EOPNOTSUPP;
4391 
4392 	if (mode & FALLOC_FL_PUNCH_HOLE)
4393 		return ext4_punch_hole(file, offset, len);
4394 
4395 	ret = ext4_convert_inline_data(inode);
4396 	if (ret)
4397 		return ret;
4398 
4399 	/*
4400 	 * currently supporting (pre)allocate mode for extent-based
4401 	 * files _only_
4402 	 */
4403 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4404 		return -EOPNOTSUPP;
4405 
4406 	trace_ext4_fallocate_enter(inode, offset, len, mode);
4407 	map.m_lblk = offset >> blkbits;
4408 	/*
4409 	 * We can't just convert len to max_blocks because
4410 	 * If blocksize = 4096 offset = 3072 and len = 2048
4411 	 */
4412 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4413 		- map.m_lblk;
4414 	/*
4415 	 * credits to insert 1 extent into extent tree
4416 	 */
4417 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4418 	mutex_lock(&inode->i_mutex);
4419 	ret = inode_newsize_ok(inode, (len + offset));
4420 	if (ret) {
4421 		mutex_unlock(&inode->i_mutex);
4422 		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4423 		return ret;
4424 	}
4425 	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4426 	if (mode & FALLOC_FL_KEEP_SIZE)
4427 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4428 	/*
4429 	 * Don't normalize the request if it can fit in one extent so
4430 	 * that it doesn't get unnecessarily split into multiple
4431 	 * extents.
4432 	 */
4433 	if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4434 		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4435 
4436 retry:
4437 	while (ret >= 0 && ret < max_blocks) {
4438 		map.m_lblk = map.m_lblk + ret;
4439 		map.m_len = max_blocks = max_blocks - ret;
4440 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4441 					    credits);
4442 		if (IS_ERR(handle)) {
4443 			ret = PTR_ERR(handle);
4444 			break;
4445 		}
4446 		ret = ext4_map_blocks(handle, inode, &map, flags);
4447 		if (ret <= 0) {
4448 #ifdef EXT4FS_DEBUG
4449 			ext4_warning(inode->i_sb,
4450 				     "inode #%lu: block %u: len %u: "
4451 				     "ext4_ext_map_blocks returned %d",
4452 				     inode->i_ino, map.m_lblk,
4453 				     map.m_len, ret);
4454 #endif
4455 			ext4_mark_inode_dirty(handle, inode);
4456 			ret2 = ext4_journal_stop(handle);
4457 			break;
4458 		}
4459 		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4460 						blkbits) >> blkbits))
4461 			new_size = offset + len;
4462 		else
4463 			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4464 
4465 		ext4_falloc_update_inode(inode, mode, new_size,
4466 					 (map.m_flags & EXT4_MAP_NEW));
4467 		ext4_mark_inode_dirty(handle, inode);
4468 		if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4469 			ext4_handle_sync(handle);
4470 		ret2 = ext4_journal_stop(handle);
4471 		if (ret2)
4472 			break;
4473 	}
4474 	if (ret == -ENOSPC &&
4475 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4476 		ret = 0;
4477 		goto retry;
4478 	}
4479 	mutex_unlock(&inode->i_mutex);
4480 	trace_ext4_fallocate_exit(inode, offset, max_blocks,
4481 				ret > 0 ? ret2 : ret);
4482 	return ret > 0 ? ret2 : ret;
4483 }
4484 
4485 /*
4486  * This function convert a range of blocks to written extents
4487  * The caller of this function will pass the start offset and the size.
4488  * all unwritten extents within this range will be converted to
4489  * written extents.
4490  *
4491  * This function is called from the direct IO end io call back
4492  * function, to convert the fallocated extents after IO is completed.
4493  * Returns 0 on success.
4494  */
4495 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4496 				    ssize_t len)
4497 {
4498 	handle_t *handle;
4499 	unsigned int max_blocks;
4500 	int ret = 0;
4501 	int ret2 = 0;
4502 	struct ext4_map_blocks map;
4503 	unsigned int credits, blkbits = inode->i_blkbits;
4504 
4505 	map.m_lblk = offset >> blkbits;
4506 	/*
4507 	 * We can't just convert len to max_blocks because
4508 	 * If blocksize = 4096 offset = 3072 and len = 2048
4509 	 */
4510 	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4511 		      map.m_lblk);
4512 	/*
4513 	 * credits to insert 1 extent into extent tree
4514 	 */
4515 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4516 	while (ret >= 0 && ret < max_blocks) {
4517 		map.m_lblk += ret;
4518 		map.m_len = (max_blocks -= ret);
4519 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
4520 		if (IS_ERR(handle)) {
4521 			ret = PTR_ERR(handle);
4522 			break;
4523 		}
4524 		ret = ext4_map_blocks(handle, inode, &map,
4525 				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4526 		if (ret <= 0)
4527 			ext4_warning(inode->i_sb,
4528 				     "inode #%lu: block %u: len %u: "
4529 				     "ext4_ext_map_blocks returned %d",
4530 				     inode->i_ino, map.m_lblk,
4531 				     map.m_len, ret);
4532 		ext4_mark_inode_dirty(handle, inode);
4533 		ret2 = ext4_journal_stop(handle);
4534 		if (ret <= 0 || ret2 )
4535 			break;
4536 	}
4537 	return ret > 0 ? ret2 : ret;
4538 }
4539 
4540 /*
4541  * If newes is not existing extent (newes->ec_pblk equals zero) find
4542  * delayed extent at start of newes and update newes accordingly and
4543  * return start of the next delayed extent.
4544  *
4545  * If newes is existing extent (newes->ec_pblk is not equal zero)
4546  * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4547  * extent found. Leave newes unmodified.
4548  */
4549 static int ext4_find_delayed_extent(struct inode *inode,
4550 				    struct extent_status *newes)
4551 {
4552 	struct extent_status es;
4553 	ext4_lblk_t block, next_del;
4554 
4555 	ext4_es_find_delayed_extent(inode, newes->es_lblk, &es);
4556 
4557 	if (newes->es_pblk == 0) {
4558 		/*
4559 		 * No extent in extent-tree contains block @newes->es_pblk,
4560 		 * then the block may stay in 1)a hole or 2)delayed-extent.
4561 		 */
4562 		if (es.es_len == 0)
4563 			/* A hole found. */
4564 			return 0;
4565 
4566 		if (es.es_lblk > newes->es_lblk) {
4567 			/* A hole found. */
4568 			newes->es_len = min(es.es_lblk - newes->es_lblk,
4569 					    newes->es_len);
4570 			return 0;
4571 		}
4572 
4573 		newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
4574 	}
4575 
4576 	block = newes->es_lblk + newes->es_len;
4577 	ext4_es_find_delayed_extent(inode, block, &es);
4578 	if (es.es_len == 0)
4579 		next_del = EXT_MAX_BLOCKS;
4580 	else
4581 		next_del = es.es_lblk;
4582 
4583 	return next_del;
4584 }
4585 /* fiemap flags we can handle specified here */
4586 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4587 
4588 static int ext4_xattr_fiemap(struct inode *inode,
4589 				struct fiemap_extent_info *fieinfo)
4590 {
4591 	__u64 physical = 0;
4592 	__u64 length;
4593 	__u32 flags = FIEMAP_EXTENT_LAST;
4594 	int blockbits = inode->i_sb->s_blocksize_bits;
4595 	int error = 0;
4596 
4597 	/* in-inode? */
4598 	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4599 		struct ext4_iloc iloc;
4600 		int offset;	/* offset of xattr in inode */
4601 
4602 		error = ext4_get_inode_loc(inode, &iloc);
4603 		if (error)
4604 			return error;
4605 		physical = iloc.bh->b_blocknr << blockbits;
4606 		offset = EXT4_GOOD_OLD_INODE_SIZE +
4607 				EXT4_I(inode)->i_extra_isize;
4608 		physical += offset;
4609 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4610 		flags |= FIEMAP_EXTENT_DATA_INLINE;
4611 		brelse(iloc.bh);
4612 	} else { /* external block */
4613 		physical = EXT4_I(inode)->i_file_acl << blockbits;
4614 		length = inode->i_sb->s_blocksize;
4615 	}
4616 
4617 	if (physical)
4618 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4619 						length, flags);
4620 	return (error < 0 ? error : 0);
4621 }
4622 
4623 /*
4624  * ext4_ext_punch_hole
4625  *
4626  * Punches a hole of "length" bytes in a file starting
4627  * at byte "offset"
4628  *
4629  * @inode:  The inode of the file to punch a hole in
4630  * @offset: The starting byte offset of the hole
4631  * @length: The length of the hole
4632  *
4633  * Returns the number of blocks removed or negative on err
4634  */
4635 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4636 {
4637 	struct inode *inode = file->f_path.dentry->d_inode;
4638 	struct super_block *sb = inode->i_sb;
4639 	ext4_lblk_t first_block, stop_block;
4640 	struct address_space *mapping = inode->i_mapping;
4641 	handle_t *handle;
4642 	loff_t first_page, last_page, page_len;
4643 	loff_t first_page_offset, last_page_offset;
4644 	int credits, err = 0;
4645 
4646 	/*
4647 	 * Write out all dirty pages to avoid race conditions
4648 	 * Then release them.
4649 	 */
4650 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4651 		err = filemap_write_and_wait_range(mapping,
4652 			offset, offset + length - 1);
4653 
4654 		if (err)
4655 			return err;
4656 	}
4657 
4658 	mutex_lock(&inode->i_mutex);
4659 	/* It's not possible punch hole on append only file */
4660 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4661 		err = -EPERM;
4662 		goto out_mutex;
4663 	}
4664 	if (IS_SWAPFILE(inode)) {
4665 		err = -ETXTBSY;
4666 		goto out_mutex;
4667 	}
4668 
4669 	/* No need to punch hole beyond i_size */
4670 	if (offset >= inode->i_size)
4671 		goto out_mutex;
4672 
4673 	/*
4674 	 * If the hole extends beyond i_size, set the hole
4675 	 * to end after the page that contains i_size
4676 	 */
4677 	if (offset + length > inode->i_size) {
4678 		length = inode->i_size +
4679 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4680 		   offset;
4681 	}
4682 
4683 	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4684 	last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4685 
4686 	first_page_offset = first_page << PAGE_CACHE_SHIFT;
4687 	last_page_offset = last_page << PAGE_CACHE_SHIFT;
4688 
4689 	/* Now release the pages */
4690 	if (last_page_offset > first_page_offset) {
4691 		truncate_pagecache_range(inode, first_page_offset,
4692 					 last_page_offset - 1);
4693 	}
4694 
4695 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4696 	ext4_inode_block_unlocked_dio(inode);
4697 	err = ext4_flush_unwritten_io(inode);
4698 	if (err)
4699 		goto out_dio;
4700 	inode_dio_wait(inode);
4701 
4702 	credits = ext4_writepage_trans_blocks(inode);
4703 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4704 	if (IS_ERR(handle)) {
4705 		err = PTR_ERR(handle);
4706 		goto out_dio;
4707 	}
4708 
4709 
4710 	/*
4711 	 * Now we need to zero out the non-page-aligned data in the
4712 	 * pages at the start and tail of the hole, and unmap the buffer
4713 	 * heads for the block aligned regions of the page that were
4714 	 * completely zeroed.
4715 	 */
4716 	if (first_page > last_page) {
4717 		/*
4718 		 * If the file space being truncated is contained within a page
4719 		 * just zero out and unmap the middle of that page
4720 		 */
4721 		err = ext4_discard_partial_page_buffers(handle,
4722 			mapping, offset, length, 0);
4723 
4724 		if (err)
4725 			goto out;
4726 	} else {
4727 		/*
4728 		 * zero out and unmap the partial page that contains
4729 		 * the start of the hole
4730 		 */
4731 		page_len  = first_page_offset - offset;
4732 		if (page_len > 0) {
4733 			err = ext4_discard_partial_page_buffers(handle, mapping,
4734 						   offset, page_len, 0);
4735 			if (err)
4736 				goto out;
4737 		}
4738 
4739 		/*
4740 		 * zero out and unmap the partial page that contains
4741 		 * the end of the hole
4742 		 */
4743 		page_len = offset + length - last_page_offset;
4744 		if (page_len > 0) {
4745 			err = ext4_discard_partial_page_buffers(handle, mapping,
4746 					last_page_offset, page_len, 0);
4747 			if (err)
4748 				goto out;
4749 		}
4750 	}
4751 
4752 	/*
4753 	 * If i_size is contained in the last page, we need to
4754 	 * unmap and zero the partial page after i_size
4755 	 */
4756 	if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4757 	   inode->i_size % PAGE_CACHE_SIZE != 0) {
4758 
4759 		page_len = PAGE_CACHE_SIZE -
4760 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
4761 
4762 		if (page_len > 0) {
4763 			err = ext4_discard_partial_page_buffers(handle,
4764 			  mapping, inode->i_size, page_len, 0);
4765 
4766 			if (err)
4767 				goto out;
4768 		}
4769 	}
4770 
4771 	first_block = (offset + sb->s_blocksize - 1) >>
4772 		EXT4_BLOCK_SIZE_BITS(sb);
4773 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4774 
4775 	/* If there are no blocks to remove, return now */
4776 	if (first_block >= stop_block)
4777 		goto out;
4778 
4779 	down_write(&EXT4_I(inode)->i_data_sem);
4780 	ext4_discard_preallocations(inode);
4781 
4782 	err = ext4_es_remove_extent(inode, first_block,
4783 				    stop_block - first_block);
4784 	err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4785 
4786 	ext4_discard_preallocations(inode);
4787 
4788 	if (IS_SYNC(inode))
4789 		ext4_handle_sync(handle);
4790 
4791 	up_write(&EXT4_I(inode)->i_data_sem);
4792 
4793 out:
4794 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4795 	ext4_mark_inode_dirty(handle, inode);
4796 	ext4_journal_stop(handle);
4797 out_dio:
4798 	ext4_inode_resume_unlocked_dio(inode);
4799 out_mutex:
4800 	mutex_unlock(&inode->i_mutex);
4801 	return err;
4802 }
4803 
4804 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4805 		__u64 start, __u64 len)
4806 {
4807 	ext4_lblk_t start_blk;
4808 	int error = 0;
4809 
4810 	if (ext4_has_inline_data(inode)) {
4811 		int has_inline = 1;
4812 
4813 		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
4814 
4815 		if (has_inline)
4816 			return error;
4817 	}
4818 
4819 	/* fallback to generic here if not in extents fmt */
4820 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4821 		return generic_block_fiemap(inode, fieinfo, start, len,
4822 			ext4_get_block);
4823 
4824 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4825 		return -EBADR;
4826 
4827 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4828 		error = ext4_xattr_fiemap(inode, fieinfo);
4829 	} else {
4830 		ext4_lblk_t len_blks;
4831 		__u64 last_blk;
4832 
4833 		start_blk = start >> inode->i_sb->s_blocksize_bits;
4834 		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4835 		if (last_blk >= EXT_MAX_BLOCKS)
4836 			last_blk = EXT_MAX_BLOCKS-1;
4837 		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4838 
4839 		/*
4840 		 * Walk the extent tree gathering extent information
4841 		 * and pushing extents back to the user.
4842 		 */
4843 		error = ext4_fill_fiemap_extents(inode, start_blk,
4844 						 len_blks, fieinfo);
4845 	}
4846 
4847 	return error;
4848 }
4849