1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public Licens 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/fs.h> 33 #include <linux/time.h> 34 #include <linux/jbd2.h> 35 #include <linux/highuid.h> 36 #include <linux/pagemap.h> 37 #include <linux/quotaops.h> 38 #include <linux/string.h> 39 #include <linux/slab.h> 40 #include <linux/falloc.h> 41 #include <asm/uaccess.h> 42 #include <linux/fiemap.h> 43 #include "ext4_jbd2.h" 44 #include "ext4_extents.h" 45 #include "xattr.h" 46 47 #include <trace/events/ext4.h> 48 49 /* 50 * used by extent splitting. 51 */ 52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 53 due to ENOSPC */ 54 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */ 55 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */ 56 57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */ 58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */ 59 60 static __le32 ext4_extent_block_csum(struct inode *inode, 61 struct ext4_extent_header *eh) 62 { 63 struct ext4_inode_info *ei = EXT4_I(inode); 64 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 65 __u32 csum; 66 67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, 68 EXT4_EXTENT_TAIL_OFFSET(eh)); 69 return cpu_to_le32(csum); 70 } 71 72 static int ext4_extent_block_csum_verify(struct inode *inode, 73 struct ext4_extent_header *eh) 74 { 75 struct ext4_extent_tail *et; 76 77 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 78 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 79 return 1; 80 81 et = find_ext4_extent_tail(eh); 82 if (et->et_checksum != ext4_extent_block_csum(inode, eh)) 83 return 0; 84 return 1; 85 } 86 87 static void ext4_extent_block_csum_set(struct inode *inode, 88 struct ext4_extent_header *eh) 89 { 90 struct ext4_extent_tail *et; 91 92 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 93 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 94 return; 95 96 et = find_ext4_extent_tail(eh); 97 et->et_checksum = ext4_extent_block_csum(inode, eh); 98 } 99 100 static int ext4_split_extent(handle_t *handle, 101 struct inode *inode, 102 struct ext4_ext_path *path, 103 struct ext4_map_blocks *map, 104 int split_flag, 105 int flags); 106 107 static int ext4_split_extent_at(handle_t *handle, 108 struct inode *inode, 109 struct ext4_ext_path *path, 110 ext4_lblk_t split, 111 int split_flag, 112 int flags); 113 114 static int ext4_find_delayed_extent(struct inode *inode, 115 struct extent_status *newes); 116 117 static int ext4_ext_truncate_extend_restart(handle_t *handle, 118 struct inode *inode, 119 int needed) 120 { 121 int err; 122 123 if (!ext4_handle_valid(handle)) 124 return 0; 125 if (handle->h_buffer_credits > needed) 126 return 0; 127 err = ext4_journal_extend(handle, needed); 128 if (err <= 0) 129 return err; 130 err = ext4_truncate_restart_trans(handle, inode, needed); 131 if (err == 0) 132 err = -EAGAIN; 133 134 return err; 135 } 136 137 /* 138 * could return: 139 * - EROFS 140 * - ENOMEM 141 */ 142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 143 struct ext4_ext_path *path) 144 { 145 if (path->p_bh) { 146 /* path points to block */ 147 return ext4_journal_get_write_access(handle, path->p_bh); 148 } 149 /* path points to leaf/index in inode body */ 150 /* we use in-core data, no need to protect them */ 151 return 0; 152 } 153 154 /* 155 * could return: 156 * - EROFS 157 * - ENOMEM 158 * - EIO 159 */ 160 #define ext4_ext_dirty(handle, inode, path) \ 161 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path)) 162 static int __ext4_ext_dirty(const char *where, unsigned int line, 163 handle_t *handle, struct inode *inode, 164 struct ext4_ext_path *path) 165 { 166 int err; 167 if (path->p_bh) { 168 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); 169 /* path points to block */ 170 err = __ext4_handle_dirty_metadata(where, line, handle, 171 inode, path->p_bh); 172 } else { 173 /* path points to leaf/index in inode body */ 174 err = ext4_mark_inode_dirty(handle, inode); 175 } 176 return err; 177 } 178 179 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 180 struct ext4_ext_path *path, 181 ext4_lblk_t block) 182 { 183 if (path) { 184 int depth = path->p_depth; 185 struct ext4_extent *ex; 186 187 /* 188 * Try to predict block placement assuming that we are 189 * filling in a file which will eventually be 190 * non-sparse --- i.e., in the case of libbfd writing 191 * an ELF object sections out-of-order but in a way 192 * the eventually results in a contiguous object or 193 * executable file, or some database extending a table 194 * space file. However, this is actually somewhat 195 * non-ideal if we are writing a sparse file such as 196 * qemu or KVM writing a raw image file that is going 197 * to stay fairly sparse, since it will end up 198 * fragmenting the file system's free space. Maybe we 199 * should have some hueristics or some way to allow 200 * userspace to pass a hint to file system, 201 * especially if the latter case turns out to be 202 * common. 203 */ 204 ex = path[depth].p_ext; 205 if (ex) { 206 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 207 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 208 209 if (block > ext_block) 210 return ext_pblk + (block - ext_block); 211 else 212 return ext_pblk - (ext_block - block); 213 } 214 215 /* it looks like index is empty; 216 * try to find starting block from index itself */ 217 if (path[depth].p_bh) 218 return path[depth].p_bh->b_blocknr; 219 } 220 221 /* OK. use inode's group */ 222 return ext4_inode_to_goal_block(inode); 223 } 224 225 /* 226 * Allocation for a meta data block 227 */ 228 static ext4_fsblk_t 229 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 230 struct ext4_ext_path *path, 231 struct ext4_extent *ex, int *err, unsigned int flags) 232 { 233 ext4_fsblk_t goal, newblock; 234 235 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 236 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 237 NULL, err); 238 return newblock; 239 } 240 241 static inline int ext4_ext_space_block(struct inode *inode, int check) 242 { 243 int size; 244 245 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 246 / sizeof(struct ext4_extent); 247 #ifdef AGGRESSIVE_TEST 248 if (!check && size > 6) 249 size = 6; 250 #endif 251 return size; 252 } 253 254 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 255 { 256 int size; 257 258 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 259 / sizeof(struct ext4_extent_idx); 260 #ifdef AGGRESSIVE_TEST 261 if (!check && size > 5) 262 size = 5; 263 #endif 264 return size; 265 } 266 267 static inline int ext4_ext_space_root(struct inode *inode, int check) 268 { 269 int size; 270 271 size = sizeof(EXT4_I(inode)->i_data); 272 size -= sizeof(struct ext4_extent_header); 273 size /= sizeof(struct ext4_extent); 274 #ifdef AGGRESSIVE_TEST 275 if (!check && size > 3) 276 size = 3; 277 #endif 278 return size; 279 } 280 281 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 282 { 283 int size; 284 285 size = sizeof(EXT4_I(inode)->i_data); 286 size -= sizeof(struct ext4_extent_header); 287 size /= sizeof(struct ext4_extent_idx); 288 #ifdef AGGRESSIVE_TEST 289 if (!check && size > 4) 290 size = 4; 291 #endif 292 return size; 293 } 294 295 /* 296 * Calculate the number of metadata blocks needed 297 * to allocate @blocks 298 * Worse case is one block per extent 299 */ 300 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 301 { 302 struct ext4_inode_info *ei = EXT4_I(inode); 303 int idxs; 304 305 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 306 / sizeof(struct ext4_extent_idx)); 307 308 /* 309 * If the new delayed allocation block is contiguous with the 310 * previous da block, it can share index blocks with the 311 * previous block, so we only need to allocate a new index 312 * block every idxs leaf blocks. At ldxs**2 blocks, we need 313 * an additional index block, and at ldxs**3 blocks, yet 314 * another index blocks. 315 */ 316 if (ei->i_da_metadata_calc_len && 317 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 318 int num = 0; 319 320 if ((ei->i_da_metadata_calc_len % idxs) == 0) 321 num++; 322 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 323 num++; 324 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 325 num++; 326 ei->i_da_metadata_calc_len = 0; 327 } else 328 ei->i_da_metadata_calc_len++; 329 ei->i_da_metadata_calc_last_lblock++; 330 return num; 331 } 332 333 /* 334 * In the worst case we need a new set of index blocks at 335 * every level of the inode's extent tree. 336 */ 337 ei->i_da_metadata_calc_len = 1; 338 ei->i_da_metadata_calc_last_lblock = lblock; 339 return ext_depth(inode) + 1; 340 } 341 342 static int 343 ext4_ext_max_entries(struct inode *inode, int depth) 344 { 345 int max; 346 347 if (depth == ext_depth(inode)) { 348 if (depth == 0) 349 max = ext4_ext_space_root(inode, 1); 350 else 351 max = ext4_ext_space_root_idx(inode, 1); 352 } else { 353 if (depth == 0) 354 max = ext4_ext_space_block(inode, 1); 355 else 356 max = ext4_ext_space_block_idx(inode, 1); 357 } 358 359 return max; 360 } 361 362 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 363 { 364 ext4_fsblk_t block = ext4_ext_pblock(ext); 365 int len = ext4_ext_get_actual_len(ext); 366 367 if (len == 0) 368 return 0; 369 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 370 } 371 372 static int ext4_valid_extent_idx(struct inode *inode, 373 struct ext4_extent_idx *ext_idx) 374 { 375 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 376 377 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 378 } 379 380 static int ext4_valid_extent_entries(struct inode *inode, 381 struct ext4_extent_header *eh, 382 int depth) 383 { 384 unsigned short entries; 385 if (eh->eh_entries == 0) 386 return 1; 387 388 entries = le16_to_cpu(eh->eh_entries); 389 390 if (depth == 0) { 391 /* leaf entries */ 392 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 393 while (entries) { 394 if (!ext4_valid_extent(inode, ext)) 395 return 0; 396 ext++; 397 entries--; 398 } 399 } else { 400 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 401 while (entries) { 402 if (!ext4_valid_extent_idx(inode, ext_idx)) 403 return 0; 404 ext_idx++; 405 entries--; 406 } 407 } 408 return 1; 409 } 410 411 static int __ext4_ext_check(const char *function, unsigned int line, 412 struct inode *inode, struct ext4_extent_header *eh, 413 int depth) 414 { 415 const char *error_msg; 416 int max = 0; 417 418 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 419 error_msg = "invalid magic"; 420 goto corrupted; 421 } 422 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 423 error_msg = "unexpected eh_depth"; 424 goto corrupted; 425 } 426 if (unlikely(eh->eh_max == 0)) { 427 error_msg = "invalid eh_max"; 428 goto corrupted; 429 } 430 max = ext4_ext_max_entries(inode, depth); 431 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 432 error_msg = "too large eh_max"; 433 goto corrupted; 434 } 435 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 436 error_msg = "invalid eh_entries"; 437 goto corrupted; 438 } 439 if (!ext4_valid_extent_entries(inode, eh, depth)) { 440 error_msg = "invalid extent entries"; 441 goto corrupted; 442 } 443 /* Verify checksum on non-root extent tree nodes */ 444 if (ext_depth(inode) != depth && 445 !ext4_extent_block_csum_verify(inode, eh)) { 446 error_msg = "extent tree corrupted"; 447 goto corrupted; 448 } 449 return 0; 450 451 corrupted: 452 ext4_error_inode(inode, function, line, 0, 453 "bad header/extent: %s - magic %x, " 454 "entries %u, max %u(%u), depth %u(%u)", 455 error_msg, le16_to_cpu(eh->eh_magic), 456 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 457 max, le16_to_cpu(eh->eh_depth), depth); 458 459 return -EIO; 460 } 461 462 #define ext4_ext_check(inode, eh, depth) \ 463 __ext4_ext_check(__func__, __LINE__, inode, eh, depth) 464 465 int ext4_ext_check_inode(struct inode *inode) 466 { 467 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode)); 468 } 469 470 static int __ext4_ext_check_block(const char *function, unsigned int line, 471 struct inode *inode, 472 struct ext4_extent_header *eh, 473 int depth, 474 struct buffer_head *bh) 475 { 476 int ret; 477 478 if (buffer_verified(bh)) 479 return 0; 480 ret = ext4_ext_check(inode, eh, depth); 481 if (ret) 482 return ret; 483 set_buffer_verified(bh); 484 return ret; 485 } 486 487 #define ext4_ext_check_block(inode, eh, depth, bh) \ 488 __ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh) 489 490 #ifdef EXT_DEBUG 491 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 492 { 493 int k, l = path->p_depth; 494 495 ext_debug("path:"); 496 for (k = 0; k <= l; k++, path++) { 497 if (path->p_idx) { 498 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 499 ext4_idx_pblock(path->p_idx)); 500 } else if (path->p_ext) { 501 ext_debug(" %d:[%d]%d:%llu ", 502 le32_to_cpu(path->p_ext->ee_block), 503 ext4_ext_is_uninitialized(path->p_ext), 504 ext4_ext_get_actual_len(path->p_ext), 505 ext4_ext_pblock(path->p_ext)); 506 } else 507 ext_debug(" []"); 508 } 509 ext_debug("\n"); 510 } 511 512 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 513 { 514 int depth = ext_depth(inode); 515 struct ext4_extent_header *eh; 516 struct ext4_extent *ex; 517 int i; 518 519 if (!path) 520 return; 521 522 eh = path[depth].p_hdr; 523 ex = EXT_FIRST_EXTENT(eh); 524 525 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 526 527 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 528 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 529 ext4_ext_is_uninitialized(ex), 530 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 531 } 532 ext_debug("\n"); 533 } 534 535 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 536 ext4_fsblk_t newblock, int level) 537 { 538 int depth = ext_depth(inode); 539 struct ext4_extent *ex; 540 541 if (depth != level) { 542 struct ext4_extent_idx *idx; 543 idx = path[level].p_idx; 544 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 545 ext_debug("%d: move %d:%llu in new index %llu\n", level, 546 le32_to_cpu(idx->ei_block), 547 ext4_idx_pblock(idx), 548 newblock); 549 idx++; 550 } 551 552 return; 553 } 554 555 ex = path[depth].p_ext; 556 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 557 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 558 le32_to_cpu(ex->ee_block), 559 ext4_ext_pblock(ex), 560 ext4_ext_is_uninitialized(ex), 561 ext4_ext_get_actual_len(ex), 562 newblock); 563 ex++; 564 } 565 } 566 567 #else 568 #define ext4_ext_show_path(inode, path) 569 #define ext4_ext_show_leaf(inode, path) 570 #define ext4_ext_show_move(inode, path, newblock, level) 571 #endif 572 573 void ext4_ext_drop_refs(struct ext4_ext_path *path) 574 { 575 int depth = path->p_depth; 576 int i; 577 578 for (i = 0; i <= depth; i++, path++) 579 if (path->p_bh) { 580 brelse(path->p_bh); 581 path->p_bh = NULL; 582 } 583 } 584 585 /* 586 * ext4_ext_binsearch_idx: 587 * binary search for the closest index of the given block 588 * the header must be checked before calling this 589 */ 590 static void 591 ext4_ext_binsearch_idx(struct inode *inode, 592 struct ext4_ext_path *path, ext4_lblk_t block) 593 { 594 struct ext4_extent_header *eh = path->p_hdr; 595 struct ext4_extent_idx *r, *l, *m; 596 597 598 ext_debug("binsearch for %u(idx): ", block); 599 600 l = EXT_FIRST_INDEX(eh) + 1; 601 r = EXT_LAST_INDEX(eh); 602 while (l <= r) { 603 m = l + (r - l) / 2; 604 if (block < le32_to_cpu(m->ei_block)) 605 r = m - 1; 606 else 607 l = m + 1; 608 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 609 m, le32_to_cpu(m->ei_block), 610 r, le32_to_cpu(r->ei_block)); 611 } 612 613 path->p_idx = l - 1; 614 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), 615 ext4_idx_pblock(path->p_idx)); 616 617 #ifdef CHECK_BINSEARCH 618 { 619 struct ext4_extent_idx *chix, *ix; 620 int k; 621 622 chix = ix = EXT_FIRST_INDEX(eh); 623 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 624 if (k != 0 && 625 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 626 printk(KERN_DEBUG "k=%d, ix=0x%p, " 627 "first=0x%p\n", k, 628 ix, EXT_FIRST_INDEX(eh)); 629 printk(KERN_DEBUG "%u <= %u\n", 630 le32_to_cpu(ix->ei_block), 631 le32_to_cpu(ix[-1].ei_block)); 632 } 633 BUG_ON(k && le32_to_cpu(ix->ei_block) 634 <= le32_to_cpu(ix[-1].ei_block)); 635 if (block < le32_to_cpu(ix->ei_block)) 636 break; 637 chix = ix; 638 } 639 BUG_ON(chix != path->p_idx); 640 } 641 #endif 642 643 } 644 645 /* 646 * ext4_ext_binsearch: 647 * binary search for closest extent of the given block 648 * the header must be checked before calling this 649 */ 650 static void 651 ext4_ext_binsearch(struct inode *inode, 652 struct ext4_ext_path *path, ext4_lblk_t block) 653 { 654 struct ext4_extent_header *eh = path->p_hdr; 655 struct ext4_extent *r, *l, *m; 656 657 if (eh->eh_entries == 0) { 658 /* 659 * this leaf is empty: 660 * we get such a leaf in split/add case 661 */ 662 return; 663 } 664 665 ext_debug("binsearch for %u: ", block); 666 667 l = EXT_FIRST_EXTENT(eh) + 1; 668 r = EXT_LAST_EXTENT(eh); 669 670 while (l <= r) { 671 m = l + (r - l) / 2; 672 if (block < le32_to_cpu(m->ee_block)) 673 r = m - 1; 674 else 675 l = m + 1; 676 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 677 m, le32_to_cpu(m->ee_block), 678 r, le32_to_cpu(r->ee_block)); 679 } 680 681 path->p_ext = l - 1; 682 ext_debug(" -> %d:%llu:[%d]%d ", 683 le32_to_cpu(path->p_ext->ee_block), 684 ext4_ext_pblock(path->p_ext), 685 ext4_ext_is_uninitialized(path->p_ext), 686 ext4_ext_get_actual_len(path->p_ext)); 687 688 #ifdef CHECK_BINSEARCH 689 { 690 struct ext4_extent *chex, *ex; 691 int k; 692 693 chex = ex = EXT_FIRST_EXTENT(eh); 694 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 695 BUG_ON(k && le32_to_cpu(ex->ee_block) 696 <= le32_to_cpu(ex[-1].ee_block)); 697 if (block < le32_to_cpu(ex->ee_block)) 698 break; 699 chex = ex; 700 } 701 BUG_ON(chex != path->p_ext); 702 } 703 #endif 704 705 } 706 707 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 708 { 709 struct ext4_extent_header *eh; 710 711 eh = ext_inode_hdr(inode); 712 eh->eh_depth = 0; 713 eh->eh_entries = 0; 714 eh->eh_magic = EXT4_EXT_MAGIC; 715 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 716 ext4_mark_inode_dirty(handle, inode); 717 return 0; 718 } 719 720 struct ext4_ext_path * 721 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block, 722 struct ext4_ext_path *path) 723 { 724 struct ext4_extent_header *eh; 725 struct buffer_head *bh; 726 short int depth, i, ppos = 0, alloc = 0; 727 int ret; 728 729 eh = ext_inode_hdr(inode); 730 depth = ext_depth(inode); 731 732 /* account possible depth increase */ 733 if (!path) { 734 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 735 GFP_NOFS); 736 if (!path) 737 return ERR_PTR(-ENOMEM); 738 alloc = 1; 739 } 740 path[0].p_hdr = eh; 741 path[0].p_bh = NULL; 742 743 i = depth; 744 /* walk through the tree */ 745 while (i) { 746 ext_debug("depth %d: num %d, max %d\n", 747 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 748 749 ext4_ext_binsearch_idx(inode, path + ppos, block); 750 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 751 path[ppos].p_depth = i; 752 path[ppos].p_ext = NULL; 753 754 bh = sb_getblk(inode->i_sb, path[ppos].p_block); 755 if (unlikely(!bh)) { 756 ret = -ENOMEM; 757 goto err; 758 } 759 if (!bh_uptodate_or_lock(bh)) { 760 trace_ext4_ext_load_extent(inode, block, 761 path[ppos].p_block); 762 ret = bh_submit_read(bh); 763 if (ret < 0) { 764 put_bh(bh); 765 goto err; 766 } 767 } 768 eh = ext_block_hdr(bh); 769 ppos++; 770 if (unlikely(ppos > depth)) { 771 put_bh(bh); 772 EXT4_ERROR_INODE(inode, 773 "ppos %d > depth %d", ppos, depth); 774 ret = -EIO; 775 goto err; 776 } 777 path[ppos].p_bh = bh; 778 path[ppos].p_hdr = eh; 779 i--; 780 781 ret = ext4_ext_check_block(inode, eh, i, bh); 782 if (ret < 0) 783 goto err; 784 } 785 786 path[ppos].p_depth = i; 787 path[ppos].p_ext = NULL; 788 path[ppos].p_idx = NULL; 789 790 /* find extent */ 791 ext4_ext_binsearch(inode, path + ppos, block); 792 /* if not an empty leaf */ 793 if (path[ppos].p_ext) 794 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 795 796 ext4_ext_show_path(inode, path); 797 798 return path; 799 800 err: 801 ext4_ext_drop_refs(path); 802 if (alloc) 803 kfree(path); 804 return ERR_PTR(ret); 805 } 806 807 /* 808 * ext4_ext_insert_index: 809 * insert new index [@logical;@ptr] into the block at @curp; 810 * check where to insert: before @curp or after @curp 811 */ 812 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 813 struct ext4_ext_path *curp, 814 int logical, ext4_fsblk_t ptr) 815 { 816 struct ext4_extent_idx *ix; 817 int len, err; 818 819 err = ext4_ext_get_access(handle, inode, curp); 820 if (err) 821 return err; 822 823 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 824 EXT4_ERROR_INODE(inode, 825 "logical %d == ei_block %d!", 826 logical, le32_to_cpu(curp->p_idx->ei_block)); 827 return -EIO; 828 } 829 830 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 831 >= le16_to_cpu(curp->p_hdr->eh_max))) { 832 EXT4_ERROR_INODE(inode, 833 "eh_entries %d >= eh_max %d!", 834 le16_to_cpu(curp->p_hdr->eh_entries), 835 le16_to_cpu(curp->p_hdr->eh_max)); 836 return -EIO; 837 } 838 839 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 840 /* insert after */ 841 ext_debug("insert new index %d after: %llu\n", logical, ptr); 842 ix = curp->p_idx + 1; 843 } else { 844 /* insert before */ 845 ext_debug("insert new index %d before: %llu\n", logical, ptr); 846 ix = curp->p_idx; 847 } 848 849 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 850 BUG_ON(len < 0); 851 if (len > 0) { 852 ext_debug("insert new index %d: " 853 "move %d indices from 0x%p to 0x%p\n", 854 logical, len, ix, ix + 1); 855 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 856 } 857 858 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 859 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 860 return -EIO; 861 } 862 863 ix->ei_block = cpu_to_le32(logical); 864 ext4_idx_store_pblock(ix, ptr); 865 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 866 867 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 868 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 869 return -EIO; 870 } 871 872 err = ext4_ext_dirty(handle, inode, curp); 873 ext4_std_error(inode->i_sb, err); 874 875 return err; 876 } 877 878 /* 879 * ext4_ext_split: 880 * inserts new subtree into the path, using free index entry 881 * at depth @at: 882 * - allocates all needed blocks (new leaf and all intermediate index blocks) 883 * - makes decision where to split 884 * - moves remaining extents and index entries (right to the split point) 885 * into the newly allocated blocks 886 * - initializes subtree 887 */ 888 static int ext4_ext_split(handle_t *handle, struct inode *inode, 889 unsigned int flags, 890 struct ext4_ext_path *path, 891 struct ext4_extent *newext, int at) 892 { 893 struct buffer_head *bh = NULL; 894 int depth = ext_depth(inode); 895 struct ext4_extent_header *neh; 896 struct ext4_extent_idx *fidx; 897 int i = at, k, m, a; 898 ext4_fsblk_t newblock, oldblock; 899 __le32 border; 900 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 901 int err = 0; 902 903 /* make decision: where to split? */ 904 /* FIXME: now decision is simplest: at current extent */ 905 906 /* if current leaf will be split, then we should use 907 * border from split point */ 908 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 909 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 910 return -EIO; 911 } 912 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 913 border = path[depth].p_ext[1].ee_block; 914 ext_debug("leaf will be split." 915 " next leaf starts at %d\n", 916 le32_to_cpu(border)); 917 } else { 918 border = newext->ee_block; 919 ext_debug("leaf will be added." 920 " next leaf starts at %d\n", 921 le32_to_cpu(border)); 922 } 923 924 /* 925 * If error occurs, then we break processing 926 * and mark filesystem read-only. index won't 927 * be inserted and tree will be in consistent 928 * state. Next mount will repair buffers too. 929 */ 930 931 /* 932 * Get array to track all allocated blocks. 933 * We need this to handle errors and free blocks 934 * upon them. 935 */ 936 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 937 if (!ablocks) 938 return -ENOMEM; 939 940 /* allocate all needed blocks */ 941 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 942 for (a = 0; a < depth - at; a++) { 943 newblock = ext4_ext_new_meta_block(handle, inode, path, 944 newext, &err, flags); 945 if (newblock == 0) 946 goto cleanup; 947 ablocks[a] = newblock; 948 } 949 950 /* initialize new leaf */ 951 newblock = ablocks[--a]; 952 if (unlikely(newblock == 0)) { 953 EXT4_ERROR_INODE(inode, "newblock == 0!"); 954 err = -EIO; 955 goto cleanup; 956 } 957 bh = sb_getblk(inode->i_sb, newblock); 958 if (unlikely(!bh)) { 959 err = -ENOMEM; 960 goto cleanup; 961 } 962 lock_buffer(bh); 963 964 err = ext4_journal_get_create_access(handle, bh); 965 if (err) 966 goto cleanup; 967 968 neh = ext_block_hdr(bh); 969 neh->eh_entries = 0; 970 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 971 neh->eh_magic = EXT4_EXT_MAGIC; 972 neh->eh_depth = 0; 973 974 /* move remainder of path[depth] to the new leaf */ 975 if (unlikely(path[depth].p_hdr->eh_entries != 976 path[depth].p_hdr->eh_max)) { 977 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 978 path[depth].p_hdr->eh_entries, 979 path[depth].p_hdr->eh_max); 980 err = -EIO; 981 goto cleanup; 982 } 983 /* start copy from next extent */ 984 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 985 ext4_ext_show_move(inode, path, newblock, depth); 986 if (m) { 987 struct ext4_extent *ex; 988 ex = EXT_FIRST_EXTENT(neh); 989 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 990 le16_add_cpu(&neh->eh_entries, m); 991 } 992 993 ext4_extent_block_csum_set(inode, neh); 994 set_buffer_uptodate(bh); 995 unlock_buffer(bh); 996 997 err = ext4_handle_dirty_metadata(handle, inode, bh); 998 if (err) 999 goto cleanup; 1000 brelse(bh); 1001 bh = NULL; 1002 1003 /* correct old leaf */ 1004 if (m) { 1005 err = ext4_ext_get_access(handle, inode, path + depth); 1006 if (err) 1007 goto cleanup; 1008 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 1009 err = ext4_ext_dirty(handle, inode, path + depth); 1010 if (err) 1011 goto cleanup; 1012 1013 } 1014 1015 /* create intermediate indexes */ 1016 k = depth - at - 1; 1017 if (unlikely(k < 0)) { 1018 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 1019 err = -EIO; 1020 goto cleanup; 1021 } 1022 if (k) 1023 ext_debug("create %d intermediate indices\n", k); 1024 /* insert new index into current index block */ 1025 /* current depth stored in i var */ 1026 i = depth - 1; 1027 while (k--) { 1028 oldblock = newblock; 1029 newblock = ablocks[--a]; 1030 bh = sb_getblk(inode->i_sb, newblock); 1031 if (unlikely(!bh)) { 1032 err = -ENOMEM; 1033 goto cleanup; 1034 } 1035 lock_buffer(bh); 1036 1037 err = ext4_journal_get_create_access(handle, bh); 1038 if (err) 1039 goto cleanup; 1040 1041 neh = ext_block_hdr(bh); 1042 neh->eh_entries = cpu_to_le16(1); 1043 neh->eh_magic = EXT4_EXT_MAGIC; 1044 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1045 neh->eh_depth = cpu_to_le16(depth - i); 1046 fidx = EXT_FIRST_INDEX(neh); 1047 fidx->ei_block = border; 1048 ext4_idx_store_pblock(fidx, oldblock); 1049 1050 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 1051 i, newblock, le32_to_cpu(border), oldblock); 1052 1053 /* move remainder of path[i] to the new index block */ 1054 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 1055 EXT_LAST_INDEX(path[i].p_hdr))) { 1056 EXT4_ERROR_INODE(inode, 1057 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 1058 le32_to_cpu(path[i].p_ext->ee_block)); 1059 err = -EIO; 1060 goto cleanup; 1061 } 1062 /* start copy indexes */ 1063 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 1064 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 1065 EXT_MAX_INDEX(path[i].p_hdr)); 1066 ext4_ext_show_move(inode, path, newblock, i); 1067 if (m) { 1068 memmove(++fidx, path[i].p_idx, 1069 sizeof(struct ext4_extent_idx) * m); 1070 le16_add_cpu(&neh->eh_entries, m); 1071 } 1072 ext4_extent_block_csum_set(inode, neh); 1073 set_buffer_uptodate(bh); 1074 unlock_buffer(bh); 1075 1076 err = ext4_handle_dirty_metadata(handle, inode, bh); 1077 if (err) 1078 goto cleanup; 1079 brelse(bh); 1080 bh = NULL; 1081 1082 /* correct old index */ 1083 if (m) { 1084 err = ext4_ext_get_access(handle, inode, path + i); 1085 if (err) 1086 goto cleanup; 1087 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1088 err = ext4_ext_dirty(handle, inode, path + i); 1089 if (err) 1090 goto cleanup; 1091 } 1092 1093 i--; 1094 } 1095 1096 /* insert new index */ 1097 err = ext4_ext_insert_index(handle, inode, path + at, 1098 le32_to_cpu(border), newblock); 1099 1100 cleanup: 1101 if (bh) { 1102 if (buffer_locked(bh)) 1103 unlock_buffer(bh); 1104 brelse(bh); 1105 } 1106 1107 if (err) { 1108 /* free all allocated blocks in error case */ 1109 for (i = 0; i < depth; i++) { 1110 if (!ablocks[i]) 1111 continue; 1112 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1113 EXT4_FREE_BLOCKS_METADATA); 1114 } 1115 } 1116 kfree(ablocks); 1117 1118 return err; 1119 } 1120 1121 /* 1122 * ext4_ext_grow_indepth: 1123 * implements tree growing procedure: 1124 * - allocates new block 1125 * - moves top-level data (index block or leaf) into the new block 1126 * - initializes new top-level, creating index that points to the 1127 * just created block 1128 */ 1129 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1130 unsigned int flags, 1131 struct ext4_extent *newext) 1132 { 1133 struct ext4_extent_header *neh; 1134 struct buffer_head *bh; 1135 ext4_fsblk_t newblock; 1136 int err = 0; 1137 1138 newblock = ext4_ext_new_meta_block(handle, inode, NULL, 1139 newext, &err, flags); 1140 if (newblock == 0) 1141 return err; 1142 1143 bh = sb_getblk(inode->i_sb, newblock); 1144 if (unlikely(!bh)) 1145 return -ENOMEM; 1146 lock_buffer(bh); 1147 1148 err = ext4_journal_get_create_access(handle, bh); 1149 if (err) { 1150 unlock_buffer(bh); 1151 goto out; 1152 } 1153 1154 /* move top-level index/leaf into new block */ 1155 memmove(bh->b_data, EXT4_I(inode)->i_data, 1156 sizeof(EXT4_I(inode)->i_data)); 1157 1158 /* set size of new block */ 1159 neh = ext_block_hdr(bh); 1160 /* old root could have indexes or leaves 1161 * so calculate e_max right way */ 1162 if (ext_depth(inode)) 1163 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1164 else 1165 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1166 neh->eh_magic = EXT4_EXT_MAGIC; 1167 ext4_extent_block_csum_set(inode, neh); 1168 set_buffer_uptodate(bh); 1169 unlock_buffer(bh); 1170 1171 err = ext4_handle_dirty_metadata(handle, inode, bh); 1172 if (err) 1173 goto out; 1174 1175 /* Update top-level index: num,max,pointer */ 1176 neh = ext_inode_hdr(inode); 1177 neh->eh_entries = cpu_to_le16(1); 1178 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1179 if (neh->eh_depth == 0) { 1180 /* Root extent block becomes index block */ 1181 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1182 EXT_FIRST_INDEX(neh)->ei_block = 1183 EXT_FIRST_EXTENT(neh)->ee_block; 1184 } 1185 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1186 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1187 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1188 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1189 1190 le16_add_cpu(&neh->eh_depth, 1); 1191 ext4_mark_inode_dirty(handle, inode); 1192 out: 1193 brelse(bh); 1194 1195 return err; 1196 } 1197 1198 /* 1199 * ext4_ext_create_new_leaf: 1200 * finds empty index and adds new leaf. 1201 * if no free index is found, then it requests in-depth growing. 1202 */ 1203 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1204 unsigned int flags, 1205 struct ext4_ext_path *path, 1206 struct ext4_extent *newext) 1207 { 1208 struct ext4_ext_path *curp; 1209 int depth, i, err = 0; 1210 1211 repeat: 1212 i = depth = ext_depth(inode); 1213 1214 /* walk up to the tree and look for free index entry */ 1215 curp = path + depth; 1216 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1217 i--; 1218 curp--; 1219 } 1220 1221 /* we use already allocated block for index block, 1222 * so subsequent data blocks should be contiguous */ 1223 if (EXT_HAS_FREE_INDEX(curp)) { 1224 /* if we found index with free entry, then use that 1225 * entry: create all needed subtree and add new leaf */ 1226 err = ext4_ext_split(handle, inode, flags, path, newext, i); 1227 if (err) 1228 goto out; 1229 1230 /* refill path */ 1231 ext4_ext_drop_refs(path); 1232 path = ext4_ext_find_extent(inode, 1233 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1234 path); 1235 if (IS_ERR(path)) 1236 err = PTR_ERR(path); 1237 } else { 1238 /* tree is full, time to grow in depth */ 1239 err = ext4_ext_grow_indepth(handle, inode, flags, newext); 1240 if (err) 1241 goto out; 1242 1243 /* refill path */ 1244 ext4_ext_drop_refs(path); 1245 path = ext4_ext_find_extent(inode, 1246 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1247 path); 1248 if (IS_ERR(path)) { 1249 err = PTR_ERR(path); 1250 goto out; 1251 } 1252 1253 /* 1254 * only first (depth 0 -> 1) produces free space; 1255 * in all other cases we have to split the grown tree 1256 */ 1257 depth = ext_depth(inode); 1258 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1259 /* now we need to split */ 1260 goto repeat; 1261 } 1262 } 1263 1264 out: 1265 return err; 1266 } 1267 1268 /* 1269 * search the closest allocated block to the left for *logical 1270 * and returns it at @logical + it's physical address at @phys 1271 * if *logical is the smallest allocated block, the function 1272 * returns 0 at @phys 1273 * return value contains 0 (success) or error code 1274 */ 1275 static int ext4_ext_search_left(struct inode *inode, 1276 struct ext4_ext_path *path, 1277 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1278 { 1279 struct ext4_extent_idx *ix; 1280 struct ext4_extent *ex; 1281 int depth, ee_len; 1282 1283 if (unlikely(path == NULL)) { 1284 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1285 return -EIO; 1286 } 1287 depth = path->p_depth; 1288 *phys = 0; 1289 1290 if (depth == 0 && path->p_ext == NULL) 1291 return 0; 1292 1293 /* usually extent in the path covers blocks smaller 1294 * then *logical, but it can be that extent is the 1295 * first one in the file */ 1296 1297 ex = path[depth].p_ext; 1298 ee_len = ext4_ext_get_actual_len(ex); 1299 if (*logical < le32_to_cpu(ex->ee_block)) { 1300 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1301 EXT4_ERROR_INODE(inode, 1302 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1303 *logical, le32_to_cpu(ex->ee_block)); 1304 return -EIO; 1305 } 1306 while (--depth >= 0) { 1307 ix = path[depth].p_idx; 1308 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1309 EXT4_ERROR_INODE(inode, 1310 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1311 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1312 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1313 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1314 depth); 1315 return -EIO; 1316 } 1317 } 1318 return 0; 1319 } 1320 1321 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1322 EXT4_ERROR_INODE(inode, 1323 "logical %d < ee_block %d + ee_len %d!", 1324 *logical, le32_to_cpu(ex->ee_block), ee_len); 1325 return -EIO; 1326 } 1327 1328 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1329 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1330 return 0; 1331 } 1332 1333 /* 1334 * search the closest allocated block to the right for *logical 1335 * and returns it at @logical + it's physical address at @phys 1336 * if *logical is the largest allocated block, the function 1337 * returns 0 at @phys 1338 * return value contains 0 (success) or error code 1339 */ 1340 static int ext4_ext_search_right(struct inode *inode, 1341 struct ext4_ext_path *path, 1342 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1343 struct ext4_extent **ret_ex) 1344 { 1345 struct buffer_head *bh = NULL; 1346 struct ext4_extent_header *eh; 1347 struct ext4_extent_idx *ix; 1348 struct ext4_extent *ex; 1349 ext4_fsblk_t block; 1350 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1351 int ee_len; 1352 1353 if (unlikely(path == NULL)) { 1354 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1355 return -EIO; 1356 } 1357 depth = path->p_depth; 1358 *phys = 0; 1359 1360 if (depth == 0 && path->p_ext == NULL) 1361 return 0; 1362 1363 /* usually extent in the path covers blocks smaller 1364 * then *logical, but it can be that extent is the 1365 * first one in the file */ 1366 1367 ex = path[depth].p_ext; 1368 ee_len = ext4_ext_get_actual_len(ex); 1369 if (*logical < le32_to_cpu(ex->ee_block)) { 1370 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1371 EXT4_ERROR_INODE(inode, 1372 "first_extent(path[%d].p_hdr) != ex", 1373 depth); 1374 return -EIO; 1375 } 1376 while (--depth >= 0) { 1377 ix = path[depth].p_idx; 1378 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1379 EXT4_ERROR_INODE(inode, 1380 "ix != EXT_FIRST_INDEX *logical %d!", 1381 *logical); 1382 return -EIO; 1383 } 1384 } 1385 goto found_extent; 1386 } 1387 1388 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1389 EXT4_ERROR_INODE(inode, 1390 "logical %d < ee_block %d + ee_len %d!", 1391 *logical, le32_to_cpu(ex->ee_block), ee_len); 1392 return -EIO; 1393 } 1394 1395 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1396 /* next allocated block in this leaf */ 1397 ex++; 1398 goto found_extent; 1399 } 1400 1401 /* go up and search for index to the right */ 1402 while (--depth >= 0) { 1403 ix = path[depth].p_idx; 1404 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1405 goto got_index; 1406 } 1407 1408 /* we've gone up to the root and found no index to the right */ 1409 return 0; 1410 1411 got_index: 1412 /* we've found index to the right, let's 1413 * follow it and find the closest allocated 1414 * block to the right */ 1415 ix++; 1416 block = ext4_idx_pblock(ix); 1417 while (++depth < path->p_depth) { 1418 bh = sb_bread(inode->i_sb, block); 1419 if (bh == NULL) 1420 return -EIO; 1421 eh = ext_block_hdr(bh); 1422 /* subtract from p_depth to get proper eh_depth */ 1423 if (ext4_ext_check_block(inode, eh, 1424 path->p_depth - depth, bh)) { 1425 put_bh(bh); 1426 return -EIO; 1427 } 1428 ix = EXT_FIRST_INDEX(eh); 1429 block = ext4_idx_pblock(ix); 1430 put_bh(bh); 1431 } 1432 1433 bh = sb_bread(inode->i_sb, block); 1434 if (bh == NULL) 1435 return -EIO; 1436 eh = ext_block_hdr(bh); 1437 if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) { 1438 put_bh(bh); 1439 return -EIO; 1440 } 1441 ex = EXT_FIRST_EXTENT(eh); 1442 found_extent: 1443 *logical = le32_to_cpu(ex->ee_block); 1444 *phys = ext4_ext_pblock(ex); 1445 *ret_ex = ex; 1446 if (bh) 1447 put_bh(bh); 1448 return 0; 1449 } 1450 1451 /* 1452 * ext4_ext_next_allocated_block: 1453 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1454 * NOTE: it considers block number from index entry as 1455 * allocated block. Thus, index entries have to be consistent 1456 * with leaves. 1457 */ 1458 static ext4_lblk_t 1459 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1460 { 1461 int depth; 1462 1463 BUG_ON(path == NULL); 1464 depth = path->p_depth; 1465 1466 if (depth == 0 && path->p_ext == NULL) 1467 return EXT_MAX_BLOCKS; 1468 1469 while (depth >= 0) { 1470 if (depth == path->p_depth) { 1471 /* leaf */ 1472 if (path[depth].p_ext && 1473 path[depth].p_ext != 1474 EXT_LAST_EXTENT(path[depth].p_hdr)) 1475 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1476 } else { 1477 /* index */ 1478 if (path[depth].p_idx != 1479 EXT_LAST_INDEX(path[depth].p_hdr)) 1480 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1481 } 1482 depth--; 1483 } 1484 1485 return EXT_MAX_BLOCKS; 1486 } 1487 1488 /* 1489 * ext4_ext_next_leaf_block: 1490 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1491 */ 1492 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1493 { 1494 int depth; 1495 1496 BUG_ON(path == NULL); 1497 depth = path->p_depth; 1498 1499 /* zero-tree has no leaf blocks at all */ 1500 if (depth == 0) 1501 return EXT_MAX_BLOCKS; 1502 1503 /* go to index block */ 1504 depth--; 1505 1506 while (depth >= 0) { 1507 if (path[depth].p_idx != 1508 EXT_LAST_INDEX(path[depth].p_hdr)) 1509 return (ext4_lblk_t) 1510 le32_to_cpu(path[depth].p_idx[1].ei_block); 1511 depth--; 1512 } 1513 1514 return EXT_MAX_BLOCKS; 1515 } 1516 1517 /* 1518 * ext4_ext_correct_indexes: 1519 * if leaf gets modified and modified extent is first in the leaf, 1520 * then we have to correct all indexes above. 1521 * TODO: do we need to correct tree in all cases? 1522 */ 1523 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1524 struct ext4_ext_path *path) 1525 { 1526 struct ext4_extent_header *eh; 1527 int depth = ext_depth(inode); 1528 struct ext4_extent *ex; 1529 __le32 border; 1530 int k, err = 0; 1531 1532 eh = path[depth].p_hdr; 1533 ex = path[depth].p_ext; 1534 1535 if (unlikely(ex == NULL || eh == NULL)) { 1536 EXT4_ERROR_INODE(inode, 1537 "ex %p == NULL or eh %p == NULL", ex, eh); 1538 return -EIO; 1539 } 1540 1541 if (depth == 0) { 1542 /* there is no tree at all */ 1543 return 0; 1544 } 1545 1546 if (ex != EXT_FIRST_EXTENT(eh)) { 1547 /* we correct tree if first leaf got modified only */ 1548 return 0; 1549 } 1550 1551 /* 1552 * TODO: we need correction if border is smaller than current one 1553 */ 1554 k = depth - 1; 1555 border = path[depth].p_ext->ee_block; 1556 err = ext4_ext_get_access(handle, inode, path + k); 1557 if (err) 1558 return err; 1559 path[k].p_idx->ei_block = border; 1560 err = ext4_ext_dirty(handle, inode, path + k); 1561 if (err) 1562 return err; 1563 1564 while (k--) { 1565 /* change all left-side indexes */ 1566 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1567 break; 1568 err = ext4_ext_get_access(handle, inode, path + k); 1569 if (err) 1570 break; 1571 path[k].p_idx->ei_block = border; 1572 err = ext4_ext_dirty(handle, inode, path + k); 1573 if (err) 1574 break; 1575 } 1576 1577 return err; 1578 } 1579 1580 int 1581 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1582 struct ext4_extent *ex2) 1583 { 1584 unsigned short ext1_ee_len, ext2_ee_len, max_len; 1585 1586 /* 1587 * Make sure that both extents are initialized. We don't merge 1588 * uninitialized extents so that we can be sure that end_io code has 1589 * the extent that was written properly split out and conversion to 1590 * initialized is trivial. 1591 */ 1592 if (ext4_ext_is_uninitialized(ex1) || ext4_ext_is_uninitialized(ex2)) 1593 return 0; 1594 1595 if (ext4_ext_is_uninitialized(ex1)) 1596 max_len = EXT_UNINIT_MAX_LEN; 1597 else 1598 max_len = EXT_INIT_MAX_LEN; 1599 1600 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1601 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1602 1603 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1604 le32_to_cpu(ex2->ee_block)) 1605 return 0; 1606 1607 /* 1608 * To allow future support for preallocated extents to be added 1609 * as an RO_COMPAT feature, refuse to merge to extents if 1610 * this can result in the top bit of ee_len being set. 1611 */ 1612 if (ext1_ee_len + ext2_ee_len > max_len) 1613 return 0; 1614 #ifdef AGGRESSIVE_TEST 1615 if (ext1_ee_len >= 4) 1616 return 0; 1617 #endif 1618 1619 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1620 return 1; 1621 return 0; 1622 } 1623 1624 /* 1625 * This function tries to merge the "ex" extent to the next extent in the tree. 1626 * It always tries to merge towards right. If you want to merge towards 1627 * left, pass "ex - 1" as argument instead of "ex". 1628 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1629 * 1 if they got merged. 1630 */ 1631 static int ext4_ext_try_to_merge_right(struct inode *inode, 1632 struct ext4_ext_path *path, 1633 struct ext4_extent *ex) 1634 { 1635 struct ext4_extent_header *eh; 1636 unsigned int depth, len; 1637 int merge_done = 0; 1638 int uninitialized = 0; 1639 1640 depth = ext_depth(inode); 1641 BUG_ON(path[depth].p_hdr == NULL); 1642 eh = path[depth].p_hdr; 1643 1644 while (ex < EXT_LAST_EXTENT(eh)) { 1645 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1646 break; 1647 /* merge with next extent! */ 1648 if (ext4_ext_is_uninitialized(ex)) 1649 uninitialized = 1; 1650 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1651 + ext4_ext_get_actual_len(ex + 1)); 1652 if (uninitialized) 1653 ext4_ext_mark_uninitialized(ex); 1654 1655 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1656 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1657 * sizeof(struct ext4_extent); 1658 memmove(ex + 1, ex + 2, len); 1659 } 1660 le16_add_cpu(&eh->eh_entries, -1); 1661 merge_done = 1; 1662 WARN_ON(eh->eh_entries == 0); 1663 if (!eh->eh_entries) 1664 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1665 } 1666 1667 return merge_done; 1668 } 1669 1670 /* 1671 * This function does a very simple check to see if we can collapse 1672 * an extent tree with a single extent tree leaf block into the inode. 1673 */ 1674 static void ext4_ext_try_to_merge_up(handle_t *handle, 1675 struct inode *inode, 1676 struct ext4_ext_path *path) 1677 { 1678 size_t s; 1679 unsigned max_root = ext4_ext_space_root(inode, 0); 1680 ext4_fsblk_t blk; 1681 1682 if ((path[0].p_depth != 1) || 1683 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || 1684 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) 1685 return; 1686 1687 /* 1688 * We need to modify the block allocation bitmap and the block 1689 * group descriptor to release the extent tree block. If we 1690 * can't get the journal credits, give up. 1691 */ 1692 if (ext4_journal_extend(handle, 2)) 1693 return; 1694 1695 /* 1696 * Copy the extent data up to the inode 1697 */ 1698 blk = ext4_idx_pblock(path[0].p_idx); 1699 s = le16_to_cpu(path[1].p_hdr->eh_entries) * 1700 sizeof(struct ext4_extent_idx); 1701 s += sizeof(struct ext4_extent_header); 1702 1703 memcpy(path[0].p_hdr, path[1].p_hdr, s); 1704 path[0].p_depth = 0; 1705 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + 1706 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); 1707 path[0].p_hdr->eh_max = cpu_to_le16(max_root); 1708 1709 brelse(path[1].p_bh); 1710 ext4_free_blocks(handle, inode, NULL, blk, 1, 1711 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 1712 } 1713 1714 /* 1715 * This function tries to merge the @ex extent to neighbours in the tree. 1716 * return 1 if merge left else 0. 1717 */ 1718 static void ext4_ext_try_to_merge(handle_t *handle, 1719 struct inode *inode, 1720 struct ext4_ext_path *path, 1721 struct ext4_extent *ex) { 1722 struct ext4_extent_header *eh; 1723 unsigned int depth; 1724 int merge_done = 0; 1725 1726 depth = ext_depth(inode); 1727 BUG_ON(path[depth].p_hdr == NULL); 1728 eh = path[depth].p_hdr; 1729 1730 if (ex > EXT_FIRST_EXTENT(eh)) 1731 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1732 1733 if (!merge_done) 1734 (void) ext4_ext_try_to_merge_right(inode, path, ex); 1735 1736 ext4_ext_try_to_merge_up(handle, inode, path); 1737 } 1738 1739 /* 1740 * check if a portion of the "newext" extent overlaps with an 1741 * existing extent. 1742 * 1743 * If there is an overlap discovered, it updates the length of the newext 1744 * such that there will be no overlap, and then returns 1. 1745 * If there is no overlap found, it returns 0. 1746 */ 1747 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1748 struct inode *inode, 1749 struct ext4_extent *newext, 1750 struct ext4_ext_path *path) 1751 { 1752 ext4_lblk_t b1, b2; 1753 unsigned int depth, len1; 1754 unsigned int ret = 0; 1755 1756 b1 = le32_to_cpu(newext->ee_block); 1757 len1 = ext4_ext_get_actual_len(newext); 1758 depth = ext_depth(inode); 1759 if (!path[depth].p_ext) 1760 goto out; 1761 b2 = le32_to_cpu(path[depth].p_ext->ee_block); 1762 b2 &= ~(sbi->s_cluster_ratio - 1); 1763 1764 /* 1765 * get the next allocated block if the extent in the path 1766 * is before the requested block(s) 1767 */ 1768 if (b2 < b1) { 1769 b2 = ext4_ext_next_allocated_block(path); 1770 if (b2 == EXT_MAX_BLOCKS) 1771 goto out; 1772 b2 &= ~(sbi->s_cluster_ratio - 1); 1773 } 1774 1775 /* check for wrap through zero on extent logical start block*/ 1776 if (b1 + len1 < b1) { 1777 len1 = EXT_MAX_BLOCKS - b1; 1778 newext->ee_len = cpu_to_le16(len1); 1779 ret = 1; 1780 } 1781 1782 /* check for overlap */ 1783 if (b1 + len1 > b2) { 1784 newext->ee_len = cpu_to_le16(b2 - b1); 1785 ret = 1; 1786 } 1787 out: 1788 return ret; 1789 } 1790 1791 /* 1792 * ext4_ext_insert_extent: 1793 * tries to merge requsted extent into the existing extent or 1794 * inserts requested extent as new one into the tree, 1795 * creating new leaf in the no-space case. 1796 */ 1797 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1798 struct ext4_ext_path *path, 1799 struct ext4_extent *newext, int flag) 1800 { 1801 struct ext4_extent_header *eh; 1802 struct ext4_extent *ex, *fex; 1803 struct ext4_extent *nearex; /* nearest extent */ 1804 struct ext4_ext_path *npath = NULL; 1805 int depth, len, err; 1806 ext4_lblk_t next; 1807 unsigned uninitialized = 0; 1808 int flags = 0; 1809 1810 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1811 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1812 return -EIO; 1813 } 1814 depth = ext_depth(inode); 1815 ex = path[depth].p_ext; 1816 if (unlikely(path[depth].p_hdr == NULL)) { 1817 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1818 return -EIO; 1819 } 1820 1821 /* try to insert block into found extent and return */ 1822 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO) 1823 && ext4_can_extents_be_merged(inode, ex, newext)) { 1824 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n", 1825 ext4_ext_is_uninitialized(newext), 1826 ext4_ext_get_actual_len(newext), 1827 le32_to_cpu(ex->ee_block), 1828 ext4_ext_is_uninitialized(ex), 1829 ext4_ext_get_actual_len(ex), 1830 ext4_ext_pblock(ex)); 1831 err = ext4_ext_get_access(handle, inode, path + depth); 1832 if (err) 1833 return err; 1834 1835 /* 1836 * ext4_can_extents_be_merged should have checked that either 1837 * both extents are uninitialized, or both aren't. Thus we 1838 * need to check only one of them here. 1839 */ 1840 if (ext4_ext_is_uninitialized(ex)) 1841 uninitialized = 1; 1842 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1843 + ext4_ext_get_actual_len(newext)); 1844 if (uninitialized) 1845 ext4_ext_mark_uninitialized(ex); 1846 eh = path[depth].p_hdr; 1847 nearex = ex; 1848 goto merge; 1849 } 1850 1851 depth = ext_depth(inode); 1852 eh = path[depth].p_hdr; 1853 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 1854 goto has_space; 1855 1856 /* probably next leaf has space for us? */ 1857 fex = EXT_LAST_EXTENT(eh); 1858 next = EXT_MAX_BLOCKS; 1859 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 1860 next = ext4_ext_next_leaf_block(path); 1861 if (next != EXT_MAX_BLOCKS) { 1862 ext_debug("next leaf block - %u\n", next); 1863 BUG_ON(npath != NULL); 1864 npath = ext4_ext_find_extent(inode, next, NULL); 1865 if (IS_ERR(npath)) 1866 return PTR_ERR(npath); 1867 BUG_ON(npath->p_depth != path->p_depth); 1868 eh = npath[depth].p_hdr; 1869 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 1870 ext_debug("next leaf isn't full(%d)\n", 1871 le16_to_cpu(eh->eh_entries)); 1872 path = npath; 1873 goto has_space; 1874 } 1875 ext_debug("next leaf has no free space(%d,%d)\n", 1876 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 1877 } 1878 1879 /* 1880 * There is no free space in the found leaf. 1881 * We're gonna add a new leaf in the tree. 1882 */ 1883 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) 1884 flags = EXT4_MB_USE_ROOT_BLOCKS; 1885 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext); 1886 if (err) 1887 goto cleanup; 1888 depth = ext_depth(inode); 1889 eh = path[depth].p_hdr; 1890 1891 has_space: 1892 nearex = path[depth].p_ext; 1893 1894 err = ext4_ext_get_access(handle, inode, path + depth); 1895 if (err) 1896 goto cleanup; 1897 1898 if (!nearex) { 1899 /* there is no extent in this leaf, create first one */ 1900 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 1901 le32_to_cpu(newext->ee_block), 1902 ext4_ext_pblock(newext), 1903 ext4_ext_is_uninitialized(newext), 1904 ext4_ext_get_actual_len(newext)); 1905 nearex = EXT_FIRST_EXTENT(eh); 1906 } else { 1907 if (le32_to_cpu(newext->ee_block) 1908 > le32_to_cpu(nearex->ee_block)) { 1909 /* Insert after */ 1910 ext_debug("insert %u:%llu:[%d]%d before: " 1911 "nearest %p\n", 1912 le32_to_cpu(newext->ee_block), 1913 ext4_ext_pblock(newext), 1914 ext4_ext_is_uninitialized(newext), 1915 ext4_ext_get_actual_len(newext), 1916 nearex); 1917 nearex++; 1918 } else { 1919 /* Insert before */ 1920 BUG_ON(newext->ee_block == nearex->ee_block); 1921 ext_debug("insert %u:%llu:[%d]%d after: " 1922 "nearest %p\n", 1923 le32_to_cpu(newext->ee_block), 1924 ext4_ext_pblock(newext), 1925 ext4_ext_is_uninitialized(newext), 1926 ext4_ext_get_actual_len(newext), 1927 nearex); 1928 } 1929 len = EXT_LAST_EXTENT(eh) - nearex + 1; 1930 if (len > 0) { 1931 ext_debug("insert %u:%llu:[%d]%d: " 1932 "move %d extents from 0x%p to 0x%p\n", 1933 le32_to_cpu(newext->ee_block), 1934 ext4_ext_pblock(newext), 1935 ext4_ext_is_uninitialized(newext), 1936 ext4_ext_get_actual_len(newext), 1937 len, nearex, nearex + 1); 1938 memmove(nearex + 1, nearex, 1939 len * sizeof(struct ext4_extent)); 1940 } 1941 } 1942 1943 le16_add_cpu(&eh->eh_entries, 1); 1944 path[depth].p_ext = nearex; 1945 nearex->ee_block = newext->ee_block; 1946 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 1947 nearex->ee_len = newext->ee_len; 1948 1949 merge: 1950 /* try to merge extents */ 1951 if (!(flag & EXT4_GET_BLOCKS_PRE_IO)) 1952 ext4_ext_try_to_merge(handle, inode, path, nearex); 1953 1954 1955 /* time to correct all indexes above */ 1956 err = ext4_ext_correct_indexes(handle, inode, path); 1957 if (err) 1958 goto cleanup; 1959 1960 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 1961 1962 cleanup: 1963 if (npath) { 1964 ext4_ext_drop_refs(npath); 1965 kfree(npath); 1966 } 1967 return err; 1968 } 1969 1970 static int ext4_fill_fiemap_extents(struct inode *inode, 1971 ext4_lblk_t block, ext4_lblk_t num, 1972 struct fiemap_extent_info *fieinfo) 1973 { 1974 struct ext4_ext_path *path = NULL; 1975 struct ext4_extent *ex; 1976 struct extent_status es; 1977 ext4_lblk_t next, next_del, start = 0, end = 0; 1978 ext4_lblk_t last = block + num; 1979 int exists, depth = 0, err = 0; 1980 unsigned int flags = 0; 1981 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 1982 1983 while (block < last && block != EXT_MAX_BLOCKS) { 1984 num = last - block; 1985 /* find extent for this block */ 1986 down_read(&EXT4_I(inode)->i_data_sem); 1987 1988 if (path && ext_depth(inode) != depth) { 1989 /* depth was changed. we have to realloc path */ 1990 kfree(path); 1991 path = NULL; 1992 } 1993 1994 path = ext4_ext_find_extent(inode, block, path); 1995 if (IS_ERR(path)) { 1996 up_read(&EXT4_I(inode)->i_data_sem); 1997 err = PTR_ERR(path); 1998 path = NULL; 1999 break; 2000 } 2001 2002 depth = ext_depth(inode); 2003 if (unlikely(path[depth].p_hdr == NULL)) { 2004 up_read(&EXT4_I(inode)->i_data_sem); 2005 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2006 err = -EIO; 2007 break; 2008 } 2009 ex = path[depth].p_ext; 2010 next = ext4_ext_next_allocated_block(path); 2011 ext4_ext_drop_refs(path); 2012 2013 flags = 0; 2014 exists = 0; 2015 if (!ex) { 2016 /* there is no extent yet, so try to allocate 2017 * all requested space */ 2018 start = block; 2019 end = block + num; 2020 } else if (le32_to_cpu(ex->ee_block) > block) { 2021 /* need to allocate space before found extent */ 2022 start = block; 2023 end = le32_to_cpu(ex->ee_block); 2024 if (block + num < end) 2025 end = block + num; 2026 } else if (block >= le32_to_cpu(ex->ee_block) 2027 + ext4_ext_get_actual_len(ex)) { 2028 /* need to allocate space after found extent */ 2029 start = block; 2030 end = block + num; 2031 if (end >= next) 2032 end = next; 2033 } else if (block >= le32_to_cpu(ex->ee_block)) { 2034 /* 2035 * some part of requested space is covered 2036 * by found extent 2037 */ 2038 start = block; 2039 end = le32_to_cpu(ex->ee_block) 2040 + ext4_ext_get_actual_len(ex); 2041 if (block + num < end) 2042 end = block + num; 2043 exists = 1; 2044 } else { 2045 BUG(); 2046 } 2047 BUG_ON(end <= start); 2048 2049 if (!exists) { 2050 es.es_lblk = start; 2051 es.es_len = end - start; 2052 es.es_pblk = 0; 2053 } else { 2054 es.es_lblk = le32_to_cpu(ex->ee_block); 2055 es.es_len = ext4_ext_get_actual_len(ex); 2056 es.es_pblk = ext4_ext_pblock(ex); 2057 if (ext4_ext_is_uninitialized(ex)) 2058 flags |= FIEMAP_EXTENT_UNWRITTEN; 2059 } 2060 2061 /* 2062 * Find delayed extent and update es accordingly. We call 2063 * it even in !exists case to find out whether es is the 2064 * last existing extent or not. 2065 */ 2066 next_del = ext4_find_delayed_extent(inode, &es); 2067 if (!exists && next_del) { 2068 exists = 1; 2069 flags |= FIEMAP_EXTENT_DELALLOC; 2070 } 2071 up_read(&EXT4_I(inode)->i_data_sem); 2072 2073 if (unlikely(es.es_len == 0)) { 2074 EXT4_ERROR_INODE(inode, "es.es_len == 0"); 2075 err = -EIO; 2076 break; 2077 } 2078 2079 /* 2080 * This is possible iff next == next_del == EXT_MAX_BLOCKS. 2081 * we need to check next == EXT_MAX_BLOCKS because it is 2082 * possible that an extent is with unwritten and delayed 2083 * status due to when an extent is delayed allocated and 2084 * is allocated by fallocate status tree will track both of 2085 * them in a extent. 2086 * 2087 * So we could return a unwritten and delayed extent, and 2088 * its block is equal to 'next'. 2089 */ 2090 if (next == next_del && next == EXT_MAX_BLOCKS) { 2091 flags |= FIEMAP_EXTENT_LAST; 2092 if (unlikely(next_del != EXT_MAX_BLOCKS || 2093 next != EXT_MAX_BLOCKS)) { 2094 EXT4_ERROR_INODE(inode, 2095 "next extent == %u, next " 2096 "delalloc extent = %u", 2097 next, next_del); 2098 err = -EIO; 2099 break; 2100 } 2101 } 2102 2103 if (exists) { 2104 err = fiemap_fill_next_extent(fieinfo, 2105 (__u64)es.es_lblk << blksize_bits, 2106 (__u64)es.es_pblk << blksize_bits, 2107 (__u64)es.es_len << blksize_bits, 2108 flags); 2109 if (err < 0) 2110 break; 2111 if (err == 1) { 2112 err = 0; 2113 break; 2114 } 2115 } 2116 2117 block = es.es_lblk + es.es_len; 2118 } 2119 2120 if (path) { 2121 ext4_ext_drop_refs(path); 2122 kfree(path); 2123 } 2124 2125 return err; 2126 } 2127 2128 /* 2129 * ext4_ext_put_gap_in_cache: 2130 * calculate boundaries of the gap that the requested block fits into 2131 * and cache this gap 2132 */ 2133 static void 2134 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, 2135 ext4_lblk_t block) 2136 { 2137 int depth = ext_depth(inode); 2138 unsigned long len; 2139 ext4_lblk_t lblock; 2140 struct ext4_extent *ex; 2141 2142 ex = path[depth].p_ext; 2143 if (ex == NULL) { 2144 /* 2145 * there is no extent yet, so gap is [0;-] and we 2146 * don't cache it 2147 */ 2148 ext_debug("cache gap(whole file):"); 2149 } else if (block < le32_to_cpu(ex->ee_block)) { 2150 lblock = block; 2151 len = le32_to_cpu(ex->ee_block) - block; 2152 ext_debug("cache gap(before): %u [%u:%u]", 2153 block, 2154 le32_to_cpu(ex->ee_block), 2155 ext4_ext_get_actual_len(ex)); 2156 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1)) 2157 ext4_es_insert_extent(inode, lblock, len, ~0, 2158 EXTENT_STATUS_HOLE); 2159 } else if (block >= le32_to_cpu(ex->ee_block) 2160 + ext4_ext_get_actual_len(ex)) { 2161 ext4_lblk_t next; 2162 lblock = le32_to_cpu(ex->ee_block) 2163 + ext4_ext_get_actual_len(ex); 2164 2165 next = ext4_ext_next_allocated_block(path); 2166 ext_debug("cache gap(after): [%u:%u] %u", 2167 le32_to_cpu(ex->ee_block), 2168 ext4_ext_get_actual_len(ex), 2169 block); 2170 BUG_ON(next == lblock); 2171 len = next - lblock; 2172 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1)) 2173 ext4_es_insert_extent(inode, lblock, len, ~0, 2174 EXTENT_STATUS_HOLE); 2175 } else { 2176 lblock = len = 0; 2177 BUG(); 2178 } 2179 2180 ext_debug(" -> %u:%lu\n", lblock, len); 2181 } 2182 2183 /* 2184 * ext4_ext_rm_idx: 2185 * removes index from the index block. 2186 */ 2187 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2188 struct ext4_ext_path *path, int depth) 2189 { 2190 int err; 2191 ext4_fsblk_t leaf; 2192 2193 /* free index block */ 2194 depth--; 2195 path = path + depth; 2196 leaf = ext4_idx_pblock(path->p_idx); 2197 if (unlikely(path->p_hdr->eh_entries == 0)) { 2198 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2199 return -EIO; 2200 } 2201 err = ext4_ext_get_access(handle, inode, path); 2202 if (err) 2203 return err; 2204 2205 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2206 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2207 len *= sizeof(struct ext4_extent_idx); 2208 memmove(path->p_idx, path->p_idx + 1, len); 2209 } 2210 2211 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2212 err = ext4_ext_dirty(handle, inode, path); 2213 if (err) 2214 return err; 2215 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2216 trace_ext4_ext_rm_idx(inode, leaf); 2217 2218 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2219 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2220 2221 while (--depth >= 0) { 2222 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr)) 2223 break; 2224 path--; 2225 err = ext4_ext_get_access(handle, inode, path); 2226 if (err) 2227 break; 2228 path->p_idx->ei_block = (path+1)->p_idx->ei_block; 2229 err = ext4_ext_dirty(handle, inode, path); 2230 if (err) 2231 break; 2232 } 2233 return err; 2234 } 2235 2236 /* 2237 * ext4_ext_calc_credits_for_single_extent: 2238 * This routine returns max. credits that needed to insert an extent 2239 * to the extent tree. 2240 * When pass the actual path, the caller should calculate credits 2241 * under i_data_sem. 2242 */ 2243 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2244 struct ext4_ext_path *path) 2245 { 2246 if (path) { 2247 int depth = ext_depth(inode); 2248 int ret = 0; 2249 2250 /* probably there is space in leaf? */ 2251 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2252 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2253 2254 /* 2255 * There are some space in the leaf tree, no 2256 * need to account for leaf block credit 2257 * 2258 * bitmaps and block group descriptor blocks 2259 * and other metadata blocks still need to be 2260 * accounted. 2261 */ 2262 /* 1 bitmap, 1 block group descriptor */ 2263 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2264 return ret; 2265 } 2266 } 2267 2268 return ext4_chunk_trans_blocks(inode, nrblocks); 2269 } 2270 2271 /* 2272 * How many index/leaf blocks need to change/allocate to modify nrblocks? 2273 * 2274 * if nrblocks are fit in a single extent (chunk flag is 1), then 2275 * in the worse case, each tree level index/leaf need to be changed 2276 * if the tree split due to insert a new extent, then the old tree 2277 * index/leaf need to be updated too 2278 * 2279 * If the nrblocks are discontiguous, they could cause 2280 * the whole tree split more than once, but this is really rare. 2281 */ 2282 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 2283 { 2284 int index; 2285 int depth; 2286 2287 /* If we are converting the inline data, only one is needed here. */ 2288 if (ext4_has_inline_data(inode)) 2289 return 1; 2290 2291 depth = ext_depth(inode); 2292 2293 if (chunk) 2294 index = depth * 2; 2295 else 2296 index = depth * 3; 2297 2298 return index; 2299 } 2300 2301 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2302 struct ext4_extent *ex, 2303 ext4_fsblk_t *partial_cluster, 2304 ext4_lblk_t from, ext4_lblk_t to) 2305 { 2306 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2307 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2308 ext4_fsblk_t pblk; 2309 int flags = 0; 2310 2311 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2312 flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; 2313 else if (ext4_should_journal_data(inode)) 2314 flags |= EXT4_FREE_BLOCKS_FORGET; 2315 2316 /* 2317 * For bigalloc file systems, we never free a partial cluster 2318 * at the beginning of the extent. Instead, we make a note 2319 * that we tried freeing the cluster, and check to see if we 2320 * need to free it on a subsequent call to ext4_remove_blocks, 2321 * or at the end of the ext4_truncate() operation. 2322 */ 2323 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2324 2325 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster); 2326 /* 2327 * If we have a partial cluster, and it's different from the 2328 * cluster of the last block, we need to explicitly free the 2329 * partial cluster here. 2330 */ 2331 pblk = ext4_ext_pblock(ex) + ee_len - 1; 2332 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) { 2333 ext4_free_blocks(handle, inode, NULL, 2334 EXT4_C2B(sbi, *partial_cluster), 2335 sbi->s_cluster_ratio, flags); 2336 *partial_cluster = 0; 2337 } 2338 2339 #ifdef EXTENTS_STATS 2340 { 2341 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2342 spin_lock(&sbi->s_ext_stats_lock); 2343 sbi->s_ext_blocks += ee_len; 2344 sbi->s_ext_extents++; 2345 if (ee_len < sbi->s_ext_min) 2346 sbi->s_ext_min = ee_len; 2347 if (ee_len > sbi->s_ext_max) 2348 sbi->s_ext_max = ee_len; 2349 if (ext_depth(inode) > sbi->s_depth_max) 2350 sbi->s_depth_max = ext_depth(inode); 2351 spin_unlock(&sbi->s_ext_stats_lock); 2352 } 2353 #endif 2354 if (from >= le32_to_cpu(ex->ee_block) 2355 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 2356 /* tail removal */ 2357 ext4_lblk_t num; 2358 2359 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2360 pblk = ext4_ext_pblock(ex) + ee_len - num; 2361 ext_debug("free last %u blocks starting %llu\n", num, pblk); 2362 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2363 /* 2364 * If the block range to be freed didn't start at the 2365 * beginning of a cluster, and we removed the entire 2366 * extent, save the partial cluster here, since we 2367 * might need to delete if we determine that the 2368 * truncate operation has removed all of the blocks in 2369 * the cluster. 2370 */ 2371 if (pblk & (sbi->s_cluster_ratio - 1) && 2372 (ee_len == num)) 2373 *partial_cluster = EXT4_B2C(sbi, pblk); 2374 else 2375 *partial_cluster = 0; 2376 } else if (from == le32_to_cpu(ex->ee_block) 2377 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) { 2378 /* head removal */ 2379 ext4_lblk_t num; 2380 ext4_fsblk_t start; 2381 2382 num = to - from; 2383 start = ext4_ext_pblock(ex); 2384 2385 ext_debug("free first %u blocks starting %llu\n", num, start); 2386 ext4_free_blocks(handle, inode, NULL, start, num, flags); 2387 2388 } else { 2389 printk(KERN_INFO "strange request: removal(2) " 2390 "%u-%u from %u:%u\n", 2391 from, to, le32_to_cpu(ex->ee_block), ee_len); 2392 } 2393 return 0; 2394 } 2395 2396 2397 /* 2398 * ext4_ext_rm_leaf() Removes the extents associated with the 2399 * blocks appearing between "start" and "end", and splits the extents 2400 * if "start" and "end" appear in the same extent 2401 * 2402 * @handle: The journal handle 2403 * @inode: The files inode 2404 * @path: The path to the leaf 2405 * @start: The first block to remove 2406 * @end: The last block to remove 2407 */ 2408 static int 2409 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2410 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster, 2411 ext4_lblk_t start, ext4_lblk_t end) 2412 { 2413 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2414 int err = 0, correct_index = 0; 2415 int depth = ext_depth(inode), credits; 2416 struct ext4_extent_header *eh; 2417 ext4_lblk_t a, b; 2418 unsigned num; 2419 ext4_lblk_t ex_ee_block; 2420 unsigned short ex_ee_len; 2421 unsigned uninitialized = 0; 2422 struct ext4_extent *ex; 2423 2424 /* the header must be checked already in ext4_ext_remove_space() */ 2425 ext_debug("truncate since %u in leaf to %u\n", start, end); 2426 if (!path[depth].p_hdr) 2427 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2428 eh = path[depth].p_hdr; 2429 if (unlikely(path[depth].p_hdr == NULL)) { 2430 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2431 return -EIO; 2432 } 2433 /* find where to start removing */ 2434 ex = EXT_LAST_EXTENT(eh); 2435 2436 ex_ee_block = le32_to_cpu(ex->ee_block); 2437 ex_ee_len = ext4_ext_get_actual_len(ex); 2438 2439 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster); 2440 2441 while (ex >= EXT_FIRST_EXTENT(eh) && 2442 ex_ee_block + ex_ee_len > start) { 2443 2444 if (ext4_ext_is_uninitialized(ex)) 2445 uninitialized = 1; 2446 else 2447 uninitialized = 0; 2448 2449 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2450 uninitialized, ex_ee_len); 2451 path[depth].p_ext = ex; 2452 2453 a = ex_ee_block > start ? ex_ee_block : start; 2454 b = ex_ee_block+ex_ee_len - 1 < end ? 2455 ex_ee_block+ex_ee_len - 1 : end; 2456 2457 ext_debug(" border %u:%u\n", a, b); 2458 2459 /* If this extent is beyond the end of the hole, skip it */ 2460 if (end < ex_ee_block) { 2461 ex--; 2462 ex_ee_block = le32_to_cpu(ex->ee_block); 2463 ex_ee_len = ext4_ext_get_actual_len(ex); 2464 continue; 2465 } else if (b != ex_ee_block + ex_ee_len - 1) { 2466 EXT4_ERROR_INODE(inode, 2467 "can not handle truncate %u:%u " 2468 "on extent %u:%u", 2469 start, end, ex_ee_block, 2470 ex_ee_block + ex_ee_len - 1); 2471 err = -EIO; 2472 goto out; 2473 } else if (a != ex_ee_block) { 2474 /* remove tail of the extent */ 2475 num = a - ex_ee_block; 2476 } else { 2477 /* remove whole extent: excellent! */ 2478 num = 0; 2479 } 2480 /* 2481 * 3 for leaf, sb, and inode plus 2 (bmap and group 2482 * descriptor) for each block group; assume two block 2483 * groups plus ex_ee_len/blocks_per_block_group for 2484 * the worst case 2485 */ 2486 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2487 if (ex == EXT_FIRST_EXTENT(eh)) { 2488 correct_index = 1; 2489 credits += (ext_depth(inode)) + 1; 2490 } 2491 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2492 2493 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2494 if (err) 2495 goto out; 2496 2497 err = ext4_ext_get_access(handle, inode, path + depth); 2498 if (err) 2499 goto out; 2500 2501 err = ext4_remove_blocks(handle, inode, ex, partial_cluster, 2502 a, b); 2503 if (err) 2504 goto out; 2505 2506 if (num == 0) 2507 /* this extent is removed; mark slot entirely unused */ 2508 ext4_ext_store_pblock(ex, 0); 2509 2510 ex->ee_len = cpu_to_le16(num); 2511 /* 2512 * Do not mark uninitialized if all the blocks in the 2513 * extent have been removed. 2514 */ 2515 if (uninitialized && num) 2516 ext4_ext_mark_uninitialized(ex); 2517 /* 2518 * If the extent was completely released, 2519 * we need to remove it from the leaf 2520 */ 2521 if (num == 0) { 2522 if (end != EXT_MAX_BLOCKS - 1) { 2523 /* 2524 * For hole punching, we need to scoot all the 2525 * extents up when an extent is removed so that 2526 * we dont have blank extents in the middle 2527 */ 2528 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2529 sizeof(struct ext4_extent)); 2530 2531 /* Now get rid of the one at the end */ 2532 memset(EXT_LAST_EXTENT(eh), 0, 2533 sizeof(struct ext4_extent)); 2534 } 2535 le16_add_cpu(&eh->eh_entries, -1); 2536 } else 2537 *partial_cluster = 0; 2538 2539 err = ext4_ext_dirty(handle, inode, path + depth); 2540 if (err) 2541 goto out; 2542 2543 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, 2544 ext4_ext_pblock(ex)); 2545 ex--; 2546 ex_ee_block = le32_to_cpu(ex->ee_block); 2547 ex_ee_len = ext4_ext_get_actual_len(ex); 2548 } 2549 2550 if (correct_index && eh->eh_entries) 2551 err = ext4_ext_correct_indexes(handle, inode, path); 2552 2553 /* 2554 * If there is still a entry in the leaf node, check to see if 2555 * it references the partial cluster. This is the only place 2556 * where it could; if it doesn't, we can free the cluster. 2557 */ 2558 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) && 2559 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) != 2560 *partial_cluster)) { 2561 int flags = EXT4_FREE_BLOCKS_FORGET; 2562 2563 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2564 flags |= EXT4_FREE_BLOCKS_METADATA; 2565 2566 ext4_free_blocks(handle, inode, NULL, 2567 EXT4_C2B(sbi, *partial_cluster), 2568 sbi->s_cluster_ratio, flags); 2569 *partial_cluster = 0; 2570 } 2571 2572 /* if this leaf is free, then we should 2573 * remove it from index block above */ 2574 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2575 err = ext4_ext_rm_idx(handle, inode, path, depth); 2576 2577 out: 2578 return err; 2579 } 2580 2581 /* 2582 * ext4_ext_more_to_rm: 2583 * returns 1 if current index has to be freed (even partial) 2584 */ 2585 static int 2586 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2587 { 2588 BUG_ON(path->p_idx == NULL); 2589 2590 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2591 return 0; 2592 2593 /* 2594 * if truncate on deeper level happened, it wasn't partial, 2595 * so we have to consider current index for truncation 2596 */ 2597 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2598 return 0; 2599 return 1; 2600 } 2601 2602 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2603 ext4_lblk_t end) 2604 { 2605 struct super_block *sb = inode->i_sb; 2606 int depth = ext_depth(inode); 2607 struct ext4_ext_path *path = NULL; 2608 ext4_fsblk_t partial_cluster = 0; 2609 handle_t *handle; 2610 int i = 0, err = 0; 2611 2612 ext_debug("truncate since %u to %u\n", start, end); 2613 2614 /* probably first extent we're gonna free will be last in block */ 2615 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1); 2616 if (IS_ERR(handle)) 2617 return PTR_ERR(handle); 2618 2619 again: 2620 trace_ext4_ext_remove_space(inode, start, depth); 2621 2622 /* 2623 * Check if we are removing extents inside the extent tree. If that 2624 * is the case, we are going to punch a hole inside the extent tree 2625 * so we have to check whether we need to split the extent covering 2626 * the last block to remove so we can easily remove the part of it 2627 * in ext4_ext_rm_leaf(). 2628 */ 2629 if (end < EXT_MAX_BLOCKS - 1) { 2630 struct ext4_extent *ex; 2631 ext4_lblk_t ee_block; 2632 2633 /* find extent for this block */ 2634 path = ext4_ext_find_extent(inode, end, NULL); 2635 if (IS_ERR(path)) { 2636 ext4_journal_stop(handle); 2637 return PTR_ERR(path); 2638 } 2639 depth = ext_depth(inode); 2640 /* Leaf not may not exist only if inode has no blocks at all */ 2641 ex = path[depth].p_ext; 2642 if (!ex) { 2643 if (depth) { 2644 EXT4_ERROR_INODE(inode, 2645 "path[%d].p_hdr == NULL", 2646 depth); 2647 err = -EIO; 2648 } 2649 goto out; 2650 } 2651 2652 ee_block = le32_to_cpu(ex->ee_block); 2653 2654 /* 2655 * See if the last block is inside the extent, if so split 2656 * the extent at 'end' block so we can easily remove the 2657 * tail of the first part of the split extent in 2658 * ext4_ext_rm_leaf(). 2659 */ 2660 if (end >= ee_block && 2661 end < ee_block + ext4_ext_get_actual_len(ex) - 1) { 2662 int split_flag = 0; 2663 2664 if (ext4_ext_is_uninitialized(ex)) 2665 split_flag = EXT4_EXT_MARK_UNINIT1 | 2666 EXT4_EXT_MARK_UNINIT2; 2667 2668 /* 2669 * Split the extent in two so that 'end' is the last 2670 * block in the first new extent 2671 */ 2672 err = ext4_split_extent_at(handle, inode, path, 2673 end + 1, split_flag, 2674 EXT4_GET_BLOCKS_PRE_IO | 2675 EXT4_GET_BLOCKS_PUNCH_OUT_EXT); 2676 2677 if (err < 0) 2678 goto out; 2679 } 2680 } 2681 /* 2682 * We start scanning from right side, freeing all the blocks 2683 * after i_size and walking into the tree depth-wise. 2684 */ 2685 depth = ext_depth(inode); 2686 if (path) { 2687 int k = i = depth; 2688 while (--k > 0) 2689 path[k].p_block = 2690 le16_to_cpu(path[k].p_hdr->eh_entries)+1; 2691 } else { 2692 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 2693 GFP_NOFS); 2694 if (path == NULL) { 2695 ext4_journal_stop(handle); 2696 return -ENOMEM; 2697 } 2698 path[0].p_depth = depth; 2699 path[0].p_hdr = ext_inode_hdr(inode); 2700 i = 0; 2701 2702 if (ext4_ext_check(inode, path[0].p_hdr, depth)) { 2703 err = -EIO; 2704 goto out; 2705 } 2706 } 2707 err = 0; 2708 2709 while (i >= 0 && err == 0) { 2710 if (i == depth) { 2711 /* this is leaf block */ 2712 err = ext4_ext_rm_leaf(handle, inode, path, 2713 &partial_cluster, start, 2714 end); 2715 /* root level has p_bh == NULL, brelse() eats this */ 2716 brelse(path[i].p_bh); 2717 path[i].p_bh = NULL; 2718 i--; 2719 continue; 2720 } 2721 2722 /* this is index block */ 2723 if (!path[i].p_hdr) { 2724 ext_debug("initialize header\n"); 2725 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2726 } 2727 2728 if (!path[i].p_idx) { 2729 /* this level hasn't been touched yet */ 2730 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2731 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2732 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2733 path[i].p_hdr, 2734 le16_to_cpu(path[i].p_hdr->eh_entries)); 2735 } else { 2736 /* we were already here, see at next index */ 2737 path[i].p_idx--; 2738 } 2739 2740 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2741 i, EXT_FIRST_INDEX(path[i].p_hdr), 2742 path[i].p_idx); 2743 if (ext4_ext_more_to_rm(path + i)) { 2744 struct buffer_head *bh; 2745 /* go to the next level */ 2746 ext_debug("move to level %d (block %llu)\n", 2747 i + 1, ext4_idx_pblock(path[i].p_idx)); 2748 memset(path + i + 1, 0, sizeof(*path)); 2749 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx)); 2750 if (!bh) { 2751 /* should we reset i_size? */ 2752 err = -EIO; 2753 break; 2754 } 2755 if (WARN_ON(i + 1 > depth)) { 2756 err = -EIO; 2757 break; 2758 } 2759 if (ext4_ext_check_block(inode, ext_block_hdr(bh), 2760 depth - i - 1, bh)) { 2761 err = -EIO; 2762 break; 2763 } 2764 path[i + 1].p_bh = bh; 2765 2766 /* save actual number of indexes since this 2767 * number is changed at the next iteration */ 2768 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2769 i++; 2770 } else { 2771 /* we finished processing this index, go up */ 2772 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2773 /* index is empty, remove it; 2774 * handle must be already prepared by the 2775 * truncatei_leaf() */ 2776 err = ext4_ext_rm_idx(handle, inode, path, i); 2777 } 2778 /* root level has p_bh == NULL, brelse() eats this */ 2779 brelse(path[i].p_bh); 2780 path[i].p_bh = NULL; 2781 i--; 2782 ext_debug("return to level %d\n", i); 2783 } 2784 } 2785 2786 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster, 2787 path->p_hdr->eh_entries); 2788 2789 /* If we still have something in the partial cluster and we have removed 2790 * even the first extent, then we should free the blocks in the partial 2791 * cluster as well. */ 2792 if (partial_cluster && path->p_hdr->eh_entries == 0) { 2793 int flags = EXT4_FREE_BLOCKS_FORGET; 2794 2795 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2796 flags |= EXT4_FREE_BLOCKS_METADATA; 2797 2798 ext4_free_blocks(handle, inode, NULL, 2799 EXT4_C2B(EXT4_SB(sb), partial_cluster), 2800 EXT4_SB(sb)->s_cluster_ratio, flags); 2801 partial_cluster = 0; 2802 } 2803 2804 /* TODO: flexible tree reduction should be here */ 2805 if (path->p_hdr->eh_entries == 0) { 2806 /* 2807 * truncate to zero freed all the tree, 2808 * so we need to correct eh_depth 2809 */ 2810 err = ext4_ext_get_access(handle, inode, path); 2811 if (err == 0) { 2812 ext_inode_hdr(inode)->eh_depth = 0; 2813 ext_inode_hdr(inode)->eh_max = 2814 cpu_to_le16(ext4_ext_space_root(inode, 0)); 2815 err = ext4_ext_dirty(handle, inode, path); 2816 } 2817 } 2818 out: 2819 ext4_ext_drop_refs(path); 2820 kfree(path); 2821 if (err == -EAGAIN) { 2822 path = NULL; 2823 goto again; 2824 } 2825 ext4_journal_stop(handle); 2826 2827 return err; 2828 } 2829 2830 /* 2831 * called at mount time 2832 */ 2833 void ext4_ext_init(struct super_block *sb) 2834 { 2835 /* 2836 * possible initialization would be here 2837 */ 2838 2839 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2840 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 2841 printk(KERN_INFO "EXT4-fs: file extents enabled" 2842 #ifdef AGGRESSIVE_TEST 2843 ", aggressive tests" 2844 #endif 2845 #ifdef CHECK_BINSEARCH 2846 ", check binsearch" 2847 #endif 2848 #ifdef EXTENTS_STATS 2849 ", stats" 2850 #endif 2851 "\n"); 2852 #endif 2853 #ifdef EXTENTS_STATS 2854 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 2855 EXT4_SB(sb)->s_ext_min = 1 << 30; 2856 EXT4_SB(sb)->s_ext_max = 0; 2857 #endif 2858 } 2859 } 2860 2861 /* 2862 * called at umount time 2863 */ 2864 void ext4_ext_release(struct super_block *sb) 2865 { 2866 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 2867 return; 2868 2869 #ifdef EXTENTS_STATS 2870 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 2871 struct ext4_sb_info *sbi = EXT4_SB(sb); 2872 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 2873 sbi->s_ext_blocks, sbi->s_ext_extents, 2874 sbi->s_ext_blocks / sbi->s_ext_extents); 2875 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 2876 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 2877 } 2878 #endif 2879 } 2880 2881 /* FIXME!! we need to try to merge to left or right after zero-out */ 2882 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 2883 { 2884 ext4_fsblk_t ee_pblock; 2885 unsigned int ee_len; 2886 int ret; 2887 2888 ee_len = ext4_ext_get_actual_len(ex); 2889 ee_pblock = ext4_ext_pblock(ex); 2890 2891 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS); 2892 if (ret > 0) 2893 ret = 0; 2894 2895 return ret; 2896 } 2897 2898 /* 2899 * ext4_split_extent_at() splits an extent at given block. 2900 * 2901 * @handle: the journal handle 2902 * @inode: the file inode 2903 * @path: the path to the extent 2904 * @split: the logical block where the extent is splitted. 2905 * @split_flags: indicates if the extent could be zeroout if split fails, and 2906 * the states(init or uninit) of new extents. 2907 * @flags: flags used to insert new extent to extent tree. 2908 * 2909 * 2910 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 2911 * of which are deterimined by split_flag. 2912 * 2913 * There are two cases: 2914 * a> the extent are splitted into two extent. 2915 * b> split is not needed, and just mark the extent. 2916 * 2917 * return 0 on success. 2918 */ 2919 static int ext4_split_extent_at(handle_t *handle, 2920 struct inode *inode, 2921 struct ext4_ext_path *path, 2922 ext4_lblk_t split, 2923 int split_flag, 2924 int flags) 2925 { 2926 ext4_fsblk_t newblock; 2927 ext4_lblk_t ee_block; 2928 struct ext4_extent *ex, newex, orig_ex, zero_ex; 2929 struct ext4_extent *ex2 = NULL; 2930 unsigned int ee_len, depth; 2931 int err = 0; 2932 2933 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == 2934 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); 2935 2936 ext_debug("ext4_split_extents_at: inode %lu, logical" 2937 "block %llu\n", inode->i_ino, (unsigned long long)split); 2938 2939 ext4_ext_show_leaf(inode, path); 2940 2941 depth = ext_depth(inode); 2942 ex = path[depth].p_ext; 2943 ee_block = le32_to_cpu(ex->ee_block); 2944 ee_len = ext4_ext_get_actual_len(ex); 2945 newblock = split - ee_block + ext4_ext_pblock(ex); 2946 2947 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 2948 BUG_ON(!ext4_ext_is_uninitialized(ex) && 2949 split_flag & (EXT4_EXT_MAY_ZEROOUT | 2950 EXT4_EXT_MARK_UNINIT1 | 2951 EXT4_EXT_MARK_UNINIT2)); 2952 2953 err = ext4_ext_get_access(handle, inode, path + depth); 2954 if (err) 2955 goto out; 2956 2957 if (split == ee_block) { 2958 /* 2959 * case b: block @split is the block that the extent begins with 2960 * then we just change the state of the extent, and splitting 2961 * is not needed. 2962 */ 2963 if (split_flag & EXT4_EXT_MARK_UNINIT2) 2964 ext4_ext_mark_uninitialized(ex); 2965 else 2966 ext4_ext_mark_initialized(ex); 2967 2968 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 2969 ext4_ext_try_to_merge(handle, inode, path, ex); 2970 2971 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 2972 goto out; 2973 } 2974 2975 /* case a */ 2976 memcpy(&orig_ex, ex, sizeof(orig_ex)); 2977 ex->ee_len = cpu_to_le16(split - ee_block); 2978 if (split_flag & EXT4_EXT_MARK_UNINIT1) 2979 ext4_ext_mark_uninitialized(ex); 2980 2981 /* 2982 * path may lead to new leaf, not to original leaf any more 2983 * after ext4_ext_insert_extent() returns, 2984 */ 2985 err = ext4_ext_dirty(handle, inode, path + depth); 2986 if (err) 2987 goto fix_extent_len; 2988 2989 ex2 = &newex; 2990 ex2->ee_block = cpu_to_le32(split); 2991 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 2992 ext4_ext_store_pblock(ex2, newblock); 2993 if (split_flag & EXT4_EXT_MARK_UNINIT2) 2994 ext4_ext_mark_uninitialized(ex2); 2995 2996 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags); 2997 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 2998 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { 2999 if (split_flag & EXT4_EXT_DATA_VALID1) { 3000 err = ext4_ext_zeroout(inode, ex2); 3001 zero_ex.ee_block = ex2->ee_block; 3002 zero_ex.ee_len = ext4_ext_get_actual_len(ex2); 3003 ext4_ext_store_pblock(&zero_ex, 3004 ext4_ext_pblock(ex2)); 3005 } else { 3006 err = ext4_ext_zeroout(inode, ex); 3007 zero_ex.ee_block = ex->ee_block; 3008 zero_ex.ee_len = ext4_ext_get_actual_len(ex); 3009 ext4_ext_store_pblock(&zero_ex, 3010 ext4_ext_pblock(ex)); 3011 } 3012 } else { 3013 err = ext4_ext_zeroout(inode, &orig_ex); 3014 zero_ex.ee_block = orig_ex.ee_block; 3015 zero_ex.ee_len = ext4_ext_get_actual_len(&orig_ex); 3016 ext4_ext_store_pblock(&zero_ex, 3017 ext4_ext_pblock(&orig_ex)); 3018 } 3019 3020 if (err) 3021 goto fix_extent_len; 3022 /* update the extent length and mark as initialized */ 3023 ex->ee_len = cpu_to_le16(ee_len); 3024 ext4_ext_try_to_merge(handle, inode, path, ex); 3025 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3026 if (err) 3027 goto fix_extent_len; 3028 3029 /* update extent status tree */ 3030 err = ext4_es_zeroout(inode, &zero_ex); 3031 3032 goto out; 3033 } else if (err) 3034 goto fix_extent_len; 3035 3036 out: 3037 ext4_ext_show_leaf(inode, path); 3038 return err; 3039 3040 fix_extent_len: 3041 ex->ee_len = orig_ex.ee_len; 3042 ext4_ext_dirty(handle, inode, path + depth); 3043 return err; 3044 } 3045 3046 /* 3047 * ext4_split_extents() splits an extent and mark extent which is covered 3048 * by @map as split_flags indicates 3049 * 3050 * It may result in splitting the extent into multiple extents (upto three) 3051 * There are three possibilities: 3052 * a> There is no split required 3053 * b> Splits in two extents: Split is happening at either end of the extent 3054 * c> Splits in three extents: Somone is splitting in middle of the extent 3055 * 3056 */ 3057 static int ext4_split_extent(handle_t *handle, 3058 struct inode *inode, 3059 struct ext4_ext_path *path, 3060 struct ext4_map_blocks *map, 3061 int split_flag, 3062 int flags) 3063 { 3064 ext4_lblk_t ee_block; 3065 struct ext4_extent *ex; 3066 unsigned int ee_len, depth; 3067 int err = 0; 3068 int uninitialized; 3069 int split_flag1, flags1; 3070 int allocated = map->m_len; 3071 3072 depth = ext_depth(inode); 3073 ex = path[depth].p_ext; 3074 ee_block = le32_to_cpu(ex->ee_block); 3075 ee_len = ext4_ext_get_actual_len(ex); 3076 uninitialized = ext4_ext_is_uninitialized(ex); 3077 3078 if (map->m_lblk + map->m_len < ee_block + ee_len) { 3079 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; 3080 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 3081 if (uninitialized) 3082 split_flag1 |= EXT4_EXT_MARK_UNINIT1 | 3083 EXT4_EXT_MARK_UNINIT2; 3084 if (split_flag & EXT4_EXT_DATA_VALID2) 3085 split_flag1 |= EXT4_EXT_DATA_VALID1; 3086 err = ext4_split_extent_at(handle, inode, path, 3087 map->m_lblk + map->m_len, split_flag1, flags1); 3088 if (err) 3089 goto out; 3090 } else { 3091 allocated = ee_len - (map->m_lblk - ee_block); 3092 } 3093 /* 3094 * Update path is required because previous ext4_split_extent_at() may 3095 * result in split of original leaf or extent zeroout. 3096 */ 3097 ext4_ext_drop_refs(path); 3098 path = ext4_ext_find_extent(inode, map->m_lblk, path); 3099 if (IS_ERR(path)) 3100 return PTR_ERR(path); 3101 depth = ext_depth(inode); 3102 ex = path[depth].p_ext; 3103 uninitialized = ext4_ext_is_uninitialized(ex); 3104 split_flag1 = 0; 3105 3106 if (map->m_lblk >= ee_block) { 3107 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2; 3108 if (uninitialized) { 3109 split_flag1 |= EXT4_EXT_MARK_UNINIT1; 3110 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT | 3111 EXT4_EXT_MARK_UNINIT2); 3112 } 3113 err = ext4_split_extent_at(handle, inode, path, 3114 map->m_lblk, split_flag1, flags); 3115 if (err) 3116 goto out; 3117 } 3118 3119 ext4_ext_show_leaf(inode, path); 3120 out: 3121 return err ? err : allocated; 3122 } 3123 3124 /* 3125 * This function is called by ext4_ext_map_blocks() if someone tries to write 3126 * to an uninitialized extent. It may result in splitting the uninitialized 3127 * extent into multiple extents (up to three - one initialized and two 3128 * uninitialized). 3129 * There are three possibilities: 3130 * a> There is no split required: Entire extent should be initialized 3131 * b> Splits in two extents: Write is happening at either end of the extent 3132 * c> Splits in three extents: Somone is writing in middle of the extent 3133 * 3134 * Pre-conditions: 3135 * - The extent pointed to by 'path' is uninitialized. 3136 * - The extent pointed to by 'path' contains a superset 3137 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 3138 * 3139 * Post-conditions on success: 3140 * - the returned value is the number of blocks beyond map->l_lblk 3141 * that are allocated and initialized. 3142 * It is guaranteed to be >= map->m_len. 3143 */ 3144 static int ext4_ext_convert_to_initialized(handle_t *handle, 3145 struct inode *inode, 3146 struct ext4_map_blocks *map, 3147 struct ext4_ext_path *path) 3148 { 3149 struct ext4_sb_info *sbi; 3150 struct ext4_extent_header *eh; 3151 struct ext4_map_blocks split_map; 3152 struct ext4_extent zero_ex; 3153 struct ext4_extent *ex; 3154 ext4_lblk_t ee_block, eof_block; 3155 unsigned int ee_len, depth; 3156 int allocated, max_zeroout = 0; 3157 int err = 0; 3158 int split_flag = 0; 3159 3160 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 3161 "block %llu, max_blocks %u\n", inode->i_ino, 3162 (unsigned long long)map->m_lblk, map->m_len); 3163 3164 sbi = EXT4_SB(inode->i_sb); 3165 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3166 inode->i_sb->s_blocksize_bits; 3167 if (eof_block < map->m_lblk + map->m_len) 3168 eof_block = map->m_lblk + map->m_len; 3169 3170 depth = ext_depth(inode); 3171 eh = path[depth].p_hdr; 3172 ex = path[depth].p_ext; 3173 ee_block = le32_to_cpu(ex->ee_block); 3174 ee_len = ext4_ext_get_actual_len(ex); 3175 allocated = ee_len - (map->m_lblk - ee_block); 3176 zero_ex.ee_len = 0; 3177 3178 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3179 3180 /* Pre-conditions */ 3181 BUG_ON(!ext4_ext_is_uninitialized(ex)); 3182 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3183 3184 /* 3185 * Attempt to transfer newly initialized blocks from the currently 3186 * uninitialized extent to its left neighbor. This is much cheaper 3187 * than an insertion followed by a merge as those involve costly 3188 * memmove() calls. This is the common case in steady state for 3189 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append 3190 * writes. 3191 * 3192 * Limitations of the current logic: 3193 * - L1: we only deal with writes at the start of the extent. 3194 * The approach could be extended to writes at the end 3195 * of the extent but this scenario was deemed less common. 3196 * - L2: we do not deal with writes covering the whole extent. 3197 * This would require removing the extent if the transfer 3198 * is possible. 3199 * - L3: we only attempt to merge with an extent stored in the 3200 * same extent tree node. 3201 */ 3202 if ((map->m_lblk == ee_block) && /*L1*/ 3203 (map->m_len < ee_len) && /*L2*/ 3204 (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/ 3205 struct ext4_extent *prev_ex; 3206 ext4_lblk_t prev_lblk; 3207 ext4_fsblk_t prev_pblk, ee_pblk; 3208 unsigned int prev_len, write_len; 3209 3210 prev_ex = ex - 1; 3211 prev_lblk = le32_to_cpu(prev_ex->ee_block); 3212 prev_len = ext4_ext_get_actual_len(prev_ex); 3213 prev_pblk = ext4_ext_pblock(prev_ex); 3214 ee_pblk = ext4_ext_pblock(ex); 3215 write_len = map->m_len; 3216 3217 /* 3218 * A transfer of blocks from 'ex' to 'prev_ex' is allowed 3219 * upon those conditions: 3220 * - C1: prev_ex is initialized, 3221 * - C2: prev_ex is logically abutting ex, 3222 * - C3: prev_ex is physically abutting ex, 3223 * - C4: prev_ex can receive the additional blocks without 3224 * overflowing the (initialized) length limit. 3225 */ 3226 if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/ 3227 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3228 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3229 (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/ 3230 err = ext4_ext_get_access(handle, inode, path + depth); 3231 if (err) 3232 goto out; 3233 3234 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3235 map, ex, prev_ex); 3236 3237 /* Shift the start of ex by 'write_len' blocks */ 3238 ex->ee_block = cpu_to_le32(ee_block + write_len); 3239 ext4_ext_store_pblock(ex, ee_pblk + write_len); 3240 ex->ee_len = cpu_to_le16(ee_len - write_len); 3241 ext4_ext_mark_uninitialized(ex); /* Restore the flag */ 3242 3243 /* Extend prev_ex by 'write_len' blocks */ 3244 prev_ex->ee_len = cpu_to_le16(prev_len + write_len); 3245 3246 /* Mark the block containing both extents as dirty */ 3247 ext4_ext_dirty(handle, inode, path + depth); 3248 3249 /* Update path to point to the right extent */ 3250 path[depth].p_ext = prev_ex; 3251 3252 /* Result: number of initialized blocks past m_lblk */ 3253 allocated = write_len; 3254 goto out; 3255 } 3256 } 3257 3258 WARN_ON(map->m_lblk < ee_block); 3259 /* 3260 * It is safe to convert extent to initialized via explicit 3261 * zeroout only if extent is fully insde i_size or new_size. 3262 */ 3263 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3264 3265 if (EXT4_EXT_MAY_ZEROOUT & split_flag) 3266 max_zeroout = sbi->s_extent_max_zeroout_kb >> 3267 (inode->i_sb->s_blocksize_bits - 10); 3268 3269 /* If extent is less than s_max_zeroout_kb, zeroout directly */ 3270 if (max_zeroout && (ee_len <= max_zeroout)) { 3271 err = ext4_ext_zeroout(inode, ex); 3272 if (err) 3273 goto out; 3274 zero_ex.ee_block = ex->ee_block; 3275 zero_ex.ee_len = ext4_ext_get_actual_len(ex); 3276 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex)); 3277 3278 err = ext4_ext_get_access(handle, inode, path + depth); 3279 if (err) 3280 goto out; 3281 ext4_ext_mark_initialized(ex); 3282 ext4_ext_try_to_merge(handle, inode, path, ex); 3283 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3284 goto out; 3285 } 3286 3287 /* 3288 * four cases: 3289 * 1. split the extent into three extents. 3290 * 2. split the extent into two extents, zeroout the first half. 3291 * 3. split the extent into two extents, zeroout the second half. 3292 * 4. split the extent into two extents with out zeroout. 3293 */ 3294 split_map.m_lblk = map->m_lblk; 3295 split_map.m_len = map->m_len; 3296 3297 if (max_zeroout && (allocated > map->m_len)) { 3298 if (allocated <= max_zeroout) { 3299 /* case 3 */ 3300 zero_ex.ee_block = 3301 cpu_to_le32(map->m_lblk); 3302 zero_ex.ee_len = cpu_to_le16(allocated); 3303 ext4_ext_store_pblock(&zero_ex, 3304 ext4_ext_pblock(ex) + map->m_lblk - ee_block); 3305 err = ext4_ext_zeroout(inode, &zero_ex); 3306 if (err) 3307 goto out; 3308 split_map.m_lblk = map->m_lblk; 3309 split_map.m_len = allocated; 3310 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) { 3311 /* case 2 */ 3312 if (map->m_lblk != ee_block) { 3313 zero_ex.ee_block = ex->ee_block; 3314 zero_ex.ee_len = cpu_to_le16(map->m_lblk - 3315 ee_block); 3316 ext4_ext_store_pblock(&zero_ex, 3317 ext4_ext_pblock(ex)); 3318 err = ext4_ext_zeroout(inode, &zero_ex); 3319 if (err) 3320 goto out; 3321 } 3322 3323 split_map.m_lblk = ee_block; 3324 split_map.m_len = map->m_lblk - ee_block + map->m_len; 3325 allocated = map->m_len; 3326 } 3327 } 3328 3329 allocated = ext4_split_extent(handle, inode, path, 3330 &split_map, split_flag, 0); 3331 if (allocated < 0) 3332 err = allocated; 3333 3334 out: 3335 /* If we have gotten a failure, don't zero out status tree */ 3336 if (!err) 3337 err = ext4_es_zeroout(inode, &zero_ex); 3338 return err ? err : allocated; 3339 } 3340 3341 /* 3342 * This function is called by ext4_ext_map_blocks() from 3343 * ext4_get_blocks_dio_write() when DIO to write 3344 * to an uninitialized extent. 3345 * 3346 * Writing to an uninitialized extent may result in splitting the uninitialized 3347 * extent into multiple initialized/uninitialized extents (up to three) 3348 * There are three possibilities: 3349 * a> There is no split required: Entire extent should be uninitialized 3350 * b> Splits in two extents: Write is happening at either end of the extent 3351 * c> Splits in three extents: Somone is writing in middle of the extent 3352 * 3353 * One of more index blocks maybe needed if the extent tree grow after 3354 * the uninitialized extent split. To prevent ENOSPC occur at the IO 3355 * complete, we need to split the uninitialized extent before DIO submit 3356 * the IO. The uninitialized extent called at this time will be split 3357 * into three uninitialized extent(at most). After IO complete, the part 3358 * being filled will be convert to initialized by the end_io callback function 3359 * via ext4_convert_unwritten_extents(). 3360 * 3361 * Returns the size of uninitialized extent to be written on success. 3362 */ 3363 static int ext4_split_unwritten_extents(handle_t *handle, 3364 struct inode *inode, 3365 struct ext4_map_blocks *map, 3366 struct ext4_ext_path *path, 3367 int flags) 3368 { 3369 ext4_lblk_t eof_block; 3370 ext4_lblk_t ee_block; 3371 struct ext4_extent *ex; 3372 unsigned int ee_len; 3373 int split_flag = 0, depth; 3374 3375 ext_debug("ext4_split_unwritten_extents: inode %lu, logical" 3376 "block %llu, max_blocks %u\n", inode->i_ino, 3377 (unsigned long long)map->m_lblk, map->m_len); 3378 3379 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3380 inode->i_sb->s_blocksize_bits; 3381 if (eof_block < map->m_lblk + map->m_len) 3382 eof_block = map->m_lblk + map->m_len; 3383 /* 3384 * It is safe to convert extent to initialized via explicit 3385 * zeroout only if extent is fully insde i_size or new_size. 3386 */ 3387 depth = ext_depth(inode); 3388 ex = path[depth].p_ext; 3389 ee_block = le32_to_cpu(ex->ee_block); 3390 ee_len = ext4_ext_get_actual_len(ex); 3391 3392 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3393 split_flag |= EXT4_EXT_MARK_UNINIT2; 3394 if (flags & EXT4_GET_BLOCKS_CONVERT) 3395 split_flag |= EXT4_EXT_DATA_VALID2; 3396 flags |= EXT4_GET_BLOCKS_PRE_IO; 3397 return ext4_split_extent(handle, inode, path, map, split_flag, flags); 3398 } 3399 3400 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3401 struct inode *inode, 3402 struct ext4_map_blocks *map, 3403 struct ext4_ext_path *path) 3404 { 3405 struct ext4_extent *ex; 3406 ext4_lblk_t ee_block; 3407 unsigned int ee_len; 3408 int depth; 3409 int err = 0; 3410 3411 depth = ext_depth(inode); 3412 ex = path[depth].p_ext; 3413 ee_block = le32_to_cpu(ex->ee_block); 3414 ee_len = ext4_ext_get_actual_len(ex); 3415 3416 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3417 "block %llu, max_blocks %u\n", inode->i_ino, 3418 (unsigned long long)ee_block, ee_len); 3419 3420 /* If extent is larger than requested it is a clear sign that we still 3421 * have some extent state machine issues left. So extent_split is still 3422 * required. 3423 * TODO: Once all related issues will be fixed this situation should be 3424 * illegal. 3425 */ 3426 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3427 #ifdef EXT4_DEBUG 3428 ext4_warning("Inode (%ld) finished: extent logical block %llu," 3429 " len %u; IO logical block %llu, len %u\n", 3430 inode->i_ino, (unsigned long long)ee_block, ee_len, 3431 (unsigned long long)map->m_lblk, map->m_len); 3432 #endif 3433 err = ext4_split_unwritten_extents(handle, inode, map, path, 3434 EXT4_GET_BLOCKS_CONVERT); 3435 if (err < 0) 3436 goto out; 3437 ext4_ext_drop_refs(path); 3438 path = ext4_ext_find_extent(inode, map->m_lblk, path); 3439 if (IS_ERR(path)) { 3440 err = PTR_ERR(path); 3441 goto out; 3442 } 3443 depth = ext_depth(inode); 3444 ex = path[depth].p_ext; 3445 } 3446 3447 err = ext4_ext_get_access(handle, inode, path + depth); 3448 if (err) 3449 goto out; 3450 /* first mark the extent as initialized */ 3451 ext4_ext_mark_initialized(ex); 3452 3453 /* note: ext4_ext_correct_indexes() isn't needed here because 3454 * borders are not changed 3455 */ 3456 ext4_ext_try_to_merge(handle, inode, path, ex); 3457 3458 /* Mark modified extent as dirty */ 3459 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3460 out: 3461 ext4_ext_show_leaf(inode, path); 3462 return err; 3463 } 3464 3465 static void unmap_underlying_metadata_blocks(struct block_device *bdev, 3466 sector_t block, int count) 3467 { 3468 int i; 3469 for (i = 0; i < count; i++) 3470 unmap_underlying_metadata(bdev, block + i); 3471 } 3472 3473 /* 3474 * Handle EOFBLOCKS_FL flag, clearing it if necessary 3475 */ 3476 static int check_eofblocks_fl(handle_t *handle, struct inode *inode, 3477 ext4_lblk_t lblk, 3478 struct ext4_ext_path *path, 3479 unsigned int len) 3480 { 3481 int i, depth; 3482 struct ext4_extent_header *eh; 3483 struct ext4_extent *last_ex; 3484 3485 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3486 return 0; 3487 3488 depth = ext_depth(inode); 3489 eh = path[depth].p_hdr; 3490 3491 /* 3492 * We're going to remove EOFBLOCKS_FL entirely in future so we 3493 * do not care for this case anymore. Simply remove the flag 3494 * if there are no extents. 3495 */ 3496 if (unlikely(!eh->eh_entries)) 3497 goto out; 3498 last_ex = EXT_LAST_EXTENT(eh); 3499 /* 3500 * We should clear the EOFBLOCKS_FL flag if we are writing the 3501 * last block in the last extent in the file. We test this by 3502 * first checking to see if the caller to 3503 * ext4_ext_get_blocks() was interested in the last block (or 3504 * a block beyond the last block) in the current extent. If 3505 * this turns out to be false, we can bail out from this 3506 * function immediately. 3507 */ 3508 if (lblk + len < le32_to_cpu(last_ex->ee_block) + 3509 ext4_ext_get_actual_len(last_ex)) 3510 return 0; 3511 /* 3512 * If the caller does appear to be planning to write at or 3513 * beyond the end of the current extent, we then test to see 3514 * if the current extent is the last extent in the file, by 3515 * checking to make sure it was reached via the rightmost node 3516 * at each level of the tree. 3517 */ 3518 for (i = depth-1; i >= 0; i--) 3519 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) 3520 return 0; 3521 out: 3522 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3523 return ext4_mark_inode_dirty(handle, inode); 3524 } 3525 3526 /** 3527 * ext4_find_delalloc_range: find delayed allocated block in the given range. 3528 * 3529 * Return 1 if there is a delalloc block in the range, otherwise 0. 3530 */ 3531 int ext4_find_delalloc_range(struct inode *inode, 3532 ext4_lblk_t lblk_start, 3533 ext4_lblk_t lblk_end) 3534 { 3535 struct extent_status es; 3536 3537 ext4_es_find_delayed_extent(inode, lblk_start, &es); 3538 if (es.es_len == 0) 3539 return 0; /* there is no delay extent in this tree */ 3540 else if (es.es_lblk <= lblk_start && 3541 lblk_start < es.es_lblk + es.es_len) 3542 return 1; 3543 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end) 3544 return 1; 3545 else 3546 return 0; 3547 } 3548 3549 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk) 3550 { 3551 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3552 ext4_lblk_t lblk_start, lblk_end; 3553 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1)); 3554 lblk_end = lblk_start + sbi->s_cluster_ratio - 1; 3555 3556 return ext4_find_delalloc_range(inode, lblk_start, lblk_end); 3557 } 3558 3559 /** 3560 * Determines how many complete clusters (out of those specified by the 'map') 3561 * are under delalloc and were reserved quota for. 3562 * This function is called when we are writing out the blocks that were 3563 * originally written with their allocation delayed, but then the space was 3564 * allocated using fallocate() before the delayed allocation could be resolved. 3565 * The cases to look for are: 3566 * ('=' indicated delayed allocated blocks 3567 * '-' indicates non-delayed allocated blocks) 3568 * (a) partial clusters towards beginning and/or end outside of allocated range 3569 * are not delalloc'ed. 3570 * Ex: 3571 * |----c---=|====c====|====c====|===-c----| 3572 * |++++++ allocated ++++++| 3573 * ==> 4 complete clusters in above example 3574 * 3575 * (b) partial cluster (outside of allocated range) towards either end is 3576 * marked for delayed allocation. In this case, we will exclude that 3577 * cluster. 3578 * Ex: 3579 * |----====c========|========c========| 3580 * |++++++ allocated ++++++| 3581 * ==> 1 complete clusters in above example 3582 * 3583 * Ex: 3584 * |================c================| 3585 * |++++++ allocated ++++++| 3586 * ==> 0 complete clusters in above example 3587 * 3588 * The ext4_da_update_reserve_space will be called only if we 3589 * determine here that there were some "entire" clusters that span 3590 * this 'allocated' range. 3591 * In the non-bigalloc case, this function will just end up returning num_blks 3592 * without ever calling ext4_find_delalloc_range. 3593 */ 3594 static unsigned int 3595 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start, 3596 unsigned int num_blks) 3597 { 3598 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3599 ext4_lblk_t alloc_cluster_start, alloc_cluster_end; 3600 ext4_lblk_t lblk_from, lblk_to, c_offset; 3601 unsigned int allocated_clusters = 0; 3602 3603 alloc_cluster_start = EXT4_B2C(sbi, lblk_start); 3604 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1); 3605 3606 /* max possible clusters for this allocation */ 3607 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1; 3608 3609 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks); 3610 3611 /* Check towards left side */ 3612 c_offset = lblk_start & (sbi->s_cluster_ratio - 1); 3613 if (c_offset) { 3614 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1)); 3615 lblk_to = lblk_from + c_offset - 1; 3616 3617 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3618 allocated_clusters--; 3619 } 3620 3621 /* Now check towards right. */ 3622 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1); 3623 if (allocated_clusters && c_offset) { 3624 lblk_from = lblk_start + num_blks; 3625 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1; 3626 3627 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3628 allocated_clusters--; 3629 } 3630 3631 return allocated_clusters; 3632 } 3633 3634 static int 3635 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode, 3636 struct ext4_map_blocks *map, 3637 struct ext4_ext_path *path, int flags, 3638 unsigned int allocated, ext4_fsblk_t newblock) 3639 { 3640 int ret = 0; 3641 int err = 0; 3642 ext4_io_end_t *io = ext4_inode_aio(inode); 3643 3644 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical " 3645 "block %llu, max_blocks %u, flags %x, allocated %u\n", 3646 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 3647 flags, allocated); 3648 ext4_ext_show_leaf(inode, path); 3649 3650 trace_ext4_ext_handle_uninitialized_extents(inode, map, flags, 3651 allocated, newblock); 3652 3653 /* get_block() before submit the IO, split the extent */ 3654 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) { 3655 ret = ext4_split_unwritten_extents(handle, inode, map, 3656 path, flags); 3657 if (ret <= 0) 3658 goto out; 3659 /* 3660 * Flag the inode(non aio case) or end_io struct (aio case) 3661 * that this IO needs to conversion to written when IO is 3662 * completed 3663 */ 3664 if (io) 3665 ext4_set_io_unwritten_flag(inode, io); 3666 else 3667 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3668 map->m_flags |= EXT4_MAP_UNWRITTEN; 3669 if (ext4_should_dioread_nolock(inode)) 3670 map->m_flags |= EXT4_MAP_UNINIT; 3671 goto out; 3672 } 3673 /* IO end_io complete, convert the filled extent to written */ 3674 if ((flags & EXT4_GET_BLOCKS_CONVERT)) { 3675 ret = ext4_convert_unwritten_extents_endio(handle, inode, map, 3676 path); 3677 if (ret >= 0) { 3678 ext4_update_inode_fsync_trans(handle, inode, 1); 3679 err = check_eofblocks_fl(handle, inode, map->m_lblk, 3680 path, map->m_len); 3681 } else 3682 err = ret; 3683 map->m_flags |= EXT4_MAP_MAPPED; 3684 if (allocated > map->m_len) 3685 allocated = map->m_len; 3686 map->m_len = allocated; 3687 goto out2; 3688 } 3689 /* buffered IO case */ 3690 /* 3691 * repeat fallocate creation request 3692 * we already have an unwritten extent 3693 */ 3694 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) { 3695 map->m_flags |= EXT4_MAP_UNWRITTEN; 3696 goto map_out; 3697 } 3698 3699 /* buffered READ or buffered write_begin() lookup */ 3700 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3701 /* 3702 * We have blocks reserved already. We 3703 * return allocated blocks so that delalloc 3704 * won't do block reservation for us. But 3705 * the buffer head will be unmapped so that 3706 * a read from the block returns 0s. 3707 */ 3708 map->m_flags |= EXT4_MAP_UNWRITTEN; 3709 goto out1; 3710 } 3711 3712 /* buffered write, writepage time, convert*/ 3713 ret = ext4_ext_convert_to_initialized(handle, inode, map, path); 3714 if (ret >= 0) 3715 ext4_update_inode_fsync_trans(handle, inode, 1); 3716 out: 3717 if (ret <= 0) { 3718 err = ret; 3719 goto out2; 3720 } else 3721 allocated = ret; 3722 map->m_flags |= EXT4_MAP_NEW; 3723 /* 3724 * if we allocated more blocks than requested 3725 * we need to make sure we unmap the extra block 3726 * allocated. The actual needed block will get 3727 * unmapped later when we find the buffer_head marked 3728 * new. 3729 */ 3730 if (allocated > map->m_len) { 3731 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev, 3732 newblock + map->m_len, 3733 allocated - map->m_len); 3734 allocated = map->m_len; 3735 } 3736 map->m_len = allocated; 3737 3738 /* 3739 * If we have done fallocate with the offset that is already 3740 * delayed allocated, we would have block reservation 3741 * and quota reservation done in the delayed write path. 3742 * But fallocate would have already updated quota and block 3743 * count for this offset. So cancel these reservation 3744 */ 3745 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 3746 unsigned int reserved_clusters; 3747 reserved_clusters = get_reserved_cluster_alloc(inode, 3748 map->m_lblk, map->m_len); 3749 if (reserved_clusters) 3750 ext4_da_update_reserve_space(inode, 3751 reserved_clusters, 3752 0); 3753 } 3754 3755 map_out: 3756 map->m_flags |= EXT4_MAP_MAPPED; 3757 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { 3758 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, 3759 map->m_len); 3760 if (err < 0) 3761 goto out2; 3762 } 3763 out1: 3764 if (allocated > map->m_len) 3765 allocated = map->m_len; 3766 ext4_ext_show_leaf(inode, path); 3767 map->m_pblk = newblock; 3768 map->m_len = allocated; 3769 out2: 3770 if (path) { 3771 ext4_ext_drop_refs(path); 3772 kfree(path); 3773 } 3774 return err ? err : allocated; 3775 } 3776 3777 /* 3778 * get_implied_cluster_alloc - check to see if the requested 3779 * allocation (in the map structure) overlaps with a cluster already 3780 * allocated in an extent. 3781 * @sb The filesystem superblock structure 3782 * @map The requested lblk->pblk mapping 3783 * @ex The extent structure which might contain an implied 3784 * cluster allocation 3785 * 3786 * This function is called by ext4_ext_map_blocks() after we failed to 3787 * find blocks that were already in the inode's extent tree. Hence, 3788 * we know that the beginning of the requested region cannot overlap 3789 * the extent from the inode's extent tree. There are three cases we 3790 * want to catch. The first is this case: 3791 * 3792 * |--- cluster # N--| 3793 * |--- extent ---| |---- requested region ---| 3794 * |==========| 3795 * 3796 * The second case that we need to test for is this one: 3797 * 3798 * |--------- cluster # N ----------------| 3799 * |--- requested region --| |------- extent ----| 3800 * |=======================| 3801 * 3802 * The third case is when the requested region lies between two extents 3803 * within the same cluster: 3804 * |------------- cluster # N-------------| 3805 * |----- ex -----| |---- ex_right ----| 3806 * |------ requested region ------| 3807 * |================| 3808 * 3809 * In each of the above cases, we need to set the map->m_pblk and 3810 * map->m_len so it corresponds to the return the extent labelled as 3811 * "|====|" from cluster #N, since it is already in use for data in 3812 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 3813 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 3814 * as a new "allocated" block region. Otherwise, we will return 0 and 3815 * ext4_ext_map_blocks() will then allocate one or more new clusters 3816 * by calling ext4_mb_new_blocks(). 3817 */ 3818 static int get_implied_cluster_alloc(struct super_block *sb, 3819 struct ext4_map_blocks *map, 3820 struct ext4_extent *ex, 3821 struct ext4_ext_path *path) 3822 { 3823 struct ext4_sb_info *sbi = EXT4_SB(sb); 3824 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1); 3825 ext4_lblk_t ex_cluster_start, ex_cluster_end; 3826 ext4_lblk_t rr_cluster_start; 3827 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 3828 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 3829 unsigned short ee_len = ext4_ext_get_actual_len(ex); 3830 3831 /* The extent passed in that we are trying to match */ 3832 ex_cluster_start = EXT4_B2C(sbi, ee_block); 3833 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 3834 3835 /* The requested region passed into ext4_map_blocks() */ 3836 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 3837 3838 if ((rr_cluster_start == ex_cluster_end) || 3839 (rr_cluster_start == ex_cluster_start)) { 3840 if (rr_cluster_start == ex_cluster_end) 3841 ee_start += ee_len - 1; 3842 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) + 3843 c_offset; 3844 map->m_len = min(map->m_len, 3845 (unsigned) sbi->s_cluster_ratio - c_offset); 3846 /* 3847 * Check for and handle this case: 3848 * 3849 * |--------- cluster # N-------------| 3850 * |------- extent ----| 3851 * |--- requested region ---| 3852 * |===========| 3853 */ 3854 3855 if (map->m_lblk < ee_block) 3856 map->m_len = min(map->m_len, ee_block - map->m_lblk); 3857 3858 /* 3859 * Check for the case where there is already another allocated 3860 * block to the right of 'ex' but before the end of the cluster. 3861 * 3862 * |------------- cluster # N-------------| 3863 * |----- ex -----| |---- ex_right ----| 3864 * |------ requested region ------| 3865 * |================| 3866 */ 3867 if (map->m_lblk > ee_block) { 3868 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 3869 map->m_len = min(map->m_len, next - map->m_lblk); 3870 } 3871 3872 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 3873 return 1; 3874 } 3875 3876 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 3877 return 0; 3878 } 3879 3880 3881 /* 3882 * Block allocation/map/preallocation routine for extents based files 3883 * 3884 * 3885 * Need to be called with 3886 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 3887 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 3888 * 3889 * return > 0, number of of blocks already mapped/allocated 3890 * if create == 0 and these are pre-allocated blocks 3891 * buffer head is unmapped 3892 * otherwise blocks are mapped 3893 * 3894 * return = 0, if plain look up failed (blocks have not been allocated) 3895 * buffer head is unmapped 3896 * 3897 * return < 0, error case. 3898 */ 3899 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 3900 struct ext4_map_blocks *map, int flags) 3901 { 3902 struct ext4_ext_path *path = NULL; 3903 struct ext4_extent newex, *ex, *ex2; 3904 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3905 ext4_fsblk_t newblock = 0; 3906 int free_on_err = 0, err = 0, depth; 3907 unsigned int allocated = 0, offset = 0; 3908 unsigned int allocated_clusters = 0; 3909 struct ext4_allocation_request ar; 3910 ext4_io_end_t *io = ext4_inode_aio(inode); 3911 ext4_lblk_t cluster_offset; 3912 int set_unwritten = 0; 3913 3914 ext_debug("blocks %u/%u requested for inode %lu\n", 3915 map->m_lblk, map->m_len, inode->i_ino); 3916 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 3917 3918 /* find extent for this block */ 3919 path = ext4_ext_find_extent(inode, map->m_lblk, NULL); 3920 if (IS_ERR(path)) { 3921 err = PTR_ERR(path); 3922 path = NULL; 3923 goto out2; 3924 } 3925 3926 depth = ext_depth(inode); 3927 3928 /* 3929 * consistent leaf must not be empty; 3930 * this situation is possible, though, _during_ tree modification; 3931 * this is why assert can't be put in ext4_ext_find_extent() 3932 */ 3933 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 3934 EXT4_ERROR_INODE(inode, "bad extent address " 3935 "lblock: %lu, depth: %d pblock %lld", 3936 (unsigned long) map->m_lblk, depth, 3937 path[depth].p_block); 3938 err = -EIO; 3939 goto out2; 3940 } 3941 3942 ex = path[depth].p_ext; 3943 if (ex) { 3944 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 3945 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 3946 unsigned short ee_len; 3947 3948 /* 3949 * Uninitialized extents are treated as holes, except that 3950 * we split out initialized portions during a write. 3951 */ 3952 ee_len = ext4_ext_get_actual_len(ex); 3953 3954 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 3955 3956 /* if found extent covers block, simply return it */ 3957 if (in_range(map->m_lblk, ee_block, ee_len)) { 3958 newblock = map->m_lblk - ee_block + ee_start; 3959 /* number of remaining blocks in the extent */ 3960 allocated = ee_len - (map->m_lblk - ee_block); 3961 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 3962 ee_block, ee_len, newblock); 3963 3964 if (!ext4_ext_is_uninitialized(ex)) 3965 goto out; 3966 3967 allocated = ext4_ext_handle_uninitialized_extents( 3968 handle, inode, map, path, flags, 3969 allocated, newblock); 3970 goto out3; 3971 } 3972 } 3973 3974 if ((sbi->s_cluster_ratio > 1) && 3975 ext4_find_delalloc_cluster(inode, map->m_lblk)) 3976 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3977 3978 /* 3979 * requested block isn't allocated yet; 3980 * we couldn't try to create block if create flag is zero 3981 */ 3982 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3983 /* 3984 * put just found gap into cache to speed up 3985 * subsequent requests 3986 */ 3987 if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0) 3988 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk); 3989 goto out2; 3990 } 3991 3992 /* 3993 * Okay, we need to do block allocation. 3994 */ 3995 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 3996 newex.ee_block = cpu_to_le32(map->m_lblk); 3997 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1); 3998 3999 /* 4000 * If we are doing bigalloc, check to see if the extent returned 4001 * by ext4_ext_find_extent() implies a cluster we can use. 4002 */ 4003 if (cluster_offset && ex && 4004 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 4005 ar.len = allocated = map->m_len; 4006 newblock = map->m_pblk; 4007 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4008 goto got_allocated_blocks; 4009 } 4010 4011 /* find neighbour allocated blocks */ 4012 ar.lleft = map->m_lblk; 4013 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 4014 if (err) 4015 goto out2; 4016 ar.lright = map->m_lblk; 4017 ex2 = NULL; 4018 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 4019 if (err) 4020 goto out2; 4021 4022 /* Check if the extent after searching to the right implies a 4023 * cluster we can use. */ 4024 if ((sbi->s_cluster_ratio > 1) && ex2 && 4025 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 4026 ar.len = allocated = map->m_len; 4027 newblock = map->m_pblk; 4028 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4029 goto got_allocated_blocks; 4030 } 4031 4032 /* 4033 * See if request is beyond maximum number of blocks we can have in 4034 * a single extent. For an initialized extent this limit is 4035 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is 4036 * EXT_UNINIT_MAX_LEN. 4037 */ 4038 if (map->m_len > EXT_INIT_MAX_LEN && 4039 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 4040 map->m_len = EXT_INIT_MAX_LEN; 4041 else if (map->m_len > EXT_UNINIT_MAX_LEN && 4042 (flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 4043 map->m_len = EXT_UNINIT_MAX_LEN; 4044 4045 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 4046 newex.ee_len = cpu_to_le16(map->m_len); 4047 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 4048 if (err) 4049 allocated = ext4_ext_get_actual_len(&newex); 4050 else 4051 allocated = map->m_len; 4052 4053 /* allocate new block */ 4054 ar.inode = inode; 4055 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 4056 ar.logical = map->m_lblk; 4057 /* 4058 * We calculate the offset from the beginning of the cluster 4059 * for the logical block number, since when we allocate a 4060 * physical cluster, the physical block should start at the 4061 * same offset from the beginning of the cluster. This is 4062 * needed so that future calls to get_implied_cluster_alloc() 4063 * work correctly. 4064 */ 4065 offset = map->m_lblk & (sbi->s_cluster_ratio - 1); 4066 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 4067 ar.goal -= offset; 4068 ar.logical -= offset; 4069 if (S_ISREG(inode->i_mode)) 4070 ar.flags = EXT4_MB_HINT_DATA; 4071 else 4072 /* disable in-core preallocation for non-regular files */ 4073 ar.flags = 0; 4074 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4075 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4076 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4077 if (!newblock) 4078 goto out2; 4079 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 4080 ar.goal, newblock, allocated); 4081 free_on_err = 1; 4082 allocated_clusters = ar.len; 4083 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4084 if (ar.len > allocated) 4085 ar.len = allocated; 4086 4087 got_allocated_blocks: 4088 /* try to insert new extent into found leaf and return */ 4089 ext4_ext_store_pblock(&newex, newblock + offset); 4090 newex.ee_len = cpu_to_le16(ar.len); 4091 /* Mark uninitialized */ 4092 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){ 4093 ext4_ext_mark_uninitialized(&newex); 4094 map->m_flags |= EXT4_MAP_UNWRITTEN; 4095 /* 4096 * io_end structure was created for every IO write to an 4097 * uninitialized extent. To avoid unnecessary conversion, 4098 * here we flag the IO that really needs the conversion. 4099 * For non asycn direct IO case, flag the inode state 4100 * that we need to perform conversion when IO is done. 4101 */ 4102 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) 4103 set_unwritten = 1; 4104 if (ext4_should_dioread_nolock(inode)) 4105 map->m_flags |= EXT4_MAP_UNINIT; 4106 } 4107 4108 err = 0; 4109 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) 4110 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4111 path, ar.len); 4112 if (!err) 4113 err = ext4_ext_insert_extent(handle, inode, path, 4114 &newex, flags); 4115 4116 if (!err && set_unwritten) { 4117 if (io) 4118 ext4_set_io_unwritten_flag(inode, io); 4119 else 4120 ext4_set_inode_state(inode, 4121 EXT4_STATE_DIO_UNWRITTEN); 4122 } 4123 4124 if (err && free_on_err) { 4125 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? 4126 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; 4127 /* free data blocks we just allocated */ 4128 /* not a good idea to call discard here directly, 4129 * but otherwise we'd need to call it every free() */ 4130 ext4_discard_preallocations(inode); 4131 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex), 4132 ext4_ext_get_actual_len(&newex), fb_flags); 4133 goto out2; 4134 } 4135 4136 /* previous routine could use block we allocated */ 4137 newblock = ext4_ext_pblock(&newex); 4138 allocated = ext4_ext_get_actual_len(&newex); 4139 if (allocated > map->m_len) 4140 allocated = map->m_len; 4141 map->m_flags |= EXT4_MAP_NEW; 4142 4143 /* 4144 * Update reserved blocks/metadata blocks after successful 4145 * block allocation which had been deferred till now. 4146 */ 4147 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4148 unsigned int reserved_clusters; 4149 /* 4150 * Check how many clusters we had reserved this allocated range 4151 */ 4152 reserved_clusters = get_reserved_cluster_alloc(inode, 4153 map->m_lblk, allocated); 4154 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) { 4155 if (reserved_clusters) { 4156 /* 4157 * We have clusters reserved for this range. 4158 * But since we are not doing actual allocation 4159 * and are simply using blocks from previously 4160 * allocated cluster, we should release the 4161 * reservation and not claim quota. 4162 */ 4163 ext4_da_update_reserve_space(inode, 4164 reserved_clusters, 0); 4165 } 4166 } else { 4167 BUG_ON(allocated_clusters < reserved_clusters); 4168 if (reserved_clusters < allocated_clusters) { 4169 struct ext4_inode_info *ei = EXT4_I(inode); 4170 int reservation = allocated_clusters - 4171 reserved_clusters; 4172 /* 4173 * It seems we claimed few clusters outside of 4174 * the range of this allocation. We should give 4175 * it back to the reservation pool. This can 4176 * happen in the following case: 4177 * 4178 * * Suppose s_cluster_ratio is 4 (i.e., each 4179 * cluster has 4 blocks. Thus, the clusters 4180 * are [0-3],[4-7],[8-11]... 4181 * * First comes delayed allocation write for 4182 * logical blocks 10 & 11. Since there were no 4183 * previous delayed allocated blocks in the 4184 * range [8-11], we would reserve 1 cluster 4185 * for this write. 4186 * * Next comes write for logical blocks 3 to 8. 4187 * In this case, we will reserve 2 clusters 4188 * (for [0-3] and [4-7]; and not for [8-11] as 4189 * that range has a delayed allocated blocks. 4190 * Thus total reserved clusters now becomes 3. 4191 * * Now, during the delayed allocation writeout 4192 * time, we will first write blocks [3-8] and 4193 * allocate 3 clusters for writing these 4194 * blocks. Also, we would claim all these 4195 * three clusters above. 4196 * * Now when we come here to writeout the 4197 * blocks [10-11], we would expect to claim 4198 * the reservation of 1 cluster we had made 4199 * (and we would claim it since there are no 4200 * more delayed allocated blocks in the range 4201 * [8-11]. But our reserved cluster count had 4202 * already gone to 0. 4203 * 4204 * Thus, at the step 4 above when we determine 4205 * that there are still some unwritten delayed 4206 * allocated blocks outside of our current 4207 * block range, we should increment the 4208 * reserved clusters count so that when the 4209 * remaining blocks finally gets written, we 4210 * could claim them. 4211 */ 4212 dquot_reserve_block(inode, 4213 EXT4_C2B(sbi, reservation)); 4214 spin_lock(&ei->i_block_reservation_lock); 4215 ei->i_reserved_data_blocks += reservation; 4216 spin_unlock(&ei->i_block_reservation_lock); 4217 } 4218 /* 4219 * We will claim quota for all newly allocated blocks. 4220 * We're updating the reserved space *after* the 4221 * correction above so we do not accidentally free 4222 * all the metadata reservation because we might 4223 * actually need it later on. 4224 */ 4225 ext4_da_update_reserve_space(inode, allocated_clusters, 4226 1); 4227 } 4228 } 4229 4230 /* 4231 * Cache the extent and update transaction to commit on fdatasync only 4232 * when it is _not_ an uninitialized extent. 4233 */ 4234 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) 4235 ext4_update_inode_fsync_trans(handle, inode, 1); 4236 else 4237 ext4_update_inode_fsync_trans(handle, inode, 0); 4238 out: 4239 if (allocated > map->m_len) 4240 allocated = map->m_len; 4241 ext4_ext_show_leaf(inode, path); 4242 map->m_flags |= EXT4_MAP_MAPPED; 4243 map->m_pblk = newblock; 4244 map->m_len = allocated; 4245 out2: 4246 if (path) { 4247 ext4_ext_drop_refs(path); 4248 kfree(path); 4249 } 4250 4251 out3: 4252 trace_ext4_ext_map_blocks_exit(inode, map, err ? err : allocated); 4253 4254 return err ? err : allocated; 4255 } 4256 4257 void ext4_ext_truncate(struct inode *inode) 4258 { 4259 struct address_space *mapping = inode->i_mapping; 4260 struct super_block *sb = inode->i_sb; 4261 ext4_lblk_t last_block; 4262 handle_t *handle; 4263 loff_t page_len; 4264 int err = 0; 4265 4266 /* 4267 * finish any pending end_io work so we won't run the risk of 4268 * converting any truncated blocks to initialized later 4269 */ 4270 ext4_flush_unwritten_io(inode); 4271 4272 /* 4273 * probably first extent we're gonna free will be last in block 4274 */ 4275 err = ext4_writepage_trans_blocks(inode); 4276 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, err); 4277 if (IS_ERR(handle)) 4278 return; 4279 4280 if (inode->i_size % PAGE_CACHE_SIZE != 0) { 4281 page_len = PAGE_CACHE_SIZE - 4282 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 4283 4284 err = ext4_discard_partial_page_buffers(handle, 4285 mapping, inode->i_size, page_len, 0); 4286 4287 if (err) 4288 goto out_stop; 4289 } 4290 4291 if (ext4_orphan_add(handle, inode)) 4292 goto out_stop; 4293 4294 down_write(&EXT4_I(inode)->i_data_sem); 4295 4296 ext4_discard_preallocations(inode); 4297 4298 /* 4299 * TODO: optimization is possible here. 4300 * Probably we need not scan at all, 4301 * because page truncation is enough. 4302 */ 4303 4304 /* we have to know where to truncate from in crash case */ 4305 EXT4_I(inode)->i_disksize = inode->i_size; 4306 ext4_mark_inode_dirty(handle, inode); 4307 4308 last_block = (inode->i_size + sb->s_blocksize - 1) 4309 >> EXT4_BLOCK_SIZE_BITS(sb); 4310 err = ext4_es_remove_extent(inode, last_block, 4311 EXT_MAX_BLOCKS - last_block); 4312 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4313 4314 /* In a multi-transaction truncate, we only make the final 4315 * transaction synchronous. 4316 */ 4317 if (IS_SYNC(inode)) 4318 ext4_handle_sync(handle); 4319 4320 up_write(&EXT4_I(inode)->i_data_sem); 4321 4322 out_stop: 4323 /* 4324 * If this was a simple ftruncate() and the file will remain alive, 4325 * then we need to clear up the orphan record which we created above. 4326 * However, if this was a real unlink then we were called by 4327 * ext4_delete_inode(), and we allow that function to clean up the 4328 * orphan info for us. 4329 */ 4330 if (inode->i_nlink) 4331 ext4_orphan_del(handle, inode); 4332 4333 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4334 ext4_mark_inode_dirty(handle, inode); 4335 ext4_journal_stop(handle); 4336 } 4337 4338 static void ext4_falloc_update_inode(struct inode *inode, 4339 int mode, loff_t new_size, int update_ctime) 4340 { 4341 struct timespec now; 4342 4343 if (update_ctime) { 4344 now = current_fs_time(inode->i_sb); 4345 if (!timespec_equal(&inode->i_ctime, &now)) 4346 inode->i_ctime = now; 4347 } 4348 /* 4349 * Update only when preallocation was requested beyond 4350 * the file size. 4351 */ 4352 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 4353 if (new_size > i_size_read(inode)) 4354 i_size_write(inode, new_size); 4355 if (new_size > EXT4_I(inode)->i_disksize) 4356 ext4_update_i_disksize(inode, new_size); 4357 } else { 4358 /* 4359 * Mark that we allocate beyond EOF so the subsequent truncate 4360 * can proceed even if the new size is the same as i_size. 4361 */ 4362 if (new_size > i_size_read(inode)) 4363 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4364 } 4365 4366 } 4367 4368 /* 4369 * preallocate space for a file. This implements ext4's fallocate file 4370 * operation, which gets called from sys_fallocate system call. 4371 * For block-mapped files, posix_fallocate should fall back to the method 4372 * of writing zeroes to the required new blocks (the same behavior which is 4373 * expected for file systems which do not support fallocate() system call). 4374 */ 4375 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4376 { 4377 struct inode *inode = file->f_path.dentry->d_inode; 4378 handle_t *handle; 4379 loff_t new_size; 4380 unsigned int max_blocks; 4381 int ret = 0; 4382 int ret2 = 0; 4383 int retries = 0; 4384 int flags; 4385 struct ext4_map_blocks map; 4386 unsigned int credits, blkbits = inode->i_blkbits; 4387 4388 /* Return error if mode is not supported */ 4389 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 4390 return -EOPNOTSUPP; 4391 4392 if (mode & FALLOC_FL_PUNCH_HOLE) 4393 return ext4_punch_hole(file, offset, len); 4394 4395 ret = ext4_convert_inline_data(inode); 4396 if (ret) 4397 return ret; 4398 4399 /* 4400 * currently supporting (pre)allocate mode for extent-based 4401 * files _only_ 4402 */ 4403 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4404 return -EOPNOTSUPP; 4405 4406 trace_ext4_fallocate_enter(inode, offset, len, mode); 4407 map.m_lblk = offset >> blkbits; 4408 /* 4409 * We can't just convert len to max_blocks because 4410 * If blocksize = 4096 offset = 3072 and len = 2048 4411 */ 4412 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 4413 - map.m_lblk; 4414 /* 4415 * credits to insert 1 extent into extent tree 4416 */ 4417 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4418 mutex_lock(&inode->i_mutex); 4419 ret = inode_newsize_ok(inode, (len + offset)); 4420 if (ret) { 4421 mutex_unlock(&inode->i_mutex); 4422 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 4423 return ret; 4424 } 4425 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT; 4426 if (mode & FALLOC_FL_KEEP_SIZE) 4427 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4428 /* 4429 * Don't normalize the request if it can fit in one extent so 4430 * that it doesn't get unnecessarily split into multiple 4431 * extents. 4432 */ 4433 if (len <= EXT_UNINIT_MAX_LEN << blkbits) 4434 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4435 4436 retry: 4437 while (ret >= 0 && ret < max_blocks) { 4438 map.m_lblk = map.m_lblk + ret; 4439 map.m_len = max_blocks = max_blocks - ret; 4440 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4441 credits); 4442 if (IS_ERR(handle)) { 4443 ret = PTR_ERR(handle); 4444 break; 4445 } 4446 ret = ext4_map_blocks(handle, inode, &map, flags); 4447 if (ret <= 0) { 4448 #ifdef EXT4FS_DEBUG 4449 ext4_warning(inode->i_sb, 4450 "inode #%lu: block %u: len %u: " 4451 "ext4_ext_map_blocks returned %d", 4452 inode->i_ino, map.m_lblk, 4453 map.m_len, ret); 4454 #endif 4455 ext4_mark_inode_dirty(handle, inode); 4456 ret2 = ext4_journal_stop(handle); 4457 break; 4458 } 4459 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len, 4460 blkbits) >> blkbits)) 4461 new_size = offset + len; 4462 else 4463 new_size = ((loff_t) map.m_lblk + ret) << blkbits; 4464 4465 ext4_falloc_update_inode(inode, mode, new_size, 4466 (map.m_flags & EXT4_MAP_NEW)); 4467 ext4_mark_inode_dirty(handle, inode); 4468 if ((file->f_flags & O_SYNC) && ret >= max_blocks) 4469 ext4_handle_sync(handle); 4470 ret2 = ext4_journal_stop(handle); 4471 if (ret2) 4472 break; 4473 } 4474 if (ret == -ENOSPC && 4475 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4476 ret = 0; 4477 goto retry; 4478 } 4479 mutex_unlock(&inode->i_mutex); 4480 trace_ext4_fallocate_exit(inode, offset, max_blocks, 4481 ret > 0 ? ret2 : ret); 4482 return ret > 0 ? ret2 : ret; 4483 } 4484 4485 /* 4486 * This function convert a range of blocks to written extents 4487 * The caller of this function will pass the start offset and the size. 4488 * all unwritten extents within this range will be converted to 4489 * written extents. 4490 * 4491 * This function is called from the direct IO end io call back 4492 * function, to convert the fallocated extents after IO is completed. 4493 * Returns 0 on success. 4494 */ 4495 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset, 4496 ssize_t len) 4497 { 4498 handle_t *handle; 4499 unsigned int max_blocks; 4500 int ret = 0; 4501 int ret2 = 0; 4502 struct ext4_map_blocks map; 4503 unsigned int credits, blkbits = inode->i_blkbits; 4504 4505 map.m_lblk = offset >> blkbits; 4506 /* 4507 * We can't just convert len to max_blocks because 4508 * If blocksize = 4096 offset = 3072 and len = 2048 4509 */ 4510 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) - 4511 map.m_lblk); 4512 /* 4513 * credits to insert 1 extent into extent tree 4514 */ 4515 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4516 while (ret >= 0 && ret < max_blocks) { 4517 map.m_lblk += ret; 4518 map.m_len = (max_blocks -= ret); 4519 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits); 4520 if (IS_ERR(handle)) { 4521 ret = PTR_ERR(handle); 4522 break; 4523 } 4524 ret = ext4_map_blocks(handle, inode, &map, 4525 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 4526 if (ret <= 0) 4527 ext4_warning(inode->i_sb, 4528 "inode #%lu: block %u: len %u: " 4529 "ext4_ext_map_blocks returned %d", 4530 inode->i_ino, map.m_lblk, 4531 map.m_len, ret); 4532 ext4_mark_inode_dirty(handle, inode); 4533 ret2 = ext4_journal_stop(handle); 4534 if (ret <= 0 || ret2 ) 4535 break; 4536 } 4537 return ret > 0 ? ret2 : ret; 4538 } 4539 4540 /* 4541 * If newes is not existing extent (newes->ec_pblk equals zero) find 4542 * delayed extent at start of newes and update newes accordingly and 4543 * return start of the next delayed extent. 4544 * 4545 * If newes is existing extent (newes->ec_pblk is not equal zero) 4546 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed 4547 * extent found. Leave newes unmodified. 4548 */ 4549 static int ext4_find_delayed_extent(struct inode *inode, 4550 struct extent_status *newes) 4551 { 4552 struct extent_status es; 4553 ext4_lblk_t block, next_del; 4554 4555 ext4_es_find_delayed_extent(inode, newes->es_lblk, &es); 4556 4557 if (newes->es_pblk == 0) { 4558 /* 4559 * No extent in extent-tree contains block @newes->es_pblk, 4560 * then the block may stay in 1)a hole or 2)delayed-extent. 4561 */ 4562 if (es.es_len == 0) 4563 /* A hole found. */ 4564 return 0; 4565 4566 if (es.es_lblk > newes->es_lblk) { 4567 /* A hole found. */ 4568 newes->es_len = min(es.es_lblk - newes->es_lblk, 4569 newes->es_len); 4570 return 0; 4571 } 4572 4573 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk; 4574 } 4575 4576 block = newes->es_lblk + newes->es_len; 4577 ext4_es_find_delayed_extent(inode, block, &es); 4578 if (es.es_len == 0) 4579 next_del = EXT_MAX_BLOCKS; 4580 else 4581 next_del = es.es_lblk; 4582 4583 return next_del; 4584 } 4585 /* fiemap flags we can handle specified here */ 4586 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 4587 4588 static int ext4_xattr_fiemap(struct inode *inode, 4589 struct fiemap_extent_info *fieinfo) 4590 { 4591 __u64 physical = 0; 4592 __u64 length; 4593 __u32 flags = FIEMAP_EXTENT_LAST; 4594 int blockbits = inode->i_sb->s_blocksize_bits; 4595 int error = 0; 4596 4597 /* in-inode? */ 4598 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4599 struct ext4_iloc iloc; 4600 int offset; /* offset of xattr in inode */ 4601 4602 error = ext4_get_inode_loc(inode, &iloc); 4603 if (error) 4604 return error; 4605 physical = iloc.bh->b_blocknr << blockbits; 4606 offset = EXT4_GOOD_OLD_INODE_SIZE + 4607 EXT4_I(inode)->i_extra_isize; 4608 physical += offset; 4609 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 4610 flags |= FIEMAP_EXTENT_DATA_INLINE; 4611 brelse(iloc.bh); 4612 } else { /* external block */ 4613 physical = EXT4_I(inode)->i_file_acl << blockbits; 4614 length = inode->i_sb->s_blocksize; 4615 } 4616 4617 if (physical) 4618 error = fiemap_fill_next_extent(fieinfo, 0, physical, 4619 length, flags); 4620 return (error < 0 ? error : 0); 4621 } 4622 4623 /* 4624 * ext4_ext_punch_hole 4625 * 4626 * Punches a hole of "length" bytes in a file starting 4627 * at byte "offset" 4628 * 4629 * @inode: The inode of the file to punch a hole in 4630 * @offset: The starting byte offset of the hole 4631 * @length: The length of the hole 4632 * 4633 * Returns the number of blocks removed or negative on err 4634 */ 4635 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length) 4636 { 4637 struct inode *inode = file->f_path.dentry->d_inode; 4638 struct super_block *sb = inode->i_sb; 4639 ext4_lblk_t first_block, stop_block; 4640 struct address_space *mapping = inode->i_mapping; 4641 handle_t *handle; 4642 loff_t first_page, last_page, page_len; 4643 loff_t first_page_offset, last_page_offset; 4644 int credits, err = 0; 4645 4646 /* 4647 * Write out all dirty pages to avoid race conditions 4648 * Then release them. 4649 */ 4650 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4651 err = filemap_write_and_wait_range(mapping, 4652 offset, offset + length - 1); 4653 4654 if (err) 4655 return err; 4656 } 4657 4658 mutex_lock(&inode->i_mutex); 4659 /* It's not possible punch hole on append only file */ 4660 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4661 err = -EPERM; 4662 goto out_mutex; 4663 } 4664 if (IS_SWAPFILE(inode)) { 4665 err = -ETXTBSY; 4666 goto out_mutex; 4667 } 4668 4669 /* No need to punch hole beyond i_size */ 4670 if (offset >= inode->i_size) 4671 goto out_mutex; 4672 4673 /* 4674 * If the hole extends beyond i_size, set the hole 4675 * to end after the page that contains i_size 4676 */ 4677 if (offset + length > inode->i_size) { 4678 length = inode->i_size + 4679 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 4680 offset; 4681 } 4682 4683 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 4684 last_page = (offset + length) >> PAGE_CACHE_SHIFT; 4685 4686 first_page_offset = first_page << PAGE_CACHE_SHIFT; 4687 last_page_offset = last_page << PAGE_CACHE_SHIFT; 4688 4689 /* Now release the pages */ 4690 if (last_page_offset > first_page_offset) { 4691 truncate_pagecache_range(inode, first_page_offset, 4692 last_page_offset - 1); 4693 } 4694 4695 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4696 ext4_inode_block_unlocked_dio(inode); 4697 err = ext4_flush_unwritten_io(inode); 4698 if (err) 4699 goto out_dio; 4700 inode_dio_wait(inode); 4701 4702 credits = ext4_writepage_trans_blocks(inode); 4703 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4704 if (IS_ERR(handle)) { 4705 err = PTR_ERR(handle); 4706 goto out_dio; 4707 } 4708 4709 4710 /* 4711 * Now we need to zero out the non-page-aligned data in the 4712 * pages at the start and tail of the hole, and unmap the buffer 4713 * heads for the block aligned regions of the page that were 4714 * completely zeroed. 4715 */ 4716 if (first_page > last_page) { 4717 /* 4718 * If the file space being truncated is contained within a page 4719 * just zero out and unmap the middle of that page 4720 */ 4721 err = ext4_discard_partial_page_buffers(handle, 4722 mapping, offset, length, 0); 4723 4724 if (err) 4725 goto out; 4726 } else { 4727 /* 4728 * zero out and unmap the partial page that contains 4729 * the start of the hole 4730 */ 4731 page_len = first_page_offset - offset; 4732 if (page_len > 0) { 4733 err = ext4_discard_partial_page_buffers(handle, mapping, 4734 offset, page_len, 0); 4735 if (err) 4736 goto out; 4737 } 4738 4739 /* 4740 * zero out and unmap the partial page that contains 4741 * the end of the hole 4742 */ 4743 page_len = offset + length - last_page_offset; 4744 if (page_len > 0) { 4745 err = ext4_discard_partial_page_buffers(handle, mapping, 4746 last_page_offset, page_len, 0); 4747 if (err) 4748 goto out; 4749 } 4750 } 4751 4752 /* 4753 * If i_size is contained in the last page, we need to 4754 * unmap and zero the partial page after i_size 4755 */ 4756 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page && 4757 inode->i_size % PAGE_CACHE_SIZE != 0) { 4758 4759 page_len = PAGE_CACHE_SIZE - 4760 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 4761 4762 if (page_len > 0) { 4763 err = ext4_discard_partial_page_buffers(handle, 4764 mapping, inode->i_size, page_len, 0); 4765 4766 if (err) 4767 goto out; 4768 } 4769 } 4770 4771 first_block = (offset + sb->s_blocksize - 1) >> 4772 EXT4_BLOCK_SIZE_BITS(sb); 4773 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4774 4775 /* If there are no blocks to remove, return now */ 4776 if (first_block >= stop_block) 4777 goto out; 4778 4779 down_write(&EXT4_I(inode)->i_data_sem); 4780 ext4_discard_preallocations(inode); 4781 4782 err = ext4_es_remove_extent(inode, first_block, 4783 stop_block - first_block); 4784 err = ext4_ext_remove_space(inode, first_block, stop_block - 1); 4785 4786 ext4_discard_preallocations(inode); 4787 4788 if (IS_SYNC(inode)) 4789 ext4_handle_sync(handle); 4790 4791 up_write(&EXT4_I(inode)->i_data_sem); 4792 4793 out: 4794 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4795 ext4_mark_inode_dirty(handle, inode); 4796 ext4_journal_stop(handle); 4797 out_dio: 4798 ext4_inode_resume_unlocked_dio(inode); 4799 out_mutex: 4800 mutex_unlock(&inode->i_mutex); 4801 return err; 4802 } 4803 4804 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4805 __u64 start, __u64 len) 4806 { 4807 ext4_lblk_t start_blk; 4808 int error = 0; 4809 4810 if (ext4_has_inline_data(inode)) { 4811 int has_inline = 1; 4812 4813 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline); 4814 4815 if (has_inline) 4816 return error; 4817 } 4818 4819 /* fallback to generic here if not in extents fmt */ 4820 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4821 return generic_block_fiemap(inode, fieinfo, start, len, 4822 ext4_get_block); 4823 4824 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 4825 return -EBADR; 4826 4827 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 4828 error = ext4_xattr_fiemap(inode, fieinfo); 4829 } else { 4830 ext4_lblk_t len_blks; 4831 __u64 last_blk; 4832 4833 start_blk = start >> inode->i_sb->s_blocksize_bits; 4834 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 4835 if (last_blk >= EXT_MAX_BLOCKS) 4836 last_blk = EXT_MAX_BLOCKS-1; 4837 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 4838 4839 /* 4840 * Walk the extent tree gathering extent information 4841 * and pushing extents back to the user. 4842 */ 4843 error = ext4_fill_fiemap_extents(inode, start_blk, 4844 len_blks, fieinfo); 4845 } 4846 4847 return error; 4848 } 4849