1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 * 6 * Architecture independence: 7 * Copyright (c) 2005, Bull S.A. 8 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 9 */ 10 11 /* 12 * Extents support for EXT4 13 * 14 * TODO: 15 * - ext4*_error() should be used in some situations 16 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 17 * - smart tree reduction 18 */ 19 20 #include <linux/fs.h> 21 #include <linux/time.h> 22 #include <linux/jbd2.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/quotaops.h> 26 #include <linux/string.h> 27 #include <linux/slab.h> 28 #include <linux/uaccess.h> 29 #include <linux/fiemap.h> 30 #include <linux/backing-dev.h> 31 #include <linux/iomap.h> 32 #include "ext4_jbd2.h" 33 #include "ext4_extents.h" 34 #include "xattr.h" 35 36 #include <trace/events/ext4.h> 37 38 /* 39 * used by extent splitting. 40 */ 41 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 42 due to ENOSPC */ 43 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */ 44 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */ 45 46 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */ 47 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */ 48 49 static __le32 ext4_extent_block_csum(struct inode *inode, 50 struct ext4_extent_header *eh) 51 { 52 struct ext4_inode_info *ei = EXT4_I(inode); 53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 54 __u32 csum; 55 56 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, 57 EXT4_EXTENT_TAIL_OFFSET(eh)); 58 return cpu_to_le32(csum); 59 } 60 61 static int ext4_extent_block_csum_verify(struct inode *inode, 62 struct ext4_extent_header *eh) 63 { 64 struct ext4_extent_tail *et; 65 66 if (!ext4_has_metadata_csum(inode->i_sb)) 67 return 1; 68 69 et = find_ext4_extent_tail(eh); 70 if (et->et_checksum != ext4_extent_block_csum(inode, eh)) 71 return 0; 72 return 1; 73 } 74 75 static void ext4_extent_block_csum_set(struct inode *inode, 76 struct ext4_extent_header *eh) 77 { 78 struct ext4_extent_tail *et; 79 80 if (!ext4_has_metadata_csum(inode->i_sb)) 81 return; 82 83 et = find_ext4_extent_tail(eh); 84 et->et_checksum = ext4_extent_block_csum(inode, eh); 85 } 86 87 static int ext4_split_extent_at(handle_t *handle, 88 struct inode *inode, 89 struct ext4_ext_path **ppath, 90 ext4_lblk_t split, 91 int split_flag, 92 int flags); 93 94 static int ext4_ext_trunc_restart_fn(struct inode *inode, int *dropped) 95 { 96 /* 97 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 98 * moment, get_block can be called only for blocks inside i_size since 99 * page cache has been already dropped and writes are blocked by 100 * i_mutex. So we can safely drop the i_data_sem here. 101 */ 102 BUG_ON(EXT4_JOURNAL(inode) == NULL); 103 ext4_discard_preallocations(inode); 104 up_write(&EXT4_I(inode)->i_data_sem); 105 *dropped = 1; 106 return 0; 107 } 108 109 /* 110 * Make sure 'handle' has at least 'check_cred' credits. If not, restart 111 * transaction with 'restart_cred' credits. The function drops i_data_sem 112 * when restarting transaction and gets it after transaction is restarted. 113 * 114 * The function returns 0 on success, 1 if transaction had to be restarted, 115 * and < 0 in case of fatal error. 116 */ 117 int ext4_datasem_ensure_credits(handle_t *handle, struct inode *inode, 118 int check_cred, int restart_cred, 119 int revoke_cred) 120 { 121 int ret; 122 int dropped = 0; 123 124 ret = ext4_journal_ensure_credits_fn(handle, check_cred, restart_cred, 125 revoke_cred, ext4_ext_trunc_restart_fn(inode, &dropped)); 126 if (dropped) 127 down_write(&EXT4_I(inode)->i_data_sem); 128 return ret; 129 } 130 131 /* 132 * could return: 133 * - EROFS 134 * - ENOMEM 135 */ 136 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 137 struct ext4_ext_path *path) 138 { 139 if (path->p_bh) { 140 /* path points to block */ 141 BUFFER_TRACE(path->p_bh, "get_write_access"); 142 return ext4_journal_get_write_access(handle, path->p_bh); 143 } 144 /* path points to leaf/index in inode body */ 145 /* we use in-core data, no need to protect them */ 146 return 0; 147 } 148 149 /* 150 * could return: 151 * - EROFS 152 * - ENOMEM 153 * - EIO 154 */ 155 static int __ext4_ext_dirty(const char *where, unsigned int line, 156 handle_t *handle, struct inode *inode, 157 struct ext4_ext_path *path) 158 { 159 int err; 160 161 WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); 162 if (path->p_bh) { 163 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); 164 /* path points to block */ 165 err = __ext4_handle_dirty_metadata(where, line, handle, 166 inode, path->p_bh); 167 } else { 168 /* path points to leaf/index in inode body */ 169 err = ext4_mark_inode_dirty(handle, inode); 170 } 171 return err; 172 } 173 174 #define ext4_ext_dirty(handle, inode, path) \ 175 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path)) 176 177 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 178 struct ext4_ext_path *path, 179 ext4_lblk_t block) 180 { 181 if (path) { 182 int depth = path->p_depth; 183 struct ext4_extent *ex; 184 185 /* 186 * Try to predict block placement assuming that we are 187 * filling in a file which will eventually be 188 * non-sparse --- i.e., in the case of libbfd writing 189 * an ELF object sections out-of-order but in a way 190 * the eventually results in a contiguous object or 191 * executable file, or some database extending a table 192 * space file. However, this is actually somewhat 193 * non-ideal if we are writing a sparse file such as 194 * qemu or KVM writing a raw image file that is going 195 * to stay fairly sparse, since it will end up 196 * fragmenting the file system's free space. Maybe we 197 * should have some hueristics or some way to allow 198 * userspace to pass a hint to file system, 199 * especially if the latter case turns out to be 200 * common. 201 */ 202 ex = path[depth].p_ext; 203 if (ex) { 204 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 205 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 206 207 if (block > ext_block) 208 return ext_pblk + (block - ext_block); 209 else 210 return ext_pblk - (ext_block - block); 211 } 212 213 /* it looks like index is empty; 214 * try to find starting block from index itself */ 215 if (path[depth].p_bh) 216 return path[depth].p_bh->b_blocknr; 217 } 218 219 /* OK. use inode's group */ 220 return ext4_inode_to_goal_block(inode); 221 } 222 223 /* 224 * Allocation for a meta data block 225 */ 226 static ext4_fsblk_t 227 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 228 struct ext4_ext_path *path, 229 struct ext4_extent *ex, int *err, unsigned int flags) 230 { 231 ext4_fsblk_t goal, newblock; 232 233 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 234 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 235 NULL, err); 236 return newblock; 237 } 238 239 static inline int ext4_ext_space_block(struct inode *inode, int check) 240 { 241 int size; 242 243 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 244 / sizeof(struct ext4_extent); 245 #ifdef AGGRESSIVE_TEST 246 if (!check && size > 6) 247 size = 6; 248 #endif 249 return size; 250 } 251 252 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 253 { 254 int size; 255 256 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 257 / sizeof(struct ext4_extent_idx); 258 #ifdef AGGRESSIVE_TEST 259 if (!check && size > 5) 260 size = 5; 261 #endif 262 return size; 263 } 264 265 static inline int ext4_ext_space_root(struct inode *inode, int check) 266 { 267 int size; 268 269 size = sizeof(EXT4_I(inode)->i_data); 270 size -= sizeof(struct ext4_extent_header); 271 size /= sizeof(struct ext4_extent); 272 #ifdef AGGRESSIVE_TEST 273 if (!check && size > 3) 274 size = 3; 275 #endif 276 return size; 277 } 278 279 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 280 { 281 int size; 282 283 size = sizeof(EXT4_I(inode)->i_data); 284 size -= sizeof(struct ext4_extent_header); 285 size /= sizeof(struct ext4_extent_idx); 286 #ifdef AGGRESSIVE_TEST 287 if (!check && size > 4) 288 size = 4; 289 #endif 290 return size; 291 } 292 293 static inline int 294 ext4_force_split_extent_at(handle_t *handle, struct inode *inode, 295 struct ext4_ext_path **ppath, ext4_lblk_t lblk, 296 int nofail) 297 { 298 struct ext4_ext_path *path = *ppath; 299 int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext); 300 301 return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ? 302 EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0, 303 EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO | 304 (nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0)); 305 } 306 307 static int 308 ext4_ext_max_entries(struct inode *inode, int depth) 309 { 310 int max; 311 312 if (depth == ext_depth(inode)) { 313 if (depth == 0) 314 max = ext4_ext_space_root(inode, 1); 315 else 316 max = ext4_ext_space_root_idx(inode, 1); 317 } else { 318 if (depth == 0) 319 max = ext4_ext_space_block(inode, 1); 320 else 321 max = ext4_ext_space_block_idx(inode, 1); 322 } 323 324 return max; 325 } 326 327 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 328 { 329 ext4_fsblk_t block = ext4_ext_pblock(ext); 330 int len = ext4_ext_get_actual_len(ext); 331 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block); 332 333 /* 334 * We allow neither: 335 * - zero length 336 * - overflow/wrap-around 337 */ 338 if (lblock + len <= lblock) 339 return 0; 340 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 341 } 342 343 static int ext4_valid_extent_idx(struct inode *inode, 344 struct ext4_extent_idx *ext_idx) 345 { 346 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 347 348 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 349 } 350 351 static int ext4_valid_extent_entries(struct inode *inode, 352 struct ext4_extent_header *eh, 353 ext4_fsblk_t *pblk, int depth) 354 { 355 unsigned short entries; 356 if (eh->eh_entries == 0) 357 return 1; 358 359 entries = le16_to_cpu(eh->eh_entries); 360 361 if (depth == 0) { 362 /* leaf entries */ 363 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 364 ext4_lblk_t lblock = 0; 365 ext4_lblk_t prev = 0; 366 int len = 0; 367 while (entries) { 368 if (!ext4_valid_extent(inode, ext)) 369 return 0; 370 371 /* Check for overlapping extents */ 372 lblock = le32_to_cpu(ext->ee_block); 373 len = ext4_ext_get_actual_len(ext); 374 if ((lblock <= prev) && prev) { 375 *pblk = ext4_ext_pblock(ext); 376 return 0; 377 } 378 ext++; 379 entries--; 380 prev = lblock + len - 1; 381 } 382 } else { 383 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 384 while (entries) { 385 if (!ext4_valid_extent_idx(inode, ext_idx)) 386 return 0; 387 ext_idx++; 388 entries--; 389 } 390 } 391 return 1; 392 } 393 394 static int __ext4_ext_check(const char *function, unsigned int line, 395 struct inode *inode, struct ext4_extent_header *eh, 396 int depth, ext4_fsblk_t pblk) 397 { 398 const char *error_msg; 399 int max = 0, err = -EFSCORRUPTED; 400 401 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 402 error_msg = "invalid magic"; 403 goto corrupted; 404 } 405 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 406 error_msg = "unexpected eh_depth"; 407 goto corrupted; 408 } 409 if (unlikely(eh->eh_max == 0)) { 410 error_msg = "invalid eh_max"; 411 goto corrupted; 412 } 413 max = ext4_ext_max_entries(inode, depth); 414 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 415 error_msg = "too large eh_max"; 416 goto corrupted; 417 } 418 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 419 error_msg = "invalid eh_entries"; 420 goto corrupted; 421 } 422 if (!ext4_valid_extent_entries(inode, eh, &pblk, depth)) { 423 error_msg = "invalid extent entries"; 424 goto corrupted; 425 } 426 if (unlikely(depth > 32)) { 427 error_msg = "too large eh_depth"; 428 goto corrupted; 429 } 430 /* Verify checksum on non-root extent tree nodes */ 431 if (ext_depth(inode) != depth && 432 !ext4_extent_block_csum_verify(inode, eh)) { 433 error_msg = "extent tree corrupted"; 434 err = -EFSBADCRC; 435 goto corrupted; 436 } 437 return 0; 438 439 corrupted: 440 ext4_error_inode_err(inode, function, line, 0, -err, 441 "pblk %llu bad header/extent: %s - magic %x, " 442 "entries %u, max %u(%u), depth %u(%u)", 443 (unsigned long long) pblk, error_msg, 444 le16_to_cpu(eh->eh_magic), 445 le16_to_cpu(eh->eh_entries), 446 le16_to_cpu(eh->eh_max), 447 max, le16_to_cpu(eh->eh_depth), depth); 448 return err; 449 } 450 451 #define ext4_ext_check(inode, eh, depth, pblk) \ 452 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk)) 453 454 int ext4_ext_check_inode(struct inode *inode) 455 { 456 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0); 457 } 458 459 static void ext4_cache_extents(struct inode *inode, 460 struct ext4_extent_header *eh) 461 { 462 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh); 463 ext4_lblk_t prev = 0; 464 int i; 465 466 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) { 467 unsigned int status = EXTENT_STATUS_WRITTEN; 468 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block); 469 int len = ext4_ext_get_actual_len(ex); 470 471 if (prev && (prev != lblk)) 472 ext4_es_cache_extent(inode, prev, lblk - prev, ~0, 473 EXTENT_STATUS_HOLE); 474 475 if (ext4_ext_is_unwritten(ex)) 476 status = EXTENT_STATUS_UNWRITTEN; 477 ext4_es_cache_extent(inode, lblk, len, 478 ext4_ext_pblock(ex), status); 479 prev = lblk + len; 480 } 481 } 482 483 static struct buffer_head * 484 __read_extent_tree_block(const char *function, unsigned int line, 485 struct inode *inode, ext4_fsblk_t pblk, int depth, 486 int flags) 487 { 488 struct buffer_head *bh; 489 int err; 490 491 bh = sb_getblk_gfp(inode->i_sb, pblk, __GFP_MOVABLE | GFP_NOFS); 492 if (unlikely(!bh)) 493 return ERR_PTR(-ENOMEM); 494 495 if (!bh_uptodate_or_lock(bh)) { 496 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_); 497 err = bh_submit_read(bh); 498 if (err < 0) 499 goto errout; 500 } 501 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE)) 502 return bh; 503 if (!ext4_has_feature_journal(inode->i_sb) || 504 (inode->i_ino != 505 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) { 506 err = __ext4_ext_check(function, line, inode, 507 ext_block_hdr(bh), depth, pblk); 508 if (err) 509 goto errout; 510 } 511 set_buffer_verified(bh); 512 /* 513 * If this is a leaf block, cache all of its entries 514 */ 515 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) { 516 struct ext4_extent_header *eh = ext_block_hdr(bh); 517 ext4_cache_extents(inode, eh); 518 } 519 return bh; 520 errout: 521 put_bh(bh); 522 return ERR_PTR(err); 523 524 } 525 526 #define read_extent_tree_block(inode, pblk, depth, flags) \ 527 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \ 528 (depth), (flags)) 529 530 /* 531 * This function is called to cache a file's extent information in the 532 * extent status tree 533 */ 534 int ext4_ext_precache(struct inode *inode) 535 { 536 struct ext4_inode_info *ei = EXT4_I(inode); 537 struct ext4_ext_path *path = NULL; 538 struct buffer_head *bh; 539 int i = 0, depth, ret = 0; 540 541 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 542 return 0; /* not an extent-mapped inode */ 543 544 down_read(&ei->i_data_sem); 545 depth = ext_depth(inode); 546 547 /* Don't cache anything if there are no external extent blocks */ 548 if (!depth) { 549 up_read(&ei->i_data_sem); 550 return ret; 551 } 552 553 path = kcalloc(depth + 1, sizeof(struct ext4_ext_path), 554 GFP_NOFS); 555 if (path == NULL) { 556 up_read(&ei->i_data_sem); 557 return -ENOMEM; 558 } 559 560 path[0].p_hdr = ext_inode_hdr(inode); 561 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0); 562 if (ret) 563 goto out; 564 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr); 565 while (i >= 0) { 566 /* 567 * If this is a leaf block or we've reached the end of 568 * the index block, go up 569 */ 570 if ((i == depth) || 571 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) { 572 brelse(path[i].p_bh); 573 path[i].p_bh = NULL; 574 i--; 575 continue; 576 } 577 bh = read_extent_tree_block(inode, 578 ext4_idx_pblock(path[i].p_idx++), 579 depth - i - 1, 580 EXT4_EX_FORCE_CACHE); 581 if (IS_ERR(bh)) { 582 ret = PTR_ERR(bh); 583 break; 584 } 585 i++; 586 path[i].p_bh = bh; 587 path[i].p_hdr = ext_block_hdr(bh); 588 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr); 589 } 590 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED); 591 out: 592 up_read(&ei->i_data_sem); 593 ext4_ext_drop_refs(path); 594 kfree(path); 595 return ret; 596 } 597 598 #ifdef EXT_DEBUG 599 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 600 { 601 int k, l = path->p_depth; 602 603 ext_debug("path:"); 604 for (k = 0; k <= l; k++, path++) { 605 if (path->p_idx) { 606 ext_debug(" %d->%llu", 607 le32_to_cpu(path->p_idx->ei_block), 608 ext4_idx_pblock(path->p_idx)); 609 } else if (path->p_ext) { 610 ext_debug(" %d:[%d]%d:%llu ", 611 le32_to_cpu(path->p_ext->ee_block), 612 ext4_ext_is_unwritten(path->p_ext), 613 ext4_ext_get_actual_len(path->p_ext), 614 ext4_ext_pblock(path->p_ext)); 615 } else 616 ext_debug(" []"); 617 } 618 ext_debug("\n"); 619 } 620 621 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 622 { 623 int depth = ext_depth(inode); 624 struct ext4_extent_header *eh; 625 struct ext4_extent *ex; 626 int i; 627 628 if (!path) 629 return; 630 631 eh = path[depth].p_hdr; 632 ex = EXT_FIRST_EXTENT(eh); 633 634 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 635 636 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 637 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 638 ext4_ext_is_unwritten(ex), 639 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 640 } 641 ext_debug("\n"); 642 } 643 644 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 645 ext4_fsblk_t newblock, int level) 646 { 647 int depth = ext_depth(inode); 648 struct ext4_extent *ex; 649 650 if (depth != level) { 651 struct ext4_extent_idx *idx; 652 idx = path[level].p_idx; 653 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 654 ext_debug("%d: move %d:%llu in new index %llu\n", level, 655 le32_to_cpu(idx->ei_block), 656 ext4_idx_pblock(idx), 657 newblock); 658 idx++; 659 } 660 661 return; 662 } 663 664 ex = path[depth].p_ext; 665 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 666 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 667 le32_to_cpu(ex->ee_block), 668 ext4_ext_pblock(ex), 669 ext4_ext_is_unwritten(ex), 670 ext4_ext_get_actual_len(ex), 671 newblock); 672 ex++; 673 } 674 } 675 676 #else 677 #define ext4_ext_show_path(inode, path) 678 #define ext4_ext_show_leaf(inode, path) 679 #define ext4_ext_show_move(inode, path, newblock, level) 680 #endif 681 682 void ext4_ext_drop_refs(struct ext4_ext_path *path) 683 { 684 int depth, i; 685 686 if (!path) 687 return; 688 depth = path->p_depth; 689 for (i = 0; i <= depth; i++, path++) { 690 if (path->p_bh) { 691 brelse(path->p_bh); 692 path->p_bh = NULL; 693 } 694 } 695 } 696 697 /* 698 * ext4_ext_binsearch_idx: 699 * binary search for the closest index of the given block 700 * the header must be checked before calling this 701 */ 702 static void 703 ext4_ext_binsearch_idx(struct inode *inode, 704 struct ext4_ext_path *path, ext4_lblk_t block) 705 { 706 struct ext4_extent_header *eh = path->p_hdr; 707 struct ext4_extent_idx *r, *l, *m; 708 709 710 ext_debug("binsearch for %u(idx): ", block); 711 712 l = EXT_FIRST_INDEX(eh) + 1; 713 r = EXT_LAST_INDEX(eh); 714 while (l <= r) { 715 m = l + (r - l) / 2; 716 if (block < le32_to_cpu(m->ei_block)) 717 r = m - 1; 718 else 719 l = m + 1; 720 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 721 m, le32_to_cpu(m->ei_block), 722 r, le32_to_cpu(r->ei_block)); 723 } 724 725 path->p_idx = l - 1; 726 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), 727 ext4_idx_pblock(path->p_idx)); 728 729 #ifdef CHECK_BINSEARCH 730 { 731 struct ext4_extent_idx *chix, *ix; 732 int k; 733 734 chix = ix = EXT_FIRST_INDEX(eh); 735 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 736 if (k != 0 && le32_to_cpu(ix->ei_block) <= 737 le32_to_cpu(ix[-1].ei_block)) { 738 printk(KERN_DEBUG "k=%d, ix=0x%p, " 739 "first=0x%p\n", k, 740 ix, EXT_FIRST_INDEX(eh)); 741 printk(KERN_DEBUG "%u <= %u\n", 742 le32_to_cpu(ix->ei_block), 743 le32_to_cpu(ix[-1].ei_block)); 744 } 745 BUG_ON(k && le32_to_cpu(ix->ei_block) 746 <= le32_to_cpu(ix[-1].ei_block)); 747 if (block < le32_to_cpu(ix->ei_block)) 748 break; 749 chix = ix; 750 } 751 BUG_ON(chix != path->p_idx); 752 } 753 #endif 754 755 } 756 757 /* 758 * ext4_ext_binsearch: 759 * binary search for closest extent of the given block 760 * the header must be checked before calling this 761 */ 762 static void 763 ext4_ext_binsearch(struct inode *inode, 764 struct ext4_ext_path *path, ext4_lblk_t block) 765 { 766 struct ext4_extent_header *eh = path->p_hdr; 767 struct ext4_extent *r, *l, *m; 768 769 if (eh->eh_entries == 0) { 770 /* 771 * this leaf is empty: 772 * we get such a leaf in split/add case 773 */ 774 return; 775 } 776 777 ext_debug("binsearch for %u: ", block); 778 779 l = EXT_FIRST_EXTENT(eh) + 1; 780 r = EXT_LAST_EXTENT(eh); 781 782 while (l <= r) { 783 m = l + (r - l) / 2; 784 if (block < le32_to_cpu(m->ee_block)) 785 r = m - 1; 786 else 787 l = m + 1; 788 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 789 m, le32_to_cpu(m->ee_block), 790 r, le32_to_cpu(r->ee_block)); 791 } 792 793 path->p_ext = l - 1; 794 ext_debug(" -> %d:%llu:[%d]%d ", 795 le32_to_cpu(path->p_ext->ee_block), 796 ext4_ext_pblock(path->p_ext), 797 ext4_ext_is_unwritten(path->p_ext), 798 ext4_ext_get_actual_len(path->p_ext)); 799 800 #ifdef CHECK_BINSEARCH 801 { 802 struct ext4_extent *chex, *ex; 803 int k; 804 805 chex = ex = EXT_FIRST_EXTENT(eh); 806 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 807 BUG_ON(k && le32_to_cpu(ex->ee_block) 808 <= le32_to_cpu(ex[-1].ee_block)); 809 if (block < le32_to_cpu(ex->ee_block)) 810 break; 811 chex = ex; 812 } 813 BUG_ON(chex != path->p_ext); 814 } 815 #endif 816 817 } 818 819 void ext4_ext_tree_init(handle_t *handle, struct inode *inode) 820 { 821 struct ext4_extent_header *eh; 822 823 eh = ext_inode_hdr(inode); 824 eh->eh_depth = 0; 825 eh->eh_entries = 0; 826 eh->eh_magic = EXT4_EXT_MAGIC; 827 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 828 ext4_mark_inode_dirty(handle, inode); 829 } 830 831 struct ext4_ext_path * 832 ext4_find_extent(struct inode *inode, ext4_lblk_t block, 833 struct ext4_ext_path **orig_path, int flags) 834 { 835 struct ext4_extent_header *eh; 836 struct buffer_head *bh; 837 struct ext4_ext_path *path = orig_path ? *orig_path : NULL; 838 short int depth, i, ppos = 0; 839 int ret; 840 841 eh = ext_inode_hdr(inode); 842 depth = ext_depth(inode); 843 if (depth < 0 || depth > EXT4_MAX_EXTENT_DEPTH) { 844 EXT4_ERROR_INODE(inode, "inode has invalid extent depth: %d", 845 depth); 846 ret = -EFSCORRUPTED; 847 goto err; 848 } 849 850 if (path) { 851 ext4_ext_drop_refs(path); 852 if (depth > path[0].p_maxdepth) { 853 kfree(path); 854 *orig_path = path = NULL; 855 } 856 } 857 if (!path) { 858 /* account possible depth increase */ 859 path = kcalloc(depth + 2, sizeof(struct ext4_ext_path), 860 GFP_NOFS); 861 if (unlikely(!path)) 862 return ERR_PTR(-ENOMEM); 863 path[0].p_maxdepth = depth + 1; 864 } 865 path[0].p_hdr = eh; 866 path[0].p_bh = NULL; 867 868 i = depth; 869 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) 870 ext4_cache_extents(inode, eh); 871 /* walk through the tree */ 872 while (i) { 873 ext_debug("depth %d: num %d, max %d\n", 874 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 875 876 ext4_ext_binsearch_idx(inode, path + ppos, block); 877 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 878 path[ppos].p_depth = i; 879 path[ppos].p_ext = NULL; 880 881 bh = read_extent_tree_block(inode, path[ppos].p_block, --i, 882 flags); 883 if (IS_ERR(bh)) { 884 ret = PTR_ERR(bh); 885 goto err; 886 } 887 888 eh = ext_block_hdr(bh); 889 ppos++; 890 path[ppos].p_bh = bh; 891 path[ppos].p_hdr = eh; 892 } 893 894 path[ppos].p_depth = i; 895 path[ppos].p_ext = NULL; 896 path[ppos].p_idx = NULL; 897 898 /* find extent */ 899 ext4_ext_binsearch(inode, path + ppos, block); 900 /* if not an empty leaf */ 901 if (path[ppos].p_ext) 902 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 903 904 ext4_ext_show_path(inode, path); 905 906 return path; 907 908 err: 909 ext4_ext_drop_refs(path); 910 kfree(path); 911 if (orig_path) 912 *orig_path = NULL; 913 return ERR_PTR(ret); 914 } 915 916 /* 917 * ext4_ext_insert_index: 918 * insert new index [@logical;@ptr] into the block at @curp; 919 * check where to insert: before @curp or after @curp 920 */ 921 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 922 struct ext4_ext_path *curp, 923 int logical, ext4_fsblk_t ptr) 924 { 925 struct ext4_extent_idx *ix; 926 int len, err; 927 928 err = ext4_ext_get_access(handle, inode, curp); 929 if (err) 930 return err; 931 932 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 933 EXT4_ERROR_INODE(inode, 934 "logical %d == ei_block %d!", 935 logical, le32_to_cpu(curp->p_idx->ei_block)); 936 return -EFSCORRUPTED; 937 } 938 939 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 940 >= le16_to_cpu(curp->p_hdr->eh_max))) { 941 EXT4_ERROR_INODE(inode, 942 "eh_entries %d >= eh_max %d!", 943 le16_to_cpu(curp->p_hdr->eh_entries), 944 le16_to_cpu(curp->p_hdr->eh_max)); 945 return -EFSCORRUPTED; 946 } 947 948 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 949 /* insert after */ 950 ext_debug("insert new index %d after: %llu\n", logical, ptr); 951 ix = curp->p_idx + 1; 952 } else { 953 /* insert before */ 954 ext_debug("insert new index %d before: %llu\n", logical, ptr); 955 ix = curp->p_idx; 956 } 957 958 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 959 BUG_ON(len < 0); 960 if (len > 0) { 961 ext_debug("insert new index %d: " 962 "move %d indices from 0x%p to 0x%p\n", 963 logical, len, ix, ix + 1); 964 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 965 } 966 967 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 968 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 969 return -EFSCORRUPTED; 970 } 971 972 ix->ei_block = cpu_to_le32(logical); 973 ext4_idx_store_pblock(ix, ptr); 974 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 975 976 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 977 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 978 return -EFSCORRUPTED; 979 } 980 981 err = ext4_ext_dirty(handle, inode, curp); 982 ext4_std_error(inode->i_sb, err); 983 984 return err; 985 } 986 987 /* 988 * ext4_ext_split: 989 * inserts new subtree into the path, using free index entry 990 * at depth @at: 991 * - allocates all needed blocks (new leaf and all intermediate index blocks) 992 * - makes decision where to split 993 * - moves remaining extents and index entries (right to the split point) 994 * into the newly allocated blocks 995 * - initializes subtree 996 */ 997 static int ext4_ext_split(handle_t *handle, struct inode *inode, 998 unsigned int flags, 999 struct ext4_ext_path *path, 1000 struct ext4_extent *newext, int at) 1001 { 1002 struct buffer_head *bh = NULL; 1003 int depth = ext_depth(inode); 1004 struct ext4_extent_header *neh; 1005 struct ext4_extent_idx *fidx; 1006 int i = at, k, m, a; 1007 ext4_fsblk_t newblock, oldblock; 1008 __le32 border; 1009 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 1010 int err = 0; 1011 size_t ext_size = 0; 1012 1013 /* make decision: where to split? */ 1014 /* FIXME: now decision is simplest: at current extent */ 1015 1016 /* if current leaf will be split, then we should use 1017 * border from split point */ 1018 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 1019 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 1020 return -EFSCORRUPTED; 1021 } 1022 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 1023 border = path[depth].p_ext[1].ee_block; 1024 ext_debug("leaf will be split." 1025 " next leaf starts at %d\n", 1026 le32_to_cpu(border)); 1027 } else { 1028 border = newext->ee_block; 1029 ext_debug("leaf will be added." 1030 " next leaf starts at %d\n", 1031 le32_to_cpu(border)); 1032 } 1033 1034 /* 1035 * If error occurs, then we break processing 1036 * and mark filesystem read-only. index won't 1037 * be inserted and tree will be in consistent 1038 * state. Next mount will repair buffers too. 1039 */ 1040 1041 /* 1042 * Get array to track all allocated blocks. 1043 * We need this to handle errors and free blocks 1044 * upon them. 1045 */ 1046 ablocks = kcalloc(depth, sizeof(ext4_fsblk_t), GFP_NOFS); 1047 if (!ablocks) 1048 return -ENOMEM; 1049 1050 /* allocate all needed blocks */ 1051 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 1052 for (a = 0; a < depth - at; a++) { 1053 newblock = ext4_ext_new_meta_block(handle, inode, path, 1054 newext, &err, flags); 1055 if (newblock == 0) 1056 goto cleanup; 1057 ablocks[a] = newblock; 1058 } 1059 1060 /* initialize new leaf */ 1061 newblock = ablocks[--a]; 1062 if (unlikely(newblock == 0)) { 1063 EXT4_ERROR_INODE(inode, "newblock == 0!"); 1064 err = -EFSCORRUPTED; 1065 goto cleanup; 1066 } 1067 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS); 1068 if (unlikely(!bh)) { 1069 err = -ENOMEM; 1070 goto cleanup; 1071 } 1072 lock_buffer(bh); 1073 1074 err = ext4_journal_get_create_access(handle, bh); 1075 if (err) 1076 goto cleanup; 1077 1078 neh = ext_block_hdr(bh); 1079 neh->eh_entries = 0; 1080 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1081 neh->eh_magic = EXT4_EXT_MAGIC; 1082 neh->eh_depth = 0; 1083 1084 /* move remainder of path[depth] to the new leaf */ 1085 if (unlikely(path[depth].p_hdr->eh_entries != 1086 path[depth].p_hdr->eh_max)) { 1087 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 1088 path[depth].p_hdr->eh_entries, 1089 path[depth].p_hdr->eh_max); 1090 err = -EFSCORRUPTED; 1091 goto cleanup; 1092 } 1093 /* start copy from next extent */ 1094 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 1095 ext4_ext_show_move(inode, path, newblock, depth); 1096 if (m) { 1097 struct ext4_extent *ex; 1098 ex = EXT_FIRST_EXTENT(neh); 1099 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 1100 le16_add_cpu(&neh->eh_entries, m); 1101 } 1102 1103 /* zero out unused area in the extent block */ 1104 ext_size = sizeof(struct ext4_extent_header) + 1105 sizeof(struct ext4_extent) * le16_to_cpu(neh->eh_entries); 1106 memset(bh->b_data + ext_size, 0, inode->i_sb->s_blocksize - ext_size); 1107 ext4_extent_block_csum_set(inode, neh); 1108 set_buffer_uptodate(bh); 1109 unlock_buffer(bh); 1110 1111 err = ext4_handle_dirty_metadata(handle, inode, bh); 1112 if (err) 1113 goto cleanup; 1114 brelse(bh); 1115 bh = NULL; 1116 1117 /* correct old leaf */ 1118 if (m) { 1119 err = ext4_ext_get_access(handle, inode, path + depth); 1120 if (err) 1121 goto cleanup; 1122 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 1123 err = ext4_ext_dirty(handle, inode, path + depth); 1124 if (err) 1125 goto cleanup; 1126 1127 } 1128 1129 /* create intermediate indexes */ 1130 k = depth - at - 1; 1131 if (unlikely(k < 0)) { 1132 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 1133 err = -EFSCORRUPTED; 1134 goto cleanup; 1135 } 1136 if (k) 1137 ext_debug("create %d intermediate indices\n", k); 1138 /* insert new index into current index block */ 1139 /* current depth stored in i var */ 1140 i = depth - 1; 1141 while (k--) { 1142 oldblock = newblock; 1143 newblock = ablocks[--a]; 1144 bh = sb_getblk(inode->i_sb, newblock); 1145 if (unlikely(!bh)) { 1146 err = -ENOMEM; 1147 goto cleanup; 1148 } 1149 lock_buffer(bh); 1150 1151 err = ext4_journal_get_create_access(handle, bh); 1152 if (err) 1153 goto cleanup; 1154 1155 neh = ext_block_hdr(bh); 1156 neh->eh_entries = cpu_to_le16(1); 1157 neh->eh_magic = EXT4_EXT_MAGIC; 1158 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1159 neh->eh_depth = cpu_to_le16(depth - i); 1160 fidx = EXT_FIRST_INDEX(neh); 1161 fidx->ei_block = border; 1162 ext4_idx_store_pblock(fidx, oldblock); 1163 1164 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 1165 i, newblock, le32_to_cpu(border), oldblock); 1166 1167 /* move remainder of path[i] to the new index block */ 1168 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 1169 EXT_LAST_INDEX(path[i].p_hdr))) { 1170 EXT4_ERROR_INODE(inode, 1171 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 1172 le32_to_cpu(path[i].p_ext->ee_block)); 1173 err = -EFSCORRUPTED; 1174 goto cleanup; 1175 } 1176 /* start copy indexes */ 1177 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 1178 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 1179 EXT_MAX_INDEX(path[i].p_hdr)); 1180 ext4_ext_show_move(inode, path, newblock, i); 1181 if (m) { 1182 memmove(++fidx, path[i].p_idx, 1183 sizeof(struct ext4_extent_idx) * m); 1184 le16_add_cpu(&neh->eh_entries, m); 1185 } 1186 /* zero out unused area in the extent block */ 1187 ext_size = sizeof(struct ext4_extent_header) + 1188 (sizeof(struct ext4_extent) * le16_to_cpu(neh->eh_entries)); 1189 memset(bh->b_data + ext_size, 0, 1190 inode->i_sb->s_blocksize - ext_size); 1191 ext4_extent_block_csum_set(inode, neh); 1192 set_buffer_uptodate(bh); 1193 unlock_buffer(bh); 1194 1195 err = ext4_handle_dirty_metadata(handle, inode, bh); 1196 if (err) 1197 goto cleanup; 1198 brelse(bh); 1199 bh = NULL; 1200 1201 /* correct old index */ 1202 if (m) { 1203 err = ext4_ext_get_access(handle, inode, path + i); 1204 if (err) 1205 goto cleanup; 1206 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1207 err = ext4_ext_dirty(handle, inode, path + i); 1208 if (err) 1209 goto cleanup; 1210 } 1211 1212 i--; 1213 } 1214 1215 /* insert new index */ 1216 err = ext4_ext_insert_index(handle, inode, path + at, 1217 le32_to_cpu(border), newblock); 1218 1219 cleanup: 1220 if (bh) { 1221 if (buffer_locked(bh)) 1222 unlock_buffer(bh); 1223 brelse(bh); 1224 } 1225 1226 if (err) { 1227 /* free all allocated blocks in error case */ 1228 for (i = 0; i < depth; i++) { 1229 if (!ablocks[i]) 1230 continue; 1231 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1232 EXT4_FREE_BLOCKS_METADATA); 1233 } 1234 } 1235 kfree(ablocks); 1236 1237 return err; 1238 } 1239 1240 /* 1241 * ext4_ext_grow_indepth: 1242 * implements tree growing procedure: 1243 * - allocates new block 1244 * - moves top-level data (index block or leaf) into the new block 1245 * - initializes new top-level, creating index that points to the 1246 * just created block 1247 */ 1248 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1249 unsigned int flags) 1250 { 1251 struct ext4_extent_header *neh; 1252 struct buffer_head *bh; 1253 ext4_fsblk_t newblock, goal = 0; 1254 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 1255 int err = 0; 1256 size_t ext_size = 0; 1257 1258 /* Try to prepend new index to old one */ 1259 if (ext_depth(inode)) 1260 goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode))); 1261 if (goal > le32_to_cpu(es->s_first_data_block)) { 1262 flags |= EXT4_MB_HINT_TRY_GOAL; 1263 goal--; 1264 } else 1265 goal = ext4_inode_to_goal_block(inode); 1266 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 1267 NULL, &err); 1268 if (newblock == 0) 1269 return err; 1270 1271 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS); 1272 if (unlikely(!bh)) 1273 return -ENOMEM; 1274 lock_buffer(bh); 1275 1276 err = ext4_journal_get_create_access(handle, bh); 1277 if (err) { 1278 unlock_buffer(bh); 1279 goto out; 1280 } 1281 1282 ext_size = sizeof(EXT4_I(inode)->i_data); 1283 /* move top-level index/leaf into new block */ 1284 memmove(bh->b_data, EXT4_I(inode)->i_data, ext_size); 1285 /* zero out unused area in the extent block */ 1286 memset(bh->b_data + ext_size, 0, inode->i_sb->s_blocksize - ext_size); 1287 1288 /* set size of new block */ 1289 neh = ext_block_hdr(bh); 1290 /* old root could have indexes or leaves 1291 * so calculate e_max right way */ 1292 if (ext_depth(inode)) 1293 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1294 else 1295 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1296 neh->eh_magic = EXT4_EXT_MAGIC; 1297 ext4_extent_block_csum_set(inode, neh); 1298 set_buffer_uptodate(bh); 1299 unlock_buffer(bh); 1300 1301 err = ext4_handle_dirty_metadata(handle, inode, bh); 1302 if (err) 1303 goto out; 1304 1305 /* Update top-level index: num,max,pointer */ 1306 neh = ext_inode_hdr(inode); 1307 neh->eh_entries = cpu_to_le16(1); 1308 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1309 if (neh->eh_depth == 0) { 1310 /* Root extent block becomes index block */ 1311 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1312 EXT_FIRST_INDEX(neh)->ei_block = 1313 EXT_FIRST_EXTENT(neh)->ee_block; 1314 } 1315 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1316 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1317 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1318 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1319 1320 le16_add_cpu(&neh->eh_depth, 1); 1321 err = ext4_mark_inode_dirty(handle, inode); 1322 out: 1323 brelse(bh); 1324 1325 return err; 1326 } 1327 1328 /* 1329 * ext4_ext_create_new_leaf: 1330 * finds empty index and adds new leaf. 1331 * if no free index is found, then it requests in-depth growing. 1332 */ 1333 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1334 unsigned int mb_flags, 1335 unsigned int gb_flags, 1336 struct ext4_ext_path **ppath, 1337 struct ext4_extent *newext) 1338 { 1339 struct ext4_ext_path *path = *ppath; 1340 struct ext4_ext_path *curp; 1341 int depth, i, err = 0; 1342 1343 repeat: 1344 i = depth = ext_depth(inode); 1345 1346 /* walk up to the tree and look for free index entry */ 1347 curp = path + depth; 1348 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1349 i--; 1350 curp--; 1351 } 1352 1353 /* we use already allocated block for index block, 1354 * so subsequent data blocks should be contiguous */ 1355 if (EXT_HAS_FREE_INDEX(curp)) { 1356 /* if we found index with free entry, then use that 1357 * entry: create all needed subtree and add new leaf */ 1358 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i); 1359 if (err) 1360 goto out; 1361 1362 /* refill path */ 1363 path = ext4_find_extent(inode, 1364 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1365 ppath, gb_flags); 1366 if (IS_ERR(path)) 1367 err = PTR_ERR(path); 1368 } else { 1369 /* tree is full, time to grow in depth */ 1370 err = ext4_ext_grow_indepth(handle, inode, mb_flags); 1371 if (err) 1372 goto out; 1373 1374 /* refill path */ 1375 path = ext4_find_extent(inode, 1376 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1377 ppath, gb_flags); 1378 if (IS_ERR(path)) { 1379 err = PTR_ERR(path); 1380 goto out; 1381 } 1382 1383 /* 1384 * only first (depth 0 -> 1) produces free space; 1385 * in all other cases we have to split the grown tree 1386 */ 1387 depth = ext_depth(inode); 1388 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1389 /* now we need to split */ 1390 goto repeat; 1391 } 1392 } 1393 1394 out: 1395 return err; 1396 } 1397 1398 /* 1399 * search the closest allocated block to the left for *logical 1400 * and returns it at @logical + it's physical address at @phys 1401 * if *logical is the smallest allocated block, the function 1402 * returns 0 at @phys 1403 * return value contains 0 (success) or error code 1404 */ 1405 static int ext4_ext_search_left(struct inode *inode, 1406 struct ext4_ext_path *path, 1407 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1408 { 1409 struct ext4_extent_idx *ix; 1410 struct ext4_extent *ex; 1411 int depth, ee_len; 1412 1413 if (unlikely(path == NULL)) { 1414 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1415 return -EFSCORRUPTED; 1416 } 1417 depth = path->p_depth; 1418 *phys = 0; 1419 1420 if (depth == 0 && path->p_ext == NULL) 1421 return 0; 1422 1423 /* usually extent in the path covers blocks smaller 1424 * then *logical, but it can be that extent is the 1425 * first one in the file */ 1426 1427 ex = path[depth].p_ext; 1428 ee_len = ext4_ext_get_actual_len(ex); 1429 if (*logical < le32_to_cpu(ex->ee_block)) { 1430 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1431 EXT4_ERROR_INODE(inode, 1432 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1433 *logical, le32_to_cpu(ex->ee_block)); 1434 return -EFSCORRUPTED; 1435 } 1436 while (--depth >= 0) { 1437 ix = path[depth].p_idx; 1438 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1439 EXT4_ERROR_INODE(inode, 1440 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1441 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1442 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1443 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1444 depth); 1445 return -EFSCORRUPTED; 1446 } 1447 } 1448 return 0; 1449 } 1450 1451 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1452 EXT4_ERROR_INODE(inode, 1453 "logical %d < ee_block %d + ee_len %d!", 1454 *logical, le32_to_cpu(ex->ee_block), ee_len); 1455 return -EFSCORRUPTED; 1456 } 1457 1458 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1459 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1460 return 0; 1461 } 1462 1463 /* 1464 * search the closest allocated block to the right for *logical 1465 * and returns it at @logical + it's physical address at @phys 1466 * if *logical is the largest allocated block, the function 1467 * returns 0 at @phys 1468 * return value contains 0 (success) or error code 1469 */ 1470 static int ext4_ext_search_right(struct inode *inode, 1471 struct ext4_ext_path *path, 1472 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1473 struct ext4_extent **ret_ex) 1474 { 1475 struct buffer_head *bh = NULL; 1476 struct ext4_extent_header *eh; 1477 struct ext4_extent_idx *ix; 1478 struct ext4_extent *ex; 1479 ext4_fsblk_t block; 1480 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1481 int ee_len; 1482 1483 if (unlikely(path == NULL)) { 1484 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1485 return -EFSCORRUPTED; 1486 } 1487 depth = path->p_depth; 1488 *phys = 0; 1489 1490 if (depth == 0 && path->p_ext == NULL) 1491 return 0; 1492 1493 /* usually extent in the path covers blocks smaller 1494 * then *logical, but it can be that extent is the 1495 * first one in the file */ 1496 1497 ex = path[depth].p_ext; 1498 ee_len = ext4_ext_get_actual_len(ex); 1499 if (*logical < le32_to_cpu(ex->ee_block)) { 1500 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1501 EXT4_ERROR_INODE(inode, 1502 "first_extent(path[%d].p_hdr) != ex", 1503 depth); 1504 return -EFSCORRUPTED; 1505 } 1506 while (--depth >= 0) { 1507 ix = path[depth].p_idx; 1508 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1509 EXT4_ERROR_INODE(inode, 1510 "ix != EXT_FIRST_INDEX *logical %d!", 1511 *logical); 1512 return -EFSCORRUPTED; 1513 } 1514 } 1515 goto found_extent; 1516 } 1517 1518 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1519 EXT4_ERROR_INODE(inode, 1520 "logical %d < ee_block %d + ee_len %d!", 1521 *logical, le32_to_cpu(ex->ee_block), ee_len); 1522 return -EFSCORRUPTED; 1523 } 1524 1525 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1526 /* next allocated block in this leaf */ 1527 ex++; 1528 goto found_extent; 1529 } 1530 1531 /* go up and search for index to the right */ 1532 while (--depth >= 0) { 1533 ix = path[depth].p_idx; 1534 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1535 goto got_index; 1536 } 1537 1538 /* we've gone up to the root and found no index to the right */ 1539 return 0; 1540 1541 got_index: 1542 /* we've found index to the right, let's 1543 * follow it and find the closest allocated 1544 * block to the right */ 1545 ix++; 1546 block = ext4_idx_pblock(ix); 1547 while (++depth < path->p_depth) { 1548 /* subtract from p_depth to get proper eh_depth */ 1549 bh = read_extent_tree_block(inode, block, 1550 path->p_depth - depth, 0); 1551 if (IS_ERR(bh)) 1552 return PTR_ERR(bh); 1553 eh = ext_block_hdr(bh); 1554 ix = EXT_FIRST_INDEX(eh); 1555 block = ext4_idx_pblock(ix); 1556 put_bh(bh); 1557 } 1558 1559 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0); 1560 if (IS_ERR(bh)) 1561 return PTR_ERR(bh); 1562 eh = ext_block_hdr(bh); 1563 ex = EXT_FIRST_EXTENT(eh); 1564 found_extent: 1565 *logical = le32_to_cpu(ex->ee_block); 1566 *phys = ext4_ext_pblock(ex); 1567 *ret_ex = ex; 1568 if (bh) 1569 put_bh(bh); 1570 return 0; 1571 } 1572 1573 /* 1574 * ext4_ext_next_allocated_block: 1575 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1576 * NOTE: it considers block number from index entry as 1577 * allocated block. Thus, index entries have to be consistent 1578 * with leaves. 1579 */ 1580 ext4_lblk_t 1581 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1582 { 1583 int depth; 1584 1585 BUG_ON(path == NULL); 1586 depth = path->p_depth; 1587 1588 if (depth == 0 && path->p_ext == NULL) 1589 return EXT_MAX_BLOCKS; 1590 1591 while (depth >= 0) { 1592 struct ext4_ext_path *p = &path[depth]; 1593 1594 if (depth == path->p_depth) { 1595 /* leaf */ 1596 if (p->p_ext && p->p_ext != EXT_LAST_EXTENT(p->p_hdr)) 1597 return le32_to_cpu(p->p_ext[1].ee_block); 1598 } else { 1599 /* index */ 1600 if (p->p_idx != EXT_LAST_INDEX(p->p_hdr)) 1601 return le32_to_cpu(p->p_idx[1].ei_block); 1602 } 1603 depth--; 1604 } 1605 1606 return EXT_MAX_BLOCKS; 1607 } 1608 1609 /* 1610 * ext4_ext_next_leaf_block: 1611 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1612 */ 1613 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1614 { 1615 int depth; 1616 1617 BUG_ON(path == NULL); 1618 depth = path->p_depth; 1619 1620 /* zero-tree has no leaf blocks at all */ 1621 if (depth == 0) 1622 return EXT_MAX_BLOCKS; 1623 1624 /* go to index block */ 1625 depth--; 1626 1627 while (depth >= 0) { 1628 if (path[depth].p_idx != 1629 EXT_LAST_INDEX(path[depth].p_hdr)) 1630 return (ext4_lblk_t) 1631 le32_to_cpu(path[depth].p_idx[1].ei_block); 1632 depth--; 1633 } 1634 1635 return EXT_MAX_BLOCKS; 1636 } 1637 1638 /* 1639 * ext4_ext_correct_indexes: 1640 * if leaf gets modified and modified extent is first in the leaf, 1641 * then we have to correct all indexes above. 1642 * TODO: do we need to correct tree in all cases? 1643 */ 1644 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1645 struct ext4_ext_path *path) 1646 { 1647 struct ext4_extent_header *eh; 1648 int depth = ext_depth(inode); 1649 struct ext4_extent *ex; 1650 __le32 border; 1651 int k, err = 0; 1652 1653 eh = path[depth].p_hdr; 1654 ex = path[depth].p_ext; 1655 1656 if (unlikely(ex == NULL || eh == NULL)) { 1657 EXT4_ERROR_INODE(inode, 1658 "ex %p == NULL or eh %p == NULL", ex, eh); 1659 return -EFSCORRUPTED; 1660 } 1661 1662 if (depth == 0) { 1663 /* there is no tree at all */ 1664 return 0; 1665 } 1666 1667 if (ex != EXT_FIRST_EXTENT(eh)) { 1668 /* we correct tree if first leaf got modified only */ 1669 return 0; 1670 } 1671 1672 /* 1673 * TODO: we need correction if border is smaller than current one 1674 */ 1675 k = depth - 1; 1676 border = path[depth].p_ext->ee_block; 1677 err = ext4_ext_get_access(handle, inode, path + k); 1678 if (err) 1679 return err; 1680 path[k].p_idx->ei_block = border; 1681 err = ext4_ext_dirty(handle, inode, path + k); 1682 if (err) 1683 return err; 1684 1685 while (k--) { 1686 /* change all left-side indexes */ 1687 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1688 break; 1689 err = ext4_ext_get_access(handle, inode, path + k); 1690 if (err) 1691 break; 1692 path[k].p_idx->ei_block = border; 1693 err = ext4_ext_dirty(handle, inode, path + k); 1694 if (err) 1695 break; 1696 } 1697 1698 return err; 1699 } 1700 1701 static int ext4_can_extents_be_merged(struct inode *inode, 1702 struct ext4_extent *ex1, 1703 struct ext4_extent *ex2) 1704 { 1705 unsigned short ext1_ee_len, ext2_ee_len; 1706 1707 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2)) 1708 return 0; 1709 1710 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1711 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1712 1713 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1714 le32_to_cpu(ex2->ee_block)) 1715 return 0; 1716 1717 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN) 1718 return 0; 1719 1720 if (ext4_ext_is_unwritten(ex1) && 1721 ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN) 1722 return 0; 1723 #ifdef AGGRESSIVE_TEST 1724 if (ext1_ee_len >= 4) 1725 return 0; 1726 #endif 1727 1728 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1729 return 1; 1730 return 0; 1731 } 1732 1733 /* 1734 * This function tries to merge the "ex" extent to the next extent in the tree. 1735 * It always tries to merge towards right. If you want to merge towards 1736 * left, pass "ex - 1" as argument instead of "ex". 1737 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1738 * 1 if they got merged. 1739 */ 1740 static int ext4_ext_try_to_merge_right(struct inode *inode, 1741 struct ext4_ext_path *path, 1742 struct ext4_extent *ex) 1743 { 1744 struct ext4_extent_header *eh; 1745 unsigned int depth, len; 1746 int merge_done = 0, unwritten; 1747 1748 depth = ext_depth(inode); 1749 BUG_ON(path[depth].p_hdr == NULL); 1750 eh = path[depth].p_hdr; 1751 1752 while (ex < EXT_LAST_EXTENT(eh)) { 1753 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1754 break; 1755 /* merge with next extent! */ 1756 unwritten = ext4_ext_is_unwritten(ex); 1757 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1758 + ext4_ext_get_actual_len(ex + 1)); 1759 if (unwritten) 1760 ext4_ext_mark_unwritten(ex); 1761 1762 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1763 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1764 * sizeof(struct ext4_extent); 1765 memmove(ex + 1, ex + 2, len); 1766 } 1767 le16_add_cpu(&eh->eh_entries, -1); 1768 merge_done = 1; 1769 WARN_ON(eh->eh_entries == 0); 1770 if (!eh->eh_entries) 1771 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1772 } 1773 1774 return merge_done; 1775 } 1776 1777 /* 1778 * This function does a very simple check to see if we can collapse 1779 * an extent tree with a single extent tree leaf block into the inode. 1780 */ 1781 static void ext4_ext_try_to_merge_up(handle_t *handle, 1782 struct inode *inode, 1783 struct ext4_ext_path *path) 1784 { 1785 size_t s; 1786 unsigned max_root = ext4_ext_space_root(inode, 0); 1787 ext4_fsblk_t blk; 1788 1789 if ((path[0].p_depth != 1) || 1790 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || 1791 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) 1792 return; 1793 1794 /* 1795 * We need to modify the block allocation bitmap and the block 1796 * group descriptor to release the extent tree block. If we 1797 * can't get the journal credits, give up. 1798 */ 1799 if (ext4_journal_extend(handle, 2, 1800 ext4_free_metadata_revoke_credits(inode->i_sb, 1))) 1801 return; 1802 1803 /* 1804 * Copy the extent data up to the inode 1805 */ 1806 blk = ext4_idx_pblock(path[0].p_idx); 1807 s = le16_to_cpu(path[1].p_hdr->eh_entries) * 1808 sizeof(struct ext4_extent_idx); 1809 s += sizeof(struct ext4_extent_header); 1810 1811 path[1].p_maxdepth = path[0].p_maxdepth; 1812 memcpy(path[0].p_hdr, path[1].p_hdr, s); 1813 path[0].p_depth = 0; 1814 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + 1815 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); 1816 path[0].p_hdr->eh_max = cpu_to_le16(max_root); 1817 1818 brelse(path[1].p_bh); 1819 ext4_free_blocks(handle, inode, NULL, blk, 1, 1820 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 1821 } 1822 1823 /* 1824 * This function tries to merge the @ex extent to neighbours in the tree, then 1825 * tries to collapse the extent tree into the inode. 1826 */ 1827 static void ext4_ext_try_to_merge(handle_t *handle, 1828 struct inode *inode, 1829 struct ext4_ext_path *path, 1830 struct ext4_extent *ex) 1831 { 1832 struct ext4_extent_header *eh; 1833 unsigned int depth; 1834 int merge_done = 0; 1835 1836 depth = ext_depth(inode); 1837 BUG_ON(path[depth].p_hdr == NULL); 1838 eh = path[depth].p_hdr; 1839 1840 if (ex > EXT_FIRST_EXTENT(eh)) 1841 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1842 1843 if (!merge_done) 1844 (void) ext4_ext_try_to_merge_right(inode, path, ex); 1845 1846 ext4_ext_try_to_merge_up(handle, inode, path); 1847 } 1848 1849 /* 1850 * check if a portion of the "newext" extent overlaps with an 1851 * existing extent. 1852 * 1853 * If there is an overlap discovered, it updates the length of the newext 1854 * such that there will be no overlap, and then returns 1. 1855 * If there is no overlap found, it returns 0. 1856 */ 1857 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1858 struct inode *inode, 1859 struct ext4_extent *newext, 1860 struct ext4_ext_path *path) 1861 { 1862 ext4_lblk_t b1, b2; 1863 unsigned int depth, len1; 1864 unsigned int ret = 0; 1865 1866 b1 = le32_to_cpu(newext->ee_block); 1867 len1 = ext4_ext_get_actual_len(newext); 1868 depth = ext_depth(inode); 1869 if (!path[depth].p_ext) 1870 goto out; 1871 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block)); 1872 1873 /* 1874 * get the next allocated block if the extent in the path 1875 * is before the requested block(s) 1876 */ 1877 if (b2 < b1) { 1878 b2 = ext4_ext_next_allocated_block(path); 1879 if (b2 == EXT_MAX_BLOCKS) 1880 goto out; 1881 b2 = EXT4_LBLK_CMASK(sbi, b2); 1882 } 1883 1884 /* check for wrap through zero on extent logical start block*/ 1885 if (b1 + len1 < b1) { 1886 len1 = EXT_MAX_BLOCKS - b1; 1887 newext->ee_len = cpu_to_le16(len1); 1888 ret = 1; 1889 } 1890 1891 /* check for overlap */ 1892 if (b1 + len1 > b2) { 1893 newext->ee_len = cpu_to_le16(b2 - b1); 1894 ret = 1; 1895 } 1896 out: 1897 return ret; 1898 } 1899 1900 /* 1901 * ext4_ext_insert_extent: 1902 * tries to merge requsted extent into the existing extent or 1903 * inserts requested extent as new one into the tree, 1904 * creating new leaf in the no-space case. 1905 */ 1906 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1907 struct ext4_ext_path **ppath, 1908 struct ext4_extent *newext, int gb_flags) 1909 { 1910 struct ext4_ext_path *path = *ppath; 1911 struct ext4_extent_header *eh; 1912 struct ext4_extent *ex, *fex; 1913 struct ext4_extent *nearex; /* nearest extent */ 1914 struct ext4_ext_path *npath = NULL; 1915 int depth, len, err; 1916 ext4_lblk_t next; 1917 int mb_flags = 0, unwritten; 1918 1919 if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1920 mb_flags |= EXT4_MB_DELALLOC_RESERVED; 1921 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1922 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1923 return -EFSCORRUPTED; 1924 } 1925 depth = ext_depth(inode); 1926 ex = path[depth].p_ext; 1927 eh = path[depth].p_hdr; 1928 if (unlikely(path[depth].p_hdr == NULL)) { 1929 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1930 return -EFSCORRUPTED; 1931 } 1932 1933 /* try to insert block into found extent and return */ 1934 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) { 1935 1936 /* 1937 * Try to see whether we should rather test the extent on 1938 * right from ex, or from the left of ex. This is because 1939 * ext4_find_extent() can return either extent on the 1940 * left, or on the right from the searched position. This 1941 * will make merging more effective. 1942 */ 1943 if (ex < EXT_LAST_EXTENT(eh) && 1944 (le32_to_cpu(ex->ee_block) + 1945 ext4_ext_get_actual_len(ex) < 1946 le32_to_cpu(newext->ee_block))) { 1947 ex += 1; 1948 goto prepend; 1949 } else if ((ex > EXT_FIRST_EXTENT(eh)) && 1950 (le32_to_cpu(newext->ee_block) + 1951 ext4_ext_get_actual_len(newext) < 1952 le32_to_cpu(ex->ee_block))) 1953 ex -= 1; 1954 1955 /* Try to append newex to the ex */ 1956 if (ext4_can_extents_be_merged(inode, ex, newext)) { 1957 ext_debug("append [%d]%d block to %u:[%d]%d" 1958 "(from %llu)\n", 1959 ext4_ext_is_unwritten(newext), 1960 ext4_ext_get_actual_len(newext), 1961 le32_to_cpu(ex->ee_block), 1962 ext4_ext_is_unwritten(ex), 1963 ext4_ext_get_actual_len(ex), 1964 ext4_ext_pblock(ex)); 1965 err = ext4_ext_get_access(handle, inode, 1966 path + depth); 1967 if (err) 1968 return err; 1969 unwritten = ext4_ext_is_unwritten(ex); 1970 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1971 + ext4_ext_get_actual_len(newext)); 1972 if (unwritten) 1973 ext4_ext_mark_unwritten(ex); 1974 eh = path[depth].p_hdr; 1975 nearex = ex; 1976 goto merge; 1977 } 1978 1979 prepend: 1980 /* Try to prepend newex to the ex */ 1981 if (ext4_can_extents_be_merged(inode, newext, ex)) { 1982 ext_debug("prepend %u[%d]%d block to %u:[%d]%d" 1983 "(from %llu)\n", 1984 le32_to_cpu(newext->ee_block), 1985 ext4_ext_is_unwritten(newext), 1986 ext4_ext_get_actual_len(newext), 1987 le32_to_cpu(ex->ee_block), 1988 ext4_ext_is_unwritten(ex), 1989 ext4_ext_get_actual_len(ex), 1990 ext4_ext_pblock(ex)); 1991 err = ext4_ext_get_access(handle, inode, 1992 path + depth); 1993 if (err) 1994 return err; 1995 1996 unwritten = ext4_ext_is_unwritten(ex); 1997 ex->ee_block = newext->ee_block; 1998 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext)); 1999 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 2000 + ext4_ext_get_actual_len(newext)); 2001 if (unwritten) 2002 ext4_ext_mark_unwritten(ex); 2003 eh = path[depth].p_hdr; 2004 nearex = ex; 2005 goto merge; 2006 } 2007 } 2008 2009 depth = ext_depth(inode); 2010 eh = path[depth].p_hdr; 2011 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 2012 goto has_space; 2013 2014 /* probably next leaf has space for us? */ 2015 fex = EXT_LAST_EXTENT(eh); 2016 next = EXT_MAX_BLOCKS; 2017 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 2018 next = ext4_ext_next_leaf_block(path); 2019 if (next != EXT_MAX_BLOCKS) { 2020 ext_debug("next leaf block - %u\n", next); 2021 BUG_ON(npath != NULL); 2022 npath = ext4_find_extent(inode, next, NULL, 0); 2023 if (IS_ERR(npath)) 2024 return PTR_ERR(npath); 2025 BUG_ON(npath->p_depth != path->p_depth); 2026 eh = npath[depth].p_hdr; 2027 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 2028 ext_debug("next leaf isn't full(%d)\n", 2029 le16_to_cpu(eh->eh_entries)); 2030 path = npath; 2031 goto has_space; 2032 } 2033 ext_debug("next leaf has no free space(%d,%d)\n", 2034 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 2035 } 2036 2037 /* 2038 * There is no free space in the found leaf. 2039 * We're gonna add a new leaf in the tree. 2040 */ 2041 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 2042 mb_flags |= EXT4_MB_USE_RESERVED; 2043 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags, 2044 ppath, newext); 2045 if (err) 2046 goto cleanup; 2047 depth = ext_depth(inode); 2048 eh = path[depth].p_hdr; 2049 2050 has_space: 2051 nearex = path[depth].p_ext; 2052 2053 err = ext4_ext_get_access(handle, inode, path + depth); 2054 if (err) 2055 goto cleanup; 2056 2057 if (!nearex) { 2058 /* there is no extent in this leaf, create first one */ 2059 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 2060 le32_to_cpu(newext->ee_block), 2061 ext4_ext_pblock(newext), 2062 ext4_ext_is_unwritten(newext), 2063 ext4_ext_get_actual_len(newext)); 2064 nearex = EXT_FIRST_EXTENT(eh); 2065 } else { 2066 if (le32_to_cpu(newext->ee_block) 2067 > le32_to_cpu(nearex->ee_block)) { 2068 /* Insert after */ 2069 ext_debug("insert %u:%llu:[%d]%d before: " 2070 "nearest %p\n", 2071 le32_to_cpu(newext->ee_block), 2072 ext4_ext_pblock(newext), 2073 ext4_ext_is_unwritten(newext), 2074 ext4_ext_get_actual_len(newext), 2075 nearex); 2076 nearex++; 2077 } else { 2078 /* Insert before */ 2079 BUG_ON(newext->ee_block == nearex->ee_block); 2080 ext_debug("insert %u:%llu:[%d]%d after: " 2081 "nearest %p\n", 2082 le32_to_cpu(newext->ee_block), 2083 ext4_ext_pblock(newext), 2084 ext4_ext_is_unwritten(newext), 2085 ext4_ext_get_actual_len(newext), 2086 nearex); 2087 } 2088 len = EXT_LAST_EXTENT(eh) - nearex + 1; 2089 if (len > 0) { 2090 ext_debug("insert %u:%llu:[%d]%d: " 2091 "move %d extents from 0x%p to 0x%p\n", 2092 le32_to_cpu(newext->ee_block), 2093 ext4_ext_pblock(newext), 2094 ext4_ext_is_unwritten(newext), 2095 ext4_ext_get_actual_len(newext), 2096 len, nearex, nearex + 1); 2097 memmove(nearex + 1, nearex, 2098 len * sizeof(struct ext4_extent)); 2099 } 2100 } 2101 2102 le16_add_cpu(&eh->eh_entries, 1); 2103 path[depth].p_ext = nearex; 2104 nearex->ee_block = newext->ee_block; 2105 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 2106 nearex->ee_len = newext->ee_len; 2107 2108 merge: 2109 /* try to merge extents */ 2110 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) 2111 ext4_ext_try_to_merge(handle, inode, path, nearex); 2112 2113 2114 /* time to correct all indexes above */ 2115 err = ext4_ext_correct_indexes(handle, inode, path); 2116 if (err) 2117 goto cleanup; 2118 2119 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 2120 2121 cleanup: 2122 ext4_ext_drop_refs(npath); 2123 kfree(npath); 2124 return err; 2125 } 2126 2127 static int ext4_fill_es_cache_info(struct inode *inode, 2128 ext4_lblk_t block, ext4_lblk_t num, 2129 struct fiemap_extent_info *fieinfo) 2130 { 2131 ext4_lblk_t next, end = block + num - 1; 2132 struct extent_status es; 2133 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 2134 unsigned int flags; 2135 int err; 2136 2137 while (block <= end) { 2138 next = 0; 2139 flags = 0; 2140 if (!ext4_es_lookup_extent(inode, block, &next, &es)) 2141 break; 2142 if (ext4_es_is_unwritten(&es)) 2143 flags |= FIEMAP_EXTENT_UNWRITTEN; 2144 if (ext4_es_is_delayed(&es)) 2145 flags |= (FIEMAP_EXTENT_DELALLOC | 2146 FIEMAP_EXTENT_UNKNOWN); 2147 if (ext4_es_is_hole(&es)) 2148 flags |= EXT4_FIEMAP_EXTENT_HOLE; 2149 if (next == 0) 2150 flags |= FIEMAP_EXTENT_LAST; 2151 if (flags & (FIEMAP_EXTENT_DELALLOC| 2152 EXT4_FIEMAP_EXTENT_HOLE)) 2153 es.es_pblk = 0; 2154 else 2155 es.es_pblk = ext4_es_pblock(&es); 2156 err = fiemap_fill_next_extent(fieinfo, 2157 (__u64)es.es_lblk << blksize_bits, 2158 (__u64)es.es_pblk << blksize_bits, 2159 (__u64)es.es_len << blksize_bits, 2160 flags); 2161 if (next == 0) 2162 break; 2163 block = next; 2164 if (err < 0) 2165 return err; 2166 if (err == 1) 2167 return 0; 2168 } 2169 return 0; 2170 } 2171 2172 2173 /* 2174 * ext4_ext_determine_hole - determine hole around given block 2175 * @inode: inode we lookup in 2176 * @path: path in extent tree to @lblk 2177 * @lblk: pointer to logical block around which we want to determine hole 2178 * 2179 * Determine hole length (and start if easily possible) around given logical 2180 * block. We don't try too hard to find the beginning of the hole but @path 2181 * actually points to extent before @lblk, we provide it. 2182 * 2183 * The function returns the length of a hole starting at @lblk. We update @lblk 2184 * to the beginning of the hole if we managed to find it. 2185 */ 2186 static ext4_lblk_t ext4_ext_determine_hole(struct inode *inode, 2187 struct ext4_ext_path *path, 2188 ext4_lblk_t *lblk) 2189 { 2190 int depth = ext_depth(inode); 2191 struct ext4_extent *ex; 2192 ext4_lblk_t len; 2193 2194 ex = path[depth].p_ext; 2195 if (ex == NULL) { 2196 /* there is no extent yet, so gap is [0;-] */ 2197 *lblk = 0; 2198 len = EXT_MAX_BLOCKS; 2199 } else if (*lblk < le32_to_cpu(ex->ee_block)) { 2200 len = le32_to_cpu(ex->ee_block) - *lblk; 2201 } else if (*lblk >= le32_to_cpu(ex->ee_block) 2202 + ext4_ext_get_actual_len(ex)) { 2203 ext4_lblk_t next; 2204 2205 *lblk = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex); 2206 next = ext4_ext_next_allocated_block(path); 2207 BUG_ON(next == *lblk); 2208 len = next - *lblk; 2209 } else { 2210 BUG(); 2211 } 2212 return len; 2213 } 2214 2215 /* 2216 * ext4_ext_put_gap_in_cache: 2217 * calculate boundaries of the gap that the requested block fits into 2218 * and cache this gap 2219 */ 2220 static void 2221 ext4_ext_put_gap_in_cache(struct inode *inode, ext4_lblk_t hole_start, 2222 ext4_lblk_t hole_len) 2223 { 2224 struct extent_status es; 2225 2226 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, hole_start, 2227 hole_start + hole_len - 1, &es); 2228 if (es.es_len) { 2229 /* There's delayed extent containing lblock? */ 2230 if (es.es_lblk <= hole_start) 2231 return; 2232 hole_len = min(es.es_lblk - hole_start, hole_len); 2233 } 2234 ext_debug(" -> %u:%u\n", hole_start, hole_len); 2235 ext4_es_insert_extent(inode, hole_start, hole_len, ~0, 2236 EXTENT_STATUS_HOLE); 2237 } 2238 2239 /* 2240 * ext4_ext_rm_idx: 2241 * removes index from the index block. 2242 */ 2243 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2244 struct ext4_ext_path *path, int depth) 2245 { 2246 int err; 2247 ext4_fsblk_t leaf; 2248 2249 /* free index block */ 2250 depth--; 2251 path = path + depth; 2252 leaf = ext4_idx_pblock(path->p_idx); 2253 if (unlikely(path->p_hdr->eh_entries == 0)) { 2254 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2255 return -EFSCORRUPTED; 2256 } 2257 err = ext4_ext_get_access(handle, inode, path); 2258 if (err) 2259 return err; 2260 2261 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2262 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2263 len *= sizeof(struct ext4_extent_idx); 2264 memmove(path->p_idx, path->p_idx + 1, len); 2265 } 2266 2267 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2268 err = ext4_ext_dirty(handle, inode, path); 2269 if (err) 2270 return err; 2271 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2272 trace_ext4_ext_rm_idx(inode, leaf); 2273 2274 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2275 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2276 2277 while (--depth >= 0) { 2278 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr)) 2279 break; 2280 path--; 2281 err = ext4_ext_get_access(handle, inode, path); 2282 if (err) 2283 break; 2284 path->p_idx->ei_block = (path+1)->p_idx->ei_block; 2285 err = ext4_ext_dirty(handle, inode, path); 2286 if (err) 2287 break; 2288 } 2289 return err; 2290 } 2291 2292 /* 2293 * ext4_ext_calc_credits_for_single_extent: 2294 * This routine returns max. credits that needed to insert an extent 2295 * to the extent tree. 2296 * When pass the actual path, the caller should calculate credits 2297 * under i_data_sem. 2298 */ 2299 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2300 struct ext4_ext_path *path) 2301 { 2302 if (path) { 2303 int depth = ext_depth(inode); 2304 int ret = 0; 2305 2306 /* probably there is space in leaf? */ 2307 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2308 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2309 2310 /* 2311 * There are some space in the leaf tree, no 2312 * need to account for leaf block credit 2313 * 2314 * bitmaps and block group descriptor blocks 2315 * and other metadata blocks still need to be 2316 * accounted. 2317 */ 2318 /* 1 bitmap, 1 block group descriptor */ 2319 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2320 return ret; 2321 } 2322 } 2323 2324 return ext4_chunk_trans_blocks(inode, nrblocks); 2325 } 2326 2327 /* 2328 * How many index/leaf blocks need to change/allocate to add @extents extents? 2329 * 2330 * If we add a single extent, then in the worse case, each tree level 2331 * index/leaf need to be changed in case of the tree split. 2332 * 2333 * If more extents are inserted, they could cause the whole tree split more 2334 * than once, but this is really rare. 2335 */ 2336 int ext4_ext_index_trans_blocks(struct inode *inode, int extents) 2337 { 2338 int index; 2339 int depth; 2340 2341 /* If we are converting the inline data, only one is needed here. */ 2342 if (ext4_has_inline_data(inode)) 2343 return 1; 2344 2345 depth = ext_depth(inode); 2346 2347 if (extents <= 1) 2348 index = depth * 2; 2349 else 2350 index = depth * 3; 2351 2352 return index; 2353 } 2354 2355 static inline int get_default_free_blocks_flags(struct inode *inode) 2356 { 2357 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) || 2358 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE)) 2359 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; 2360 else if (ext4_should_journal_data(inode)) 2361 return EXT4_FREE_BLOCKS_FORGET; 2362 return 0; 2363 } 2364 2365 /* 2366 * ext4_rereserve_cluster - increment the reserved cluster count when 2367 * freeing a cluster with a pending reservation 2368 * 2369 * @inode - file containing the cluster 2370 * @lblk - logical block in cluster to be reserved 2371 * 2372 * Increments the reserved cluster count and adjusts quota in a bigalloc 2373 * file system when freeing a partial cluster containing at least one 2374 * delayed and unwritten block. A partial cluster meeting that 2375 * requirement will have a pending reservation. If so, the 2376 * RERESERVE_CLUSTER flag is used when calling ext4_free_blocks() to 2377 * defer reserved and allocated space accounting to a subsequent call 2378 * to this function. 2379 */ 2380 static void ext4_rereserve_cluster(struct inode *inode, ext4_lblk_t lblk) 2381 { 2382 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2383 struct ext4_inode_info *ei = EXT4_I(inode); 2384 2385 dquot_reclaim_block(inode, EXT4_C2B(sbi, 1)); 2386 2387 spin_lock(&ei->i_block_reservation_lock); 2388 ei->i_reserved_data_blocks++; 2389 percpu_counter_add(&sbi->s_dirtyclusters_counter, 1); 2390 spin_unlock(&ei->i_block_reservation_lock); 2391 2392 percpu_counter_add(&sbi->s_freeclusters_counter, 1); 2393 ext4_remove_pending(inode, lblk); 2394 } 2395 2396 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2397 struct ext4_extent *ex, 2398 struct partial_cluster *partial, 2399 ext4_lblk_t from, ext4_lblk_t to) 2400 { 2401 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2402 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2403 ext4_fsblk_t last_pblk, pblk; 2404 ext4_lblk_t num; 2405 int flags; 2406 2407 /* only extent tail removal is allowed */ 2408 if (from < le32_to_cpu(ex->ee_block) || 2409 to != le32_to_cpu(ex->ee_block) + ee_len - 1) { 2410 ext4_error(sbi->s_sb, 2411 "strange request: removal(2) %u-%u from %u:%u", 2412 from, to, le32_to_cpu(ex->ee_block), ee_len); 2413 return 0; 2414 } 2415 2416 #ifdef EXTENTS_STATS 2417 spin_lock(&sbi->s_ext_stats_lock); 2418 sbi->s_ext_blocks += ee_len; 2419 sbi->s_ext_extents++; 2420 if (ee_len < sbi->s_ext_min) 2421 sbi->s_ext_min = ee_len; 2422 if (ee_len > sbi->s_ext_max) 2423 sbi->s_ext_max = ee_len; 2424 if (ext_depth(inode) > sbi->s_depth_max) 2425 sbi->s_depth_max = ext_depth(inode); 2426 spin_unlock(&sbi->s_ext_stats_lock); 2427 #endif 2428 2429 trace_ext4_remove_blocks(inode, ex, from, to, partial); 2430 2431 /* 2432 * if we have a partial cluster, and it's different from the 2433 * cluster of the last block in the extent, we free it 2434 */ 2435 last_pblk = ext4_ext_pblock(ex) + ee_len - 1; 2436 2437 if (partial->state != initial && 2438 partial->pclu != EXT4_B2C(sbi, last_pblk)) { 2439 if (partial->state == tofree) { 2440 flags = get_default_free_blocks_flags(inode); 2441 if (ext4_is_pending(inode, partial->lblk)) 2442 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 2443 ext4_free_blocks(handle, inode, NULL, 2444 EXT4_C2B(sbi, partial->pclu), 2445 sbi->s_cluster_ratio, flags); 2446 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 2447 ext4_rereserve_cluster(inode, partial->lblk); 2448 } 2449 partial->state = initial; 2450 } 2451 2452 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2453 pblk = ext4_ext_pblock(ex) + ee_len - num; 2454 2455 /* 2456 * We free the partial cluster at the end of the extent (if any), 2457 * unless the cluster is used by another extent (partial_cluster 2458 * state is nofree). If a partial cluster exists here, it must be 2459 * shared with the last block in the extent. 2460 */ 2461 flags = get_default_free_blocks_flags(inode); 2462 2463 /* partial, left end cluster aligned, right end unaligned */ 2464 if ((EXT4_LBLK_COFF(sbi, to) != sbi->s_cluster_ratio - 1) && 2465 (EXT4_LBLK_CMASK(sbi, to) >= from) && 2466 (partial->state != nofree)) { 2467 if (ext4_is_pending(inode, to)) 2468 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 2469 ext4_free_blocks(handle, inode, NULL, 2470 EXT4_PBLK_CMASK(sbi, last_pblk), 2471 sbi->s_cluster_ratio, flags); 2472 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 2473 ext4_rereserve_cluster(inode, to); 2474 partial->state = initial; 2475 flags = get_default_free_blocks_flags(inode); 2476 } 2477 2478 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER; 2479 2480 /* 2481 * For bigalloc file systems, we never free a partial cluster 2482 * at the beginning of the extent. Instead, we check to see if we 2483 * need to free it on a subsequent call to ext4_remove_blocks, 2484 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space. 2485 */ 2486 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2487 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2488 2489 /* reset the partial cluster if we've freed past it */ 2490 if (partial->state != initial && partial->pclu != EXT4_B2C(sbi, pblk)) 2491 partial->state = initial; 2492 2493 /* 2494 * If we've freed the entire extent but the beginning is not left 2495 * cluster aligned and is not marked as ineligible for freeing we 2496 * record the partial cluster at the beginning of the extent. It 2497 * wasn't freed by the preceding ext4_free_blocks() call, and we 2498 * need to look farther to the left to determine if it's to be freed 2499 * (not shared with another extent). Else, reset the partial 2500 * cluster - we're either done freeing or the beginning of the 2501 * extent is left cluster aligned. 2502 */ 2503 if (EXT4_LBLK_COFF(sbi, from) && num == ee_len) { 2504 if (partial->state == initial) { 2505 partial->pclu = EXT4_B2C(sbi, pblk); 2506 partial->lblk = from; 2507 partial->state = tofree; 2508 } 2509 } else { 2510 partial->state = initial; 2511 } 2512 2513 return 0; 2514 } 2515 2516 /* 2517 * ext4_ext_rm_leaf() Removes the extents associated with the 2518 * blocks appearing between "start" and "end". Both "start" 2519 * and "end" must appear in the same extent or EIO is returned. 2520 * 2521 * @handle: The journal handle 2522 * @inode: The files inode 2523 * @path: The path to the leaf 2524 * @partial_cluster: The cluster which we'll have to free if all extents 2525 * has been released from it. However, if this value is 2526 * negative, it's a cluster just to the right of the 2527 * punched region and it must not be freed. 2528 * @start: The first block to remove 2529 * @end: The last block to remove 2530 */ 2531 static int 2532 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2533 struct ext4_ext_path *path, 2534 struct partial_cluster *partial, 2535 ext4_lblk_t start, ext4_lblk_t end) 2536 { 2537 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2538 int err = 0, correct_index = 0; 2539 int depth = ext_depth(inode), credits, revoke_credits; 2540 struct ext4_extent_header *eh; 2541 ext4_lblk_t a, b; 2542 unsigned num; 2543 ext4_lblk_t ex_ee_block; 2544 unsigned short ex_ee_len; 2545 unsigned unwritten = 0; 2546 struct ext4_extent *ex; 2547 ext4_fsblk_t pblk; 2548 2549 /* the header must be checked already in ext4_ext_remove_space() */ 2550 ext_debug("truncate since %u in leaf to %u\n", start, end); 2551 if (!path[depth].p_hdr) 2552 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2553 eh = path[depth].p_hdr; 2554 if (unlikely(path[depth].p_hdr == NULL)) { 2555 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2556 return -EFSCORRUPTED; 2557 } 2558 /* find where to start removing */ 2559 ex = path[depth].p_ext; 2560 if (!ex) 2561 ex = EXT_LAST_EXTENT(eh); 2562 2563 ex_ee_block = le32_to_cpu(ex->ee_block); 2564 ex_ee_len = ext4_ext_get_actual_len(ex); 2565 2566 trace_ext4_ext_rm_leaf(inode, start, ex, partial); 2567 2568 while (ex >= EXT_FIRST_EXTENT(eh) && 2569 ex_ee_block + ex_ee_len > start) { 2570 2571 if (ext4_ext_is_unwritten(ex)) 2572 unwritten = 1; 2573 else 2574 unwritten = 0; 2575 2576 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2577 unwritten, ex_ee_len); 2578 path[depth].p_ext = ex; 2579 2580 a = ex_ee_block > start ? ex_ee_block : start; 2581 b = ex_ee_block+ex_ee_len - 1 < end ? 2582 ex_ee_block+ex_ee_len - 1 : end; 2583 2584 ext_debug(" border %u:%u\n", a, b); 2585 2586 /* If this extent is beyond the end of the hole, skip it */ 2587 if (end < ex_ee_block) { 2588 /* 2589 * We're going to skip this extent and move to another, 2590 * so note that its first cluster is in use to avoid 2591 * freeing it when removing blocks. Eventually, the 2592 * right edge of the truncated/punched region will 2593 * be just to the left. 2594 */ 2595 if (sbi->s_cluster_ratio > 1) { 2596 pblk = ext4_ext_pblock(ex); 2597 partial->pclu = EXT4_B2C(sbi, pblk); 2598 partial->state = nofree; 2599 } 2600 ex--; 2601 ex_ee_block = le32_to_cpu(ex->ee_block); 2602 ex_ee_len = ext4_ext_get_actual_len(ex); 2603 continue; 2604 } else if (b != ex_ee_block + ex_ee_len - 1) { 2605 EXT4_ERROR_INODE(inode, 2606 "can not handle truncate %u:%u " 2607 "on extent %u:%u", 2608 start, end, ex_ee_block, 2609 ex_ee_block + ex_ee_len - 1); 2610 err = -EFSCORRUPTED; 2611 goto out; 2612 } else if (a != ex_ee_block) { 2613 /* remove tail of the extent */ 2614 num = a - ex_ee_block; 2615 } else { 2616 /* remove whole extent: excellent! */ 2617 num = 0; 2618 } 2619 /* 2620 * 3 for leaf, sb, and inode plus 2 (bmap and group 2621 * descriptor) for each block group; assume two block 2622 * groups plus ex_ee_len/blocks_per_block_group for 2623 * the worst case 2624 */ 2625 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2626 if (ex == EXT_FIRST_EXTENT(eh)) { 2627 correct_index = 1; 2628 credits += (ext_depth(inode)) + 1; 2629 } 2630 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2631 /* 2632 * We may end up freeing some index blocks and data from the 2633 * punched range. Note that partial clusters are accounted for 2634 * by ext4_free_data_revoke_credits(). 2635 */ 2636 revoke_credits = 2637 ext4_free_metadata_revoke_credits(inode->i_sb, 2638 ext_depth(inode)) + 2639 ext4_free_data_revoke_credits(inode, b - a + 1); 2640 2641 err = ext4_datasem_ensure_credits(handle, inode, credits, 2642 credits, revoke_credits); 2643 if (err) { 2644 if (err > 0) 2645 err = -EAGAIN; 2646 goto out; 2647 } 2648 2649 err = ext4_ext_get_access(handle, inode, path + depth); 2650 if (err) 2651 goto out; 2652 2653 err = ext4_remove_blocks(handle, inode, ex, partial, a, b); 2654 if (err) 2655 goto out; 2656 2657 if (num == 0) 2658 /* this extent is removed; mark slot entirely unused */ 2659 ext4_ext_store_pblock(ex, 0); 2660 2661 ex->ee_len = cpu_to_le16(num); 2662 /* 2663 * Do not mark unwritten if all the blocks in the 2664 * extent have been removed. 2665 */ 2666 if (unwritten && num) 2667 ext4_ext_mark_unwritten(ex); 2668 /* 2669 * If the extent was completely released, 2670 * we need to remove it from the leaf 2671 */ 2672 if (num == 0) { 2673 if (end != EXT_MAX_BLOCKS - 1) { 2674 /* 2675 * For hole punching, we need to scoot all the 2676 * extents up when an extent is removed so that 2677 * we dont have blank extents in the middle 2678 */ 2679 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2680 sizeof(struct ext4_extent)); 2681 2682 /* Now get rid of the one at the end */ 2683 memset(EXT_LAST_EXTENT(eh), 0, 2684 sizeof(struct ext4_extent)); 2685 } 2686 le16_add_cpu(&eh->eh_entries, -1); 2687 } 2688 2689 err = ext4_ext_dirty(handle, inode, path + depth); 2690 if (err) 2691 goto out; 2692 2693 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, 2694 ext4_ext_pblock(ex)); 2695 ex--; 2696 ex_ee_block = le32_to_cpu(ex->ee_block); 2697 ex_ee_len = ext4_ext_get_actual_len(ex); 2698 } 2699 2700 if (correct_index && eh->eh_entries) 2701 err = ext4_ext_correct_indexes(handle, inode, path); 2702 2703 /* 2704 * If there's a partial cluster and at least one extent remains in 2705 * the leaf, free the partial cluster if it isn't shared with the 2706 * current extent. If it is shared with the current extent 2707 * we reset the partial cluster because we've reached the start of the 2708 * truncated/punched region and we're done removing blocks. 2709 */ 2710 if (partial->state == tofree && ex >= EXT_FIRST_EXTENT(eh)) { 2711 pblk = ext4_ext_pblock(ex) + ex_ee_len - 1; 2712 if (partial->pclu != EXT4_B2C(sbi, pblk)) { 2713 int flags = get_default_free_blocks_flags(inode); 2714 2715 if (ext4_is_pending(inode, partial->lblk)) 2716 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 2717 ext4_free_blocks(handle, inode, NULL, 2718 EXT4_C2B(sbi, partial->pclu), 2719 sbi->s_cluster_ratio, flags); 2720 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 2721 ext4_rereserve_cluster(inode, partial->lblk); 2722 } 2723 partial->state = initial; 2724 } 2725 2726 /* if this leaf is free, then we should 2727 * remove it from index block above */ 2728 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2729 err = ext4_ext_rm_idx(handle, inode, path, depth); 2730 2731 out: 2732 return err; 2733 } 2734 2735 /* 2736 * ext4_ext_more_to_rm: 2737 * returns 1 if current index has to be freed (even partial) 2738 */ 2739 static int 2740 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2741 { 2742 BUG_ON(path->p_idx == NULL); 2743 2744 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2745 return 0; 2746 2747 /* 2748 * if truncate on deeper level happened, it wasn't partial, 2749 * so we have to consider current index for truncation 2750 */ 2751 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2752 return 0; 2753 return 1; 2754 } 2755 2756 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2757 ext4_lblk_t end) 2758 { 2759 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2760 int depth = ext_depth(inode); 2761 struct ext4_ext_path *path = NULL; 2762 struct partial_cluster partial; 2763 handle_t *handle; 2764 int i = 0, err = 0; 2765 2766 partial.pclu = 0; 2767 partial.lblk = 0; 2768 partial.state = initial; 2769 2770 ext_debug("truncate since %u to %u\n", start, end); 2771 2772 /* probably first extent we're gonna free will be last in block */ 2773 handle = ext4_journal_start_with_revoke(inode, EXT4_HT_TRUNCATE, 2774 depth + 1, 2775 ext4_free_metadata_revoke_credits(inode->i_sb, depth)); 2776 if (IS_ERR(handle)) 2777 return PTR_ERR(handle); 2778 2779 again: 2780 trace_ext4_ext_remove_space(inode, start, end, depth); 2781 2782 /* 2783 * Check if we are removing extents inside the extent tree. If that 2784 * is the case, we are going to punch a hole inside the extent tree 2785 * so we have to check whether we need to split the extent covering 2786 * the last block to remove so we can easily remove the part of it 2787 * in ext4_ext_rm_leaf(). 2788 */ 2789 if (end < EXT_MAX_BLOCKS - 1) { 2790 struct ext4_extent *ex; 2791 ext4_lblk_t ee_block, ex_end, lblk; 2792 ext4_fsblk_t pblk; 2793 2794 /* find extent for or closest extent to this block */ 2795 path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE); 2796 if (IS_ERR(path)) { 2797 ext4_journal_stop(handle); 2798 return PTR_ERR(path); 2799 } 2800 depth = ext_depth(inode); 2801 /* Leaf not may not exist only if inode has no blocks at all */ 2802 ex = path[depth].p_ext; 2803 if (!ex) { 2804 if (depth) { 2805 EXT4_ERROR_INODE(inode, 2806 "path[%d].p_hdr == NULL", 2807 depth); 2808 err = -EFSCORRUPTED; 2809 } 2810 goto out; 2811 } 2812 2813 ee_block = le32_to_cpu(ex->ee_block); 2814 ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1; 2815 2816 /* 2817 * See if the last block is inside the extent, if so split 2818 * the extent at 'end' block so we can easily remove the 2819 * tail of the first part of the split extent in 2820 * ext4_ext_rm_leaf(). 2821 */ 2822 if (end >= ee_block && end < ex_end) { 2823 2824 /* 2825 * If we're going to split the extent, note that 2826 * the cluster containing the block after 'end' is 2827 * in use to avoid freeing it when removing blocks. 2828 */ 2829 if (sbi->s_cluster_ratio > 1) { 2830 pblk = ext4_ext_pblock(ex) + end - ee_block + 2; 2831 partial.pclu = EXT4_B2C(sbi, pblk); 2832 partial.state = nofree; 2833 } 2834 2835 /* 2836 * Split the extent in two so that 'end' is the last 2837 * block in the first new extent. Also we should not 2838 * fail removing space due to ENOSPC so try to use 2839 * reserved block if that happens. 2840 */ 2841 err = ext4_force_split_extent_at(handle, inode, &path, 2842 end + 1, 1); 2843 if (err < 0) 2844 goto out; 2845 2846 } else if (sbi->s_cluster_ratio > 1 && end >= ex_end && 2847 partial.state == initial) { 2848 /* 2849 * If we're punching, there's an extent to the right. 2850 * If the partial cluster hasn't been set, set it to 2851 * that extent's first cluster and its state to nofree 2852 * so it won't be freed should it contain blocks to be 2853 * removed. If it's already set (tofree/nofree), we're 2854 * retrying and keep the original partial cluster info 2855 * so a cluster marked tofree as a result of earlier 2856 * extent removal is not lost. 2857 */ 2858 lblk = ex_end + 1; 2859 err = ext4_ext_search_right(inode, path, &lblk, &pblk, 2860 &ex); 2861 if (err) 2862 goto out; 2863 if (pblk) { 2864 partial.pclu = EXT4_B2C(sbi, pblk); 2865 partial.state = nofree; 2866 } 2867 } 2868 } 2869 /* 2870 * We start scanning from right side, freeing all the blocks 2871 * after i_size and walking into the tree depth-wise. 2872 */ 2873 depth = ext_depth(inode); 2874 if (path) { 2875 int k = i = depth; 2876 while (--k > 0) 2877 path[k].p_block = 2878 le16_to_cpu(path[k].p_hdr->eh_entries)+1; 2879 } else { 2880 path = kcalloc(depth + 1, sizeof(struct ext4_ext_path), 2881 GFP_NOFS); 2882 if (path == NULL) { 2883 ext4_journal_stop(handle); 2884 return -ENOMEM; 2885 } 2886 path[0].p_maxdepth = path[0].p_depth = depth; 2887 path[0].p_hdr = ext_inode_hdr(inode); 2888 i = 0; 2889 2890 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) { 2891 err = -EFSCORRUPTED; 2892 goto out; 2893 } 2894 } 2895 err = 0; 2896 2897 while (i >= 0 && err == 0) { 2898 if (i == depth) { 2899 /* this is leaf block */ 2900 err = ext4_ext_rm_leaf(handle, inode, path, 2901 &partial, start, end); 2902 /* root level has p_bh == NULL, brelse() eats this */ 2903 brelse(path[i].p_bh); 2904 path[i].p_bh = NULL; 2905 i--; 2906 continue; 2907 } 2908 2909 /* this is index block */ 2910 if (!path[i].p_hdr) { 2911 ext_debug("initialize header\n"); 2912 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2913 } 2914 2915 if (!path[i].p_idx) { 2916 /* this level hasn't been touched yet */ 2917 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2918 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2919 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2920 path[i].p_hdr, 2921 le16_to_cpu(path[i].p_hdr->eh_entries)); 2922 } else { 2923 /* we were already here, see at next index */ 2924 path[i].p_idx--; 2925 } 2926 2927 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2928 i, EXT_FIRST_INDEX(path[i].p_hdr), 2929 path[i].p_idx); 2930 if (ext4_ext_more_to_rm(path + i)) { 2931 struct buffer_head *bh; 2932 /* go to the next level */ 2933 ext_debug("move to level %d (block %llu)\n", 2934 i + 1, ext4_idx_pblock(path[i].p_idx)); 2935 memset(path + i + 1, 0, sizeof(*path)); 2936 bh = read_extent_tree_block(inode, 2937 ext4_idx_pblock(path[i].p_idx), depth - i - 1, 2938 EXT4_EX_NOCACHE); 2939 if (IS_ERR(bh)) { 2940 /* should we reset i_size? */ 2941 err = PTR_ERR(bh); 2942 break; 2943 } 2944 /* Yield here to deal with large extent trees. 2945 * Should be a no-op if we did IO above. */ 2946 cond_resched(); 2947 if (WARN_ON(i + 1 > depth)) { 2948 err = -EFSCORRUPTED; 2949 break; 2950 } 2951 path[i + 1].p_bh = bh; 2952 2953 /* save actual number of indexes since this 2954 * number is changed at the next iteration */ 2955 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2956 i++; 2957 } else { 2958 /* we finished processing this index, go up */ 2959 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2960 /* index is empty, remove it; 2961 * handle must be already prepared by the 2962 * truncatei_leaf() */ 2963 err = ext4_ext_rm_idx(handle, inode, path, i); 2964 } 2965 /* root level has p_bh == NULL, brelse() eats this */ 2966 brelse(path[i].p_bh); 2967 path[i].p_bh = NULL; 2968 i--; 2969 ext_debug("return to level %d\n", i); 2970 } 2971 } 2972 2973 trace_ext4_ext_remove_space_done(inode, start, end, depth, &partial, 2974 path->p_hdr->eh_entries); 2975 2976 /* 2977 * if there's a partial cluster and we have removed the first extent 2978 * in the file, then we also free the partial cluster, if any 2979 */ 2980 if (partial.state == tofree && err == 0) { 2981 int flags = get_default_free_blocks_flags(inode); 2982 2983 if (ext4_is_pending(inode, partial.lblk)) 2984 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 2985 ext4_free_blocks(handle, inode, NULL, 2986 EXT4_C2B(sbi, partial.pclu), 2987 sbi->s_cluster_ratio, flags); 2988 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 2989 ext4_rereserve_cluster(inode, partial.lblk); 2990 partial.state = initial; 2991 } 2992 2993 /* TODO: flexible tree reduction should be here */ 2994 if (path->p_hdr->eh_entries == 0) { 2995 /* 2996 * truncate to zero freed all the tree, 2997 * so we need to correct eh_depth 2998 */ 2999 err = ext4_ext_get_access(handle, inode, path); 3000 if (err == 0) { 3001 ext_inode_hdr(inode)->eh_depth = 0; 3002 ext_inode_hdr(inode)->eh_max = 3003 cpu_to_le16(ext4_ext_space_root(inode, 0)); 3004 err = ext4_ext_dirty(handle, inode, path); 3005 } 3006 } 3007 out: 3008 ext4_ext_drop_refs(path); 3009 kfree(path); 3010 path = NULL; 3011 if (err == -EAGAIN) 3012 goto again; 3013 ext4_journal_stop(handle); 3014 3015 return err; 3016 } 3017 3018 /* 3019 * called at mount time 3020 */ 3021 void ext4_ext_init(struct super_block *sb) 3022 { 3023 /* 3024 * possible initialization would be here 3025 */ 3026 3027 if (ext4_has_feature_extents(sb)) { 3028 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 3029 printk(KERN_INFO "EXT4-fs: file extents enabled" 3030 #ifdef AGGRESSIVE_TEST 3031 ", aggressive tests" 3032 #endif 3033 #ifdef CHECK_BINSEARCH 3034 ", check binsearch" 3035 #endif 3036 #ifdef EXTENTS_STATS 3037 ", stats" 3038 #endif 3039 "\n"); 3040 #endif 3041 #ifdef EXTENTS_STATS 3042 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 3043 EXT4_SB(sb)->s_ext_min = 1 << 30; 3044 EXT4_SB(sb)->s_ext_max = 0; 3045 #endif 3046 } 3047 } 3048 3049 /* 3050 * called at umount time 3051 */ 3052 void ext4_ext_release(struct super_block *sb) 3053 { 3054 if (!ext4_has_feature_extents(sb)) 3055 return; 3056 3057 #ifdef EXTENTS_STATS 3058 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 3059 struct ext4_sb_info *sbi = EXT4_SB(sb); 3060 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 3061 sbi->s_ext_blocks, sbi->s_ext_extents, 3062 sbi->s_ext_blocks / sbi->s_ext_extents); 3063 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 3064 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 3065 } 3066 #endif 3067 } 3068 3069 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex) 3070 { 3071 ext4_lblk_t ee_block; 3072 ext4_fsblk_t ee_pblock; 3073 unsigned int ee_len; 3074 3075 ee_block = le32_to_cpu(ex->ee_block); 3076 ee_len = ext4_ext_get_actual_len(ex); 3077 ee_pblock = ext4_ext_pblock(ex); 3078 3079 if (ee_len == 0) 3080 return 0; 3081 3082 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock, 3083 EXTENT_STATUS_WRITTEN); 3084 } 3085 3086 /* FIXME!! we need to try to merge to left or right after zero-out */ 3087 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 3088 { 3089 ext4_fsblk_t ee_pblock; 3090 unsigned int ee_len; 3091 3092 ee_len = ext4_ext_get_actual_len(ex); 3093 ee_pblock = ext4_ext_pblock(ex); 3094 return ext4_issue_zeroout(inode, le32_to_cpu(ex->ee_block), ee_pblock, 3095 ee_len); 3096 } 3097 3098 /* 3099 * ext4_split_extent_at() splits an extent at given block. 3100 * 3101 * @handle: the journal handle 3102 * @inode: the file inode 3103 * @path: the path to the extent 3104 * @split: the logical block where the extent is splitted. 3105 * @split_flags: indicates if the extent could be zeroout if split fails, and 3106 * the states(init or unwritten) of new extents. 3107 * @flags: flags used to insert new extent to extent tree. 3108 * 3109 * 3110 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 3111 * of which are deterimined by split_flag. 3112 * 3113 * There are two cases: 3114 * a> the extent are splitted into two extent. 3115 * b> split is not needed, and just mark the extent. 3116 * 3117 * return 0 on success. 3118 */ 3119 static int ext4_split_extent_at(handle_t *handle, 3120 struct inode *inode, 3121 struct ext4_ext_path **ppath, 3122 ext4_lblk_t split, 3123 int split_flag, 3124 int flags) 3125 { 3126 struct ext4_ext_path *path = *ppath; 3127 ext4_fsblk_t newblock; 3128 ext4_lblk_t ee_block; 3129 struct ext4_extent *ex, newex, orig_ex, zero_ex; 3130 struct ext4_extent *ex2 = NULL; 3131 unsigned int ee_len, depth; 3132 int err = 0; 3133 3134 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == 3135 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); 3136 3137 ext_debug("ext4_split_extents_at: inode %lu, logical" 3138 "block %llu\n", inode->i_ino, (unsigned long long)split); 3139 3140 ext4_ext_show_leaf(inode, path); 3141 3142 depth = ext_depth(inode); 3143 ex = path[depth].p_ext; 3144 ee_block = le32_to_cpu(ex->ee_block); 3145 ee_len = ext4_ext_get_actual_len(ex); 3146 newblock = split - ee_block + ext4_ext_pblock(ex); 3147 3148 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 3149 BUG_ON(!ext4_ext_is_unwritten(ex) && 3150 split_flag & (EXT4_EXT_MAY_ZEROOUT | 3151 EXT4_EXT_MARK_UNWRIT1 | 3152 EXT4_EXT_MARK_UNWRIT2)); 3153 3154 err = ext4_ext_get_access(handle, inode, path + depth); 3155 if (err) 3156 goto out; 3157 3158 if (split == ee_block) { 3159 /* 3160 * case b: block @split is the block that the extent begins with 3161 * then we just change the state of the extent, and splitting 3162 * is not needed. 3163 */ 3164 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3165 ext4_ext_mark_unwritten(ex); 3166 else 3167 ext4_ext_mark_initialized(ex); 3168 3169 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 3170 ext4_ext_try_to_merge(handle, inode, path, ex); 3171 3172 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3173 goto out; 3174 } 3175 3176 /* case a */ 3177 memcpy(&orig_ex, ex, sizeof(orig_ex)); 3178 ex->ee_len = cpu_to_le16(split - ee_block); 3179 if (split_flag & EXT4_EXT_MARK_UNWRIT1) 3180 ext4_ext_mark_unwritten(ex); 3181 3182 /* 3183 * path may lead to new leaf, not to original leaf any more 3184 * after ext4_ext_insert_extent() returns, 3185 */ 3186 err = ext4_ext_dirty(handle, inode, path + depth); 3187 if (err) 3188 goto fix_extent_len; 3189 3190 ex2 = &newex; 3191 ex2->ee_block = cpu_to_le32(split); 3192 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 3193 ext4_ext_store_pblock(ex2, newblock); 3194 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3195 ext4_ext_mark_unwritten(ex2); 3196 3197 err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags); 3198 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3199 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { 3200 if (split_flag & EXT4_EXT_DATA_VALID1) { 3201 err = ext4_ext_zeroout(inode, ex2); 3202 zero_ex.ee_block = ex2->ee_block; 3203 zero_ex.ee_len = cpu_to_le16( 3204 ext4_ext_get_actual_len(ex2)); 3205 ext4_ext_store_pblock(&zero_ex, 3206 ext4_ext_pblock(ex2)); 3207 } else { 3208 err = ext4_ext_zeroout(inode, ex); 3209 zero_ex.ee_block = ex->ee_block; 3210 zero_ex.ee_len = cpu_to_le16( 3211 ext4_ext_get_actual_len(ex)); 3212 ext4_ext_store_pblock(&zero_ex, 3213 ext4_ext_pblock(ex)); 3214 } 3215 } else { 3216 err = ext4_ext_zeroout(inode, &orig_ex); 3217 zero_ex.ee_block = orig_ex.ee_block; 3218 zero_ex.ee_len = cpu_to_le16( 3219 ext4_ext_get_actual_len(&orig_ex)); 3220 ext4_ext_store_pblock(&zero_ex, 3221 ext4_ext_pblock(&orig_ex)); 3222 } 3223 3224 if (err) 3225 goto fix_extent_len; 3226 /* update the extent length and mark as initialized */ 3227 ex->ee_len = cpu_to_le16(ee_len); 3228 ext4_ext_try_to_merge(handle, inode, path, ex); 3229 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3230 if (err) 3231 goto fix_extent_len; 3232 3233 /* update extent status tree */ 3234 err = ext4_zeroout_es(inode, &zero_ex); 3235 3236 goto out; 3237 } else if (err) 3238 goto fix_extent_len; 3239 3240 out: 3241 ext4_ext_show_leaf(inode, path); 3242 return err; 3243 3244 fix_extent_len: 3245 ex->ee_len = orig_ex.ee_len; 3246 ext4_ext_dirty(handle, inode, path + path->p_depth); 3247 return err; 3248 } 3249 3250 /* 3251 * ext4_split_extents() splits an extent and mark extent which is covered 3252 * by @map as split_flags indicates 3253 * 3254 * It may result in splitting the extent into multiple extents (up to three) 3255 * There are three possibilities: 3256 * a> There is no split required 3257 * b> Splits in two extents: Split is happening at either end of the extent 3258 * c> Splits in three extents: Somone is splitting in middle of the extent 3259 * 3260 */ 3261 static int ext4_split_extent(handle_t *handle, 3262 struct inode *inode, 3263 struct ext4_ext_path **ppath, 3264 struct ext4_map_blocks *map, 3265 int split_flag, 3266 int flags) 3267 { 3268 struct ext4_ext_path *path = *ppath; 3269 ext4_lblk_t ee_block; 3270 struct ext4_extent *ex; 3271 unsigned int ee_len, depth; 3272 int err = 0; 3273 int unwritten; 3274 int split_flag1, flags1; 3275 int allocated = map->m_len; 3276 3277 depth = ext_depth(inode); 3278 ex = path[depth].p_ext; 3279 ee_block = le32_to_cpu(ex->ee_block); 3280 ee_len = ext4_ext_get_actual_len(ex); 3281 unwritten = ext4_ext_is_unwritten(ex); 3282 3283 if (map->m_lblk + map->m_len < ee_block + ee_len) { 3284 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; 3285 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 3286 if (unwritten) 3287 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 | 3288 EXT4_EXT_MARK_UNWRIT2; 3289 if (split_flag & EXT4_EXT_DATA_VALID2) 3290 split_flag1 |= EXT4_EXT_DATA_VALID1; 3291 err = ext4_split_extent_at(handle, inode, ppath, 3292 map->m_lblk + map->m_len, split_flag1, flags1); 3293 if (err) 3294 goto out; 3295 } else { 3296 allocated = ee_len - (map->m_lblk - ee_block); 3297 } 3298 /* 3299 * Update path is required because previous ext4_split_extent_at() may 3300 * result in split of original leaf or extent zeroout. 3301 */ 3302 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3303 if (IS_ERR(path)) 3304 return PTR_ERR(path); 3305 depth = ext_depth(inode); 3306 ex = path[depth].p_ext; 3307 if (!ex) { 3308 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3309 (unsigned long) map->m_lblk); 3310 return -EFSCORRUPTED; 3311 } 3312 unwritten = ext4_ext_is_unwritten(ex); 3313 split_flag1 = 0; 3314 3315 if (map->m_lblk >= ee_block) { 3316 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2; 3317 if (unwritten) { 3318 split_flag1 |= EXT4_EXT_MARK_UNWRIT1; 3319 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT | 3320 EXT4_EXT_MARK_UNWRIT2); 3321 } 3322 err = ext4_split_extent_at(handle, inode, ppath, 3323 map->m_lblk, split_flag1, flags); 3324 if (err) 3325 goto out; 3326 } 3327 3328 ext4_ext_show_leaf(inode, path); 3329 out: 3330 return err ? err : allocated; 3331 } 3332 3333 /* 3334 * This function is called by ext4_ext_map_blocks() if someone tries to write 3335 * to an unwritten extent. It may result in splitting the unwritten 3336 * extent into multiple extents (up to three - one initialized and two 3337 * unwritten). 3338 * There are three possibilities: 3339 * a> There is no split required: Entire extent should be initialized 3340 * b> Splits in two extents: Write is happening at either end of the extent 3341 * c> Splits in three extents: Somone is writing in middle of the extent 3342 * 3343 * Pre-conditions: 3344 * - The extent pointed to by 'path' is unwritten. 3345 * - The extent pointed to by 'path' contains a superset 3346 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 3347 * 3348 * Post-conditions on success: 3349 * - the returned value is the number of blocks beyond map->l_lblk 3350 * that are allocated and initialized. 3351 * It is guaranteed to be >= map->m_len. 3352 */ 3353 static int ext4_ext_convert_to_initialized(handle_t *handle, 3354 struct inode *inode, 3355 struct ext4_map_blocks *map, 3356 struct ext4_ext_path **ppath, 3357 int flags) 3358 { 3359 struct ext4_ext_path *path = *ppath; 3360 struct ext4_sb_info *sbi; 3361 struct ext4_extent_header *eh; 3362 struct ext4_map_blocks split_map; 3363 struct ext4_extent zero_ex1, zero_ex2; 3364 struct ext4_extent *ex, *abut_ex; 3365 ext4_lblk_t ee_block, eof_block; 3366 unsigned int ee_len, depth, map_len = map->m_len; 3367 int allocated = 0, max_zeroout = 0; 3368 int err = 0; 3369 int split_flag = EXT4_EXT_DATA_VALID2; 3370 3371 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 3372 "block %llu, max_blocks %u\n", inode->i_ino, 3373 (unsigned long long)map->m_lblk, map_len); 3374 3375 sbi = EXT4_SB(inode->i_sb); 3376 eof_block = (EXT4_I(inode)->i_disksize + inode->i_sb->s_blocksize - 1) 3377 >> inode->i_sb->s_blocksize_bits; 3378 if (eof_block < map->m_lblk + map_len) 3379 eof_block = map->m_lblk + map_len; 3380 3381 depth = ext_depth(inode); 3382 eh = path[depth].p_hdr; 3383 ex = path[depth].p_ext; 3384 ee_block = le32_to_cpu(ex->ee_block); 3385 ee_len = ext4_ext_get_actual_len(ex); 3386 zero_ex1.ee_len = 0; 3387 zero_ex2.ee_len = 0; 3388 3389 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3390 3391 /* Pre-conditions */ 3392 BUG_ON(!ext4_ext_is_unwritten(ex)); 3393 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3394 3395 /* 3396 * Attempt to transfer newly initialized blocks from the currently 3397 * unwritten extent to its neighbor. This is much cheaper 3398 * than an insertion followed by a merge as those involve costly 3399 * memmove() calls. Transferring to the left is the common case in 3400 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE) 3401 * followed by append writes. 3402 * 3403 * Limitations of the current logic: 3404 * - L1: we do not deal with writes covering the whole extent. 3405 * This would require removing the extent if the transfer 3406 * is possible. 3407 * - L2: we only attempt to merge with an extent stored in the 3408 * same extent tree node. 3409 */ 3410 if ((map->m_lblk == ee_block) && 3411 /* See if we can merge left */ 3412 (map_len < ee_len) && /*L1*/ 3413 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/ 3414 ext4_lblk_t prev_lblk; 3415 ext4_fsblk_t prev_pblk, ee_pblk; 3416 unsigned int prev_len; 3417 3418 abut_ex = ex - 1; 3419 prev_lblk = le32_to_cpu(abut_ex->ee_block); 3420 prev_len = ext4_ext_get_actual_len(abut_ex); 3421 prev_pblk = ext4_ext_pblock(abut_ex); 3422 ee_pblk = ext4_ext_pblock(ex); 3423 3424 /* 3425 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3426 * upon those conditions: 3427 * - C1: abut_ex is initialized, 3428 * - C2: abut_ex is logically abutting ex, 3429 * - C3: abut_ex is physically abutting ex, 3430 * - C4: abut_ex can receive the additional blocks without 3431 * overflowing the (initialized) length limit. 3432 */ 3433 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3434 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3435 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3436 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3437 err = ext4_ext_get_access(handle, inode, path + depth); 3438 if (err) 3439 goto out; 3440 3441 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3442 map, ex, abut_ex); 3443 3444 /* Shift the start of ex by 'map_len' blocks */ 3445 ex->ee_block = cpu_to_le32(ee_block + map_len); 3446 ext4_ext_store_pblock(ex, ee_pblk + map_len); 3447 ex->ee_len = cpu_to_le16(ee_len - map_len); 3448 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3449 3450 /* Extend abut_ex by 'map_len' blocks */ 3451 abut_ex->ee_len = cpu_to_le16(prev_len + map_len); 3452 3453 /* Result: number of initialized blocks past m_lblk */ 3454 allocated = map_len; 3455 } 3456 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) && 3457 (map_len < ee_len) && /*L1*/ 3458 ex < EXT_LAST_EXTENT(eh)) { /*L2*/ 3459 /* See if we can merge right */ 3460 ext4_lblk_t next_lblk; 3461 ext4_fsblk_t next_pblk, ee_pblk; 3462 unsigned int next_len; 3463 3464 abut_ex = ex + 1; 3465 next_lblk = le32_to_cpu(abut_ex->ee_block); 3466 next_len = ext4_ext_get_actual_len(abut_ex); 3467 next_pblk = ext4_ext_pblock(abut_ex); 3468 ee_pblk = ext4_ext_pblock(ex); 3469 3470 /* 3471 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3472 * upon those conditions: 3473 * - C1: abut_ex is initialized, 3474 * - C2: abut_ex is logically abutting ex, 3475 * - C3: abut_ex is physically abutting ex, 3476 * - C4: abut_ex can receive the additional blocks without 3477 * overflowing the (initialized) length limit. 3478 */ 3479 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3480 ((map->m_lblk + map_len) == next_lblk) && /*C2*/ 3481 ((ee_pblk + ee_len) == next_pblk) && /*C3*/ 3482 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3483 err = ext4_ext_get_access(handle, inode, path + depth); 3484 if (err) 3485 goto out; 3486 3487 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3488 map, ex, abut_ex); 3489 3490 /* Shift the start of abut_ex by 'map_len' blocks */ 3491 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len); 3492 ext4_ext_store_pblock(abut_ex, next_pblk - map_len); 3493 ex->ee_len = cpu_to_le16(ee_len - map_len); 3494 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3495 3496 /* Extend abut_ex by 'map_len' blocks */ 3497 abut_ex->ee_len = cpu_to_le16(next_len + map_len); 3498 3499 /* Result: number of initialized blocks past m_lblk */ 3500 allocated = map_len; 3501 } 3502 } 3503 if (allocated) { 3504 /* Mark the block containing both extents as dirty */ 3505 ext4_ext_dirty(handle, inode, path + depth); 3506 3507 /* Update path to point to the right extent */ 3508 path[depth].p_ext = abut_ex; 3509 goto out; 3510 } else 3511 allocated = ee_len - (map->m_lblk - ee_block); 3512 3513 WARN_ON(map->m_lblk < ee_block); 3514 /* 3515 * It is safe to convert extent to initialized via explicit 3516 * zeroout only if extent is fully inside i_size or new_size. 3517 */ 3518 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3519 3520 if (EXT4_EXT_MAY_ZEROOUT & split_flag) 3521 max_zeroout = sbi->s_extent_max_zeroout_kb >> 3522 (inode->i_sb->s_blocksize_bits - 10); 3523 3524 /* 3525 * five cases: 3526 * 1. split the extent into three extents. 3527 * 2. split the extent into two extents, zeroout the head of the first 3528 * extent. 3529 * 3. split the extent into two extents, zeroout the tail of the second 3530 * extent. 3531 * 4. split the extent into two extents with out zeroout. 3532 * 5. no splitting needed, just possibly zeroout the head and / or the 3533 * tail of the extent. 3534 */ 3535 split_map.m_lblk = map->m_lblk; 3536 split_map.m_len = map->m_len; 3537 3538 if (max_zeroout && (allocated > split_map.m_len)) { 3539 if (allocated <= max_zeroout) { 3540 /* case 3 or 5 */ 3541 zero_ex1.ee_block = 3542 cpu_to_le32(split_map.m_lblk + 3543 split_map.m_len); 3544 zero_ex1.ee_len = 3545 cpu_to_le16(allocated - split_map.m_len); 3546 ext4_ext_store_pblock(&zero_ex1, 3547 ext4_ext_pblock(ex) + split_map.m_lblk + 3548 split_map.m_len - ee_block); 3549 err = ext4_ext_zeroout(inode, &zero_ex1); 3550 if (err) 3551 goto out; 3552 split_map.m_len = allocated; 3553 } 3554 if (split_map.m_lblk - ee_block + split_map.m_len < 3555 max_zeroout) { 3556 /* case 2 or 5 */ 3557 if (split_map.m_lblk != ee_block) { 3558 zero_ex2.ee_block = ex->ee_block; 3559 zero_ex2.ee_len = cpu_to_le16(split_map.m_lblk - 3560 ee_block); 3561 ext4_ext_store_pblock(&zero_ex2, 3562 ext4_ext_pblock(ex)); 3563 err = ext4_ext_zeroout(inode, &zero_ex2); 3564 if (err) 3565 goto out; 3566 } 3567 3568 split_map.m_len += split_map.m_lblk - ee_block; 3569 split_map.m_lblk = ee_block; 3570 allocated = map->m_len; 3571 } 3572 } 3573 3574 err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag, 3575 flags); 3576 if (err > 0) 3577 err = 0; 3578 out: 3579 /* If we have gotten a failure, don't zero out status tree */ 3580 if (!err) { 3581 err = ext4_zeroout_es(inode, &zero_ex1); 3582 if (!err) 3583 err = ext4_zeroout_es(inode, &zero_ex2); 3584 } 3585 return err ? err : allocated; 3586 } 3587 3588 /* 3589 * This function is called by ext4_ext_map_blocks() from 3590 * ext4_get_blocks_dio_write() when DIO to write 3591 * to an unwritten extent. 3592 * 3593 * Writing to an unwritten extent may result in splitting the unwritten 3594 * extent into multiple initialized/unwritten extents (up to three) 3595 * There are three possibilities: 3596 * a> There is no split required: Entire extent should be unwritten 3597 * b> Splits in two extents: Write is happening at either end of the extent 3598 * c> Splits in three extents: Somone is writing in middle of the extent 3599 * 3600 * This works the same way in the case of initialized -> unwritten conversion. 3601 * 3602 * One of more index blocks maybe needed if the extent tree grow after 3603 * the unwritten extent split. To prevent ENOSPC occur at the IO 3604 * complete, we need to split the unwritten extent before DIO submit 3605 * the IO. The unwritten extent called at this time will be split 3606 * into three unwritten extent(at most). After IO complete, the part 3607 * being filled will be convert to initialized by the end_io callback function 3608 * via ext4_convert_unwritten_extents(). 3609 * 3610 * Returns the size of unwritten extent to be written on success. 3611 */ 3612 static int ext4_split_convert_extents(handle_t *handle, 3613 struct inode *inode, 3614 struct ext4_map_blocks *map, 3615 struct ext4_ext_path **ppath, 3616 int flags) 3617 { 3618 struct ext4_ext_path *path = *ppath; 3619 ext4_lblk_t eof_block; 3620 ext4_lblk_t ee_block; 3621 struct ext4_extent *ex; 3622 unsigned int ee_len; 3623 int split_flag = 0, depth; 3624 3625 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n", 3626 __func__, inode->i_ino, 3627 (unsigned long long)map->m_lblk, map->m_len); 3628 3629 eof_block = (EXT4_I(inode)->i_disksize + inode->i_sb->s_blocksize - 1) 3630 >> inode->i_sb->s_blocksize_bits; 3631 if (eof_block < map->m_lblk + map->m_len) 3632 eof_block = map->m_lblk + map->m_len; 3633 /* 3634 * It is safe to convert extent to initialized via explicit 3635 * zeroout only if extent is fully insde i_size or new_size. 3636 */ 3637 depth = ext_depth(inode); 3638 ex = path[depth].p_ext; 3639 ee_block = le32_to_cpu(ex->ee_block); 3640 ee_len = ext4_ext_get_actual_len(ex); 3641 3642 /* Convert to unwritten */ 3643 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) { 3644 split_flag |= EXT4_EXT_DATA_VALID1; 3645 /* Convert to initialized */ 3646 } else if (flags & EXT4_GET_BLOCKS_CONVERT) { 3647 split_flag |= ee_block + ee_len <= eof_block ? 3648 EXT4_EXT_MAY_ZEROOUT : 0; 3649 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2); 3650 } 3651 flags |= EXT4_GET_BLOCKS_PRE_IO; 3652 return ext4_split_extent(handle, inode, ppath, map, split_flag, flags); 3653 } 3654 3655 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3656 struct inode *inode, 3657 struct ext4_map_blocks *map, 3658 struct ext4_ext_path **ppath) 3659 { 3660 struct ext4_ext_path *path = *ppath; 3661 struct ext4_extent *ex; 3662 ext4_lblk_t ee_block; 3663 unsigned int ee_len; 3664 int depth; 3665 int err = 0; 3666 3667 depth = ext_depth(inode); 3668 ex = path[depth].p_ext; 3669 ee_block = le32_to_cpu(ex->ee_block); 3670 ee_len = ext4_ext_get_actual_len(ex); 3671 3672 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3673 "block %llu, max_blocks %u\n", inode->i_ino, 3674 (unsigned long long)ee_block, ee_len); 3675 3676 /* If extent is larger than requested it is a clear sign that we still 3677 * have some extent state machine issues left. So extent_split is still 3678 * required. 3679 * TODO: Once all related issues will be fixed this situation should be 3680 * illegal. 3681 */ 3682 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3683 #ifdef CONFIG_EXT4_DEBUG 3684 ext4_warning(inode->i_sb, "Inode (%ld) finished: extent logical block %llu," 3685 " len %u; IO logical block %llu, len %u", 3686 inode->i_ino, (unsigned long long)ee_block, ee_len, 3687 (unsigned long long)map->m_lblk, map->m_len); 3688 #endif 3689 err = ext4_split_convert_extents(handle, inode, map, ppath, 3690 EXT4_GET_BLOCKS_CONVERT); 3691 if (err < 0) 3692 return err; 3693 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3694 if (IS_ERR(path)) 3695 return PTR_ERR(path); 3696 depth = ext_depth(inode); 3697 ex = path[depth].p_ext; 3698 } 3699 3700 err = ext4_ext_get_access(handle, inode, path + depth); 3701 if (err) 3702 goto out; 3703 /* first mark the extent as initialized */ 3704 ext4_ext_mark_initialized(ex); 3705 3706 /* note: ext4_ext_correct_indexes() isn't needed here because 3707 * borders are not changed 3708 */ 3709 ext4_ext_try_to_merge(handle, inode, path, ex); 3710 3711 /* Mark modified extent as dirty */ 3712 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3713 out: 3714 ext4_ext_show_leaf(inode, path); 3715 return err; 3716 } 3717 3718 static int 3719 convert_initialized_extent(handle_t *handle, struct inode *inode, 3720 struct ext4_map_blocks *map, 3721 struct ext4_ext_path **ppath, 3722 unsigned int *allocated) 3723 { 3724 struct ext4_ext_path *path = *ppath; 3725 struct ext4_extent *ex; 3726 ext4_lblk_t ee_block; 3727 unsigned int ee_len; 3728 int depth; 3729 int err = 0; 3730 3731 /* 3732 * Make sure that the extent is no bigger than we support with 3733 * unwritten extent 3734 */ 3735 if (map->m_len > EXT_UNWRITTEN_MAX_LEN) 3736 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2; 3737 3738 depth = ext_depth(inode); 3739 ex = path[depth].p_ext; 3740 ee_block = le32_to_cpu(ex->ee_block); 3741 ee_len = ext4_ext_get_actual_len(ex); 3742 3743 ext_debug("%s: inode %lu, logical" 3744 "block %llu, max_blocks %u\n", __func__, inode->i_ino, 3745 (unsigned long long)ee_block, ee_len); 3746 3747 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3748 err = ext4_split_convert_extents(handle, inode, map, ppath, 3749 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN); 3750 if (err < 0) 3751 return err; 3752 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3753 if (IS_ERR(path)) 3754 return PTR_ERR(path); 3755 depth = ext_depth(inode); 3756 ex = path[depth].p_ext; 3757 if (!ex) { 3758 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3759 (unsigned long) map->m_lblk); 3760 return -EFSCORRUPTED; 3761 } 3762 } 3763 3764 err = ext4_ext_get_access(handle, inode, path + depth); 3765 if (err) 3766 return err; 3767 /* first mark the extent as unwritten */ 3768 ext4_ext_mark_unwritten(ex); 3769 3770 /* note: ext4_ext_correct_indexes() isn't needed here because 3771 * borders are not changed 3772 */ 3773 ext4_ext_try_to_merge(handle, inode, path, ex); 3774 3775 /* Mark modified extent as dirty */ 3776 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3777 if (err) 3778 return err; 3779 ext4_ext_show_leaf(inode, path); 3780 3781 ext4_update_inode_fsync_trans(handle, inode, 1); 3782 3783 map->m_flags |= EXT4_MAP_UNWRITTEN; 3784 if (*allocated > map->m_len) 3785 *allocated = map->m_len; 3786 map->m_len = *allocated; 3787 return 0; 3788 } 3789 3790 static int 3791 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode, 3792 struct ext4_map_blocks *map, 3793 struct ext4_ext_path **ppath, int flags, 3794 unsigned int allocated, ext4_fsblk_t newblock) 3795 { 3796 #ifdef EXT_DEBUG 3797 struct ext4_ext_path *path = *ppath; 3798 #endif 3799 int ret = 0; 3800 int err = 0; 3801 3802 ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical " 3803 "block %llu, max_blocks %u, flags %x, allocated %u\n", 3804 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 3805 flags, allocated); 3806 ext4_ext_show_leaf(inode, path); 3807 3808 /* 3809 * When writing into unwritten space, we should not fail to 3810 * allocate metadata blocks for the new extent block if needed. 3811 */ 3812 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL; 3813 3814 trace_ext4_ext_handle_unwritten_extents(inode, map, flags, 3815 allocated, newblock); 3816 3817 /* get_block() before submit the IO, split the extent */ 3818 if (flags & EXT4_GET_BLOCKS_PRE_IO) { 3819 ret = ext4_split_convert_extents(handle, inode, map, ppath, 3820 flags | EXT4_GET_BLOCKS_CONVERT); 3821 if (ret <= 0) 3822 goto out; 3823 map->m_flags |= EXT4_MAP_UNWRITTEN; 3824 goto out; 3825 } 3826 /* IO end_io complete, convert the filled extent to written */ 3827 if (flags & EXT4_GET_BLOCKS_CONVERT) { 3828 if (flags & EXT4_GET_BLOCKS_ZERO) { 3829 if (allocated > map->m_len) 3830 allocated = map->m_len; 3831 err = ext4_issue_zeroout(inode, map->m_lblk, newblock, 3832 allocated); 3833 if (err < 0) 3834 goto out2; 3835 } 3836 ret = ext4_convert_unwritten_extents_endio(handle, inode, map, 3837 ppath); 3838 if (ret >= 0) 3839 ext4_update_inode_fsync_trans(handle, inode, 1); 3840 else 3841 err = ret; 3842 map->m_flags |= EXT4_MAP_MAPPED; 3843 map->m_pblk = newblock; 3844 if (allocated > map->m_len) 3845 allocated = map->m_len; 3846 map->m_len = allocated; 3847 goto out2; 3848 } 3849 /* buffered IO case */ 3850 /* 3851 * repeat fallocate creation request 3852 * we already have an unwritten extent 3853 */ 3854 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) { 3855 map->m_flags |= EXT4_MAP_UNWRITTEN; 3856 goto map_out; 3857 } 3858 3859 /* buffered READ or buffered write_begin() lookup */ 3860 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3861 /* 3862 * We have blocks reserved already. We 3863 * return allocated blocks so that delalloc 3864 * won't do block reservation for us. But 3865 * the buffer head will be unmapped so that 3866 * a read from the block returns 0s. 3867 */ 3868 map->m_flags |= EXT4_MAP_UNWRITTEN; 3869 goto out1; 3870 } 3871 3872 /* buffered write, writepage time, convert*/ 3873 ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags); 3874 if (ret >= 0) 3875 ext4_update_inode_fsync_trans(handle, inode, 1); 3876 out: 3877 if (ret <= 0) { 3878 err = ret; 3879 goto out2; 3880 } else 3881 allocated = ret; 3882 map->m_flags |= EXT4_MAP_NEW; 3883 if (allocated > map->m_len) 3884 allocated = map->m_len; 3885 map->m_len = allocated; 3886 3887 map_out: 3888 map->m_flags |= EXT4_MAP_MAPPED; 3889 out1: 3890 if (allocated > map->m_len) 3891 allocated = map->m_len; 3892 ext4_ext_show_leaf(inode, path); 3893 map->m_pblk = newblock; 3894 map->m_len = allocated; 3895 out2: 3896 return err ? err : allocated; 3897 } 3898 3899 /* 3900 * get_implied_cluster_alloc - check to see if the requested 3901 * allocation (in the map structure) overlaps with a cluster already 3902 * allocated in an extent. 3903 * @sb The filesystem superblock structure 3904 * @map The requested lblk->pblk mapping 3905 * @ex The extent structure which might contain an implied 3906 * cluster allocation 3907 * 3908 * This function is called by ext4_ext_map_blocks() after we failed to 3909 * find blocks that were already in the inode's extent tree. Hence, 3910 * we know that the beginning of the requested region cannot overlap 3911 * the extent from the inode's extent tree. There are three cases we 3912 * want to catch. The first is this case: 3913 * 3914 * |--- cluster # N--| 3915 * |--- extent ---| |---- requested region ---| 3916 * |==========| 3917 * 3918 * The second case that we need to test for is this one: 3919 * 3920 * |--------- cluster # N ----------------| 3921 * |--- requested region --| |------- extent ----| 3922 * |=======================| 3923 * 3924 * The third case is when the requested region lies between two extents 3925 * within the same cluster: 3926 * |------------- cluster # N-------------| 3927 * |----- ex -----| |---- ex_right ----| 3928 * |------ requested region ------| 3929 * |================| 3930 * 3931 * In each of the above cases, we need to set the map->m_pblk and 3932 * map->m_len so it corresponds to the return the extent labelled as 3933 * "|====|" from cluster #N, since it is already in use for data in 3934 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 3935 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 3936 * as a new "allocated" block region. Otherwise, we will return 0 and 3937 * ext4_ext_map_blocks() will then allocate one or more new clusters 3938 * by calling ext4_mb_new_blocks(). 3939 */ 3940 static int get_implied_cluster_alloc(struct super_block *sb, 3941 struct ext4_map_blocks *map, 3942 struct ext4_extent *ex, 3943 struct ext4_ext_path *path) 3944 { 3945 struct ext4_sb_info *sbi = EXT4_SB(sb); 3946 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 3947 ext4_lblk_t ex_cluster_start, ex_cluster_end; 3948 ext4_lblk_t rr_cluster_start; 3949 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 3950 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 3951 unsigned short ee_len = ext4_ext_get_actual_len(ex); 3952 3953 /* The extent passed in that we are trying to match */ 3954 ex_cluster_start = EXT4_B2C(sbi, ee_block); 3955 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 3956 3957 /* The requested region passed into ext4_map_blocks() */ 3958 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 3959 3960 if ((rr_cluster_start == ex_cluster_end) || 3961 (rr_cluster_start == ex_cluster_start)) { 3962 if (rr_cluster_start == ex_cluster_end) 3963 ee_start += ee_len - 1; 3964 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset; 3965 map->m_len = min(map->m_len, 3966 (unsigned) sbi->s_cluster_ratio - c_offset); 3967 /* 3968 * Check for and handle this case: 3969 * 3970 * |--------- cluster # N-------------| 3971 * |------- extent ----| 3972 * |--- requested region ---| 3973 * |===========| 3974 */ 3975 3976 if (map->m_lblk < ee_block) 3977 map->m_len = min(map->m_len, ee_block - map->m_lblk); 3978 3979 /* 3980 * Check for the case where there is already another allocated 3981 * block to the right of 'ex' but before the end of the cluster. 3982 * 3983 * |------------- cluster # N-------------| 3984 * |----- ex -----| |---- ex_right ----| 3985 * |------ requested region ------| 3986 * |================| 3987 */ 3988 if (map->m_lblk > ee_block) { 3989 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 3990 map->m_len = min(map->m_len, next - map->m_lblk); 3991 } 3992 3993 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 3994 return 1; 3995 } 3996 3997 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 3998 return 0; 3999 } 4000 4001 4002 /* 4003 * Block allocation/map/preallocation routine for extents based files 4004 * 4005 * 4006 * Need to be called with 4007 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 4008 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 4009 * 4010 * return > 0, number of of blocks already mapped/allocated 4011 * if create == 0 and these are pre-allocated blocks 4012 * buffer head is unmapped 4013 * otherwise blocks are mapped 4014 * 4015 * return = 0, if plain look up failed (blocks have not been allocated) 4016 * buffer head is unmapped 4017 * 4018 * return < 0, error case. 4019 */ 4020 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 4021 struct ext4_map_blocks *map, int flags) 4022 { 4023 struct ext4_ext_path *path = NULL; 4024 struct ext4_extent newex, *ex, *ex2; 4025 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4026 ext4_fsblk_t newblock = 0; 4027 int err = 0, depth, ret; 4028 unsigned int allocated = 0, offset = 0; 4029 unsigned int allocated_clusters = 0; 4030 struct ext4_allocation_request ar; 4031 ext4_lblk_t cluster_offset; 4032 4033 ext_debug("blocks %u/%u requested for inode %lu\n", 4034 map->m_lblk, map->m_len, inode->i_ino); 4035 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 4036 4037 /* find extent for this block */ 4038 path = ext4_find_extent(inode, map->m_lblk, NULL, 0); 4039 if (IS_ERR(path)) { 4040 err = PTR_ERR(path); 4041 path = NULL; 4042 goto out2; 4043 } 4044 4045 depth = ext_depth(inode); 4046 4047 /* 4048 * consistent leaf must not be empty; 4049 * this situation is possible, though, _during_ tree modification; 4050 * this is why assert can't be put in ext4_find_extent() 4051 */ 4052 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 4053 EXT4_ERROR_INODE(inode, "bad extent address " 4054 "lblock: %lu, depth: %d pblock %lld", 4055 (unsigned long) map->m_lblk, depth, 4056 path[depth].p_block); 4057 err = -EFSCORRUPTED; 4058 goto out2; 4059 } 4060 4061 ex = path[depth].p_ext; 4062 if (ex) { 4063 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4064 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4065 unsigned short ee_len; 4066 4067 4068 /* 4069 * unwritten extents are treated as holes, except that 4070 * we split out initialized portions during a write. 4071 */ 4072 ee_len = ext4_ext_get_actual_len(ex); 4073 4074 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 4075 4076 /* if found extent covers block, simply return it */ 4077 if (in_range(map->m_lblk, ee_block, ee_len)) { 4078 newblock = map->m_lblk - ee_block + ee_start; 4079 /* number of remaining blocks in the extent */ 4080 allocated = ee_len - (map->m_lblk - ee_block); 4081 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 4082 ee_block, ee_len, newblock); 4083 4084 /* 4085 * If the extent is initialized check whether the 4086 * caller wants to convert it to unwritten. 4087 */ 4088 if ((!ext4_ext_is_unwritten(ex)) && 4089 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) { 4090 err = convert_initialized_extent(handle, 4091 inode, map, &path, &allocated); 4092 goto out2; 4093 } else if (!ext4_ext_is_unwritten(ex)) { 4094 goto out; 4095 } 4096 4097 ret = ext4_ext_handle_unwritten_extents( 4098 handle, inode, map, &path, flags, 4099 allocated, newblock); 4100 if (ret < 0) 4101 err = ret; 4102 else 4103 allocated = ret; 4104 goto out2; 4105 } 4106 } 4107 4108 /* 4109 * requested block isn't allocated yet; 4110 * we couldn't try to create block if create flag is zero 4111 */ 4112 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4113 ext4_lblk_t hole_start, hole_len; 4114 4115 hole_start = map->m_lblk; 4116 hole_len = ext4_ext_determine_hole(inode, path, &hole_start); 4117 /* 4118 * put just found gap into cache to speed up 4119 * subsequent requests 4120 */ 4121 ext4_ext_put_gap_in_cache(inode, hole_start, hole_len); 4122 4123 /* Update hole_len to reflect hole size after map->m_lblk */ 4124 if (hole_start != map->m_lblk) 4125 hole_len -= map->m_lblk - hole_start; 4126 map->m_pblk = 0; 4127 map->m_len = min_t(unsigned int, map->m_len, hole_len); 4128 4129 goto out2; 4130 } 4131 4132 /* 4133 * Okay, we need to do block allocation. 4134 */ 4135 newex.ee_block = cpu_to_le32(map->m_lblk); 4136 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4137 4138 /* 4139 * If we are doing bigalloc, check to see if the extent returned 4140 * by ext4_find_extent() implies a cluster we can use. 4141 */ 4142 if (cluster_offset && ex && 4143 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 4144 ar.len = allocated = map->m_len; 4145 newblock = map->m_pblk; 4146 goto got_allocated_blocks; 4147 } 4148 4149 /* find neighbour allocated blocks */ 4150 ar.lleft = map->m_lblk; 4151 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 4152 if (err) 4153 goto out2; 4154 ar.lright = map->m_lblk; 4155 ex2 = NULL; 4156 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 4157 if (err) 4158 goto out2; 4159 4160 /* Check if the extent after searching to the right implies a 4161 * cluster we can use. */ 4162 if ((sbi->s_cluster_ratio > 1) && ex2 && 4163 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 4164 ar.len = allocated = map->m_len; 4165 newblock = map->m_pblk; 4166 goto got_allocated_blocks; 4167 } 4168 4169 /* 4170 * See if request is beyond maximum number of blocks we can have in 4171 * a single extent. For an initialized extent this limit is 4172 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is 4173 * EXT_UNWRITTEN_MAX_LEN. 4174 */ 4175 if (map->m_len > EXT_INIT_MAX_LEN && 4176 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4177 map->m_len = EXT_INIT_MAX_LEN; 4178 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN && 4179 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4180 map->m_len = EXT_UNWRITTEN_MAX_LEN; 4181 4182 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 4183 newex.ee_len = cpu_to_le16(map->m_len); 4184 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 4185 if (err) 4186 allocated = ext4_ext_get_actual_len(&newex); 4187 else 4188 allocated = map->m_len; 4189 4190 /* allocate new block */ 4191 ar.inode = inode; 4192 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 4193 ar.logical = map->m_lblk; 4194 /* 4195 * We calculate the offset from the beginning of the cluster 4196 * for the logical block number, since when we allocate a 4197 * physical cluster, the physical block should start at the 4198 * same offset from the beginning of the cluster. This is 4199 * needed so that future calls to get_implied_cluster_alloc() 4200 * work correctly. 4201 */ 4202 offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4203 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 4204 ar.goal -= offset; 4205 ar.logical -= offset; 4206 if (S_ISREG(inode->i_mode)) 4207 ar.flags = EXT4_MB_HINT_DATA; 4208 else 4209 /* disable in-core preallocation for non-regular files */ 4210 ar.flags = 0; 4211 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4212 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4213 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 4214 ar.flags |= EXT4_MB_DELALLOC_RESERVED; 4215 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 4216 ar.flags |= EXT4_MB_USE_RESERVED; 4217 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4218 if (!newblock) 4219 goto out2; 4220 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 4221 ar.goal, newblock, allocated); 4222 allocated_clusters = ar.len; 4223 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4224 if (ar.len > allocated) 4225 ar.len = allocated; 4226 4227 got_allocated_blocks: 4228 /* try to insert new extent into found leaf and return */ 4229 ext4_ext_store_pblock(&newex, newblock + offset); 4230 newex.ee_len = cpu_to_le16(ar.len); 4231 /* Mark unwritten */ 4232 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) { 4233 ext4_ext_mark_unwritten(&newex); 4234 map->m_flags |= EXT4_MAP_UNWRITTEN; 4235 } 4236 4237 err = ext4_ext_insert_extent(handle, inode, &path, &newex, flags); 4238 if (err) { 4239 if (allocated_clusters) { 4240 int fb_flags = 0; 4241 4242 /* 4243 * free data blocks we just allocated. 4244 * not a good idea to call discard here directly, 4245 * but otherwise we'd need to call it every free(). 4246 */ 4247 ext4_discard_preallocations(inode); 4248 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 4249 fb_flags = EXT4_FREE_BLOCKS_NO_QUOT_UPDATE; 4250 ext4_free_blocks(handle, inode, NULL, newblock, 4251 EXT4_C2B(sbi, allocated_clusters), 4252 fb_flags); 4253 } 4254 goto out2; 4255 } 4256 4257 /* previous routine could use block we allocated */ 4258 newblock = ext4_ext_pblock(&newex); 4259 allocated = ext4_ext_get_actual_len(&newex); 4260 if (allocated > map->m_len) 4261 allocated = map->m_len; 4262 map->m_flags |= EXT4_MAP_NEW; 4263 4264 /* 4265 * Reduce the reserved cluster count to reflect successful deferred 4266 * allocation of delayed allocated clusters or direct allocation of 4267 * clusters discovered to be delayed allocated. Once allocated, a 4268 * cluster is not included in the reserved count. 4269 */ 4270 if (test_opt(inode->i_sb, DELALLOC) && allocated_clusters) { 4271 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4272 /* 4273 * When allocating delayed allocated clusters, simply 4274 * reduce the reserved cluster count and claim quota 4275 */ 4276 ext4_da_update_reserve_space(inode, allocated_clusters, 4277 1); 4278 } else { 4279 ext4_lblk_t lblk, len; 4280 unsigned int n; 4281 4282 /* 4283 * When allocating non-delayed allocated clusters 4284 * (from fallocate, filemap, DIO, or clusters 4285 * allocated when delalloc has been disabled by 4286 * ext4_nonda_switch), reduce the reserved cluster 4287 * count by the number of allocated clusters that 4288 * have previously been delayed allocated. Quota 4289 * has been claimed by ext4_mb_new_blocks() above, 4290 * so release the quota reservations made for any 4291 * previously delayed allocated clusters. 4292 */ 4293 lblk = EXT4_LBLK_CMASK(sbi, map->m_lblk); 4294 len = allocated_clusters << sbi->s_cluster_bits; 4295 n = ext4_es_delayed_clu(inode, lblk, len); 4296 if (n > 0) 4297 ext4_da_update_reserve_space(inode, (int) n, 0); 4298 } 4299 } 4300 4301 /* 4302 * Cache the extent and update transaction to commit on fdatasync only 4303 * when it is _not_ an unwritten extent. 4304 */ 4305 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0) 4306 ext4_update_inode_fsync_trans(handle, inode, 1); 4307 else 4308 ext4_update_inode_fsync_trans(handle, inode, 0); 4309 out: 4310 if (allocated > map->m_len) 4311 allocated = map->m_len; 4312 ext4_ext_show_leaf(inode, path); 4313 map->m_flags |= EXT4_MAP_MAPPED; 4314 map->m_pblk = newblock; 4315 map->m_len = allocated; 4316 out2: 4317 ext4_ext_drop_refs(path); 4318 kfree(path); 4319 4320 trace_ext4_ext_map_blocks_exit(inode, flags, map, 4321 err ? err : allocated); 4322 return err ? err : allocated; 4323 } 4324 4325 int ext4_ext_truncate(handle_t *handle, struct inode *inode) 4326 { 4327 struct super_block *sb = inode->i_sb; 4328 ext4_lblk_t last_block; 4329 int err = 0; 4330 4331 /* 4332 * TODO: optimization is possible here. 4333 * Probably we need not scan at all, 4334 * because page truncation is enough. 4335 */ 4336 4337 /* we have to know where to truncate from in crash case */ 4338 EXT4_I(inode)->i_disksize = inode->i_size; 4339 err = ext4_mark_inode_dirty(handle, inode); 4340 if (err) 4341 return err; 4342 4343 last_block = (inode->i_size + sb->s_blocksize - 1) 4344 >> EXT4_BLOCK_SIZE_BITS(sb); 4345 retry: 4346 err = ext4_es_remove_extent(inode, last_block, 4347 EXT_MAX_BLOCKS - last_block); 4348 if (err == -ENOMEM) { 4349 cond_resched(); 4350 congestion_wait(BLK_RW_ASYNC, HZ/50); 4351 goto retry; 4352 } 4353 if (err) 4354 return err; 4355 return ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4356 } 4357 4358 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset, 4359 ext4_lblk_t len, loff_t new_size, 4360 int flags) 4361 { 4362 struct inode *inode = file_inode(file); 4363 handle_t *handle; 4364 int ret = 0; 4365 int ret2 = 0, ret3 = 0; 4366 int retries = 0; 4367 int depth = 0; 4368 struct ext4_map_blocks map; 4369 unsigned int credits; 4370 loff_t epos; 4371 4372 BUG_ON(!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)); 4373 map.m_lblk = offset; 4374 map.m_len = len; 4375 /* 4376 * Don't normalize the request if it can fit in one extent so 4377 * that it doesn't get unnecessarily split into multiple 4378 * extents. 4379 */ 4380 if (len <= EXT_UNWRITTEN_MAX_LEN) 4381 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4382 4383 /* 4384 * credits to insert 1 extent into extent tree 4385 */ 4386 credits = ext4_chunk_trans_blocks(inode, len); 4387 depth = ext_depth(inode); 4388 4389 retry: 4390 while (ret >= 0 && len) { 4391 /* 4392 * Recalculate credits when extent tree depth changes. 4393 */ 4394 if (depth != ext_depth(inode)) { 4395 credits = ext4_chunk_trans_blocks(inode, len); 4396 depth = ext_depth(inode); 4397 } 4398 4399 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4400 credits); 4401 if (IS_ERR(handle)) { 4402 ret = PTR_ERR(handle); 4403 break; 4404 } 4405 ret = ext4_map_blocks(handle, inode, &map, flags); 4406 if (ret <= 0) { 4407 ext4_debug("inode #%lu: block %u: len %u: " 4408 "ext4_ext_map_blocks returned %d", 4409 inode->i_ino, map.m_lblk, 4410 map.m_len, ret); 4411 ext4_mark_inode_dirty(handle, inode); 4412 ret2 = ext4_journal_stop(handle); 4413 break; 4414 } 4415 map.m_lblk += ret; 4416 map.m_len = len = len - ret; 4417 epos = (loff_t)map.m_lblk << inode->i_blkbits; 4418 inode->i_ctime = current_time(inode); 4419 if (new_size) { 4420 if (epos > new_size) 4421 epos = new_size; 4422 if (ext4_update_inode_size(inode, epos) & 0x1) 4423 inode->i_mtime = inode->i_ctime; 4424 } 4425 ret2 = ext4_mark_inode_dirty(handle, inode); 4426 ext4_update_inode_fsync_trans(handle, inode, 1); 4427 ret3 = ext4_journal_stop(handle); 4428 ret2 = ret3 ? ret3 : ret2; 4429 if (unlikely(ret2)) 4430 break; 4431 } 4432 if (ret == -ENOSPC && 4433 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4434 ret = 0; 4435 goto retry; 4436 } 4437 4438 return ret > 0 ? ret2 : ret; 4439 } 4440 4441 static int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len); 4442 4443 static int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len); 4444 4445 static long ext4_zero_range(struct file *file, loff_t offset, 4446 loff_t len, int mode) 4447 { 4448 struct inode *inode = file_inode(file); 4449 handle_t *handle = NULL; 4450 unsigned int max_blocks; 4451 loff_t new_size = 0; 4452 int ret = 0; 4453 int flags; 4454 int credits; 4455 int partial_begin, partial_end; 4456 loff_t start, end; 4457 ext4_lblk_t lblk; 4458 unsigned int blkbits = inode->i_blkbits; 4459 4460 trace_ext4_zero_range(inode, offset, len, mode); 4461 4462 /* Call ext4_force_commit to flush all data in case of data=journal. */ 4463 if (ext4_should_journal_data(inode)) { 4464 ret = ext4_force_commit(inode->i_sb); 4465 if (ret) 4466 return ret; 4467 } 4468 4469 /* 4470 * Round up offset. This is not fallocate, we neet to zero out 4471 * blocks, so convert interior block aligned part of the range to 4472 * unwritten and possibly manually zero out unaligned parts of the 4473 * range. 4474 */ 4475 start = round_up(offset, 1 << blkbits); 4476 end = round_down((offset + len), 1 << blkbits); 4477 4478 if (start < offset || end > offset + len) 4479 return -EINVAL; 4480 partial_begin = offset & ((1 << blkbits) - 1); 4481 partial_end = (offset + len) & ((1 << blkbits) - 1); 4482 4483 lblk = start >> blkbits; 4484 max_blocks = (end >> blkbits); 4485 if (max_blocks < lblk) 4486 max_blocks = 0; 4487 else 4488 max_blocks -= lblk; 4489 4490 inode_lock(inode); 4491 4492 /* 4493 * Indirect files do not support unwritten extnets 4494 */ 4495 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4496 ret = -EOPNOTSUPP; 4497 goto out_mutex; 4498 } 4499 4500 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4501 (offset + len > inode->i_size || 4502 offset + len > EXT4_I(inode)->i_disksize)) { 4503 new_size = offset + len; 4504 ret = inode_newsize_ok(inode, new_size); 4505 if (ret) 4506 goto out_mutex; 4507 } 4508 4509 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4510 4511 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4512 inode_dio_wait(inode); 4513 4514 /* Preallocate the range including the unaligned edges */ 4515 if (partial_begin || partial_end) { 4516 ret = ext4_alloc_file_blocks(file, 4517 round_down(offset, 1 << blkbits) >> blkbits, 4518 (round_up((offset + len), 1 << blkbits) - 4519 round_down(offset, 1 << blkbits)) >> blkbits, 4520 new_size, flags); 4521 if (ret) 4522 goto out_mutex; 4523 4524 } 4525 4526 /* Zero range excluding the unaligned edges */ 4527 if (max_blocks > 0) { 4528 flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN | 4529 EXT4_EX_NOCACHE); 4530 4531 /* 4532 * Prevent page faults from reinstantiating pages we have 4533 * released from page cache. 4534 */ 4535 down_write(&EXT4_I(inode)->i_mmap_sem); 4536 4537 ret = ext4_break_layouts(inode); 4538 if (ret) { 4539 up_write(&EXT4_I(inode)->i_mmap_sem); 4540 goto out_mutex; 4541 } 4542 4543 ret = ext4_update_disksize_before_punch(inode, offset, len); 4544 if (ret) { 4545 up_write(&EXT4_I(inode)->i_mmap_sem); 4546 goto out_mutex; 4547 } 4548 /* Now release the pages and zero block aligned part of pages */ 4549 truncate_pagecache_range(inode, start, end - 1); 4550 inode->i_mtime = inode->i_ctime = current_time(inode); 4551 4552 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, 4553 flags); 4554 up_write(&EXT4_I(inode)->i_mmap_sem); 4555 if (ret) 4556 goto out_mutex; 4557 } 4558 if (!partial_begin && !partial_end) 4559 goto out_mutex; 4560 4561 /* 4562 * In worst case we have to writeout two nonadjacent unwritten 4563 * blocks and update the inode 4564 */ 4565 credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1; 4566 if (ext4_should_journal_data(inode)) 4567 credits += 2; 4568 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 4569 if (IS_ERR(handle)) { 4570 ret = PTR_ERR(handle); 4571 ext4_std_error(inode->i_sb, ret); 4572 goto out_mutex; 4573 } 4574 4575 inode->i_mtime = inode->i_ctime = current_time(inode); 4576 if (new_size) 4577 ext4_update_inode_size(inode, new_size); 4578 ret = ext4_mark_inode_dirty(handle, inode); 4579 if (unlikely(ret)) 4580 goto out_handle; 4581 4582 /* Zero out partial block at the edges of the range */ 4583 ret = ext4_zero_partial_blocks(handle, inode, offset, len); 4584 if (ret >= 0) 4585 ext4_update_inode_fsync_trans(handle, inode, 1); 4586 4587 if (file->f_flags & O_SYNC) 4588 ext4_handle_sync(handle); 4589 4590 out_handle: 4591 ext4_journal_stop(handle); 4592 out_mutex: 4593 inode_unlock(inode); 4594 return ret; 4595 } 4596 4597 /* 4598 * preallocate space for a file. This implements ext4's fallocate file 4599 * operation, which gets called from sys_fallocate system call. 4600 * For block-mapped files, posix_fallocate should fall back to the method 4601 * of writing zeroes to the required new blocks (the same behavior which is 4602 * expected for file systems which do not support fallocate() system call). 4603 */ 4604 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4605 { 4606 struct inode *inode = file_inode(file); 4607 loff_t new_size = 0; 4608 unsigned int max_blocks; 4609 int ret = 0; 4610 int flags; 4611 ext4_lblk_t lblk; 4612 unsigned int blkbits = inode->i_blkbits; 4613 4614 /* 4615 * Encrypted inodes can't handle collapse range or insert 4616 * range since we would need to re-encrypt blocks with a 4617 * different IV or XTS tweak (which are based on the logical 4618 * block number). 4619 */ 4620 if (IS_ENCRYPTED(inode) && 4621 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 4622 return -EOPNOTSUPP; 4623 4624 /* Return error if mode is not supported */ 4625 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 4626 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 4627 FALLOC_FL_INSERT_RANGE)) 4628 return -EOPNOTSUPP; 4629 4630 if (mode & FALLOC_FL_PUNCH_HOLE) 4631 return ext4_punch_hole(inode, offset, len); 4632 4633 ret = ext4_convert_inline_data(inode); 4634 if (ret) 4635 return ret; 4636 4637 if (mode & FALLOC_FL_COLLAPSE_RANGE) 4638 return ext4_collapse_range(inode, offset, len); 4639 4640 if (mode & FALLOC_FL_INSERT_RANGE) 4641 return ext4_insert_range(inode, offset, len); 4642 4643 if (mode & FALLOC_FL_ZERO_RANGE) 4644 return ext4_zero_range(file, offset, len, mode); 4645 4646 trace_ext4_fallocate_enter(inode, offset, len, mode); 4647 lblk = offset >> blkbits; 4648 4649 max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits); 4650 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4651 4652 inode_lock(inode); 4653 4654 /* 4655 * We only support preallocation for extent-based files only 4656 */ 4657 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4658 ret = -EOPNOTSUPP; 4659 goto out; 4660 } 4661 4662 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4663 (offset + len > inode->i_size || 4664 offset + len > EXT4_I(inode)->i_disksize)) { 4665 new_size = offset + len; 4666 ret = inode_newsize_ok(inode, new_size); 4667 if (ret) 4668 goto out; 4669 } 4670 4671 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4672 inode_dio_wait(inode); 4673 4674 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, flags); 4675 if (ret) 4676 goto out; 4677 4678 if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) { 4679 ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 4680 EXT4_I(inode)->i_sync_tid); 4681 } 4682 out: 4683 inode_unlock(inode); 4684 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 4685 return ret; 4686 } 4687 4688 /* 4689 * This function convert a range of blocks to written extents 4690 * The caller of this function will pass the start offset and the size. 4691 * all unwritten extents within this range will be converted to 4692 * written extents. 4693 * 4694 * This function is called from the direct IO end io call back 4695 * function, to convert the fallocated extents after IO is completed. 4696 * Returns 0 on success. 4697 */ 4698 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode, 4699 loff_t offset, ssize_t len) 4700 { 4701 unsigned int max_blocks; 4702 int ret = 0, ret2 = 0, ret3 = 0; 4703 struct ext4_map_blocks map; 4704 unsigned int blkbits = inode->i_blkbits; 4705 unsigned int credits = 0; 4706 4707 map.m_lblk = offset >> blkbits; 4708 max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits); 4709 4710 if (!handle) { 4711 /* 4712 * credits to insert 1 extent into extent tree 4713 */ 4714 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4715 } 4716 while (ret >= 0 && ret < max_blocks) { 4717 map.m_lblk += ret; 4718 map.m_len = (max_blocks -= ret); 4719 if (credits) { 4720 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4721 credits); 4722 if (IS_ERR(handle)) { 4723 ret = PTR_ERR(handle); 4724 break; 4725 } 4726 } 4727 ret = ext4_map_blocks(handle, inode, &map, 4728 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 4729 if (ret <= 0) 4730 ext4_warning(inode->i_sb, 4731 "inode #%lu: block %u: len %u: " 4732 "ext4_ext_map_blocks returned %d", 4733 inode->i_ino, map.m_lblk, 4734 map.m_len, ret); 4735 ret2 = ext4_mark_inode_dirty(handle, inode); 4736 if (credits) { 4737 ret3 = ext4_journal_stop(handle); 4738 if (unlikely(ret3)) 4739 ret2 = ret3; 4740 } 4741 4742 if (ret <= 0 || ret2) 4743 break; 4744 } 4745 return ret > 0 ? ret2 : ret; 4746 } 4747 4748 int ext4_convert_unwritten_io_end_vec(handle_t *handle, ext4_io_end_t *io_end) 4749 { 4750 int ret, err = 0; 4751 struct ext4_io_end_vec *io_end_vec; 4752 4753 /* 4754 * This is somewhat ugly but the idea is clear: When transaction is 4755 * reserved, everything goes into it. Otherwise we rather start several 4756 * smaller transactions for conversion of each extent separately. 4757 */ 4758 if (handle) { 4759 handle = ext4_journal_start_reserved(handle, 4760 EXT4_HT_EXT_CONVERT); 4761 if (IS_ERR(handle)) 4762 return PTR_ERR(handle); 4763 } 4764 4765 list_for_each_entry(io_end_vec, &io_end->list_vec, list) { 4766 ret = ext4_convert_unwritten_extents(handle, io_end->inode, 4767 io_end_vec->offset, 4768 io_end_vec->size); 4769 if (ret) 4770 break; 4771 } 4772 4773 if (handle) 4774 err = ext4_journal_stop(handle); 4775 4776 return ret < 0 ? ret : err; 4777 } 4778 4779 static int ext4_iomap_xattr_fiemap(struct inode *inode, struct iomap *iomap) 4780 { 4781 __u64 physical = 0; 4782 __u64 length = 0; 4783 int blockbits = inode->i_sb->s_blocksize_bits; 4784 int error = 0; 4785 u16 iomap_type; 4786 4787 /* in-inode? */ 4788 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4789 struct ext4_iloc iloc; 4790 int offset; /* offset of xattr in inode */ 4791 4792 error = ext4_get_inode_loc(inode, &iloc); 4793 if (error) 4794 return error; 4795 physical = (__u64)iloc.bh->b_blocknr << blockbits; 4796 offset = EXT4_GOOD_OLD_INODE_SIZE + 4797 EXT4_I(inode)->i_extra_isize; 4798 physical += offset; 4799 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 4800 brelse(iloc.bh); 4801 iomap_type = IOMAP_INLINE; 4802 } else if (EXT4_I(inode)->i_file_acl) { /* external block */ 4803 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits; 4804 length = inode->i_sb->s_blocksize; 4805 iomap_type = IOMAP_MAPPED; 4806 } else { 4807 /* no in-inode or external block for xattr, so return -ENOENT */ 4808 error = -ENOENT; 4809 goto out; 4810 } 4811 4812 iomap->addr = physical; 4813 iomap->offset = 0; 4814 iomap->length = length; 4815 iomap->type = iomap_type; 4816 iomap->flags = 0; 4817 out: 4818 return error; 4819 } 4820 4821 static int ext4_iomap_xattr_begin(struct inode *inode, loff_t offset, 4822 loff_t length, unsigned flags, 4823 struct iomap *iomap, struct iomap *srcmap) 4824 { 4825 int error; 4826 4827 error = ext4_iomap_xattr_fiemap(inode, iomap); 4828 if (error == 0 && (offset >= iomap->length)) 4829 error = -ENOENT; 4830 return error; 4831 } 4832 4833 static const struct iomap_ops ext4_iomap_xattr_ops = { 4834 .iomap_begin = ext4_iomap_xattr_begin, 4835 }; 4836 4837 static int _ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4838 __u64 start, __u64 len, bool from_es_cache) 4839 { 4840 ext4_lblk_t start_blk; 4841 u32 ext4_fiemap_flags = FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR; 4842 int error = 0; 4843 4844 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 4845 error = ext4_ext_precache(inode); 4846 if (error) 4847 return error; 4848 fieinfo->fi_flags &= ~FIEMAP_FLAG_CACHE; 4849 } 4850 4851 if (from_es_cache) 4852 ext4_fiemap_flags &= FIEMAP_FLAG_XATTR; 4853 4854 if (fiemap_check_flags(fieinfo, ext4_fiemap_flags)) 4855 return -EBADR; 4856 4857 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 4858 fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR; 4859 error = iomap_fiemap(inode, fieinfo, start, len, 4860 &ext4_iomap_xattr_ops); 4861 } else if (!from_es_cache) { 4862 error = iomap_fiemap(inode, fieinfo, start, len, 4863 &ext4_iomap_report_ops); 4864 } else { 4865 ext4_lblk_t len_blks; 4866 __u64 last_blk; 4867 4868 start_blk = start >> inode->i_sb->s_blocksize_bits; 4869 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 4870 if (last_blk >= EXT_MAX_BLOCKS) 4871 last_blk = EXT_MAX_BLOCKS-1; 4872 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 4873 4874 /* 4875 * Walk the extent tree gathering extent information 4876 * and pushing extents back to the user. 4877 */ 4878 error = ext4_fill_es_cache_info(inode, start_blk, len_blks, 4879 fieinfo); 4880 } 4881 return error; 4882 } 4883 4884 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4885 __u64 start, __u64 len) 4886 { 4887 return _ext4_fiemap(inode, fieinfo, start, len, false); 4888 } 4889 4890 int ext4_get_es_cache(struct inode *inode, struct fiemap_extent_info *fieinfo, 4891 __u64 start, __u64 len) 4892 { 4893 if (ext4_has_inline_data(inode)) { 4894 int has_inline; 4895 4896 down_read(&EXT4_I(inode)->xattr_sem); 4897 has_inline = ext4_has_inline_data(inode); 4898 up_read(&EXT4_I(inode)->xattr_sem); 4899 if (has_inline) 4900 return 0; 4901 } 4902 4903 return _ext4_fiemap(inode, fieinfo, start, len, true); 4904 } 4905 4906 4907 /* 4908 * ext4_access_path: 4909 * Function to access the path buffer for marking it dirty. 4910 * It also checks if there are sufficient credits left in the journal handle 4911 * to update path. 4912 */ 4913 static int 4914 ext4_access_path(handle_t *handle, struct inode *inode, 4915 struct ext4_ext_path *path) 4916 { 4917 int credits, err; 4918 4919 if (!ext4_handle_valid(handle)) 4920 return 0; 4921 4922 /* 4923 * Check if need to extend journal credits 4924 * 3 for leaf, sb, and inode plus 2 (bmap and group 4925 * descriptor) for each block group; assume two block 4926 * groups 4927 */ 4928 credits = ext4_writepage_trans_blocks(inode); 4929 err = ext4_datasem_ensure_credits(handle, inode, 7, credits, 0); 4930 if (err < 0) 4931 return err; 4932 4933 err = ext4_ext_get_access(handle, inode, path); 4934 return err; 4935 } 4936 4937 /* 4938 * ext4_ext_shift_path_extents: 4939 * Shift the extents of a path structure lying between path[depth].p_ext 4940 * and EXT_LAST_EXTENT(path[depth].p_hdr), by @shift blocks. @SHIFT tells 4941 * if it is right shift or left shift operation. 4942 */ 4943 static int 4944 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift, 4945 struct inode *inode, handle_t *handle, 4946 enum SHIFT_DIRECTION SHIFT) 4947 { 4948 int depth, err = 0; 4949 struct ext4_extent *ex_start, *ex_last; 4950 bool update = false; 4951 depth = path->p_depth; 4952 4953 while (depth >= 0) { 4954 if (depth == path->p_depth) { 4955 ex_start = path[depth].p_ext; 4956 if (!ex_start) 4957 return -EFSCORRUPTED; 4958 4959 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr); 4960 4961 err = ext4_access_path(handle, inode, path + depth); 4962 if (err) 4963 goto out; 4964 4965 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr)) 4966 update = true; 4967 4968 while (ex_start <= ex_last) { 4969 if (SHIFT == SHIFT_LEFT) { 4970 le32_add_cpu(&ex_start->ee_block, 4971 -shift); 4972 /* Try to merge to the left. */ 4973 if ((ex_start > 4974 EXT_FIRST_EXTENT(path[depth].p_hdr)) 4975 && 4976 ext4_ext_try_to_merge_right(inode, 4977 path, ex_start - 1)) 4978 ex_last--; 4979 else 4980 ex_start++; 4981 } else { 4982 le32_add_cpu(&ex_last->ee_block, shift); 4983 ext4_ext_try_to_merge_right(inode, path, 4984 ex_last); 4985 ex_last--; 4986 } 4987 } 4988 err = ext4_ext_dirty(handle, inode, path + depth); 4989 if (err) 4990 goto out; 4991 4992 if (--depth < 0 || !update) 4993 break; 4994 } 4995 4996 /* Update index too */ 4997 err = ext4_access_path(handle, inode, path + depth); 4998 if (err) 4999 goto out; 5000 5001 if (SHIFT == SHIFT_LEFT) 5002 le32_add_cpu(&path[depth].p_idx->ei_block, -shift); 5003 else 5004 le32_add_cpu(&path[depth].p_idx->ei_block, shift); 5005 err = ext4_ext_dirty(handle, inode, path + depth); 5006 if (err) 5007 goto out; 5008 5009 /* we are done if current index is not a starting index */ 5010 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr)) 5011 break; 5012 5013 depth--; 5014 } 5015 5016 out: 5017 return err; 5018 } 5019 5020 /* 5021 * ext4_ext_shift_extents: 5022 * All the extents which lies in the range from @start to the last allocated 5023 * block for the @inode are shifted either towards left or right (depending 5024 * upon @SHIFT) by @shift blocks. 5025 * On success, 0 is returned, error otherwise. 5026 */ 5027 static int 5028 ext4_ext_shift_extents(struct inode *inode, handle_t *handle, 5029 ext4_lblk_t start, ext4_lblk_t shift, 5030 enum SHIFT_DIRECTION SHIFT) 5031 { 5032 struct ext4_ext_path *path; 5033 int ret = 0, depth; 5034 struct ext4_extent *extent; 5035 ext4_lblk_t stop, *iterator, ex_start, ex_end; 5036 5037 /* Let path point to the last extent */ 5038 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 5039 EXT4_EX_NOCACHE); 5040 if (IS_ERR(path)) 5041 return PTR_ERR(path); 5042 5043 depth = path->p_depth; 5044 extent = path[depth].p_ext; 5045 if (!extent) 5046 goto out; 5047 5048 stop = le32_to_cpu(extent->ee_block); 5049 5050 /* 5051 * For left shifts, make sure the hole on the left is big enough to 5052 * accommodate the shift. For right shifts, make sure the last extent 5053 * won't be shifted beyond EXT_MAX_BLOCKS. 5054 */ 5055 if (SHIFT == SHIFT_LEFT) { 5056 path = ext4_find_extent(inode, start - 1, &path, 5057 EXT4_EX_NOCACHE); 5058 if (IS_ERR(path)) 5059 return PTR_ERR(path); 5060 depth = path->p_depth; 5061 extent = path[depth].p_ext; 5062 if (extent) { 5063 ex_start = le32_to_cpu(extent->ee_block); 5064 ex_end = le32_to_cpu(extent->ee_block) + 5065 ext4_ext_get_actual_len(extent); 5066 } else { 5067 ex_start = 0; 5068 ex_end = 0; 5069 } 5070 5071 if ((start == ex_start && shift > ex_start) || 5072 (shift > start - ex_end)) { 5073 ret = -EINVAL; 5074 goto out; 5075 } 5076 } else { 5077 if (shift > EXT_MAX_BLOCKS - 5078 (stop + ext4_ext_get_actual_len(extent))) { 5079 ret = -EINVAL; 5080 goto out; 5081 } 5082 } 5083 5084 /* 5085 * In case of left shift, iterator points to start and it is increased 5086 * till we reach stop. In case of right shift, iterator points to stop 5087 * and it is decreased till we reach start. 5088 */ 5089 if (SHIFT == SHIFT_LEFT) 5090 iterator = &start; 5091 else 5092 iterator = &stop; 5093 5094 /* 5095 * Its safe to start updating extents. Start and stop are unsigned, so 5096 * in case of right shift if extent with 0 block is reached, iterator 5097 * becomes NULL to indicate the end of the loop. 5098 */ 5099 while (iterator && start <= stop) { 5100 path = ext4_find_extent(inode, *iterator, &path, 5101 EXT4_EX_NOCACHE); 5102 if (IS_ERR(path)) 5103 return PTR_ERR(path); 5104 depth = path->p_depth; 5105 extent = path[depth].p_ext; 5106 if (!extent) { 5107 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 5108 (unsigned long) *iterator); 5109 return -EFSCORRUPTED; 5110 } 5111 if (SHIFT == SHIFT_LEFT && *iterator > 5112 le32_to_cpu(extent->ee_block)) { 5113 /* Hole, move to the next extent */ 5114 if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) { 5115 path[depth].p_ext++; 5116 } else { 5117 *iterator = ext4_ext_next_allocated_block(path); 5118 continue; 5119 } 5120 } 5121 5122 if (SHIFT == SHIFT_LEFT) { 5123 extent = EXT_LAST_EXTENT(path[depth].p_hdr); 5124 *iterator = le32_to_cpu(extent->ee_block) + 5125 ext4_ext_get_actual_len(extent); 5126 } else { 5127 extent = EXT_FIRST_EXTENT(path[depth].p_hdr); 5128 if (le32_to_cpu(extent->ee_block) > 0) 5129 *iterator = le32_to_cpu(extent->ee_block) - 1; 5130 else 5131 /* Beginning is reached, end of the loop */ 5132 iterator = NULL; 5133 /* Update path extent in case we need to stop */ 5134 while (le32_to_cpu(extent->ee_block) < start) 5135 extent++; 5136 path[depth].p_ext = extent; 5137 } 5138 ret = ext4_ext_shift_path_extents(path, shift, inode, 5139 handle, SHIFT); 5140 if (ret) 5141 break; 5142 } 5143 out: 5144 ext4_ext_drop_refs(path); 5145 kfree(path); 5146 return ret; 5147 } 5148 5149 /* 5150 * ext4_collapse_range: 5151 * This implements the fallocate's collapse range functionality for ext4 5152 * Returns: 0 and non-zero on error. 5153 */ 5154 static int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len) 5155 { 5156 struct super_block *sb = inode->i_sb; 5157 ext4_lblk_t punch_start, punch_stop; 5158 handle_t *handle; 5159 unsigned int credits; 5160 loff_t new_size, ioffset; 5161 int ret; 5162 5163 /* 5164 * We need to test this early because xfstests assumes that a 5165 * collapse range of (0, 1) will return EOPNOTSUPP if the file 5166 * system does not support collapse range. 5167 */ 5168 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5169 return -EOPNOTSUPP; 5170 5171 /* Collapse range works only on fs cluster size aligned regions. */ 5172 if (!IS_ALIGNED(offset | len, EXT4_CLUSTER_SIZE(sb))) 5173 return -EINVAL; 5174 5175 trace_ext4_collapse_range(inode, offset, len); 5176 5177 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5178 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb); 5179 5180 /* Call ext4_force_commit to flush all data in case of data=journal. */ 5181 if (ext4_should_journal_data(inode)) { 5182 ret = ext4_force_commit(inode->i_sb); 5183 if (ret) 5184 return ret; 5185 } 5186 5187 inode_lock(inode); 5188 /* 5189 * There is no need to overlap collapse range with EOF, in which case 5190 * it is effectively a truncate operation 5191 */ 5192 if (offset + len >= inode->i_size) { 5193 ret = -EINVAL; 5194 goto out_mutex; 5195 } 5196 5197 /* Currently just for extent based files */ 5198 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5199 ret = -EOPNOTSUPP; 5200 goto out_mutex; 5201 } 5202 5203 /* Wait for existing dio to complete */ 5204 inode_dio_wait(inode); 5205 5206 /* 5207 * Prevent page faults from reinstantiating pages we have released from 5208 * page cache. 5209 */ 5210 down_write(&EXT4_I(inode)->i_mmap_sem); 5211 5212 ret = ext4_break_layouts(inode); 5213 if (ret) 5214 goto out_mmap; 5215 5216 /* 5217 * Need to round down offset to be aligned with page size boundary 5218 * for page size > block size. 5219 */ 5220 ioffset = round_down(offset, PAGE_SIZE); 5221 /* 5222 * Write tail of the last page before removed range since it will get 5223 * removed from the page cache below. 5224 */ 5225 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, offset); 5226 if (ret) 5227 goto out_mmap; 5228 /* 5229 * Write data that will be shifted to preserve them when discarding 5230 * page cache below. We are also protected from pages becoming dirty 5231 * by i_mmap_sem. 5232 */ 5233 ret = filemap_write_and_wait_range(inode->i_mapping, offset + len, 5234 LLONG_MAX); 5235 if (ret) 5236 goto out_mmap; 5237 truncate_pagecache(inode, ioffset); 5238 5239 credits = ext4_writepage_trans_blocks(inode); 5240 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5241 if (IS_ERR(handle)) { 5242 ret = PTR_ERR(handle); 5243 goto out_mmap; 5244 } 5245 5246 down_write(&EXT4_I(inode)->i_data_sem); 5247 ext4_discard_preallocations(inode); 5248 5249 ret = ext4_es_remove_extent(inode, punch_start, 5250 EXT_MAX_BLOCKS - punch_start); 5251 if (ret) { 5252 up_write(&EXT4_I(inode)->i_data_sem); 5253 goto out_stop; 5254 } 5255 5256 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1); 5257 if (ret) { 5258 up_write(&EXT4_I(inode)->i_data_sem); 5259 goto out_stop; 5260 } 5261 ext4_discard_preallocations(inode); 5262 5263 ret = ext4_ext_shift_extents(inode, handle, punch_stop, 5264 punch_stop - punch_start, SHIFT_LEFT); 5265 if (ret) { 5266 up_write(&EXT4_I(inode)->i_data_sem); 5267 goto out_stop; 5268 } 5269 5270 new_size = inode->i_size - len; 5271 i_size_write(inode, new_size); 5272 EXT4_I(inode)->i_disksize = new_size; 5273 5274 up_write(&EXT4_I(inode)->i_data_sem); 5275 if (IS_SYNC(inode)) 5276 ext4_handle_sync(handle); 5277 inode->i_mtime = inode->i_ctime = current_time(inode); 5278 ret = ext4_mark_inode_dirty(handle, inode); 5279 ext4_update_inode_fsync_trans(handle, inode, 1); 5280 5281 out_stop: 5282 ext4_journal_stop(handle); 5283 out_mmap: 5284 up_write(&EXT4_I(inode)->i_mmap_sem); 5285 out_mutex: 5286 inode_unlock(inode); 5287 return ret; 5288 } 5289 5290 /* 5291 * ext4_insert_range: 5292 * This function implements the FALLOC_FL_INSERT_RANGE flag of fallocate. 5293 * The data blocks starting from @offset to the EOF are shifted by @len 5294 * towards right to create a hole in the @inode. Inode size is increased 5295 * by len bytes. 5296 * Returns 0 on success, error otherwise. 5297 */ 5298 static int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len) 5299 { 5300 struct super_block *sb = inode->i_sb; 5301 handle_t *handle; 5302 struct ext4_ext_path *path; 5303 struct ext4_extent *extent; 5304 ext4_lblk_t offset_lblk, len_lblk, ee_start_lblk = 0; 5305 unsigned int credits, ee_len; 5306 int ret = 0, depth, split_flag = 0; 5307 loff_t ioffset; 5308 5309 /* 5310 * We need to test this early because xfstests assumes that an 5311 * insert range of (0, 1) will return EOPNOTSUPP if the file 5312 * system does not support insert range. 5313 */ 5314 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5315 return -EOPNOTSUPP; 5316 5317 /* Insert range works only on fs cluster size aligned regions. */ 5318 if (!IS_ALIGNED(offset | len, EXT4_CLUSTER_SIZE(sb))) 5319 return -EINVAL; 5320 5321 trace_ext4_insert_range(inode, offset, len); 5322 5323 offset_lblk = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5324 len_lblk = len >> EXT4_BLOCK_SIZE_BITS(sb); 5325 5326 /* Call ext4_force_commit to flush all data in case of data=journal */ 5327 if (ext4_should_journal_data(inode)) { 5328 ret = ext4_force_commit(inode->i_sb); 5329 if (ret) 5330 return ret; 5331 } 5332 5333 inode_lock(inode); 5334 /* Currently just for extent based files */ 5335 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5336 ret = -EOPNOTSUPP; 5337 goto out_mutex; 5338 } 5339 5340 /* Check whether the maximum file size would be exceeded */ 5341 if (len > inode->i_sb->s_maxbytes - inode->i_size) { 5342 ret = -EFBIG; 5343 goto out_mutex; 5344 } 5345 5346 /* Offset must be less than i_size */ 5347 if (offset >= inode->i_size) { 5348 ret = -EINVAL; 5349 goto out_mutex; 5350 } 5351 5352 /* Wait for existing dio to complete */ 5353 inode_dio_wait(inode); 5354 5355 /* 5356 * Prevent page faults from reinstantiating pages we have released from 5357 * page cache. 5358 */ 5359 down_write(&EXT4_I(inode)->i_mmap_sem); 5360 5361 ret = ext4_break_layouts(inode); 5362 if (ret) 5363 goto out_mmap; 5364 5365 /* 5366 * Need to round down to align start offset to page size boundary 5367 * for page size > block size. 5368 */ 5369 ioffset = round_down(offset, PAGE_SIZE); 5370 /* Write out all dirty pages */ 5371 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, 5372 LLONG_MAX); 5373 if (ret) 5374 goto out_mmap; 5375 truncate_pagecache(inode, ioffset); 5376 5377 credits = ext4_writepage_trans_blocks(inode); 5378 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5379 if (IS_ERR(handle)) { 5380 ret = PTR_ERR(handle); 5381 goto out_mmap; 5382 } 5383 5384 /* Expand file to avoid data loss if there is error while shifting */ 5385 inode->i_size += len; 5386 EXT4_I(inode)->i_disksize += len; 5387 inode->i_mtime = inode->i_ctime = current_time(inode); 5388 ret = ext4_mark_inode_dirty(handle, inode); 5389 if (ret) 5390 goto out_stop; 5391 5392 down_write(&EXT4_I(inode)->i_data_sem); 5393 ext4_discard_preallocations(inode); 5394 5395 path = ext4_find_extent(inode, offset_lblk, NULL, 0); 5396 if (IS_ERR(path)) { 5397 up_write(&EXT4_I(inode)->i_data_sem); 5398 goto out_stop; 5399 } 5400 5401 depth = ext_depth(inode); 5402 extent = path[depth].p_ext; 5403 if (extent) { 5404 ee_start_lblk = le32_to_cpu(extent->ee_block); 5405 ee_len = ext4_ext_get_actual_len(extent); 5406 5407 /* 5408 * If offset_lblk is not the starting block of extent, split 5409 * the extent @offset_lblk 5410 */ 5411 if ((offset_lblk > ee_start_lblk) && 5412 (offset_lblk < (ee_start_lblk + ee_len))) { 5413 if (ext4_ext_is_unwritten(extent)) 5414 split_flag = EXT4_EXT_MARK_UNWRIT1 | 5415 EXT4_EXT_MARK_UNWRIT2; 5416 ret = ext4_split_extent_at(handle, inode, &path, 5417 offset_lblk, split_flag, 5418 EXT4_EX_NOCACHE | 5419 EXT4_GET_BLOCKS_PRE_IO | 5420 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5421 } 5422 5423 ext4_ext_drop_refs(path); 5424 kfree(path); 5425 if (ret < 0) { 5426 up_write(&EXT4_I(inode)->i_data_sem); 5427 goto out_stop; 5428 } 5429 } else { 5430 ext4_ext_drop_refs(path); 5431 kfree(path); 5432 } 5433 5434 ret = ext4_es_remove_extent(inode, offset_lblk, 5435 EXT_MAX_BLOCKS - offset_lblk); 5436 if (ret) { 5437 up_write(&EXT4_I(inode)->i_data_sem); 5438 goto out_stop; 5439 } 5440 5441 /* 5442 * if offset_lblk lies in a hole which is at start of file, use 5443 * ee_start_lblk to shift extents 5444 */ 5445 ret = ext4_ext_shift_extents(inode, handle, 5446 ee_start_lblk > offset_lblk ? ee_start_lblk : offset_lblk, 5447 len_lblk, SHIFT_RIGHT); 5448 5449 up_write(&EXT4_I(inode)->i_data_sem); 5450 if (IS_SYNC(inode)) 5451 ext4_handle_sync(handle); 5452 if (ret >= 0) 5453 ext4_update_inode_fsync_trans(handle, inode, 1); 5454 5455 out_stop: 5456 ext4_journal_stop(handle); 5457 out_mmap: 5458 up_write(&EXT4_I(inode)->i_mmap_sem); 5459 out_mutex: 5460 inode_unlock(inode); 5461 return ret; 5462 } 5463 5464 /** 5465 * ext4_swap_extents() - Swap extents between two inodes 5466 * @handle: handle for this transaction 5467 * @inode1: First inode 5468 * @inode2: Second inode 5469 * @lblk1: Start block for first inode 5470 * @lblk2: Start block for second inode 5471 * @count: Number of blocks to swap 5472 * @unwritten: Mark second inode's extents as unwritten after swap 5473 * @erp: Pointer to save error value 5474 * 5475 * This helper routine does exactly what is promise "swap extents". All other 5476 * stuff such as page-cache locking consistency, bh mapping consistency or 5477 * extent's data copying must be performed by caller. 5478 * Locking: 5479 * i_mutex is held for both inodes 5480 * i_data_sem is locked for write for both inodes 5481 * Assumptions: 5482 * All pages from requested range are locked for both inodes 5483 */ 5484 int 5485 ext4_swap_extents(handle_t *handle, struct inode *inode1, 5486 struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2, 5487 ext4_lblk_t count, int unwritten, int *erp) 5488 { 5489 struct ext4_ext_path *path1 = NULL; 5490 struct ext4_ext_path *path2 = NULL; 5491 int replaced_count = 0; 5492 5493 BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem)); 5494 BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem)); 5495 BUG_ON(!inode_is_locked(inode1)); 5496 BUG_ON(!inode_is_locked(inode2)); 5497 5498 *erp = ext4_es_remove_extent(inode1, lblk1, count); 5499 if (unlikely(*erp)) 5500 return 0; 5501 *erp = ext4_es_remove_extent(inode2, lblk2, count); 5502 if (unlikely(*erp)) 5503 return 0; 5504 5505 while (count) { 5506 struct ext4_extent *ex1, *ex2, tmp_ex; 5507 ext4_lblk_t e1_blk, e2_blk; 5508 int e1_len, e2_len, len; 5509 int split = 0; 5510 5511 path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE); 5512 if (IS_ERR(path1)) { 5513 *erp = PTR_ERR(path1); 5514 path1 = NULL; 5515 finish: 5516 count = 0; 5517 goto repeat; 5518 } 5519 path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE); 5520 if (IS_ERR(path2)) { 5521 *erp = PTR_ERR(path2); 5522 path2 = NULL; 5523 goto finish; 5524 } 5525 ex1 = path1[path1->p_depth].p_ext; 5526 ex2 = path2[path2->p_depth].p_ext; 5527 /* Do we have somthing to swap ? */ 5528 if (unlikely(!ex2 || !ex1)) 5529 goto finish; 5530 5531 e1_blk = le32_to_cpu(ex1->ee_block); 5532 e2_blk = le32_to_cpu(ex2->ee_block); 5533 e1_len = ext4_ext_get_actual_len(ex1); 5534 e2_len = ext4_ext_get_actual_len(ex2); 5535 5536 /* Hole handling */ 5537 if (!in_range(lblk1, e1_blk, e1_len) || 5538 !in_range(lblk2, e2_blk, e2_len)) { 5539 ext4_lblk_t next1, next2; 5540 5541 /* if hole after extent, then go to next extent */ 5542 next1 = ext4_ext_next_allocated_block(path1); 5543 next2 = ext4_ext_next_allocated_block(path2); 5544 /* If hole before extent, then shift to that extent */ 5545 if (e1_blk > lblk1) 5546 next1 = e1_blk; 5547 if (e2_blk > lblk2) 5548 next2 = e2_blk; 5549 /* Do we have something to swap */ 5550 if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS) 5551 goto finish; 5552 /* Move to the rightest boundary */ 5553 len = next1 - lblk1; 5554 if (len < next2 - lblk2) 5555 len = next2 - lblk2; 5556 if (len > count) 5557 len = count; 5558 lblk1 += len; 5559 lblk2 += len; 5560 count -= len; 5561 goto repeat; 5562 } 5563 5564 /* Prepare left boundary */ 5565 if (e1_blk < lblk1) { 5566 split = 1; 5567 *erp = ext4_force_split_extent_at(handle, inode1, 5568 &path1, lblk1, 0); 5569 if (unlikely(*erp)) 5570 goto finish; 5571 } 5572 if (e2_blk < lblk2) { 5573 split = 1; 5574 *erp = ext4_force_split_extent_at(handle, inode2, 5575 &path2, lblk2, 0); 5576 if (unlikely(*erp)) 5577 goto finish; 5578 } 5579 /* ext4_split_extent_at() may result in leaf extent split, 5580 * path must to be revalidated. */ 5581 if (split) 5582 goto repeat; 5583 5584 /* Prepare right boundary */ 5585 len = count; 5586 if (len > e1_blk + e1_len - lblk1) 5587 len = e1_blk + e1_len - lblk1; 5588 if (len > e2_blk + e2_len - lblk2) 5589 len = e2_blk + e2_len - lblk2; 5590 5591 if (len != e1_len) { 5592 split = 1; 5593 *erp = ext4_force_split_extent_at(handle, inode1, 5594 &path1, lblk1 + len, 0); 5595 if (unlikely(*erp)) 5596 goto finish; 5597 } 5598 if (len != e2_len) { 5599 split = 1; 5600 *erp = ext4_force_split_extent_at(handle, inode2, 5601 &path2, lblk2 + len, 0); 5602 if (*erp) 5603 goto finish; 5604 } 5605 /* ext4_split_extent_at() may result in leaf extent split, 5606 * path must to be revalidated. */ 5607 if (split) 5608 goto repeat; 5609 5610 BUG_ON(e2_len != e1_len); 5611 *erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth); 5612 if (unlikely(*erp)) 5613 goto finish; 5614 *erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth); 5615 if (unlikely(*erp)) 5616 goto finish; 5617 5618 /* Both extents are fully inside boundaries. Swap it now */ 5619 tmp_ex = *ex1; 5620 ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2)); 5621 ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex)); 5622 ex1->ee_len = cpu_to_le16(e2_len); 5623 ex2->ee_len = cpu_to_le16(e1_len); 5624 if (unwritten) 5625 ext4_ext_mark_unwritten(ex2); 5626 if (ext4_ext_is_unwritten(&tmp_ex)) 5627 ext4_ext_mark_unwritten(ex1); 5628 5629 ext4_ext_try_to_merge(handle, inode2, path2, ex2); 5630 ext4_ext_try_to_merge(handle, inode1, path1, ex1); 5631 *erp = ext4_ext_dirty(handle, inode2, path2 + 5632 path2->p_depth); 5633 if (unlikely(*erp)) 5634 goto finish; 5635 *erp = ext4_ext_dirty(handle, inode1, path1 + 5636 path1->p_depth); 5637 /* 5638 * Looks scarry ah..? second inode already points to new blocks, 5639 * and it was successfully dirtied. But luckily error may happen 5640 * only due to journal error, so full transaction will be 5641 * aborted anyway. 5642 */ 5643 if (unlikely(*erp)) 5644 goto finish; 5645 lblk1 += len; 5646 lblk2 += len; 5647 replaced_count += len; 5648 count -= len; 5649 5650 repeat: 5651 ext4_ext_drop_refs(path1); 5652 kfree(path1); 5653 ext4_ext_drop_refs(path2); 5654 kfree(path2); 5655 path1 = path2 = NULL; 5656 } 5657 return replaced_count; 5658 } 5659 5660 /* 5661 * ext4_clu_mapped - determine whether any block in a logical cluster has 5662 * been mapped to a physical cluster 5663 * 5664 * @inode - file containing the logical cluster 5665 * @lclu - logical cluster of interest 5666 * 5667 * Returns 1 if any block in the logical cluster is mapped, signifying 5668 * that a physical cluster has been allocated for it. Otherwise, 5669 * returns 0. Can also return negative error codes. Derived from 5670 * ext4_ext_map_blocks(). 5671 */ 5672 int ext4_clu_mapped(struct inode *inode, ext4_lblk_t lclu) 5673 { 5674 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5675 struct ext4_ext_path *path; 5676 int depth, mapped = 0, err = 0; 5677 struct ext4_extent *extent; 5678 ext4_lblk_t first_lblk, first_lclu, last_lclu; 5679 5680 /* search for the extent closest to the first block in the cluster */ 5681 path = ext4_find_extent(inode, EXT4_C2B(sbi, lclu), NULL, 0); 5682 if (IS_ERR(path)) { 5683 err = PTR_ERR(path); 5684 path = NULL; 5685 goto out; 5686 } 5687 5688 depth = ext_depth(inode); 5689 5690 /* 5691 * A consistent leaf must not be empty. This situation is possible, 5692 * though, _during_ tree modification, and it's why an assert can't 5693 * be put in ext4_find_extent(). 5694 */ 5695 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 5696 EXT4_ERROR_INODE(inode, 5697 "bad extent address - lblock: %lu, depth: %d, pblock: %lld", 5698 (unsigned long) EXT4_C2B(sbi, lclu), 5699 depth, path[depth].p_block); 5700 err = -EFSCORRUPTED; 5701 goto out; 5702 } 5703 5704 extent = path[depth].p_ext; 5705 5706 /* can't be mapped if the extent tree is empty */ 5707 if (extent == NULL) 5708 goto out; 5709 5710 first_lblk = le32_to_cpu(extent->ee_block); 5711 first_lclu = EXT4_B2C(sbi, first_lblk); 5712 5713 /* 5714 * Three possible outcomes at this point - found extent spanning 5715 * the target cluster, to the left of the target cluster, or to the 5716 * right of the target cluster. The first two cases are handled here. 5717 * The last case indicates the target cluster is not mapped. 5718 */ 5719 if (lclu >= first_lclu) { 5720 last_lclu = EXT4_B2C(sbi, first_lblk + 5721 ext4_ext_get_actual_len(extent) - 1); 5722 if (lclu <= last_lclu) { 5723 mapped = 1; 5724 } else { 5725 first_lblk = ext4_ext_next_allocated_block(path); 5726 first_lclu = EXT4_B2C(sbi, first_lblk); 5727 if (lclu == first_lclu) 5728 mapped = 1; 5729 } 5730 } 5731 5732 out: 5733 ext4_ext_drop_refs(path); 5734 kfree(path); 5735 5736 return err ? err : mapped; 5737 } 5738