1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public Licens 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/fs.h> 33 #include <linux/time.h> 34 #include <linux/jbd2.h> 35 #include <linux/highuid.h> 36 #include <linux/pagemap.h> 37 #include <linux/quotaops.h> 38 #include <linux/string.h> 39 #include <linux/slab.h> 40 #include <linux/falloc.h> 41 #include <asm/uaccess.h> 42 #include <linux/fiemap.h> 43 #include "ext4_jbd2.h" 44 #include "ext4_extents.h" 45 #include "xattr.h" 46 47 #include <trace/events/ext4.h> 48 49 /* 50 * used by extent splitting. 51 */ 52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 53 due to ENOSPC */ 54 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */ 55 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */ 56 57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */ 58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */ 59 60 static __le32 ext4_extent_block_csum(struct inode *inode, 61 struct ext4_extent_header *eh) 62 { 63 struct ext4_inode_info *ei = EXT4_I(inode); 64 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 65 __u32 csum; 66 67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, 68 EXT4_EXTENT_TAIL_OFFSET(eh)); 69 return cpu_to_le32(csum); 70 } 71 72 static int ext4_extent_block_csum_verify(struct inode *inode, 73 struct ext4_extent_header *eh) 74 { 75 struct ext4_extent_tail *et; 76 77 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 78 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 79 return 1; 80 81 et = find_ext4_extent_tail(eh); 82 if (et->et_checksum != ext4_extent_block_csum(inode, eh)) 83 return 0; 84 return 1; 85 } 86 87 static void ext4_extent_block_csum_set(struct inode *inode, 88 struct ext4_extent_header *eh) 89 { 90 struct ext4_extent_tail *et; 91 92 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 93 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 94 return; 95 96 et = find_ext4_extent_tail(eh); 97 et->et_checksum = ext4_extent_block_csum(inode, eh); 98 } 99 100 static int ext4_split_extent(handle_t *handle, 101 struct inode *inode, 102 struct ext4_ext_path *path, 103 struct ext4_map_blocks *map, 104 int split_flag, 105 int flags); 106 107 static int ext4_split_extent_at(handle_t *handle, 108 struct inode *inode, 109 struct ext4_ext_path *path, 110 ext4_lblk_t split, 111 int split_flag, 112 int flags); 113 114 static int ext4_find_delayed_extent(struct inode *inode, 115 struct extent_status *newes); 116 117 static int ext4_ext_truncate_extend_restart(handle_t *handle, 118 struct inode *inode, 119 int needed) 120 { 121 int err; 122 123 if (!ext4_handle_valid(handle)) 124 return 0; 125 if (handle->h_buffer_credits > needed) 126 return 0; 127 err = ext4_journal_extend(handle, needed); 128 if (err <= 0) 129 return err; 130 err = ext4_truncate_restart_trans(handle, inode, needed); 131 if (err == 0) 132 err = -EAGAIN; 133 134 return err; 135 } 136 137 /* 138 * could return: 139 * - EROFS 140 * - ENOMEM 141 */ 142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 143 struct ext4_ext_path *path) 144 { 145 if (path->p_bh) { 146 /* path points to block */ 147 return ext4_journal_get_write_access(handle, path->p_bh); 148 } 149 /* path points to leaf/index in inode body */ 150 /* we use in-core data, no need to protect them */ 151 return 0; 152 } 153 154 /* 155 * could return: 156 * - EROFS 157 * - ENOMEM 158 * - EIO 159 */ 160 #define ext4_ext_dirty(handle, inode, path) \ 161 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path)) 162 static int __ext4_ext_dirty(const char *where, unsigned int line, 163 handle_t *handle, struct inode *inode, 164 struct ext4_ext_path *path) 165 { 166 int err; 167 if (path->p_bh) { 168 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); 169 /* path points to block */ 170 err = __ext4_handle_dirty_metadata(where, line, handle, 171 inode, path->p_bh); 172 } else { 173 /* path points to leaf/index in inode body */ 174 err = ext4_mark_inode_dirty(handle, inode); 175 } 176 return err; 177 } 178 179 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 180 struct ext4_ext_path *path, 181 ext4_lblk_t block) 182 { 183 if (path) { 184 int depth = path->p_depth; 185 struct ext4_extent *ex; 186 187 /* 188 * Try to predict block placement assuming that we are 189 * filling in a file which will eventually be 190 * non-sparse --- i.e., in the case of libbfd writing 191 * an ELF object sections out-of-order but in a way 192 * the eventually results in a contiguous object or 193 * executable file, or some database extending a table 194 * space file. However, this is actually somewhat 195 * non-ideal if we are writing a sparse file such as 196 * qemu or KVM writing a raw image file that is going 197 * to stay fairly sparse, since it will end up 198 * fragmenting the file system's free space. Maybe we 199 * should have some hueristics or some way to allow 200 * userspace to pass a hint to file system, 201 * especially if the latter case turns out to be 202 * common. 203 */ 204 ex = path[depth].p_ext; 205 if (ex) { 206 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 207 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 208 209 if (block > ext_block) 210 return ext_pblk + (block - ext_block); 211 else 212 return ext_pblk - (ext_block - block); 213 } 214 215 /* it looks like index is empty; 216 * try to find starting block from index itself */ 217 if (path[depth].p_bh) 218 return path[depth].p_bh->b_blocknr; 219 } 220 221 /* OK. use inode's group */ 222 return ext4_inode_to_goal_block(inode); 223 } 224 225 /* 226 * Allocation for a meta data block 227 */ 228 static ext4_fsblk_t 229 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 230 struct ext4_ext_path *path, 231 struct ext4_extent *ex, int *err, unsigned int flags) 232 { 233 ext4_fsblk_t goal, newblock; 234 235 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 236 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 237 NULL, err); 238 return newblock; 239 } 240 241 static inline int ext4_ext_space_block(struct inode *inode, int check) 242 { 243 int size; 244 245 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 246 / sizeof(struct ext4_extent); 247 #ifdef AGGRESSIVE_TEST 248 if (!check && size > 6) 249 size = 6; 250 #endif 251 return size; 252 } 253 254 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 255 { 256 int size; 257 258 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 259 / sizeof(struct ext4_extent_idx); 260 #ifdef AGGRESSIVE_TEST 261 if (!check && size > 5) 262 size = 5; 263 #endif 264 return size; 265 } 266 267 static inline int ext4_ext_space_root(struct inode *inode, int check) 268 { 269 int size; 270 271 size = sizeof(EXT4_I(inode)->i_data); 272 size -= sizeof(struct ext4_extent_header); 273 size /= sizeof(struct ext4_extent); 274 #ifdef AGGRESSIVE_TEST 275 if (!check && size > 3) 276 size = 3; 277 #endif 278 return size; 279 } 280 281 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 282 { 283 int size; 284 285 size = sizeof(EXT4_I(inode)->i_data); 286 size -= sizeof(struct ext4_extent_header); 287 size /= sizeof(struct ext4_extent_idx); 288 #ifdef AGGRESSIVE_TEST 289 if (!check && size > 4) 290 size = 4; 291 #endif 292 return size; 293 } 294 295 /* 296 * Calculate the number of metadata blocks needed 297 * to allocate @blocks 298 * Worse case is one block per extent 299 */ 300 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 301 { 302 struct ext4_inode_info *ei = EXT4_I(inode); 303 int idxs; 304 305 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 306 / sizeof(struct ext4_extent_idx)); 307 308 /* 309 * If the new delayed allocation block is contiguous with the 310 * previous da block, it can share index blocks with the 311 * previous block, so we only need to allocate a new index 312 * block every idxs leaf blocks. At ldxs**2 blocks, we need 313 * an additional index block, and at ldxs**3 blocks, yet 314 * another index blocks. 315 */ 316 if (ei->i_da_metadata_calc_len && 317 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 318 int num = 0; 319 320 if ((ei->i_da_metadata_calc_len % idxs) == 0) 321 num++; 322 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 323 num++; 324 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 325 num++; 326 ei->i_da_metadata_calc_len = 0; 327 } else 328 ei->i_da_metadata_calc_len++; 329 ei->i_da_metadata_calc_last_lblock++; 330 return num; 331 } 332 333 /* 334 * In the worst case we need a new set of index blocks at 335 * every level of the inode's extent tree. 336 */ 337 ei->i_da_metadata_calc_len = 1; 338 ei->i_da_metadata_calc_last_lblock = lblock; 339 return ext_depth(inode) + 1; 340 } 341 342 static int 343 ext4_ext_max_entries(struct inode *inode, int depth) 344 { 345 int max; 346 347 if (depth == ext_depth(inode)) { 348 if (depth == 0) 349 max = ext4_ext_space_root(inode, 1); 350 else 351 max = ext4_ext_space_root_idx(inode, 1); 352 } else { 353 if (depth == 0) 354 max = ext4_ext_space_block(inode, 1); 355 else 356 max = ext4_ext_space_block_idx(inode, 1); 357 } 358 359 return max; 360 } 361 362 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 363 { 364 ext4_fsblk_t block = ext4_ext_pblock(ext); 365 int len = ext4_ext_get_actual_len(ext); 366 367 if (len == 0) 368 return 0; 369 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 370 } 371 372 static int ext4_valid_extent_idx(struct inode *inode, 373 struct ext4_extent_idx *ext_idx) 374 { 375 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 376 377 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 378 } 379 380 static int ext4_valid_extent_entries(struct inode *inode, 381 struct ext4_extent_header *eh, 382 int depth) 383 { 384 unsigned short entries; 385 if (eh->eh_entries == 0) 386 return 1; 387 388 entries = le16_to_cpu(eh->eh_entries); 389 390 if (depth == 0) { 391 /* leaf entries */ 392 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 393 while (entries) { 394 if (!ext4_valid_extent(inode, ext)) 395 return 0; 396 ext++; 397 entries--; 398 } 399 } else { 400 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 401 while (entries) { 402 if (!ext4_valid_extent_idx(inode, ext_idx)) 403 return 0; 404 ext_idx++; 405 entries--; 406 } 407 } 408 return 1; 409 } 410 411 static int __ext4_ext_check(const char *function, unsigned int line, 412 struct inode *inode, struct ext4_extent_header *eh, 413 int depth) 414 { 415 const char *error_msg; 416 int max = 0; 417 418 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 419 error_msg = "invalid magic"; 420 goto corrupted; 421 } 422 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 423 error_msg = "unexpected eh_depth"; 424 goto corrupted; 425 } 426 if (unlikely(eh->eh_max == 0)) { 427 error_msg = "invalid eh_max"; 428 goto corrupted; 429 } 430 max = ext4_ext_max_entries(inode, depth); 431 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 432 error_msg = "too large eh_max"; 433 goto corrupted; 434 } 435 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 436 error_msg = "invalid eh_entries"; 437 goto corrupted; 438 } 439 if (!ext4_valid_extent_entries(inode, eh, depth)) { 440 error_msg = "invalid extent entries"; 441 goto corrupted; 442 } 443 /* Verify checksum on non-root extent tree nodes */ 444 if (ext_depth(inode) != depth && 445 !ext4_extent_block_csum_verify(inode, eh)) { 446 error_msg = "extent tree corrupted"; 447 goto corrupted; 448 } 449 return 0; 450 451 corrupted: 452 ext4_error_inode(inode, function, line, 0, 453 "bad header/extent: %s - magic %x, " 454 "entries %u, max %u(%u), depth %u(%u)", 455 error_msg, le16_to_cpu(eh->eh_magic), 456 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 457 max, le16_to_cpu(eh->eh_depth), depth); 458 459 return -EIO; 460 } 461 462 #define ext4_ext_check(inode, eh, depth) \ 463 __ext4_ext_check(__func__, __LINE__, inode, eh, depth) 464 465 int ext4_ext_check_inode(struct inode *inode) 466 { 467 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode)); 468 } 469 470 static int __ext4_ext_check_block(const char *function, unsigned int line, 471 struct inode *inode, 472 struct ext4_extent_header *eh, 473 int depth, 474 struct buffer_head *bh) 475 { 476 int ret; 477 478 if (buffer_verified(bh)) 479 return 0; 480 ret = ext4_ext_check(inode, eh, depth); 481 if (ret) 482 return ret; 483 set_buffer_verified(bh); 484 return ret; 485 } 486 487 #define ext4_ext_check_block(inode, eh, depth, bh) \ 488 __ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh) 489 490 #ifdef EXT_DEBUG 491 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 492 { 493 int k, l = path->p_depth; 494 495 ext_debug("path:"); 496 for (k = 0; k <= l; k++, path++) { 497 if (path->p_idx) { 498 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 499 ext4_idx_pblock(path->p_idx)); 500 } else if (path->p_ext) { 501 ext_debug(" %d:[%d]%d:%llu ", 502 le32_to_cpu(path->p_ext->ee_block), 503 ext4_ext_is_uninitialized(path->p_ext), 504 ext4_ext_get_actual_len(path->p_ext), 505 ext4_ext_pblock(path->p_ext)); 506 } else 507 ext_debug(" []"); 508 } 509 ext_debug("\n"); 510 } 511 512 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 513 { 514 int depth = ext_depth(inode); 515 struct ext4_extent_header *eh; 516 struct ext4_extent *ex; 517 int i; 518 519 if (!path) 520 return; 521 522 eh = path[depth].p_hdr; 523 ex = EXT_FIRST_EXTENT(eh); 524 525 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 526 527 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 528 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 529 ext4_ext_is_uninitialized(ex), 530 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 531 } 532 ext_debug("\n"); 533 } 534 535 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 536 ext4_fsblk_t newblock, int level) 537 { 538 int depth = ext_depth(inode); 539 struct ext4_extent *ex; 540 541 if (depth != level) { 542 struct ext4_extent_idx *idx; 543 idx = path[level].p_idx; 544 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 545 ext_debug("%d: move %d:%llu in new index %llu\n", level, 546 le32_to_cpu(idx->ei_block), 547 ext4_idx_pblock(idx), 548 newblock); 549 idx++; 550 } 551 552 return; 553 } 554 555 ex = path[depth].p_ext; 556 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 557 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 558 le32_to_cpu(ex->ee_block), 559 ext4_ext_pblock(ex), 560 ext4_ext_is_uninitialized(ex), 561 ext4_ext_get_actual_len(ex), 562 newblock); 563 ex++; 564 } 565 } 566 567 #else 568 #define ext4_ext_show_path(inode, path) 569 #define ext4_ext_show_leaf(inode, path) 570 #define ext4_ext_show_move(inode, path, newblock, level) 571 #endif 572 573 void ext4_ext_drop_refs(struct ext4_ext_path *path) 574 { 575 int depth = path->p_depth; 576 int i; 577 578 for (i = 0; i <= depth; i++, path++) 579 if (path->p_bh) { 580 brelse(path->p_bh); 581 path->p_bh = NULL; 582 } 583 } 584 585 /* 586 * ext4_ext_binsearch_idx: 587 * binary search for the closest index of the given block 588 * the header must be checked before calling this 589 */ 590 static void 591 ext4_ext_binsearch_idx(struct inode *inode, 592 struct ext4_ext_path *path, ext4_lblk_t block) 593 { 594 struct ext4_extent_header *eh = path->p_hdr; 595 struct ext4_extent_idx *r, *l, *m; 596 597 598 ext_debug("binsearch for %u(idx): ", block); 599 600 l = EXT_FIRST_INDEX(eh) + 1; 601 r = EXT_LAST_INDEX(eh); 602 while (l <= r) { 603 m = l + (r - l) / 2; 604 if (block < le32_to_cpu(m->ei_block)) 605 r = m - 1; 606 else 607 l = m + 1; 608 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 609 m, le32_to_cpu(m->ei_block), 610 r, le32_to_cpu(r->ei_block)); 611 } 612 613 path->p_idx = l - 1; 614 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), 615 ext4_idx_pblock(path->p_idx)); 616 617 #ifdef CHECK_BINSEARCH 618 { 619 struct ext4_extent_idx *chix, *ix; 620 int k; 621 622 chix = ix = EXT_FIRST_INDEX(eh); 623 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 624 if (k != 0 && 625 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 626 printk(KERN_DEBUG "k=%d, ix=0x%p, " 627 "first=0x%p\n", k, 628 ix, EXT_FIRST_INDEX(eh)); 629 printk(KERN_DEBUG "%u <= %u\n", 630 le32_to_cpu(ix->ei_block), 631 le32_to_cpu(ix[-1].ei_block)); 632 } 633 BUG_ON(k && le32_to_cpu(ix->ei_block) 634 <= le32_to_cpu(ix[-1].ei_block)); 635 if (block < le32_to_cpu(ix->ei_block)) 636 break; 637 chix = ix; 638 } 639 BUG_ON(chix != path->p_idx); 640 } 641 #endif 642 643 } 644 645 /* 646 * ext4_ext_binsearch: 647 * binary search for closest extent of the given block 648 * the header must be checked before calling this 649 */ 650 static void 651 ext4_ext_binsearch(struct inode *inode, 652 struct ext4_ext_path *path, ext4_lblk_t block) 653 { 654 struct ext4_extent_header *eh = path->p_hdr; 655 struct ext4_extent *r, *l, *m; 656 657 if (eh->eh_entries == 0) { 658 /* 659 * this leaf is empty: 660 * we get such a leaf in split/add case 661 */ 662 return; 663 } 664 665 ext_debug("binsearch for %u: ", block); 666 667 l = EXT_FIRST_EXTENT(eh) + 1; 668 r = EXT_LAST_EXTENT(eh); 669 670 while (l <= r) { 671 m = l + (r - l) / 2; 672 if (block < le32_to_cpu(m->ee_block)) 673 r = m - 1; 674 else 675 l = m + 1; 676 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 677 m, le32_to_cpu(m->ee_block), 678 r, le32_to_cpu(r->ee_block)); 679 } 680 681 path->p_ext = l - 1; 682 ext_debug(" -> %d:%llu:[%d]%d ", 683 le32_to_cpu(path->p_ext->ee_block), 684 ext4_ext_pblock(path->p_ext), 685 ext4_ext_is_uninitialized(path->p_ext), 686 ext4_ext_get_actual_len(path->p_ext)); 687 688 #ifdef CHECK_BINSEARCH 689 { 690 struct ext4_extent *chex, *ex; 691 int k; 692 693 chex = ex = EXT_FIRST_EXTENT(eh); 694 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 695 BUG_ON(k && le32_to_cpu(ex->ee_block) 696 <= le32_to_cpu(ex[-1].ee_block)); 697 if (block < le32_to_cpu(ex->ee_block)) 698 break; 699 chex = ex; 700 } 701 BUG_ON(chex != path->p_ext); 702 } 703 #endif 704 705 } 706 707 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 708 { 709 struct ext4_extent_header *eh; 710 711 eh = ext_inode_hdr(inode); 712 eh->eh_depth = 0; 713 eh->eh_entries = 0; 714 eh->eh_magic = EXT4_EXT_MAGIC; 715 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 716 ext4_mark_inode_dirty(handle, inode); 717 return 0; 718 } 719 720 struct ext4_ext_path * 721 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block, 722 struct ext4_ext_path *path) 723 { 724 struct ext4_extent_header *eh; 725 struct buffer_head *bh; 726 short int depth, i, ppos = 0, alloc = 0; 727 int ret; 728 729 eh = ext_inode_hdr(inode); 730 depth = ext_depth(inode); 731 732 /* account possible depth increase */ 733 if (!path) { 734 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 735 GFP_NOFS); 736 if (!path) 737 return ERR_PTR(-ENOMEM); 738 alloc = 1; 739 } 740 path[0].p_hdr = eh; 741 path[0].p_bh = NULL; 742 743 i = depth; 744 /* walk through the tree */ 745 while (i) { 746 ext_debug("depth %d: num %d, max %d\n", 747 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 748 749 ext4_ext_binsearch_idx(inode, path + ppos, block); 750 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 751 path[ppos].p_depth = i; 752 path[ppos].p_ext = NULL; 753 754 bh = sb_getblk(inode->i_sb, path[ppos].p_block); 755 if (unlikely(!bh)) { 756 ret = -ENOMEM; 757 goto err; 758 } 759 if (!bh_uptodate_or_lock(bh)) { 760 trace_ext4_ext_load_extent(inode, block, 761 path[ppos].p_block); 762 ret = bh_submit_read(bh); 763 if (ret < 0) { 764 put_bh(bh); 765 goto err; 766 } 767 } 768 eh = ext_block_hdr(bh); 769 ppos++; 770 if (unlikely(ppos > depth)) { 771 put_bh(bh); 772 EXT4_ERROR_INODE(inode, 773 "ppos %d > depth %d", ppos, depth); 774 ret = -EIO; 775 goto err; 776 } 777 path[ppos].p_bh = bh; 778 path[ppos].p_hdr = eh; 779 i--; 780 781 ret = ext4_ext_check_block(inode, eh, i, bh); 782 if (ret < 0) 783 goto err; 784 } 785 786 path[ppos].p_depth = i; 787 path[ppos].p_ext = NULL; 788 path[ppos].p_idx = NULL; 789 790 /* find extent */ 791 ext4_ext_binsearch(inode, path + ppos, block); 792 /* if not an empty leaf */ 793 if (path[ppos].p_ext) 794 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 795 796 ext4_ext_show_path(inode, path); 797 798 return path; 799 800 err: 801 ext4_ext_drop_refs(path); 802 if (alloc) 803 kfree(path); 804 return ERR_PTR(ret); 805 } 806 807 /* 808 * ext4_ext_insert_index: 809 * insert new index [@logical;@ptr] into the block at @curp; 810 * check where to insert: before @curp or after @curp 811 */ 812 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 813 struct ext4_ext_path *curp, 814 int logical, ext4_fsblk_t ptr) 815 { 816 struct ext4_extent_idx *ix; 817 int len, err; 818 819 err = ext4_ext_get_access(handle, inode, curp); 820 if (err) 821 return err; 822 823 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 824 EXT4_ERROR_INODE(inode, 825 "logical %d == ei_block %d!", 826 logical, le32_to_cpu(curp->p_idx->ei_block)); 827 return -EIO; 828 } 829 830 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 831 >= le16_to_cpu(curp->p_hdr->eh_max))) { 832 EXT4_ERROR_INODE(inode, 833 "eh_entries %d >= eh_max %d!", 834 le16_to_cpu(curp->p_hdr->eh_entries), 835 le16_to_cpu(curp->p_hdr->eh_max)); 836 return -EIO; 837 } 838 839 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 840 /* insert after */ 841 ext_debug("insert new index %d after: %llu\n", logical, ptr); 842 ix = curp->p_idx + 1; 843 } else { 844 /* insert before */ 845 ext_debug("insert new index %d before: %llu\n", logical, ptr); 846 ix = curp->p_idx; 847 } 848 849 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 850 BUG_ON(len < 0); 851 if (len > 0) { 852 ext_debug("insert new index %d: " 853 "move %d indices from 0x%p to 0x%p\n", 854 logical, len, ix, ix + 1); 855 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 856 } 857 858 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 859 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 860 return -EIO; 861 } 862 863 ix->ei_block = cpu_to_le32(logical); 864 ext4_idx_store_pblock(ix, ptr); 865 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 866 867 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 868 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 869 return -EIO; 870 } 871 872 err = ext4_ext_dirty(handle, inode, curp); 873 ext4_std_error(inode->i_sb, err); 874 875 return err; 876 } 877 878 /* 879 * ext4_ext_split: 880 * inserts new subtree into the path, using free index entry 881 * at depth @at: 882 * - allocates all needed blocks (new leaf and all intermediate index blocks) 883 * - makes decision where to split 884 * - moves remaining extents and index entries (right to the split point) 885 * into the newly allocated blocks 886 * - initializes subtree 887 */ 888 static int ext4_ext_split(handle_t *handle, struct inode *inode, 889 unsigned int flags, 890 struct ext4_ext_path *path, 891 struct ext4_extent *newext, int at) 892 { 893 struct buffer_head *bh = NULL; 894 int depth = ext_depth(inode); 895 struct ext4_extent_header *neh; 896 struct ext4_extent_idx *fidx; 897 int i = at, k, m, a; 898 ext4_fsblk_t newblock, oldblock; 899 __le32 border; 900 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 901 int err = 0; 902 903 /* make decision: where to split? */ 904 /* FIXME: now decision is simplest: at current extent */ 905 906 /* if current leaf will be split, then we should use 907 * border from split point */ 908 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 909 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 910 return -EIO; 911 } 912 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 913 border = path[depth].p_ext[1].ee_block; 914 ext_debug("leaf will be split." 915 " next leaf starts at %d\n", 916 le32_to_cpu(border)); 917 } else { 918 border = newext->ee_block; 919 ext_debug("leaf will be added." 920 " next leaf starts at %d\n", 921 le32_to_cpu(border)); 922 } 923 924 /* 925 * If error occurs, then we break processing 926 * and mark filesystem read-only. index won't 927 * be inserted and tree will be in consistent 928 * state. Next mount will repair buffers too. 929 */ 930 931 /* 932 * Get array to track all allocated blocks. 933 * We need this to handle errors and free blocks 934 * upon them. 935 */ 936 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 937 if (!ablocks) 938 return -ENOMEM; 939 940 /* allocate all needed blocks */ 941 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 942 for (a = 0; a < depth - at; a++) { 943 newblock = ext4_ext_new_meta_block(handle, inode, path, 944 newext, &err, flags); 945 if (newblock == 0) 946 goto cleanup; 947 ablocks[a] = newblock; 948 } 949 950 /* initialize new leaf */ 951 newblock = ablocks[--a]; 952 if (unlikely(newblock == 0)) { 953 EXT4_ERROR_INODE(inode, "newblock == 0!"); 954 err = -EIO; 955 goto cleanup; 956 } 957 bh = sb_getblk(inode->i_sb, newblock); 958 if (unlikely(!bh)) { 959 err = -ENOMEM; 960 goto cleanup; 961 } 962 lock_buffer(bh); 963 964 err = ext4_journal_get_create_access(handle, bh); 965 if (err) 966 goto cleanup; 967 968 neh = ext_block_hdr(bh); 969 neh->eh_entries = 0; 970 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 971 neh->eh_magic = EXT4_EXT_MAGIC; 972 neh->eh_depth = 0; 973 974 /* move remainder of path[depth] to the new leaf */ 975 if (unlikely(path[depth].p_hdr->eh_entries != 976 path[depth].p_hdr->eh_max)) { 977 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 978 path[depth].p_hdr->eh_entries, 979 path[depth].p_hdr->eh_max); 980 err = -EIO; 981 goto cleanup; 982 } 983 /* start copy from next extent */ 984 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 985 ext4_ext_show_move(inode, path, newblock, depth); 986 if (m) { 987 struct ext4_extent *ex; 988 ex = EXT_FIRST_EXTENT(neh); 989 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 990 le16_add_cpu(&neh->eh_entries, m); 991 } 992 993 ext4_extent_block_csum_set(inode, neh); 994 set_buffer_uptodate(bh); 995 unlock_buffer(bh); 996 997 err = ext4_handle_dirty_metadata(handle, inode, bh); 998 if (err) 999 goto cleanup; 1000 brelse(bh); 1001 bh = NULL; 1002 1003 /* correct old leaf */ 1004 if (m) { 1005 err = ext4_ext_get_access(handle, inode, path + depth); 1006 if (err) 1007 goto cleanup; 1008 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 1009 err = ext4_ext_dirty(handle, inode, path + depth); 1010 if (err) 1011 goto cleanup; 1012 1013 } 1014 1015 /* create intermediate indexes */ 1016 k = depth - at - 1; 1017 if (unlikely(k < 0)) { 1018 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 1019 err = -EIO; 1020 goto cleanup; 1021 } 1022 if (k) 1023 ext_debug("create %d intermediate indices\n", k); 1024 /* insert new index into current index block */ 1025 /* current depth stored in i var */ 1026 i = depth - 1; 1027 while (k--) { 1028 oldblock = newblock; 1029 newblock = ablocks[--a]; 1030 bh = sb_getblk(inode->i_sb, newblock); 1031 if (unlikely(!bh)) { 1032 err = -ENOMEM; 1033 goto cleanup; 1034 } 1035 lock_buffer(bh); 1036 1037 err = ext4_journal_get_create_access(handle, bh); 1038 if (err) 1039 goto cleanup; 1040 1041 neh = ext_block_hdr(bh); 1042 neh->eh_entries = cpu_to_le16(1); 1043 neh->eh_magic = EXT4_EXT_MAGIC; 1044 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1045 neh->eh_depth = cpu_to_le16(depth - i); 1046 fidx = EXT_FIRST_INDEX(neh); 1047 fidx->ei_block = border; 1048 ext4_idx_store_pblock(fidx, oldblock); 1049 1050 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 1051 i, newblock, le32_to_cpu(border), oldblock); 1052 1053 /* move remainder of path[i] to the new index block */ 1054 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 1055 EXT_LAST_INDEX(path[i].p_hdr))) { 1056 EXT4_ERROR_INODE(inode, 1057 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 1058 le32_to_cpu(path[i].p_ext->ee_block)); 1059 err = -EIO; 1060 goto cleanup; 1061 } 1062 /* start copy indexes */ 1063 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 1064 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 1065 EXT_MAX_INDEX(path[i].p_hdr)); 1066 ext4_ext_show_move(inode, path, newblock, i); 1067 if (m) { 1068 memmove(++fidx, path[i].p_idx, 1069 sizeof(struct ext4_extent_idx) * m); 1070 le16_add_cpu(&neh->eh_entries, m); 1071 } 1072 ext4_extent_block_csum_set(inode, neh); 1073 set_buffer_uptodate(bh); 1074 unlock_buffer(bh); 1075 1076 err = ext4_handle_dirty_metadata(handle, inode, bh); 1077 if (err) 1078 goto cleanup; 1079 brelse(bh); 1080 bh = NULL; 1081 1082 /* correct old index */ 1083 if (m) { 1084 err = ext4_ext_get_access(handle, inode, path + i); 1085 if (err) 1086 goto cleanup; 1087 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1088 err = ext4_ext_dirty(handle, inode, path + i); 1089 if (err) 1090 goto cleanup; 1091 } 1092 1093 i--; 1094 } 1095 1096 /* insert new index */ 1097 err = ext4_ext_insert_index(handle, inode, path + at, 1098 le32_to_cpu(border), newblock); 1099 1100 cleanup: 1101 if (bh) { 1102 if (buffer_locked(bh)) 1103 unlock_buffer(bh); 1104 brelse(bh); 1105 } 1106 1107 if (err) { 1108 /* free all allocated blocks in error case */ 1109 for (i = 0; i < depth; i++) { 1110 if (!ablocks[i]) 1111 continue; 1112 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1113 EXT4_FREE_BLOCKS_METADATA); 1114 } 1115 } 1116 kfree(ablocks); 1117 1118 return err; 1119 } 1120 1121 /* 1122 * ext4_ext_grow_indepth: 1123 * implements tree growing procedure: 1124 * - allocates new block 1125 * - moves top-level data (index block or leaf) into the new block 1126 * - initializes new top-level, creating index that points to the 1127 * just created block 1128 */ 1129 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1130 unsigned int flags, 1131 struct ext4_extent *newext) 1132 { 1133 struct ext4_extent_header *neh; 1134 struct buffer_head *bh; 1135 ext4_fsblk_t newblock; 1136 int err = 0; 1137 1138 newblock = ext4_ext_new_meta_block(handle, inode, NULL, 1139 newext, &err, flags); 1140 if (newblock == 0) 1141 return err; 1142 1143 bh = sb_getblk(inode->i_sb, newblock); 1144 if (unlikely(!bh)) 1145 return -ENOMEM; 1146 lock_buffer(bh); 1147 1148 err = ext4_journal_get_create_access(handle, bh); 1149 if (err) { 1150 unlock_buffer(bh); 1151 goto out; 1152 } 1153 1154 /* move top-level index/leaf into new block */ 1155 memmove(bh->b_data, EXT4_I(inode)->i_data, 1156 sizeof(EXT4_I(inode)->i_data)); 1157 1158 /* set size of new block */ 1159 neh = ext_block_hdr(bh); 1160 /* old root could have indexes or leaves 1161 * so calculate e_max right way */ 1162 if (ext_depth(inode)) 1163 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1164 else 1165 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1166 neh->eh_magic = EXT4_EXT_MAGIC; 1167 ext4_extent_block_csum_set(inode, neh); 1168 set_buffer_uptodate(bh); 1169 unlock_buffer(bh); 1170 1171 err = ext4_handle_dirty_metadata(handle, inode, bh); 1172 if (err) 1173 goto out; 1174 1175 /* Update top-level index: num,max,pointer */ 1176 neh = ext_inode_hdr(inode); 1177 neh->eh_entries = cpu_to_le16(1); 1178 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1179 if (neh->eh_depth == 0) { 1180 /* Root extent block becomes index block */ 1181 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1182 EXT_FIRST_INDEX(neh)->ei_block = 1183 EXT_FIRST_EXTENT(neh)->ee_block; 1184 } 1185 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1186 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1187 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1188 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1189 1190 le16_add_cpu(&neh->eh_depth, 1); 1191 ext4_mark_inode_dirty(handle, inode); 1192 out: 1193 brelse(bh); 1194 1195 return err; 1196 } 1197 1198 /* 1199 * ext4_ext_create_new_leaf: 1200 * finds empty index and adds new leaf. 1201 * if no free index is found, then it requests in-depth growing. 1202 */ 1203 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1204 unsigned int flags, 1205 struct ext4_ext_path *path, 1206 struct ext4_extent *newext) 1207 { 1208 struct ext4_ext_path *curp; 1209 int depth, i, err = 0; 1210 1211 repeat: 1212 i = depth = ext_depth(inode); 1213 1214 /* walk up to the tree and look for free index entry */ 1215 curp = path + depth; 1216 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1217 i--; 1218 curp--; 1219 } 1220 1221 /* we use already allocated block for index block, 1222 * so subsequent data blocks should be contiguous */ 1223 if (EXT_HAS_FREE_INDEX(curp)) { 1224 /* if we found index with free entry, then use that 1225 * entry: create all needed subtree and add new leaf */ 1226 err = ext4_ext_split(handle, inode, flags, path, newext, i); 1227 if (err) 1228 goto out; 1229 1230 /* refill path */ 1231 ext4_ext_drop_refs(path); 1232 path = ext4_ext_find_extent(inode, 1233 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1234 path); 1235 if (IS_ERR(path)) 1236 err = PTR_ERR(path); 1237 } else { 1238 /* tree is full, time to grow in depth */ 1239 err = ext4_ext_grow_indepth(handle, inode, flags, newext); 1240 if (err) 1241 goto out; 1242 1243 /* refill path */ 1244 ext4_ext_drop_refs(path); 1245 path = ext4_ext_find_extent(inode, 1246 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1247 path); 1248 if (IS_ERR(path)) { 1249 err = PTR_ERR(path); 1250 goto out; 1251 } 1252 1253 /* 1254 * only first (depth 0 -> 1) produces free space; 1255 * in all other cases we have to split the grown tree 1256 */ 1257 depth = ext_depth(inode); 1258 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1259 /* now we need to split */ 1260 goto repeat; 1261 } 1262 } 1263 1264 out: 1265 return err; 1266 } 1267 1268 /* 1269 * search the closest allocated block to the left for *logical 1270 * and returns it at @logical + it's physical address at @phys 1271 * if *logical is the smallest allocated block, the function 1272 * returns 0 at @phys 1273 * return value contains 0 (success) or error code 1274 */ 1275 static int ext4_ext_search_left(struct inode *inode, 1276 struct ext4_ext_path *path, 1277 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1278 { 1279 struct ext4_extent_idx *ix; 1280 struct ext4_extent *ex; 1281 int depth, ee_len; 1282 1283 if (unlikely(path == NULL)) { 1284 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1285 return -EIO; 1286 } 1287 depth = path->p_depth; 1288 *phys = 0; 1289 1290 if (depth == 0 && path->p_ext == NULL) 1291 return 0; 1292 1293 /* usually extent in the path covers blocks smaller 1294 * then *logical, but it can be that extent is the 1295 * first one in the file */ 1296 1297 ex = path[depth].p_ext; 1298 ee_len = ext4_ext_get_actual_len(ex); 1299 if (*logical < le32_to_cpu(ex->ee_block)) { 1300 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1301 EXT4_ERROR_INODE(inode, 1302 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1303 *logical, le32_to_cpu(ex->ee_block)); 1304 return -EIO; 1305 } 1306 while (--depth >= 0) { 1307 ix = path[depth].p_idx; 1308 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1309 EXT4_ERROR_INODE(inode, 1310 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1311 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1312 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1313 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1314 depth); 1315 return -EIO; 1316 } 1317 } 1318 return 0; 1319 } 1320 1321 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1322 EXT4_ERROR_INODE(inode, 1323 "logical %d < ee_block %d + ee_len %d!", 1324 *logical, le32_to_cpu(ex->ee_block), ee_len); 1325 return -EIO; 1326 } 1327 1328 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1329 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1330 return 0; 1331 } 1332 1333 /* 1334 * search the closest allocated block to the right for *logical 1335 * and returns it at @logical + it's physical address at @phys 1336 * if *logical is the largest allocated block, the function 1337 * returns 0 at @phys 1338 * return value contains 0 (success) or error code 1339 */ 1340 static int ext4_ext_search_right(struct inode *inode, 1341 struct ext4_ext_path *path, 1342 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1343 struct ext4_extent **ret_ex) 1344 { 1345 struct buffer_head *bh = NULL; 1346 struct ext4_extent_header *eh; 1347 struct ext4_extent_idx *ix; 1348 struct ext4_extent *ex; 1349 ext4_fsblk_t block; 1350 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1351 int ee_len; 1352 1353 if (unlikely(path == NULL)) { 1354 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1355 return -EIO; 1356 } 1357 depth = path->p_depth; 1358 *phys = 0; 1359 1360 if (depth == 0 && path->p_ext == NULL) 1361 return 0; 1362 1363 /* usually extent in the path covers blocks smaller 1364 * then *logical, but it can be that extent is the 1365 * first one in the file */ 1366 1367 ex = path[depth].p_ext; 1368 ee_len = ext4_ext_get_actual_len(ex); 1369 if (*logical < le32_to_cpu(ex->ee_block)) { 1370 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1371 EXT4_ERROR_INODE(inode, 1372 "first_extent(path[%d].p_hdr) != ex", 1373 depth); 1374 return -EIO; 1375 } 1376 while (--depth >= 0) { 1377 ix = path[depth].p_idx; 1378 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1379 EXT4_ERROR_INODE(inode, 1380 "ix != EXT_FIRST_INDEX *logical %d!", 1381 *logical); 1382 return -EIO; 1383 } 1384 } 1385 goto found_extent; 1386 } 1387 1388 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1389 EXT4_ERROR_INODE(inode, 1390 "logical %d < ee_block %d + ee_len %d!", 1391 *logical, le32_to_cpu(ex->ee_block), ee_len); 1392 return -EIO; 1393 } 1394 1395 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1396 /* next allocated block in this leaf */ 1397 ex++; 1398 goto found_extent; 1399 } 1400 1401 /* go up and search for index to the right */ 1402 while (--depth >= 0) { 1403 ix = path[depth].p_idx; 1404 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1405 goto got_index; 1406 } 1407 1408 /* we've gone up to the root and found no index to the right */ 1409 return 0; 1410 1411 got_index: 1412 /* we've found index to the right, let's 1413 * follow it and find the closest allocated 1414 * block to the right */ 1415 ix++; 1416 block = ext4_idx_pblock(ix); 1417 while (++depth < path->p_depth) { 1418 bh = sb_bread(inode->i_sb, block); 1419 if (bh == NULL) 1420 return -EIO; 1421 eh = ext_block_hdr(bh); 1422 /* subtract from p_depth to get proper eh_depth */ 1423 if (ext4_ext_check_block(inode, eh, 1424 path->p_depth - depth, bh)) { 1425 put_bh(bh); 1426 return -EIO; 1427 } 1428 ix = EXT_FIRST_INDEX(eh); 1429 block = ext4_idx_pblock(ix); 1430 put_bh(bh); 1431 } 1432 1433 bh = sb_bread(inode->i_sb, block); 1434 if (bh == NULL) 1435 return -EIO; 1436 eh = ext_block_hdr(bh); 1437 if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) { 1438 put_bh(bh); 1439 return -EIO; 1440 } 1441 ex = EXT_FIRST_EXTENT(eh); 1442 found_extent: 1443 *logical = le32_to_cpu(ex->ee_block); 1444 *phys = ext4_ext_pblock(ex); 1445 *ret_ex = ex; 1446 if (bh) 1447 put_bh(bh); 1448 return 0; 1449 } 1450 1451 /* 1452 * ext4_ext_next_allocated_block: 1453 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1454 * NOTE: it considers block number from index entry as 1455 * allocated block. Thus, index entries have to be consistent 1456 * with leaves. 1457 */ 1458 static ext4_lblk_t 1459 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1460 { 1461 int depth; 1462 1463 BUG_ON(path == NULL); 1464 depth = path->p_depth; 1465 1466 if (depth == 0 && path->p_ext == NULL) 1467 return EXT_MAX_BLOCKS; 1468 1469 while (depth >= 0) { 1470 if (depth == path->p_depth) { 1471 /* leaf */ 1472 if (path[depth].p_ext && 1473 path[depth].p_ext != 1474 EXT_LAST_EXTENT(path[depth].p_hdr)) 1475 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1476 } else { 1477 /* index */ 1478 if (path[depth].p_idx != 1479 EXT_LAST_INDEX(path[depth].p_hdr)) 1480 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1481 } 1482 depth--; 1483 } 1484 1485 return EXT_MAX_BLOCKS; 1486 } 1487 1488 /* 1489 * ext4_ext_next_leaf_block: 1490 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1491 */ 1492 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1493 { 1494 int depth; 1495 1496 BUG_ON(path == NULL); 1497 depth = path->p_depth; 1498 1499 /* zero-tree has no leaf blocks at all */ 1500 if (depth == 0) 1501 return EXT_MAX_BLOCKS; 1502 1503 /* go to index block */ 1504 depth--; 1505 1506 while (depth >= 0) { 1507 if (path[depth].p_idx != 1508 EXT_LAST_INDEX(path[depth].p_hdr)) 1509 return (ext4_lblk_t) 1510 le32_to_cpu(path[depth].p_idx[1].ei_block); 1511 depth--; 1512 } 1513 1514 return EXT_MAX_BLOCKS; 1515 } 1516 1517 /* 1518 * ext4_ext_correct_indexes: 1519 * if leaf gets modified and modified extent is first in the leaf, 1520 * then we have to correct all indexes above. 1521 * TODO: do we need to correct tree in all cases? 1522 */ 1523 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1524 struct ext4_ext_path *path) 1525 { 1526 struct ext4_extent_header *eh; 1527 int depth = ext_depth(inode); 1528 struct ext4_extent *ex; 1529 __le32 border; 1530 int k, err = 0; 1531 1532 eh = path[depth].p_hdr; 1533 ex = path[depth].p_ext; 1534 1535 if (unlikely(ex == NULL || eh == NULL)) { 1536 EXT4_ERROR_INODE(inode, 1537 "ex %p == NULL or eh %p == NULL", ex, eh); 1538 return -EIO; 1539 } 1540 1541 if (depth == 0) { 1542 /* there is no tree at all */ 1543 return 0; 1544 } 1545 1546 if (ex != EXT_FIRST_EXTENT(eh)) { 1547 /* we correct tree if first leaf got modified only */ 1548 return 0; 1549 } 1550 1551 /* 1552 * TODO: we need correction if border is smaller than current one 1553 */ 1554 k = depth - 1; 1555 border = path[depth].p_ext->ee_block; 1556 err = ext4_ext_get_access(handle, inode, path + k); 1557 if (err) 1558 return err; 1559 path[k].p_idx->ei_block = border; 1560 err = ext4_ext_dirty(handle, inode, path + k); 1561 if (err) 1562 return err; 1563 1564 while (k--) { 1565 /* change all left-side indexes */ 1566 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1567 break; 1568 err = ext4_ext_get_access(handle, inode, path + k); 1569 if (err) 1570 break; 1571 path[k].p_idx->ei_block = border; 1572 err = ext4_ext_dirty(handle, inode, path + k); 1573 if (err) 1574 break; 1575 } 1576 1577 return err; 1578 } 1579 1580 int 1581 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1582 struct ext4_extent *ex2) 1583 { 1584 unsigned short ext1_ee_len, ext2_ee_len, max_len; 1585 1586 /* 1587 * Make sure that either both extents are uninitialized, or 1588 * both are _not_. 1589 */ 1590 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2)) 1591 return 0; 1592 1593 if (ext4_ext_is_uninitialized(ex1)) 1594 max_len = EXT_UNINIT_MAX_LEN; 1595 else 1596 max_len = EXT_INIT_MAX_LEN; 1597 1598 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1599 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1600 1601 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1602 le32_to_cpu(ex2->ee_block)) 1603 return 0; 1604 1605 /* 1606 * To allow future support for preallocated extents to be added 1607 * as an RO_COMPAT feature, refuse to merge to extents if 1608 * this can result in the top bit of ee_len being set. 1609 */ 1610 if (ext1_ee_len + ext2_ee_len > max_len) 1611 return 0; 1612 #ifdef AGGRESSIVE_TEST 1613 if (ext1_ee_len >= 4) 1614 return 0; 1615 #endif 1616 1617 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1618 return 1; 1619 return 0; 1620 } 1621 1622 /* 1623 * This function tries to merge the "ex" extent to the next extent in the tree. 1624 * It always tries to merge towards right. If you want to merge towards 1625 * left, pass "ex - 1" as argument instead of "ex". 1626 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1627 * 1 if they got merged. 1628 */ 1629 static int ext4_ext_try_to_merge_right(struct inode *inode, 1630 struct ext4_ext_path *path, 1631 struct ext4_extent *ex) 1632 { 1633 struct ext4_extent_header *eh; 1634 unsigned int depth, len; 1635 int merge_done = 0; 1636 int uninitialized = 0; 1637 1638 depth = ext_depth(inode); 1639 BUG_ON(path[depth].p_hdr == NULL); 1640 eh = path[depth].p_hdr; 1641 1642 while (ex < EXT_LAST_EXTENT(eh)) { 1643 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1644 break; 1645 /* merge with next extent! */ 1646 if (ext4_ext_is_uninitialized(ex)) 1647 uninitialized = 1; 1648 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1649 + ext4_ext_get_actual_len(ex + 1)); 1650 if (uninitialized) 1651 ext4_ext_mark_uninitialized(ex); 1652 1653 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1654 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1655 * sizeof(struct ext4_extent); 1656 memmove(ex + 1, ex + 2, len); 1657 } 1658 le16_add_cpu(&eh->eh_entries, -1); 1659 merge_done = 1; 1660 WARN_ON(eh->eh_entries == 0); 1661 if (!eh->eh_entries) 1662 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1663 } 1664 1665 return merge_done; 1666 } 1667 1668 /* 1669 * This function does a very simple check to see if we can collapse 1670 * an extent tree with a single extent tree leaf block into the inode. 1671 */ 1672 static void ext4_ext_try_to_merge_up(handle_t *handle, 1673 struct inode *inode, 1674 struct ext4_ext_path *path) 1675 { 1676 size_t s; 1677 unsigned max_root = ext4_ext_space_root(inode, 0); 1678 ext4_fsblk_t blk; 1679 1680 if ((path[0].p_depth != 1) || 1681 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || 1682 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) 1683 return; 1684 1685 /* 1686 * We need to modify the block allocation bitmap and the block 1687 * group descriptor to release the extent tree block. If we 1688 * can't get the journal credits, give up. 1689 */ 1690 if (ext4_journal_extend(handle, 2)) 1691 return; 1692 1693 /* 1694 * Copy the extent data up to the inode 1695 */ 1696 blk = ext4_idx_pblock(path[0].p_idx); 1697 s = le16_to_cpu(path[1].p_hdr->eh_entries) * 1698 sizeof(struct ext4_extent_idx); 1699 s += sizeof(struct ext4_extent_header); 1700 1701 memcpy(path[0].p_hdr, path[1].p_hdr, s); 1702 path[0].p_depth = 0; 1703 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + 1704 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); 1705 path[0].p_hdr->eh_max = cpu_to_le16(max_root); 1706 1707 brelse(path[1].p_bh); 1708 ext4_free_blocks(handle, inode, NULL, blk, 1, 1709 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 1710 } 1711 1712 /* 1713 * This function tries to merge the @ex extent to neighbours in the tree. 1714 * return 1 if merge left else 0. 1715 */ 1716 static void ext4_ext_try_to_merge(handle_t *handle, 1717 struct inode *inode, 1718 struct ext4_ext_path *path, 1719 struct ext4_extent *ex) { 1720 struct ext4_extent_header *eh; 1721 unsigned int depth; 1722 int merge_done = 0; 1723 1724 depth = ext_depth(inode); 1725 BUG_ON(path[depth].p_hdr == NULL); 1726 eh = path[depth].p_hdr; 1727 1728 if (ex > EXT_FIRST_EXTENT(eh)) 1729 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1730 1731 if (!merge_done) 1732 (void) ext4_ext_try_to_merge_right(inode, path, ex); 1733 1734 ext4_ext_try_to_merge_up(handle, inode, path); 1735 } 1736 1737 /* 1738 * check if a portion of the "newext" extent overlaps with an 1739 * existing extent. 1740 * 1741 * If there is an overlap discovered, it updates the length of the newext 1742 * such that there will be no overlap, and then returns 1. 1743 * If there is no overlap found, it returns 0. 1744 */ 1745 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1746 struct inode *inode, 1747 struct ext4_extent *newext, 1748 struct ext4_ext_path *path) 1749 { 1750 ext4_lblk_t b1, b2; 1751 unsigned int depth, len1; 1752 unsigned int ret = 0; 1753 1754 b1 = le32_to_cpu(newext->ee_block); 1755 len1 = ext4_ext_get_actual_len(newext); 1756 depth = ext_depth(inode); 1757 if (!path[depth].p_ext) 1758 goto out; 1759 b2 = le32_to_cpu(path[depth].p_ext->ee_block); 1760 b2 &= ~(sbi->s_cluster_ratio - 1); 1761 1762 /* 1763 * get the next allocated block if the extent in the path 1764 * is before the requested block(s) 1765 */ 1766 if (b2 < b1) { 1767 b2 = ext4_ext_next_allocated_block(path); 1768 if (b2 == EXT_MAX_BLOCKS) 1769 goto out; 1770 b2 &= ~(sbi->s_cluster_ratio - 1); 1771 } 1772 1773 /* check for wrap through zero on extent logical start block*/ 1774 if (b1 + len1 < b1) { 1775 len1 = EXT_MAX_BLOCKS - b1; 1776 newext->ee_len = cpu_to_le16(len1); 1777 ret = 1; 1778 } 1779 1780 /* check for overlap */ 1781 if (b1 + len1 > b2) { 1782 newext->ee_len = cpu_to_le16(b2 - b1); 1783 ret = 1; 1784 } 1785 out: 1786 return ret; 1787 } 1788 1789 /* 1790 * ext4_ext_insert_extent: 1791 * tries to merge requsted extent into the existing extent or 1792 * inserts requested extent as new one into the tree, 1793 * creating new leaf in the no-space case. 1794 */ 1795 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1796 struct ext4_ext_path *path, 1797 struct ext4_extent *newext, int flag) 1798 { 1799 struct ext4_extent_header *eh; 1800 struct ext4_extent *ex, *fex; 1801 struct ext4_extent *nearex; /* nearest extent */ 1802 struct ext4_ext_path *npath = NULL; 1803 int depth, len, err; 1804 ext4_lblk_t next; 1805 unsigned uninitialized = 0; 1806 int flags = 0; 1807 1808 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1809 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1810 return -EIO; 1811 } 1812 depth = ext_depth(inode); 1813 ex = path[depth].p_ext; 1814 if (unlikely(path[depth].p_hdr == NULL)) { 1815 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1816 return -EIO; 1817 } 1818 1819 /* try to insert block into found extent and return */ 1820 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO) 1821 && ext4_can_extents_be_merged(inode, ex, newext)) { 1822 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n", 1823 ext4_ext_is_uninitialized(newext), 1824 ext4_ext_get_actual_len(newext), 1825 le32_to_cpu(ex->ee_block), 1826 ext4_ext_is_uninitialized(ex), 1827 ext4_ext_get_actual_len(ex), 1828 ext4_ext_pblock(ex)); 1829 err = ext4_ext_get_access(handle, inode, path + depth); 1830 if (err) 1831 return err; 1832 1833 /* 1834 * ext4_can_extents_be_merged should have checked that either 1835 * both extents are uninitialized, or both aren't. Thus we 1836 * need to check only one of them here. 1837 */ 1838 if (ext4_ext_is_uninitialized(ex)) 1839 uninitialized = 1; 1840 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1841 + ext4_ext_get_actual_len(newext)); 1842 if (uninitialized) 1843 ext4_ext_mark_uninitialized(ex); 1844 eh = path[depth].p_hdr; 1845 nearex = ex; 1846 goto merge; 1847 } 1848 1849 depth = ext_depth(inode); 1850 eh = path[depth].p_hdr; 1851 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 1852 goto has_space; 1853 1854 /* probably next leaf has space for us? */ 1855 fex = EXT_LAST_EXTENT(eh); 1856 next = EXT_MAX_BLOCKS; 1857 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 1858 next = ext4_ext_next_leaf_block(path); 1859 if (next != EXT_MAX_BLOCKS) { 1860 ext_debug("next leaf block - %u\n", next); 1861 BUG_ON(npath != NULL); 1862 npath = ext4_ext_find_extent(inode, next, NULL); 1863 if (IS_ERR(npath)) 1864 return PTR_ERR(npath); 1865 BUG_ON(npath->p_depth != path->p_depth); 1866 eh = npath[depth].p_hdr; 1867 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 1868 ext_debug("next leaf isn't full(%d)\n", 1869 le16_to_cpu(eh->eh_entries)); 1870 path = npath; 1871 goto has_space; 1872 } 1873 ext_debug("next leaf has no free space(%d,%d)\n", 1874 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 1875 } 1876 1877 /* 1878 * There is no free space in the found leaf. 1879 * We're gonna add a new leaf in the tree. 1880 */ 1881 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) 1882 flags = EXT4_MB_USE_ROOT_BLOCKS; 1883 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext); 1884 if (err) 1885 goto cleanup; 1886 depth = ext_depth(inode); 1887 eh = path[depth].p_hdr; 1888 1889 has_space: 1890 nearex = path[depth].p_ext; 1891 1892 err = ext4_ext_get_access(handle, inode, path + depth); 1893 if (err) 1894 goto cleanup; 1895 1896 if (!nearex) { 1897 /* there is no extent in this leaf, create first one */ 1898 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 1899 le32_to_cpu(newext->ee_block), 1900 ext4_ext_pblock(newext), 1901 ext4_ext_is_uninitialized(newext), 1902 ext4_ext_get_actual_len(newext)); 1903 nearex = EXT_FIRST_EXTENT(eh); 1904 } else { 1905 if (le32_to_cpu(newext->ee_block) 1906 > le32_to_cpu(nearex->ee_block)) { 1907 /* Insert after */ 1908 ext_debug("insert %u:%llu:[%d]%d before: " 1909 "nearest %p\n", 1910 le32_to_cpu(newext->ee_block), 1911 ext4_ext_pblock(newext), 1912 ext4_ext_is_uninitialized(newext), 1913 ext4_ext_get_actual_len(newext), 1914 nearex); 1915 nearex++; 1916 } else { 1917 /* Insert before */ 1918 BUG_ON(newext->ee_block == nearex->ee_block); 1919 ext_debug("insert %u:%llu:[%d]%d after: " 1920 "nearest %p\n", 1921 le32_to_cpu(newext->ee_block), 1922 ext4_ext_pblock(newext), 1923 ext4_ext_is_uninitialized(newext), 1924 ext4_ext_get_actual_len(newext), 1925 nearex); 1926 } 1927 len = EXT_LAST_EXTENT(eh) - nearex + 1; 1928 if (len > 0) { 1929 ext_debug("insert %u:%llu:[%d]%d: " 1930 "move %d extents from 0x%p to 0x%p\n", 1931 le32_to_cpu(newext->ee_block), 1932 ext4_ext_pblock(newext), 1933 ext4_ext_is_uninitialized(newext), 1934 ext4_ext_get_actual_len(newext), 1935 len, nearex, nearex + 1); 1936 memmove(nearex + 1, nearex, 1937 len * sizeof(struct ext4_extent)); 1938 } 1939 } 1940 1941 le16_add_cpu(&eh->eh_entries, 1); 1942 path[depth].p_ext = nearex; 1943 nearex->ee_block = newext->ee_block; 1944 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 1945 nearex->ee_len = newext->ee_len; 1946 1947 merge: 1948 /* try to merge extents */ 1949 if (!(flag & EXT4_GET_BLOCKS_PRE_IO)) 1950 ext4_ext_try_to_merge(handle, inode, path, nearex); 1951 1952 1953 /* time to correct all indexes above */ 1954 err = ext4_ext_correct_indexes(handle, inode, path); 1955 if (err) 1956 goto cleanup; 1957 1958 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 1959 1960 cleanup: 1961 if (npath) { 1962 ext4_ext_drop_refs(npath); 1963 kfree(npath); 1964 } 1965 return err; 1966 } 1967 1968 static int ext4_fill_fiemap_extents(struct inode *inode, 1969 ext4_lblk_t block, ext4_lblk_t num, 1970 struct fiemap_extent_info *fieinfo) 1971 { 1972 struct ext4_ext_path *path = NULL; 1973 struct ext4_extent *ex; 1974 struct extent_status es; 1975 ext4_lblk_t next, next_del, start = 0, end = 0; 1976 ext4_lblk_t last = block + num; 1977 int exists, depth = 0, err = 0; 1978 unsigned int flags = 0; 1979 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 1980 1981 while (block < last && block != EXT_MAX_BLOCKS) { 1982 num = last - block; 1983 /* find extent for this block */ 1984 down_read(&EXT4_I(inode)->i_data_sem); 1985 1986 if (path && ext_depth(inode) != depth) { 1987 /* depth was changed. we have to realloc path */ 1988 kfree(path); 1989 path = NULL; 1990 } 1991 1992 path = ext4_ext_find_extent(inode, block, path); 1993 if (IS_ERR(path)) { 1994 up_read(&EXT4_I(inode)->i_data_sem); 1995 err = PTR_ERR(path); 1996 path = NULL; 1997 break; 1998 } 1999 2000 depth = ext_depth(inode); 2001 if (unlikely(path[depth].p_hdr == NULL)) { 2002 up_read(&EXT4_I(inode)->i_data_sem); 2003 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2004 err = -EIO; 2005 break; 2006 } 2007 ex = path[depth].p_ext; 2008 next = ext4_ext_next_allocated_block(path); 2009 ext4_ext_drop_refs(path); 2010 2011 flags = 0; 2012 exists = 0; 2013 if (!ex) { 2014 /* there is no extent yet, so try to allocate 2015 * all requested space */ 2016 start = block; 2017 end = block + num; 2018 } else if (le32_to_cpu(ex->ee_block) > block) { 2019 /* need to allocate space before found extent */ 2020 start = block; 2021 end = le32_to_cpu(ex->ee_block); 2022 if (block + num < end) 2023 end = block + num; 2024 } else if (block >= le32_to_cpu(ex->ee_block) 2025 + ext4_ext_get_actual_len(ex)) { 2026 /* need to allocate space after found extent */ 2027 start = block; 2028 end = block + num; 2029 if (end >= next) 2030 end = next; 2031 } else if (block >= le32_to_cpu(ex->ee_block)) { 2032 /* 2033 * some part of requested space is covered 2034 * by found extent 2035 */ 2036 start = block; 2037 end = le32_to_cpu(ex->ee_block) 2038 + ext4_ext_get_actual_len(ex); 2039 if (block + num < end) 2040 end = block + num; 2041 exists = 1; 2042 } else { 2043 BUG(); 2044 } 2045 BUG_ON(end <= start); 2046 2047 if (!exists) { 2048 es.es_lblk = start; 2049 es.es_len = end - start; 2050 es.es_pblk = 0; 2051 } else { 2052 es.es_lblk = le32_to_cpu(ex->ee_block); 2053 es.es_len = ext4_ext_get_actual_len(ex); 2054 es.es_pblk = ext4_ext_pblock(ex); 2055 if (ext4_ext_is_uninitialized(ex)) 2056 flags |= FIEMAP_EXTENT_UNWRITTEN; 2057 } 2058 2059 /* 2060 * Find delayed extent and update es accordingly. We call 2061 * it even in !exists case to find out whether es is the 2062 * last existing extent or not. 2063 */ 2064 next_del = ext4_find_delayed_extent(inode, &es); 2065 if (!exists && next_del) { 2066 exists = 1; 2067 flags |= FIEMAP_EXTENT_DELALLOC; 2068 } 2069 up_read(&EXT4_I(inode)->i_data_sem); 2070 2071 if (unlikely(es.es_len == 0)) { 2072 EXT4_ERROR_INODE(inode, "es.es_len == 0"); 2073 err = -EIO; 2074 break; 2075 } 2076 2077 /* 2078 * This is possible iff next == next_del == EXT_MAX_BLOCKS. 2079 * we need to check next == EXT_MAX_BLOCKS because it is 2080 * possible that an extent is with unwritten and delayed 2081 * status due to when an extent is delayed allocated and 2082 * is allocated by fallocate status tree will track both of 2083 * them in a extent. 2084 * 2085 * So we could return a unwritten and delayed extent, and 2086 * its block is equal to 'next'. 2087 */ 2088 if (next == next_del && next == EXT_MAX_BLOCKS) { 2089 flags |= FIEMAP_EXTENT_LAST; 2090 if (unlikely(next_del != EXT_MAX_BLOCKS || 2091 next != EXT_MAX_BLOCKS)) { 2092 EXT4_ERROR_INODE(inode, 2093 "next extent == %u, next " 2094 "delalloc extent = %u", 2095 next, next_del); 2096 err = -EIO; 2097 break; 2098 } 2099 } 2100 2101 if (exists) { 2102 err = fiemap_fill_next_extent(fieinfo, 2103 (__u64)es.es_lblk << blksize_bits, 2104 (__u64)es.es_pblk << blksize_bits, 2105 (__u64)es.es_len << blksize_bits, 2106 flags); 2107 if (err < 0) 2108 break; 2109 if (err == 1) { 2110 err = 0; 2111 break; 2112 } 2113 } 2114 2115 block = es.es_lblk + es.es_len; 2116 } 2117 2118 if (path) { 2119 ext4_ext_drop_refs(path); 2120 kfree(path); 2121 } 2122 2123 return err; 2124 } 2125 2126 /* 2127 * ext4_ext_put_gap_in_cache: 2128 * calculate boundaries of the gap that the requested block fits into 2129 * and cache this gap 2130 */ 2131 static void 2132 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, 2133 ext4_lblk_t block) 2134 { 2135 int depth = ext_depth(inode); 2136 unsigned long len; 2137 ext4_lblk_t lblock; 2138 struct ext4_extent *ex; 2139 2140 ex = path[depth].p_ext; 2141 if (ex == NULL) { 2142 /* 2143 * there is no extent yet, so gap is [0;-] and we 2144 * don't cache it 2145 */ 2146 ext_debug("cache gap(whole file):"); 2147 } else if (block < le32_to_cpu(ex->ee_block)) { 2148 lblock = block; 2149 len = le32_to_cpu(ex->ee_block) - block; 2150 ext_debug("cache gap(before): %u [%u:%u]", 2151 block, 2152 le32_to_cpu(ex->ee_block), 2153 ext4_ext_get_actual_len(ex)); 2154 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1)) 2155 ext4_es_insert_extent(inode, lblock, len, ~0, 2156 EXTENT_STATUS_HOLE); 2157 } else if (block >= le32_to_cpu(ex->ee_block) 2158 + ext4_ext_get_actual_len(ex)) { 2159 ext4_lblk_t next; 2160 lblock = le32_to_cpu(ex->ee_block) 2161 + ext4_ext_get_actual_len(ex); 2162 2163 next = ext4_ext_next_allocated_block(path); 2164 ext_debug("cache gap(after): [%u:%u] %u", 2165 le32_to_cpu(ex->ee_block), 2166 ext4_ext_get_actual_len(ex), 2167 block); 2168 BUG_ON(next == lblock); 2169 len = next - lblock; 2170 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1)) 2171 ext4_es_insert_extent(inode, lblock, len, ~0, 2172 EXTENT_STATUS_HOLE); 2173 } else { 2174 lblock = len = 0; 2175 BUG(); 2176 } 2177 2178 ext_debug(" -> %u:%lu\n", lblock, len); 2179 } 2180 2181 /* 2182 * ext4_ext_rm_idx: 2183 * removes index from the index block. 2184 */ 2185 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2186 struct ext4_ext_path *path, int depth) 2187 { 2188 int err; 2189 ext4_fsblk_t leaf; 2190 2191 /* free index block */ 2192 depth--; 2193 path = path + depth; 2194 leaf = ext4_idx_pblock(path->p_idx); 2195 if (unlikely(path->p_hdr->eh_entries == 0)) { 2196 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2197 return -EIO; 2198 } 2199 err = ext4_ext_get_access(handle, inode, path); 2200 if (err) 2201 return err; 2202 2203 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2204 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2205 len *= sizeof(struct ext4_extent_idx); 2206 memmove(path->p_idx, path->p_idx + 1, len); 2207 } 2208 2209 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2210 err = ext4_ext_dirty(handle, inode, path); 2211 if (err) 2212 return err; 2213 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2214 trace_ext4_ext_rm_idx(inode, leaf); 2215 2216 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2217 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2218 2219 while (--depth >= 0) { 2220 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr)) 2221 break; 2222 path--; 2223 err = ext4_ext_get_access(handle, inode, path); 2224 if (err) 2225 break; 2226 path->p_idx->ei_block = (path+1)->p_idx->ei_block; 2227 err = ext4_ext_dirty(handle, inode, path); 2228 if (err) 2229 break; 2230 } 2231 return err; 2232 } 2233 2234 /* 2235 * ext4_ext_calc_credits_for_single_extent: 2236 * This routine returns max. credits that needed to insert an extent 2237 * to the extent tree. 2238 * When pass the actual path, the caller should calculate credits 2239 * under i_data_sem. 2240 */ 2241 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2242 struct ext4_ext_path *path) 2243 { 2244 if (path) { 2245 int depth = ext_depth(inode); 2246 int ret = 0; 2247 2248 /* probably there is space in leaf? */ 2249 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2250 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2251 2252 /* 2253 * There are some space in the leaf tree, no 2254 * need to account for leaf block credit 2255 * 2256 * bitmaps and block group descriptor blocks 2257 * and other metadata blocks still need to be 2258 * accounted. 2259 */ 2260 /* 1 bitmap, 1 block group descriptor */ 2261 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2262 return ret; 2263 } 2264 } 2265 2266 return ext4_chunk_trans_blocks(inode, nrblocks); 2267 } 2268 2269 /* 2270 * How many index/leaf blocks need to change/allocate to modify nrblocks? 2271 * 2272 * if nrblocks are fit in a single extent (chunk flag is 1), then 2273 * in the worse case, each tree level index/leaf need to be changed 2274 * if the tree split due to insert a new extent, then the old tree 2275 * index/leaf need to be updated too 2276 * 2277 * If the nrblocks are discontiguous, they could cause 2278 * the whole tree split more than once, but this is really rare. 2279 */ 2280 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 2281 { 2282 int index; 2283 int depth; 2284 2285 /* If we are converting the inline data, only one is needed here. */ 2286 if (ext4_has_inline_data(inode)) 2287 return 1; 2288 2289 depth = ext_depth(inode); 2290 2291 if (chunk) 2292 index = depth * 2; 2293 else 2294 index = depth * 3; 2295 2296 return index; 2297 } 2298 2299 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2300 struct ext4_extent *ex, 2301 ext4_fsblk_t *partial_cluster, 2302 ext4_lblk_t from, ext4_lblk_t to) 2303 { 2304 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2305 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2306 ext4_fsblk_t pblk; 2307 int flags = 0; 2308 2309 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2310 flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; 2311 else if (ext4_should_journal_data(inode)) 2312 flags |= EXT4_FREE_BLOCKS_FORGET; 2313 2314 /* 2315 * For bigalloc file systems, we never free a partial cluster 2316 * at the beginning of the extent. Instead, we make a note 2317 * that we tried freeing the cluster, and check to see if we 2318 * need to free it on a subsequent call to ext4_remove_blocks, 2319 * or at the end of the ext4_truncate() operation. 2320 */ 2321 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2322 2323 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster); 2324 /* 2325 * If we have a partial cluster, and it's different from the 2326 * cluster of the last block, we need to explicitly free the 2327 * partial cluster here. 2328 */ 2329 pblk = ext4_ext_pblock(ex) + ee_len - 1; 2330 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) { 2331 ext4_free_blocks(handle, inode, NULL, 2332 EXT4_C2B(sbi, *partial_cluster), 2333 sbi->s_cluster_ratio, flags); 2334 *partial_cluster = 0; 2335 } 2336 2337 #ifdef EXTENTS_STATS 2338 { 2339 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2340 spin_lock(&sbi->s_ext_stats_lock); 2341 sbi->s_ext_blocks += ee_len; 2342 sbi->s_ext_extents++; 2343 if (ee_len < sbi->s_ext_min) 2344 sbi->s_ext_min = ee_len; 2345 if (ee_len > sbi->s_ext_max) 2346 sbi->s_ext_max = ee_len; 2347 if (ext_depth(inode) > sbi->s_depth_max) 2348 sbi->s_depth_max = ext_depth(inode); 2349 spin_unlock(&sbi->s_ext_stats_lock); 2350 } 2351 #endif 2352 if (from >= le32_to_cpu(ex->ee_block) 2353 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 2354 /* tail removal */ 2355 ext4_lblk_t num; 2356 2357 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2358 pblk = ext4_ext_pblock(ex) + ee_len - num; 2359 ext_debug("free last %u blocks starting %llu\n", num, pblk); 2360 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2361 /* 2362 * If the block range to be freed didn't start at the 2363 * beginning of a cluster, and we removed the entire 2364 * extent, save the partial cluster here, since we 2365 * might need to delete if we determine that the 2366 * truncate operation has removed all of the blocks in 2367 * the cluster. 2368 */ 2369 if (pblk & (sbi->s_cluster_ratio - 1) && 2370 (ee_len == num)) 2371 *partial_cluster = EXT4_B2C(sbi, pblk); 2372 else 2373 *partial_cluster = 0; 2374 } else if (from == le32_to_cpu(ex->ee_block) 2375 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) { 2376 /* head removal */ 2377 ext4_lblk_t num; 2378 ext4_fsblk_t start; 2379 2380 num = to - from; 2381 start = ext4_ext_pblock(ex); 2382 2383 ext_debug("free first %u blocks starting %llu\n", num, start); 2384 ext4_free_blocks(handle, inode, NULL, start, num, flags); 2385 2386 } else { 2387 printk(KERN_INFO "strange request: removal(2) " 2388 "%u-%u from %u:%u\n", 2389 from, to, le32_to_cpu(ex->ee_block), ee_len); 2390 } 2391 return 0; 2392 } 2393 2394 2395 /* 2396 * ext4_ext_rm_leaf() Removes the extents associated with the 2397 * blocks appearing between "start" and "end", and splits the extents 2398 * if "start" and "end" appear in the same extent 2399 * 2400 * @handle: The journal handle 2401 * @inode: The files inode 2402 * @path: The path to the leaf 2403 * @start: The first block to remove 2404 * @end: The last block to remove 2405 */ 2406 static int 2407 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2408 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster, 2409 ext4_lblk_t start, ext4_lblk_t end) 2410 { 2411 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2412 int err = 0, correct_index = 0; 2413 int depth = ext_depth(inode), credits; 2414 struct ext4_extent_header *eh; 2415 ext4_lblk_t a, b; 2416 unsigned num; 2417 ext4_lblk_t ex_ee_block; 2418 unsigned short ex_ee_len; 2419 unsigned uninitialized = 0; 2420 struct ext4_extent *ex; 2421 2422 /* the header must be checked already in ext4_ext_remove_space() */ 2423 ext_debug("truncate since %u in leaf to %u\n", start, end); 2424 if (!path[depth].p_hdr) 2425 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2426 eh = path[depth].p_hdr; 2427 if (unlikely(path[depth].p_hdr == NULL)) { 2428 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2429 return -EIO; 2430 } 2431 /* find where to start removing */ 2432 ex = EXT_LAST_EXTENT(eh); 2433 2434 ex_ee_block = le32_to_cpu(ex->ee_block); 2435 ex_ee_len = ext4_ext_get_actual_len(ex); 2436 2437 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster); 2438 2439 while (ex >= EXT_FIRST_EXTENT(eh) && 2440 ex_ee_block + ex_ee_len > start) { 2441 2442 if (ext4_ext_is_uninitialized(ex)) 2443 uninitialized = 1; 2444 else 2445 uninitialized = 0; 2446 2447 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2448 uninitialized, ex_ee_len); 2449 path[depth].p_ext = ex; 2450 2451 a = ex_ee_block > start ? ex_ee_block : start; 2452 b = ex_ee_block+ex_ee_len - 1 < end ? 2453 ex_ee_block+ex_ee_len - 1 : end; 2454 2455 ext_debug(" border %u:%u\n", a, b); 2456 2457 /* If this extent is beyond the end of the hole, skip it */ 2458 if (end < ex_ee_block) { 2459 ex--; 2460 ex_ee_block = le32_to_cpu(ex->ee_block); 2461 ex_ee_len = ext4_ext_get_actual_len(ex); 2462 continue; 2463 } else if (b != ex_ee_block + ex_ee_len - 1) { 2464 EXT4_ERROR_INODE(inode, 2465 "can not handle truncate %u:%u " 2466 "on extent %u:%u", 2467 start, end, ex_ee_block, 2468 ex_ee_block + ex_ee_len - 1); 2469 err = -EIO; 2470 goto out; 2471 } else if (a != ex_ee_block) { 2472 /* remove tail of the extent */ 2473 num = a - ex_ee_block; 2474 } else { 2475 /* remove whole extent: excellent! */ 2476 num = 0; 2477 } 2478 /* 2479 * 3 for leaf, sb, and inode plus 2 (bmap and group 2480 * descriptor) for each block group; assume two block 2481 * groups plus ex_ee_len/blocks_per_block_group for 2482 * the worst case 2483 */ 2484 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2485 if (ex == EXT_FIRST_EXTENT(eh)) { 2486 correct_index = 1; 2487 credits += (ext_depth(inode)) + 1; 2488 } 2489 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2490 2491 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2492 if (err) 2493 goto out; 2494 2495 err = ext4_ext_get_access(handle, inode, path + depth); 2496 if (err) 2497 goto out; 2498 2499 err = ext4_remove_blocks(handle, inode, ex, partial_cluster, 2500 a, b); 2501 if (err) 2502 goto out; 2503 2504 if (num == 0) 2505 /* this extent is removed; mark slot entirely unused */ 2506 ext4_ext_store_pblock(ex, 0); 2507 2508 ex->ee_len = cpu_to_le16(num); 2509 /* 2510 * Do not mark uninitialized if all the blocks in the 2511 * extent have been removed. 2512 */ 2513 if (uninitialized && num) 2514 ext4_ext_mark_uninitialized(ex); 2515 /* 2516 * If the extent was completely released, 2517 * we need to remove it from the leaf 2518 */ 2519 if (num == 0) { 2520 if (end != EXT_MAX_BLOCKS - 1) { 2521 /* 2522 * For hole punching, we need to scoot all the 2523 * extents up when an extent is removed so that 2524 * we dont have blank extents in the middle 2525 */ 2526 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2527 sizeof(struct ext4_extent)); 2528 2529 /* Now get rid of the one at the end */ 2530 memset(EXT_LAST_EXTENT(eh), 0, 2531 sizeof(struct ext4_extent)); 2532 } 2533 le16_add_cpu(&eh->eh_entries, -1); 2534 } else 2535 *partial_cluster = 0; 2536 2537 err = ext4_ext_dirty(handle, inode, path + depth); 2538 if (err) 2539 goto out; 2540 2541 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, 2542 ext4_ext_pblock(ex)); 2543 ex--; 2544 ex_ee_block = le32_to_cpu(ex->ee_block); 2545 ex_ee_len = ext4_ext_get_actual_len(ex); 2546 } 2547 2548 if (correct_index && eh->eh_entries) 2549 err = ext4_ext_correct_indexes(handle, inode, path); 2550 2551 /* 2552 * If there is still a entry in the leaf node, check to see if 2553 * it references the partial cluster. This is the only place 2554 * where it could; if it doesn't, we can free the cluster. 2555 */ 2556 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) && 2557 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) != 2558 *partial_cluster)) { 2559 int flags = EXT4_FREE_BLOCKS_FORGET; 2560 2561 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2562 flags |= EXT4_FREE_BLOCKS_METADATA; 2563 2564 ext4_free_blocks(handle, inode, NULL, 2565 EXT4_C2B(sbi, *partial_cluster), 2566 sbi->s_cluster_ratio, flags); 2567 *partial_cluster = 0; 2568 } 2569 2570 /* if this leaf is free, then we should 2571 * remove it from index block above */ 2572 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2573 err = ext4_ext_rm_idx(handle, inode, path, depth); 2574 2575 out: 2576 return err; 2577 } 2578 2579 /* 2580 * ext4_ext_more_to_rm: 2581 * returns 1 if current index has to be freed (even partial) 2582 */ 2583 static int 2584 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2585 { 2586 BUG_ON(path->p_idx == NULL); 2587 2588 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2589 return 0; 2590 2591 /* 2592 * if truncate on deeper level happened, it wasn't partial, 2593 * so we have to consider current index for truncation 2594 */ 2595 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2596 return 0; 2597 return 1; 2598 } 2599 2600 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2601 ext4_lblk_t end) 2602 { 2603 struct super_block *sb = inode->i_sb; 2604 int depth = ext_depth(inode); 2605 struct ext4_ext_path *path = NULL; 2606 ext4_fsblk_t partial_cluster = 0; 2607 handle_t *handle; 2608 int i = 0, err = 0; 2609 2610 ext_debug("truncate since %u to %u\n", start, end); 2611 2612 /* probably first extent we're gonna free will be last in block */ 2613 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1); 2614 if (IS_ERR(handle)) 2615 return PTR_ERR(handle); 2616 2617 again: 2618 trace_ext4_ext_remove_space(inode, start, depth); 2619 2620 /* 2621 * Check if we are removing extents inside the extent tree. If that 2622 * is the case, we are going to punch a hole inside the extent tree 2623 * so we have to check whether we need to split the extent covering 2624 * the last block to remove so we can easily remove the part of it 2625 * in ext4_ext_rm_leaf(). 2626 */ 2627 if (end < EXT_MAX_BLOCKS - 1) { 2628 struct ext4_extent *ex; 2629 ext4_lblk_t ee_block; 2630 2631 /* find extent for this block */ 2632 path = ext4_ext_find_extent(inode, end, NULL); 2633 if (IS_ERR(path)) { 2634 ext4_journal_stop(handle); 2635 return PTR_ERR(path); 2636 } 2637 depth = ext_depth(inode); 2638 /* Leaf not may not exist only if inode has no blocks at all */ 2639 ex = path[depth].p_ext; 2640 if (!ex) { 2641 if (depth) { 2642 EXT4_ERROR_INODE(inode, 2643 "path[%d].p_hdr == NULL", 2644 depth); 2645 err = -EIO; 2646 } 2647 goto out; 2648 } 2649 2650 ee_block = le32_to_cpu(ex->ee_block); 2651 2652 /* 2653 * See if the last block is inside the extent, if so split 2654 * the extent at 'end' block so we can easily remove the 2655 * tail of the first part of the split extent in 2656 * ext4_ext_rm_leaf(). 2657 */ 2658 if (end >= ee_block && 2659 end < ee_block + ext4_ext_get_actual_len(ex) - 1) { 2660 int split_flag = 0; 2661 2662 if (ext4_ext_is_uninitialized(ex)) 2663 split_flag = EXT4_EXT_MARK_UNINIT1 | 2664 EXT4_EXT_MARK_UNINIT2; 2665 2666 /* 2667 * Split the extent in two so that 'end' is the last 2668 * block in the first new extent 2669 */ 2670 err = ext4_split_extent_at(handle, inode, path, 2671 end + 1, split_flag, 2672 EXT4_GET_BLOCKS_PRE_IO | 2673 EXT4_GET_BLOCKS_PUNCH_OUT_EXT); 2674 2675 if (err < 0) 2676 goto out; 2677 } 2678 } 2679 /* 2680 * We start scanning from right side, freeing all the blocks 2681 * after i_size and walking into the tree depth-wise. 2682 */ 2683 depth = ext_depth(inode); 2684 if (path) { 2685 int k = i = depth; 2686 while (--k > 0) 2687 path[k].p_block = 2688 le16_to_cpu(path[k].p_hdr->eh_entries)+1; 2689 } else { 2690 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 2691 GFP_NOFS); 2692 if (path == NULL) { 2693 ext4_journal_stop(handle); 2694 return -ENOMEM; 2695 } 2696 path[0].p_depth = depth; 2697 path[0].p_hdr = ext_inode_hdr(inode); 2698 i = 0; 2699 2700 if (ext4_ext_check(inode, path[0].p_hdr, depth)) { 2701 err = -EIO; 2702 goto out; 2703 } 2704 } 2705 err = 0; 2706 2707 while (i >= 0 && err == 0) { 2708 if (i == depth) { 2709 /* this is leaf block */ 2710 err = ext4_ext_rm_leaf(handle, inode, path, 2711 &partial_cluster, start, 2712 end); 2713 /* root level has p_bh == NULL, brelse() eats this */ 2714 brelse(path[i].p_bh); 2715 path[i].p_bh = NULL; 2716 i--; 2717 continue; 2718 } 2719 2720 /* this is index block */ 2721 if (!path[i].p_hdr) { 2722 ext_debug("initialize header\n"); 2723 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2724 } 2725 2726 if (!path[i].p_idx) { 2727 /* this level hasn't been touched yet */ 2728 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2729 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2730 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2731 path[i].p_hdr, 2732 le16_to_cpu(path[i].p_hdr->eh_entries)); 2733 } else { 2734 /* we were already here, see at next index */ 2735 path[i].p_idx--; 2736 } 2737 2738 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2739 i, EXT_FIRST_INDEX(path[i].p_hdr), 2740 path[i].p_idx); 2741 if (ext4_ext_more_to_rm(path + i)) { 2742 struct buffer_head *bh; 2743 /* go to the next level */ 2744 ext_debug("move to level %d (block %llu)\n", 2745 i + 1, ext4_idx_pblock(path[i].p_idx)); 2746 memset(path + i + 1, 0, sizeof(*path)); 2747 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx)); 2748 if (!bh) { 2749 /* should we reset i_size? */ 2750 err = -EIO; 2751 break; 2752 } 2753 if (WARN_ON(i + 1 > depth)) { 2754 err = -EIO; 2755 break; 2756 } 2757 if (ext4_ext_check_block(inode, ext_block_hdr(bh), 2758 depth - i - 1, bh)) { 2759 err = -EIO; 2760 break; 2761 } 2762 path[i + 1].p_bh = bh; 2763 2764 /* save actual number of indexes since this 2765 * number is changed at the next iteration */ 2766 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2767 i++; 2768 } else { 2769 /* we finished processing this index, go up */ 2770 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2771 /* index is empty, remove it; 2772 * handle must be already prepared by the 2773 * truncatei_leaf() */ 2774 err = ext4_ext_rm_idx(handle, inode, path, i); 2775 } 2776 /* root level has p_bh == NULL, brelse() eats this */ 2777 brelse(path[i].p_bh); 2778 path[i].p_bh = NULL; 2779 i--; 2780 ext_debug("return to level %d\n", i); 2781 } 2782 } 2783 2784 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster, 2785 path->p_hdr->eh_entries); 2786 2787 /* If we still have something in the partial cluster and we have removed 2788 * even the first extent, then we should free the blocks in the partial 2789 * cluster as well. */ 2790 if (partial_cluster && path->p_hdr->eh_entries == 0) { 2791 int flags = EXT4_FREE_BLOCKS_FORGET; 2792 2793 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2794 flags |= EXT4_FREE_BLOCKS_METADATA; 2795 2796 ext4_free_blocks(handle, inode, NULL, 2797 EXT4_C2B(EXT4_SB(sb), partial_cluster), 2798 EXT4_SB(sb)->s_cluster_ratio, flags); 2799 partial_cluster = 0; 2800 } 2801 2802 /* TODO: flexible tree reduction should be here */ 2803 if (path->p_hdr->eh_entries == 0) { 2804 /* 2805 * truncate to zero freed all the tree, 2806 * so we need to correct eh_depth 2807 */ 2808 err = ext4_ext_get_access(handle, inode, path); 2809 if (err == 0) { 2810 ext_inode_hdr(inode)->eh_depth = 0; 2811 ext_inode_hdr(inode)->eh_max = 2812 cpu_to_le16(ext4_ext_space_root(inode, 0)); 2813 err = ext4_ext_dirty(handle, inode, path); 2814 } 2815 } 2816 out: 2817 ext4_ext_drop_refs(path); 2818 kfree(path); 2819 if (err == -EAGAIN) { 2820 path = NULL; 2821 goto again; 2822 } 2823 ext4_journal_stop(handle); 2824 2825 return err; 2826 } 2827 2828 /* 2829 * called at mount time 2830 */ 2831 void ext4_ext_init(struct super_block *sb) 2832 { 2833 /* 2834 * possible initialization would be here 2835 */ 2836 2837 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2838 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 2839 printk(KERN_INFO "EXT4-fs: file extents enabled" 2840 #ifdef AGGRESSIVE_TEST 2841 ", aggressive tests" 2842 #endif 2843 #ifdef CHECK_BINSEARCH 2844 ", check binsearch" 2845 #endif 2846 #ifdef EXTENTS_STATS 2847 ", stats" 2848 #endif 2849 "\n"); 2850 #endif 2851 #ifdef EXTENTS_STATS 2852 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 2853 EXT4_SB(sb)->s_ext_min = 1 << 30; 2854 EXT4_SB(sb)->s_ext_max = 0; 2855 #endif 2856 } 2857 } 2858 2859 /* 2860 * called at umount time 2861 */ 2862 void ext4_ext_release(struct super_block *sb) 2863 { 2864 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 2865 return; 2866 2867 #ifdef EXTENTS_STATS 2868 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 2869 struct ext4_sb_info *sbi = EXT4_SB(sb); 2870 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 2871 sbi->s_ext_blocks, sbi->s_ext_extents, 2872 sbi->s_ext_blocks / sbi->s_ext_extents); 2873 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 2874 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 2875 } 2876 #endif 2877 } 2878 2879 /* FIXME!! we need to try to merge to left or right after zero-out */ 2880 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 2881 { 2882 ext4_fsblk_t ee_pblock; 2883 unsigned int ee_len; 2884 int ret; 2885 2886 ee_len = ext4_ext_get_actual_len(ex); 2887 ee_pblock = ext4_ext_pblock(ex); 2888 2889 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS); 2890 if (ret > 0) 2891 ret = 0; 2892 2893 return ret; 2894 } 2895 2896 /* 2897 * ext4_split_extent_at() splits an extent at given block. 2898 * 2899 * @handle: the journal handle 2900 * @inode: the file inode 2901 * @path: the path to the extent 2902 * @split: the logical block where the extent is splitted. 2903 * @split_flags: indicates if the extent could be zeroout if split fails, and 2904 * the states(init or uninit) of new extents. 2905 * @flags: flags used to insert new extent to extent tree. 2906 * 2907 * 2908 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 2909 * of which are deterimined by split_flag. 2910 * 2911 * There are two cases: 2912 * a> the extent are splitted into two extent. 2913 * b> split is not needed, and just mark the extent. 2914 * 2915 * return 0 on success. 2916 */ 2917 static int ext4_split_extent_at(handle_t *handle, 2918 struct inode *inode, 2919 struct ext4_ext_path *path, 2920 ext4_lblk_t split, 2921 int split_flag, 2922 int flags) 2923 { 2924 ext4_fsblk_t newblock; 2925 ext4_lblk_t ee_block; 2926 struct ext4_extent *ex, newex, orig_ex; 2927 struct ext4_extent *ex2 = NULL; 2928 unsigned int ee_len, depth; 2929 int err = 0; 2930 2931 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == 2932 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); 2933 2934 ext_debug("ext4_split_extents_at: inode %lu, logical" 2935 "block %llu\n", inode->i_ino, (unsigned long long)split); 2936 2937 ext4_ext_show_leaf(inode, path); 2938 2939 depth = ext_depth(inode); 2940 ex = path[depth].p_ext; 2941 ee_block = le32_to_cpu(ex->ee_block); 2942 ee_len = ext4_ext_get_actual_len(ex); 2943 newblock = split - ee_block + ext4_ext_pblock(ex); 2944 2945 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 2946 BUG_ON(!ext4_ext_is_uninitialized(ex) && 2947 split_flag & (EXT4_EXT_MAY_ZEROOUT | 2948 EXT4_EXT_MARK_UNINIT1 | 2949 EXT4_EXT_MARK_UNINIT2)); 2950 2951 err = ext4_ext_get_access(handle, inode, path + depth); 2952 if (err) 2953 goto out; 2954 2955 if (split == ee_block) { 2956 /* 2957 * case b: block @split is the block that the extent begins with 2958 * then we just change the state of the extent, and splitting 2959 * is not needed. 2960 */ 2961 if (split_flag & EXT4_EXT_MARK_UNINIT2) 2962 ext4_ext_mark_uninitialized(ex); 2963 else 2964 ext4_ext_mark_initialized(ex); 2965 2966 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 2967 ext4_ext_try_to_merge(handle, inode, path, ex); 2968 2969 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 2970 goto out; 2971 } 2972 2973 /* case a */ 2974 memcpy(&orig_ex, ex, sizeof(orig_ex)); 2975 ex->ee_len = cpu_to_le16(split - ee_block); 2976 if (split_flag & EXT4_EXT_MARK_UNINIT1) 2977 ext4_ext_mark_uninitialized(ex); 2978 2979 /* 2980 * path may lead to new leaf, not to original leaf any more 2981 * after ext4_ext_insert_extent() returns, 2982 */ 2983 err = ext4_ext_dirty(handle, inode, path + depth); 2984 if (err) 2985 goto fix_extent_len; 2986 2987 ex2 = &newex; 2988 ex2->ee_block = cpu_to_le32(split); 2989 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 2990 ext4_ext_store_pblock(ex2, newblock); 2991 if (split_flag & EXT4_EXT_MARK_UNINIT2) 2992 ext4_ext_mark_uninitialized(ex2); 2993 2994 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags); 2995 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 2996 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { 2997 if (split_flag & EXT4_EXT_DATA_VALID1) 2998 err = ext4_ext_zeroout(inode, ex2); 2999 else 3000 err = ext4_ext_zeroout(inode, ex); 3001 } else 3002 err = ext4_ext_zeroout(inode, &orig_ex); 3003 3004 if (err) 3005 goto fix_extent_len; 3006 /* update the extent length and mark as initialized */ 3007 ex->ee_len = cpu_to_le16(ee_len); 3008 ext4_ext_try_to_merge(handle, inode, path, ex); 3009 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3010 goto out; 3011 } else if (err) 3012 goto fix_extent_len; 3013 3014 out: 3015 ext4_ext_show_leaf(inode, path); 3016 return err; 3017 3018 fix_extent_len: 3019 ex->ee_len = orig_ex.ee_len; 3020 ext4_ext_dirty(handle, inode, path + depth); 3021 return err; 3022 } 3023 3024 /* 3025 * ext4_split_extents() splits an extent and mark extent which is covered 3026 * by @map as split_flags indicates 3027 * 3028 * It may result in splitting the extent into multiple extents (upto three) 3029 * There are three possibilities: 3030 * a> There is no split required 3031 * b> Splits in two extents: Split is happening at either end of the extent 3032 * c> Splits in three extents: Somone is splitting in middle of the extent 3033 * 3034 */ 3035 static int ext4_split_extent(handle_t *handle, 3036 struct inode *inode, 3037 struct ext4_ext_path *path, 3038 struct ext4_map_blocks *map, 3039 int split_flag, 3040 int flags) 3041 { 3042 ext4_lblk_t ee_block; 3043 struct ext4_extent *ex; 3044 unsigned int ee_len, depth; 3045 int err = 0; 3046 int uninitialized; 3047 int split_flag1, flags1; 3048 3049 depth = ext_depth(inode); 3050 ex = path[depth].p_ext; 3051 ee_block = le32_to_cpu(ex->ee_block); 3052 ee_len = ext4_ext_get_actual_len(ex); 3053 uninitialized = ext4_ext_is_uninitialized(ex); 3054 3055 if (map->m_lblk + map->m_len < ee_block + ee_len) { 3056 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; 3057 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 3058 if (uninitialized) 3059 split_flag1 |= EXT4_EXT_MARK_UNINIT1 | 3060 EXT4_EXT_MARK_UNINIT2; 3061 if (split_flag & EXT4_EXT_DATA_VALID2) 3062 split_flag1 |= EXT4_EXT_DATA_VALID1; 3063 err = ext4_split_extent_at(handle, inode, path, 3064 map->m_lblk + map->m_len, split_flag1, flags1); 3065 if (err) 3066 goto out; 3067 } 3068 /* 3069 * Update path is required because previous ext4_split_extent_at() may 3070 * result in split of original leaf or extent zeroout. 3071 */ 3072 ext4_ext_drop_refs(path); 3073 path = ext4_ext_find_extent(inode, map->m_lblk, path); 3074 if (IS_ERR(path)) 3075 return PTR_ERR(path); 3076 depth = ext_depth(inode); 3077 ex = path[depth].p_ext; 3078 uninitialized = ext4_ext_is_uninitialized(ex); 3079 split_flag1 = 0; 3080 3081 if (map->m_lblk >= ee_block) { 3082 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2; 3083 if (uninitialized) { 3084 split_flag1 |= EXT4_EXT_MARK_UNINIT1; 3085 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT | 3086 EXT4_EXT_MARK_UNINIT2); 3087 } 3088 err = ext4_split_extent_at(handle, inode, path, 3089 map->m_lblk, split_flag1, flags); 3090 if (err) 3091 goto out; 3092 } 3093 3094 ext4_ext_show_leaf(inode, path); 3095 out: 3096 return err ? err : map->m_len; 3097 } 3098 3099 /* 3100 * This function is called by ext4_ext_map_blocks() if someone tries to write 3101 * to an uninitialized extent. It may result in splitting the uninitialized 3102 * extent into multiple extents (up to three - one initialized and two 3103 * uninitialized). 3104 * There are three possibilities: 3105 * a> There is no split required: Entire extent should be initialized 3106 * b> Splits in two extents: Write is happening at either end of the extent 3107 * c> Splits in three extents: Somone is writing in middle of the extent 3108 * 3109 * Pre-conditions: 3110 * - The extent pointed to by 'path' is uninitialized. 3111 * - The extent pointed to by 'path' contains a superset 3112 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 3113 * 3114 * Post-conditions on success: 3115 * - the returned value is the number of blocks beyond map->l_lblk 3116 * that are allocated and initialized. 3117 * It is guaranteed to be >= map->m_len. 3118 */ 3119 static int ext4_ext_convert_to_initialized(handle_t *handle, 3120 struct inode *inode, 3121 struct ext4_map_blocks *map, 3122 struct ext4_ext_path *path) 3123 { 3124 struct ext4_sb_info *sbi; 3125 struct ext4_extent_header *eh; 3126 struct ext4_map_blocks split_map; 3127 struct ext4_extent zero_ex; 3128 struct ext4_extent *ex; 3129 ext4_lblk_t ee_block, eof_block; 3130 unsigned int ee_len, depth; 3131 int allocated, max_zeroout = 0; 3132 int err = 0; 3133 int split_flag = 0; 3134 3135 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 3136 "block %llu, max_blocks %u\n", inode->i_ino, 3137 (unsigned long long)map->m_lblk, map->m_len); 3138 3139 sbi = EXT4_SB(inode->i_sb); 3140 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3141 inode->i_sb->s_blocksize_bits; 3142 if (eof_block < map->m_lblk + map->m_len) 3143 eof_block = map->m_lblk + map->m_len; 3144 3145 depth = ext_depth(inode); 3146 eh = path[depth].p_hdr; 3147 ex = path[depth].p_ext; 3148 ee_block = le32_to_cpu(ex->ee_block); 3149 ee_len = ext4_ext_get_actual_len(ex); 3150 allocated = ee_len - (map->m_lblk - ee_block); 3151 3152 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3153 3154 /* Pre-conditions */ 3155 BUG_ON(!ext4_ext_is_uninitialized(ex)); 3156 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3157 3158 /* 3159 * Attempt to transfer newly initialized blocks from the currently 3160 * uninitialized extent to its left neighbor. This is much cheaper 3161 * than an insertion followed by a merge as those involve costly 3162 * memmove() calls. This is the common case in steady state for 3163 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append 3164 * writes. 3165 * 3166 * Limitations of the current logic: 3167 * - L1: we only deal with writes at the start of the extent. 3168 * The approach could be extended to writes at the end 3169 * of the extent but this scenario was deemed less common. 3170 * - L2: we do not deal with writes covering the whole extent. 3171 * This would require removing the extent if the transfer 3172 * is possible. 3173 * - L3: we only attempt to merge with an extent stored in the 3174 * same extent tree node. 3175 */ 3176 if ((map->m_lblk == ee_block) && /*L1*/ 3177 (map->m_len < ee_len) && /*L2*/ 3178 (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/ 3179 struct ext4_extent *prev_ex; 3180 ext4_lblk_t prev_lblk; 3181 ext4_fsblk_t prev_pblk, ee_pblk; 3182 unsigned int prev_len, write_len; 3183 3184 prev_ex = ex - 1; 3185 prev_lblk = le32_to_cpu(prev_ex->ee_block); 3186 prev_len = ext4_ext_get_actual_len(prev_ex); 3187 prev_pblk = ext4_ext_pblock(prev_ex); 3188 ee_pblk = ext4_ext_pblock(ex); 3189 write_len = map->m_len; 3190 3191 /* 3192 * A transfer of blocks from 'ex' to 'prev_ex' is allowed 3193 * upon those conditions: 3194 * - C1: prev_ex is initialized, 3195 * - C2: prev_ex is logically abutting ex, 3196 * - C3: prev_ex is physically abutting ex, 3197 * - C4: prev_ex can receive the additional blocks without 3198 * overflowing the (initialized) length limit. 3199 */ 3200 if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/ 3201 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3202 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3203 (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/ 3204 err = ext4_ext_get_access(handle, inode, path + depth); 3205 if (err) 3206 goto out; 3207 3208 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3209 map, ex, prev_ex); 3210 3211 /* Shift the start of ex by 'write_len' blocks */ 3212 ex->ee_block = cpu_to_le32(ee_block + write_len); 3213 ext4_ext_store_pblock(ex, ee_pblk + write_len); 3214 ex->ee_len = cpu_to_le16(ee_len - write_len); 3215 ext4_ext_mark_uninitialized(ex); /* Restore the flag */ 3216 3217 /* Extend prev_ex by 'write_len' blocks */ 3218 prev_ex->ee_len = cpu_to_le16(prev_len + write_len); 3219 3220 /* Mark the block containing both extents as dirty */ 3221 ext4_ext_dirty(handle, inode, path + depth); 3222 3223 /* Update path to point to the right extent */ 3224 path[depth].p_ext = prev_ex; 3225 3226 /* Result: number of initialized blocks past m_lblk */ 3227 allocated = write_len; 3228 goto out; 3229 } 3230 } 3231 3232 WARN_ON(map->m_lblk < ee_block); 3233 /* 3234 * It is safe to convert extent to initialized via explicit 3235 * zeroout only if extent is fully insde i_size or new_size. 3236 */ 3237 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3238 3239 if (EXT4_EXT_MAY_ZEROOUT & split_flag) 3240 max_zeroout = sbi->s_extent_max_zeroout_kb >> 3241 inode->i_sb->s_blocksize_bits; 3242 3243 /* If extent is less than s_max_zeroout_kb, zeroout directly */ 3244 if (max_zeroout && (ee_len <= max_zeroout)) { 3245 err = ext4_ext_zeroout(inode, ex); 3246 if (err) 3247 goto out; 3248 3249 err = ext4_ext_get_access(handle, inode, path + depth); 3250 if (err) 3251 goto out; 3252 ext4_ext_mark_initialized(ex); 3253 ext4_ext_try_to_merge(handle, inode, path, ex); 3254 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3255 goto out; 3256 } 3257 3258 /* 3259 * four cases: 3260 * 1. split the extent into three extents. 3261 * 2. split the extent into two extents, zeroout the first half. 3262 * 3. split the extent into two extents, zeroout the second half. 3263 * 4. split the extent into two extents with out zeroout. 3264 */ 3265 split_map.m_lblk = map->m_lblk; 3266 split_map.m_len = map->m_len; 3267 3268 if (max_zeroout && (allocated > map->m_len)) { 3269 if (allocated <= max_zeroout) { 3270 /* case 3 */ 3271 zero_ex.ee_block = 3272 cpu_to_le32(map->m_lblk); 3273 zero_ex.ee_len = cpu_to_le16(allocated); 3274 ext4_ext_store_pblock(&zero_ex, 3275 ext4_ext_pblock(ex) + map->m_lblk - ee_block); 3276 err = ext4_ext_zeroout(inode, &zero_ex); 3277 if (err) 3278 goto out; 3279 split_map.m_lblk = map->m_lblk; 3280 split_map.m_len = allocated; 3281 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) { 3282 /* case 2 */ 3283 if (map->m_lblk != ee_block) { 3284 zero_ex.ee_block = ex->ee_block; 3285 zero_ex.ee_len = cpu_to_le16(map->m_lblk - 3286 ee_block); 3287 ext4_ext_store_pblock(&zero_ex, 3288 ext4_ext_pblock(ex)); 3289 err = ext4_ext_zeroout(inode, &zero_ex); 3290 if (err) 3291 goto out; 3292 } 3293 3294 split_map.m_lblk = ee_block; 3295 split_map.m_len = map->m_lblk - ee_block + map->m_len; 3296 allocated = map->m_len; 3297 } 3298 } 3299 3300 allocated = ext4_split_extent(handle, inode, path, 3301 &split_map, split_flag, 0); 3302 if (allocated < 0) 3303 err = allocated; 3304 3305 out: 3306 return err ? err : allocated; 3307 } 3308 3309 /* 3310 * This function is called by ext4_ext_map_blocks() from 3311 * ext4_get_blocks_dio_write() when DIO to write 3312 * to an uninitialized extent. 3313 * 3314 * Writing to an uninitialized extent may result in splitting the uninitialized 3315 * extent into multiple initialized/uninitialized extents (up to three) 3316 * There are three possibilities: 3317 * a> There is no split required: Entire extent should be uninitialized 3318 * b> Splits in two extents: Write is happening at either end of the extent 3319 * c> Splits in three extents: Somone is writing in middle of the extent 3320 * 3321 * One of more index blocks maybe needed if the extent tree grow after 3322 * the uninitialized extent split. To prevent ENOSPC occur at the IO 3323 * complete, we need to split the uninitialized extent before DIO submit 3324 * the IO. The uninitialized extent called at this time will be split 3325 * into three uninitialized extent(at most). After IO complete, the part 3326 * being filled will be convert to initialized by the end_io callback function 3327 * via ext4_convert_unwritten_extents(). 3328 * 3329 * Returns the size of uninitialized extent to be written on success. 3330 */ 3331 static int ext4_split_unwritten_extents(handle_t *handle, 3332 struct inode *inode, 3333 struct ext4_map_blocks *map, 3334 struct ext4_ext_path *path, 3335 int flags) 3336 { 3337 ext4_lblk_t eof_block; 3338 ext4_lblk_t ee_block; 3339 struct ext4_extent *ex; 3340 unsigned int ee_len; 3341 int split_flag = 0, depth; 3342 3343 ext_debug("ext4_split_unwritten_extents: inode %lu, logical" 3344 "block %llu, max_blocks %u\n", inode->i_ino, 3345 (unsigned long long)map->m_lblk, map->m_len); 3346 3347 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3348 inode->i_sb->s_blocksize_bits; 3349 if (eof_block < map->m_lblk + map->m_len) 3350 eof_block = map->m_lblk + map->m_len; 3351 /* 3352 * It is safe to convert extent to initialized via explicit 3353 * zeroout only if extent is fully insde i_size or new_size. 3354 */ 3355 depth = ext_depth(inode); 3356 ex = path[depth].p_ext; 3357 ee_block = le32_to_cpu(ex->ee_block); 3358 ee_len = ext4_ext_get_actual_len(ex); 3359 3360 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3361 split_flag |= EXT4_EXT_MARK_UNINIT2; 3362 if (flags & EXT4_GET_BLOCKS_CONVERT) 3363 split_flag |= EXT4_EXT_DATA_VALID2; 3364 flags |= EXT4_GET_BLOCKS_PRE_IO; 3365 return ext4_split_extent(handle, inode, path, map, split_flag, flags); 3366 } 3367 3368 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3369 struct inode *inode, 3370 struct ext4_map_blocks *map, 3371 struct ext4_ext_path *path) 3372 { 3373 struct ext4_extent *ex; 3374 ext4_lblk_t ee_block; 3375 unsigned int ee_len; 3376 int depth; 3377 int err = 0; 3378 3379 depth = ext_depth(inode); 3380 ex = path[depth].p_ext; 3381 ee_block = le32_to_cpu(ex->ee_block); 3382 ee_len = ext4_ext_get_actual_len(ex); 3383 3384 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3385 "block %llu, max_blocks %u\n", inode->i_ino, 3386 (unsigned long long)ee_block, ee_len); 3387 3388 /* If extent is larger than requested then split is required */ 3389 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3390 err = ext4_split_unwritten_extents(handle, inode, map, path, 3391 EXT4_GET_BLOCKS_CONVERT); 3392 if (err < 0) 3393 goto out; 3394 ext4_ext_drop_refs(path); 3395 path = ext4_ext_find_extent(inode, map->m_lblk, path); 3396 if (IS_ERR(path)) { 3397 err = PTR_ERR(path); 3398 goto out; 3399 } 3400 depth = ext_depth(inode); 3401 ex = path[depth].p_ext; 3402 } 3403 3404 err = ext4_ext_get_access(handle, inode, path + depth); 3405 if (err) 3406 goto out; 3407 /* first mark the extent as initialized */ 3408 ext4_ext_mark_initialized(ex); 3409 3410 /* note: ext4_ext_correct_indexes() isn't needed here because 3411 * borders are not changed 3412 */ 3413 ext4_ext_try_to_merge(handle, inode, path, ex); 3414 3415 /* Mark modified extent as dirty */ 3416 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3417 out: 3418 ext4_ext_show_leaf(inode, path); 3419 return err; 3420 } 3421 3422 static void unmap_underlying_metadata_blocks(struct block_device *bdev, 3423 sector_t block, int count) 3424 { 3425 int i; 3426 for (i = 0; i < count; i++) 3427 unmap_underlying_metadata(bdev, block + i); 3428 } 3429 3430 /* 3431 * Handle EOFBLOCKS_FL flag, clearing it if necessary 3432 */ 3433 static int check_eofblocks_fl(handle_t *handle, struct inode *inode, 3434 ext4_lblk_t lblk, 3435 struct ext4_ext_path *path, 3436 unsigned int len) 3437 { 3438 int i, depth; 3439 struct ext4_extent_header *eh; 3440 struct ext4_extent *last_ex; 3441 3442 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3443 return 0; 3444 3445 depth = ext_depth(inode); 3446 eh = path[depth].p_hdr; 3447 3448 /* 3449 * We're going to remove EOFBLOCKS_FL entirely in future so we 3450 * do not care for this case anymore. Simply remove the flag 3451 * if there are no extents. 3452 */ 3453 if (unlikely(!eh->eh_entries)) 3454 goto out; 3455 last_ex = EXT_LAST_EXTENT(eh); 3456 /* 3457 * We should clear the EOFBLOCKS_FL flag if we are writing the 3458 * last block in the last extent in the file. We test this by 3459 * first checking to see if the caller to 3460 * ext4_ext_get_blocks() was interested in the last block (or 3461 * a block beyond the last block) in the current extent. If 3462 * this turns out to be false, we can bail out from this 3463 * function immediately. 3464 */ 3465 if (lblk + len < le32_to_cpu(last_ex->ee_block) + 3466 ext4_ext_get_actual_len(last_ex)) 3467 return 0; 3468 /* 3469 * If the caller does appear to be planning to write at or 3470 * beyond the end of the current extent, we then test to see 3471 * if the current extent is the last extent in the file, by 3472 * checking to make sure it was reached via the rightmost node 3473 * at each level of the tree. 3474 */ 3475 for (i = depth-1; i >= 0; i--) 3476 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) 3477 return 0; 3478 out: 3479 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3480 return ext4_mark_inode_dirty(handle, inode); 3481 } 3482 3483 /** 3484 * ext4_find_delalloc_range: find delayed allocated block in the given range. 3485 * 3486 * Return 1 if there is a delalloc block in the range, otherwise 0. 3487 */ 3488 int ext4_find_delalloc_range(struct inode *inode, 3489 ext4_lblk_t lblk_start, 3490 ext4_lblk_t lblk_end) 3491 { 3492 struct extent_status es; 3493 3494 ext4_es_find_delayed_extent(inode, lblk_start, &es); 3495 if (es.es_len == 0) 3496 return 0; /* there is no delay extent in this tree */ 3497 else if (es.es_lblk <= lblk_start && 3498 lblk_start < es.es_lblk + es.es_len) 3499 return 1; 3500 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end) 3501 return 1; 3502 else 3503 return 0; 3504 } 3505 3506 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk) 3507 { 3508 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3509 ext4_lblk_t lblk_start, lblk_end; 3510 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1)); 3511 lblk_end = lblk_start + sbi->s_cluster_ratio - 1; 3512 3513 return ext4_find_delalloc_range(inode, lblk_start, lblk_end); 3514 } 3515 3516 /** 3517 * Determines how many complete clusters (out of those specified by the 'map') 3518 * are under delalloc and were reserved quota for. 3519 * This function is called when we are writing out the blocks that were 3520 * originally written with their allocation delayed, but then the space was 3521 * allocated using fallocate() before the delayed allocation could be resolved. 3522 * The cases to look for are: 3523 * ('=' indicated delayed allocated blocks 3524 * '-' indicates non-delayed allocated blocks) 3525 * (a) partial clusters towards beginning and/or end outside of allocated range 3526 * are not delalloc'ed. 3527 * Ex: 3528 * |----c---=|====c====|====c====|===-c----| 3529 * |++++++ allocated ++++++| 3530 * ==> 4 complete clusters in above example 3531 * 3532 * (b) partial cluster (outside of allocated range) towards either end is 3533 * marked for delayed allocation. In this case, we will exclude that 3534 * cluster. 3535 * Ex: 3536 * |----====c========|========c========| 3537 * |++++++ allocated ++++++| 3538 * ==> 1 complete clusters in above example 3539 * 3540 * Ex: 3541 * |================c================| 3542 * |++++++ allocated ++++++| 3543 * ==> 0 complete clusters in above example 3544 * 3545 * The ext4_da_update_reserve_space will be called only if we 3546 * determine here that there were some "entire" clusters that span 3547 * this 'allocated' range. 3548 * In the non-bigalloc case, this function will just end up returning num_blks 3549 * without ever calling ext4_find_delalloc_range. 3550 */ 3551 static unsigned int 3552 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start, 3553 unsigned int num_blks) 3554 { 3555 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3556 ext4_lblk_t alloc_cluster_start, alloc_cluster_end; 3557 ext4_lblk_t lblk_from, lblk_to, c_offset; 3558 unsigned int allocated_clusters = 0; 3559 3560 alloc_cluster_start = EXT4_B2C(sbi, lblk_start); 3561 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1); 3562 3563 /* max possible clusters for this allocation */ 3564 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1; 3565 3566 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks); 3567 3568 /* Check towards left side */ 3569 c_offset = lblk_start & (sbi->s_cluster_ratio - 1); 3570 if (c_offset) { 3571 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1)); 3572 lblk_to = lblk_from + c_offset - 1; 3573 3574 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3575 allocated_clusters--; 3576 } 3577 3578 /* Now check towards right. */ 3579 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1); 3580 if (allocated_clusters && c_offset) { 3581 lblk_from = lblk_start + num_blks; 3582 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1; 3583 3584 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3585 allocated_clusters--; 3586 } 3587 3588 return allocated_clusters; 3589 } 3590 3591 static int 3592 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode, 3593 struct ext4_map_blocks *map, 3594 struct ext4_ext_path *path, int flags, 3595 unsigned int allocated, ext4_fsblk_t newblock) 3596 { 3597 int ret = 0; 3598 int err = 0; 3599 ext4_io_end_t *io = ext4_inode_aio(inode); 3600 3601 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical " 3602 "block %llu, max_blocks %u, flags %x, allocated %u\n", 3603 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 3604 flags, allocated); 3605 ext4_ext_show_leaf(inode, path); 3606 3607 trace_ext4_ext_handle_uninitialized_extents(inode, map, flags, 3608 allocated, newblock); 3609 3610 /* get_block() before submit the IO, split the extent */ 3611 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) { 3612 ret = ext4_split_unwritten_extents(handle, inode, map, 3613 path, flags); 3614 if (ret <= 0) 3615 goto out; 3616 /* 3617 * Flag the inode(non aio case) or end_io struct (aio case) 3618 * that this IO needs to conversion to written when IO is 3619 * completed 3620 */ 3621 if (io) 3622 ext4_set_io_unwritten_flag(inode, io); 3623 else 3624 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3625 map->m_flags |= EXT4_MAP_UNWRITTEN; 3626 if (ext4_should_dioread_nolock(inode)) 3627 map->m_flags |= EXT4_MAP_UNINIT; 3628 goto out; 3629 } 3630 /* IO end_io complete, convert the filled extent to written */ 3631 if ((flags & EXT4_GET_BLOCKS_CONVERT)) { 3632 ret = ext4_convert_unwritten_extents_endio(handle, inode, map, 3633 path); 3634 if (ret >= 0) { 3635 ext4_update_inode_fsync_trans(handle, inode, 1); 3636 err = check_eofblocks_fl(handle, inode, map->m_lblk, 3637 path, map->m_len); 3638 } else 3639 err = ret; 3640 goto out2; 3641 } 3642 /* buffered IO case */ 3643 /* 3644 * repeat fallocate creation request 3645 * we already have an unwritten extent 3646 */ 3647 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) { 3648 map->m_flags |= EXT4_MAP_UNWRITTEN; 3649 goto map_out; 3650 } 3651 3652 /* buffered READ or buffered write_begin() lookup */ 3653 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3654 /* 3655 * We have blocks reserved already. We 3656 * return allocated blocks so that delalloc 3657 * won't do block reservation for us. But 3658 * the buffer head will be unmapped so that 3659 * a read from the block returns 0s. 3660 */ 3661 map->m_flags |= EXT4_MAP_UNWRITTEN; 3662 goto out1; 3663 } 3664 3665 /* buffered write, writepage time, convert*/ 3666 ret = ext4_ext_convert_to_initialized(handle, inode, map, path); 3667 if (ret >= 0) 3668 ext4_update_inode_fsync_trans(handle, inode, 1); 3669 out: 3670 if (ret <= 0) { 3671 err = ret; 3672 goto out2; 3673 } else 3674 allocated = ret; 3675 map->m_flags |= EXT4_MAP_NEW; 3676 /* 3677 * if we allocated more blocks than requested 3678 * we need to make sure we unmap the extra block 3679 * allocated. The actual needed block will get 3680 * unmapped later when we find the buffer_head marked 3681 * new. 3682 */ 3683 if (allocated > map->m_len) { 3684 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev, 3685 newblock + map->m_len, 3686 allocated - map->m_len); 3687 allocated = map->m_len; 3688 } 3689 3690 /* 3691 * If we have done fallocate with the offset that is already 3692 * delayed allocated, we would have block reservation 3693 * and quota reservation done in the delayed write path. 3694 * But fallocate would have already updated quota and block 3695 * count for this offset. So cancel these reservation 3696 */ 3697 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 3698 unsigned int reserved_clusters; 3699 reserved_clusters = get_reserved_cluster_alloc(inode, 3700 map->m_lblk, map->m_len); 3701 if (reserved_clusters) 3702 ext4_da_update_reserve_space(inode, 3703 reserved_clusters, 3704 0); 3705 } 3706 3707 map_out: 3708 map->m_flags |= EXT4_MAP_MAPPED; 3709 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { 3710 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, 3711 map->m_len); 3712 if (err < 0) 3713 goto out2; 3714 } 3715 out1: 3716 if (allocated > map->m_len) 3717 allocated = map->m_len; 3718 ext4_ext_show_leaf(inode, path); 3719 map->m_pblk = newblock; 3720 map->m_len = allocated; 3721 out2: 3722 if (path) { 3723 ext4_ext_drop_refs(path); 3724 kfree(path); 3725 } 3726 return err ? err : allocated; 3727 } 3728 3729 /* 3730 * get_implied_cluster_alloc - check to see if the requested 3731 * allocation (in the map structure) overlaps with a cluster already 3732 * allocated in an extent. 3733 * @sb The filesystem superblock structure 3734 * @map The requested lblk->pblk mapping 3735 * @ex The extent structure which might contain an implied 3736 * cluster allocation 3737 * 3738 * This function is called by ext4_ext_map_blocks() after we failed to 3739 * find blocks that were already in the inode's extent tree. Hence, 3740 * we know that the beginning of the requested region cannot overlap 3741 * the extent from the inode's extent tree. There are three cases we 3742 * want to catch. The first is this case: 3743 * 3744 * |--- cluster # N--| 3745 * |--- extent ---| |---- requested region ---| 3746 * |==========| 3747 * 3748 * The second case that we need to test for is this one: 3749 * 3750 * |--------- cluster # N ----------------| 3751 * |--- requested region --| |------- extent ----| 3752 * |=======================| 3753 * 3754 * The third case is when the requested region lies between two extents 3755 * within the same cluster: 3756 * |------------- cluster # N-------------| 3757 * |----- ex -----| |---- ex_right ----| 3758 * |------ requested region ------| 3759 * |================| 3760 * 3761 * In each of the above cases, we need to set the map->m_pblk and 3762 * map->m_len so it corresponds to the return the extent labelled as 3763 * "|====|" from cluster #N, since it is already in use for data in 3764 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 3765 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 3766 * as a new "allocated" block region. Otherwise, we will return 0 and 3767 * ext4_ext_map_blocks() will then allocate one or more new clusters 3768 * by calling ext4_mb_new_blocks(). 3769 */ 3770 static int get_implied_cluster_alloc(struct super_block *sb, 3771 struct ext4_map_blocks *map, 3772 struct ext4_extent *ex, 3773 struct ext4_ext_path *path) 3774 { 3775 struct ext4_sb_info *sbi = EXT4_SB(sb); 3776 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1); 3777 ext4_lblk_t ex_cluster_start, ex_cluster_end; 3778 ext4_lblk_t rr_cluster_start; 3779 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 3780 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 3781 unsigned short ee_len = ext4_ext_get_actual_len(ex); 3782 3783 /* The extent passed in that we are trying to match */ 3784 ex_cluster_start = EXT4_B2C(sbi, ee_block); 3785 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 3786 3787 /* The requested region passed into ext4_map_blocks() */ 3788 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 3789 3790 if ((rr_cluster_start == ex_cluster_end) || 3791 (rr_cluster_start == ex_cluster_start)) { 3792 if (rr_cluster_start == ex_cluster_end) 3793 ee_start += ee_len - 1; 3794 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) + 3795 c_offset; 3796 map->m_len = min(map->m_len, 3797 (unsigned) sbi->s_cluster_ratio - c_offset); 3798 /* 3799 * Check for and handle this case: 3800 * 3801 * |--------- cluster # N-------------| 3802 * |------- extent ----| 3803 * |--- requested region ---| 3804 * |===========| 3805 */ 3806 3807 if (map->m_lblk < ee_block) 3808 map->m_len = min(map->m_len, ee_block - map->m_lblk); 3809 3810 /* 3811 * Check for the case where there is already another allocated 3812 * block to the right of 'ex' but before the end of the cluster. 3813 * 3814 * |------------- cluster # N-------------| 3815 * |----- ex -----| |---- ex_right ----| 3816 * |------ requested region ------| 3817 * |================| 3818 */ 3819 if (map->m_lblk > ee_block) { 3820 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 3821 map->m_len = min(map->m_len, next - map->m_lblk); 3822 } 3823 3824 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 3825 return 1; 3826 } 3827 3828 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 3829 return 0; 3830 } 3831 3832 3833 /* 3834 * Block allocation/map/preallocation routine for extents based files 3835 * 3836 * 3837 * Need to be called with 3838 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 3839 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 3840 * 3841 * return > 0, number of of blocks already mapped/allocated 3842 * if create == 0 and these are pre-allocated blocks 3843 * buffer head is unmapped 3844 * otherwise blocks are mapped 3845 * 3846 * return = 0, if plain look up failed (blocks have not been allocated) 3847 * buffer head is unmapped 3848 * 3849 * return < 0, error case. 3850 */ 3851 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 3852 struct ext4_map_blocks *map, int flags) 3853 { 3854 struct ext4_ext_path *path = NULL; 3855 struct ext4_extent newex, *ex, *ex2; 3856 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3857 ext4_fsblk_t newblock = 0; 3858 int free_on_err = 0, err = 0, depth; 3859 unsigned int allocated = 0, offset = 0; 3860 unsigned int allocated_clusters = 0; 3861 struct ext4_allocation_request ar; 3862 ext4_io_end_t *io = ext4_inode_aio(inode); 3863 ext4_lblk_t cluster_offset; 3864 int set_unwritten = 0; 3865 3866 ext_debug("blocks %u/%u requested for inode %lu\n", 3867 map->m_lblk, map->m_len, inode->i_ino); 3868 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 3869 3870 /* find extent for this block */ 3871 path = ext4_ext_find_extent(inode, map->m_lblk, NULL); 3872 if (IS_ERR(path)) { 3873 err = PTR_ERR(path); 3874 path = NULL; 3875 goto out2; 3876 } 3877 3878 depth = ext_depth(inode); 3879 3880 /* 3881 * consistent leaf must not be empty; 3882 * this situation is possible, though, _during_ tree modification; 3883 * this is why assert can't be put in ext4_ext_find_extent() 3884 */ 3885 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 3886 EXT4_ERROR_INODE(inode, "bad extent address " 3887 "lblock: %lu, depth: %d pblock %lld", 3888 (unsigned long) map->m_lblk, depth, 3889 path[depth].p_block); 3890 err = -EIO; 3891 goto out2; 3892 } 3893 3894 ex = path[depth].p_ext; 3895 if (ex) { 3896 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 3897 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 3898 unsigned short ee_len; 3899 3900 /* 3901 * Uninitialized extents are treated as holes, except that 3902 * we split out initialized portions during a write. 3903 */ 3904 ee_len = ext4_ext_get_actual_len(ex); 3905 3906 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 3907 3908 /* if found extent covers block, simply return it */ 3909 if (in_range(map->m_lblk, ee_block, ee_len)) { 3910 newblock = map->m_lblk - ee_block + ee_start; 3911 /* number of remaining blocks in the extent */ 3912 allocated = ee_len - (map->m_lblk - ee_block); 3913 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 3914 ee_block, ee_len, newblock); 3915 3916 if (!ext4_ext_is_uninitialized(ex)) 3917 goto out; 3918 3919 allocated = ext4_ext_handle_uninitialized_extents( 3920 handle, inode, map, path, flags, 3921 allocated, newblock); 3922 goto out3; 3923 } 3924 } 3925 3926 if ((sbi->s_cluster_ratio > 1) && 3927 ext4_find_delalloc_cluster(inode, map->m_lblk)) 3928 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3929 3930 /* 3931 * requested block isn't allocated yet; 3932 * we couldn't try to create block if create flag is zero 3933 */ 3934 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3935 /* 3936 * put just found gap into cache to speed up 3937 * subsequent requests 3938 */ 3939 if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0) 3940 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk); 3941 goto out2; 3942 } 3943 3944 /* 3945 * Okay, we need to do block allocation. 3946 */ 3947 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 3948 newex.ee_block = cpu_to_le32(map->m_lblk); 3949 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1); 3950 3951 /* 3952 * If we are doing bigalloc, check to see if the extent returned 3953 * by ext4_ext_find_extent() implies a cluster we can use. 3954 */ 3955 if (cluster_offset && ex && 3956 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 3957 ar.len = allocated = map->m_len; 3958 newblock = map->m_pblk; 3959 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3960 goto got_allocated_blocks; 3961 } 3962 3963 /* find neighbour allocated blocks */ 3964 ar.lleft = map->m_lblk; 3965 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 3966 if (err) 3967 goto out2; 3968 ar.lright = map->m_lblk; 3969 ex2 = NULL; 3970 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 3971 if (err) 3972 goto out2; 3973 3974 /* Check if the extent after searching to the right implies a 3975 * cluster we can use. */ 3976 if ((sbi->s_cluster_ratio > 1) && ex2 && 3977 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 3978 ar.len = allocated = map->m_len; 3979 newblock = map->m_pblk; 3980 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3981 goto got_allocated_blocks; 3982 } 3983 3984 /* 3985 * See if request is beyond maximum number of blocks we can have in 3986 * a single extent. For an initialized extent this limit is 3987 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is 3988 * EXT_UNINIT_MAX_LEN. 3989 */ 3990 if (map->m_len > EXT_INIT_MAX_LEN && 3991 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 3992 map->m_len = EXT_INIT_MAX_LEN; 3993 else if (map->m_len > EXT_UNINIT_MAX_LEN && 3994 (flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 3995 map->m_len = EXT_UNINIT_MAX_LEN; 3996 3997 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 3998 newex.ee_len = cpu_to_le16(map->m_len); 3999 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 4000 if (err) 4001 allocated = ext4_ext_get_actual_len(&newex); 4002 else 4003 allocated = map->m_len; 4004 4005 /* allocate new block */ 4006 ar.inode = inode; 4007 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 4008 ar.logical = map->m_lblk; 4009 /* 4010 * We calculate the offset from the beginning of the cluster 4011 * for the logical block number, since when we allocate a 4012 * physical cluster, the physical block should start at the 4013 * same offset from the beginning of the cluster. This is 4014 * needed so that future calls to get_implied_cluster_alloc() 4015 * work correctly. 4016 */ 4017 offset = map->m_lblk & (sbi->s_cluster_ratio - 1); 4018 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 4019 ar.goal -= offset; 4020 ar.logical -= offset; 4021 if (S_ISREG(inode->i_mode)) 4022 ar.flags = EXT4_MB_HINT_DATA; 4023 else 4024 /* disable in-core preallocation for non-regular files */ 4025 ar.flags = 0; 4026 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4027 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4028 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4029 if (!newblock) 4030 goto out2; 4031 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 4032 ar.goal, newblock, allocated); 4033 free_on_err = 1; 4034 allocated_clusters = ar.len; 4035 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4036 if (ar.len > allocated) 4037 ar.len = allocated; 4038 4039 got_allocated_blocks: 4040 /* try to insert new extent into found leaf and return */ 4041 ext4_ext_store_pblock(&newex, newblock + offset); 4042 newex.ee_len = cpu_to_le16(ar.len); 4043 /* Mark uninitialized */ 4044 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){ 4045 ext4_ext_mark_uninitialized(&newex); 4046 map->m_flags |= EXT4_MAP_UNWRITTEN; 4047 /* 4048 * io_end structure was created for every IO write to an 4049 * uninitialized extent. To avoid unnecessary conversion, 4050 * here we flag the IO that really needs the conversion. 4051 * For non asycn direct IO case, flag the inode state 4052 * that we need to perform conversion when IO is done. 4053 */ 4054 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) 4055 set_unwritten = 1; 4056 if (ext4_should_dioread_nolock(inode)) 4057 map->m_flags |= EXT4_MAP_UNINIT; 4058 } 4059 4060 err = 0; 4061 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) 4062 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4063 path, ar.len); 4064 if (!err) 4065 err = ext4_ext_insert_extent(handle, inode, path, 4066 &newex, flags); 4067 4068 if (!err && set_unwritten) { 4069 if (io) 4070 ext4_set_io_unwritten_flag(inode, io); 4071 else 4072 ext4_set_inode_state(inode, 4073 EXT4_STATE_DIO_UNWRITTEN); 4074 } 4075 4076 if (err && free_on_err) { 4077 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? 4078 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; 4079 /* free data blocks we just allocated */ 4080 /* not a good idea to call discard here directly, 4081 * but otherwise we'd need to call it every free() */ 4082 ext4_discard_preallocations(inode); 4083 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex), 4084 ext4_ext_get_actual_len(&newex), fb_flags); 4085 goto out2; 4086 } 4087 4088 /* previous routine could use block we allocated */ 4089 newblock = ext4_ext_pblock(&newex); 4090 allocated = ext4_ext_get_actual_len(&newex); 4091 if (allocated > map->m_len) 4092 allocated = map->m_len; 4093 map->m_flags |= EXT4_MAP_NEW; 4094 4095 /* 4096 * Update reserved blocks/metadata blocks after successful 4097 * block allocation which had been deferred till now. 4098 */ 4099 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4100 unsigned int reserved_clusters; 4101 /* 4102 * Check how many clusters we had reserved this allocated range 4103 */ 4104 reserved_clusters = get_reserved_cluster_alloc(inode, 4105 map->m_lblk, allocated); 4106 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) { 4107 if (reserved_clusters) { 4108 /* 4109 * We have clusters reserved for this range. 4110 * But since we are not doing actual allocation 4111 * and are simply using blocks from previously 4112 * allocated cluster, we should release the 4113 * reservation and not claim quota. 4114 */ 4115 ext4_da_update_reserve_space(inode, 4116 reserved_clusters, 0); 4117 } 4118 } else { 4119 BUG_ON(allocated_clusters < reserved_clusters); 4120 /* We will claim quota for all newly allocated blocks.*/ 4121 ext4_da_update_reserve_space(inode, allocated_clusters, 4122 1); 4123 if (reserved_clusters < allocated_clusters) { 4124 struct ext4_inode_info *ei = EXT4_I(inode); 4125 int reservation = allocated_clusters - 4126 reserved_clusters; 4127 /* 4128 * It seems we claimed few clusters outside of 4129 * the range of this allocation. We should give 4130 * it back to the reservation pool. This can 4131 * happen in the following case: 4132 * 4133 * * Suppose s_cluster_ratio is 4 (i.e., each 4134 * cluster has 4 blocks. Thus, the clusters 4135 * are [0-3],[4-7],[8-11]... 4136 * * First comes delayed allocation write for 4137 * logical blocks 10 & 11. Since there were no 4138 * previous delayed allocated blocks in the 4139 * range [8-11], we would reserve 1 cluster 4140 * for this write. 4141 * * Next comes write for logical blocks 3 to 8. 4142 * In this case, we will reserve 2 clusters 4143 * (for [0-3] and [4-7]; and not for [8-11] as 4144 * that range has a delayed allocated blocks. 4145 * Thus total reserved clusters now becomes 3. 4146 * * Now, during the delayed allocation writeout 4147 * time, we will first write blocks [3-8] and 4148 * allocate 3 clusters for writing these 4149 * blocks. Also, we would claim all these 4150 * three clusters above. 4151 * * Now when we come here to writeout the 4152 * blocks [10-11], we would expect to claim 4153 * the reservation of 1 cluster we had made 4154 * (and we would claim it since there are no 4155 * more delayed allocated blocks in the range 4156 * [8-11]. But our reserved cluster count had 4157 * already gone to 0. 4158 * 4159 * Thus, at the step 4 above when we determine 4160 * that there are still some unwritten delayed 4161 * allocated blocks outside of our current 4162 * block range, we should increment the 4163 * reserved clusters count so that when the 4164 * remaining blocks finally gets written, we 4165 * could claim them. 4166 */ 4167 dquot_reserve_block(inode, 4168 EXT4_C2B(sbi, reservation)); 4169 spin_lock(&ei->i_block_reservation_lock); 4170 ei->i_reserved_data_blocks += reservation; 4171 spin_unlock(&ei->i_block_reservation_lock); 4172 } 4173 } 4174 } 4175 4176 /* 4177 * Cache the extent and update transaction to commit on fdatasync only 4178 * when it is _not_ an uninitialized extent. 4179 */ 4180 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) 4181 ext4_update_inode_fsync_trans(handle, inode, 1); 4182 else 4183 ext4_update_inode_fsync_trans(handle, inode, 0); 4184 out: 4185 if (allocated > map->m_len) 4186 allocated = map->m_len; 4187 ext4_ext_show_leaf(inode, path); 4188 map->m_flags |= EXT4_MAP_MAPPED; 4189 map->m_pblk = newblock; 4190 map->m_len = allocated; 4191 out2: 4192 if (path) { 4193 ext4_ext_drop_refs(path); 4194 kfree(path); 4195 } 4196 4197 out3: 4198 trace_ext4_ext_map_blocks_exit(inode, map, err ? err : allocated); 4199 4200 return err ? err : allocated; 4201 } 4202 4203 void ext4_ext_truncate(struct inode *inode) 4204 { 4205 struct address_space *mapping = inode->i_mapping; 4206 struct super_block *sb = inode->i_sb; 4207 ext4_lblk_t last_block; 4208 handle_t *handle; 4209 loff_t page_len; 4210 int err = 0; 4211 4212 /* 4213 * finish any pending end_io work so we won't run the risk of 4214 * converting any truncated blocks to initialized later 4215 */ 4216 ext4_flush_unwritten_io(inode); 4217 4218 /* 4219 * probably first extent we're gonna free will be last in block 4220 */ 4221 err = ext4_writepage_trans_blocks(inode); 4222 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, err); 4223 if (IS_ERR(handle)) 4224 return; 4225 4226 if (inode->i_size % PAGE_CACHE_SIZE != 0) { 4227 page_len = PAGE_CACHE_SIZE - 4228 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 4229 4230 err = ext4_discard_partial_page_buffers(handle, 4231 mapping, inode->i_size, page_len, 0); 4232 4233 if (err) 4234 goto out_stop; 4235 } 4236 4237 if (ext4_orphan_add(handle, inode)) 4238 goto out_stop; 4239 4240 down_write(&EXT4_I(inode)->i_data_sem); 4241 4242 ext4_discard_preallocations(inode); 4243 4244 /* 4245 * TODO: optimization is possible here. 4246 * Probably we need not scan at all, 4247 * because page truncation is enough. 4248 */ 4249 4250 /* we have to know where to truncate from in crash case */ 4251 EXT4_I(inode)->i_disksize = inode->i_size; 4252 ext4_mark_inode_dirty(handle, inode); 4253 4254 last_block = (inode->i_size + sb->s_blocksize - 1) 4255 >> EXT4_BLOCK_SIZE_BITS(sb); 4256 err = ext4_es_remove_extent(inode, last_block, 4257 EXT_MAX_BLOCKS - last_block); 4258 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4259 4260 /* In a multi-transaction truncate, we only make the final 4261 * transaction synchronous. 4262 */ 4263 if (IS_SYNC(inode)) 4264 ext4_handle_sync(handle); 4265 4266 up_write(&EXT4_I(inode)->i_data_sem); 4267 4268 out_stop: 4269 /* 4270 * If this was a simple ftruncate() and the file will remain alive, 4271 * then we need to clear up the orphan record which we created above. 4272 * However, if this was a real unlink then we were called by 4273 * ext4_delete_inode(), and we allow that function to clean up the 4274 * orphan info for us. 4275 */ 4276 if (inode->i_nlink) 4277 ext4_orphan_del(handle, inode); 4278 4279 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4280 ext4_mark_inode_dirty(handle, inode); 4281 ext4_journal_stop(handle); 4282 } 4283 4284 static void ext4_falloc_update_inode(struct inode *inode, 4285 int mode, loff_t new_size, int update_ctime) 4286 { 4287 struct timespec now; 4288 4289 if (update_ctime) { 4290 now = current_fs_time(inode->i_sb); 4291 if (!timespec_equal(&inode->i_ctime, &now)) 4292 inode->i_ctime = now; 4293 } 4294 /* 4295 * Update only when preallocation was requested beyond 4296 * the file size. 4297 */ 4298 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 4299 if (new_size > i_size_read(inode)) 4300 i_size_write(inode, new_size); 4301 if (new_size > EXT4_I(inode)->i_disksize) 4302 ext4_update_i_disksize(inode, new_size); 4303 } else { 4304 /* 4305 * Mark that we allocate beyond EOF so the subsequent truncate 4306 * can proceed even if the new size is the same as i_size. 4307 */ 4308 if (new_size > i_size_read(inode)) 4309 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4310 } 4311 4312 } 4313 4314 /* 4315 * preallocate space for a file. This implements ext4's fallocate file 4316 * operation, which gets called from sys_fallocate system call. 4317 * For block-mapped files, posix_fallocate should fall back to the method 4318 * of writing zeroes to the required new blocks (the same behavior which is 4319 * expected for file systems which do not support fallocate() system call). 4320 */ 4321 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4322 { 4323 struct inode *inode = file->f_path.dentry->d_inode; 4324 handle_t *handle; 4325 loff_t new_size; 4326 unsigned int max_blocks; 4327 int ret = 0; 4328 int ret2 = 0; 4329 int retries = 0; 4330 int flags; 4331 struct ext4_map_blocks map; 4332 unsigned int credits, blkbits = inode->i_blkbits; 4333 4334 /* Return error if mode is not supported */ 4335 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 4336 return -EOPNOTSUPP; 4337 4338 if (mode & FALLOC_FL_PUNCH_HOLE) 4339 return ext4_punch_hole(file, offset, len); 4340 4341 ret = ext4_convert_inline_data(inode); 4342 if (ret) 4343 return ret; 4344 4345 /* 4346 * currently supporting (pre)allocate mode for extent-based 4347 * files _only_ 4348 */ 4349 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4350 return -EOPNOTSUPP; 4351 4352 trace_ext4_fallocate_enter(inode, offset, len, mode); 4353 map.m_lblk = offset >> blkbits; 4354 /* 4355 * We can't just convert len to max_blocks because 4356 * If blocksize = 4096 offset = 3072 and len = 2048 4357 */ 4358 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 4359 - map.m_lblk; 4360 /* 4361 * credits to insert 1 extent into extent tree 4362 */ 4363 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4364 mutex_lock(&inode->i_mutex); 4365 ret = inode_newsize_ok(inode, (len + offset)); 4366 if (ret) { 4367 mutex_unlock(&inode->i_mutex); 4368 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 4369 return ret; 4370 } 4371 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT; 4372 if (mode & FALLOC_FL_KEEP_SIZE) 4373 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4374 /* 4375 * Don't normalize the request if it can fit in one extent so 4376 * that it doesn't get unnecessarily split into multiple 4377 * extents. 4378 */ 4379 if (len <= EXT_UNINIT_MAX_LEN << blkbits) 4380 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4381 4382 /* Prevent race condition between unwritten */ 4383 ext4_flush_unwritten_io(inode); 4384 retry: 4385 while (ret >= 0 && ret < max_blocks) { 4386 map.m_lblk = map.m_lblk + ret; 4387 map.m_len = max_blocks = max_blocks - ret; 4388 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4389 credits); 4390 if (IS_ERR(handle)) { 4391 ret = PTR_ERR(handle); 4392 break; 4393 } 4394 ret = ext4_map_blocks(handle, inode, &map, flags); 4395 if (ret <= 0) { 4396 #ifdef EXT4FS_DEBUG 4397 ext4_warning(inode->i_sb, 4398 "inode #%lu: block %u: len %u: " 4399 "ext4_ext_map_blocks returned %d", 4400 inode->i_ino, map.m_lblk, 4401 map.m_len, ret); 4402 #endif 4403 ext4_mark_inode_dirty(handle, inode); 4404 ret2 = ext4_journal_stop(handle); 4405 break; 4406 } 4407 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len, 4408 blkbits) >> blkbits)) 4409 new_size = offset + len; 4410 else 4411 new_size = ((loff_t) map.m_lblk + ret) << blkbits; 4412 4413 ext4_falloc_update_inode(inode, mode, new_size, 4414 (map.m_flags & EXT4_MAP_NEW)); 4415 ext4_mark_inode_dirty(handle, inode); 4416 if ((file->f_flags & O_SYNC) && ret >= max_blocks) 4417 ext4_handle_sync(handle); 4418 ret2 = ext4_journal_stop(handle); 4419 if (ret2) 4420 break; 4421 } 4422 if (ret == -ENOSPC && 4423 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4424 ret = 0; 4425 goto retry; 4426 } 4427 mutex_unlock(&inode->i_mutex); 4428 trace_ext4_fallocate_exit(inode, offset, max_blocks, 4429 ret > 0 ? ret2 : ret); 4430 return ret > 0 ? ret2 : ret; 4431 } 4432 4433 /* 4434 * This function convert a range of blocks to written extents 4435 * The caller of this function will pass the start offset and the size. 4436 * all unwritten extents within this range will be converted to 4437 * written extents. 4438 * 4439 * This function is called from the direct IO end io call back 4440 * function, to convert the fallocated extents after IO is completed. 4441 * Returns 0 on success. 4442 */ 4443 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset, 4444 ssize_t len) 4445 { 4446 handle_t *handle; 4447 unsigned int max_blocks; 4448 int ret = 0; 4449 int ret2 = 0; 4450 struct ext4_map_blocks map; 4451 unsigned int credits, blkbits = inode->i_blkbits; 4452 4453 map.m_lblk = offset >> blkbits; 4454 /* 4455 * We can't just convert len to max_blocks because 4456 * If blocksize = 4096 offset = 3072 and len = 2048 4457 */ 4458 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) - 4459 map.m_lblk); 4460 /* 4461 * credits to insert 1 extent into extent tree 4462 */ 4463 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4464 while (ret >= 0 && ret < max_blocks) { 4465 map.m_lblk += ret; 4466 map.m_len = (max_blocks -= ret); 4467 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits); 4468 if (IS_ERR(handle)) { 4469 ret = PTR_ERR(handle); 4470 break; 4471 } 4472 ret = ext4_map_blocks(handle, inode, &map, 4473 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 4474 if (ret <= 0) 4475 ext4_warning(inode->i_sb, 4476 "inode #%lu: block %u: len %u: " 4477 "ext4_ext_map_blocks returned %d", 4478 inode->i_ino, map.m_lblk, 4479 map.m_len, ret); 4480 ext4_mark_inode_dirty(handle, inode); 4481 ret2 = ext4_journal_stop(handle); 4482 if (ret <= 0 || ret2 ) 4483 break; 4484 } 4485 return ret > 0 ? ret2 : ret; 4486 } 4487 4488 /* 4489 * If newes is not existing extent (newes->ec_pblk equals zero) find 4490 * delayed extent at start of newes and update newes accordingly and 4491 * return start of the next delayed extent. 4492 * 4493 * If newes is existing extent (newes->ec_pblk is not equal zero) 4494 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed 4495 * extent found. Leave newes unmodified. 4496 */ 4497 static int ext4_find_delayed_extent(struct inode *inode, 4498 struct extent_status *newes) 4499 { 4500 struct extent_status es; 4501 ext4_lblk_t block, next_del; 4502 4503 ext4_es_find_delayed_extent(inode, newes->es_lblk, &es); 4504 4505 if (newes->es_pblk == 0) { 4506 /* 4507 * No extent in extent-tree contains block @newes->es_pblk, 4508 * then the block may stay in 1)a hole or 2)delayed-extent. 4509 */ 4510 if (es.es_len == 0) 4511 /* A hole found. */ 4512 return 0; 4513 4514 if (es.es_lblk > newes->es_lblk) { 4515 /* A hole found. */ 4516 newes->es_len = min(es.es_lblk - newes->es_lblk, 4517 newes->es_len); 4518 return 0; 4519 } 4520 4521 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk; 4522 } 4523 4524 block = newes->es_lblk + newes->es_len; 4525 ext4_es_find_delayed_extent(inode, block, &es); 4526 if (es.es_len == 0) 4527 next_del = EXT_MAX_BLOCKS; 4528 else 4529 next_del = es.es_lblk; 4530 4531 return next_del; 4532 } 4533 /* fiemap flags we can handle specified here */ 4534 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 4535 4536 static int ext4_xattr_fiemap(struct inode *inode, 4537 struct fiemap_extent_info *fieinfo) 4538 { 4539 __u64 physical = 0; 4540 __u64 length; 4541 __u32 flags = FIEMAP_EXTENT_LAST; 4542 int blockbits = inode->i_sb->s_blocksize_bits; 4543 int error = 0; 4544 4545 /* in-inode? */ 4546 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4547 struct ext4_iloc iloc; 4548 int offset; /* offset of xattr in inode */ 4549 4550 error = ext4_get_inode_loc(inode, &iloc); 4551 if (error) 4552 return error; 4553 physical = iloc.bh->b_blocknr << blockbits; 4554 offset = EXT4_GOOD_OLD_INODE_SIZE + 4555 EXT4_I(inode)->i_extra_isize; 4556 physical += offset; 4557 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 4558 flags |= FIEMAP_EXTENT_DATA_INLINE; 4559 brelse(iloc.bh); 4560 } else { /* external block */ 4561 physical = EXT4_I(inode)->i_file_acl << blockbits; 4562 length = inode->i_sb->s_blocksize; 4563 } 4564 4565 if (physical) 4566 error = fiemap_fill_next_extent(fieinfo, 0, physical, 4567 length, flags); 4568 return (error < 0 ? error : 0); 4569 } 4570 4571 /* 4572 * ext4_ext_punch_hole 4573 * 4574 * Punches a hole of "length" bytes in a file starting 4575 * at byte "offset" 4576 * 4577 * @inode: The inode of the file to punch a hole in 4578 * @offset: The starting byte offset of the hole 4579 * @length: The length of the hole 4580 * 4581 * Returns the number of blocks removed or negative on err 4582 */ 4583 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length) 4584 { 4585 struct inode *inode = file->f_path.dentry->d_inode; 4586 struct super_block *sb = inode->i_sb; 4587 ext4_lblk_t first_block, stop_block; 4588 struct address_space *mapping = inode->i_mapping; 4589 handle_t *handle; 4590 loff_t first_page, last_page, page_len; 4591 loff_t first_page_offset, last_page_offset; 4592 int credits, err = 0; 4593 4594 /* 4595 * Write out all dirty pages to avoid race conditions 4596 * Then release them. 4597 */ 4598 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4599 err = filemap_write_and_wait_range(mapping, 4600 offset, offset + length - 1); 4601 4602 if (err) 4603 return err; 4604 } 4605 4606 mutex_lock(&inode->i_mutex); 4607 /* It's not possible punch hole on append only file */ 4608 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4609 err = -EPERM; 4610 goto out_mutex; 4611 } 4612 if (IS_SWAPFILE(inode)) { 4613 err = -ETXTBSY; 4614 goto out_mutex; 4615 } 4616 4617 /* No need to punch hole beyond i_size */ 4618 if (offset >= inode->i_size) 4619 goto out_mutex; 4620 4621 /* 4622 * If the hole extends beyond i_size, set the hole 4623 * to end after the page that contains i_size 4624 */ 4625 if (offset + length > inode->i_size) { 4626 length = inode->i_size + 4627 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 4628 offset; 4629 } 4630 4631 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 4632 last_page = (offset + length) >> PAGE_CACHE_SHIFT; 4633 4634 first_page_offset = first_page << PAGE_CACHE_SHIFT; 4635 last_page_offset = last_page << PAGE_CACHE_SHIFT; 4636 4637 /* Now release the pages */ 4638 if (last_page_offset > first_page_offset) { 4639 truncate_pagecache_range(inode, first_page_offset, 4640 last_page_offset - 1); 4641 } 4642 4643 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4644 ext4_inode_block_unlocked_dio(inode); 4645 err = ext4_flush_unwritten_io(inode); 4646 if (err) 4647 goto out_dio; 4648 inode_dio_wait(inode); 4649 4650 credits = ext4_writepage_trans_blocks(inode); 4651 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4652 if (IS_ERR(handle)) { 4653 err = PTR_ERR(handle); 4654 goto out_dio; 4655 } 4656 4657 4658 /* 4659 * Now we need to zero out the non-page-aligned data in the 4660 * pages at the start and tail of the hole, and unmap the buffer 4661 * heads for the block aligned regions of the page that were 4662 * completely zeroed. 4663 */ 4664 if (first_page > last_page) { 4665 /* 4666 * If the file space being truncated is contained within a page 4667 * just zero out and unmap the middle of that page 4668 */ 4669 err = ext4_discard_partial_page_buffers(handle, 4670 mapping, offset, length, 0); 4671 4672 if (err) 4673 goto out; 4674 } else { 4675 /* 4676 * zero out and unmap the partial page that contains 4677 * the start of the hole 4678 */ 4679 page_len = first_page_offset - offset; 4680 if (page_len > 0) { 4681 err = ext4_discard_partial_page_buffers(handle, mapping, 4682 offset, page_len, 0); 4683 if (err) 4684 goto out; 4685 } 4686 4687 /* 4688 * zero out and unmap the partial page that contains 4689 * the end of the hole 4690 */ 4691 page_len = offset + length - last_page_offset; 4692 if (page_len > 0) { 4693 err = ext4_discard_partial_page_buffers(handle, mapping, 4694 last_page_offset, page_len, 0); 4695 if (err) 4696 goto out; 4697 } 4698 } 4699 4700 /* 4701 * If i_size is contained in the last page, we need to 4702 * unmap and zero the partial page after i_size 4703 */ 4704 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page && 4705 inode->i_size % PAGE_CACHE_SIZE != 0) { 4706 4707 page_len = PAGE_CACHE_SIZE - 4708 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 4709 4710 if (page_len > 0) { 4711 err = ext4_discard_partial_page_buffers(handle, 4712 mapping, inode->i_size, page_len, 0); 4713 4714 if (err) 4715 goto out; 4716 } 4717 } 4718 4719 first_block = (offset + sb->s_blocksize - 1) >> 4720 EXT4_BLOCK_SIZE_BITS(sb); 4721 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4722 4723 /* If there are no blocks to remove, return now */ 4724 if (first_block >= stop_block) 4725 goto out; 4726 4727 down_write(&EXT4_I(inode)->i_data_sem); 4728 ext4_discard_preallocations(inode); 4729 4730 err = ext4_es_remove_extent(inode, first_block, 4731 stop_block - first_block); 4732 err = ext4_ext_remove_space(inode, first_block, stop_block - 1); 4733 4734 ext4_discard_preallocations(inode); 4735 4736 if (IS_SYNC(inode)) 4737 ext4_handle_sync(handle); 4738 4739 up_write(&EXT4_I(inode)->i_data_sem); 4740 4741 out: 4742 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4743 ext4_mark_inode_dirty(handle, inode); 4744 ext4_journal_stop(handle); 4745 out_dio: 4746 ext4_inode_resume_unlocked_dio(inode); 4747 out_mutex: 4748 mutex_unlock(&inode->i_mutex); 4749 return err; 4750 } 4751 4752 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4753 __u64 start, __u64 len) 4754 { 4755 ext4_lblk_t start_blk; 4756 int error = 0; 4757 4758 if (ext4_has_inline_data(inode)) { 4759 int has_inline = 1; 4760 4761 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline); 4762 4763 if (has_inline) 4764 return error; 4765 } 4766 4767 /* fallback to generic here if not in extents fmt */ 4768 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4769 return generic_block_fiemap(inode, fieinfo, start, len, 4770 ext4_get_block); 4771 4772 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 4773 return -EBADR; 4774 4775 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 4776 error = ext4_xattr_fiemap(inode, fieinfo); 4777 } else { 4778 ext4_lblk_t len_blks; 4779 __u64 last_blk; 4780 4781 start_blk = start >> inode->i_sb->s_blocksize_bits; 4782 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 4783 if (last_blk >= EXT_MAX_BLOCKS) 4784 last_blk = EXT_MAX_BLOCKS-1; 4785 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 4786 4787 /* 4788 * Walk the extent tree gathering extent information 4789 * and pushing extents back to the user. 4790 */ 4791 error = ext4_fill_fiemap_extents(inode, start_blk, 4792 len_blks, fieinfo); 4793 } 4794 4795 return error; 4796 } 4797