xref: /openbmc/linux/fs/ext4/extents.c (revision 357b66fdc8ad4cea6e6336956a70742f961f0a4d)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
45 #include "xattr.h"
46 
47 #include <trace/events/ext4.h>
48 
49 /*
50  * used by extent splitting.
51  */
52 #define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
53 					due to ENOSPC */
54 #define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
55 #define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
56 
57 #define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
58 #define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
59 
60 static __le32 ext4_extent_block_csum(struct inode *inode,
61 				     struct ext4_extent_header *eh)
62 {
63 	struct ext4_inode_info *ei = EXT4_I(inode);
64 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65 	__u32 csum;
66 
67 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68 			   EXT4_EXTENT_TAIL_OFFSET(eh));
69 	return cpu_to_le32(csum);
70 }
71 
72 static int ext4_extent_block_csum_verify(struct inode *inode,
73 					 struct ext4_extent_header *eh)
74 {
75 	struct ext4_extent_tail *et;
76 
77 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
78 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
79 		return 1;
80 
81 	et = find_ext4_extent_tail(eh);
82 	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
83 		return 0;
84 	return 1;
85 }
86 
87 static void ext4_extent_block_csum_set(struct inode *inode,
88 				       struct ext4_extent_header *eh)
89 {
90 	struct ext4_extent_tail *et;
91 
92 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
93 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
94 		return;
95 
96 	et = find_ext4_extent_tail(eh);
97 	et->et_checksum = ext4_extent_block_csum(inode, eh);
98 }
99 
100 static int ext4_split_extent(handle_t *handle,
101 				struct inode *inode,
102 				struct ext4_ext_path *path,
103 				struct ext4_map_blocks *map,
104 				int split_flag,
105 				int flags);
106 
107 static int ext4_split_extent_at(handle_t *handle,
108 			     struct inode *inode,
109 			     struct ext4_ext_path *path,
110 			     ext4_lblk_t split,
111 			     int split_flag,
112 			     int flags);
113 
114 static int ext4_find_delayed_extent(struct inode *inode,
115 				    struct extent_status *newes);
116 
117 static int ext4_ext_truncate_extend_restart(handle_t *handle,
118 					    struct inode *inode,
119 					    int needed)
120 {
121 	int err;
122 
123 	if (!ext4_handle_valid(handle))
124 		return 0;
125 	if (handle->h_buffer_credits > needed)
126 		return 0;
127 	err = ext4_journal_extend(handle, needed);
128 	if (err <= 0)
129 		return err;
130 	err = ext4_truncate_restart_trans(handle, inode, needed);
131 	if (err == 0)
132 		err = -EAGAIN;
133 
134 	return err;
135 }
136 
137 /*
138  * could return:
139  *  - EROFS
140  *  - ENOMEM
141  */
142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
143 				struct ext4_ext_path *path)
144 {
145 	if (path->p_bh) {
146 		/* path points to block */
147 		return ext4_journal_get_write_access(handle, path->p_bh);
148 	}
149 	/* path points to leaf/index in inode body */
150 	/* we use in-core data, no need to protect them */
151 	return 0;
152 }
153 
154 /*
155  * could return:
156  *  - EROFS
157  *  - ENOMEM
158  *  - EIO
159  */
160 #define ext4_ext_dirty(handle, inode, path) \
161 		__ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
162 static int __ext4_ext_dirty(const char *where, unsigned int line,
163 			    handle_t *handle, struct inode *inode,
164 			    struct ext4_ext_path *path)
165 {
166 	int err;
167 	if (path->p_bh) {
168 		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
169 		/* path points to block */
170 		err = __ext4_handle_dirty_metadata(where, line, handle,
171 						   inode, path->p_bh);
172 	} else {
173 		/* path points to leaf/index in inode body */
174 		err = ext4_mark_inode_dirty(handle, inode);
175 	}
176 	return err;
177 }
178 
179 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
180 			      struct ext4_ext_path *path,
181 			      ext4_lblk_t block)
182 {
183 	if (path) {
184 		int depth = path->p_depth;
185 		struct ext4_extent *ex;
186 
187 		/*
188 		 * Try to predict block placement assuming that we are
189 		 * filling in a file which will eventually be
190 		 * non-sparse --- i.e., in the case of libbfd writing
191 		 * an ELF object sections out-of-order but in a way
192 		 * the eventually results in a contiguous object or
193 		 * executable file, or some database extending a table
194 		 * space file.  However, this is actually somewhat
195 		 * non-ideal if we are writing a sparse file such as
196 		 * qemu or KVM writing a raw image file that is going
197 		 * to stay fairly sparse, since it will end up
198 		 * fragmenting the file system's free space.  Maybe we
199 		 * should have some hueristics or some way to allow
200 		 * userspace to pass a hint to file system,
201 		 * especially if the latter case turns out to be
202 		 * common.
203 		 */
204 		ex = path[depth].p_ext;
205 		if (ex) {
206 			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
207 			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
208 
209 			if (block > ext_block)
210 				return ext_pblk + (block - ext_block);
211 			else
212 				return ext_pblk - (ext_block - block);
213 		}
214 
215 		/* it looks like index is empty;
216 		 * try to find starting block from index itself */
217 		if (path[depth].p_bh)
218 			return path[depth].p_bh->b_blocknr;
219 	}
220 
221 	/* OK. use inode's group */
222 	return ext4_inode_to_goal_block(inode);
223 }
224 
225 /*
226  * Allocation for a meta data block
227  */
228 static ext4_fsblk_t
229 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
230 			struct ext4_ext_path *path,
231 			struct ext4_extent *ex, int *err, unsigned int flags)
232 {
233 	ext4_fsblk_t goal, newblock;
234 
235 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
236 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
237 					NULL, err);
238 	return newblock;
239 }
240 
241 static inline int ext4_ext_space_block(struct inode *inode, int check)
242 {
243 	int size;
244 
245 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
246 			/ sizeof(struct ext4_extent);
247 #ifdef AGGRESSIVE_TEST
248 	if (!check && size > 6)
249 		size = 6;
250 #endif
251 	return size;
252 }
253 
254 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
255 {
256 	int size;
257 
258 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
259 			/ sizeof(struct ext4_extent_idx);
260 #ifdef AGGRESSIVE_TEST
261 	if (!check && size > 5)
262 		size = 5;
263 #endif
264 	return size;
265 }
266 
267 static inline int ext4_ext_space_root(struct inode *inode, int check)
268 {
269 	int size;
270 
271 	size = sizeof(EXT4_I(inode)->i_data);
272 	size -= sizeof(struct ext4_extent_header);
273 	size /= sizeof(struct ext4_extent);
274 #ifdef AGGRESSIVE_TEST
275 	if (!check && size > 3)
276 		size = 3;
277 #endif
278 	return size;
279 }
280 
281 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
282 {
283 	int size;
284 
285 	size = sizeof(EXT4_I(inode)->i_data);
286 	size -= sizeof(struct ext4_extent_header);
287 	size /= sizeof(struct ext4_extent_idx);
288 #ifdef AGGRESSIVE_TEST
289 	if (!check && size > 4)
290 		size = 4;
291 #endif
292 	return size;
293 }
294 
295 /*
296  * Calculate the number of metadata blocks needed
297  * to allocate @blocks
298  * Worse case is one block per extent
299  */
300 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
301 {
302 	struct ext4_inode_info *ei = EXT4_I(inode);
303 	int idxs;
304 
305 	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
306 		/ sizeof(struct ext4_extent_idx));
307 
308 	/*
309 	 * If the new delayed allocation block is contiguous with the
310 	 * previous da block, it can share index blocks with the
311 	 * previous block, so we only need to allocate a new index
312 	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
313 	 * an additional index block, and at ldxs**3 blocks, yet
314 	 * another index blocks.
315 	 */
316 	if (ei->i_da_metadata_calc_len &&
317 	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
318 		int num = 0;
319 
320 		if ((ei->i_da_metadata_calc_len % idxs) == 0)
321 			num++;
322 		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
323 			num++;
324 		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
325 			num++;
326 			ei->i_da_metadata_calc_len = 0;
327 		} else
328 			ei->i_da_metadata_calc_len++;
329 		ei->i_da_metadata_calc_last_lblock++;
330 		return num;
331 	}
332 
333 	/*
334 	 * In the worst case we need a new set of index blocks at
335 	 * every level of the inode's extent tree.
336 	 */
337 	ei->i_da_metadata_calc_len = 1;
338 	ei->i_da_metadata_calc_last_lblock = lblock;
339 	return ext_depth(inode) + 1;
340 }
341 
342 static int
343 ext4_ext_max_entries(struct inode *inode, int depth)
344 {
345 	int max;
346 
347 	if (depth == ext_depth(inode)) {
348 		if (depth == 0)
349 			max = ext4_ext_space_root(inode, 1);
350 		else
351 			max = ext4_ext_space_root_idx(inode, 1);
352 	} else {
353 		if (depth == 0)
354 			max = ext4_ext_space_block(inode, 1);
355 		else
356 			max = ext4_ext_space_block_idx(inode, 1);
357 	}
358 
359 	return max;
360 }
361 
362 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
363 {
364 	ext4_fsblk_t block = ext4_ext_pblock(ext);
365 	int len = ext4_ext_get_actual_len(ext);
366 
367 	if (len == 0)
368 		return 0;
369 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
370 }
371 
372 static int ext4_valid_extent_idx(struct inode *inode,
373 				struct ext4_extent_idx *ext_idx)
374 {
375 	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
376 
377 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
378 }
379 
380 static int ext4_valid_extent_entries(struct inode *inode,
381 				struct ext4_extent_header *eh,
382 				int depth)
383 {
384 	unsigned short entries;
385 	if (eh->eh_entries == 0)
386 		return 1;
387 
388 	entries = le16_to_cpu(eh->eh_entries);
389 
390 	if (depth == 0) {
391 		/* leaf entries */
392 		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
393 		while (entries) {
394 			if (!ext4_valid_extent(inode, ext))
395 				return 0;
396 			ext++;
397 			entries--;
398 		}
399 	} else {
400 		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
401 		while (entries) {
402 			if (!ext4_valid_extent_idx(inode, ext_idx))
403 				return 0;
404 			ext_idx++;
405 			entries--;
406 		}
407 	}
408 	return 1;
409 }
410 
411 static int __ext4_ext_check(const char *function, unsigned int line,
412 			    struct inode *inode, struct ext4_extent_header *eh,
413 			    int depth)
414 {
415 	const char *error_msg;
416 	int max = 0;
417 
418 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
419 		error_msg = "invalid magic";
420 		goto corrupted;
421 	}
422 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
423 		error_msg = "unexpected eh_depth";
424 		goto corrupted;
425 	}
426 	if (unlikely(eh->eh_max == 0)) {
427 		error_msg = "invalid eh_max";
428 		goto corrupted;
429 	}
430 	max = ext4_ext_max_entries(inode, depth);
431 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
432 		error_msg = "too large eh_max";
433 		goto corrupted;
434 	}
435 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
436 		error_msg = "invalid eh_entries";
437 		goto corrupted;
438 	}
439 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
440 		error_msg = "invalid extent entries";
441 		goto corrupted;
442 	}
443 	/* Verify checksum on non-root extent tree nodes */
444 	if (ext_depth(inode) != depth &&
445 	    !ext4_extent_block_csum_verify(inode, eh)) {
446 		error_msg = "extent tree corrupted";
447 		goto corrupted;
448 	}
449 	return 0;
450 
451 corrupted:
452 	ext4_error_inode(inode, function, line, 0,
453 			"bad header/extent: %s - magic %x, "
454 			"entries %u, max %u(%u), depth %u(%u)",
455 			error_msg, le16_to_cpu(eh->eh_magic),
456 			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
457 			max, le16_to_cpu(eh->eh_depth), depth);
458 
459 	return -EIO;
460 }
461 
462 #define ext4_ext_check(inode, eh, depth)	\
463 	__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
464 
465 int ext4_ext_check_inode(struct inode *inode)
466 {
467 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
468 }
469 
470 static int __ext4_ext_check_block(const char *function, unsigned int line,
471 				  struct inode *inode,
472 				  struct ext4_extent_header *eh,
473 				  int depth,
474 				  struct buffer_head *bh)
475 {
476 	int ret;
477 
478 	if (buffer_verified(bh))
479 		return 0;
480 	ret = ext4_ext_check(inode, eh, depth);
481 	if (ret)
482 		return ret;
483 	set_buffer_verified(bh);
484 	return ret;
485 }
486 
487 #define ext4_ext_check_block(inode, eh, depth, bh)	\
488 	__ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
489 
490 #ifdef EXT_DEBUG
491 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
492 {
493 	int k, l = path->p_depth;
494 
495 	ext_debug("path:");
496 	for (k = 0; k <= l; k++, path++) {
497 		if (path->p_idx) {
498 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
499 			    ext4_idx_pblock(path->p_idx));
500 		} else if (path->p_ext) {
501 			ext_debug("  %d:[%d]%d:%llu ",
502 				  le32_to_cpu(path->p_ext->ee_block),
503 				  ext4_ext_is_uninitialized(path->p_ext),
504 				  ext4_ext_get_actual_len(path->p_ext),
505 				  ext4_ext_pblock(path->p_ext));
506 		} else
507 			ext_debug("  []");
508 	}
509 	ext_debug("\n");
510 }
511 
512 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
513 {
514 	int depth = ext_depth(inode);
515 	struct ext4_extent_header *eh;
516 	struct ext4_extent *ex;
517 	int i;
518 
519 	if (!path)
520 		return;
521 
522 	eh = path[depth].p_hdr;
523 	ex = EXT_FIRST_EXTENT(eh);
524 
525 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
526 
527 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
528 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
529 			  ext4_ext_is_uninitialized(ex),
530 			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
531 	}
532 	ext_debug("\n");
533 }
534 
535 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
536 			ext4_fsblk_t newblock, int level)
537 {
538 	int depth = ext_depth(inode);
539 	struct ext4_extent *ex;
540 
541 	if (depth != level) {
542 		struct ext4_extent_idx *idx;
543 		idx = path[level].p_idx;
544 		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
545 			ext_debug("%d: move %d:%llu in new index %llu\n", level,
546 					le32_to_cpu(idx->ei_block),
547 					ext4_idx_pblock(idx),
548 					newblock);
549 			idx++;
550 		}
551 
552 		return;
553 	}
554 
555 	ex = path[depth].p_ext;
556 	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
557 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
558 				le32_to_cpu(ex->ee_block),
559 				ext4_ext_pblock(ex),
560 				ext4_ext_is_uninitialized(ex),
561 				ext4_ext_get_actual_len(ex),
562 				newblock);
563 		ex++;
564 	}
565 }
566 
567 #else
568 #define ext4_ext_show_path(inode, path)
569 #define ext4_ext_show_leaf(inode, path)
570 #define ext4_ext_show_move(inode, path, newblock, level)
571 #endif
572 
573 void ext4_ext_drop_refs(struct ext4_ext_path *path)
574 {
575 	int depth = path->p_depth;
576 	int i;
577 
578 	for (i = 0; i <= depth; i++, path++)
579 		if (path->p_bh) {
580 			brelse(path->p_bh);
581 			path->p_bh = NULL;
582 		}
583 }
584 
585 /*
586  * ext4_ext_binsearch_idx:
587  * binary search for the closest index of the given block
588  * the header must be checked before calling this
589  */
590 static void
591 ext4_ext_binsearch_idx(struct inode *inode,
592 			struct ext4_ext_path *path, ext4_lblk_t block)
593 {
594 	struct ext4_extent_header *eh = path->p_hdr;
595 	struct ext4_extent_idx *r, *l, *m;
596 
597 
598 	ext_debug("binsearch for %u(idx):  ", block);
599 
600 	l = EXT_FIRST_INDEX(eh) + 1;
601 	r = EXT_LAST_INDEX(eh);
602 	while (l <= r) {
603 		m = l + (r - l) / 2;
604 		if (block < le32_to_cpu(m->ei_block))
605 			r = m - 1;
606 		else
607 			l = m + 1;
608 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
609 				m, le32_to_cpu(m->ei_block),
610 				r, le32_to_cpu(r->ei_block));
611 	}
612 
613 	path->p_idx = l - 1;
614 	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
615 		  ext4_idx_pblock(path->p_idx));
616 
617 #ifdef CHECK_BINSEARCH
618 	{
619 		struct ext4_extent_idx *chix, *ix;
620 		int k;
621 
622 		chix = ix = EXT_FIRST_INDEX(eh);
623 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
624 		  if (k != 0 &&
625 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
626 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
627 				       "first=0x%p\n", k,
628 				       ix, EXT_FIRST_INDEX(eh));
629 				printk(KERN_DEBUG "%u <= %u\n",
630 				       le32_to_cpu(ix->ei_block),
631 				       le32_to_cpu(ix[-1].ei_block));
632 			}
633 			BUG_ON(k && le32_to_cpu(ix->ei_block)
634 					   <= le32_to_cpu(ix[-1].ei_block));
635 			if (block < le32_to_cpu(ix->ei_block))
636 				break;
637 			chix = ix;
638 		}
639 		BUG_ON(chix != path->p_idx);
640 	}
641 #endif
642 
643 }
644 
645 /*
646  * ext4_ext_binsearch:
647  * binary search for closest extent of the given block
648  * the header must be checked before calling this
649  */
650 static void
651 ext4_ext_binsearch(struct inode *inode,
652 		struct ext4_ext_path *path, ext4_lblk_t block)
653 {
654 	struct ext4_extent_header *eh = path->p_hdr;
655 	struct ext4_extent *r, *l, *m;
656 
657 	if (eh->eh_entries == 0) {
658 		/*
659 		 * this leaf is empty:
660 		 * we get such a leaf in split/add case
661 		 */
662 		return;
663 	}
664 
665 	ext_debug("binsearch for %u:  ", block);
666 
667 	l = EXT_FIRST_EXTENT(eh) + 1;
668 	r = EXT_LAST_EXTENT(eh);
669 
670 	while (l <= r) {
671 		m = l + (r - l) / 2;
672 		if (block < le32_to_cpu(m->ee_block))
673 			r = m - 1;
674 		else
675 			l = m + 1;
676 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
677 				m, le32_to_cpu(m->ee_block),
678 				r, le32_to_cpu(r->ee_block));
679 	}
680 
681 	path->p_ext = l - 1;
682 	ext_debug("  -> %d:%llu:[%d]%d ",
683 			le32_to_cpu(path->p_ext->ee_block),
684 			ext4_ext_pblock(path->p_ext),
685 			ext4_ext_is_uninitialized(path->p_ext),
686 			ext4_ext_get_actual_len(path->p_ext));
687 
688 #ifdef CHECK_BINSEARCH
689 	{
690 		struct ext4_extent *chex, *ex;
691 		int k;
692 
693 		chex = ex = EXT_FIRST_EXTENT(eh);
694 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
695 			BUG_ON(k && le32_to_cpu(ex->ee_block)
696 					  <= le32_to_cpu(ex[-1].ee_block));
697 			if (block < le32_to_cpu(ex->ee_block))
698 				break;
699 			chex = ex;
700 		}
701 		BUG_ON(chex != path->p_ext);
702 	}
703 #endif
704 
705 }
706 
707 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
708 {
709 	struct ext4_extent_header *eh;
710 
711 	eh = ext_inode_hdr(inode);
712 	eh->eh_depth = 0;
713 	eh->eh_entries = 0;
714 	eh->eh_magic = EXT4_EXT_MAGIC;
715 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
716 	ext4_mark_inode_dirty(handle, inode);
717 	return 0;
718 }
719 
720 struct ext4_ext_path *
721 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
722 					struct ext4_ext_path *path)
723 {
724 	struct ext4_extent_header *eh;
725 	struct buffer_head *bh;
726 	short int depth, i, ppos = 0, alloc = 0;
727 	int ret;
728 
729 	eh = ext_inode_hdr(inode);
730 	depth = ext_depth(inode);
731 
732 	/* account possible depth increase */
733 	if (!path) {
734 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
735 				GFP_NOFS);
736 		if (!path)
737 			return ERR_PTR(-ENOMEM);
738 		alloc = 1;
739 	}
740 	path[0].p_hdr = eh;
741 	path[0].p_bh = NULL;
742 
743 	i = depth;
744 	/* walk through the tree */
745 	while (i) {
746 		ext_debug("depth %d: num %d, max %d\n",
747 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
748 
749 		ext4_ext_binsearch_idx(inode, path + ppos, block);
750 		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
751 		path[ppos].p_depth = i;
752 		path[ppos].p_ext = NULL;
753 
754 		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
755 		if (unlikely(!bh)) {
756 			ret = -ENOMEM;
757 			goto err;
758 		}
759 		if (!bh_uptodate_or_lock(bh)) {
760 			trace_ext4_ext_load_extent(inode, block,
761 						path[ppos].p_block);
762 			ret = bh_submit_read(bh);
763 			if (ret < 0) {
764 				put_bh(bh);
765 				goto err;
766 			}
767 		}
768 		eh = ext_block_hdr(bh);
769 		ppos++;
770 		if (unlikely(ppos > depth)) {
771 			put_bh(bh);
772 			EXT4_ERROR_INODE(inode,
773 					 "ppos %d > depth %d", ppos, depth);
774 			ret = -EIO;
775 			goto err;
776 		}
777 		path[ppos].p_bh = bh;
778 		path[ppos].p_hdr = eh;
779 		i--;
780 
781 		ret = ext4_ext_check_block(inode, eh, i, bh);
782 		if (ret < 0)
783 			goto err;
784 	}
785 
786 	path[ppos].p_depth = i;
787 	path[ppos].p_ext = NULL;
788 	path[ppos].p_idx = NULL;
789 
790 	/* find extent */
791 	ext4_ext_binsearch(inode, path + ppos, block);
792 	/* if not an empty leaf */
793 	if (path[ppos].p_ext)
794 		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
795 
796 	ext4_ext_show_path(inode, path);
797 
798 	return path;
799 
800 err:
801 	ext4_ext_drop_refs(path);
802 	if (alloc)
803 		kfree(path);
804 	return ERR_PTR(ret);
805 }
806 
807 /*
808  * ext4_ext_insert_index:
809  * insert new index [@logical;@ptr] into the block at @curp;
810  * check where to insert: before @curp or after @curp
811  */
812 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
813 				 struct ext4_ext_path *curp,
814 				 int logical, ext4_fsblk_t ptr)
815 {
816 	struct ext4_extent_idx *ix;
817 	int len, err;
818 
819 	err = ext4_ext_get_access(handle, inode, curp);
820 	if (err)
821 		return err;
822 
823 	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
824 		EXT4_ERROR_INODE(inode,
825 				 "logical %d == ei_block %d!",
826 				 logical, le32_to_cpu(curp->p_idx->ei_block));
827 		return -EIO;
828 	}
829 
830 	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
831 			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
832 		EXT4_ERROR_INODE(inode,
833 				 "eh_entries %d >= eh_max %d!",
834 				 le16_to_cpu(curp->p_hdr->eh_entries),
835 				 le16_to_cpu(curp->p_hdr->eh_max));
836 		return -EIO;
837 	}
838 
839 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
840 		/* insert after */
841 		ext_debug("insert new index %d after: %llu\n", logical, ptr);
842 		ix = curp->p_idx + 1;
843 	} else {
844 		/* insert before */
845 		ext_debug("insert new index %d before: %llu\n", logical, ptr);
846 		ix = curp->p_idx;
847 	}
848 
849 	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
850 	BUG_ON(len < 0);
851 	if (len > 0) {
852 		ext_debug("insert new index %d: "
853 				"move %d indices from 0x%p to 0x%p\n",
854 				logical, len, ix, ix + 1);
855 		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
856 	}
857 
858 	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
859 		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
860 		return -EIO;
861 	}
862 
863 	ix->ei_block = cpu_to_le32(logical);
864 	ext4_idx_store_pblock(ix, ptr);
865 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
866 
867 	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
868 		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
869 		return -EIO;
870 	}
871 
872 	err = ext4_ext_dirty(handle, inode, curp);
873 	ext4_std_error(inode->i_sb, err);
874 
875 	return err;
876 }
877 
878 /*
879  * ext4_ext_split:
880  * inserts new subtree into the path, using free index entry
881  * at depth @at:
882  * - allocates all needed blocks (new leaf and all intermediate index blocks)
883  * - makes decision where to split
884  * - moves remaining extents and index entries (right to the split point)
885  *   into the newly allocated blocks
886  * - initializes subtree
887  */
888 static int ext4_ext_split(handle_t *handle, struct inode *inode,
889 			  unsigned int flags,
890 			  struct ext4_ext_path *path,
891 			  struct ext4_extent *newext, int at)
892 {
893 	struct buffer_head *bh = NULL;
894 	int depth = ext_depth(inode);
895 	struct ext4_extent_header *neh;
896 	struct ext4_extent_idx *fidx;
897 	int i = at, k, m, a;
898 	ext4_fsblk_t newblock, oldblock;
899 	__le32 border;
900 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
901 	int err = 0;
902 
903 	/* make decision: where to split? */
904 	/* FIXME: now decision is simplest: at current extent */
905 
906 	/* if current leaf will be split, then we should use
907 	 * border from split point */
908 	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
909 		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
910 		return -EIO;
911 	}
912 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
913 		border = path[depth].p_ext[1].ee_block;
914 		ext_debug("leaf will be split."
915 				" next leaf starts at %d\n",
916 				  le32_to_cpu(border));
917 	} else {
918 		border = newext->ee_block;
919 		ext_debug("leaf will be added."
920 				" next leaf starts at %d\n",
921 				le32_to_cpu(border));
922 	}
923 
924 	/*
925 	 * If error occurs, then we break processing
926 	 * and mark filesystem read-only. index won't
927 	 * be inserted and tree will be in consistent
928 	 * state. Next mount will repair buffers too.
929 	 */
930 
931 	/*
932 	 * Get array to track all allocated blocks.
933 	 * We need this to handle errors and free blocks
934 	 * upon them.
935 	 */
936 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
937 	if (!ablocks)
938 		return -ENOMEM;
939 
940 	/* allocate all needed blocks */
941 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
942 	for (a = 0; a < depth - at; a++) {
943 		newblock = ext4_ext_new_meta_block(handle, inode, path,
944 						   newext, &err, flags);
945 		if (newblock == 0)
946 			goto cleanup;
947 		ablocks[a] = newblock;
948 	}
949 
950 	/* initialize new leaf */
951 	newblock = ablocks[--a];
952 	if (unlikely(newblock == 0)) {
953 		EXT4_ERROR_INODE(inode, "newblock == 0!");
954 		err = -EIO;
955 		goto cleanup;
956 	}
957 	bh = sb_getblk(inode->i_sb, newblock);
958 	if (unlikely(!bh)) {
959 		err = -ENOMEM;
960 		goto cleanup;
961 	}
962 	lock_buffer(bh);
963 
964 	err = ext4_journal_get_create_access(handle, bh);
965 	if (err)
966 		goto cleanup;
967 
968 	neh = ext_block_hdr(bh);
969 	neh->eh_entries = 0;
970 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
971 	neh->eh_magic = EXT4_EXT_MAGIC;
972 	neh->eh_depth = 0;
973 
974 	/* move remainder of path[depth] to the new leaf */
975 	if (unlikely(path[depth].p_hdr->eh_entries !=
976 		     path[depth].p_hdr->eh_max)) {
977 		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
978 				 path[depth].p_hdr->eh_entries,
979 				 path[depth].p_hdr->eh_max);
980 		err = -EIO;
981 		goto cleanup;
982 	}
983 	/* start copy from next extent */
984 	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
985 	ext4_ext_show_move(inode, path, newblock, depth);
986 	if (m) {
987 		struct ext4_extent *ex;
988 		ex = EXT_FIRST_EXTENT(neh);
989 		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
990 		le16_add_cpu(&neh->eh_entries, m);
991 	}
992 
993 	ext4_extent_block_csum_set(inode, neh);
994 	set_buffer_uptodate(bh);
995 	unlock_buffer(bh);
996 
997 	err = ext4_handle_dirty_metadata(handle, inode, bh);
998 	if (err)
999 		goto cleanup;
1000 	brelse(bh);
1001 	bh = NULL;
1002 
1003 	/* correct old leaf */
1004 	if (m) {
1005 		err = ext4_ext_get_access(handle, inode, path + depth);
1006 		if (err)
1007 			goto cleanup;
1008 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1009 		err = ext4_ext_dirty(handle, inode, path + depth);
1010 		if (err)
1011 			goto cleanup;
1012 
1013 	}
1014 
1015 	/* create intermediate indexes */
1016 	k = depth - at - 1;
1017 	if (unlikely(k < 0)) {
1018 		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1019 		err = -EIO;
1020 		goto cleanup;
1021 	}
1022 	if (k)
1023 		ext_debug("create %d intermediate indices\n", k);
1024 	/* insert new index into current index block */
1025 	/* current depth stored in i var */
1026 	i = depth - 1;
1027 	while (k--) {
1028 		oldblock = newblock;
1029 		newblock = ablocks[--a];
1030 		bh = sb_getblk(inode->i_sb, newblock);
1031 		if (unlikely(!bh)) {
1032 			err = -ENOMEM;
1033 			goto cleanup;
1034 		}
1035 		lock_buffer(bh);
1036 
1037 		err = ext4_journal_get_create_access(handle, bh);
1038 		if (err)
1039 			goto cleanup;
1040 
1041 		neh = ext_block_hdr(bh);
1042 		neh->eh_entries = cpu_to_le16(1);
1043 		neh->eh_magic = EXT4_EXT_MAGIC;
1044 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1045 		neh->eh_depth = cpu_to_le16(depth - i);
1046 		fidx = EXT_FIRST_INDEX(neh);
1047 		fidx->ei_block = border;
1048 		ext4_idx_store_pblock(fidx, oldblock);
1049 
1050 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1051 				i, newblock, le32_to_cpu(border), oldblock);
1052 
1053 		/* move remainder of path[i] to the new index block */
1054 		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1055 					EXT_LAST_INDEX(path[i].p_hdr))) {
1056 			EXT4_ERROR_INODE(inode,
1057 					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1058 					 le32_to_cpu(path[i].p_ext->ee_block));
1059 			err = -EIO;
1060 			goto cleanup;
1061 		}
1062 		/* start copy indexes */
1063 		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1064 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1065 				EXT_MAX_INDEX(path[i].p_hdr));
1066 		ext4_ext_show_move(inode, path, newblock, i);
1067 		if (m) {
1068 			memmove(++fidx, path[i].p_idx,
1069 				sizeof(struct ext4_extent_idx) * m);
1070 			le16_add_cpu(&neh->eh_entries, m);
1071 		}
1072 		ext4_extent_block_csum_set(inode, neh);
1073 		set_buffer_uptodate(bh);
1074 		unlock_buffer(bh);
1075 
1076 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1077 		if (err)
1078 			goto cleanup;
1079 		brelse(bh);
1080 		bh = NULL;
1081 
1082 		/* correct old index */
1083 		if (m) {
1084 			err = ext4_ext_get_access(handle, inode, path + i);
1085 			if (err)
1086 				goto cleanup;
1087 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1088 			err = ext4_ext_dirty(handle, inode, path + i);
1089 			if (err)
1090 				goto cleanup;
1091 		}
1092 
1093 		i--;
1094 	}
1095 
1096 	/* insert new index */
1097 	err = ext4_ext_insert_index(handle, inode, path + at,
1098 				    le32_to_cpu(border), newblock);
1099 
1100 cleanup:
1101 	if (bh) {
1102 		if (buffer_locked(bh))
1103 			unlock_buffer(bh);
1104 		brelse(bh);
1105 	}
1106 
1107 	if (err) {
1108 		/* free all allocated blocks in error case */
1109 		for (i = 0; i < depth; i++) {
1110 			if (!ablocks[i])
1111 				continue;
1112 			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1113 					 EXT4_FREE_BLOCKS_METADATA);
1114 		}
1115 	}
1116 	kfree(ablocks);
1117 
1118 	return err;
1119 }
1120 
1121 /*
1122  * ext4_ext_grow_indepth:
1123  * implements tree growing procedure:
1124  * - allocates new block
1125  * - moves top-level data (index block or leaf) into the new block
1126  * - initializes new top-level, creating index that points to the
1127  *   just created block
1128  */
1129 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1130 				 unsigned int flags,
1131 				 struct ext4_extent *newext)
1132 {
1133 	struct ext4_extent_header *neh;
1134 	struct buffer_head *bh;
1135 	ext4_fsblk_t newblock;
1136 	int err = 0;
1137 
1138 	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1139 		newext, &err, flags);
1140 	if (newblock == 0)
1141 		return err;
1142 
1143 	bh = sb_getblk(inode->i_sb, newblock);
1144 	if (unlikely(!bh))
1145 		return -ENOMEM;
1146 	lock_buffer(bh);
1147 
1148 	err = ext4_journal_get_create_access(handle, bh);
1149 	if (err) {
1150 		unlock_buffer(bh);
1151 		goto out;
1152 	}
1153 
1154 	/* move top-level index/leaf into new block */
1155 	memmove(bh->b_data, EXT4_I(inode)->i_data,
1156 		sizeof(EXT4_I(inode)->i_data));
1157 
1158 	/* set size of new block */
1159 	neh = ext_block_hdr(bh);
1160 	/* old root could have indexes or leaves
1161 	 * so calculate e_max right way */
1162 	if (ext_depth(inode))
1163 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1164 	else
1165 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1166 	neh->eh_magic = EXT4_EXT_MAGIC;
1167 	ext4_extent_block_csum_set(inode, neh);
1168 	set_buffer_uptodate(bh);
1169 	unlock_buffer(bh);
1170 
1171 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1172 	if (err)
1173 		goto out;
1174 
1175 	/* Update top-level index: num,max,pointer */
1176 	neh = ext_inode_hdr(inode);
1177 	neh->eh_entries = cpu_to_le16(1);
1178 	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1179 	if (neh->eh_depth == 0) {
1180 		/* Root extent block becomes index block */
1181 		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1182 		EXT_FIRST_INDEX(neh)->ei_block =
1183 			EXT_FIRST_EXTENT(neh)->ee_block;
1184 	}
1185 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1186 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1187 		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1188 		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1189 
1190 	le16_add_cpu(&neh->eh_depth, 1);
1191 	ext4_mark_inode_dirty(handle, inode);
1192 out:
1193 	brelse(bh);
1194 
1195 	return err;
1196 }
1197 
1198 /*
1199  * ext4_ext_create_new_leaf:
1200  * finds empty index and adds new leaf.
1201  * if no free index is found, then it requests in-depth growing.
1202  */
1203 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1204 				    unsigned int flags,
1205 				    struct ext4_ext_path *path,
1206 				    struct ext4_extent *newext)
1207 {
1208 	struct ext4_ext_path *curp;
1209 	int depth, i, err = 0;
1210 
1211 repeat:
1212 	i = depth = ext_depth(inode);
1213 
1214 	/* walk up to the tree and look for free index entry */
1215 	curp = path + depth;
1216 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1217 		i--;
1218 		curp--;
1219 	}
1220 
1221 	/* we use already allocated block for index block,
1222 	 * so subsequent data blocks should be contiguous */
1223 	if (EXT_HAS_FREE_INDEX(curp)) {
1224 		/* if we found index with free entry, then use that
1225 		 * entry: create all needed subtree and add new leaf */
1226 		err = ext4_ext_split(handle, inode, flags, path, newext, i);
1227 		if (err)
1228 			goto out;
1229 
1230 		/* refill path */
1231 		ext4_ext_drop_refs(path);
1232 		path = ext4_ext_find_extent(inode,
1233 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1234 				    path);
1235 		if (IS_ERR(path))
1236 			err = PTR_ERR(path);
1237 	} else {
1238 		/* tree is full, time to grow in depth */
1239 		err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1240 		if (err)
1241 			goto out;
1242 
1243 		/* refill path */
1244 		ext4_ext_drop_refs(path);
1245 		path = ext4_ext_find_extent(inode,
1246 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1247 				    path);
1248 		if (IS_ERR(path)) {
1249 			err = PTR_ERR(path);
1250 			goto out;
1251 		}
1252 
1253 		/*
1254 		 * only first (depth 0 -> 1) produces free space;
1255 		 * in all other cases we have to split the grown tree
1256 		 */
1257 		depth = ext_depth(inode);
1258 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1259 			/* now we need to split */
1260 			goto repeat;
1261 		}
1262 	}
1263 
1264 out:
1265 	return err;
1266 }
1267 
1268 /*
1269  * search the closest allocated block to the left for *logical
1270  * and returns it at @logical + it's physical address at @phys
1271  * if *logical is the smallest allocated block, the function
1272  * returns 0 at @phys
1273  * return value contains 0 (success) or error code
1274  */
1275 static int ext4_ext_search_left(struct inode *inode,
1276 				struct ext4_ext_path *path,
1277 				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1278 {
1279 	struct ext4_extent_idx *ix;
1280 	struct ext4_extent *ex;
1281 	int depth, ee_len;
1282 
1283 	if (unlikely(path == NULL)) {
1284 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1285 		return -EIO;
1286 	}
1287 	depth = path->p_depth;
1288 	*phys = 0;
1289 
1290 	if (depth == 0 && path->p_ext == NULL)
1291 		return 0;
1292 
1293 	/* usually extent in the path covers blocks smaller
1294 	 * then *logical, but it can be that extent is the
1295 	 * first one in the file */
1296 
1297 	ex = path[depth].p_ext;
1298 	ee_len = ext4_ext_get_actual_len(ex);
1299 	if (*logical < le32_to_cpu(ex->ee_block)) {
1300 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1301 			EXT4_ERROR_INODE(inode,
1302 					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1303 					 *logical, le32_to_cpu(ex->ee_block));
1304 			return -EIO;
1305 		}
1306 		while (--depth >= 0) {
1307 			ix = path[depth].p_idx;
1308 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1309 				EXT4_ERROR_INODE(inode,
1310 				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1311 				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1312 				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1313 		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1314 				  depth);
1315 				return -EIO;
1316 			}
1317 		}
1318 		return 0;
1319 	}
1320 
1321 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1322 		EXT4_ERROR_INODE(inode,
1323 				 "logical %d < ee_block %d + ee_len %d!",
1324 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1325 		return -EIO;
1326 	}
1327 
1328 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1329 	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1330 	return 0;
1331 }
1332 
1333 /*
1334  * search the closest allocated block to the right for *logical
1335  * and returns it at @logical + it's physical address at @phys
1336  * if *logical is the largest allocated block, the function
1337  * returns 0 at @phys
1338  * return value contains 0 (success) or error code
1339  */
1340 static int ext4_ext_search_right(struct inode *inode,
1341 				 struct ext4_ext_path *path,
1342 				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1343 				 struct ext4_extent **ret_ex)
1344 {
1345 	struct buffer_head *bh = NULL;
1346 	struct ext4_extent_header *eh;
1347 	struct ext4_extent_idx *ix;
1348 	struct ext4_extent *ex;
1349 	ext4_fsblk_t block;
1350 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1351 	int ee_len;
1352 
1353 	if (unlikely(path == NULL)) {
1354 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1355 		return -EIO;
1356 	}
1357 	depth = path->p_depth;
1358 	*phys = 0;
1359 
1360 	if (depth == 0 && path->p_ext == NULL)
1361 		return 0;
1362 
1363 	/* usually extent in the path covers blocks smaller
1364 	 * then *logical, but it can be that extent is the
1365 	 * first one in the file */
1366 
1367 	ex = path[depth].p_ext;
1368 	ee_len = ext4_ext_get_actual_len(ex);
1369 	if (*logical < le32_to_cpu(ex->ee_block)) {
1370 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1371 			EXT4_ERROR_INODE(inode,
1372 					 "first_extent(path[%d].p_hdr) != ex",
1373 					 depth);
1374 			return -EIO;
1375 		}
1376 		while (--depth >= 0) {
1377 			ix = path[depth].p_idx;
1378 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1379 				EXT4_ERROR_INODE(inode,
1380 						 "ix != EXT_FIRST_INDEX *logical %d!",
1381 						 *logical);
1382 				return -EIO;
1383 			}
1384 		}
1385 		goto found_extent;
1386 	}
1387 
1388 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1389 		EXT4_ERROR_INODE(inode,
1390 				 "logical %d < ee_block %d + ee_len %d!",
1391 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1392 		return -EIO;
1393 	}
1394 
1395 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1396 		/* next allocated block in this leaf */
1397 		ex++;
1398 		goto found_extent;
1399 	}
1400 
1401 	/* go up and search for index to the right */
1402 	while (--depth >= 0) {
1403 		ix = path[depth].p_idx;
1404 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1405 			goto got_index;
1406 	}
1407 
1408 	/* we've gone up to the root and found no index to the right */
1409 	return 0;
1410 
1411 got_index:
1412 	/* we've found index to the right, let's
1413 	 * follow it and find the closest allocated
1414 	 * block to the right */
1415 	ix++;
1416 	block = ext4_idx_pblock(ix);
1417 	while (++depth < path->p_depth) {
1418 		bh = sb_bread(inode->i_sb, block);
1419 		if (bh == NULL)
1420 			return -EIO;
1421 		eh = ext_block_hdr(bh);
1422 		/* subtract from p_depth to get proper eh_depth */
1423 		if (ext4_ext_check_block(inode, eh,
1424 					 path->p_depth - depth, bh)) {
1425 			put_bh(bh);
1426 			return -EIO;
1427 		}
1428 		ix = EXT_FIRST_INDEX(eh);
1429 		block = ext4_idx_pblock(ix);
1430 		put_bh(bh);
1431 	}
1432 
1433 	bh = sb_bread(inode->i_sb, block);
1434 	if (bh == NULL)
1435 		return -EIO;
1436 	eh = ext_block_hdr(bh);
1437 	if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1438 		put_bh(bh);
1439 		return -EIO;
1440 	}
1441 	ex = EXT_FIRST_EXTENT(eh);
1442 found_extent:
1443 	*logical = le32_to_cpu(ex->ee_block);
1444 	*phys = ext4_ext_pblock(ex);
1445 	*ret_ex = ex;
1446 	if (bh)
1447 		put_bh(bh);
1448 	return 0;
1449 }
1450 
1451 /*
1452  * ext4_ext_next_allocated_block:
1453  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1454  * NOTE: it considers block number from index entry as
1455  * allocated block. Thus, index entries have to be consistent
1456  * with leaves.
1457  */
1458 static ext4_lblk_t
1459 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1460 {
1461 	int depth;
1462 
1463 	BUG_ON(path == NULL);
1464 	depth = path->p_depth;
1465 
1466 	if (depth == 0 && path->p_ext == NULL)
1467 		return EXT_MAX_BLOCKS;
1468 
1469 	while (depth >= 0) {
1470 		if (depth == path->p_depth) {
1471 			/* leaf */
1472 			if (path[depth].p_ext &&
1473 				path[depth].p_ext !=
1474 					EXT_LAST_EXTENT(path[depth].p_hdr))
1475 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1476 		} else {
1477 			/* index */
1478 			if (path[depth].p_idx !=
1479 					EXT_LAST_INDEX(path[depth].p_hdr))
1480 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1481 		}
1482 		depth--;
1483 	}
1484 
1485 	return EXT_MAX_BLOCKS;
1486 }
1487 
1488 /*
1489  * ext4_ext_next_leaf_block:
1490  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1491  */
1492 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1493 {
1494 	int depth;
1495 
1496 	BUG_ON(path == NULL);
1497 	depth = path->p_depth;
1498 
1499 	/* zero-tree has no leaf blocks at all */
1500 	if (depth == 0)
1501 		return EXT_MAX_BLOCKS;
1502 
1503 	/* go to index block */
1504 	depth--;
1505 
1506 	while (depth >= 0) {
1507 		if (path[depth].p_idx !=
1508 				EXT_LAST_INDEX(path[depth].p_hdr))
1509 			return (ext4_lblk_t)
1510 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1511 		depth--;
1512 	}
1513 
1514 	return EXT_MAX_BLOCKS;
1515 }
1516 
1517 /*
1518  * ext4_ext_correct_indexes:
1519  * if leaf gets modified and modified extent is first in the leaf,
1520  * then we have to correct all indexes above.
1521  * TODO: do we need to correct tree in all cases?
1522  */
1523 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1524 				struct ext4_ext_path *path)
1525 {
1526 	struct ext4_extent_header *eh;
1527 	int depth = ext_depth(inode);
1528 	struct ext4_extent *ex;
1529 	__le32 border;
1530 	int k, err = 0;
1531 
1532 	eh = path[depth].p_hdr;
1533 	ex = path[depth].p_ext;
1534 
1535 	if (unlikely(ex == NULL || eh == NULL)) {
1536 		EXT4_ERROR_INODE(inode,
1537 				 "ex %p == NULL or eh %p == NULL", ex, eh);
1538 		return -EIO;
1539 	}
1540 
1541 	if (depth == 0) {
1542 		/* there is no tree at all */
1543 		return 0;
1544 	}
1545 
1546 	if (ex != EXT_FIRST_EXTENT(eh)) {
1547 		/* we correct tree if first leaf got modified only */
1548 		return 0;
1549 	}
1550 
1551 	/*
1552 	 * TODO: we need correction if border is smaller than current one
1553 	 */
1554 	k = depth - 1;
1555 	border = path[depth].p_ext->ee_block;
1556 	err = ext4_ext_get_access(handle, inode, path + k);
1557 	if (err)
1558 		return err;
1559 	path[k].p_idx->ei_block = border;
1560 	err = ext4_ext_dirty(handle, inode, path + k);
1561 	if (err)
1562 		return err;
1563 
1564 	while (k--) {
1565 		/* change all left-side indexes */
1566 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1567 			break;
1568 		err = ext4_ext_get_access(handle, inode, path + k);
1569 		if (err)
1570 			break;
1571 		path[k].p_idx->ei_block = border;
1572 		err = ext4_ext_dirty(handle, inode, path + k);
1573 		if (err)
1574 			break;
1575 	}
1576 
1577 	return err;
1578 }
1579 
1580 int
1581 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1582 				struct ext4_extent *ex2)
1583 {
1584 	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1585 
1586 	/*
1587 	 * Make sure that either both extents are uninitialized, or
1588 	 * both are _not_.
1589 	 */
1590 	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1591 		return 0;
1592 
1593 	if (ext4_ext_is_uninitialized(ex1))
1594 		max_len = EXT_UNINIT_MAX_LEN;
1595 	else
1596 		max_len = EXT_INIT_MAX_LEN;
1597 
1598 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1599 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1600 
1601 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1602 			le32_to_cpu(ex2->ee_block))
1603 		return 0;
1604 
1605 	/*
1606 	 * To allow future support for preallocated extents to be added
1607 	 * as an RO_COMPAT feature, refuse to merge to extents if
1608 	 * this can result in the top bit of ee_len being set.
1609 	 */
1610 	if (ext1_ee_len + ext2_ee_len > max_len)
1611 		return 0;
1612 #ifdef AGGRESSIVE_TEST
1613 	if (ext1_ee_len >= 4)
1614 		return 0;
1615 #endif
1616 
1617 	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1618 		return 1;
1619 	return 0;
1620 }
1621 
1622 /*
1623  * This function tries to merge the "ex" extent to the next extent in the tree.
1624  * It always tries to merge towards right. If you want to merge towards
1625  * left, pass "ex - 1" as argument instead of "ex".
1626  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1627  * 1 if they got merged.
1628  */
1629 static int ext4_ext_try_to_merge_right(struct inode *inode,
1630 				 struct ext4_ext_path *path,
1631 				 struct ext4_extent *ex)
1632 {
1633 	struct ext4_extent_header *eh;
1634 	unsigned int depth, len;
1635 	int merge_done = 0;
1636 	int uninitialized = 0;
1637 
1638 	depth = ext_depth(inode);
1639 	BUG_ON(path[depth].p_hdr == NULL);
1640 	eh = path[depth].p_hdr;
1641 
1642 	while (ex < EXT_LAST_EXTENT(eh)) {
1643 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1644 			break;
1645 		/* merge with next extent! */
1646 		if (ext4_ext_is_uninitialized(ex))
1647 			uninitialized = 1;
1648 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1649 				+ ext4_ext_get_actual_len(ex + 1));
1650 		if (uninitialized)
1651 			ext4_ext_mark_uninitialized(ex);
1652 
1653 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1654 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1655 				* sizeof(struct ext4_extent);
1656 			memmove(ex + 1, ex + 2, len);
1657 		}
1658 		le16_add_cpu(&eh->eh_entries, -1);
1659 		merge_done = 1;
1660 		WARN_ON(eh->eh_entries == 0);
1661 		if (!eh->eh_entries)
1662 			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1663 	}
1664 
1665 	return merge_done;
1666 }
1667 
1668 /*
1669  * This function does a very simple check to see if we can collapse
1670  * an extent tree with a single extent tree leaf block into the inode.
1671  */
1672 static void ext4_ext_try_to_merge_up(handle_t *handle,
1673 				     struct inode *inode,
1674 				     struct ext4_ext_path *path)
1675 {
1676 	size_t s;
1677 	unsigned max_root = ext4_ext_space_root(inode, 0);
1678 	ext4_fsblk_t blk;
1679 
1680 	if ((path[0].p_depth != 1) ||
1681 	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1682 	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1683 		return;
1684 
1685 	/*
1686 	 * We need to modify the block allocation bitmap and the block
1687 	 * group descriptor to release the extent tree block.  If we
1688 	 * can't get the journal credits, give up.
1689 	 */
1690 	if (ext4_journal_extend(handle, 2))
1691 		return;
1692 
1693 	/*
1694 	 * Copy the extent data up to the inode
1695 	 */
1696 	blk = ext4_idx_pblock(path[0].p_idx);
1697 	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1698 		sizeof(struct ext4_extent_idx);
1699 	s += sizeof(struct ext4_extent_header);
1700 
1701 	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1702 	path[0].p_depth = 0;
1703 	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1704 		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1705 	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1706 
1707 	brelse(path[1].p_bh);
1708 	ext4_free_blocks(handle, inode, NULL, blk, 1,
1709 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1710 }
1711 
1712 /*
1713  * This function tries to merge the @ex extent to neighbours in the tree.
1714  * return 1 if merge left else 0.
1715  */
1716 static void ext4_ext_try_to_merge(handle_t *handle,
1717 				  struct inode *inode,
1718 				  struct ext4_ext_path *path,
1719 				  struct ext4_extent *ex) {
1720 	struct ext4_extent_header *eh;
1721 	unsigned int depth;
1722 	int merge_done = 0;
1723 
1724 	depth = ext_depth(inode);
1725 	BUG_ON(path[depth].p_hdr == NULL);
1726 	eh = path[depth].p_hdr;
1727 
1728 	if (ex > EXT_FIRST_EXTENT(eh))
1729 		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1730 
1731 	if (!merge_done)
1732 		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1733 
1734 	ext4_ext_try_to_merge_up(handle, inode, path);
1735 }
1736 
1737 /*
1738  * check if a portion of the "newext" extent overlaps with an
1739  * existing extent.
1740  *
1741  * If there is an overlap discovered, it updates the length of the newext
1742  * such that there will be no overlap, and then returns 1.
1743  * If there is no overlap found, it returns 0.
1744  */
1745 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1746 					   struct inode *inode,
1747 					   struct ext4_extent *newext,
1748 					   struct ext4_ext_path *path)
1749 {
1750 	ext4_lblk_t b1, b2;
1751 	unsigned int depth, len1;
1752 	unsigned int ret = 0;
1753 
1754 	b1 = le32_to_cpu(newext->ee_block);
1755 	len1 = ext4_ext_get_actual_len(newext);
1756 	depth = ext_depth(inode);
1757 	if (!path[depth].p_ext)
1758 		goto out;
1759 	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1760 	b2 &= ~(sbi->s_cluster_ratio - 1);
1761 
1762 	/*
1763 	 * get the next allocated block if the extent in the path
1764 	 * is before the requested block(s)
1765 	 */
1766 	if (b2 < b1) {
1767 		b2 = ext4_ext_next_allocated_block(path);
1768 		if (b2 == EXT_MAX_BLOCKS)
1769 			goto out;
1770 		b2 &= ~(sbi->s_cluster_ratio - 1);
1771 	}
1772 
1773 	/* check for wrap through zero on extent logical start block*/
1774 	if (b1 + len1 < b1) {
1775 		len1 = EXT_MAX_BLOCKS - b1;
1776 		newext->ee_len = cpu_to_le16(len1);
1777 		ret = 1;
1778 	}
1779 
1780 	/* check for overlap */
1781 	if (b1 + len1 > b2) {
1782 		newext->ee_len = cpu_to_le16(b2 - b1);
1783 		ret = 1;
1784 	}
1785 out:
1786 	return ret;
1787 }
1788 
1789 /*
1790  * ext4_ext_insert_extent:
1791  * tries to merge requsted extent into the existing extent or
1792  * inserts requested extent as new one into the tree,
1793  * creating new leaf in the no-space case.
1794  */
1795 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1796 				struct ext4_ext_path *path,
1797 				struct ext4_extent *newext, int flag)
1798 {
1799 	struct ext4_extent_header *eh;
1800 	struct ext4_extent *ex, *fex;
1801 	struct ext4_extent *nearex; /* nearest extent */
1802 	struct ext4_ext_path *npath = NULL;
1803 	int depth, len, err;
1804 	ext4_lblk_t next;
1805 	unsigned uninitialized = 0;
1806 	int flags = 0;
1807 
1808 	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1809 		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1810 		return -EIO;
1811 	}
1812 	depth = ext_depth(inode);
1813 	ex = path[depth].p_ext;
1814 	if (unlikely(path[depth].p_hdr == NULL)) {
1815 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1816 		return -EIO;
1817 	}
1818 
1819 	/* try to insert block into found extent and return */
1820 	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1821 		&& ext4_can_extents_be_merged(inode, ex, newext)) {
1822 		ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1823 			  ext4_ext_is_uninitialized(newext),
1824 			  ext4_ext_get_actual_len(newext),
1825 			  le32_to_cpu(ex->ee_block),
1826 			  ext4_ext_is_uninitialized(ex),
1827 			  ext4_ext_get_actual_len(ex),
1828 			  ext4_ext_pblock(ex));
1829 		err = ext4_ext_get_access(handle, inode, path + depth);
1830 		if (err)
1831 			return err;
1832 
1833 		/*
1834 		 * ext4_can_extents_be_merged should have checked that either
1835 		 * both extents are uninitialized, or both aren't. Thus we
1836 		 * need to check only one of them here.
1837 		 */
1838 		if (ext4_ext_is_uninitialized(ex))
1839 			uninitialized = 1;
1840 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1841 					+ ext4_ext_get_actual_len(newext));
1842 		if (uninitialized)
1843 			ext4_ext_mark_uninitialized(ex);
1844 		eh = path[depth].p_hdr;
1845 		nearex = ex;
1846 		goto merge;
1847 	}
1848 
1849 	depth = ext_depth(inode);
1850 	eh = path[depth].p_hdr;
1851 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1852 		goto has_space;
1853 
1854 	/* probably next leaf has space for us? */
1855 	fex = EXT_LAST_EXTENT(eh);
1856 	next = EXT_MAX_BLOCKS;
1857 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1858 		next = ext4_ext_next_leaf_block(path);
1859 	if (next != EXT_MAX_BLOCKS) {
1860 		ext_debug("next leaf block - %u\n", next);
1861 		BUG_ON(npath != NULL);
1862 		npath = ext4_ext_find_extent(inode, next, NULL);
1863 		if (IS_ERR(npath))
1864 			return PTR_ERR(npath);
1865 		BUG_ON(npath->p_depth != path->p_depth);
1866 		eh = npath[depth].p_hdr;
1867 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1868 			ext_debug("next leaf isn't full(%d)\n",
1869 				  le16_to_cpu(eh->eh_entries));
1870 			path = npath;
1871 			goto has_space;
1872 		}
1873 		ext_debug("next leaf has no free space(%d,%d)\n",
1874 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1875 	}
1876 
1877 	/*
1878 	 * There is no free space in the found leaf.
1879 	 * We're gonna add a new leaf in the tree.
1880 	 */
1881 	if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1882 		flags = EXT4_MB_USE_ROOT_BLOCKS;
1883 	err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1884 	if (err)
1885 		goto cleanup;
1886 	depth = ext_depth(inode);
1887 	eh = path[depth].p_hdr;
1888 
1889 has_space:
1890 	nearex = path[depth].p_ext;
1891 
1892 	err = ext4_ext_get_access(handle, inode, path + depth);
1893 	if (err)
1894 		goto cleanup;
1895 
1896 	if (!nearex) {
1897 		/* there is no extent in this leaf, create first one */
1898 		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1899 				le32_to_cpu(newext->ee_block),
1900 				ext4_ext_pblock(newext),
1901 				ext4_ext_is_uninitialized(newext),
1902 				ext4_ext_get_actual_len(newext));
1903 		nearex = EXT_FIRST_EXTENT(eh);
1904 	} else {
1905 		if (le32_to_cpu(newext->ee_block)
1906 			   > le32_to_cpu(nearex->ee_block)) {
1907 			/* Insert after */
1908 			ext_debug("insert %u:%llu:[%d]%d before: "
1909 					"nearest %p\n",
1910 					le32_to_cpu(newext->ee_block),
1911 					ext4_ext_pblock(newext),
1912 					ext4_ext_is_uninitialized(newext),
1913 					ext4_ext_get_actual_len(newext),
1914 					nearex);
1915 			nearex++;
1916 		} else {
1917 			/* Insert before */
1918 			BUG_ON(newext->ee_block == nearex->ee_block);
1919 			ext_debug("insert %u:%llu:[%d]%d after: "
1920 					"nearest %p\n",
1921 					le32_to_cpu(newext->ee_block),
1922 					ext4_ext_pblock(newext),
1923 					ext4_ext_is_uninitialized(newext),
1924 					ext4_ext_get_actual_len(newext),
1925 					nearex);
1926 		}
1927 		len = EXT_LAST_EXTENT(eh) - nearex + 1;
1928 		if (len > 0) {
1929 			ext_debug("insert %u:%llu:[%d]%d: "
1930 					"move %d extents from 0x%p to 0x%p\n",
1931 					le32_to_cpu(newext->ee_block),
1932 					ext4_ext_pblock(newext),
1933 					ext4_ext_is_uninitialized(newext),
1934 					ext4_ext_get_actual_len(newext),
1935 					len, nearex, nearex + 1);
1936 			memmove(nearex + 1, nearex,
1937 				len * sizeof(struct ext4_extent));
1938 		}
1939 	}
1940 
1941 	le16_add_cpu(&eh->eh_entries, 1);
1942 	path[depth].p_ext = nearex;
1943 	nearex->ee_block = newext->ee_block;
1944 	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1945 	nearex->ee_len = newext->ee_len;
1946 
1947 merge:
1948 	/* try to merge extents */
1949 	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1950 		ext4_ext_try_to_merge(handle, inode, path, nearex);
1951 
1952 
1953 	/* time to correct all indexes above */
1954 	err = ext4_ext_correct_indexes(handle, inode, path);
1955 	if (err)
1956 		goto cleanup;
1957 
1958 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
1959 
1960 cleanup:
1961 	if (npath) {
1962 		ext4_ext_drop_refs(npath);
1963 		kfree(npath);
1964 	}
1965 	return err;
1966 }
1967 
1968 static int ext4_fill_fiemap_extents(struct inode *inode,
1969 				    ext4_lblk_t block, ext4_lblk_t num,
1970 				    struct fiemap_extent_info *fieinfo)
1971 {
1972 	struct ext4_ext_path *path = NULL;
1973 	struct ext4_extent *ex;
1974 	struct extent_status es;
1975 	ext4_lblk_t next, next_del, start = 0, end = 0;
1976 	ext4_lblk_t last = block + num;
1977 	int exists, depth = 0, err = 0;
1978 	unsigned int flags = 0;
1979 	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
1980 
1981 	while (block < last && block != EXT_MAX_BLOCKS) {
1982 		num = last - block;
1983 		/* find extent for this block */
1984 		down_read(&EXT4_I(inode)->i_data_sem);
1985 
1986 		if (path && ext_depth(inode) != depth) {
1987 			/* depth was changed. we have to realloc path */
1988 			kfree(path);
1989 			path = NULL;
1990 		}
1991 
1992 		path = ext4_ext_find_extent(inode, block, path);
1993 		if (IS_ERR(path)) {
1994 			up_read(&EXT4_I(inode)->i_data_sem);
1995 			err = PTR_ERR(path);
1996 			path = NULL;
1997 			break;
1998 		}
1999 
2000 		depth = ext_depth(inode);
2001 		if (unlikely(path[depth].p_hdr == NULL)) {
2002 			up_read(&EXT4_I(inode)->i_data_sem);
2003 			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2004 			err = -EIO;
2005 			break;
2006 		}
2007 		ex = path[depth].p_ext;
2008 		next = ext4_ext_next_allocated_block(path);
2009 		ext4_ext_drop_refs(path);
2010 
2011 		flags = 0;
2012 		exists = 0;
2013 		if (!ex) {
2014 			/* there is no extent yet, so try to allocate
2015 			 * all requested space */
2016 			start = block;
2017 			end = block + num;
2018 		} else if (le32_to_cpu(ex->ee_block) > block) {
2019 			/* need to allocate space before found extent */
2020 			start = block;
2021 			end = le32_to_cpu(ex->ee_block);
2022 			if (block + num < end)
2023 				end = block + num;
2024 		} else if (block >= le32_to_cpu(ex->ee_block)
2025 					+ ext4_ext_get_actual_len(ex)) {
2026 			/* need to allocate space after found extent */
2027 			start = block;
2028 			end = block + num;
2029 			if (end >= next)
2030 				end = next;
2031 		} else if (block >= le32_to_cpu(ex->ee_block)) {
2032 			/*
2033 			 * some part of requested space is covered
2034 			 * by found extent
2035 			 */
2036 			start = block;
2037 			end = le32_to_cpu(ex->ee_block)
2038 				+ ext4_ext_get_actual_len(ex);
2039 			if (block + num < end)
2040 				end = block + num;
2041 			exists = 1;
2042 		} else {
2043 			BUG();
2044 		}
2045 		BUG_ON(end <= start);
2046 
2047 		if (!exists) {
2048 			es.es_lblk = start;
2049 			es.es_len = end - start;
2050 			es.es_pblk = 0;
2051 		} else {
2052 			es.es_lblk = le32_to_cpu(ex->ee_block);
2053 			es.es_len = ext4_ext_get_actual_len(ex);
2054 			es.es_pblk = ext4_ext_pblock(ex);
2055 			if (ext4_ext_is_uninitialized(ex))
2056 				flags |= FIEMAP_EXTENT_UNWRITTEN;
2057 		}
2058 
2059 		/*
2060 		 * Find delayed extent and update es accordingly. We call
2061 		 * it even in !exists case to find out whether es is the
2062 		 * last existing extent or not.
2063 		 */
2064 		next_del = ext4_find_delayed_extent(inode, &es);
2065 		if (!exists && next_del) {
2066 			exists = 1;
2067 			flags |= FIEMAP_EXTENT_DELALLOC;
2068 		}
2069 		up_read(&EXT4_I(inode)->i_data_sem);
2070 
2071 		if (unlikely(es.es_len == 0)) {
2072 			EXT4_ERROR_INODE(inode, "es.es_len == 0");
2073 			err = -EIO;
2074 			break;
2075 		}
2076 
2077 		/*
2078 		 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2079 		 * we need to check next == EXT_MAX_BLOCKS because it is
2080 		 * possible that an extent is with unwritten and delayed
2081 		 * status due to when an extent is delayed allocated and
2082 		 * is allocated by fallocate status tree will track both of
2083 		 * them in a extent.
2084 		 *
2085 		 * So we could return a unwritten and delayed extent, and
2086 		 * its block is equal to 'next'.
2087 		 */
2088 		if (next == next_del && next == EXT_MAX_BLOCKS) {
2089 			flags |= FIEMAP_EXTENT_LAST;
2090 			if (unlikely(next_del != EXT_MAX_BLOCKS ||
2091 				     next != EXT_MAX_BLOCKS)) {
2092 				EXT4_ERROR_INODE(inode,
2093 						 "next extent == %u, next "
2094 						 "delalloc extent = %u",
2095 						 next, next_del);
2096 				err = -EIO;
2097 				break;
2098 			}
2099 		}
2100 
2101 		if (exists) {
2102 			err = fiemap_fill_next_extent(fieinfo,
2103 				(__u64)es.es_lblk << blksize_bits,
2104 				(__u64)es.es_pblk << blksize_bits,
2105 				(__u64)es.es_len << blksize_bits,
2106 				flags);
2107 			if (err < 0)
2108 				break;
2109 			if (err == 1) {
2110 				err = 0;
2111 				break;
2112 			}
2113 		}
2114 
2115 		block = es.es_lblk + es.es_len;
2116 	}
2117 
2118 	if (path) {
2119 		ext4_ext_drop_refs(path);
2120 		kfree(path);
2121 	}
2122 
2123 	return err;
2124 }
2125 
2126 /*
2127  * ext4_ext_put_gap_in_cache:
2128  * calculate boundaries of the gap that the requested block fits into
2129  * and cache this gap
2130  */
2131 static void
2132 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2133 				ext4_lblk_t block)
2134 {
2135 	int depth = ext_depth(inode);
2136 	unsigned long len;
2137 	ext4_lblk_t lblock;
2138 	struct ext4_extent *ex;
2139 
2140 	ex = path[depth].p_ext;
2141 	if (ex == NULL) {
2142 		/*
2143 		 * there is no extent yet, so gap is [0;-] and we
2144 		 * don't cache it
2145 		 */
2146 		ext_debug("cache gap(whole file):");
2147 	} else if (block < le32_to_cpu(ex->ee_block)) {
2148 		lblock = block;
2149 		len = le32_to_cpu(ex->ee_block) - block;
2150 		ext_debug("cache gap(before): %u [%u:%u]",
2151 				block,
2152 				le32_to_cpu(ex->ee_block),
2153 				 ext4_ext_get_actual_len(ex));
2154 		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2155 			ext4_es_insert_extent(inode, lblock, len, ~0,
2156 					      EXTENT_STATUS_HOLE);
2157 	} else if (block >= le32_to_cpu(ex->ee_block)
2158 			+ ext4_ext_get_actual_len(ex)) {
2159 		ext4_lblk_t next;
2160 		lblock = le32_to_cpu(ex->ee_block)
2161 			+ ext4_ext_get_actual_len(ex);
2162 
2163 		next = ext4_ext_next_allocated_block(path);
2164 		ext_debug("cache gap(after): [%u:%u] %u",
2165 				le32_to_cpu(ex->ee_block),
2166 				ext4_ext_get_actual_len(ex),
2167 				block);
2168 		BUG_ON(next == lblock);
2169 		len = next - lblock;
2170 		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2171 			ext4_es_insert_extent(inode, lblock, len, ~0,
2172 					      EXTENT_STATUS_HOLE);
2173 	} else {
2174 		lblock = len = 0;
2175 		BUG();
2176 	}
2177 
2178 	ext_debug(" -> %u:%lu\n", lblock, len);
2179 }
2180 
2181 /*
2182  * ext4_ext_rm_idx:
2183  * removes index from the index block.
2184  */
2185 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2186 			struct ext4_ext_path *path, int depth)
2187 {
2188 	int err;
2189 	ext4_fsblk_t leaf;
2190 
2191 	/* free index block */
2192 	depth--;
2193 	path = path + depth;
2194 	leaf = ext4_idx_pblock(path->p_idx);
2195 	if (unlikely(path->p_hdr->eh_entries == 0)) {
2196 		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2197 		return -EIO;
2198 	}
2199 	err = ext4_ext_get_access(handle, inode, path);
2200 	if (err)
2201 		return err;
2202 
2203 	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2204 		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2205 		len *= sizeof(struct ext4_extent_idx);
2206 		memmove(path->p_idx, path->p_idx + 1, len);
2207 	}
2208 
2209 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2210 	err = ext4_ext_dirty(handle, inode, path);
2211 	if (err)
2212 		return err;
2213 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2214 	trace_ext4_ext_rm_idx(inode, leaf);
2215 
2216 	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2217 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2218 
2219 	while (--depth >= 0) {
2220 		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2221 			break;
2222 		path--;
2223 		err = ext4_ext_get_access(handle, inode, path);
2224 		if (err)
2225 			break;
2226 		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2227 		err = ext4_ext_dirty(handle, inode, path);
2228 		if (err)
2229 			break;
2230 	}
2231 	return err;
2232 }
2233 
2234 /*
2235  * ext4_ext_calc_credits_for_single_extent:
2236  * This routine returns max. credits that needed to insert an extent
2237  * to the extent tree.
2238  * When pass the actual path, the caller should calculate credits
2239  * under i_data_sem.
2240  */
2241 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2242 						struct ext4_ext_path *path)
2243 {
2244 	if (path) {
2245 		int depth = ext_depth(inode);
2246 		int ret = 0;
2247 
2248 		/* probably there is space in leaf? */
2249 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2250 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2251 
2252 			/*
2253 			 *  There are some space in the leaf tree, no
2254 			 *  need to account for leaf block credit
2255 			 *
2256 			 *  bitmaps and block group descriptor blocks
2257 			 *  and other metadata blocks still need to be
2258 			 *  accounted.
2259 			 */
2260 			/* 1 bitmap, 1 block group descriptor */
2261 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2262 			return ret;
2263 		}
2264 	}
2265 
2266 	return ext4_chunk_trans_blocks(inode, nrblocks);
2267 }
2268 
2269 /*
2270  * How many index/leaf blocks need to change/allocate to modify nrblocks?
2271  *
2272  * if nrblocks are fit in a single extent (chunk flag is 1), then
2273  * in the worse case, each tree level index/leaf need to be changed
2274  * if the tree split due to insert a new extent, then the old tree
2275  * index/leaf need to be updated too
2276  *
2277  * If the nrblocks are discontiguous, they could cause
2278  * the whole tree split more than once, but this is really rare.
2279  */
2280 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2281 {
2282 	int index;
2283 	int depth;
2284 
2285 	/* If we are converting the inline data, only one is needed here. */
2286 	if (ext4_has_inline_data(inode))
2287 		return 1;
2288 
2289 	depth = ext_depth(inode);
2290 
2291 	if (chunk)
2292 		index = depth * 2;
2293 	else
2294 		index = depth * 3;
2295 
2296 	return index;
2297 }
2298 
2299 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2300 			      struct ext4_extent *ex,
2301 			      ext4_fsblk_t *partial_cluster,
2302 			      ext4_lblk_t from, ext4_lblk_t to)
2303 {
2304 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2305 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2306 	ext4_fsblk_t pblk;
2307 	int flags = 0;
2308 
2309 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2310 		flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2311 	else if (ext4_should_journal_data(inode))
2312 		flags |= EXT4_FREE_BLOCKS_FORGET;
2313 
2314 	/*
2315 	 * For bigalloc file systems, we never free a partial cluster
2316 	 * at the beginning of the extent.  Instead, we make a note
2317 	 * that we tried freeing the cluster, and check to see if we
2318 	 * need to free it on a subsequent call to ext4_remove_blocks,
2319 	 * or at the end of the ext4_truncate() operation.
2320 	 */
2321 	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2322 
2323 	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2324 	/*
2325 	 * If we have a partial cluster, and it's different from the
2326 	 * cluster of the last block, we need to explicitly free the
2327 	 * partial cluster here.
2328 	 */
2329 	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2330 	if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2331 		ext4_free_blocks(handle, inode, NULL,
2332 				 EXT4_C2B(sbi, *partial_cluster),
2333 				 sbi->s_cluster_ratio, flags);
2334 		*partial_cluster = 0;
2335 	}
2336 
2337 #ifdef EXTENTS_STATS
2338 	{
2339 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2340 		spin_lock(&sbi->s_ext_stats_lock);
2341 		sbi->s_ext_blocks += ee_len;
2342 		sbi->s_ext_extents++;
2343 		if (ee_len < sbi->s_ext_min)
2344 			sbi->s_ext_min = ee_len;
2345 		if (ee_len > sbi->s_ext_max)
2346 			sbi->s_ext_max = ee_len;
2347 		if (ext_depth(inode) > sbi->s_depth_max)
2348 			sbi->s_depth_max = ext_depth(inode);
2349 		spin_unlock(&sbi->s_ext_stats_lock);
2350 	}
2351 #endif
2352 	if (from >= le32_to_cpu(ex->ee_block)
2353 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2354 		/* tail removal */
2355 		ext4_lblk_t num;
2356 
2357 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2358 		pblk = ext4_ext_pblock(ex) + ee_len - num;
2359 		ext_debug("free last %u blocks starting %llu\n", num, pblk);
2360 		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2361 		/*
2362 		 * If the block range to be freed didn't start at the
2363 		 * beginning of a cluster, and we removed the entire
2364 		 * extent, save the partial cluster here, since we
2365 		 * might need to delete if we determine that the
2366 		 * truncate operation has removed all of the blocks in
2367 		 * the cluster.
2368 		 */
2369 		if (pblk & (sbi->s_cluster_ratio - 1) &&
2370 		    (ee_len == num))
2371 			*partial_cluster = EXT4_B2C(sbi, pblk);
2372 		else
2373 			*partial_cluster = 0;
2374 	} else if (from == le32_to_cpu(ex->ee_block)
2375 		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2376 		/* head removal */
2377 		ext4_lblk_t num;
2378 		ext4_fsblk_t start;
2379 
2380 		num = to - from;
2381 		start = ext4_ext_pblock(ex);
2382 
2383 		ext_debug("free first %u blocks starting %llu\n", num, start);
2384 		ext4_free_blocks(handle, inode, NULL, start, num, flags);
2385 
2386 	} else {
2387 		printk(KERN_INFO "strange request: removal(2) "
2388 				"%u-%u from %u:%u\n",
2389 				from, to, le32_to_cpu(ex->ee_block), ee_len);
2390 	}
2391 	return 0;
2392 }
2393 
2394 
2395 /*
2396  * ext4_ext_rm_leaf() Removes the extents associated with the
2397  * blocks appearing between "start" and "end", and splits the extents
2398  * if "start" and "end" appear in the same extent
2399  *
2400  * @handle: The journal handle
2401  * @inode:  The files inode
2402  * @path:   The path to the leaf
2403  * @start:  The first block to remove
2404  * @end:   The last block to remove
2405  */
2406 static int
2407 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2408 		 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2409 		 ext4_lblk_t start, ext4_lblk_t end)
2410 {
2411 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2412 	int err = 0, correct_index = 0;
2413 	int depth = ext_depth(inode), credits;
2414 	struct ext4_extent_header *eh;
2415 	ext4_lblk_t a, b;
2416 	unsigned num;
2417 	ext4_lblk_t ex_ee_block;
2418 	unsigned short ex_ee_len;
2419 	unsigned uninitialized = 0;
2420 	struct ext4_extent *ex;
2421 
2422 	/* the header must be checked already in ext4_ext_remove_space() */
2423 	ext_debug("truncate since %u in leaf to %u\n", start, end);
2424 	if (!path[depth].p_hdr)
2425 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2426 	eh = path[depth].p_hdr;
2427 	if (unlikely(path[depth].p_hdr == NULL)) {
2428 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2429 		return -EIO;
2430 	}
2431 	/* find where to start removing */
2432 	ex = EXT_LAST_EXTENT(eh);
2433 
2434 	ex_ee_block = le32_to_cpu(ex->ee_block);
2435 	ex_ee_len = ext4_ext_get_actual_len(ex);
2436 
2437 	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2438 
2439 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2440 			ex_ee_block + ex_ee_len > start) {
2441 
2442 		if (ext4_ext_is_uninitialized(ex))
2443 			uninitialized = 1;
2444 		else
2445 			uninitialized = 0;
2446 
2447 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2448 			 uninitialized, ex_ee_len);
2449 		path[depth].p_ext = ex;
2450 
2451 		a = ex_ee_block > start ? ex_ee_block : start;
2452 		b = ex_ee_block+ex_ee_len - 1 < end ?
2453 			ex_ee_block+ex_ee_len - 1 : end;
2454 
2455 		ext_debug("  border %u:%u\n", a, b);
2456 
2457 		/* If this extent is beyond the end of the hole, skip it */
2458 		if (end < ex_ee_block) {
2459 			ex--;
2460 			ex_ee_block = le32_to_cpu(ex->ee_block);
2461 			ex_ee_len = ext4_ext_get_actual_len(ex);
2462 			continue;
2463 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2464 			EXT4_ERROR_INODE(inode,
2465 					 "can not handle truncate %u:%u "
2466 					 "on extent %u:%u",
2467 					 start, end, ex_ee_block,
2468 					 ex_ee_block + ex_ee_len - 1);
2469 			err = -EIO;
2470 			goto out;
2471 		} else if (a != ex_ee_block) {
2472 			/* remove tail of the extent */
2473 			num = a - ex_ee_block;
2474 		} else {
2475 			/* remove whole extent: excellent! */
2476 			num = 0;
2477 		}
2478 		/*
2479 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2480 		 * descriptor) for each block group; assume two block
2481 		 * groups plus ex_ee_len/blocks_per_block_group for
2482 		 * the worst case
2483 		 */
2484 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2485 		if (ex == EXT_FIRST_EXTENT(eh)) {
2486 			correct_index = 1;
2487 			credits += (ext_depth(inode)) + 1;
2488 		}
2489 		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2490 
2491 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2492 		if (err)
2493 			goto out;
2494 
2495 		err = ext4_ext_get_access(handle, inode, path + depth);
2496 		if (err)
2497 			goto out;
2498 
2499 		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2500 					 a, b);
2501 		if (err)
2502 			goto out;
2503 
2504 		if (num == 0)
2505 			/* this extent is removed; mark slot entirely unused */
2506 			ext4_ext_store_pblock(ex, 0);
2507 
2508 		ex->ee_len = cpu_to_le16(num);
2509 		/*
2510 		 * Do not mark uninitialized if all the blocks in the
2511 		 * extent have been removed.
2512 		 */
2513 		if (uninitialized && num)
2514 			ext4_ext_mark_uninitialized(ex);
2515 		/*
2516 		 * If the extent was completely released,
2517 		 * we need to remove it from the leaf
2518 		 */
2519 		if (num == 0) {
2520 			if (end != EXT_MAX_BLOCKS - 1) {
2521 				/*
2522 				 * For hole punching, we need to scoot all the
2523 				 * extents up when an extent is removed so that
2524 				 * we dont have blank extents in the middle
2525 				 */
2526 				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2527 					sizeof(struct ext4_extent));
2528 
2529 				/* Now get rid of the one at the end */
2530 				memset(EXT_LAST_EXTENT(eh), 0,
2531 					sizeof(struct ext4_extent));
2532 			}
2533 			le16_add_cpu(&eh->eh_entries, -1);
2534 		} else
2535 			*partial_cluster = 0;
2536 
2537 		err = ext4_ext_dirty(handle, inode, path + depth);
2538 		if (err)
2539 			goto out;
2540 
2541 		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2542 				ext4_ext_pblock(ex));
2543 		ex--;
2544 		ex_ee_block = le32_to_cpu(ex->ee_block);
2545 		ex_ee_len = ext4_ext_get_actual_len(ex);
2546 	}
2547 
2548 	if (correct_index && eh->eh_entries)
2549 		err = ext4_ext_correct_indexes(handle, inode, path);
2550 
2551 	/*
2552 	 * If there is still a entry in the leaf node, check to see if
2553 	 * it references the partial cluster.  This is the only place
2554 	 * where it could; if it doesn't, we can free the cluster.
2555 	 */
2556 	if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2557 	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2558 	     *partial_cluster)) {
2559 		int flags = EXT4_FREE_BLOCKS_FORGET;
2560 
2561 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2562 			flags |= EXT4_FREE_BLOCKS_METADATA;
2563 
2564 		ext4_free_blocks(handle, inode, NULL,
2565 				 EXT4_C2B(sbi, *partial_cluster),
2566 				 sbi->s_cluster_ratio, flags);
2567 		*partial_cluster = 0;
2568 	}
2569 
2570 	/* if this leaf is free, then we should
2571 	 * remove it from index block above */
2572 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2573 		err = ext4_ext_rm_idx(handle, inode, path, depth);
2574 
2575 out:
2576 	return err;
2577 }
2578 
2579 /*
2580  * ext4_ext_more_to_rm:
2581  * returns 1 if current index has to be freed (even partial)
2582  */
2583 static int
2584 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2585 {
2586 	BUG_ON(path->p_idx == NULL);
2587 
2588 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2589 		return 0;
2590 
2591 	/*
2592 	 * if truncate on deeper level happened, it wasn't partial,
2593 	 * so we have to consider current index for truncation
2594 	 */
2595 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2596 		return 0;
2597 	return 1;
2598 }
2599 
2600 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2601 				 ext4_lblk_t end)
2602 {
2603 	struct super_block *sb = inode->i_sb;
2604 	int depth = ext_depth(inode);
2605 	struct ext4_ext_path *path = NULL;
2606 	ext4_fsblk_t partial_cluster = 0;
2607 	handle_t *handle;
2608 	int i = 0, err = 0;
2609 
2610 	ext_debug("truncate since %u to %u\n", start, end);
2611 
2612 	/* probably first extent we're gonna free will be last in block */
2613 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2614 	if (IS_ERR(handle))
2615 		return PTR_ERR(handle);
2616 
2617 again:
2618 	trace_ext4_ext_remove_space(inode, start, depth);
2619 
2620 	/*
2621 	 * Check if we are removing extents inside the extent tree. If that
2622 	 * is the case, we are going to punch a hole inside the extent tree
2623 	 * so we have to check whether we need to split the extent covering
2624 	 * the last block to remove so we can easily remove the part of it
2625 	 * in ext4_ext_rm_leaf().
2626 	 */
2627 	if (end < EXT_MAX_BLOCKS - 1) {
2628 		struct ext4_extent *ex;
2629 		ext4_lblk_t ee_block;
2630 
2631 		/* find extent for this block */
2632 		path = ext4_ext_find_extent(inode, end, NULL);
2633 		if (IS_ERR(path)) {
2634 			ext4_journal_stop(handle);
2635 			return PTR_ERR(path);
2636 		}
2637 		depth = ext_depth(inode);
2638 		/* Leaf not may not exist only if inode has no blocks at all */
2639 		ex = path[depth].p_ext;
2640 		if (!ex) {
2641 			if (depth) {
2642 				EXT4_ERROR_INODE(inode,
2643 						 "path[%d].p_hdr == NULL",
2644 						 depth);
2645 				err = -EIO;
2646 			}
2647 			goto out;
2648 		}
2649 
2650 		ee_block = le32_to_cpu(ex->ee_block);
2651 
2652 		/*
2653 		 * See if the last block is inside the extent, if so split
2654 		 * the extent at 'end' block so we can easily remove the
2655 		 * tail of the first part of the split extent in
2656 		 * ext4_ext_rm_leaf().
2657 		 */
2658 		if (end >= ee_block &&
2659 		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2660 			int split_flag = 0;
2661 
2662 			if (ext4_ext_is_uninitialized(ex))
2663 				split_flag = EXT4_EXT_MARK_UNINIT1 |
2664 					     EXT4_EXT_MARK_UNINIT2;
2665 
2666 			/*
2667 			 * Split the extent in two so that 'end' is the last
2668 			 * block in the first new extent
2669 			 */
2670 			err = ext4_split_extent_at(handle, inode, path,
2671 						end + 1, split_flag,
2672 						EXT4_GET_BLOCKS_PRE_IO |
2673 						EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2674 
2675 			if (err < 0)
2676 				goto out;
2677 		}
2678 	}
2679 	/*
2680 	 * We start scanning from right side, freeing all the blocks
2681 	 * after i_size and walking into the tree depth-wise.
2682 	 */
2683 	depth = ext_depth(inode);
2684 	if (path) {
2685 		int k = i = depth;
2686 		while (--k > 0)
2687 			path[k].p_block =
2688 				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2689 	} else {
2690 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2691 			       GFP_NOFS);
2692 		if (path == NULL) {
2693 			ext4_journal_stop(handle);
2694 			return -ENOMEM;
2695 		}
2696 		path[0].p_depth = depth;
2697 		path[0].p_hdr = ext_inode_hdr(inode);
2698 		i = 0;
2699 
2700 		if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2701 			err = -EIO;
2702 			goto out;
2703 		}
2704 	}
2705 	err = 0;
2706 
2707 	while (i >= 0 && err == 0) {
2708 		if (i == depth) {
2709 			/* this is leaf block */
2710 			err = ext4_ext_rm_leaf(handle, inode, path,
2711 					       &partial_cluster, start,
2712 					       end);
2713 			/* root level has p_bh == NULL, brelse() eats this */
2714 			brelse(path[i].p_bh);
2715 			path[i].p_bh = NULL;
2716 			i--;
2717 			continue;
2718 		}
2719 
2720 		/* this is index block */
2721 		if (!path[i].p_hdr) {
2722 			ext_debug("initialize header\n");
2723 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2724 		}
2725 
2726 		if (!path[i].p_idx) {
2727 			/* this level hasn't been touched yet */
2728 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2729 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2730 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2731 				  path[i].p_hdr,
2732 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2733 		} else {
2734 			/* we were already here, see at next index */
2735 			path[i].p_idx--;
2736 		}
2737 
2738 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2739 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2740 				path[i].p_idx);
2741 		if (ext4_ext_more_to_rm(path + i)) {
2742 			struct buffer_head *bh;
2743 			/* go to the next level */
2744 			ext_debug("move to level %d (block %llu)\n",
2745 				  i + 1, ext4_idx_pblock(path[i].p_idx));
2746 			memset(path + i + 1, 0, sizeof(*path));
2747 			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2748 			if (!bh) {
2749 				/* should we reset i_size? */
2750 				err = -EIO;
2751 				break;
2752 			}
2753 			if (WARN_ON(i + 1 > depth)) {
2754 				err = -EIO;
2755 				break;
2756 			}
2757 			if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2758 							depth - i - 1, bh)) {
2759 				err = -EIO;
2760 				break;
2761 			}
2762 			path[i + 1].p_bh = bh;
2763 
2764 			/* save actual number of indexes since this
2765 			 * number is changed at the next iteration */
2766 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2767 			i++;
2768 		} else {
2769 			/* we finished processing this index, go up */
2770 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2771 				/* index is empty, remove it;
2772 				 * handle must be already prepared by the
2773 				 * truncatei_leaf() */
2774 				err = ext4_ext_rm_idx(handle, inode, path, i);
2775 			}
2776 			/* root level has p_bh == NULL, brelse() eats this */
2777 			brelse(path[i].p_bh);
2778 			path[i].p_bh = NULL;
2779 			i--;
2780 			ext_debug("return to level %d\n", i);
2781 		}
2782 	}
2783 
2784 	trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2785 			path->p_hdr->eh_entries);
2786 
2787 	/* If we still have something in the partial cluster and we have removed
2788 	 * even the first extent, then we should free the blocks in the partial
2789 	 * cluster as well. */
2790 	if (partial_cluster && path->p_hdr->eh_entries == 0) {
2791 		int flags = EXT4_FREE_BLOCKS_FORGET;
2792 
2793 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2794 			flags |= EXT4_FREE_BLOCKS_METADATA;
2795 
2796 		ext4_free_blocks(handle, inode, NULL,
2797 				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2798 				 EXT4_SB(sb)->s_cluster_ratio, flags);
2799 		partial_cluster = 0;
2800 	}
2801 
2802 	/* TODO: flexible tree reduction should be here */
2803 	if (path->p_hdr->eh_entries == 0) {
2804 		/*
2805 		 * truncate to zero freed all the tree,
2806 		 * so we need to correct eh_depth
2807 		 */
2808 		err = ext4_ext_get_access(handle, inode, path);
2809 		if (err == 0) {
2810 			ext_inode_hdr(inode)->eh_depth = 0;
2811 			ext_inode_hdr(inode)->eh_max =
2812 				cpu_to_le16(ext4_ext_space_root(inode, 0));
2813 			err = ext4_ext_dirty(handle, inode, path);
2814 		}
2815 	}
2816 out:
2817 	ext4_ext_drop_refs(path);
2818 	kfree(path);
2819 	if (err == -EAGAIN) {
2820 		path = NULL;
2821 		goto again;
2822 	}
2823 	ext4_journal_stop(handle);
2824 
2825 	return err;
2826 }
2827 
2828 /*
2829  * called at mount time
2830  */
2831 void ext4_ext_init(struct super_block *sb)
2832 {
2833 	/*
2834 	 * possible initialization would be here
2835 	 */
2836 
2837 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2838 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2839 		printk(KERN_INFO "EXT4-fs: file extents enabled"
2840 #ifdef AGGRESSIVE_TEST
2841 		       ", aggressive tests"
2842 #endif
2843 #ifdef CHECK_BINSEARCH
2844 		       ", check binsearch"
2845 #endif
2846 #ifdef EXTENTS_STATS
2847 		       ", stats"
2848 #endif
2849 		       "\n");
2850 #endif
2851 #ifdef EXTENTS_STATS
2852 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2853 		EXT4_SB(sb)->s_ext_min = 1 << 30;
2854 		EXT4_SB(sb)->s_ext_max = 0;
2855 #endif
2856 	}
2857 }
2858 
2859 /*
2860  * called at umount time
2861  */
2862 void ext4_ext_release(struct super_block *sb)
2863 {
2864 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2865 		return;
2866 
2867 #ifdef EXTENTS_STATS
2868 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2869 		struct ext4_sb_info *sbi = EXT4_SB(sb);
2870 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2871 			sbi->s_ext_blocks, sbi->s_ext_extents,
2872 			sbi->s_ext_blocks / sbi->s_ext_extents);
2873 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2874 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2875 	}
2876 #endif
2877 }
2878 
2879 /* FIXME!! we need to try to merge to left or right after zero-out  */
2880 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2881 {
2882 	ext4_fsblk_t ee_pblock;
2883 	unsigned int ee_len;
2884 	int ret;
2885 
2886 	ee_len    = ext4_ext_get_actual_len(ex);
2887 	ee_pblock = ext4_ext_pblock(ex);
2888 
2889 	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2890 	if (ret > 0)
2891 		ret = 0;
2892 
2893 	return ret;
2894 }
2895 
2896 /*
2897  * ext4_split_extent_at() splits an extent at given block.
2898  *
2899  * @handle: the journal handle
2900  * @inode: the file inode
2901  * @path: the path to the extent
2902  * @split: the logical block where the extent is splitted.
2903  * @split_flags: indicates if the extent could be zeroout if split fails, and
2904  *		 the states(init or uninit) of new extents.
2905  * @flags: flags used to insert new extent to extent tree.
2906  *
2907  *
2908  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2909  * of which are deterimined by split_flag.
2910  *
2911  * There are two cases:
2912  *  a> the extent are splitted into two extent.
2913  *  b> split is not needed, and just mark the extent.
2914  *
2915  * return 0 on success.
2916  */
2917 static int ext4_split_extent_at(handle_t *handle,
2918 			     struct inode *inode,
2919 			     struct ext4_ext_path *path,
2920 			     ext4_lblk_t split,
2921 			     int split_flag,
2922 			     int flags)
2923 {
2924 	ext4_fsblk_t newblock;
2925 	ext4_lblk_t ee_block;
2926 	struct ext4_extent *ex, newex, orig_ex;
2927 	struct ext4_extent *ex2 = NULL;
2928 	unsigned int ee_len, depth;
2929 	int err = 0;
2930 
2931 	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
2932 	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
2933 
2934 	ext_debug("ext4_split_extents_at: inode %lu, logical"
2935 		"block %llu\n", inode->i_ino, (unsigned long long)split);
2936 
2937 	ext4_ext_show_leaf(inode, path);
2938 
2939 	depth = ext_depth(inode);
2940 	ex = path[depth].p_ext;
2941 	ee_block = le32_to_cpu(ex->ee_block);
2942 	ee_len = ext4_ext_get_actual_len(ex);
2943 	newblock = split - ee_block + ext4_ext_pblock(ex);
2944 
2945 	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2946 	BUG_ON(!ext4_ext_is_uninitialized(ex) &&
2947 	       split_flag & (EXT4_EXT_MAY_ZEROOUT |
2948 			     EXT4_EXT_MARK_UNINIT1 |
2949 			     EXT4_EXT_MARK_UNINIT2));
2950 
2951 	err = ext4_ext_get_access(handle, inode, path + depth);
2952 	if (err)
2953 		goto out;
2954 
2955 	if (split == ee_block) {
2956 		/*
2957 		 * case b: block @split is the block that the extent begins with
2958 		 * then we just change the state of the extent, and splitting
2959 		 * is not needed.
2960 		 */
2961 		if (split_flag & EXT4_EXT_MARK_UNINIT2)
2962 			ext4_ext_mark_uninitialized(ex);
2963 		else
2964 			ext4_ext_mark_initialized(ex);
2965 
2966 		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2967 			ext4_ext_try_to_merge(handle, inode, path, ex);
2968 
2969 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2970 		goto out;
2971 	}
2972 
2973 	/* case a */
2974 	memcpy(&orig_ex, ex, sizeof(orig_ex));
2975 	ex->ee_len = cpu_to_le16(split - ee_block);
2976 	if (split_flag & EXT4_EXT_MARK_UNINIT1)
2977 		ext4_ext_mark_uninitialized(ex);
2978 
2979 	/*
2980 	 * path may lead to new leaf, not to original leaf any more
2981 	 * after ext4_ext_insert_extent() returns,
2982 	 */
2983 	err = ext4_ext_dirty(handle, inode, path + depth);
2984 	if (err)
2985 		goto fix_extent_len;
2986 
2987 	ex2 = &newex;
2988 	ex2->ee_block = cpu_to_le32(split);
2989 	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
2990 	ext4_ext_store_pblock(ex2, newblock);
2991 	if (split_flag & EXT4_EXT_MARK_UNINIT2)
2992 		ext4_ext_mark_uninitialized(ex2);
2993 
2994 	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2995 	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2996 		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
2997 			if (split_flag & EXT4_EXT_DATA_VALID1)
2998 				err = ext4_ext_zeroout(inode, ex2);
2999 			else
3000 				err = ext4_ext_zeroout(inode, ex);
3001 		} else
3002 			err = ext4_ext_zeroout(inode, &orig_ex);
3003 
3004 		if (err)
3005 			goto fix_extent_len;
3006 		/* update the extent length and mark as initialized */
3007 		ex->ee_len = cpu_to_le16(ee_len);
3008 		ext4_ext_try_to_merge(handle, inode, path, ex);
3009 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3010 		goto out;
3011 	} else if (err)
3012 		goto fix_extent_len;
3013 
3014 out:
3015 	ext4_ext_show_leaf(inode, path);
3016 	return err;
3017 
3018 fix_extent_len:
3019 	ex->ee_len = orig_ex.ee_len;
3020 	ext4_ext_dirty(handle, inode, path + depth);
3021 	return err;
3022 }
3023 
3024 /*
3025  * ext4_split_extents() splits an extent and mark extent which is covered
3026  * by @map as split_flags indicates
3027  *
3028  * It may result in splitting the extent into multiple extents (upto three)
3029  * There are three possibilities:
3030  *   a> There is no split required
3031  *   b> Splits in two extents: Split is happening at either end of the extent
3032  *   c> Splits in three extents: Somone is splitting in middle of the extent
3033  *
3034  */
3035 static int ext4_split_extent(handle_t *handle,
3036 			      struct inode *inode,
3037 			      struct ext4_ext_path *path,
3038 			      struct ext4_map_blocks *map,
3039 			      int split_flag,
3040 			      int flags)
3041 {
3042 	ext4_lblk_t ee_block;
3043 	struct ext4_extent *ex;
3044 	unsigned int ee_len, depth;
3045 	int err = 0;
3046 	int uninitialized;
3047 	int split_flag1, flags1;
3048 
3049 	depth = ext_depth(inode);
3050 	ex = path[depth].p_ext;
3051 	ee_block = le32_to_cpu(ex->ee_block);
3052 	ee_len = ext4_ext_get_actual_len(ex);
3053 	uninitialized = ext4_ext_is_uninitialized(ex);
3054 
3055 	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3056 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3057 		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3058 		if (uninitialized)
3059 			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3060 				       EXT4_EXT_MARK_UNINIT2;
3061 		if (split_flag & EXT4_EXT_DATA_VALID2)
3062 			split_flag1 |= EXT4_EXT_DATA_VALID1;
3063 		err = ext4_split_extent_at(handle, inode, path,
3064 				map->m_lblk + map->m_len, split_flag1, flags1);
3065 		if (err)
3066 			goto out;
3067 	}
3068 	/*
3069 	 * Update path is required because previous ext4_split_extent_at() may
3070 	 * result in split of original leaf or extent zeroout.
3071 	 */
3072 	ext4_ext_drop_refs(path);
3073 	path = ext4_ext_find_extent(inode, map->m_lblk, path);
3074 	if (IS_ERR(path))
3075 		return PTR_ERR(path);
3076 	depth = ext_depth(inode);
3077 	ex = path[depth].p_ext;
3078 	uninitialized = ext4_ext_is_uninitialized(ex);
3079 	split_flag1 = 0;
3080 
3081 	if (map->m_lblk >= ee_block) {
3082 		split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3083 		if (uninitialized) {
3084 			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3085 			split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3086 						     EXT4_EXT_MARK_UNINIT2);
3087 		}
3088 		err = ext4_split_extent_at(handle, inode, path,
3089 				map->m_lblk, split_flag1, flags);
3090 		if (err)
3091 			goto out;
3092 	}
3093 
3094 	ext4_ext_show_leaf(inode, path);
3095 out:
3096 	return err ? err : map->m_len;
3097 }
3098 
3099 /*
3100  * This function is called by ext4_ext_map_blocks() if someone tries to write
3101  * to an uninitialized extent. It may result in splitting the uninitialized
3102  * extent into multiple extents (up to three - one initialized and two
3103  * uninitialized).
3104  * There are three possibilities:
3105  *   a> There is no split required: Entire extent should be initialized
3106  *   b> Splits in two extents: Write is happening at either end of the extent
3107  *   c> Splits in three extents: Somone is writing in middle of the extent
3108  *
3109  * Pre-conditions:
3110  *  - The extent pointed to by 'path' is uninitialized.
3111  *  - The extent pointed to by 'path' contains a superset
3112  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3113  *
3114  * Post-conditions on success:
3115  *  - the returned value is the number of blocks beyond map->l_lblk
3116  *    that are allocated and initialized.
3117  *    It is guaranteed to be >= map->m_len.
3118  */
3119 static int ext4_ext_convert_to_initialized(handle_t *handle,
3120 					   struct inode *inode,
3121 					   struct ext4_map_blocks *map,
3122 					   struct ext4_ext_path *path)
3123 {
3124 	struct ext4_sb_info *sbi;
3125 	struct ext4_extent_header *eh;
3126 	struct ext4_map_blocks split_map;
3127 	struct ext4_extent zero_ex;
3128 	struct ext4_extent *ex;
3129 	ext4_lblk_t ee_block, eof_block;
3130 	unsigned int ee_len, depth;
3131 	int allocated, max_zeroout = 0;
3132 	int err = 0;
3133 	int split_flag = 0;
3134 
3135 	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3136 		"block %llu, max_blocks %u\n", inode->i_ino,
3137 		(unsigned long long)map->m_lblk, map->m_len);
3138 
3139 	sbi = EXT4_SB(inode->i_sb);
3140 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3141 		inode->i_sb->s_blocksize_bits;
3142 	if (eof_block < map->m_lblk + map->m_len)
3143 		eof_block = map->m_lblk + map->m_len;
3144 
3145 	depth = ext_depth(inode);
3146 	eh = path[depth].p_hdr;
3147 	ex = path[depth].p_ext;
3148 	ee_block = le32_to_cpu(ex->ee_block);
3149 	ee_len = ext4_ext_get_actual_len(ex);
3150 	allocated = ee_len - (map->m_lblk - ee_block);
3151 
3152 	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3153 
3154 	/* Pre-conditions */
3155 	BUG_ON(!ext4_ext_is_uninitialized(ex));
3156 	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3157 
3158 	/*
3159 	 * Attempt to transfer newly initialized blocks from the currently
3160 	 * uninitialized extent to its left neighbor. This is much cheaper
3161 	 * than an insertion followed by a merge as those involve costly
3162 	 * memmove() calls. This is the common case in steady state for
3163 	 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3164 	 * writes.
3165 	 *
3166 	 * Limitations of the current logic:
3167 	 *  - L1: we only deal with writes at the start of the extent.
3168 	 *    The approach could be extended to writes at the end
3169 	 *    of the extent but this scenario was deemed less common.
3170 	 *  - L2: we do not deal with writes covering the whole extent.
3171 	 *    This would require removing the extent if the transfer
3172 	 *    is possible.
3173 	 *  - L3: we only attempt to merge with an extent stored in the
3174 	 *    same extent tree node.
3175 	 */
3176 	if ((map->m_lblk == ee_block) &&	/*L1*/
3177 		(map->m_len < ee_len) &&	/*L2*/
3178 		(ex > EXT_FIRST_EXTENT(eh))) {	/*L3*/
3179 		struct ext4_extent *prev_ex;
3180 		ext4_lblk_t prev_lblk;
3181 		ext4_fsblk_t prev_pblk, ee_pblk;
3182 		unsigned int prev_len, write_len;
3183 
3184 		prev_ex = ex - 1;
3185 		prev_lblk = le32_to_cpu(prev_ex->ee_block);
3186 		prev_len = ext4_ext_get_actual_len(prev_ex);
3187 		prev_pblk = ext4_ext_pblock(prev_ex);
3188 		ee_pblk = ext4_ext_pblock(ex);
3189 		write_len = map->m_len;
3190 
3191 		/*
3192 		 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3193 		 * upon those conditions:
3194 		 * - C1: prev_ex is initialized,
3195 		 * - C2: prev_ex is logically abutting ex,
3196 		 * - C3: prev_ex is physically abutting ex,
3197 		 * - C4: prev_ex can receive the additional blocks without
3198 		 *   overflowing the (initialized) length limit.
3199 		 */
3200 		if ((!ext4_ext_is_uninitialized(prev_ex)) &&		/*C1*/
3201 			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3202 			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3203 			(prev_len < (EXT_INIT_MAX_LEN - write_len))) {	/*C4*/
3204 			err = ext4_ext_get_access(handle, inode, path + depth);
3205 			if (err)
3206 				goto out;
3207 
3208 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3209 				map, ex, prev_ex);
3210 
3211 			/* Shift the start of ex by 'write_len' blocks */
3212 			ex->ee_block = cpu_to_le32(ee_block + write_len);
3213 			ext4_ext_store_pblock(ex, ee_pblk + write_len);
3214 			ex->ee_len = cpu_to_le16(ee_len - write_len);
3215 			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3216 
3217 			/* Extend prev_ex by 'write_len' blocks */
3218 			prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3219 
3220 			/* Mark the block containing both extents as dirty */
3221 			ext4_ext_dirty(handle, inode, path + depth);
3222 
3223 			/* Update path to point to the right extent */
3224 			path[depth].p_ext = prev_ex;
3225 
3226 			/* Result: number of initialized blocks past m_lblk */
3227 			allocated = write_len;
3228 			goto out;
3229 		}
3230 	}
3231 
3232 	WARN_ON(map->m_lblk < ee_block);
3233 	/*
3234 	 * It is safe to convert extent to initialized via explicit
3235 	 * zeroout only if extent is fully insde i_size or new_size.
3236 	 */
3237 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3238 
3239 	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3240 		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3241 			inode->i_sb->s_blocksize_bits;
3242 
3243 	/* If extent is less than s_max_zeroout_kb, zeroout directly */
3244 	if (max_zeroout && (ee_len <= max_zeroout)) {
3245 		err = ext4_ext_zeroout(inode, ex);
3246 		if (err)
3247 			goto out;
3248 
3249 		err = ext4_ext_get_access(handle, inode, path + depth);
3250 		if (err)
3251 			goto out;
3252 		ext4_ext_mark_initialized(ex);
3253 		ext4_ext_try_to_merge(handle, inode, path, ex);
3254 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3255 		goto out;
3256 	}
3257 
3258 	/*
3259 	 * four cases:
3260 	 * 1. split the extent into three extents.
3261 	 * 2. split the extent into two extents, zeroout the first half.
3262 	 * 3. split the extent into two extents, zeroout the second half.
3263 	 * 4. split the extent into two extents with out zeroout.
3264 	 */
3265 	split_map.m_lblk = map->m_lblk;
3266 	split_map.m_len = map->m_len;
3267 
3268 	if (max_zeroout && (allocated > map->m_len)) {
3269 		if (allocated <= max_zeroout) {
3270 			/* case 3 */
3271 			zero_ex.ee_block =
3272 					 cpu_to_le32(map->m_lblk);
3273 			zero_ex.ee_len = cpu_to_le16(allocated);
3274 			ext4_ext_store_pblock(&zero_ex,
3275 				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3276 			err = ext4_ext_zeroout(inode, &zero_ex);
3277 			if (err)
3278 				goto out;
3279 			split_map.m_lblk = map->m_lblk;
3280 			split_map.m_len = allocated;
3281 		} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3282 			/* case 2 */
3283 			if (map->m_lblk != ee_block) {
3284 				zero_ex.ee_block = ex->ee_block;
3285 				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3286 							ee_block);
3287 				ext4_ext_store_pblock(&zero_ex,
3288 						      ext4_ext_pblock(ex));
3289 				err = ext4_ext_zeroout(inode, &zero_ex);
3290 				if (err)
3291 					goto out;
3292 			}
3293 
3294 			split_map.m_lblk = ee_block;
3295 			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3296 			allocated = map->m_len;
3297 		}
3298 	}
3299 
3300 	allocated = ext4_split_extent(handle, inode, path,
3301 				      &split_map, split_flag, 0);
3302 	if (allocated < 0)
3303 		err = allocated;
3304 
3305 out:
3306 	return err ? err : allocated;
3307 }
3308 
3309 /*
3310  * This function is called by ext4_ext_map_blocks() from
3311  * ext4_get_blocks_dio_write() when DIO to write
3312  * to an uninitialized extent.
3313  *
3314  * Writing to an uninitialized extent may result in splitting the uninitialized
3315  * extent into multiple initialized/uninitialized extents (up to three)
3316  * There are three possibilities:
3317  *   a> There is no split required: Entire extent should be uninitialized
3318  *   b> Splits in two extents: Write is happening at either end of the extent
3319  *   c> Splits in three extents: Somone is writing in middle of the extent
3320  *
3321  * One of more index blocks maybe needed if the extent tree grow after
3322  * the uninitialized extent split. To prevent ENOSPC occur at the IO
3323  * complete, we need to split the uninitialized extent before DIO submit
3324  * the IO. The uninitialized extent called at this time will be split
3325  * into three uninitialized extent(at most). After IO complete, the part
3326  * being filled will be convert to initialized by the end_io callback function
3327  * via ext4_convert_unwritten_extents().
3328  *
3329  * Returns the size of uninitialized extent to be written on success.
3330  */
3331 static int ext4_split_unwritten_extents(handle_t *handle,
3332 					struct inode *inode,
3333 					struct ext4_map_blocks *map,
3334 					struct ext4_ext_path *path,
3335 					int flags)
3336 {
3337 	ext4_lblk_t eof_block;
3338 	ext4_lblk_t ee_block;
3339 	struct ext4_extent *ex;
3340 	unsigned int ee_len;
3341 	int split_flag = 0, depth;
3342 
3343 	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3344 		"block %llu, max_blocks %u\n", inode->i_ino,
3345 		(unsigned long long)map->m_lblk, map->m_len);
3346 
3347 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3348 		inode->i_sb->s_blocksize_bits;
3349 	if (eof_block < map->m_lblk + map->m_len)
3350 		eof_block = map->m_lblk + map->m_len;
3351 	/*
3352 	 * It is safe to convert extent to initialized via explicit
3353 	 * zeroout only if extent is fully insde i_size or new_size.
3354 	 */
3355 	depth = ext_depth(inode);
3356 	ex = path[depth].p_ext;
3357 	ee_block = le32_to_cpu(ex->ee_block);
3358 	ee_len = ext4_ext_get_actual_len(ex);
3359 
3360 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3361 	split_flag |= EXT4_EXT_MARK_UNINIT2;
3362 	if (flags & EXT4_GET_BLOCKS_CONVERT)
3363 		split_flag |= EXT4_EXT_DATA_VALID2;
3364 	flags |= EXT4_GET_BLOCKS_PRE_IO;
3365 	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3366 }
3367 
3368 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3369 						struct inode *inode,
3370 						struct ext4_map_blocks *map,
3371 						struct ext4_ext_path *path)
3372 {
3373 	struct ext4_extent *ex;
3374 	ext4_lblk_t ee_block;
3375 	unsigned int ee_len;
3376 	int depth;
3377 	int err = 0;
3378 
3379 	depth = ext_depth(inode);
3380 	ex = path[depth].p_ext;
3381 	ee_block = le32_to_cpu(ex->ee_block);
3382 	ee_len = ext4_ext_get_actual_len(ex);
3383 
3384 	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3385 		"block %llu, max_blocks %u\n", inode->i_ino,
3386 		  (unsigned long long)ee_block, ee_len);
3387 
3388 	/* If extent is larger than requested then split is required */
3389 	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3390 		err = ext4_split_unwritten_extents(handle, inode, map, path,
3391 						   EXT4_GET_BLOCKS_CONVERT);
3392 		if (err < 0)
3393 			goto out;
3394 		ext4_ext_drop_refs(path);
3395 		path = ext4_ext_find_extent(inode, map->m_lblk, path);
3396 		if (IS_ERR(path)) {
3397 			err = PTR_ERR(path);
3398 			goto out;
3399 		}
3400 		depth = ext_depth(inode);
3401 		ex = path[depth].p_ext;
3402 	}
3403 
3404 	err = ext4_ext_get_access(handle, inode, path + depth);
3405 	if (err)
3406 		goto out;
3407 	/* first mark the extent as initialized */
3408 	ext4_ext_mark_initialized(ex);
3409 
3410 	/* note: ext4_ext_correct_indexes() isn't needed here because
3411 	 * borders are not changed
3412 	 */
3413 	ext4_ext_try_to_merge(handle, inode, path, ex);
3414 
3415 	/* Mark modified extent as dirty */
3416 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3417 out:
3418 	ext4_ext_show_leaf(inode, path);
3419 	return err;
3420 }
3421 
3422 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3423 			sector_t block, int count)
3424 {
3425 	int i;
3426 	for (i = 0; i < count; i++)
3427                 unmap_underlying_metadata(bdev, block + i);
3428 }
3429 
3430 /*
3431  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3432  */
3433 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3434 			      ext4_lblk_t lblk,
3435 			      struct ext4_ext_path *path,
3436 			      unsigned int len)
3437 {
3438 	int i, depth;
3439 	struct ext4_extent_header *eh;
3440 	struct ext4_extent *last_ex;
3441 
3442 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3443 		return 0;
3444 
3445 	depth = ext_depth(inode);
3446 	eh = path[depth].p_hdr;
3447 
3448 	/*
3449 	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3450 	 * do not care for this case anymore. Simply remove the flag
3451 	 * if there are no extents.
3452 	 */
3453 	if (unlikely(!eh->eh_entries))
3454 		goto out;
3455 	last_ex = EXT_LAST_EXTENT(eh);
3456 	/*
3457 	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3458 	 * last block in the last extent in the file.  We test this by
3459 	 * first checking to see if the caller to
3460 	 * ext4_ext_get_blocks() was interested in the last block (or
3461 	 * a block beyond the last block) in the current extent.  If
3462 	 * this turns out to be false, we can bail out from this
3463 	 * function immediately.
3464 	 */
3465 	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3466 	    ext4_ext_get_actual_len(last_ex))
3467 		return 0;
3468 	/*
3469 	 * If the caller does appear to be planning to write at or
3470 	 * beyond the end of the current extent, we then test to see
3471 	 * if the current extent is the last extent in the file, by
3472 	 * checking to make sure it was reached via the rightmost node
3473 	 * at each level of the tree.
3474 	 */
3475 	for (i = depth-1; i >= 0; i--)
3476 		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3477 			return 0;
3478 out:
3479 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3480 	return ext4_mark_inode_dirty(handle, inode);
3481 }
3482 
3483 /**
3484  * ext4_find_delalloc_range: find delayed allocated block in the given range.
3485  *
3486  * Return 1 if there is a delalloc block in the range, otherwise 0.
3487  */
3488 int ext4_find_delalloc_range(struct inode *inode,
3489 			     ext4_lblk_t lblk_start,
3490 			     ext4_lblk_t lblk_end)
3491 {
3492 	struct extent_status es;
3493 
3494 	ext4_es_find_delayed_extent(inode, lblk_start, &es);
3495 	if (es.es_len == 0)
3496 		return 0; /* there is no delay extent in this tree */
3497 	else if (es.es_lblk <= lblk_start &&
3498 		 lblk_start < es.es_lblk + es.es_len)
3499 		return 1;
3500 	else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3501 		return 1;
3502 	else
3503 		return 0;
3504 }
3505 
3506 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3507 {
3508 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3509 	ext4_lblk_t lblk_start, lblk_end;
3510 	lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3511 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3512 
3513 	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3514 }
3515 
3516 /**
3517  * Determines how many complete clusters (out of those specified by the 'map')
3518  * are under delalloc and were reserved quota for.
3519  * This function is called when we are writing out the blocks that were
3520  * originally written with their allocation delayed, but then the space was
3521  * allocated using fallocate() before the delayed allocation could be resolved.
3522  * The cases to look for are:
3523  * ('=' indicated delayed allocated blocks
3524  *  '-' indicates non-delayed allocated blocks)
3525  * (a) partial clusters towards beginning and/or end outside of allocated range
3526  *     are not delalloc'ed.
3527  *	Ex:
3528  *	|----c---=|====c====|====c====|===-c----|
3529  *	         |++++++ allocated ++++++|
3530  *	==> 4 complete clusters in above example
3531  *
3532  * (b) partial cluster (outside of allocated range) towards either end is
3533  *     marked for delayed allocation. In this case, we will exclude that
3534  *     cluster.
3535  *	Ex:
3536  *	|----====c========|========c========|
3537  *	     |++++++ allocated ++++++|
3538  *	==> 1 complete clusters in above example
3539  *
3540  *	Ex:
3541  *	|================c================|
3542  *            |++++++ allocated ++++++|
3543  *	==> 0 complete clusters in above example
3544  *
3545  * The ext4_da_update_reserve_space will be called only if we
3546  * determine here that there were some "entire" clusters that span
3547  * this 'allocated' range.
3548  * In the non-bigalloc case, this function will just end up returning num_blks
3549  * without ever calling ext4_find_delalloc_range.
3550  */
3551 static unsigned int
3552 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3553 			   unsigned int num_blks)
3554 {
3555 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3556 	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3557 	ext4_lblk_t lblk_from, lblk_to, c_offset;
3558 	unsigned int allocated_clusters = 0;
3559 
3560 	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3561 	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3562 
3563 	/* max possible clusters for this allocation */
3564 	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3565 
3566 	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3567 
3568 	/* Check towards left side */
3569 	c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3570 	if (c_offset) {
3571 		lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3572 		lblk_to = lblk_from + c_offset - 1;
3573 
3574 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3575 			allocated_clusters--;
3576 	}
3577 
3578 	/* Now check towards right. */
3579 	c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3580 	if (allocated_clusters && c_offset) {
3581 		lblk_from = lblk_start + num_blks;
3582 		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3583 
3584 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3585 			allocated_clusters--;
3586 	}
3587 
3588 	return allocated_clusters;
3589 }
3590 
3591 static int
3592 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3593 			struct ext4_map_blocks *map,
3594 			struct ext4_ext_path *path, int flags,
3595 			unsigned int allocated, ext4_fsblk_t newblock)
3596 {
3597 	int ret = 0;
3598 	int err = 0;
3599 	ext4_io_end_t *io = ext4_inode_aio(inode);
3600 
3601 	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3602 		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
3603 		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3604 		  flags, allocated);
3605 	ext4_ext_show_leaf(inode, path);
3606 
3607 	trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3608 						    allocated, newblock);
3609 
3610 	/* get_block() before submit the IO, split the extent */
3611 	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3612 		ret = ext4_split_unwritten_extents(handle, inode, map,
3613 						   path, flags);
3614 		if (ret <= 0)
3615 			goto out;
3616 		/*
3617 		 * Flag the inode(non aio case) or end_io struct (aio case)
3618 		 * that this IO needs to conversion to written when IO is
3619 		 * completed
3620 		 */
3621 		if (io)
3622 			ext4_set_io_unwritten_flag(inode, io);
3623 		else
3624 			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3625 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3626 		if (ext4_should_dioread_nolock(inode))
3627 			map->m_flags |= EXT4_MAP_UNINIT;
3628 		goto out;
3629 	}
3630 	/* IO end_io complete, convert the filled extent to written */
3631 	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3632 		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3633 							path);
3634 		if (ret >= 0) {
3635 			ext4_update_inode_fsync_trans(handle, inode, 1);
3636 			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3637 						 path, map->m_len);
3638 		} else
3639 			err = ret;
3640 		goto out2;
3641 	}
3642 	/* buffered IO case */
3643 	/*
3644 	 * repeat fallocate creation request
3645 	 * we already have an unwritten extent
3646 	 */
3647 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
3648 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3649 		goto map_out;
3650 	}
3651 
3652 	/* buffered READ or buffered write_begin() lookup */
3653 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3654 		/*
3655 		 * We have blocks reserved already.  We
3656 		 * return allocated blocks so that delalloc
3657 		 * won't do block reservation for us.  But
3658 		 * the buffer head will be unmapped so that
3659 		 * a read from the block returns 0s.
3660 		 */
3661 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3662 		goto out1;
3663 	}
3664 
3665 	/* buffered write, writepage time, convert*/
3666 	ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3667 	if (ret >= 0)
3668 		ext4_update_inode_fsync_trans(handle, inode, 1);
3669 out:
3670 	if (ret <= 0) {
3671 		err = ret;
3672 		goto out2;
3673 	} else
3674 		allocated = ret;
3675 	map->m_flags |= EXT4_MAP_NEW;
3676 	/*
3677 	 * if we allocated more blocks than requested
3678 	 * we need to make sure we unmap the extra block
3679 	 * allocated. The actual needed block will get
3680 	 * unmapped later when we find the buffer_head marked
3681 	 * new.
3682 	 */
3683 	if (allocated > map->m_len) {
3684 		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3685 					newblock + map->m_len,
3686 					allocated - map->m_len);
3687 		allocated = map->m_len;
3688 	}
3689 
3690 	/*
3691 	 * If we have done fallocate with the offset that is already
3692 	 * delayed allocated, we would have block reservation
3693 	 * and quota reservation done in the delayed write path.
3694 	 * But fallocate would have already updated quota and block
3695 	 * count for this offset. So cancel these reservation
3696 	 */
3697 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3698 		unsigned int reserved_clusters;
3699 		reserved_clusters = get_reserved_cluster_alloc(inode,
3700 				map->m_lblk, map->m_len);
3701 		if (reserved_clusters)
3702 			ext4_da_update_reserve_space(inode,
3703 						     reserved_clusters,
3704 						     0);
3705 	}
3706 
3707 map_out:
3708 	map->m_flags |= EXT4_MAP_MAPPED;
3709 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3710 		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3711 					 map->m_len);
3712 		if (err < 0)
3713 			goto out2;
3714 	}
3715 out1:
3716 	if (allocated > map->m_len)
3717 		allocated = map->m_len;
3718 	ext4_ext_show_leaf(inode, path);
3719 	map->m_pblk = newblock;
3720 	map->m_len = allocated;
3721 out2:
3722 	if (path) {
3723 		ext4_ext_drop_refs(path);
3724 		kfree(path);
3725 	}
3726 	return err ? err : allocated;
3727 }
3728 
3729 /*
3730  * get_implied_cluster_alloc - check to see if the requested
3731  * allocation (in the map structure) overlaps with a cluster already
3732  * allocated in an extent.
3733  *	@sb	The filesystem superblock structure
3734  *	@map	The requested lblk->pblk mapping
3735  *	@ex	The extent structure which might contain an implied
3736  *			cluster allocation
3737  *
3738  * This function is called by ext4_ext_map_blocks() after we failed to
3739  * find blocks that were already in the inode's extent tree.  Hence,
3740  * we know that the beginning of the requested region cannot overlap
3741  * the extent from the inode's extent tree.  There are three cases we
3742  * want to catch.  The first is this case:
3743  *
3744  *		 |--- cluster # N--|
3745  *    |--- extent ---|	|---- requested region ---|
3746  *			|==========|
3747  *
3748  * The second case that we need to test for is this one:
3749  *
3750  *   |--------- cluster # N ----------------|
3751  *	   |--- requested region --|   |------- extent ----|
3752  *	   |=======================|
3753  *
3754  * The third case is when the requested region lies between two extents
3755  * within the same cluster:
3756  *          |------------- cluster # N-------------|
3757  * |----- ex -----|                  |---- ex_right ----|
3758  *                  |------ requested region ------|
3759  *                  |================|
3760  *
3761  * In each of the above cases, we need to set the map->m_pblk and
3762  * map->m_len so it corresponds to the return the extent labelled as
3763  * "|====|" from cluster #N, since it is already in use for data in
3764  * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
3765  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3766  * as a new "allocated" block region.  Otherwise, we will return 0 and
3767  * ext4_ext_map_blocks() will then allocate one or more new clusters
3768  * by calling ext4_mb_new_blocks().
3769  */
3770 static int get_implied_cluster_alloc(struct super_block *sb,
3771 				     struct ext4_map_blocks *map,
3772 				     struct ext4_extent *ex,
3773 				     struct ext4_ext_path *path)
3774 {
3775 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3776 	ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3777 	ext4_lblk_t ex_cluster_start, ex_cluster_end;
3778 	ext4_lblk_t rr_cluster_start;
3779 	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3780 	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3781 	unsigned short ee_len = ext4_ext_get_actual_len(ex);
3782 
3783 	/* The extent passed in that we are trying to match */
3784 	ex_cluster_start = EXT4_B2C(sbi, ee_block);
3785 	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3786 
3787 	/* The requested region passed into ext4_map_blocks() */
3788 	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3789 
3790 	if ((rr_cluster_start == ex_cluster_end) ||
3791 	    (rr_cluster_start == ex_cluster_start)) {
3792 		if (rr_cluster_start == ex_cluster_end)
3793 			ee_start += ee_len - 1;
3794 		map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3795 			c_offset;
3796 		map->m_len = min(map->m_len,
3797 				 (unsigned) sbi->s_cluster_ratio - c_offset);
3798 		/*
3799 		 * Check for and handle this case:
3800 		 *
3801 		 *   |--------- cluster # N-------------|
3802 		 *		       |------- extent ----|
3803 		 *	   |--- requested region ---|
3804 		 *	   |===========|
3805 		 */
3806 
3807 		if (map->m_lblk < ee_block)
3808 			map->m_len = min(map->m_len, ee_block - map->m_lblk);
3809 
3810 		/*
3811 		 * Check for the case where there is already another allocated
3812 		 * block to the right of 'ex' but before the end of the cluster.
3813 		 *
3814 		 *          |------------- cluster # N-------------|
3815 		 * |----- ex -----|                  |---- ex_right ----|
3816 		 *                  |------ requested region ------|
3817 		 *                  |================|
3818 		 */
3819 		if (map->m_lblk > ee_block) {
3820 			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3821 			map->m_len = min(map->m_len, next - map->m_lblk);
3822 		}
3823 
3824 		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3825 		return 1;
3826 	}
3827 
3828 	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3829 	return 0;
3830 }
3831 
3832 
3833 /*
3834  * Block allocation/map/preallocation routine for extents based files
3835  *
3836  *
3837  * Need to be called with
3838  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3839  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3840  *
3841  * return > 0, number of of blocks already mapped/allocated
3842  *          if create == 0 and these are pre-allocated blocks
3843  *          	buffer head is unmapped
3844  *          otherwise blocks are mapped
3845  *
3846  * return = 0, if plain look up failed (blocks have not been allocated)
3847  *          buffer head is unmapped
3848  *
3849  * return < 0, error case.
3850  */
3851 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3852 			struct ext4_map_blocks *map, int flags)
3853 {
3854 	struct ext4_ext_path *path = NULL;
3855 	struct ext4_extent newex, *ex, *ex2;
3856 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3857 	ext4_fsblk_t newblock = 0;
3858 	int free_on_err = 0, err = 0, depth;
3859 	unsigned int allocated = 0, offset = 0;
3860 	unsigned int allocated_clusters = 0;
3861 	struct ext4_allocation_request ar;
3862 	ext4_io_end_t *io = ext4_inode_aio(inode);
3863 	ext4_lblk_t cluster_offset;
3864 	int set_unwritten = 0;
3865 
3866 	ext_debug("blocks %u/%u requested for inode %lu\n",
3867 		  map->m_lblk, map->m_len, inode->i_ino);
3868 	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3869 
3870 	/* find extent for this block */
3871 	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3872 	if (IS_ERR(path)) {
3873 		err = PTR_ERR(path);
3874 		path = NULL;
3875 		goto out2;
3876 	}
3877 
3878 	depth = ext_depth(inode);
3879 
3880 	/*
3881 	 * consistent leaf must not be empty;
3882 	 * this situation is possible, though, _during_ tree modification;
3883 	 * this is why assert can't be put in ext4_ext_find_extent()
3884 	 */
3885 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3886 		EXT4_ERROR_INODE(inode, "bad extent address "
3887 				 "lblock: %lu, depth: %d pblock %lld",
3888 				 (unsigned long) map->m_lblk, depth,
3889 				 path[depth].p_block);
3890 		err = -EIO;
3891 		goto out2;
3892 	}
3893 
3894 	ex = path[depth].p_ext;
3895 	if (ex) {
3896 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3897 		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3898 		unsigned short ee_len;
3899 
3900 		/*
3901 		 * Uninitialized extents are treated as holes, except that
3902 		 * we split out initialized portions during a write.
3903 		 */
3904 		ee_len = ext4_ext_get_actual_len(ex);
3905 
3906 		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3907 
3908 		/* if found extent covers block, simply return it */
3909 		if (in_range(map->m_lblk, ee_block, ee_len)) {
3910 			newblock = map->m_lblk - ee_block + ee_start;
3911 			/* number of remaining blocks in the extent */
3912 			allocated = ee_len - (map->m_lblk - ee_block);
3913 			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3914 				  ee_block, ee_len, newblock);
3915 
3916 			if (!ext4_ext_is_uninitialized(ex))
3917 				goto out;
3918 
3919 			allocated = ext4_ext_handle_uninitialized_extents(
3920 				handle, inode, map, path, flags,
3921 				allocated, newblock);
3922 			goto out3;
3923 		}
3924 	}
3925 
3926 	if ((sbi->s_cluster_ratio > 1) &&
3927 	    ext4_find_delalloc_cluster(inode, map->m_lblk))
3928 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3929 
3930 	/*
3931 	 * requested block isn't allocated yet;
3932 	 * we couldn't try to create block if create flag is zero
3933 	 */
3934 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3935 		/*
3936 		 * put just found gap into cache to speed up
3937 		 * subsequent requests
3938 		 */
3939 		if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
3940 			ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3941 		goto out2;
3942 	}
3943 
3944 	/*
3945 	 * Okay, we need to do block allocation.
3946 	 */
3947 	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
3948 	newex.ee_block = cpu_to_le32(map->m_lblk);
3949 	cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3950 
3951 	/*
3952 	 * If we are doing bigalloc, check to see if the extent returned
3953 	 * by ext4_ext_find_extent() implies a cluster we can use.
3954 	 */
3955 	if (cluster_offset && ex &&
3956 	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
3957 		ar.len = allocated = map->m_len;
3958 		newblock = map->m_pblk;
3959 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3960 		goto got_allocated_blocks;
3961 	}
3962 
3963 	/* find neighbour allocated blocks */
3964 	ar.lleft = map->m_lblk;
3965 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3966 	if (err)
3967 		goto out2;
3968 	ar.lright = map->m_lblk;
3969 	ex2 = NULL;
3970 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
3971 	if (err)
3972 		goto out2;
3973 
3974 	/* Check if the extent after searching to the right implies a
3975 	 * cluster we can use. */
3976 	if ((sbi->s_cluster_ratio > 1) && ex2 &&
3977 	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
3978 		ar.len = allocated = map->m_len;
3979 		newblock = map->m_pblk;
3980 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3981 		goto got_allocated_blocks;
3982 	}
3983 
3984 	/*
3985 	 * See if request is beyond maximum number of blocks we can have in
3986 	 * a single extent. For an initialized extent this limit is
3987 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3988 	 * EXT_UNINIT_MAX_LEN.
3989 	 */
3990 	if (map->m_len > EXT_INIT_MAX_LEN &&
3991 	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3992 		map->m_len = EXT_INIT_MAX_LEN;
3993 	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3994 		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3995 		map->m_len = EXT_UNINIT_MAX_LEN;
3996 
3997 	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3998 	newex.ee_len = cpu_to_le16(map->m_len);
3999 	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4000 	if (err)
4001 		allocated = ext4_ext_get_actual_len(&newex);
4002 	else
4003 		allocated = map->m_len;
4004 
4005 	/* allocate new block */
4006 	ar.inode = inode;
4007 	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4008 	ar.logical = map->m_lblk;
4009 	/*
4010 	 * We calculate the offset from the beginning of the cluster
4011 	 * for the logical block number, since when we allocate a
4012 	 * physical cluster, the physical block should start at the
4013 	 * same offset from the beginning of the cluster.  This is
4014 	 * needed so that future calls to get_implied_cluster_alloc()
4015 	 * work correctly.
4016 	 */
4017 	offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4018 	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4019 	ar.goal -= offset;
4020 	ar.logical -= offset;
4021 	if (S_ISREG(inode->i_mode))
4022 		ar.flags = EXT4_MB_HINT_DATA;
4023 	else
4024 		/* disable in-core preallocation for non-regular files */
4025 		ar.flags = 0;
4026 	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4027 		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4028 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4029 	if (!newblock)
4030 		goto out2;
4031 	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4032 		  ar.goal, newblock, allocated);
4033 	free_on_err = 1;
4034 	allocated_clusters = ar.len;
4035 	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4036 	if (ar.len > allocated)
4037 		ar.len = allocated;
4038 
4039 got_allocated_blocks:
4040 	/* try to insert new extent into found leaf and return */
4041 	ext4_ext_store_pblock(&newex, newblock + offset);
4042 	newex.ee_len = cpu_to_le16(ar.len);
4043 	/* Mark uninitialized */
4044 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4045 		ext4_ext_mark_uninitialized(&newex);
4046 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4047 		/*
4048 		 * io_end structure was created for every IO write to an
4049 		 * uninitialized extent. To avoid unnecessary conversion,
4050 		 * here we flag the IO that really needs the conversion.
4051 		 * For non asycn direct IO case, flag the inode state
4052 		 * that we need to perform conversion when IO is done.
4053 		 */
4054 		if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4055 			set_unwritten = 1;
4056 		if (ext4_should_dioread_nolock(inode))
4057 			map->m_flags |= EXT4_MAP_UNINIT;
4058 	}
4059 
4060 	err = 0;
4061 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4062 		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4063 					 path, ar.len);
4064 	if (!err)
4065 		err = ext4_ext_insert_extent(handle, inode, path,
4066 					     &newex, flags);
4067 
4068 	if (!err && set_unwritten) {
4069 		if (io)
4070 			ext4_set_io_unwritten_flag(inode, io);
4071 		else
4072 			ext4_set_inode_state(inode,
4073 					     EXT4_STATE_DIO_UNWRITTEN);
4074 	}
4075 
4076 	if (err && free_on_err) {
4077 		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4078 			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4079 		/* free data blocks we just allocated */
4080 		/* not a good idea to call discard here directly,
4081 		 * but otherwise we'd need to call it every free() */
4082 		ext4_discard_preallocations(inode);
4083 		ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4084 				 ext4_ext_get_actual_len(&newex), fb_flags);
4085 		goto out2;
4086 	}
4087 
4088 	/* previous routine could use block we allocated */
4089 	newblock = ext4_ext_pblock(&newex);
4090 	allocated = ext4_ext_get_actual_len(&newex);
4091 	if (allocated > map->m_len)
4092 		allocated = map->m_len;
4093 	map->m_flags |= EXT4_MAP_NEW;
4094 
4095 	/*
4096 	 * Update reserved blocks/metadata blocks after successful
4097 	 * block allocation which had been deferred till now.
4098 	 */
4099 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4100 		unsigned int reserved_clusters;
4101 		/*
4102 		 * Check how many clusters we had reserved this allocated range
4103 		 */
4104 		reserved_clusters = get_reserved_cluster_alloc(inode,
4105 						map->m_lblk, allocated);
4106 		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4107 			if (reserved_clusters) {
4108 				/*
4109 				 * We have clusters reserved for this range.
4110 				 * But since we are not doing actual allocation
4111 				 * and are simply using blocks from previously
4112 				 * allocated cluster, we should release the
4113 				 * reservation and not claim quota.
4114 				 */
4115 				ext4_da_update_reserve_space(inode,
4116 						reserved_clusters, 0);
4117 			}
4118 		} else {
4119 			BUG_ON(allocated_clusters < reserved_clusters);
4120 			/* We will claim quota for all newly allocated blocks.*/
4121 			ext4_da_update_reserve_space(inode, allocated_clusters,
4122 							1);
4123 			if (reserved_clusters < allocated_clusters) {
4124 				struct ext4_inode_info *ei = EXT4_I(inode);
4125 				int reservation = allocated_clusters -
4126 						  reserved_clusters;
4127 				/*
4128 				 * It seems we claimed few clusters outside of
4129 				 * the range of this allocation. We should give
4130 				 * it back to the reservation pool. This can
4131 				 * happen in the following case:
4132 				 *
4133 				 * * Suppose s_cluster_ratio is 4 (i.e., each
4134 				 *   cluster has 4 blocks. Thus, the clusters
4135 				 *   are [0-3],[4-7],[8-11]...
4136 				 * * First comes delayed allocation write for
4137 				 *   logical blocks 10 & 11. Since there were no
4138 				 *   previous delayed allocated blocks in the
4139 				 *   range [8-11], we would reserve 1 cluster
4140 				 *   for this write.
4141 				 * * Next comes write for logical blocks 3 to 8.
4142 				 *   In this case, we will reserve 2 clusters
4143 				 *   (for [0-3] and [4-7]; and not for [8-11] as
4144 				 *   that range has a delayed allocated blocks.
4145 				 *   Thus total reserved clusters now becomes 3.
4146 				 * * Now, during the delayed allocation writeout
4147 				 *   time, we will first write blocks [3-8] and
4148 				 *   allocate 3 clusters for writing these
4149 				 *   blocks. Also, we would claim all these
4150 				 *   three clusters above.
4151 				 * * Now when we come here to writeout the
4152 				 *   blocks [10-11], we would expect to claim
4153 				 *   the reservation of 1 cluster we had made
4154 				 *   (and we would claim it since there are no
4155 				 *   more delayed allocated blocks in the range
4156 				 *   [8-11]. But our reserved cluster count had
4157 				 *   already gone to 0.
4158 				 *
4159 				 *   Thus, at the step 4 above when we determine
4160 				 *   that there are still some unwritten delayed
4161 				 *   allocated blocks outside of our current
4162 				 *   block range, we should increment the
4163 				 *   reserved clusters count so that when the
4164 				 *   remaining blocks finally gets written, we
4165 				 *   could claim them.
4166 				 */
4167 				dquot_reserve_block(inode,
4168 						EXT4_C2B(sbi, reservation));
4169 				spin_lock(&ei->i_block_reservation_lock);
4170 				ei->i_reserved_data_blocks += reservation;
4171 				spin_unlock(&ei->i_block_reservation_lock);
4172 			}
4173 		}
4174 	}
4175 
4176 	/*
4177 	 * Cache the extent and update transaction to commit on fdatasync only
4178 	 * when it is _not_ an uninitialized extent.
4179 	 */
4180 	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
4181 		ext4_update_inode_fsync_trans(handle, inode, 1);
4182 	else
4183 		ext4_update_inode_fsync_trans(handle, inode, 0);
4184 out:
4185 	if (allocated > map->m_len)
4186 		allocated = map->m_len;
4187 	ext4_ext_show_leaf(inode, path);
4188 	map->m_flags |= EXT4_MAP_MAPPED;
4189 	map->m_pblk = newblock;
4190 	map->m_len = allocated;
4191 out2:
4192 	if (path) {
4193 		ext4_ext_drop_refs(path);
4194 		kfree(path);
4195 	}
4196 
4197 out3:
4198 	trace_ext4_ext_map_blocks_exit(inode, map, err ? err : allocated);
4199 
4200 	return err ? err : allocated;
4201 }
4202 
4203 void ext4_ext_truncate(struct inode *inode)
4204 {
4205 	struct address_space *mapping = inode->i_mapping;
4206 	struct super_block *sb = inode->i_sb;
4207 	ext4_lblk_t last_block;
4208 	handle_t *handle;
4209 	loff_t page_len;
4210 	int err = 0;
4211 
4212 	/*
4213 	 * finish any pending end_io work so we won't run the risk of
4214 	 * converting any truncated blocks to initialized later
4215 	 */
4216 	ext4_flush_unwritten_io(inode);
4217 
4218 	/*
4219 	 * probably first extent we're gonna free will be last in block
4220 	 */
4221 	err = ext4_writepage_trans_blocks(inode);
4222 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, err);
4223 	if (IS_ERR(handle))
4224 		return;
4225 
4226 	if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4227 		page_len = PAGE_CACHE_SIZE -
4228 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
4229 
4230 		err = ext4_discard_partial_page_buffers(handle,
4231 			mapping, inode->i_size, page_len, 0);
4232 
4233 		if (err)
4234 			goto out_stop;
4235 	}
4236 
4237 	if (ext4_orphan_add(handle, inode))
4238 		goto out_stop;
4239 
4240 	down_write(&EXT4_I(inode)->i_data_sem);
4241 
4242 	ext4_discard_preallocations(inode);
4243 
4244 	/*
4245 	 * TODO: optimization is possible here.
4246 	 * Probably we need not scan at all,
4247 	 * because page truncation is enough.
4248 	 */
4249 
4250 	/* we have to know where to truncate from in crash case */
4251 	EXT4_I(inode)->i_disksize = inode->i_size;
4252 	ext4_mark_inode_dirty(handle, inode);
4253 
4254 	last_block = (inode->i_size + sb->s_blocksize - 1)
4255 			>> EXT4_BLOCK_SIZE_BITS(sb);
4256 	err = ext4_es_remove_extent(inode, last_block,
4257 				    EXT_MAX_BLOCKS - last_block);
4258 	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4259 
4260 	/* In a multi-transaction truncate, we only make the final
4261 	 * transaction synchronous.
4262 	 */
4263 	if (IS_SYNC(inode))
4264 		ext4_handle_sync(handle);
4265 
4266 	up_write(&EXT4_I(inode)->i_data_sem);
4267 
4268 out_stop:
4269 	/*
4270 	 * If this was a simple ftruncate() and the file will remain alive,
4271 	 * then we need to clear up the orphan record which we created above.
4272 	 * However, if this was a real unlink then we were called by
4273 	 * ext4_delete_inode(), and we allow that function to clean up the
4274 	 * orphan info for us.
4275 	 */
4276 	if (inode->i_nlink)
4277 		ext4_orphan_del(handle, inode);
4278 
4279 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4280 	ext4_mark_inode_dirty(handle, inode);
4281 	ext4_journal_stop(handle);
4282 }
4283 
4284 static void ext4_falloc_update_inode(struct inode *inode,
4285 				int mode, loff_t new_size, int update_ctime)
4286 {
4287 	struct timespec now;
4288 
4289 	if (update_ctime) {
4290 		now = current_fs_time(inode->i_sb);
4291 		if (!timespec_equal(&inode->i_ctime, &now))
4292 			inode->i_ctime = now;
4293 	}
4294 	/*
4295 	 * Update only when preallocation was requested beyond
4296 	 * the file size.
4297 	 */
4298 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4299 		if (new_size > i_size_read(inode))
4300 			i_size_write(inode, new_size);
4301 		if (new_size > EXT4_I(inode)->i_disksize)
4302 			ext4_update_i_disksize(inode, new_size);
4303 	} else {
4304 		/*
4305 		 * Mark that we allocate beyond EOF so the subsequent truncate
4306 		 * can proceed even if the new size is the same as i_size.
4307 		 */
4308 		if (new_size > i_size_read(inode))
4309 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4310 	}
4311 
4312 }
4313 
4314 /*
4315  * preallocate space for a file. This implements ext4's fallocate file
4316  * operation, which gets called from sys_fallocate system call.
4317  * For block-mapped files, posix_fallocate should fall back to the method
4318  * of writing zeroes to the required new blocks (the same behavior which is
4319  * expected for file systems which do not support fallocate() system call).
4320  */
4321 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4322 {
4323 	struct inode *inode = file->f_path.dentry->d_inode;
4324 	handle_t *handle;
4325 	loff_t new_size;
4326 	unsigned int max_blocks;
4327 	int ret = 0;
4328 	int ret2 = 0;
4329 	int retries = 0;
4330 	int flags;
4331 	struct ext4_map_blocks map;
4332 	unsigned int credits, blkbits = inode->i_blkbits;
4333 
4334 	/* Return error if mode is not supported */
4335 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4336 		return -EOPNOTSUPP;
4337 
4338 	if (mode & FALLOC_FL_PUNCH_HOLE)
4339 		return ext4_punch_hole(file, offset, len);
4340 
4341 	ret = ext4_convert_inline_data(inode);
4342 	if (ret)
4343 		return ret;
4344 
4345 	/*
4346 	 * currently supporting (pre)allocate mode for extent-based
4347 	 * files _only_
4348 	 */
4349 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4350 		return -EOPNOTSUPP;
4351 
4352 	trace_ext4_fallocate_enter(inode, offset, len, mode);
4353 	map.m_lblk = offset >> blkbits;
4354 	/*
4355 	 * We can't just convert len to max_blocks because
4356 	 * If blocksize = 4096 offset = 3072 and len = 2048
4357 	 */
4358 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4359 		- map.m_lblk;
4360 	/*
4361 	 * credits to insert 1 extent into extent tree
4362 	 */
4363 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4364 	mutex_lock(&inode->i_mutex);
4365 	ret = inode_newsize_ok(inode, (len + offset));
4366 	if (ret) {
4367 		mutex_unlock(&inode->i_mutex);
4368 		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4369 		return ret;
4370 	}
4371 	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4372 	if (mode & FALLOC_FL_KEEP_SIZE)
4373 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4374 	/*
4375 	 * Don't normalize the request if it can fit in one extent so
4376 	 * that it doesn't get unnecessarily split into multiple
4377 	 * extents.
4378 	 */
4379 	if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4380 		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4381 
4382 	/* Prevent race condition between unwritten */
4383 	ext4_flush_unwritten_io(inode);
4384 retry:
4385 	while (ret >= 0 && ret < max_blocks) {
4386 		map.m_lblk = map.m_lblk + ret;
4387 		map.m_len = max_blocks = max_blocks - ret;
4388 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4389 					    credits);
4390 		if (IS_ERR(handle)) {
4391 			ret = PTR_ERR(handle);
4392 			break;
4393 		}
4394 		ret = ext4_map_blocks(handle, inode, &map, flags);
4395 		if (ret <= 0) {
4396 #ifdef EXT4FS_DEBUG
4397 			ext4_warning(inode->i_sb,
4398 				     "inode #%lu: block %u: len %u: "
4399 				     "ext4_ext_map_blocks returned %d",
4400 				     inode->i_ino, map.m_lblk,
4401 				     map.m_len, ret);
4402 #endif
4403 			ext4_mark_inode_dirty(handle, inode);
4404 			ret2 = ext4_journal_stop(handle);
4405 			break;
4406 		}
4407 		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4408 						blkbits) >> blkbits))
4409 			new_size = offset + len;
4410 		else
4411 			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4412 
4413 		ext4_falloc_update_inode(inode, mode, new_size,
4414 					 (map.m_flags & EXT4_MAP_NEW));
4415 		ext4_mark_inode_dirty(handle, inode);
4416 		if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4417 			ext4_handle_sync(handle);
4418 		ret2 = ext4_journal_stop(handle);
4419 		if (ret2)
4420 			break;
4421 	}
4422 	if (ret == -ENOSPC &&
4423 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4424 		ret = 0;
4425 		goto retry;
4426 	}
4427 	mutex_unlock(&inode->i_mutex);
4428 	trace_ext4_fallocate_exit(inode, offset, max_blocks,
4429 				ret > 0 ? ret2 : ret);
4430 	return ret > 0 ? ret2 : ret;
4431 }
4432 
4433 /*
4434  * This function convert a range of blocks to written extents
4435  * The caller of this function will pass the start offset and the size.
4436  * all unwritten extents within this range will be converted to
4437  * written extents.
4438  *
4439  * This function is called from the direct IO end io call back
4440  * function, to convert the fallocated extents after IO is completed.
4441  * Returns 0 on success.
4442  */
4443 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4444 				    ssize_t len)
4445 {
4446 	handle_t *handle;
4447 	unsigned int max_blocks;
4448 	int ret = 0;
4449 	int ret2 = 0;
4450 	struct ext4_map_blocks map;
4451 	unsigned int credits, blkbits = inode->i_blkbits;
4452 
4453 	map.m_lblk = offset >> blkbits;
4454 	/*
4455 	 * We can't just convert len to max_blocks because
4456 	 * If blocksize = 4096 offset = 3072 and len = 2048
4457 	 */
4458 	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4459 		      map.m_lblk);
4460 	/*
4461 	 * credits to insert 1 extent into extent tree
4462 	 */
4463 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4464 	while (ret >= 0 && ret < max_blocks) {
4465 		map.m_lblk += ret;
4466 		map.m_len = (max_blocks -= ret);
4467 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
4468 		if (IS_ERR(handle)) {
4469 			ret = PTR_ERR(handle);
4470 			break;
4471 		}
4472 		ret = ext4_map_blocks(handle, inode, &map,
4473 				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4474 		if (ret <= 0)
4475 			ext4_warning(inode->i_sb,
4476 				     "inode #%lu: block %u: len %u: "
4477 				     "ext4_ext_map_blocks returned %d",
4478 				     inode->i_ino, map.m_lblk,
4479 				     map.m_len, ret);
4480 		ext4_mark_inode_dirty(handle, inode);
4481 		ret2 = ext4_journal_stop(handle);
4482 		if (ret <= 0 || ret2 )
4483 			break;
4484 	}
4485 	return ret > 0 ? ret2 : ret;
4486 }
4487 
4488 /*
4489  * If newes is not existing extent (newes->ec_pblk equals zero) find
4490  * delayed extent at start of newes and update newes accordingly and
4491  * return start of the next delayed extent.
4492  *
4493  * If newes is existing extent (newes->ec_pblk is not equal zero)
4494  * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4495  * extent found. Leave newes unmodified.
4496  */
4497 static int ext4_find_delayed_extent(struct inode *inode,
4498 				    struct extent_status *newes)
4499 {
4500 	struct extent_status es;
4501 	ext4_lblk_t block, next_del;
4502 
4503 	ext4_es_find_delayed_extent(inode, newes->es_lblk, &es);
4504 
4505 	if (newes->es_pblk == 0) {
4506 		/*
4507 		 * No extent in extent-tree contains block @newes->es_pblk,
4508 		 * then the block may stay in 1)a hole or 2)delayed-extent.
4509 		 */
4510 		if (es.es_len == 0)
4511 			/* A hole found. */
4512 			return 0;
4513 
4514 		if (es.es_lblk > newes->es_lblk) {
4515 			/* A hole found. */
4516 			newes->es_len = min(es.es_lblk - newes->es_lblk,
4517 					    newes->es_len);
4518 			return 0;
4519 		}
4520 
4521 		newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
4522 	}
4523 
4524 	block = newes->es_lblk + newes->es_len;
4525 	ext4_es_find_delayed_extent(inode, block, &es);
4526 	if (es.es_len == 0)
4527 		next_del = EXT_MAX_BLOCKS;
4528 	else
4529 		next_del = es.es_lblk;
4530 
4531 	return next_del;
4532 }
4533 /* fiemap flags we can handle specified here */
4534 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4535 
4536 static int ext4_xattr_fiemap(struct inode *inode,
4537 				struct fiemap_extent_info *fieinfo)
4538 {
4539 	__u64 physical = 0;
4540 	__u64 length;
4541 	__u32 flags = FIEMAP_EXTENT_LAST;
4542 	int blockbits = inode->i_sb->s_blocksize_bits;
4543 	int error = 0;
4544 
4545 	/* in-inode? */
4546 	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4547 		struct ext4_iloc iloc;
4548 		int offset;	/* offset of xattr in inode */
4549 
4550 		error = ext4_get_inode_loc(inode, &iloc);
4551 		if (error)
4552 			return error;
4553 		physical = iloc.bh->b_blocknr << blockbits;
4554 		offset = EXT4_GOOD_OLD_INODE_SIZE +
4555 				EXT4_I(inode)->i_extra_isize;
4556 		physical += offset;
4557 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4558 		flags |= FIEMAP_EXTENT_DATA_INLINE;
4559 		brelse(iloc.bh);
4560 	} else { /* external block */
4561 		physical = EXT4_I(inode)->i_file_acl << blockbits;
4562 		length = inode->i_sb->s_blocksize;
4563 	}
4564 
4565 	if (physical)
4566 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4567 						length, flags);
4568 	return (error < 0 ? error : 0);
4569 }
4570 
4571 /*
4572  * ext4_ext_punch_hole
4573  *
4574  * Punches a hole of "length" bytes in a file starting
4575  * at byte "offset"
4576  *
4577  * @inode:  The inode of the file to punch a hole in
4578  * @offset: The starting byte offset of the hole
4579  * @length: The length of the hole
4580  *
4581  * Returns the number of blocks removed or negative on err
4582  */
4583 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4584 {
4585 	struct inode *inode = file->f_path.dentry->d_inode;
4586 	struct super_block *sb = inode->i_sb;
4587 	ext4_lblk_t first_block, stop_block;
4588 	struct address_space *mapping = inode->i_mapping;
4589 	handle_t *handle;
4590 	loff_t first_page, last_page, page_len;
4591 	loff_t first_page_offset, last_page_offset;
4592 	int credits, err = 0;
4593 
4594 	/*
4595 	 * Write out all dirty pages to avoid race conditions
4596 	 * Then release them.
4597 	 */
4598 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4599 		err = filemap_write_and_wait_range(mapping,
4600 			offset, offset + length - 1);
4601 
4602 		if (err)
4603 			return err;
4604 	}
4605 
4606 	mutex_lock(&inode->i_mutex);
4607 	/* It's not possible punch hole on append only file */
4608 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4609 		err = -EPERM;
4610 		goto out_mutex;
4611 	}
4612 	if (IS_SWAPFILE(inode)) {
4613 		err = -ETXTBSY;
4614 		goto out_mutex;
4615 	}
4616 
4617 	/* No need to punch hole beyond i_size */
4618 	if (offset >= inode->i_size)
4619 		goto out_mutex;
4620 
4621 	/*
4622 	 * If the hole extends beyond i_size, set the hole
4623 	 * to end after the page that contains i_size
4624 	 */
4625 	if (offset + length > inode->i_size) {
4626 		length = inode->i_size +
4627 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4628 		   offset;
4629 	}
4630 
4631 	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4632 	last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4633 
4634 	first_page_offset = first_page << PAGE_CACHE_SHIFT;
4635 	last_page_offset = last_page << PAGE_CACHE_SHIFT;
4636 
4637 	/* Now release the pages */
4638 	if (last_page_offset > first_page_offset) {
4639 		truncate_pagecache_range(inode, first_page_offset,
4640 					 last_page_offset - 1);
4641 	}
4642 
4643 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4644 	ext4_inode_block_unlocked_dio(inode);
4645 	err = ext4_flush_unwritten_io(inode);
4646 	if (err)
4647 		goto out_dio;
4648 	inode_dio_wait(inode);
4649 
4650 	credits = ext4_writepage_trans_blocks(inode);
4651 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4652 	if (IS_ERR(handle)) {
4653 		err = PTR_ERR(handle);
4654 		goto out_dio;
4655 	}
4656 
4657 
4658 	/*
4659 	 * Now we need to zero out the non-page-aligned data in the
4660 	 * pages at the start and tail of the hole, and unmap the buffer
4661 	 * heads for the block aligned regions of the page that were
4662 	 * completely zeroed.
4663 	 */
4664 	if (first_page > last_page) {
4665 		/*
4666 		 * If the file space being truncated is contained within a page
4667 		 * just zero out and unmap the middle of that page
4668 		 */
4669 		err = ext4_discard_partial_page_buffers(handle,
4670 			mapping, offset, length, 0);
4671 
4672 		if (err)
4673 			goto out;
4674 	} else {
4675 		/*
4676 		 * zero out and unmap the partial page that contains
4677 		 * the start of the hole
4678 		 */
4679 		page_len  = first_page_offset - offset;
4680 		if (page_len > 0) {
4681 			err = ext4_discard_partial_page_buffers(handle, mapping,
4682 						   offset, page_len, 0);
4683 			if (err)
4684 				goto out;
4685 		}
4686 
4687 		/*
4688 		 * zero out and unmap the partial page that contains
4689 		 * the end of the hole
4690 		 */
4691 		page_len = offset + length - last_page_offset;
4692 		if (page_len > 0) {
4693 			err = ext4_discard_partial_page_buffers(handle, mapping,
4694 					last_page_offset, page_len, 0);
4695 			if (err)
4696 				goto out;
4697 		}
4698 	}
4699 
4700 	/*
4701 	 * If i_size is contained in the last page, we need to
4702 	 * unmap and zero the partial page after i_size
4703 	 */
4704 	if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4705 	   inode->i_size % PAGE_CACHE_SIZE != 0) {
4706 
4707 		page_len = PAGE_CACHE_SIZE -
4708 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
4709 
4710 		if (page_len > 0) {
4711 			err = ext4_discard_partial_page_buffers(handle,
4712 			  mapping, inode->i_size, page_len, 0);
4713 
4714 			if (err)
4715 				goto out;
4716 		}
4717 	}
4718 
4719 	first_block = (offset + sb->s_blocksize - 1) >>
4720 		EXT4_BLOCK_SIZE_BITS(sb);
4721 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4722 
4723 	/* If there are no blocks to remove, return now */
4724 	if (first_block >= stop_block)
4725 		goto out;
4726 
4727 	down_write(&EXT4_I(inode)->i_data_sem);
4728 	ext4_discard_preallocations(inode);
4729 
4730 	err = ext4_es_remove_extent(inode, first_block,
4731 				    stop_block - first_block);
4732 	err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4733 
4734 	ext4_discard_preallocations(inode);
4735 
4736 	if (IS_SYNC(inode))
4737 		ext4_handle_sync(handle);
4738 
4739 	up_write(&EXT4_I(inode)->i_data_sem);
4740 
4741 out:
4742 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4743 	ext4_mark_inode_dirty(handle, inode);
4744 	ext4_journal_stop(handle);
4745 out_dio:
4746 	ext4_inode_resume_unlocked_dio(inode);
4747 out_mutex:
4748 	mutex_unlock(&inode->i_mutex);
4749 	return err;
4750 }
4751 
4752 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4753 		__u64 start, __u64 len)
4754 {
4755 	ext4_lblk_t start_blk;
4756 	int error = 0;
4757 
4758 	if (ext4_has_inline_data(inode)) {
4759 		int has_inline = 1;
4760 
4761 		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
4762 
4763 		if (has_inline)
4764 			return error;
4765 	}
4766 
4767 	/* fallback to generic here if not in extents fmt */
4768 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4769 		return generic_block_fiemap(inode, fieinfo, start, len,
4770 			ext4_get_block);
4771 
4772 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4773 		return -EBADR;
4774 
4775 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4776 		error = ext4_xattr_fiemap(inode, fieinfo);
4777 	} else {
4778 		ext4_lblk_t len_blks;
4779 		__u64 last_blk;
4780 
4781 		start_blk = start >> inode->i_sb->s_blocksize_bits;
4782 		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4783 		if (last_blk >= EXT_MAX_BLOCKS)
4784 			last_blk = EXT_MAX_BLOCKS-1;
4785 		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4786 
4787 		/*
4788 		 * Walk the extent tree gathering extent information
4789 		 * and pushing extents back to the user.
4790 		 */
4791 		error = ext4_fill_fiemap_extents(inode, start_blk,
4792 						 len_blks, fieinfo);
4793 	}
4794 
4795 	return error;
4796 }
4797