xref: /openbmc/linux/fs/ext4/extents.c (revision 32de67569059d22b02dd9323a40220d953642b7e)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45 
46 #include <trace/events/ext4.h>
47 
48 static int ext4_split_extent(handle_t *handle,
49 				struct inode *inode,
50 				struct ext4_ext_path *path,
51 				struct ext4_map_blocks *map,
52 				int split_flag,
53 				int flags);
54 
55 static int ext4_ext_truncate_extend_restart(handle_t *handle,
56 					    struct inode *inode,
57 					    int needed)
58 {
59 	int err;
60 
61 	if (!ext4_handle_valid(handle))
62 		return 0;
63 	if (handle->h_buffer_credits > needed)
64 		return 0;
65 	err = ext4_journal_extend(handle, needed);
66 	if (err <= 0)
67 		return err;
68 	err = ext4_truncate_restart_trans(handle, inode, needed);
69 	if (err == 0)
70 		err = -EAGAIN;
71 
72 	return err;
73 }
74 
75 /*
76  * could return:
77  *  - EROFS
78  *  - ENOMEM
79  */
80 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
81 				struct ext4_ext_path *path)
82 {
83 	if (path->p_bh) {
84 		/* path points to block */
85 		return ext4_journal_get_write_access(handle, path->p_bh);
86 	}
87 	/* path points to leaf/index in inode body */
88 	/* we use in-core data, no need to protect them */
89 	return 0;
90 }
91 
92 /*
93  * could return:
94  *  - EROFS
95  *  - ENOMEM
96  *  - EIO
97  */
98 #define ext4_ext_dirty(handle, inode, path) \
99 		__ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
100 static int __ext4_ext_dirty(const char *where, unsigned int line,
101 			    handle_t *handle, struct inode *inode,
102 			    struct ext4_ext_path *path)
103 {
104 	int err;
105 	if (path->p_bh) {
106 		/* path points to block */
107 		err = __ext4_handle_dirty_metadata(where, line, handle,
108 						   inode, path->p_bh);
109 	} else {
110 		/* path points to leaf/index in inode body */
111 		err = ext4_mark_inode_dirty(handle, inode);
112 	}
113 	return err;
114 }
115 
116 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
117 			      struct ext4_ext_path *path,
118 			      ext4_lblk_t block)
119 {
120 	if (path) {
121 		int depth = path->p_depth;
122 		struct ext4_extent *ex;
123 
124 		/*
125 		 * Try to predict block placement assuming that we are
126 		 * filling in a file which will eventually be
127 		 * non-sparse --- i.e., in the case of libbfd writing
128 		 * an ELF object sections out-of-order but in a way
129 		 * the eventually results in a contiguous object or
130 		 * executable file, or some database extending a table
131 		 * space file.  However, this is actually somewhat
132 		 * non-ideal if we are writing a sparse file such as
133 		 * qemu or KVM writing a raw image file that is going
134 		 * to stay fairly sparse, since it will end up
135 		 * fragmenting the file system's free space.  Maybe we
136 		 * should have some hueristics or some way to allow
137 		 * userspace to pass a hint to file system,
138 		 * especially if the latter case turns out to be
139 		 * common.
140 		 */
141 		ex = path[depth].p_ext;
142 		if (ex) {
143 			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
144 			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
145 
146 			if (block > ext_block)
147 				return ext_pblk + (block - ext_block);
148 			else
149 				return ext_pblk - (ext_block - block);
150 		}
151 
152 		/* it looks like index is empty;
153 		 * try to find starting block from index itself */
154 		if (path[depth].p_bh)
155 			return path[depth].p_bh->b_blocknr;
156 	}
157 
158 	/* OK. use inode's group */
159 	return ext4_inode_to_goal_block(inode);
160 }
161 
162 /*
163  * Allocation for a meta data block
164  */
165 static ext4_fsblk_t
166 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
167 			struct ext4_ext_path *path,
168 			struct ext4_extent *ex, int *err, unsigned int flags)
169 {
170 	ext4_fsblk_t goal, newblock;
171 
172 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
173 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
174 					NULL, err);
175 	return newblock;
176 }
177 
178 static inline int ext4_ext_space_block(struct inode *inode, int check)
179 {
180 	int size;
181 
182 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
183 			/ sizeof(struct ext4_extent);
184 #ifdef AGGRESSIVE_TEST
185 	if (!check && size > 6)
186 		size = 6;
187 #endif
188 	return size;
189 }
190 
191 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
192 {
193 	int size;
194 
195 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
196 			/ sizeof(struct ext4_extent_idx);
197 #ifdef AGGRESSIVE_TEST
198 	if (!check && size > 5)
199 		size = 5;
200 #endif
201 	return size;
202 }
203 
204 static inline int ext4_ext_space_root(struct inode *inode, int check)
205 {
206 	int size;
207 
208 	size = sizeof(EXT4_I(inode)->i_data);
209 	size -= sizeof(struct ext4_extent_header);
210 	size /= sizeof(struct ext4_extent);
211 #ifdef AGGRESSIVE_TEST
212 	if (!check && size > 3)
213 		size = 3;
214 #endif
215 	return size;
216 }
217 
218 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
219 {
220 	int size;
221 
222 	size = sizeof(EXT4_I(inode)->i_data);
223 	size -= sizeof(struct ext4_extent_header);
224 	size /= sizeof(struct ext4_extent_idx);
225 #ifdef AGGRESSIVE_TEST
226 	if (!check && size > 4)
227 		size = 4;
228 #endif
229 	return size;
230 }
231 
232 /*
233  * Calculate the number of metadata blocks needed
234  * to allocate @blocks
235  * Worse case is one block per extent
236  */
237 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
238 {
239 	struct ext4_inode_info *ei = EXT4_I(inode);
240 	int idxs;
241 
242 	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
243 		/ sizeof(struct ext4_extent_idx));
244 
245 	/*
246 	 * If the new delayed allocation block is contiguous with the
247 	 * previous da block, it can share index blocks with the
248 	 * previous block, so we only need to allocate a new index
249 	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
250 	 * an additional index block, and at ldxs**3 blocks, yet
251 	 * another index blocks.
252 	 */
253 	if (ei->i_da_metadata_calc_len &&
254 	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
255 		int num = 0;
256 
257 		if ((ei->i_da_metadata_calc_len % idxs) == 0)
258 			num++;
259 		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
260 			num++;
261 		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
262 			num++;
263 			ei->i_da_metadata_calc_len = 0;
264 		} else
265 			ei->i_da_metadata_calc_len++;
266 		ei->i_da_metadata_calc_last_lblock++;
267 		return num;
268 	}
269 
270 	/*
271 	 * In the worst case we need a new set of index blocks at
272 	 * every level of the inode's extent tree.
273 	 */
274 	ei->i_da_metadata_calc_len = 1;
275 	ei->i_da_metadata_calc_last_lblock = lblock;
276 	return ext_depth(inode) + 1;
277 }
278 
279 static int
280 ext4_ext_max_entries(struct inode *inode, int depth)
281 {
282 	int max;
283 
284 	if (depth == ext_depth(inode)) {
285 		if (depth == 0)
286 			max = ext4_ext_space_root(inode, 1);
287 		else
288 			max = ext4_ext_space_root_idx(inode, 1);
289 	} else {
290 		if (depth == 0)
291 			max = ext4_ext_space_block(inode, 1);
292 		else
293 			max = ext4_ext_space_block_idx(inode, 1);
294 	}
295 
296 	return max;
297 }
298 
299 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
300 {
301 	ext4_fsblk_t block = ext4_ext_pblock(ext);
302 	int len = ext4_ext_get_actual_len(ext);
303 
304 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
305 }
306 
307 static int ext4_valid_extent_idx(struct inode *inode,
308 				struct ext4_extent_idx *ext_idx)
309 {
310 	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
311 
312 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
313 }
314 
315 static int ext4_valid_extent_entries(struct inode *inode,
316 				struct ext4_extent_header *eh,
317 				int depth)
318 {
319 	unsigned short entries;
320 	if (eh->eh_entries == 0)
321 		return 1;
322 
323 	entries = le16_to_cpu(eh->eh_entries);
324 
325 	if (depth == 0) {
326 		/* leaf entries */
327 		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
328 		while (entries) {
329 			if (!ext4_valid_extent(inode, ext))
330 				return 0;
331 			ext++;
332 			entries--;
333 		}
334 	} else {
335 		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
336 		while (entries) {
337 			if (!ext4_valid_extent_idx(inode, ext_idx))
338 				return 0;
339 			ext_idx++;
340 			entries--;
341 		}
342 	}
343 	return 1;
344 }
345 
346 static int __ext4_ext_check(const char *function, unsigned int line,
347 			    struct inode *inode, struct ext4_extent_header *eh,
348 			    int depth)
349 {
350 	const char *error_msg;
351 	int max = 0;
352 
353 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
354 		error_msg = "invalid magic";
355 		goto corrupted;
356 	}
357 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
358 		error_msg = "unexpected eh_depth";
359 		goto corrupted;
360 	}
361 	if (unlikely(eh->eh_max == 0)) {
362 		error_msg = "invalid eh_max";
363 		goto corrupted;
364 	}
365 	max = ext4_ext_max_entries(inode, depth);
366 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
367 		error_msg = "too large eh_max";
368 		goto corrupted;
369 	}
370 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
371 		error_msg = "invalid eh_entries";
372 		goto corrupted;
373 	}
374 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
375 		error_msg = "invalid extent entries";
376 		goto corrupted;
377 	}
378 	return 0;
379 
380 corrupted:
381 	ext4_error_inode(inode, function, line, 0,
382 			"bad header/extent: %s - magic %x, "
383 			"entries %u, max %u(%u), depth %u(%u)",
384 			error_msg, le16_to_cpu(eh->eh_magic),
385 			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
386 			max, le16_to_cpu(eh->eh_depth), depth);
387 
388 	return -EIO;
389 }
390 
391 #define ext4_ext_check(inode, eh, depth)	\
392 	__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
393 
394 int ext4_ext_check_inode(struct inode *inode)
395 {
396 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
397 }
398 
399 #ifdef EXT_DEBUG
400 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
401 {
402 	int k, l = path->p_depth;
403 
404 	ext_debug("path:");
405 	for (k = 0; k <= l; k++, path++) {
406 		if (path->p_idx) {
407 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
408 			    ext4_idx_pblock(path->p_idx));
409 		} else if (path->p_ext) {
410 			ext_debug("  %d:[%d]%d:%llu ",
411 				  le32_to_cpu(path->p_ext->ee_block),
412 				  ext4_ext_is_uninitialized(path->p_ext),
413 				  ext4_ext_get_actual_len(path->p_ext),
414 				  ext4_ext_pblock(path->p_ext));
415 		} else
416 			ext_debug("  []");
417 	}
418 	ext_debug("\n");
419 }
420 
421 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
422 {
423 	int depth = ext_depth(inode);
424 	struct ext4_extent_header *eh;
425 	struct ext4_extent *ex;
426 	int i;
427 
428 	if (!path)
429 		return;
430 
431 	eh = path[depth].p_hdr;
432 	ex = EXT_FIRST_EXTENT(eh);
433 
434 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
435 
436 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
437 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
438 			  ext4_ext_is_uninitialized(ex),
439 			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
440 	}
441 	ext_debug("\n");
442 }
443 
444 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
445 			ext4_fsblk_t newblock, int level)
446 {
447 	int depth = ext_depth(inode);
448 	struct ext4_extent *ex;
449 
450 	if (depth != level) {
451 		struct ext4_extent_idx *idx;
452 		idx = path[level].p_idx;
453 		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
454 			ext_debug("%d: move %d:%llu in new index %llu\n", level,
455 					le32_to_cpu(idx->ei_block),
456 					ext4_idx_pblock(idx),
457 					newblock);
458 			idx++;
459 		}
460 
461 		return;
462 	}
463 
464 	ex = path[depth].p_ext;
465 	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
466 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
467 				le32_to_cpu(ex->ee_block),
468 				ext4_ext_pblock(ex),
469 				ext4_ext_is_uninitialized(ex),
470 				ext4_ext_get_actual_len(ex),
471 				newblock);
472 		ex++;
473 	}
474 }
475 
476 #else
477 #define ext4_ext_show_path(inode, path)
478 #define ext4_ext_show_leaf(inode, path)
479 #define ext4_ext_show_move(inode, path, newblock, level)
480 #endif
481 
482 void ext4_ext_drop_refs(struct ext4_ext_path *path)
483 {
484 	int depth = path->p_depth;
485 	int i;
486 
487 	for (i = 0; i <= depth; i++, path++)
488 		if (path->p_bh) {
489 			brelse(path->p_bh);
490 			path->p_bh = NULL;
491 		}
492 }
493 
494 /*
495  * ext4_ext_binsearch_idx:
496  * binary search for the closest index of the given block
497  * the header must be checked before calling this
498  */
499 static void
500 ext4_ext_binsearch_idx(struct inode *inode,
501 			struct ext4_ext_path *path, ext4_lblk_t block)
502 {
503 	struct ext4_extent_header *eh = path->p_hdr;
504 	struct ext4_extent_idx *r, *l, *m;
505 
506 
507 	ext_debug("binsearch for %u(idx):  ", block);
508 
509 	l = EXT_FIRST_INDEX(eh) + 1;
510 	r = EXT_LAST_INDEX(eh);
511 	while (l <= r) {
512 		m = l + (r - l) / 2;
513 		if (block < le32_to_cpu(m->ei_block))
514 			r = m - 1;
515 		else
516 			l = m + 1;
517 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
518 				m, le32_to_cpu(m->ei_block),
519 				r, le32_to_cpu(r->ei_block));
520 	}
521 
522 	path->p_idx = l - 1;
523 	ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
524 		  ext4_idx_pblock(path->p_idx));
525 
526 #ifdef CHECK_BINSEARCH
527 	{
528 		struct ext4_extent_idx *chix, *ix;
529 		int k;
530 
531 		chix = ix = EXT_FIRST_INDEX(eh);
532 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
533 		  if (k != 0 &&
534 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
535 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
536 				       "first=0x%p\n", k,
537 				       ix, EXT_FIRST_INDEX(eh));
538 				printk(KERN_DEBUG "%u <= %u\n",
539 				       le32_to_cpu(ix->ei_block),
540 				       le32_to_cpu(ix[-1].ei_block));
541 			}
542 			BUG_ON(k && le32_to_cpu(ix->ei_block)
543 					   <= le32_to_cpu(ix[-1].ei_block));
544 			if (block < le32_to_cpu(ix->ei_block))
545 				break;
546 			chix = ix;
547 		}
548 		BUG_ON(chix != path->p_idx);
549 	}
550 #endif
551 
552 }
553 
554 /*
555  * ext4_ext_binsearch:
556  * binary search for closest extent of the given block
557  * the header must be checked before calling this
558  */
559 static void
560 ext4_ext_binsearch(struct inode *inode,
561 		struct ext4_ext_path *path, ext4_lblk_t block)
562 {
563 	struct ext4_extent_header *eh = path->p_hdr;
564 	struct ext4_extent *r, *l, *m;
565 
566 	if (eh->eh_entries == 0) {
567 		/*
568 		 * this leaf is empty:
569 		 * we get such a leaf in split/add case
570 		 */
571 		return;
572 	}
573 
574 	ext_debug("binsearch for %u:  ", block);
575 
576 	l = EXT_FIRST_EXTENT(eh) + 1;
577 	r = EXT_LAST_EXTENT(eh);
578 
579 	while (l <= r) {
580 		m = l + (r - l) / 2;
581 		if (block < le32_to_cpu(m->ee_block))
582 			r = m - 1;
583 		else
584 			l = m + 1;
585 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
586 				m, le32_to_cpu(m->ee_block),
587 				r, le32_to_cpu(r->ee_block));
588 	}
589 
590 	path->p_ext = l - 1;
591 	ext_debug("  -> %d:%llu:[%d]%d ",
592 			le32_to_cpu(path->p_ext->ee_block),
593 			ext4_ext_pblock(path->p_ext),
594 			ext4_ext_is_uninitialized(path->p_ext),
595 			ext4_ext_get_actual_len(path->p_ext));
596 
597 #ifdef CHECK_BINSEARCH
598 	{
599 		struct ext4_extent *chex, *ex;
600 		int k;
601 
602 		chex = ex = EXT_FIRST_EXTENT(eh);
603 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
604 			BUG_ON(k && le32_to_cpu(ex->ee_block)
605 					  <= le32_to_cpu(ex[-1].ee_block));
606 			if (block < le32_to_cpu(ex->ee_block))
607 				break;
608 			chex = ex;
609 		}
610 		BUG_ON(chex != path->p_ext);
611 	}
612 #endif
613 
614 }
615 
616 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
617 {
618 	struct ext4_extent_header *eh;
619 
620 	eh = ext_inode_hdr(inode);
621 	eh->eh_depth = 0;
622 	eh->eh_entries = 0;
623 	eh->eh_magic = EXT4_EXT_MAGIC;
624 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
625 	ext4_mark_inode_dirty(handle, inode);
626 	ext4_ext_invalidate_cache(inode);
627 	return 0;
628 }
629 
630 struct ext4_ext_path *
631 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
632 					struct ext4_ext_path *path)
633 {
634 	struct ext4_extent_header *eh;
635 	struct buffer_head *bh;
636 	short int depth, i, ppos = 0, alloc = 0;
637 
638 	eh = ext_inode_hdr(inode);
639 	depth = ext_depth(inode);
640 
641 	/* account possible depth increase */
642 	if (!path) {
643 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
644 				GFP_NOFS);
645 		if (!path)
646 			return ERR_PTR(-ENOMEM);
647 		alloc = 1;
648 	}
649 	path[0].p_hdr = eh;
650 	path[0].p_bh = NULL;
651 
652 	i = depth;
653 	/* walk through the tree */
654 	while (i) {
655 		int need_to_validate = 0;
656 
657 		ext_debug("depth %d: num %d, max %d\n",
658 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
659 
660 		ext4_ext_binsearch_idx(inode, path + ppos, block);
661 		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
662 		path[ppos].p_depth = i;
663 		path[ppos].p_ext = NULL;
664 
665 		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
666 		if (unlikely(!bh))
667 			goto err;
668 		if (!bh_uptodate_or_lock(bh)) {
669 			trace_ext4_ext_load_extent(inode, block,
670 						path[ppos].p_block);
671 			if (bh_submit_read(bh) < 0) {
672 				put_bh(bh);
673 				goto err;
674 			}
675 			/* validate the extent entries */
676 			need_to_validate = 1;
677 		}
678 		eh = ext_block_hdr(bh);
679 		ppos++;
680 		if (unlikely(ppos > depth)) {
681 			put_bh(bh);
682 			EXT4_ERROR_INODE(inode,
683 					 "ppos %d > depth %d", ppos, depth);
684 			goto err;
685 		}
686 		path[ppos].p_bh = bh;
687 		path[ppos].p_hdr = eh;
688 		i--;
689 
690 		if (need_to_validate && ext4_ext_check(inode, eh, i))
691 			goto err;
692 	}
693 
694 	path[ppos].p_depth = i;
695 	path[ppos].p_ext = NULL;
696 	path[ppos].p_idx = NULL;
697 
698 	/* find extent */
699 	ext4_ext_binsearch(inode, path + ppos, block);
700 	/* if not an empty leaf */
701 	if (path[ppos].p_ext)
702 		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
703 
704 	ext4_ext_show_path(inode, path);
705 
706 	return path;
707 
708 err:
709 	ext4_ext_drop_refs(path);
710 	if (alloc)
711 		kfree(path);
712 	return ERR_PTR(-EIO);
713 }
714 
715 /*
716  * ext4_ext_insert_index:
717  * insert new index [@logical;@ptr] into the block at @curp;
718  * check where to insert: before @curp or after @curp
719  */
720 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
721 				 struct ext4_ext_path *curp,
722 				 int logical, ext4_fsblk_t ptr)
723 {
724 	struct ext4_extent_idx *ix;
725 	int len, err;
726 
727 	err = ext4_ext_get_access(handle, inode, curp);
728 	if (err)
729 		return err;
730 
731 	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
732 		EXT4_ERROR_INODE(inode,
733 				 "logical %d == ei_block %d!",
734 				 logical, le32_to_cpu(curp->p_idx->ei_block));
735 		return -EIO;
736 	}
737 
738 	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
739 			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
740 		EXT4_ERROR_INODE(inode,
741 				 "eh_entries %d >= eh_max %d!",
742 				 le16_to_cpu(curp->p_hdr->eh_entries),
743 				 le16_to_cpu(curp->p_hdr->eh_max));
744 		return -EIO;
745 	}
746 
747 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
748 		/* insert after */
749 		ext_debug("insert new index %d after: %llu\n", logical, ptr);
750 		ix = curp->p_idx + 1;
751 	} else {
752 		/* insert before */
753 		ext_debug("insert new index %d before: %llu\n", logical, ptr);
754 		ix = curp->p_idx;
755 	}
756 
757 	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
758 	BUG_ON(len < 0);
759 	if (len > 0) {
760 		ext_debug("insert new index %d: "
761 				"move %d indices from 0x%p to 0x%p\n",
762 				logical, len, ix, ix + 1);
763 		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
764 	}
765 
766 	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
767 		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
768 		return -EIO;
769 	}
770 
771 	ix->ei_block = cpu_to_le32(logical);
772 	ext4_idx_store_pblock(ix, ptr);
773 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
774 
775 	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
776 		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
777 		return -EIO;
778 	}
779 
780 	err = ext4_ext_dirty(handle, inode, curp);
781 	ext4_std_error(inode->i_sb, err);
782 
783 	return err;
784 }
785 
786 /*
787  * ext4_ext_split:
788  * inserts new subtree into the path, using free index entry
789  * at depth @at:
790  * - allocates all needed blocks (new leaf and all intermediate index blocks)
791  * - makes decision where to split
792  * - moves remaining extents and index entries (right to the split point)
793  *   into the newly allocated blocks
794  * - initializes subtree
795  */
796 static int ext4_ext_split(handle_t *handle, struct inode *inode,
797 			  unsigned int flags,
798 			  struct ext4_ext_path *path,
799 			  struct ext4_extent *newext, int at)
800 {
801 	struct buffer_head *bh = NULL;
802 	int depth = ext_depth(inode);
803 	struct ext4_extent_header *neh;
804 	struct ext4_extent_idx *fidx;
805 	int i = at, k, m, a;
806 	ext4_fsblk_t newblock, oldblock;
807 	__le32 border;
808 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
809 	int err = 0;
810 
811 	/* make decision: where to split? */
812 	/* FIXME: now decision is simplest: at current extent */
813 
814 	/* if current leaf will be split, then we should use
815 	 * border from split point */
816 	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
817 		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
818 		return -EIO;
819 	}
820 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
821 		border = path[depth].p_ext[1].ee_block;
822 		ext_debug("leaf will be split."
823 				" next leaf starts at %d\n",
824 				  le32_to_cpu(border));
825 	} else {
826 		border = newext->ee_block;
827 		ext_debug("leaf will be added."
828 				" next leaf starts at %d\n",
829 				le32_to_cpu(border));
830 	}
831 
832 	/*
833 	 * If error occurs, then we break processing
834 	 * and mark filesystem read-only. index won't
835 	 * be inserted and tree will be in consistent
836 	 * state. Next mount will repair buffers too.
837 	 */
838 
839 	/*
840 	 * Get array to track all allocated blocks.
841 	 * We need this to handle errors and free blocks
842 	 * upon them.
843 	 */
844 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
845 	if (!ablocks)
846 		return -ENOMEM;
847 
848 	/* allocate all needed blocks */
849 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
850 	for (a = 0; a < depth - at; a++) {
851 		newblock = ext4_ext_new_meta_block(handle, inode, path,
852 						   newext, &err, flags);
853 		if (newblock == 0)
854 			goto cleanup;
855 		ablocks[a] = newblock;
856 	}
857 
858 	/* initialize new leaf */
859 	newblock = ablocks[--a];
860 	if (unlikely(newblock == 0)) {
861 		EXT4_ERROR_INODE(inode, "newblock == 0!");
862 		err = -EIO;
863 		goto cleanup;
864 	}
865 	bh = sb_getblk(inode->i_sb, newblock);
866 	if (!bh) {
867 		err = -EIO;
868 		goto cleanup;
869 	}
870 	lock_buffer(bh);
871 
872 	err = ext4_journal_get_create_access(handle, bh);
873 	if (err)
874 		goto cleanup;
875 
876 	neh = ext_block_hdr(bh);
877 	neh->eh_entries = 0;
878 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
879 	neh->eh_magic = EXT4_EXT_MAGIC;
880 	neh->eh_depth = 0;
881 
882 	/* move remainder of path[depth] to the new leaf */
883 	if (unlikely(path[depth].p_hdr->eh_entries !=
884 		     path[depth].p_hdr->eh_max)) {
885 		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
886 				 path[depth].p_hdr->eh_entries,
887 				 path[depth].p_hdr->eh_max);
888 		err = -EIO;
889 		goto cleanup;
890 	}
891 	/* start copy from next extent */
892 	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
893 	ext4_ext_show_move(inode, path, newblock, depth);
894 	if (m) {
895 		struct ext4_extent *ex;
896 		ex = EXT_FIRST_EXTENT(neh);
897 		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
898 		le16_add_cpu(&neh->eh_entries, m);
899 	}
900 
901 	set_buffer_uptodate(bh);
902 	unlock_buffer(bh);
903 
904 	err = ext4_handle_dirty_metadata(handle, inode, bh);
905 	if (err)
906 		goto cleanup;
907 	brelse(bh);
908 	bh = NULL;
909 
910 	/* correct old leaf */
911 	if (m) {
912 		err = ext4_ext_get_access(handle, inode, path + depth);
913 		if (err)
914 			goto cleanup;
915 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
916 		err = ext4_ext_dirty(handle, inode, path + depth);
917 		if (err)
918 			goto cleanup;
919 
920 	}
921 
922 	/* create intermediate indexes */
923 	k = depth - at - 1;
924 	if (unlikely(k < 0)) {
925 		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
926 		err = -EIO;
927 		goto cleanup;
928 	}
929 	if (k)
930 		ext_debug("create %d intermediate indices\n", k);
931 	/* insert new index into current index block */
932 	/* current depth stored in i var */
933 	i = depth - 1;
934 	while (k--) {
935 		oldblock = newblock;
936 		newblock = ablocks[--a];
937 		bh = sb_getblk(inode->i_sb, newblock);
938 		if (!bh) {
939 			err = -EIO;
940 			goto cleanup;
941 		}
942 		lock_buffer(bh);
943 
944 		err = ext4_journal_get_create_access(handle, bh);
945 		if (err)
946 			goto cleanup;
947 
948 		neh = ext_block_hdr(bh);
949 		neh->eh_entries = cpu_to_le16(1);
950 		neh->eh_magic = EXT4_EXT_MAGIC;
951 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
952 		neh->eh_depth = cpu_to_le16(depth - i);
953 		fidx = EXT_FIRST_INDEX(neh);
954 		fidx->ei_block = border;
955 		ext4_idx_store_pblock(fidx, oldblock);
956 
957 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
958 				i, newblock, le32_to_cpu(border), oldblock);
959 
960 		/* move remainder of path[i] to the new index block */
961 		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
962 					EXT_LAST_INDEX(path[i].p_hdr))) {
963 			EXT4_ERROR_INODE(inode,
964 					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
965 					 le32_to_cpu(path[i].p_ext->ee_block));
966 			err = -EIO;
967 			goto cleanup;
968 		}
969 		/* start copy indexes */
970 		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
971 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
972 				EXT_MAX_INDEX(path[i].p_hdr));
973 		ext4_ext_show_move(inode, path, newblock, i);
974 		if (m) {
975 			memmove(++fidx, path[i].p_idx,
976 				sizeof(struct ext4_extent_idx) * m);
977 			le16_add_cpu(&neh->eh_entries, m);
978 		}
979 		set_buffer_uptodate(bh);
980 		unlock_buffer(bh);
981 
982 		err = ext4_handle_dirty_metadata(handle, inode, bh);
983 		if (err)
984 			goto cleanup;
985 		brelse(bh);
986 		bh = NULL;
987 
988 		/* correct old index */
989 		if (m) {
990 			err = ext4_ext_get_access(handle, inode, path + i);
991 			if (err)
992 				goto cleanup;
993 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
994 			err = ext4_ext_dirty(handle, inode, path + i);
995 			if (err)
996 				goto cleanup;
997 		}
998 
999 		i--;
1000 	}
1001 
1002 	/* insert new index */
1003 	err = ext4_ext_insert_index(handle, inode, path + at,
1004 				    le32_to_cpu(border), newblock);
1005 
1006 cleanup:
1007 	if (bh) {
1008 		if (buffer_locked(bh))
1009 			unlock_buffer(bh);
1010 		brelse(bh);
1011 	}
1012 
1013 	if (err) {
1014 		/* free all allocated blocks in error case */
1015 		for (i = 0; i < depth; i++) {
1016 			if (!ablocks[i])
1017 				continue;
1018 			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1019 					 EXT4_FREE_BLOCKS_METADATA);
1020 		}
1021 	}
1022 	kfree(ablocks);
1023 
1024 	return err;
1025 }
1026 
1027 /*
1028  * ext4_ext_grow_indepth:
1029  * implements tree growing procedure:
1030  * - allocates new block
1031  * - moves top-level data (index block or leaf) into the new block
1032  * - initializes new top-level, creating index that points to the
1033  *   just created block
1034  */
1035 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1036 				 unsigned int flags,
1037 				 struct ext4_extent *newext)
1038 {
1039 	struct ext4_extent_header *neh;
1040 	struct buffer_head *bh;
1041 	ext4_fsblk_t newblock;
1042 	int err = 0;
1043 
1044 	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1045 		newext, &err, flags);
1046 	if (newblock == 0)
1047 		return err;
1048 
1049 	bh = sb_getblk(inode->i_sb, newblock);
1050 	if (!bh) {
1051 		err = -EIO;
1052 		ext4_std_error(inode->i_sb, err);
1053 		return err;
1054 	}
1055 	lock_buffer(bh);
1056 
1057 	err = ext4_journal_get_create_access(handle, bh);
1058 	if (err) {
1059 		unlock_buffer(bh);
1060 		goto out;
1061 	}
1062 
1063 	/* move top-level index/leaf into new block */
1064 	memmove(bh->b_data, EXT4_I(inode)->i_data,
1065 		sizeof(EXT4_I(inode)->i_data));
1066 
1067 	/* set size of new block */
1068 	neh = ext_block_hdr(bh);
1069 	/* old root could have indexes or leaves
1070 	 * so calculate e_max right way */
1071 	if (ext_depth(inode))
1072 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1073 	else
1074 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1075 	neh->eh_magic = EXT4_EXT_MAGIC;
1076 	set_buffer_uptodate(bh);
1077 	unlock_buffer(bh);
1078 
1079 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1080 	if (err)
1081 		goto out;
1082 
1083 	/* Update top-level index: num,max,pointer */
1084 	neh = ext_inode_hdr(inode);
1085 	neh->eh_entries = cpu_to_le16(1);
1086 	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1087 	if (neh->eh_depth == 0) {
1088 		/* Root extent block becomes index block */
1089 		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1090 		EXT_FIRST_INDEX(neh)->ei_block =
1091 			EXT_FIRST_EXTENT(neh)->ee_block;
1092 	}
1093 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1094 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1095 		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1096 		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1097 
1098 	neh->eh_depth = cpu_to_le16(neh->eh_depth + 1);
1099 	ext4_mark_inode_dirty(handle, inode);
1100 out:
1101 	brelse(bh);
1102 
1103 	return err;
1104 }
1105 
1106 /*
1107  * ext4_ext_create_new_leaf:
1108  * finds empty index and adds new leaf.
1109  * if no free index is found, then it requests in-depth growing.
1110  */
1111 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1112 				    unsigned int flags,
1113 				    struct ext4_ext_path *path,
1114 				    struct ext4_extent *newext)
1115 {
1116 	struct ext4_ext_path *curp;
1117 	int depth, i, err = 0;
1118 
1119 repeat:
1120 	i = depth = ext_depth(inode);
1121 
1122 	/* walk up to the tree and look for free index entry */
1123 	curp = path + depth;
1124 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1125 		i--;
1126 		curp--;
1127 	}
1128 
1129 	/* we use already allocated block for index block,
1130 	 * so subsequent data blocks should be contiguous */
1131 	if (EXT_HAS_FREE_INDEX(curp)) {
1132 		/* if we found index with free entry, then use that
1133 		 * entry: create all needed subtree and add new leaf */
1134 		err = ext4_ext_split(handle, inode, flags, path, newext, i);
1135 		if (err)
1136 			goto out;
1137 
1138 		/* refill path */
1139 		ext4_ext_drop_refs(path);
1140 		path = ext4_ext_find_extent(inode,
1141 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1142 				    path);
1143 		if (IS_ERR(path))
1144 			err = PTR_ERR(path);
1145 	} else {
1146 		/* tree is full, time to grow in depth */
1147 		err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1148 		if (err)
1149 			goto out;
1150 
1151 		/* refill path */
1152 		ext4_ext_drop_refs(path);
1153 		path = ext4_ext_find_extent(inode,
1154 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1155 				    path);
1156 		if (IS_ERR(path)) {
1157 			err = PTR_ERR(path);
1158 			goto out;
1159 		}
1160 
1161 		/*
1162 		 * only first (depth 0 -> 1) produces free space;
1163 		 * in all other cases we have to split the grown tree
1164 		 */
1165 		depth = ext_depth(inode);
1166 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1167 			/* now we need to split */
1168 			goto repeat;
1169 		}
1170 	}
1171 
1172 out:
1173 	return err;
1174 }
1175 
1176 /*
1177  * search the closest allocated block to the left for *logical
1178  * and returns it at @logical + it's physical address at @phys
1179  * if *logical is the smallest allocated block, the function
1180  * returns 0 at @phys
1181  * return value contains 0 (success) or error code
1182  */
1183 static int ext4_ext_search_left(struct inode *inode,
1184 				struct ext4_ext_path *path,
1185 				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1186 {
1187 	struct ext4_extent_idx *ix;
1188 	struct ext4_extent *ex;
1189 	int depth, ee_len;
1190 
1191 	if (unlikely(path == NULL)) {
1192 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1193 		return -EIO;
1194 	}
1195 	depth = path->p_depth;
1196 	*phys = 0;
1197 
1198 	if (depth == 0 && path->p_ext == NULL)
1199 		return 0;
1200 
1201 	/* usually extent in the path covers blocks smaller
1202 	 * then *logical, but it can be that extent is the
1203 	 * first one in the file */
1204 
1205 	ex = path[depth].p_ext;
1206 	ee_len = ext4_ext_get_actual_len(ex);
1207 	if (*logical < le32_to_cpu(ex->ee_block)) {
1208 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1209 			EXT4_ERROR_INODE(inode,
1210 					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1211 					 *logical, le32_to_cpu(ex->ee_block));
1212 			return -EIO;
1213 		}
1214 		while (--depth >= 0) {
1215 			ix = path[depth].p_idx;
1216 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1217 				EXT4_ERROR_INODE(inode,
1218 				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1219 				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1220 				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1221 		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1222 				  depth);
1223 				return -EIO;
1224 			}
1225 		}
1226 		return 0;
1227 	}
1228 
1229 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1230 		EXT4_ERROR_INODE(inode,
1231 				 "logical %d < ee_block %d + ee_len %d!",
1232 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1233 		return -EIO;
1234 	}
1235 
1236 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1237 	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1238 	return 0;
1239 }
1240 
1241 /*
1242  * search the closest allocated block to the right for *logical
1243  * and returns it at @logical + it's physical address at @phys
1244  * if *logical is the largest allocated block, the function
1245  * returns 0 at @phys
1246  * return value contains 0 (success) or error code
1247  */
1248 static int ext4_ext_search_right(struct inode *inode,
1249 				 struct ext4_ext_path *path,
1250 				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1251 				 struct ext4_extent **ret_ex)
1252 {
1253 	struct buffer_head *bh = NULL;
1254 	struct ext4_extent_header *eh;
1255 	struct ext4_extent_idx *ix;
1256 	struct ext4_extent *ex;
1257 	ext4_fsblk_t block;
1258 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1259 	int ee_len;
1260 
1261 	if (unlikely(path == NULL)) {
1262 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1263 		return -EIO;
1264 	}
1265 	depth = path->p_depth;
1266 	*phys = 0;
1267 
1268 	if (depth == 0 && path->p_ext == NULL)
1269 		return 0;
1270 
1271 	/* usually extent in the path covers blocks smaller
1272 	 * then *logical, but it can be that extent is the
1273 	 * first one in the file */
1274 
1275 	ex = path[depth].p_ext;
1276 	ee_len = ext4_ext_get_actual_len(ex);
1277 	if (*logical < le32_to_cpu(ex->ee_block)) {
1278 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1279 			EXT4_ERROR_INODE(inode,
1280 					 "first_extent(path[%d].p_hdr) != ex",
1281 					 depth);
1282 			return -EIO;
1283 		}
1284 		while (--depth >= 0) {
1285 			ix = path[depth].p_idx;
1286 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1287 				EXT4_ERROR_INODE(inode,
1288 						 "ix != EXT_FIRST_INDEX *logical %d!",
1289 						 *logical);
1290 				return -EIO;
1291 			}
1292 		}
1293 		goto found_extent;
1294 	}
1295 
1296 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1297 		EXT4_ERROR_INODE(inode,
1298 				 "logical %d < ee_block %d + ee_len %d!",
1299 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1300 		return -EIO;
1301 	}
1302 
1303 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1304 		/* next allocated block in this leaf */
1305 		ex++;
1306 		goto found_extent;
1307 	}
1308 
1309 	/* go up and search for index to the right */
1310 	while (--depth >= 0) {
1311 		ix = path[depth].p_idx;
1312 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1313 			goto got_index;
1314 	}
1315 
1316 	/* we've gone up to the root and found no index to the right */
1317 	return 0;
1318 
1319 got_index:
1320 	/* we've found index to the right, let's
1321 	 * follow it and find the closest allocated
1322 	 * block to the right */
1323 	ix++;
1324 	block = ext4_idx_pblock(ix);
1325 	while (++depth < path->p_depth) {
1326 		bh = sb_bread(inode->i_sb, block);
1327 		if (bh == NULL)
1328 			return -EIO;
1329 		eh = ext_block_hdr(bh);
1330 		/* subtract from p_depth to get proper eh_depth */
1331 		if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1332 			put_bh(bh);
1333 			return -EIO;
1334 		}
1335 		ix = EXT_FIRST_INDEX(eh);
1336 		block = ext4_idx_pblock(ix);
1337 		put_bh(bh);
1338 	}
1339 
1340 	bh = sb_bread(inode->i_sb, block);
1341 	if (bh == NULL)
1342 		return -EIO;
1343 	eh = ext_block_hdr(bh);
1344 	if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1345 		put_bh(bh);
1346 		return -EIO;
1347 	}
1348 	ex = EXT_FIRST_EXTENT(eh);
1349 found_extent:
1350 	*logical = le32_to_cpu(ex->ee_block);
1351 	*phys = ext4_ext_pblock(ex);
1352 	*ret_ex = ex;
1353 	if (bh)
1354 		put_bh(bh);
1355 	return 0;
1356 }
1357 
1358 /*
1359  * ext4_ext_next_allocated_block:
1360  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1361  * NOTE: it considers block number from index entry as
1362  * allocated block. Thus, index entries have to be consistent
1363  * with leaves.
1364  */
1365 static ext4_lblk_t
1366 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1367 {
1368 	int depth;
1369 
1370 	BUG_ON(path == NULL);
1371 	depth = path->p_depth;
1372 
1373 	if (depth == 0 && path->p_ext == NULL)
1374 		return EXT_MAX_BLOCKS;
1375 
1376 	while (depth >= 0) {
1377 		if (depth == path->p_depth) {
1378 			/* leaf */
1379 			if (path[depth].p_ext &&
1380 				path[depth].p_ext !=
1381 					EXT_LAST_EXTENT(path[depth].p_hdr))
1382 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1383 		} else {
1384 			/* index */
1385 			if (path[depth].p_idx !=
1386 					EXT_LAST_INDEX(path[depth].p_hdr))
1387 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1388 		}
1389 		depth--;
1390 	}
1391 
1392 	return EXT_MAX_BLOCKS;
1393 }
1394 
1395 /*
1396  * ext4_ext_next_leaf_block:
1397  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1398  */
1399 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1400 {
1401 	int depth;
1402 
1403 	BUG_ON(path == NULL);
1404 	depth = path->p_depth;
1405 
1406 	/* zero-tree has no leaf blocks at all */
1407 	if (depth == 0)
1408 		return EXT_MAX_BLOCKS;
1409 
1410 	/* go to index block */
1411 	depth--;
1412 
1413 	while (depth >= 0) {
1414 		if (path[depth].p_idx !=
1415 				EXT_LAST_INDEX(path[depth].p_hdr))
1416 			return (ext4_lblk_t)
1417 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1418 		depth--;
1419 	}
1420 
1421 	return EXT_MAX_BLOCKS;
1422 }
1423 
1424 /*
1425  * ext4_ext_correct_indexes:
1426  * if leaf gets modified and modified extent is first in the leaf,
1427  * then we have to correct all indexes above.
1428  * TODO: do we need to correct tree in all cases?
1429  */
1430 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1431 				struct ext4_ext_path *path)
1432 {
1433 	struct ext4_extent_header *eh;
1434 	int depth = ext_depth(inode);
1435 	struct ext4_extent *ex;
1436 	__le32 border;
1437 	int k, err = 0;
1438 
1439 	eh = path[depth].p_hdr;
1440 	ex = path[depth].p_ext;
1441 
1442 	if (unlikely(ex == NULL || eh == NULL)) {
1443 		EXT4_ERROR_INODE(inode,
1444 				 "ex %p == NULL or eh %p == NULL", ex, eh);
1445 		return -EIO;
1446 	}
1447 
1448 	if (depth == 0) {
1449 		/* there is no tree at all */
1450 		return 0;
1451 	}
1452 
1453 	if (ex != EXT_FIRST_EXTENT(eh)) {
1454 		/* we correct tree if first leaf got modified only */
1455 		return 0;
1456 	}
1457 
1458 	/*
1459 	 * TODO: we need correction if border is smaller than current one
1460 	 */
1461 	k = depth - 1;
1462 	border = path[depth].p_ext->ee_block;
1463 	err = ext4_ext_get_access(handle, inode, path + k);
1464 	if (err)
1465 		return err;
1466 	path[k].p_idx->ei_block = border;
1467 	err = ext4_ext_dirty(handle, inode, path + k);
1468 	if (err)
1469 		return err;
1470 
1471 	while (k--) {
1472 		/* change all left-side indexes */
1473 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1474 			break;
1475 		err = ext4_ext_get_access(handle, inode, path + k);
1476 		if (err)
1477 			break;
1478 		path[k].p_idx->ei_block = border;
1479 		err = ext4_ext_dirty(handle, inode, path + k);
1480 		if (err)
1481 			break;
1482 	}
1483 
1484 	return err;
1485 }
1486 
1487 int
1488 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1489 				struct ext4_extent *ex2)
1490 {
1491 	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1492 
1493 	/*
1494 	 * Make sure that either both extents are uninitialized, or
1495 	 * both are _not_.
1496 	 */
1497 	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1498 		return 0;
1499 
1500 	if (ext4_ext_is_uninitialized(ex1))
1501 		max_len = EXT_UNINIT_MAX_LEN;
1502 	else
1503 		max_len = EXT_INIT_MAX_LEN;
1504 
1505 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1506 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1507 
1508 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1509 			le32_to_cpu(ex2->ee_block))
1510 		return 0;
1511 
1512 	/*
1513 	 * To allow future support for preallocated extents to be added
1514 	 * as an RO_COMPAT feature, refuse to merge to extents if
1515 	 * this can result in the top bit of ee_len being set.
1516 	 */
1517 	if (ext1_ee_len + ext2_ee_len > max_len)
1518 		return 0;
1519 #ifdef AGGRESSIVE_TEST
1520 	if (ext1_ee_len >= 4)
1521 		return 0;
1522 #endif
1523 
1524 	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1525 		return 1;
1526 	return 0;
1527 }
1528 
1529 /*
1530  * This function tries to merge the "ex" extent to the next extent in the tree.
1531  * It always tries to merge towards right. If you want to merge towards
1532  * left, pass "ex - 1" as argument instead of "ex".
1533  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1534  * 1 if they got merged.
1535  */
1536 static int ext4_ext_try_to_merge_right(struct inode *inode,
1537 				 struct ext4_ext_path *path,
1538 				 struct ext4_extent *ex)
1539 {
1540 	struct ext4_extent_header *eh;
1541 	unsigned int depth, len;
1542 	int merge_done = 0;
1543 	int uninitialized = 0;
1544 
1545 	depth = ext_depth(inode);
1546 	BUG_ON(path[depth].p_hdr == NULL);
1547 	eh = path[depth].p_hdr;
1548 
1549 	while (ex < EXT_LAST_EXTENT(eh)) {
1550 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1551 			break;
1552 		/* merge with next extent! */
1553 		if (ext4_ext_is_uninitialized(ex))
1554 			uninitialized = 1;
1555 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1556 				+ ext4_ext_get_actual_len(ex + 1));
1557 		if (uninitialized)
1558 			ext4_ext_mark_uninitialized(ex);
1559 
1560 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1561 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1562 				* sizeof(struct ext4_extent);
1563 			memmove(ex + 1, ex + 2, len);
1564 		}
1565 		le16_add_cpu(&eh->eh_entries, -1);
1566 		merge_done = 1;
1567 		WARN_ON(eh->eh_entries == 0);
1568 		if (!eh->eh_entries)
1569 			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1570 	}
1571 
1572 	return merge_done;
1573 }
1574 
1575 /*
1576  * This function tries to merge the @ex extent to neighbours in the tree.
1577  * return 1 if merge left else 0.
1578  */
1579 static int ext4_ext_try_to_merge(struct inode *inode,
1580 				  struct ext4_ext_path *path,
1581 				  struct ext4_extent *ex) {
1582 	struct ext4_extent_header *eh;
1583 	unsigned int depth;
1584 	int merge_done = 0;
1585 	int ret = 0;
1586 
1587 	depth = ext_depth(inode);
1588 	BUG_ON(path[depth].p_hdr == NULL);
1589 	eh = path[depth].p_hdr;
1590 
1591 	if (ex > EXT_FIRST_EXTENT(eh))
1592 		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1593 
1594 	if (!merge_done)
1595 		ret = ext4_ext_try_to_merge_right(inode, path, ex);
1596 
1597 	return ret;
1598 }
1599 
1600 /*
1601  * check if a portion of the "newext" extent overlaps with an
1602  * existing extent.
1603  *
1604  * If there is an overlap discovered, it updates the length of the newext
1605  * such that there will be no overlap, and then returns 1.
1606  * If there is no overlap found, it returns 0.
1607  */
1608 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1609 					   struct inode *inode,
1610 					   struct ext4_extent *newext,
1611 					   struct ext4_ext_path *path)
1612 {
1613 	ext4_lblk_t b1, b2;
1614 	unsigned int depth, len1;
1615 	unsigned int ret = 0;
1616 
1617 	b1 = le32_to_cpu(newext->ee_block);
1618 	len1 = ext4_ext_get_actual_len(newext);
1619 	depth = ext_depth(inode);
1620 	if (!path[depth].p_ext)
1621 		goto out;
1622 	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1623 	b2 &= ~(sbi->s_cluster_ratio - 1);
1624 
1625 	/*
1626 	 * get the next allocated block if the extent in the path
1627 	 * is before the requested block(s)
1628 	 */
1629 	if (b2 < b1) {
1630 		b2 = ext4_ext_next_allocated_block(path);
1631 		if (b2 == EXT_MAX_BLOCKS)
1632 			goto out;
1633 		b2 &= ~(sbi->s_cluster_ratio - 1);
1634 	}
1635 
1636 	/* check for wrap through zero on extent logical start block*/
1637 	if (b1 + len1 < b1) {
1638 		len1 = EXT_MAX_BLOCKS - b1;
1639 		newext->ee_len = cpu_to_le16(len1);
1640 		ret = 1;
1641 	}
1642 
1643 	/* check for overlap */
1644 	if (b1 + len1 > b2) {
1645 		newext->ee_len = cpu_to_le16(b2 - b1);
1646 		ret = 1;
1647 	}
1648 out:
1649 	return ret;
1650 }
1651 
1652 /*
1653  * ext4_ext_insert_extent:
1654  * tries to merge requsted extent into the existing extent or
1655  * inserts requested extent as new one into the tree,
1656  * creating new leaf in the no-space case.
1657  */
1658 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1659 				struct ext4_ext_path *path,
1660 				struct ext4_extent *newext, int flag)
1661 {
1662 	struct ext4_extent_header *eh;
1663 	struct ext4_extent *ex, *fex;
1664 	struct ext4_extent *nearex; /* nearest extent */
1665 	struct ext4_ext_path *npath = NULL;
1666 	int depth, len, err;
1667 	ext4_lblk_t next;
1668 	unsigned uninitialized = 0;
1669 	int flags = 0;
1670 
1671 	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1672 		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1673 		return -EIO;
1674 	}
1675 	depth = ext_depth(inode);
1676 	ex = path[depth].p_ext;
1677 	if (unlikely(path[depth].p_hdr == NULL)) {
1678 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1679 		return -EIO;
1680 	}
1681 
1682 	/* try to insert block into found extent and return */
1683 	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1684 		&& ext4_can_extents_be_merged(inode, ex, newext)) {
1685 		ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1686 			  ext4_ext_is_uninitialized(newext),
1687 			  ext4_ext_get_actual_len(newext),
1688 			  le32_to_cpu(ex->ee_block),
1689 			  ext4_ext_is_uninitialized(ex),
1690 			  ext4_ext_get_actual_len(ex),
1691 			  ext4_ext_pblock(ex));
1692 		err = ext4_ext_get_access(handle, inode, path + depth);
1693 		if (err)
1694 			return err;
1695 
1696 		/*
1697 		 * ext4_can_extents_be_merged should have checked that either
1698 		 * both extents are uninitialized, or both aren't. Thus we
1699 		 * need to check only one of them here.
1700 		 */
1701 		if (ext4_ext_is_uninitialized(ex))
1702 			uninitialized = 1;
1703 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1704 					+ ext4_ext_get_actual_len(newext));
1705 		if (uninitialized)
1706 			ext4_ext_mark_uninitialized(ex);
1707 		eh = path[depth].p_hdr;
1708 		nearex = ex;
1709 		goto merge;
1710 	}
1711 
1712 	depth = ext_depth(inode);
1713 	eh = path[depth].p_hdr;
1714 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1715 		goto has_space;
1716 
1717 	/* probably next leaf has space for us? */
1718 	fex = EXT_LAST_EXTENT(eh);
1719 	next = EXT_MAX_BLOCKS;
1720 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1721 		next = ext4_ext_next_leaf_block(path);
1722 	if (next != EXT_MAX_BLOCKS) {
1723 		ext_debug("next leaf block - %u\n", next);
1724 		BUG_ON(npath != NULL);
1725 		npath = ext4_ext_find_extent(inode, next, NULL);
1726 		if (IS_ERR(npath))
1727 			return PTR_ERR(npath);
1728 		BUG_ON(npath->p_depth != path->p_depth);
1729 		eh = npath[depth].p_hdr;
1730 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1731 			ext_debug("next leaf isn't full(%d)\n",
1732 				  le16_to_cpu(eh->eh_entries));
1733 			path = npath;
1734 			goto has_space;
1735 		}
1736 		ext_debug("next leaf has no free space(%d,%d)\n",
1737 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1738 	}
1739 
1740 	/*
1741 	 * There is no free space in the found leaf.
1742 	 * We're gonna add a new leaf in the tree.
1743 	 */
1744 	if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1745 		flags = EXT4_MB_USE_ROOT_BLOCKS;
1746 	err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1747 	if (err)
1748 		goto cleanup;
1749 	depth = ext_depth(inode);
1750 	eh = path[depth].p_hdr;
1751 
1752 has_space:
1753 	nearex = path[depth].p_ext;
1754 
1755 	err = ext4_ext_get_access(handle, inode, path + depth);
1756 	if (err)
1757 		goto cleanup;
1758 
1759 	if (!nearex) {
1760 		/* there is no extent in this leaf, create first one */
1761 		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1762 				le32_to_cpu(newext->ee_block),
1763 				ext4_ext_pblock(newext),
1764 				ext4_ext_is_uninitialized(newext),
1765 				ext4_ext_get_actual_len(newext));
1766 		nearex = EXT_FIRST_EXTENT(eh);
1767 	} else {
1768 		if (le32_to_cpu(newext->ee_block)
1769 			   > le32_to_cpu(nearex->ee_block)) {
1770 			/* Insert after */
1771 			ext_debug("insert %u:%llu:[%d]%d before: "
1772 					"nearest %p\n",
1773 					le32_to_cpu(newext->ee_block),
1774 					ext4_ext_pblock(newext),
1775 					ext4_ext_is_uninitialized(newext),
1776 					ext4_ext_get_actual_len(newext),
1777 					nearex);
1778 			nearex++;
1779 		} else {
1780 			/* Insert before */
1781 			BUG_ON(newext->ee_block == nearex->ee_block);
1782 			ext_debug("insert %u:%llu:[%d]%d after: "
1783 					"nearest %p\n",
1784 					le32_to_cpu(newext->ee_block),
1785 					ext4_ext_pblock(newext),
1786 					ext4_ext_is_uninitialized(newext),
1787 					ext4_ext_get_actual_len(newext),
1788 					nearex);
1789 		}
1790 		len = EXT_LAST_EXTENT(eh) - nearex + 1;
1791 		if (len > 0) {
1792 			ext_debug("insert %u:%llu:[%d]%d: "
1793 					"move %d extents from 0x%p to 0x%p\n",
1794 					le32_to_cpu(newext->ee_block),
1795 					ext4_ext_pblock(newext),
1796 					ext4_ext_is_uninitialized(newext),
1797 					ext4_ext_get_actual_len(newext),
1798 					len, nearex, nearex + 1);
1799 			memmove(nearex + 1, nearex,
1800 				len * sizeof(struct ext4_extent));
1801 		}
1802 	}
1803 
1804 	le16_add_cpu(&eh->eh_entries, 1);
1805 	path[depth].p_ext = nearex;
1806 	nearex->ee_block = newext->ee_block;
1807 	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1808 	nearex->ee_len = newext->ee_len;
1809 
1810 merge:
1811 	/* try to merge extents to the right */
1812 	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1813 		ext4_ext_try_to_merge(inode, path, nearex);
1814 
1815 	/* try to merge extents to the left */
1816 
1817 	/* time to correct all indexes above */
1818 	err = ext4_ext_correct_indexes(handle, inode, path);
1819 	if (err)
1820 		goto cleanup;
1821 
1822 	err = ext4_ext_dirty(handle, inode, path + depth);
1823 
1824 cleanup:
1825 	if (npath) {
1826 		ext4_ext_drop_refs(npath);
1827 		kfree(npath);
1828 	}
1829 	ext4_ext_invalidate_cache(inode);
1830 	return err;
1831 }
1832 
1833 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1834 			       ext4_lblk_t num, ext_prepare_callback func,
1835 			       void *cbdata)
1836 {
1837 	struct ext4_ext_path *path = NULL;
1838 	struct ext4_ext_cache cbex;
1839 	struct ext4_extent *ex;
1840 	ext4_lblk_t next, start = 0, end = 0;
1841 	ext4_lblk_t last = block + num;
1842 	int depth, exists, err = 0;
1843 
1844 	BUG_ON(func == NULL);
1845 	BUG_ON(inode == NULL);
1846 
1847 	while (block < last && block != EXT_MAX_BLOCKS) {
1848 		num = last - block;
1849 		/* find extent for this block */
1850 		down_read(&EXT4_I(inode)->i_data_sem);
1851 		path = ext4_ext_find_extent(inode, block, path);
1852 		up_read(&EXT4_I(inode)->i_data_sem);
1853 		if (IS_ERR(path)) {
1854 			err = PTR_ERR(path);
1855 			path = NULL;
1856 			break;
1857 		}
1858 
1859 		depth = ext_depth(inode);
1860 		if (unlikely(path[depth].p_hdr == NULL)) {
1861 			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1862 			err = -EIO;
1863 			break;
1864 		}
1865 		ex = path[depth].p_ext;
1866 		next = ext4_ext_next_allocated_block(path);
1867 
1868 		exists = 0;
1869 		if (!ex) {
1870 			/* there is no extent yet, so try to allocate
1871 			 * all requested space */
1872 			start = block;
1873 			end = block + num;
1874 		} else if (le32_to_cpu(ex->ee_block) > block) {
1875 			/* need to allocate space before found extent */
1876 			start = block;
1877 			end = le32_to_cpu(ex->ee_block);
1878 			if (block + num < end)
1879 				end = block + num;
1880 		} else if (block >= le32_to_cpu(ex->ee_block)
1881 					+ ext4_ext_get_actual_len(ex)) {
1882 			/* need to allocate space after found extent */
1883 			start = block;
1884 			end = block + num;
1885 			if (end >= next)
1886 				end = next;
1887 		} else if (block >= le32_to_cpu(ex->ee_block)) {
1888 			/*
1889 			 * some part of requested space is covered
1890 			 * by found extent
1891 			 */
1892 			start = block;
1893 			end = le32_to_cpu(ex->ee_block)
1894 				+ ext4_ext_get_actual_len(ex);
1895 			if (block + num < end)
1896 				end = block + num;
1897 			exists = 1;
1898 		} else {
1899 			BUG();
1900 		}
1901 		BUG_ON(end <= start);
1902 
1903 		if (!exists) {
1904 			cbex.ec_block = start;
1905 			cbex.ec_len = end - start;
1906 			cbex.ec_start = 0;
1907 		} else {
1908 			cbex.ec_block = le32_to_cpu(ex->ee_block);
1909 			cbex.ec_len = ext4_ext_get_actual_len(ex);
1910 			cbex.ec_start = ext4_ext_pblock(ex);
1911 		}
1912 
1913 		if (unlikely(cbex.ec_len == 0)) {
1914 			EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1915 			err = -EIO;
1916 			break;
1917 		}
1918 		err = func(inode, next, &cbex, ex, cbdata);
1919 		ext4_ext_drop_refs(path);
1920 
1921 		if (err < 0)
1922 			break;
1923 
1924 		if (err == EXT_REPEAT)
1925 			continue;
1926 		else if (err == EXT_BREAK) {
1927 			err = 0;
1928 			break;
1929 		}
1930 
1931 		if (ext_depth(inode) != depth) {
1932 			/* depth was changed. we have to realloc path */
1933 			kfree(path);
1934 			path = NULL;
1935 		}
1936 
1937 		block = cbex.ec_block + cbex.ec_len;
1938 	}
1939 
1940 	if (path) {
1941 		ext4_ext_drop_refs(path);
1942 		kfree(path);
1943 	}
1944 
1945 	return err;
1946 }
1947 
1948 static void
1949 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1950 			__u32 len, ext4_fsblk_t start)
1951 {
1952 	struct ext4_ext_cache *cex;
1953 	BUG_ON(len == 0);
1954 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1955 	trace_ext4_ext_put_in_cache(inode, block, len, start);
1956 	cex = &EXT4_I(inode)->i_cached_extent;
1957 	cex->ec_block = block;
1958 	cex->ec_len = len;
1959 	cex->ec_start = start;
1960 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1961 }
1962 
1963 /*
1964  * ext4_ext_put_gap_in_cache:
1965  * calculate boundaries of the gap that the requested block fits into
1966  * and cache this gap
1967  */
1968 static void
1969 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1970 				ext4_lblk_t block)
1971 {
1972 	int depth = ext_depth(inode);
1973 	unsigned long len;
1974 	ext4_lblk_t lblock;
1975 	struct ext4_extent *ex;
1976 
1977 	ex = path[depth].p_ext;
1978 	if (ex == NULL) {
1979 		/* there is no extent yet, so gap is [0;-] */
1980 		lblock = 0;
1981 		len = EXT_MAX_BLOCKS;
1982 		ext_debug("cache gap(whole file):");
1983 	} else if (block < le32_to_cpu(ex->ee_block)) {
1984 		lblock = block;
1985 		len = le32_to_cpu(ex->ee_block) - block;
1986 		ext_debug("cache gap(before): %u [%u:%u]",
1987 				block,
1988 				le32_to_cpu(ex->ee_block),
1989 				 ext4_ext_get_actual_len(ex));
1990 	} else if (block >= le32_to_cpu(ex->ee_block)
1991 			+ ext4_ext_get_actual_len(ex)) {
1992 		ext4_lblk_t next;
1993 		lblock = le32_to_cpu(ex->ee_block)
1994 			+ ext4_ext_get_actual_len(ex);
1995 
1996 		next = ext4_ext_next_allocated_block(path);
1997 		ext_debug("cache gap(after): [%u:%u] %u",
1998 				le32_to_cpu(ex->ee_block),
1999 				ext4_ext_get_actual_len(ex),
2000 				block);
2001 		BUG_ON(next == lblock);
2002 		len = next - lblock;
2003 	} else {
2004 		lblock = len = 0;
2005 		BUG();
2006 	}
2007 
2008 	ext_debug(" -> %u:%lu\n", lblock, len);
2009 	ext4_ext_put_in_cache(inode, lblock, len, 0);
2010 }
2011 
2012 /*
2013  * ext4_ext_check_cache()
2014  * Checks to see if the given block is in the cache.
2015  * If it is, the cached extent is stored in the given
2016  * cache extent pointer.  If the cached extent is a hole,
2017  * this routine should be used instead of
2018  * ext4_ext_in_cache if the calling function needs to
2019  * know the size of the hole.
2020  *
2021  * @inode: The files inode
2022  * @block: The block to look for in the cache
2023  * @ex:    Pointer where the cached extent will be stored
2024  *         if it contains block
2025  *
2026  * Return 0 if cache is invalid; 1 if the cache is valid
2027  */
2028 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2029 	struct ext4_ext_cache *ex){
2030 	struct ext4_ext_cache *cex;
2031 	struct ext4_sb_info *sbi;
2032 	int ret = 0;
2033 
2034 	/*
2035 	 * We borrow i_block_reservation_lock to protect i_cached_extent
2036 	 */
2037 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2038 	cex = &EXT4_I(inode)->i_cached_extent;
2039 	sbi = EXT4_SB(inode->i_sb);
2040 
2041 	/* has cache valid data? */
2042 	if (cex->ec_len == 0)
2043 		goto errout;
2044 
2045 	if (in_range(block, cex->ec_block, cex->ec_len)) {
2046 		memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2047 		ext_debug("%u cached by %u:%u:%llu\n",
2048 				block,
2049 				cex->ec_block, cex->ec_len, cex->ec_start);
2050 		ret = 1;
2051 	}
2052 errout:
2053 	if (!ret)
2054 		sbi->extent_cache_misses++;
2055 	else
2056 		sbi->extent_cache_hits++;
2057 	trace_ext4_ext_in_cache(inode, block, ret);
2058 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2059 	return ret;
2060 }
2061 
2062 /*
2063  * ext4_ext_in_cache()
2064  * Checks to see if the given block is in the cache.
2065  * If it is, the cached extent is stored in the given
2066  * extent pointer.
2067  *
2068  * @inode: The files inode
2069  * @block: The block to look for in the cache
2070  * @ex:    Pointer where the cached extent will be stored
2071  *         if it contains block
2072  *
2073  * Return 0 if cache is invalid; 1 if the cache is valid
2074  */
2075 static int
2076 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2077 			struct ext4_extent *ex)
2078 {
2079 	struct ext4_ext_cache cex;
2080 	int ret = 0;
2081 
2082 	if (ext4_ext_check_cache(inode, block, &cex)) {
2083 		ex->ee_block = cpu_to_le32(cex.ec_block);
2084 		ext4_ext_store_pblock(ex, cex.ec_start);
2085 		ex->ee_len = cpu_to_le16(cex.ec_len);
2086 		ret = 1;
2087 	}
2088 
2089 	return ret;
2090 }
2091 
2092 
2093 /*
2094  * ext4_ext_rm_idx:
2095  * removes index from the index block.
2096  */
2097 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2098 			struct ext4_ext_path *path)
2099 {
2100 	int err;
2101 	ext4_fsblk_t leaf;
2102 
2103 	/* free index block */
2104 	path--;
2105 	leaf = ext4_idx_pblock(path->p_idx);
2106 	if (unlikely(path->p_hdr->eh_entries == 0)) {
2107 		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2108 		return -EIO;
2109 	}
2110 	err = ext4_ext_get_access(handle, inode, path);
2111 	if (err)
2112 		return err;
2113 
2114 	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2115 		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2116 		len *= sizeof(struct ext4_extent_idx);
2117 		memmove(path->p_idx, path->p_idx + 1, len);
2118 	}
2119 
2120 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2121 	err = ext4_ext_dirty(handle, inode, path);
2122 	if (err)
2123 		return err;
2124 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2125 	trace_ext4_ext_rm_idx(inode, leaf);
2126 
2127 	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2128 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2129 	return err;
2130 }
2131 
2132 /*
2133  * ext4_ext_calc_credits_for_single_extent:
2134  * This routine returns max. credits that needed to insert an extent
2135  * to the extent tree.
2136  * When pass the actual path, the caller should calculate credits
2137  * under i_data_sem.
2138  */
2139 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2140 						struct ext4_ext_path *path)
2141 {
2142 	if (path) {
2143 		int depth = ext_depth(inode);
2144 		int ret = 0;
2145 
2146 		/* probably there is space in leaf? */
2147 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2148 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2149 
2150 			/*
2151 			 *  There are some space in the leaf tree, no
2152 			 *  need to account for leaf block credit
2153 			 *
2154 			 *  bitmaps and block group descriptor blocks
2155 			 *  and other metadata blocks still need to be
2156 			 *  accounted.
2157 			 */
2158 			/* 1 bitmap, 1 block group descriptor */
2159 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2160 			return ret;
2161 		}
2162 	}
2163 
2164 	return ext4_chunk_trans_blocks(inode, nrblocks);
2165 }
2166 
2167 /*
2168  * How many index/leaf blocks need to change/allocate to modify nrblocks?
2169  *
2170  * if nrblocks are fit in a single extent (chunk flag is 1), then
2171  * in the worse case, each tree level index/leaf need to be changed
2172  * if the tree split due to insert a new extent, then the old tree
2173  * index/leaf need to be updated too
2174  *
2175  * If the nrblocks are discontiguous, they could cause
2176  * the whole tree split more than once, but this is really rare.
2177  */
2178 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2179 {
2180 	int index;
2181 	int depth = ext_depth(inode);
2182 
2183 	if (chunk)
2184 		index = depth * 2;
2185 	else
2186 		index = depth * 3;
2187 
2188 	return index;
2189 }
2190 
2191 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2192 			      struct ext4_extent *ex,
2193 			      ext4_fsblk_t *partial_cluster,
2194 			      ext4_lblk_t from, ext4_lblk_t to)
2195 {
2196 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2197 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2198 	ext4_fsblk_t pblk;
2199 	int flags = EXT4_FREE_BLOCKS_FORGET;
2200 
2201 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2202 		flags |= EXT4_FREE_BLOCKS_METADATA;
2203 	/*
2204 	 * For bigalloc file systems, we never free a partial cluster
2205 	 * at the beginning of the extent.  Instead, we make a note
2206 	 * that we tried freeing the cluster, and check to see if we
2207 	 * need to free it on a subsequent call to ext4_remove_blocks,
2208 	 * or at the end of the ext4_truncate() operation.
2209 	 */
2210 	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2211 
2212 	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2213 	/*
2214 	 * If we have a partial cluster, and it's different from the
2215 	 * cluster of the last block, we need to explicitly free the
2216 	 * partial cluster here.
2217 	 */
2218 	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2219 	if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2220 		ext4_free_blocks(handle, inode, NULL,
2221 				 EXT4_C2B(sbi, *partial_cluster),
2222 				 sbi->s_cluster_ratio, flags);
2223 		*partial_cluster = 0;
2224 	}
2225 
2226 #ifdef EXTENTS_STATS
2227 	{
2228 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2229 		spin_lock(&sbi->s_ext_stats_lock);
2230 		sbi->s_ext_blocks += ee_len;
2231 		sbi->s_ext_extents++;
2232 		if (ee_len < sbi->s_ext_min)
2233 			sbi->s_ext_min = ee_len;
2234 		if (ee_len > sbi->s_ext_max)
2235 			sbi->s_ext_max = ee_len;
2236 		if (ext_depth(inode) > sbi->s_depth_max)
2237 			sbi->s_depth_max = ext_depth(inode);
2238 		spin_unlock(&sbi->s_ext_stats_lock);
2239 	}
2240 #endif
2241 	if (from >= le32_to_cpu(ex->ee_block)
2242 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2243 		/* tail removal */
2244 		ext4_lblk_t num;
2245 
2246 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2247 		pblk = ext4_ext_pblock(ex) + ee_len - num;
2248 		ext_debug("free last %u blocks starting %llu\n", num, pblk);
2249 		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2250 		/*
2251 		 * If the block range to be freed didn't start at the
2252 		 * beginning of a cluster, and we removed the entire
2253 		 * extent, save the partial cluster here, since we
2254 		 * might need to delete if we determine that the
2255 		 * truncate operation has removed all of the blocks in
2256 		 * the cluster.
2257 		 */
2258 		if (pblk & (sbi->s_cluster_ratio - 1) &&
2259 		    (ee_len == num))
2260 			*partial_cluster = EXT4_B2C(sbi, pblk);
2261 		else
2262 			*partial_cluster = 0;
2263 	} else if (from == le32_to_cpu(ex->ee_block)
2264 		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2265 		/* head removal */
2266 		ext4_lblk_t num;
2267 		ext4_fsblk_t start;
2268 
2269 		num = to - from;
2270 		start = ext4_ext_pblock(ex);
2271 
2272 		ext_debug("free first %u blocks starting %llu\n", num, start);
2273 		ext4_free_blocks(handle, inode, NULL, start, num, flags);
2274 
2275 	} else {
2276 		printk(KERN_INFO "strange request: removal(2) "
2277 				"%u-%u from %u:%u\n",
2278 				from, to, le32_to_cpu(ex->ee_block), ee_len);
2279 	}
2280 	return 0;
2281 }
2282 
2283 
2284 /*
2285  * ext4_ext_rm_leaf() Removes the extents associated with the
2286  * blocks appearing between "start" and "end", and splits the extents
2287  * if "start" and "end" appear in the same extent
2288  *
2289  * @handle: The journal handle
2290  * @inode:  The files inode
2291  * @path:   The path to the leaf
2292  * @start:  The first block to remove
2293  * @end:   The last block to remove
2294  */
2295 static int
2296 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2297 		 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2298 		 ext4_lblk_t start, ext4_lblk_t end)
2299 {
2300 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2301 	int err = 0, correct_index = 0;
2302 	int depth = ext_depth(inode), credits;
2303 	struct ext4_extent_header *eh;
2304 	ext4_lblk_t a, b;
2305 	unsigned num;
2306 	ext4_lblk_t ex_ee_block;
2307 	unsigned short ex_ee_len;
2308 	unsigned uninitialized = 0;
2309 	struct ext4_extent *ex;
2310 
2311 	/* the header must be checked already in ext4_ext_remove_space() */
2312 	ext_debug("truncate since %u in leaf\n", start);
2313 	if (!path[depth].p_hdr)
2314 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2315 	eh = path[depth].p_hdr;
2316 	if (unlikely(path[depth].p_hdr == NULL)) {
2317 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2318 		return -EIO;
2319 	}
2320 	/* find where to start removing */
2321 	ex = EXT_LAST_EXTENT(eh);
2322 
2323 	ex_ee_block = le32_to_cpu(ex->ee_block);
2324 	ex_ee_len = ext4_ext_get_actual_len(ex);
2325 
2326 	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2327 
2328 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2329 			ex_ee_block + ex_ee_len > start) {
2330 
2331 		if (ext4_ext_is_uninitialized(ex))
2332 			uninitialized = 1;
2333 		else
2334 			uninitialized = 0;
2335 
2336 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2337 			 uninitialized, ex_ee_len);
2338 		path[depth].p_ext = ex;
2339 
2340 		a = ex_ee_block > start ? ex_ee_block : start;
2341 		b = ex_ee_block+ex_ee_len - 1 < end ?
2342 			ex_ee_block+ex_ee_len - 1 : end;
2343 
2344 		ext_debug("  border %u:%u\n", a, b);
2345 
2346 		/* If this extent is beyond the end of the hole, skip it */
2347 		if (end <= ex_ee_block) {
2348 			ex--;
2349 			ex_ee_block = le32_to_cpu(ex->ee_block);
2350 			ex_ee_len = ext4_ext_get_actual_len(ex);
2351 			continue;
2352 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2353 			EXT4_ERROR_INODE(inode,"  bad truncate %u:%u\n",
2354 					 start, end);
2355 			err = -EIO;
2356 			goto out;
2357 		} else if (a != ex_ee_block) {
2358 			/* remove tail of the extent */
2359 			num = a - ex_ee_block;
2360 		} else {
2361 			/* remove whole extent: excellent! */
2362 			num = 0;
2363 		}
2364 		/*
2365 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2366 		 * descriptor) for each block group; assume two block
2367 		 * groups plus ex_ee_len/blocks_per_block_group for
2368 		 * the worst case
2369 		 */
2370 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2371 		if (ex == EXT_FIRST_EXTENT(eh)) {
2372 			correct_index = 1;
2373 			credits += (ext_depth(inode)) + 1;
2374 		}
2375 		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2376 
2377 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2378 		if (err)
2379 			goto out;
2380 
2381 		err = ext4_ext_get_access(handle, inode, path + depth);
2382 		if (err)
2383 			goto out;
2384 
2385 		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2386 					 a, b);
2387 		if (err)
2388 			goto out;
2389 
2390 		if (num == 0)
2391 			/* this extent is removed; mark slot entirely unused */
2392 			ext4_ext_store_pblock(ex, 0);
2393 
2394 		ex->ee_len = cpu_to_le16(num);
2395 		/*
2396 		 * Do not mark uninitialized if all the blocks in the
2397 		 * extent have been removed.
2398 		 */
2399 		if (uninitialized && num)
2400 			ext4_ext_mark_uninitialized(ex);
2401 		/*
2402 		 * If the extent was completely released,
2403 		 * we need to remove it from the leaf
2404 		 */
2405 		if (num == 0) {
2406 			if (end != EXT_MAX_BLOCKS - 1) {
2407 				/*
2408 				 * For hole punching, we need to scoot all the
2409 				 * extents up when an extent is removed so that
2410 				 * we dont have blank extents in the middle
2411 				 */
2412 				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2413 					sizeof(struct ext4_extent));
2414 
2415 				/* Now get rid of the one at the end */
2416 				memset(EXT_LAST_EXTENT(eh), 0,
2417 					sizeof(struct ext4_extent));
2418 			}
2419 			le16_add_cpu(&eh->eh_entries, -1);
2420 		} else
2421 			*partial_cluster = 0;
2422 
2423 		err = ext4_ext_dirty(handle, inode, path + depth);
2424 		if (err)
2425 			goto out;
2426 
2427 		ext_debug("new extent: %u:%u:%llu\n", block, num,
2428 				ext4_ext_pblock(ex));
2429 		ex--;
2430 		ex_ee_block = le32_to_cpu(ex->ee_block);
2431 		ex_ee_len = ext4_ext_get_actual_len(ex);
2432 	}
2433 
2434 	if (correct_index && eh->eh_entries)
2435 		err = ext4_ext_correct_indexes(handle, inode, path);
2436 
2437 	/*
2438 	 * If there is still a entry in the leaf node, check to see if
2439 	 * it references the partial cluster.  This is the only place
2440 	 * where it could; if it doesn't, we can free the cluster.
2441 	 */
2442 	if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2443 	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2444 	     *partial_cluster)) {
2445 		int flags = EXT4_FREE_BLOCKS_FORGET;
2446 
2447 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2448 			flags |= EXT4_FREE_BLOCKS_METADATA;
2449 
2450 		ext4_free_blocks(handle, inode, NULL,
2451 				 EXT4_C2B(sbi, *partial_cluster),
2452 				 sbi->s_cluster_ratio, flags);
2453 		*partial_cluster = 0;
2454 	}
2455 
2456 	/* if this leaf is free, then we should
2457 	 * remove it from index block above */
2458 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2459 		err = ext4_ext_rm_idx(handle, inode, path + depth);
2460 
2461 out:
2462 	return err;
2463 }
2464 
2465 /*
2466  * ext4_ext_more_to_rm:
2467  * returns 1 if current index has to be freed (even partial)
2468  */
2469 static int
2470 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2471 {
2472 	BUG_ON(path->p_idx == NULL);
2473 
2474 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2475 		return 0;
2476 
2477 	/*
2478 	 * if truncate on deeper level happened, it wasn't partial,
2479 	 * so we have to consider current index for truncation
2480 	 */
2481 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2482 		return 0;
2483 	return 1;
2484 }
2485 
2486 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2487 {
2488 	struct super_block *sb = inode->i_sb;
2489 	int depth = ext_depth(inode);
2490 	struct ext4_ext_path *path;
2491 	ext4_fsblk_t partial_cluster = 0;
2492 	handle_t *handle;
2493 	int i, err;
2494 
2495 	ext_debug("truncate since %u\n", start);
2496 
2497 	/* probably first extent we're gonna free will be last in block */
2498 	handle = ext4_journal_start(inode, depth + 1);
2499 	if (IS_ERR(handle))
2500 		return PTR_ERR(handle);
2501 
2502 again:
2503 	ext4_ext_invalidate_cache(inode);
2504 
2505 	trace_ext4_ext_remove_space(inode, start, depth);
2506 
2507 	/*
2508 	 * We start scanning from right side, freeing all the blocks
2509 	 * after i_size and walking into the tree depth-wise.
2510 	 */
2511 	depth = ext_depth(inode);
2512 	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2513 	if (path == NULL) {
2514 		ext4_journal_stop(handle);
2515 		return -ENOMEM;
2516 	}
2517 	path[0].p_depth = depth;
2518 	path[0].p_hdr = ext_inode_hdr(inode);
2519 	if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2520 		err = -EIO;
2521 		goto out;
2522 	}
2523 	i = err = 0;
2524 
2525 	while (i >= 0 && err == 0) {
2526 		if (i == depth) {
2527 			/* this is leaf block */
2528 			err = ext4_ext_rm_leaf(handle, inode, path,
2529 					       &partial_cluster, start,
2530 					       EXT_MAX_BLOCKS - 1);
2531 			/* root level has p_bh == NULL, brelse() eats this */
2532 			brelse(path[i].p_bh);
2533 			path[i].p_bh = NULL;
2534 			i--;
2535 			continue;
2536 		}
2537 
2538 		/* this is index block */
2539 		if (!path[i].p_hdr) {
2540 			ext_debug("initialize header\n");
2541 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2542 		}
2543 
2544 		if (!path[i].p_idx) {
2545 			/* this level hasn't been touched yet */
2546 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2547 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2548 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2549 				  path[i].p_hdr,
2550 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2551 		} else {
2552 			/* we were already here, see at next index */
2553 			path[i].p_idx--;
2554 		}
2555 
2556 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2557 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2558 				path[i].p_idx);
2559 		if (ext4_ext_more_to_rm(path + i)) {
2560 			struct buffer_head *bh;
2561 			/* go to the next level */
2562 			ext_debug("move to level %d (block %llu)\n",
2563 				  i + 1, ext4_idx_pblock(path[i].p_idx));
2564 			memset(path + i + 1, 0, sizeof(*path));
2565 			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2566 			if (!bh) {
2567 				/* should we reset i_size? */
2568 				err = -EIO;
2569 				break;
2570 			}
2571 			if (WARN_ON(i + 1 > depth)) {
2572 				err = -EIO;
2573 				break;
2574 			}
2575 			if (ext4_ext_check(inode, ext_block_hdr(bh),
2576 							depth - i - 1)) {
2577 				err = -EIO;
2578 				break;
2579 			}
2580 			path[i + 1].p_bh = bh;
2581 
2582 			/* save actual number of indexes since this
2583 			 * number is changed at the next iteration */
2584 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2585 			i++;
2586 		} else {
2587 			/* we finished processing this index, go up */
2588 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2589 				/* index is empty, remove it;
2590 				 * handle must be already prepared by the
2591 				 * truncatei_leaf() */
2592 				err = ext4_ext_rm_idx(handle, inode, path + i);
2593 			}
2594 			/* root level has p_bh == NULL, brelse() eats this */
2595 			brelse(path[i].p_bh);
2596 			path[i].p_bh = NULL;
2597 			i--;
2598 			ext_debug("return to level %d\n", i);
2599 		}
2600 	}
2601 
2602 	trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2603 			path->p_hdr->eh_entries);
2604 
2605 	/* If we still have something in the partial cluster and we have removed
2606 	 * even the first extent, then we should free the blocks in the partial
2607 	 * cluster as well. */
2608 	if (partial_cluster && path->p_hdr->eh_entries == 0) {
2609 		int flags = EXT4_FREE_BLOCKS_FORGET;
2610 
2611 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2612 			flags |= EXT4_FREE_BLOCKS_METADATA;
2613 
2614 		ext4_free_blocks(handle, inode, NULL,
2615 				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2616 				 EXT4_SB(sb)->s_cluster_ratio, flags);
2617 		partial_cluster = 0;
2618 	}
2619 
2620 	/* TODO: flexible tree reduction should be here */
2621 	if (path->p_hdr->eh_entries == 0) {
2622 		/*
2623 		 * truncate to zero freed all the tree,
2624 		 * so we need to correct eh_depth
2625 		 */
2626 		err = ext4_ext_get_access(handle, inode, path);
2627 		if (err == 0) {
2628 			ext_inode_hdr(inode)->eh_depth = 0;
2629 			ext_inode_hdr(inode)->eh_max =
2630 				cpu_to_le16(ext4_ext_space_root(inode, 0));
2631 			err = ext4_ext_dirty(handle, inode, path);
2632 		}
2633 	}
2634 out:
2635 	ext4_ext_drop_refs(path);
2636 	kfree(path);
2637 	if (err == -EAGAIN)
2638 		goto again;
2639 	ext4_journal_stop(handle);
2640 
2641 	return err;
2642 }
2643 
2644 /*
2645  * called at mount time
2646  */
2647 void ext4_ext_init(struct super_block *sb)
2648 {
2649 	/*
2650 	 * possible initialization would be here
2651 	 */
2652 
2653 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2654 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2655 		printk(KERN_INFO "EXT4-fs: file extents enabled");
2656 #ifdef AGGRESSIVE_TEST
2657 		printk(", aggressive tests");
2658 #endif
2659 #ifdef CHECK_BINSEARCH
2660 		printk(", check binsearch");
2661 #endif
2662 #ifdef EXTENTS_STATS
2663 		printk(", stats");
2664 #endif
2665 		printk("\n");
2666 #endif
2667 #ifdef EXTENTS_STATS
2668 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2669 		EXT4_SB(sb)->s_ext_min = 1 << 30;
2670 		EXT4_SB(sb)->s_ext_max = 0;
2671 #endif
2672 	}
2673 }
2674 
2675 /*
2676  * called at umount time
2677  */
2678 void ext4_ext_release(struct super_block *sb)
2679 {
2680 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2681 		return;
2682 
2683 #ifdef EXTENTS_STATS
2684 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2685 		struct ext4_sb_info *sbi = EXT4_SB(sb);
2686 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2687 			sbi->s_ext_blocks, sbi->s_ext_extents,
2688 			sbi->s_ext_blocks / sbi->s_ext_extents);
2689 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2690 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2691 	}
2692 #endif
2693 }
2694 
2695 /* FIXME!! we need to try to merge to left or right after zero-out  */
2696 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2697 {
2698 	ext4_fsblk_t ee_pblock;
2699 	unsigned int ee_len;
2700 	int ret;
2701 
2702 	ee_len    = ext4_ext_get_actual_len(ex);
2703 	ee_pblock = ext4_ext_pblock(ex);
2704 
2705 	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2706 	if (ret > 0)
2707 		ret = 0;
2708 
2709 	return ret;
2710 }
2711 
2712 /*
2713  * used by extent splitting.
2714  */
2715 #define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
2716 					due to ENOSPC */
2717 #define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
2718 #define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
2719 
2720 /*
2721  * ext4_split_extent_at() splits an extent at given block.
2722  *
2723  * @handle: the journal handle
2724  * @inode: the file inode
2725  * @path: the path to the extent
2726  * @split: the logical block where the extent is splitted.
2727  * @split_flags: indicates if the extent could be zeroout if split fails, and
2728  *		 the states(init or uninit) of new extents.
2729  * @flags: flags used to insert new extent to extent tree.
2730  *
2731  *
2732  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2733  * of which are deterimined by split_flag.
2734  *
2735  * There are two cases:
2736  *  a> the extent are splitted into two extent.
2737  *  b> split is not needed, and just mark the extent.
2738  *
2739  * return 0 on success.
2740  */
2741 static int ext4_split_extent_at(handle_t *handle,
2742 			     struct inode *inode,
2743 			     struct ext4_ext_path *path,
2744 			     ext4_lblk_t split,
2745 			     int split_flag,
2746 			     int flags)
2747 {
2748 	ext4_fsblk_t newblock;
2749 	ext4_lblk_t ee_block;
2750 	struct ext4_extent *ex, newex, orig_ex;
2751 	struct ext4_extent *ex2 = NULL;
2752 	unsigned int ee_len, depth;
2753 	int err = 0;
2754 
2755 	ext_debug("ext4_split_extents_at: inode %lu, logical"
2756 		"block %llu\n", inode->i_ino, (unsigned long long)split);
2757 
2758 	ext4_ext_show_leaf(inode, path);
2759 
2760 	depth = ext_depth(inode);
2761 	ex = path[depth].p_ext;
2762 	ee_block = le32_to_cpu(ex->ee_block);
2763 	ee_len = ext4_ext_get_actual_len(ex);
2764 	newblock = split - ee_block + ext4_ext_pblock(ex);
2765 
2766 	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2767 
2768 	err = ext4_ext_get_access(handle, inode, path + depth);
2769 	if (err)
2770 		goto out;
2771 
2772 	if (split == ee_block) {
2773 		/*
2774 		 * case b: block @split is the block that the extent begins with
2775 		 * then we just change the state of the extent, and splitting
2776 		 * is not needed.
2777 		 */
2778 		if (split_flag & EXT4_EXT_MARK_UNINIT2)
2779 			ext4_ext_mark_uninitialized(ex);
2780 		else
2781 			ext4_ext_mark_initialized(ex);
2782 
2783 		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2784 			ext4_ext_try_to_merge(inode, path, ex);
2785 
2786 		err = ext4_ext_dirty(handle, inode, path + depth);
2787 		goto out;
2788 	}
2789 
2790 	/* case a */
2791 	memcpy(&orig_ex, ex, sizeof(orig_ex));
2792 	ex->ee_len = cpu_to_le16(split - ee_block);
2793 	if (split_flag & EXT4_EXT_MARK_UNINIT1)
2794 		ext4_ext_mark_uninitialized(ex);
2795 
2796 	/*
2797 	 * path may lead to new leaf, not to original leaf any more
2798 	 * after ext4_ext_insert_extent() returns,
2799 	 */
2800 	err = ext4_ext_dirty(handle, inode, path + depth);
2801 	if (err)
2802 		goto fix_extent_len;
2803 
2804 	ex2 = &newex;
2805 	ex2->ee_block = cpu_to_le32(split);
2806 	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
2807 	ext4_ext_store_pblock(ex2, newblock);
2808 	if (split_flag & EXT4_EXT_MARK_UNINIT2)
2809 		ext4_ext_mark_uninitialized(ex2);
2810 
2811 	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2812 	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2813 		err = ext4_ext_zeroout(inode, &orig_ex);
2814 		if (err)
2815 			goto fix_extent_len;
2816 		/* update the extent length and mark as initialized */
2817 		ex->ee_len = cpu_to_le32(ee_len);
2818 		ext4_ext_try_to_merge(inode, path, ex);
2819 		err = ext4_ext_dirty(handle, inode, path + depth);
2820 		goto out;
2821 	} else if (err)
2822 		goto fix_extent_len;
2823 
2824 out:
2825 	ext4_ext_show_leaf(inode, path);
2826 	return err;
2827 
2828 fix_extent_len:
2829 	ex->ee_len = orig_ex.ee_len;
2830 	ext4_ext_dirty(handle, inode, path + depth);
2831 	return err;
2832 }
2833 
2834 /*
2835  * ext4_split_extents() splits an extent and mark extent which is covered
2836  * by @map as split_flags indicates
2837  *
2838  * It may result in splitting the extent into multiple extents (upto three)
2839  * There are three possibilities:
2840  *   a> There is no split required
2841  *   b> Splits in two extents: Split is happening at either end of the extent
2842  *   c> Splits in three extents: Somone is splitting in middle of the extent
2843  *
2844  */
2845 static int ext4_split_extent(handle_t *handle,
2846 			      struct inode *inode,
2847 			      struct ext4_ext_path *path,
2848 			      struct ext4_map_blocks *map,
2849 			      int split_flag,
2850 			      int flags)
2851 {
2852 	ext4_lblk_t ee_block;
2853 	struct ext4_extent *ex;
2854 	unsigned int ee_len, depth;
2855 	int err = 0;
2856 	int uninitialized;
2857 	int split_flag1, flags1;
2858 
2859 	depth = ext_depth(inode);
2860 	ex = path[depth].p_ext;
2861 	ee_block = le32_to_cpu(ex->ee_block);
2862 	ee_len = ext4_ext_get_actual_len(ex);
2863 	uninitialized = ext4_ext_is_uninitialized(ex);
2864 
2865 	if (map->m_lblk + map->m_len < ee_block + ee_len) {
2866 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2867 			      EXT4_EXT_MAY_ZEROOUT : 0;
2868 		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
2869 		if (uninitialized)
2870 			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
2871 				       EXT4_EXT_MARK_UNINIT2;
2872 		err = ext4_split_extent_at(handle, inode, path,
2873 				map->m_lblk + map->m_len, split_flag1, flags1);
2874 		if (err)
2875 			goto out;
2876 	}
2877 
2878 	ext4_ext_drop_refs(path);
2879 	path = ext4_ext_find_extent(inode, map->m_lblk, path);
2880 	if (IS_ERR(path))
2881 		return PTR_ERR(path);
2882 
2883 	if (map->m_lblk >= ee_block) {
2884 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2885 			      EXT4_EXT_MAY_ZEROOUT : 0;
2886 		if (uninitialized)
2887 			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
2888 		if (split_flag & EXT4_EXT_MARK_UNINIT2)
2889 			split_flag1 |= EXT4_EXT_MARK_UNINIT2;
2890 		err = ext4_split_extent_at(handle, inode, path,
2891 				map->m_lblk, split_flag1, flags);
2892 		if (err)
2893 			goto out;
2894 	}
2895 
2896 	ext4_ext_show_leaf(inode, path);
2897 out:
2898 	return err ? err : map->m_len;
2899 }
2900 
2901 #define EXT4_EXT_ZERO_LEN 7
2902 /*
2903  * This function is called by ext4_ext_map_blocks() if someone tries to write
2904  * to an uninitialized extent. It may result in splitting the uninitialized
2905  * extent into multiple extents (up to three - one initialized and two
2906  * uninitialized).
2907  * There are three possibilities:
2908  *   a> There is no split required: Entire extent should be initialized
2909  *   b> Splits in two extents: Write is happening at either end of the extent
2910  *   c> Splits in three extents: Somone is writing in middle of the extent
2911  *
2912  * Pre-conditions:
2913  *  - The extent pointed to by 'path' is uninitialized.
2914  *  - The extent pointed to by 'path' contains a superset
2915  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
2916  *
2917  * Post-conditions on success:
2918  *  - the returned value is the number of blocks beyond map->l_lblk
2919  *    that are allocated and initialized.
2920  *    It is guaranteed to be >= map->m_len.
2921  */
2922 static int ext4_ext_convert_to_initialized(handle_t *handle,
2923 					   struct inode *inode,
2924 					   struct ext4_map_blocks *map,
2925 					   struct ext4_ext_path *path)
2926 {
2927 	struct ext4_extent_header *eh;
2928 	struct ext4_map_blocks split_map;
2929 	struct ext4_extent zero_ex;
2930 	struct ext4_extent *ex;
2931 	ext4_lblk_t ee_block, eof_block;
2932 	unsigned int ee_len, depth;
2933 	int allocated;
2934 	int err = 0;
2935 	int split_flag = 0;
2936 
2937 	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2938 		"block %llu, max_blocks %u\n", inode->i_ino,
2939 		(unsigned long long)map->m_lblk, map->m_len);
2940 
2941 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2942 		inode->i_sb->s_blocksize_bits;
2943 	if (eof_block < map->m_lblk + map->m_len)
2944 		eof_block = map->m_lblk + map->m_len;
2945 
2946 	depth = ext_depth(inode);
2947 	eh = path[depth].p_hdr;
2948 	ex = path[depth].p_ext;
2949 	ee_block = le32_to_cpu(ex->ee_block);
2950 	ee_len = ext4_ext_get_actual_len(ex);
2951 	allocated = ee_len - (map->m_lblk - ee_block);
2952 
2953 	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
2954 
2955 	/* Pre-conditions */
2956 	BUG_ON(!ext4_ext_is_uninitialized(ex));
2957 	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
2958 	BUG_ON(map->m_lblk + map->m_len > ee_block + ee_len);
2959 
2960 	/*
2961 	 * Attempt to transfer newly initialized blocks from the currently
2962 	 * uninitialized extent to its left neighbor. This is much cheaper
2963 	 * than an insertion followed by a merge as those involve costly
2964 	 * memmove() calls. This is the common case in steady state for
2965 	 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
2966 	 * writes.
2967 	 *
2968 	 * Limitations of the current logic:
2969 	 *  - L1: we only deal with writes at the start of the extent.
2970 	 *    The approach could be extended to writes at the end
2971 	 *    of the extent but this scenario was deemed less common.
2972 	 *  - L2: we do not deal with writes covering the whole extent.
2973 	 *    This would require removing the extent if the transfer
2974 	 *    is possible.
2975 	 *  - L3: we only attempt to merge with an extent stored in the
2976 	 *    same extent tree node.
2977 	 */
2978 	if ((map->m_lblk == ee_block) &&	/*L1*/
2979 		(map->m_len < ee_len) &&	/*L2*/
2980 		(ex > EXT_FIRST_EXTENT(eh))) {	/*L3*/
2981 		struct ext4_extent *prev_ex;
2982 		ext4_lblk_t prev_lblk;
2983 		ext4_fsblk_t prev_pblk, ee_pblk;
2984 		unsigned int prev_len, write_len;
2985 
2986 		prev_ex = ex - 1;
2987 		prev_lblk = le32_to_cpu(prev_ex->ee_block);
2988 		prev_len = ext4_ext_get_actual_len(prev_ex);
2989 		prev_pblk = ext4_ext_pblock(prev_ex);
2990 		ee_pblk = ext4_ext_pblock(ex);
2991 		write_len = map->m_len;
2992 
2993 		/*
2994 		 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
2995 		 * upon those conditions:
2996 		 * - C1: prev_ex is initialized,
2997 		 * - C2: prev_ex is logically abutting ex,
2998 		 * - C3: prev_ex is physically abutting ex,
2999 		 * - C4: prev_ex can receive the additional blocks without
3000 		 *   overflowing the (initialized) length limit.
3001 		 */
3002 		if ((!ext4_ext_is_uninitialized(prev_ex)) &&		/*C1*/
3003 			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3004 			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3005 			(prev_len < (EXT_INIT_MAX_LEN - write_len))) {	/*C4*/
3006 			err = ext4_ext_get_access(handle, inode, path + depth);
3007 			if (err)
3008 				goto out;
3009 
3010 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3011 				map, ex, prev_ex);
3012 
3013 			/* Shift the start of ex by 'write_len' blocks */
3014 			ex->ee_block = cpu_to_le32(ee_block + write_len);
3015 			ext4_ext_store_pblock(ex, ee_pblk + write_len);
3016 			ex->ee_len = cpu_to_le16(ee_len - write_len);
3017 			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3018 
3019 			/* Extend prev_ex by 'write_len' blocks */
3020 			prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3021 
3022 			/* Mark the block containing both extents as dirty */
3023 			ext4_ext_dirty(handle, inode, path + depth);
3024 
3025 			/* Update path to point to the right extent */
3026 			path[depth].p_ext = prev_ex;
3027 
3028 			/* Result: number of initialized blocks past m_lblk */
3029 			allocated = write_len;
3030 			goto out;
3031 		}
3032 	}
3033 
3034 	WARN_ON(map->m_lblk < ee_block);
3035 	/*
3036 	 * It is safe to convert extent to initialized via explicit
3037 	 * zeroout only if extent is fully insde i_size or new_size.
3038 	 */
3039 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3040 
3041 	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
3042 	if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
3043 	    (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3044 		err = ext4_ext_zeroout(inode, ex);
3045 		if (err)
3046 			goto out;
3047 
3048 		err = ext4_ext_get_access(handle, inode, path + depth);
3049 		if (err)
3050 			goto out;
3051 		ext4_ext_mark_initialized(ex);
3052 		ext4_ext_try_to_merge(inode, path, ex);
3053 		err = ext4_ext_dirty(handle, inode, path + depth);
3054 		goto out;
3055 	}
3056 
3057 	/*
3058 	 * four cases:
3059 	 * 1. split the extent into three extents.
3060 	 * 2. split the extent into two extents, zeroout the first half.
3061 	 * 3. split the extent into two extents, zeroout the second half.
3062 	 * 4. split the extent into two extents with out zeroout.
3063 	 */
3064 	split_map.m_lblk = map->m_lblk;
3065 	split_map.m_len = map->m_len;
3066 
3067 	if (allocated > map->m_len) {
3068 		if (allocated <= EXT4_EXT_ZERO_LEN &&
3069 		    (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3070 			/* case 3 */
3071 			zero_ex.ee_block =
3072 					 cpu_to_le32(map->m_lblk);
3073 			zero_ex.ee_len = cpu_to_le16(allocated);
3074 			ext4_ext_store_pblock(&zero_ex,
3075 				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3076 			err = ext4_ext_zeroout(inode, &zero_ex);
3077 			if (err)
3078 				goto out;
3079 			split_map.m_lblk = map->m_lblk;
3080 			split_map.m_len = allocated;
3081 		} else if ((map->m_lblk - ee_block + map->m_len <
3082 			   EXT4_EXT_ZERO_LEN) &&
3083 			   (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3084 			/* case 2 */
3085 			if (map->m_lblk != ee_block) {
3086 				zero_ex.ee_block = ex->ee_block;
3087 				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3088 							ee_block);
3089 				ext4_ext_store_pblock(&zero_ex,
3090 						      ext4_ext_pblock(ex));
3091 				err = ext4_ext_zeroout(inode, &zero_ex);
3092 				if (err)
3093 					goto out;
3094 			}
3095 
3096 			split_map.m_lblk = ee_block;
3097 			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3098 			allocated = map->m_len;
3099 		}
3100 	}
3101 
3102 	allocated = ext4_split_extent(handle, inode, path,
3103 				       &split_map, split_flag, 0);
3104 	if (allocated < 0)
3105 		err = allocated;
3106 
3107 out:
3108 	return err ? err : allocated;
3109 }
3110 
3111 /*
3112  * This function is called by ext4_ext_map_blocks() from
3113  * ext4_get_blocks_dio_write() when DIO to write
3114  * to an uninitialized extent.
3115  *
3116  * Writing to an uninitialized extent may result in splitting the uninitialized
3117  * extent into multiple /initialized uninitialized extents (up to three)
3118  * There are three possibilities:
3119  *   a> There is no split required: Entire extent should be uninitialized
3120  *   b> Splits in two extents: Write is happening at either end of the extent
3121  *   c> Splits in three extents: Somone is writing in middle of the extent
3122  *
3123  * One of more index blocks maybe needed if the extent tree grow after
3124  * the uninitialized extent split. To prevent ENOSPC occur at the IO
3125  * complete, we need to split the uninitialized extent before DIO submit
3126  * the IO. The uninitialized extent called at this time will be split
3127  * into three uninitialized extent(at most). After IO complete, the part
3128  * being filled will be convert to initialized by the end_io callback function
3129  * via ext4_convert_unwritten_extents().
3130  *
3131  * Returns the size of uninitialized extent to be written on success.
3132  */
3133 static int ext4_split_unwritten_extents(handle_t *handle,
3134 					struct inode *inode,
3135 					struct ext4_map_blocks *map,
3136 					struct ext4_ext_path *path,
3137 					int flags)
3138 {
3139 	ext4_lblk_t eof_block;
3140 	ext4_lblk_t ee_block;
3141 	struct ext4_extent *ex;
3142 	unsigned int ee_len;
3143 	int split_flag = 0, depth;
3144 
3145 	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3146 		"block %llu, max_blocks %u\n", inode->i_ino,
3147 		(unsigned long long)map->m_lblk, map->m_len);
3148 
3149 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3150 		inode->i_sb->s_blocksize_bits;
3151 	if (eof_block < map->m_lblk + map->m_len)
3152 		eof_block = map->m_lblk + map->m_len;
3153 	/*
3154 	 * It is safe to convert extent to initialized via explicit
3155 	 * zeroout only if extent is fully insde i_size or new_size.
3156 	 */
3157 	depth = ext_depth(inode);
3158 	ex = path[depth].p_ext;
3159 	ee_block = le32_to_cpu(ex->ee_block);
3160 	ee_len = ext4_ext_get_actual_len(ex);
3161 
3162 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3163 	split_flag |= EXT4_EXT_MARK_UNINIT2;
3164 
3165 	flags |= EXT4_GET_BLOCKS_PRE_IO;
3166 	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3167 }
3168 
3169 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3170 					      struct inode *inode,
3171 					      struct ext4_ext_path *path)
3172 {
3173 	struct ext4_extent *ex;
3174 	int depth;
3175 	int err = 0;
3176 
3177 	depth = ext_depth(inode);
3178 	ex = path[depth].p_ext;
3179 
3180 	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3181 		"block %llu, max_blocks %u\n", inode->i_ino,
3182 		(unsigned long long)le32_to_cpu(ex->ee_block),
3183 		ext4_ext_get_actual_len(ex));
3184 
3185 	err = ext4_ext_get_access(handle, inode, path + depth);
3186 	if (err)
3187 		goto out;
3188 	/* first mark the extent as initialized */
3189 	ext4_ext_mark_initialized(ex);
3190 
3191 	/* note: ext4_ext_correct_indexes() isn't needed here because
3192 	 * borders are not changed
3193 	 */
3194 	ext4_ext_try_to_merge(inode, path, ex);
3195 
3196 	/* Mark modified extent as dirty */
3197 	err = ext4_ext_dirty(handle, inode, path + depth);
3198 out:
3199 	ext4_ext_show_leaf(inode, path);
3200 	return err;
3201 }
3202 
3203 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3204 			sector_t block, int count)
3205 {
3206 	int i;
3207 	for (i = 0; i < count; i++)
3208                 unmap_underlying_metadata(bdev, block + i);
3209 }
3210 
3211 /*
3212  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3213  */
3214 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3215 			      ext4_lblk_t lblk,
3216 			      struct ext4_ext_path *path,
3217 			      unsigned int len)
3218 {
3219 	int i, depth;
3220 	struct ext4_extent_header *eh;
3221 	struct ext4_extent *last_ex;
3222 
3223 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3224 		return 0;
3225 
3226 	depth = ext_depth(inode);
3227 	eh = path[depth].p_hdr;
3228 
3229 	if (unlikely(!eh->eh_entries)) {
3230 		EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3231 				 "EOFBLOCKS_FL set");
3232 		return -EIO;
3233 	}
3234 	last_ex = EXT_LAST_EXTENT(eh);
3235 	/*
3236 	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3237 	 * last block in the last extent in the file.  We test this by
3238 	 * first checking to see if the caller to
3239 	 * ext4_ext_get_blocks() was interested in the last block (or
3240 	 * a block beyond the last block) in the current extent.  If
3241 	 * this turns out to be false, we can bail out from this
3242 	 * function immediately.
3243 	 */
3244 	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3245 	    ext4_ext_get_actual_len(last_ex))
3246 		return 0;
3247 	/*
3248 	 * If the caller does appear to be planning to write at or
3249 	 * beyond the end of the current extent, we then test to see
3250 	 * if the current extent is the last extent in the file, by
3251 	 * checking to make sure it was reached via the rightmost node
3252 	 * at each level of the tree.
3253 	 */
3254 	for (i = depth-1; i >= 0; i--)
3255 		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3256 			return 0;
3257 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3258 	return ext4_mark_inode_dirty(handle, inode);
3259 }
3260 
3261 /**
3262  * ext4_find_delalloc_range: find delayed allocated block in the given range.
3263  *
3264  * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3265  * whether there are any buffers marked for delayed allocation. It returns '1'
3266  * on the first delalloc'ed buffer head found. If no buffer head in the given
3267  * range is marked for delalloc, it returns 0.
3268  * lblk_start should always be <= lblk_end.
3269  * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3270  * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3271  * block sooner). This is useful when blocks are truncated sequentially from
3272  * lblk_start towards lblk_end.
3273  */
3274 static int ext4_find_delalloc_range(struct inode *inode,
3275 				    ext4_lblk_t lblk_start,
3276 				    ext4_lblk_t lblk_end,
3277 				    int search_hint_reverse)
3278 {
3279 	struct address_space *mapping = inode->i_mapping;
3280 	struct buffer_head *head, *bh = NULL;
3281 	struct page *page;
3282 	ext4_lblk_t i, pg_lblk;
3283 	pgoff_t index;
3284 
3285 	/* reverse search wont work if fs block size is less than page size */
3286 	if (inode->i_blkbits < PAGE_CACHE_SHIFT)
3287 		search_hint_reverse = 0;
3288 
3289 	if (search_hint_reverse)
3290 		i = lblk_end;
3291 	else
3292 		i = lblk_start;
3293 
3294 	index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
3295 
3296 	while ((i >= lblk_start) && (i <= lblk_end)) {
3297 		page = find_get_page(mapping, index);
3298 		if (!page)
3299 			goto nextpage;
3300 
3301 		if (!page_has_buffers(page))
3302 			goto nextpage;
3303 
3304 		head = page_buffers(page);
3305 		if (!head)
3306 			goto nextpage;
3307 
3308 		bh = head;
3309 		pg_lblk = index << (PAGE_CACHE_SHIFT -
3310 						inode->i_blkbits);
3311 		do {
3312 			if (unlikely(pg_lblk < lblk_start)) {
3313 				/*
3314 				 * This is possible when fs block size is less
3315 				 * than page size and our cluster starts/ends in
3316 				 * middle of the page. So we need to skip the
3317 				 * initial few blocks till we reach the 'lblk'
3318 				 */
3319 				pg_lblk++;
3320 				continue;
3321 			}
3322 
3323 			/* Check if the buffer is delayed allocated and that it
3324 			 * is not yet mapped. (when da-buffers are mapped during
3325 			 * their writeout, their da_mapped bit is set.)
3326 			 */
3327 			if (buffer_delay(bh) && !buffer_da_mapped(bh)) {
3328 				page_cache_release(page);
3329 				trace_ext4_find_delalloc_range(inode,
3330 						lblk_start, lblk_end,
3331 						search_hint_reverse,
3332 						1, i);
3333 				return 1;
3334 			}
3335 			if (search_hint_reverse)
3336 				i--;
3337 			else
3338 				i++;
3339 		} while ((i >= lblk_start) && (i <= lblk_end) &&
3340 				((bh = bh->b_this_page) != head));
3341 nextpage:
3342 		if (page)
3343 			page_cache_release(page);
3344 		/*
3345 		 * Move to next page. 'i' will be the first lblk in the next
3346 		 * page.
3347 		 */
3348 		if (search_hint_reverse)
3349 			index--;
3350 		else
3351 			index++;
3352 		i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
3353 	}
3354 
3355 	trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3356 					search_hint_reverse, 0, 0);
3357 	return 0;
3358 }
3359 
3360 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
3361 			       int search_hint_reverse)
3362 {
3363 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3364 	ext4_lblk_t lblk_start, lblk_end;
3365 	lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3366 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3367 
3368 	return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3369 					search_hint_reverse);
3370 }
3371 
3372 /**
3373  * Determines how many complete clusters (out of those specified by the 'map')
3374  * are under delalloc and were reserved quota for.
3375  * This function is called when we are writing out the blocks that were
3376  * originally written with their allocation delayed, but then the space was
3377  * allocated using fallocate() before the delayed allocation could be resolved.
3378  * The cases to look for are:
3379  * ('=' indicated delayed allocated blocks
3380  *  '-' indicates non-delayed allocated blocks)
3381  * (a) partial clusters towards beginning and/or end outside of allocated range
3382  *     are not delalloc'ed.
3383  *	Ex:
3384  *	|----c---=|====c====|====c====|===-c----|
3385  *	         |++++++ allocated ++++++|
3386  *	==> 4 complete clusters in above example
3387  *
3388  * (b) partial cluster (outside of allocated range) towards either end is
3389  *     marked for delayed allocation. In this case, we will exclude that
3390  *     cluster.
3391  *	Ex:
3392  *	|----====c========|========c========|
3393  *	     |++++++ allocated ++++++|
3394  *	==> 1 complete clusters in above example
3395  *
3396  *	Ex:
3397  *	|================c================|
3398  *            |++++++ allocated ++++++|
3399  *	==> 0 complete clusters in above example
3400  *
3401  * The ext4_da_update_reserve_space will be called only if we
3402  * determine here that there were some "entire" clusters that span
3403  * this 'allocated' range.
3404  * In the non-bigalloc case, this function will just end up returning num_blks
3405  * without ever calling ext4_find_delalloc_range.
3406  */
3407 static unsigned int
3408 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3409 			   unsigned int num_blks)
3410 {
3411 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3412 	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3413 	ext4_lblk_t lblk_from, lblk_to, c_offset;
3414 	unsigned int allocated_clusters = 0;
3415 
3416 	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3417 	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3418 
3419 	/* max possible clusters for this allocation */
3420 	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3421 
3422 	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3423 
3424 	/* Check towards left side */
3425 	c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3426 	if (c_offset) {
3427 		lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3428 		lblk_to = lblk_from + c_offset - 1;
3429 
3430 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3431 			allocated_clusters--;
3432 	}
3433 
3434 	/* Now check towards right. */
3435 	c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3436 	if (allocated_clusters && c_offset) {
3437 		lblk_from = lblk_start + num_blks;
3438 		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3439 
3440 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3441 			allocated_clusters--;
3442 	}
3443 
3444 	return allocated_clusters;
3445 }
3446 
3447 static int
3448 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3449 			struct ext4_map_blocks *map,
3450 			struct ext4_ext_path *path, int flags,
3451 			unsigned int allocated, ext4_fsblk_t newblock)
3452 {
3453 	int ret = 0;
3454 	int err = 0;
3455 	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3456 
3457 	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3458 		  "block %llu, max_blocks %u, flags %d, allocated %u",
3459 		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3460 		  flags, allocated);
3461 	ext4_ext_show_leaf(inode, path);
3462 
3463 	trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated,
3464 						    newblock);
3465 
3466 	/* get_block() before submit the IO, split the extent */
3467 	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3468 		ret = ext4_split_unwritten_extents(handle, inode, map,
3469 						   path, flags);
3470 		/*
3471 		 * Flag the inode(non aio case) or end_io struct (aio case)
3472 		 * that this IO needs to conversion to written when IO is
3473 		 * completed
3474 		 */
3475 		if (io)
3476 			ext4_set_io_unwritten_flag(inode, io);
3477 		else
3478 			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3479 		if (ext4_should_dioread_nolock(inode))
3480 			map->m_flags |= EXT4_MAP_UNINIT;
3481 		goto out;
3482 	}
3483 	/* IO end_io complete, convert the filled extent to written */
3484 	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3485 		ret = ext4_convert_unwritten_extents_endio(handle, inode,
3486 							path);
3487 		if (ret >= 0) {
3488 			ext4_update_inode_fsync_trans(handle, inode, 1);
3489 			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3490 						 path, map->m_len);
3491 		} else
3492 			err = ret;
3493 		goto out2;
3494 	}
3495 	/* buffered IO case */
3496 	/*
3497 	 * repeat fallocate creation request
3498 	 * we already have an unwritten extent
3499 	 */
3500 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3501 		goto map_out;
3502 
3503 	/* buffered READ or buffered write_begin() lookup */
3504 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3505 		/*
3506 		 * We have blocks reserved already.  We
3507 		 * return allocated blocks so that delalloc
3508 		 * won't do block reservation for us.  But
3509 		 * the buffer head will be unmapped so that
3510 		 * a read from the block returns 0s.
3511 		 */
3512 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3513 		goto out1;
3514 	}
3515 
3516 	/* buffered write, writepage time, convert*/
3517 	ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3518 	if (ret >= 0)
3519 		ext4_update_inode_fsync_trans(handle, inode, 1);
3520 out:
3521 	if (ret <= 0) {
3522 		err = ret;
3523 		goto out2;
3524 	} else
3525 		allocated = ret;
3526 	map->m_flags |= EXT4_MAP_NEW;
3527 	/*
3528 	 * if we allocated more blocks than requested
3529 	 * we need to make sure we unmap the extra block
3530 	 * allocated. The actual needed block will get
3531 	 * unmapped later when we find the buffer_head marked
3532 	 * new.
3533 	 */
3534 	if (allocated > map->m_len) {
3535 		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3536 					newblock + map->m_len,
3537 					allocated - map->m_len);
3538 		allocated = map->m_len;
3539 	}
3540 
3541 	/*
3542 	 * If we have done fallocate with the offset that is already
3543 	 * delayed allocated, we would have block reservation
3544 	 * and quota reservation done in the delayed write path.
3545 	 * But fallocate would have already updated quota and block
3546 	 * count for this offset. So cancel these reservation
3547 	 */
3548 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3549 		unsigned int reserved_clusters;
3550 		reserved_clusters = get_reserved_cluster_alloc(inode,
3551 				map->m_lblk, map->m_len);
3552 		if (reserved_clusters)
3553 			ext4_da_update_reserve_space(inode,
3554 						     reserved_clusters,
3555 						     0);
3556 	}
3557 
3558 map_out:
3559 	map->m_flags |= EXT4_MAP_MAPPED;
3560 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3561 		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3562 					 map->m_len);
3563 		if (err < 0)
3564 			goto out2;
3565 	}
3566 out1:
3567 	if (allocated > map->m_len)
3568 		allocated = map->m_len;
3569 	ext4_ext_show_leaf(inode, path);
3570 	map->m_pblk = newblock;
3571 	map->m_len = allocated;
3572 out2:
3573 	if (path) {
3574 		ext4_ext_drop_refs(path);
3575 		kfree(path);
3576 	}
3577 	return err ? err : allocated;
3578 }
3579 
3580 /*
3581  * get_implied_cluster_alloc - check to see if the requested
3582  * allocation (in the map structure) overlaps with a cluster already
3583  * allocated in an extent.
3584  *	@sb	The filesystem superblock structure
3585  *	@map	The requested lblk->pblk mapping
3586  *	@ex	The extent structure which might contain an implied
3587  *			cluster allocation
3588  *
3589  * This function is called by ext4_ext_map_blocks() after we failed to
3590  * find blocks that were already in the inode's extent tree.  Hence,
3591  * we know that the beginning of the requested region cannot overlap
3592  * the extent from the inode's extent tree.  There are three cases we
3593  * want to catch.  The first is this case:
3594  *
3595  *		 |--- cluster # N--|
3596  *    |--- extent ---|	|---- requested region ---|
3597  *			|==========|
3598  *
3599  * The second case that we need to test for is this one:
3600  *
3601  *   |--------- cluster # N ----------------|
3602  *	   |--- requested region --|   |------- extent ----|
3603  *	   |=======================|
3604  *
3605  * The third case is when the requested region lies between two extents
3606  * within the same cluster:
3607  *          |------------- cluster # N-------------|
3608  * |----- ex -----|                  |---- ex_right ----|
3609  *                  |------ requested region ------|
3610  *                  |================|
3611  *
3612  * In each of the above cases, we need to set the map->m_pblk and
3613  * map->m_len so it corresponds to the return the extent labelled as
3614  * "|====|" from cluster #N, since it is already in use for data in
3615  * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
3616  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3617  * as a new "allocated" block region.  Otherwise, we will return 0 and
3618  * ext4_ext_map_blocks() will then allocate one or more new clusters
3619  * by calling ext4_mb_new_blocks().
3620  */
3621 static int get_implied_cluster_alloc(struct super_block *sb,
3622 				     struct ext4_map_blocks *map,
3623 				     struct ext4_extent *ex,
3624 				     struct ext4_ext_path *path)
3625 {
3626 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3627 	ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3628 	ext4_lblk_t ex_cluster_start, ex_cluster_end;
3629 	ext4_lblk_t rr_cluster_start, rr_cluster_end;
3630 	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3631 	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3632 	unsigned short ee_len = ext4_ext_get_actual_len(ex);
3633 
3634 	/* The extent passed in that we are trying to match */
3635 	ex_cluster_start = EXT4_B2C(sbi, ee_block);
3636 	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3637 
3638 	/* The requested region passed into ext4_map_blocks() */
3639 	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3640 	rr_cluster_end = EXT4_B2C(sbi, map->m_lblk + map->m_len - 1);
3641 
3642 	if ((rr_cluster_start == ex_cluster_end) ||
3643 	    (rr_cluster_start == ex_cluster_start)) {
3644 		if (rr_cluster_start == ex_cluster_end)
3645 			ee_start += ee_len - 1;
3646 		map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3647 			c_offset;
3648 		map->m_len = min(map->m_len,
3649 				 (unsigned) sbi->s_cluster_ratio - c_offset);
3650 		/*
3651 		 * Check for and handle this case:
3652 		 *
3653 		 *   |--------- cluster # N-------------|
3654 		 *		       |------- extent ----|
3655 		 *	   |--- requested region ---|
3656 		 *	   |===========|
3657 		 */
3658 
3659 		if (map->m_lblk < ee_block)
3660 			map->m_len = min(map->m_len, ee_block - map->m_lblk);
3661 
3662 		/*
3663 		 * Check for the case where there is already another allocated
3664 		 * block to the right of 'ex' but before the end of the cluster.
3665 		 *
3666 		 *          |------------- cluster # N-------------|
3667 		 * |----- ex -----|                  |---- ex_right ----|
3668 		 *                  |------ requested region ------|
3669 		 *                  |================|
3670 		 */
3671 		if (map->m_lblk > ee_block) {
3672 			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3673 			map->m_len = min(map->m_len, next - map->m_lblk);
3674 		}
3675 
3676 		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3677 		return 1;
3678 	}
3679 
3680 	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3681 	return 0;
3682 }
3683 
3684 
3685 /*
3686  * Block allocation/map/preallocation routine for extents based files
3687  *
3688  *
3689  * Need to be called with
3690  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3691  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3692  *
3693  * return > 0, number of of blocks already mapped/allocated
3694  *          if create == 0 and these are pre-allocated blocks
3695  *          	buffer head is unmapped
3696  *          otherwise blocks are mapped
3697  *
3698  * return = 0, if plain look up failed (blocks have not been allocated)
3699  *          buffer head is unmapped
3700  *
3701  * return < 0, error case.
3702  */
3703 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3704 			struct ext4_map_blocks *map, int flags)
3705 {
3706 	struct ext4_ext_path *path = NULL;
3707 	struct ext4_extent newex, *ex, *ex2;
3708 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3709 	ext4_fsblk_t newblock = 0;
3710 	int free_on_err = 0, err = 0, depth, ret;
3711 	unsigned int allocated = 0, offset = 0;
3712 	unsigned int allocated_clusters = 0;
3713 	unsigned int punched_out = 0;
3714 	unsigned int result = 0;
3715 	struct ext4_allocation_request ar;
3716 	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3717 	ext4_lblk_t cluster_offset;
3718 
3719 	ext_debug("blocks %u/%u requested for inode %lu\n",
3720 		  map->m_lblk, map->m_len, inode->i_ino);
3721 	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3722 
3723 	/* check in cache */
3724 	if (!(flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) &&
3725 		ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3726 		if (!newex.ee_start_lo && !newex.ee_start_hi) {
3727 			if ((sbi->s_cluster_ratio > 1) &&
3728 			    ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3729 				map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3730 
3731 			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3732 				/*
3733 				 * block isn't allocated yet and
3734 				 * user doesn't want to allocate it
3735 				 */
3736 				goto out2;
3737 			}
3738 			/* we should allocate requested block */
3739 		} else {
3740 			/* block is already allocated */
3741 			if (sbi->s_cluster_ratio > 1)
3742 				map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3743 			newblock = map->m_lblk
3744 				   - le32_to_cpu(newex.ee_block)
3745 				   + ext4_ext_pblock(&newex);
3746 			/* number of remaining blocks in the extent */
3747 			allocated = ext4_ext_get_actual_len(&newex) -
3748 				(map->m_lblk - le32_to_cpu(newex.ee_block));
3749 			goto out;
3750 		}
3751 	}
3752 
3753 	/* find extent for this block */
3754 	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3755 	if (IS_ERR(path)) {
3756 		err = PTR_ERR(path);
3757 		path = NULL;
3758 		goto out2;
3759 	}
3760 
3761 	depth = ext_depth(inode);
3762 
3763 	/*
3764 	 * consistent leaf must not be empty;
3765 	 * this situation is possible, though, _during_ tree modification;
3766 	 * this is why assert can't be put in ext4_ext_find_extent()
3767 	 */
3768 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3769 		EXT4_ERROR_INODE(inode, "bad extent address "
3770 				 "lblock: %lu, depth: %d pblock %lld",
3771 				 (unsigned long) map->m_lblk, depth,
3772 				 path[depth].p_block);
3773 		err = -EIO;
3774 		goto out2;
3775 	}
3776 
3777 	ex = path[depth].p_ext;
3778 	if (ex) {
3779 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3780 		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3781 		unsigned short ee_len;
3782 
3783 		/*
3784 		 * Uninitialized extents are treated as holes, except that
3785 		 * we split out initialized portions during a write.
3786 		 */
3787 		ee_len = ext4_ext_get_actual_len(ex);
3788 
3789 		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3790 
3791 		/* if found extent covers block, simply return it */
3792 		if (in_range(map->m_lblk, ee_block, ee_len)) {
3793 			struct ext4_map_blocks punch_map;
3794 			ext4_fsblk_t partial_cluster = 0;
3795 
3796 			newblock = map->m_lblk - ee_block + ee_start;
3797 			/* number of remaining blocks in the extent */
3798 			allocated = ee_len - (map->m_lblk - ee_block);
3799 			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3800 				  ee_block, ee_len, newblock);
3801 
3802 			if ((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0) {
3803 				/*
3804 				 * Do not put uninitialized extent
3805 				 * in the cache
3806 				 */
3807 				if (!ext4_ext_is_uninitialized(ex)) {
3808 					ext4_ext_put_in_cache(inode, ee_block,
3809 						ee_len, ee_start);
3810 					goto out;
3811 				}
3812 				ret = ext4_ext_handle_uninitialized_extents(
3813 					handle, inode, map, path, flags,
3814 					allocated, newblock);
3815 				return ret;
3816 			}
3817 
3818 			/*
3819 			 * Punch out the map length, but only to the
3820 			 * end of the extent
3821 			 */
3822 			punched_out = allocated < map->m_len ?
3823 				allocated : map->m_len;
3824 
3825 			/*
3826 			 * Sense extents need to be converted to
3827 			 * uninitialized, they must fit in an
3828 			 * uninitialized extent
3829 			 */
3830 			if (punched_out > EXT_UNINIT_MAX_LEN)
3831 				punched_out = EXT_UNINIT_MAX_LEN;
3832 
3833 			punch_map.m_lblk = map->m_lblk;
3834 			punch_map.m_pblk = newblock;
3835 			punch_map.m_len = punched_out;
3836 			punch_map.m_flags = 0;
3837 
3838 			/* Check to see if the extent needs to be split */
3839 			if (punch_map.m_len != ee_len ||
3840 				punch_map.m_lblk != ee_block) {
3841 
3842 				ret = ext4_split_extent(handle, inode,
3843 				path, &punch_map, 0,
3844 				EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
3845 				EXT4_GET_BLOCKS_PRE_IO);
3846 
3847 				if (ret < 0) {
3848 					err = ret;
3849 					goto out2;
3850 				}
3851 				/*
3852 				 * find extent for the block at
3853 				 * the start of the hole
3854 				 */
3855 				ext4_ext_drop_refs(path);
3856 				kfree(path);
3857 
3858 				path = ext4_ext_find_extent(inode,
3859 				map->m_lblk, NULL);
3860 				if (IS_ERR(path)) {
3861 					err = PTR_ERR(path);
3862 					path = NULL;
3863 					goto out2;
3864 				}
3865 
3866 				depth = ext_depth(inode);
3867 				ex = path[depth].p_ext;
3868 				ee_len = ext4_ext_get_actual_len(ex);
3869 				ee_block = le32_to_cpu(ex->ee_block);
3870 				ee_start = ext4_ext_pblock(ex);
3871 
3872 			}
3873 
3874 			ext4_ext_mark_uninitialized(ex);
3875 
3876 			ext4_ext_invalidate_cache(inode);
3877 
3878 			err = ext4_ext_rm_leaf(handle, inode, path,
3879 					       &partial_cluster, map->m_lblk,
3880 					       map->m_lblk + punched_out);
3881 
3882 			if (!err && path->p_hdr->eh_entries == 0) {
3883 				/*
3884 				 * Punch hole freed all of this sub tree,
3885 				 * so we need to correct eh_depth
3886 				 */
3887 				err = ext4_ext_get_access(handle, inode, path);
3888 				if (err == 0) {
3889 					ext_inode_hdr(inode)->eh_depth = 0;
3890 					ext_inode_hdr(inode)->eh_max =
3891 					cpu_to_le16(ext4_ext_space_root(
3892 						inode, 0));
3893 
3894 					err = ext4_ext_dirty(
3895 						handle, inode, path);
3896 				}
3897 			}
3898 
3899 			goto out2;
3900 		}
3901 	}
3902 
3903 	if ((sbi->s_cluster_ratio > 1) &&
3904 	    ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3905 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3906 
3907 	/*
3908 	 * requested block isn't allocated yet;
3909 	 * we couldn't try to create block if create flag is zero
3910 	 */
3911 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3912 		/*
3913 		 * put just found gap into cache to speed up
3914 		 * subsequent requests
3915 		 */
3916 		ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3917 		goto out2;
3918 	}
3919 
3920 	/*
3921 	 * Okay, we need to do block allocation.
3922 	 */
3923 	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
3924 	newex.ee_block = cpu_to_le32(map->m_lblk);
3925 	cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3926 
3927 	/*
3928 	 * If we are doing bigalloc, check to see if the extent returned
3929 	 * by ext4_ext_find_extent() implies a cluster we can use.
3930 	 */
3931 	if (cluster_offset && ex &&
3932 	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
3933 		ar.len = allocated = map->m_len;
3934 		newblock = map->m_pblk;
3935 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3936 		goto got_allocated_blocks;
3937 	}
3938 
3939 	/* find neighbour allocated blocks */
3940 	ar.lleft = map->m_lblk;
3941 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3942 	if (err)
3943 		goto out2;
3944 	ar.lright = map->m_lblk;
3945 	ex2 = NULL;
3946 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
3947 	if (err)
3948 		goto out2;
3949 
3950 	/* Check if the extent after searching to the right implies a
3951 	 * cluster we can use. */
3952 	if ((sbi->s_cluster_ratio > 1) && ex2 &&
3953 	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
3954 		ar.len = allocated = map->m_len;
3955 		newblock = map->m_pblk;
3956 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3957 		goto got_allocated_blocks;
3958 	}
3959 
3960 	/*
3961 	 * See if request is beyond maximum number of blocks we can have in
3962 	 * a single extent. For an initialized extent this limit is
3963 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3964 	 * EXT_UNINIT_MAX_LEN.
3965 	 */
3966 	if (map->m_len > EXT_INIT_MAX_LEN &&
3967 	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3968 		map->m_len = EXT_INIT_MAX_LEN;
3969 	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3970 		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3971 		map->m_len = EXT_UNINIT_MAX_LEN;
3972 
3973 	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3974 	newex.ee_len = cpu_to_le16(map->m_len);
3975 	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
3976 	if (err)
3977 		allocated = ext4_ext_get_actual_len(&newex);
3978 	else
3979 		allocated = map->m_len;
3980 
3981 	/* allocate new block */
3982 	ar.inode = inode;
3983 	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3984 	ar.logical = map->m_lblk;
3985 	/*
3986 	 * We calculate the offset from the beginning of the cluster
3987 	 * for the logical block number, since when we allocate a
3988 	 * physical cluster, the physical block should start at the
3989 	 * same offset from the beginning of the cluster.  This is
3990 	 * needed so that future calls to get_implied_cluster_alloc()
3991 	 * work correctly.
3992 	 */
3993 	offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
3994 	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
3995 	ar.goal -= offset;
3996 	ar.logical -= offset;
3997 	if (S_ISREG(inode->i_mode))
3998 		ar.flags = EXT4_MB_HINT_DATA;
3999 	else
4000 		/* disable in-core preallocation for non-regular files */
4001 		ar.flags = 0;
4002 	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4003 		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4004 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4005 	if (!newblock)
4006 		goto out2;
4007 	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4008 		  ar.goal, newblock, allocated);
4009 	free_on_err = 1;
4010 	allocated_clusters = ar.len;
4011 	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4012 	if (ar.len > allocated)
4013 		ar.len = allocated;
4014 
4015 got_allocated_blocks:
4016 	/* try to insert new extent into found leaf and return */
4017 	ext4_ext_store_pblock(&newex, newblock + offset);
4018 	newex.ee_len = cpu_to_le16(ar.len);
4019 	/* Mark uninitialized */
4020 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4021 		ext4_ext_mark_uninitialized(&newex);
4022 		/*
4023 		 * io_end structure was created for every IO write to an
4024 		 * uninitialized extent. To avoid unnecessary conversion,
4025 		 * here we flag the IO that really needs the conversion.
4026 		 * For non asycn direct IO case, flag the inode state
4027 		 * that we need to perform conversion when IO is done.
4028 		 */
4029 		if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
4030 			if (io)
4031 				ext4_set_io_unwritten_flag(inode, io);
4032 			else
4033 				ext4_set_inode_state(inode,
4034 						     EXT4_STATE_DIO_UNWRITTEN);
4035 		}
4036 		if (ext4_should_dioread_nolock(inode))
4037 			map->m_flags |= EXT4_MAP_UNINIT;
4038 	}
4039 
4040 	err = 0;
4041 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4042 		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4043 					 path, ar.len);
4044 	if (!err)
4045 		err = ext4_ext_insert_extent(handle, inode, path,
4046 					     &newex, flags);
4047 	if (err && free_on_err) {
4048 		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4049 			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4050 		/* free data blocks we just allocated */
4051 		/* not a good idea to call discard here directly,
4052 		 * but otherwise we'd need to call it every free() */
4053 		ext4_discard_preallocations(inode);
4054 		ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4055 				 ext4_ext_get_actual_len(&newex), fb_flags);
4056 		goto out2;
4057 	}
4058 
4059 	/* previous routine could use block we allocated */
4060 	newblock = ext4_ext_pblock(&newex);
4061 	allocated = ext4_ext_get_actual_len(&newex);
4062 	if (allocated > map->m_len)
4063 		allocated = map->m_len;
4064 	map->m_flags |= EXT4_MAP_NEW;
4065 
4066 	/*
4067 	 * Update reserved blocks/metadata blocks after successful
4068 	 * block allocation which had been deferred till now.
4069 	 */
4070 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4071 		unsigned int reserved_clusters;
4072 		/*
4073 		 * Check how many clusters we had reserved this allocated range
4074 		 */
4075 		reserved_clusters = get_reserved_cluster_alloc(inode,
4076 						map->m_lblk, allocated);
4077 		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4078 			if (reserved_clusters) {
4079 				/*
4080 				 * We have clusters reserved for this range.
4081 				 * But since we are not doing actual allocation
4082 				 * and are simply using blocks from previously
4083 				 * allocated cluster, we should release the
4084 				 * reservation and not claim quota.
4085 				 */
4086 				ext4_da_update_reserve_space(inode,
4087 						reserved_clusters, 0);
4088 			}
4089 		} else {
4090 			BUG_ON(allocated_clusters < reserved_clusters);
4091 			/* We will claim quota for all newly allocated blocks.*/
4092 			ext4_da_update_reserve_space(inode, allocated_clusters,
4093 							1);
4094 			if (reserved_clusters < allocated_clusters) {
4095 				struct ext4_inode_info *ei = EXT4_I(inode);
4096 				int reservation = allocated_clusters -
4097 						  reserved_clusters;
4098 				/*
4099 				 * It seems we claimed few clusters outside of
4100 				 * the range of this allocation. We should give
4101 				 * it back to the reservation pool. This can
4102 				 * happen in the following case:
4103 				 *
4104 				 * * Suppose s_cluster_ratio is 4 (i.e., each
4105 				 *   cluster has 4 blocks. Thus, the clusters
4106 				 *   are [0-3],[4-7],[8-11]...
4107 				 * * First comes delayed allocation write for
4108 				 *   logical blocks 10 & 11. Since there were no
4109 				 *   previous delayed allocated blocks in the
4110 				 *   range [8-11], we would reserve 1 cluster
4111 				 *   for this write.
4112 				 * * Next comes write for logical blocks 3 to 8.
4113 				 *   In this case, we will reserve 2 clusters
4114 				 *   (for [0-3] and [4-7]; and not for [8-11] as
4115 				 *   that range has a delayed allocated blocks.
4116 				 *   Thus total reserved clusters now becomes 3.
4117 				 * * Now, during the delayed allocation writeout
4118 				 *   time, we will first write blocks [3-8] and
4119 				 *   allocate 3 clusters for writing these
4120 				 *   blocks. Also, we would claim all these
4121 				 *   three clusters above.
4122 				 * * Now when we come here to writeout the
4123 				 *   blocks [10-11], we would expect to claim
4124 				 *   the reservation of 1 cluster we had made
4125 				 *   (and we would claim it since there are no
4126 				 *   more delayed allocated blocks in the range
4127 				 *   [8-11]. But our reserved cluster count had
4128 				 *   already gone to 0.
4129 				 *
4130 				 *   Thus, at the step 4 above when we determine
4131 				 *   that there are still some unwritten delayed
4132 				 *   allocated blocks outside of our current
4133 				 *   block range, we should increment the
4134 				 *   reserved clusters count so that when the
4135 				 *   remaining blocks finally gets written, we
4136 				 *   could claim them.
4137 				 */
4138 				dquot_reserve_block(inode,
4139 						EXT4_C2B(sbi, reservation));
4140 				spin_lock(&ei->i_block_reservation_lock);
4141 				ei->i_reserved_data_blocks += reservation;
4142 				spin_unlock(&ei->i_block_reservation_lock);
4143 			}
4144 		}
4145 	}
4146 
4147 	/*
4148 	 * Cache the extent and update transaction to commit on fdatasync only
4149 	 * when it is _not_ an uninitialized extent.
4150 	 */
4151 	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4152 		ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4153 		ext4_update_inode_fsync_trans(handle, inode, 1);
4154 	} else
4155 		ext4_update_inode_fsync_trans(handle, inode, 0);
4156 out:
4157 	if (allocated > map->m_len)
4158 		allocated = map->m_len;
4159 	ext4_ext_show_leaf(inode, path);
4160 	map->m_flags |= EXT4_MAP_MAPPED;
4161 	map->m_pblk = newblock;
4162 	map->m_len = allocated;
4163 out2:
4164 	if (path) {
4165 		ext4_ext_drop_refs(path);
4166 		kfree(path);
4167 	}
4168 	result = (flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) ?
4169 			punched_out : allocated;
4170 
4171 	trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
4172 		newblock, map->m_len, err ? err : result);
4173 
4174 	return err ? err : result;
4175 }
4176 
4177 void ext4_ext_truncate(struct inode *inode)
4178 {
4179 	struct address_space *mapping = inode->i_mapping;
4180 	struct super_block *sb = inode->i_sb;
4181 	ext4_lblk_t last_block;
4182 	handle_t *handle;
4183 	loff_t page_len;
4184 	int err = 0;
4185 
4186 	/*
4187 	 * finish any pending end_io work so we won't run the risk of
4188 	 * converting any truncated blocks to initialized later
4189 	 */
4190 	ext4_flush_completed_IO(inode);
4191 
4192 	/*
4193 	 * probably first extent we're gonna free will be last in block
4194 	 */
4195 	err = ext4_writepage_trans_blocks(inode);
4196 	handle = ext4_journal_start(inode, err);
4197 	if (IS_ERR(handle))
4198 		return;
4199 
4200 	if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4201 		page_len = PAGE_CACHE_SIZE -
4202 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
4203 
4204 		err = ext4_discard_partial_page_buffers(handle,
4205 			mapping, inode->i_size, page_len, 0);
4206 
4207 		if (err)
4208 			goto out_stop;
4209 	}
4210 
4211 	if (ext4_orphan_add(handle, inode))
4212 		goto out_stop;
4213 
4214 	down_write(&EXT4_I(inode)->i_data_sem);
4215 	ext4_ext_invalidate_cache(inode);
4216 
4217 	ext4_discard_preallocations(inode);
4218 
4219 	/*
4220 	 * TODO: optimization is possible here.
4221 	 * Probably we need not scan at all,
4222 	 * because page truncation is enough.
4223 	 */
4224 
4225 	/* we have to know where to truncate from in crash case */
4226 	EXT4_I(inode)->i_disksize = inode->i_size;
4227 	ext4_mark_inode_dirty(handle, inode);
4228 
4229 	last_block = (inode->i_size + sb->s_blocksize - 1)
4230 			>> EXT4_BLOCK_SIZE_BITS(sb);
4231 	err = ext4_ext_remove_space(inode, last_block);
4232 
4233 	/* In a multi-transaction truncate, we only make the final
4234 	 * transaction synchronous.
4235 	 */
4236 	if (IS_SYNC(inode))
4237 		ext4_handle_sync(handle);
4238 
4239 	up_write(&EXT4_I(inode)->i_data_sem);
4240 
4241 out_stop:
4242 	/*
4243 	 * If this was a simple ftruncate() and the file will remain alive,
4244 	 * then we need to clear up the orphan record which we created above.
4245 	 * However, if this was a real unlink then we were called by
4246 	 * ext4_delete_inode(), and we allow that function to clean up the
4247 	 * orphan info for us.
4248 	 */
4249 	if (inode->i_nlink)
4250 		ext4_orphan_del(handle, inode);
4251 
4252 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4253 	ext4_mark_inode_dirty(handle, inode);
4254 	ext4_journal_stop(handle);
4255 }
4256 
4257 static void ext4_falloc_update_inode(struct inode *inode,
4258 				int mode, loff_t new_size, int update_ctime)
4259 {
4260 	struct timespec now;
4261 
4262 	if (update_ctime) {
4263 		now = current_fs_time(inode->i_sb);
4264 		if (!timespec_equal(&inode->i_ctime, &now))
4265 			inode->i_ctime = now;
4266 	}
4267 	/*
4268 	 * Update only when preallocation was requested beyond
4269 	 * the file size.
4270 	 */
4271 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4272 		if (new_size > i_size_read(inode))
4273 			i_size_write(inode, new_size);
4274 		if (new_size > EXT4_I(inode)->i_disksize)
4275 			ext4_update_i_disksize(inode, new_size);
4276 	} else {
4277 		/*
4278 		 * Mark that we allocate beyond EOF so the subsequent truncate
4279 		 * can proceed even if the new size is the same as i_size.
4280 		 */
4281 		if (new_size > i_size_read(inode))
4282 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4283 	}
4284 
4285 }
4286 
4287 /*
4288  * preallocate space for a file. This implements ext4's fallocate file
4289  * operation, which gets called from sys_fallocate system call.
4290  * For block-mapped files, posix_fallocate should fall back to the method
4291  * of writing zeroes to the required new blocks (the same behavior which is
4292  * expected for file systems which do not support fallocate() system call).
4293  */
4294 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4295 {
4296 	struct inode *inode = file->f_path.dentry->d_inode;
4297 	handle_t *handle;
4298 	loff_t new_size;
4299 	unsigned int max_blocks;
4300 	int ret = 0;
4301 	int ret2 = 0;
4302 	int retries = 0;
4303 	int flags;
4304 	struct ext4_map_blocks map;
4305 	unsigned int credits, blkbits = inode->i_blkbits;
4306 
4307 	/*
4308 	 * currently supporting (pre)allocate mode for extent-based
4309 	 * files _only_
4310 	 */
4311 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4312 		return -EOPNOTSUPP;
4313 
4314 	/* Return error if mode is not supported */
4315 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4316 		return -EOPNOTSUPP;
4317 
4318 	if (mode & FALLOC_FL_PUNCH_HOLE)
4319 		return ext4_punch_hole(file, offset, len);
4320 
4321 	trace_ext4_fallocate_enter(inode, offset, len, mode);
4322 	map.m_lblk = offset >> blkbits;
4323 	/*
4324 	 * We can't just convert len to max_blocks because
4325 	 * If blocksize = 4096 offset = 3072 and len = 2048
4326 	 */
4327 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4328 		- map.m_lblk;
4329 	/*
4330 	 * credits to insert 1 extent into extent tree
4331 	 */
4332 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4333 	mutex_lock(&inode->i_mutex);
4334 	ret = inode_newsize_ok(inode, (len + offset));
4335 	if (ret) {
4336 		mutex_unlock(&inode->i_mutex);
4337 		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4338 		return ret;
4339 	}
4340 	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4341 	if (mode & FALLOC_FL_KEEP_SIZE)
4342 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4343 	/*
4344 	 * Don't normalize the request if it can fit in one extent so
4345 	 * that it doesn't get unnecessarily split into multiple
4346 	 * extents.
4347 	 */
4348 	if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4349 		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4350 retry:
4351 	while (ret >= 0 && ret < max_blocks) {
4352 		map.m_lblk = map.m_lblk + ret;
4353 		map.m_len = max_blocks = max_blocks - ret;
4354 		handle = ext4_journal_start(inode, credits);
4355 		if (IS_ERR(handle)) {
4356 			ret = PTR_ERR(handle);
4357 			break;
4358 		}
4359 		ret = ext4_map_blocks(handle, inode, &map, flags);
4360 		if (ret <= 0) {
4361 #ifdef EXT4FS_DEBUG
4362 			WARN_ON(ret <= 0);
4363 			printk(KERN_ERR "%s: ext4_ext_map_blocks "
4364 				    "returned error inode#%lu, block=%u, "
4365 				    "max_blocks=%u", __func__,
4366 				    inode->i_ino, map.m_lblk, max_blocks);
4367 #endif
4368 			ext4_mark_inode_dirty(handle, inode);
4369 			ret2 = ext4_journal_stop(handle);
4370 			break;
4371 		}
4372 		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4373 						blkbits) >> blkbits))
4374 			new_size = offset + len;
4375 		else
4376 			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4377 
4378 		ext4_falloc_update_inode(inode, mode, new_size,
4379 					 (map.m_flags & EXT4_MAP_NEW));
4380 		ext4_mark_inode_dirty(handle, inode);
4381 		ret2 = ext4_journal_stop(handle);
4382 		if (ret2)
4383 			break;
4384 	}
4385 	if (ret == -ENOSPC &&
4386 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4387 		ret = 0;
4388 		goto retry;
4389 	}
4390 	mutex_unlock(&inode->i_mutex);
4391 	trace_ext4_fallocate_exit(inode, offset, max_blocks,
4392 				ret > 0 ? ret2 : ret);
4393 	return ret > 0 ? ret2 : ret;
4394 }
4395 
4396 /*
4397  * This function convert a range of blocks to written extents
4398  * The caller of this function will pass the start offset and the size.
4399  * all unwritten extents within this range will be converted to
4400  * written extents.
4401  *
4402  * This function is called from the direct IO end io call back
4403  * function, to convert the fallocated extents after IO is completed.
4404  * Returns 0 on success.
4405  */
4406 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4407 				    ssize_t len)
4408 {
4409 	handle_t *handle;
4410 	unsigned int max_blocks;
4411 	int ret = 0;
4412 	int ret2 = 0;
4413 	struct ext4_map_blocks map;
4414 	unsigned int credits, blkbits = inode->i_blkbits;
4415 
4416 	map.m_lblk = offset >> blkbits;
4417 	/*
4418 	 * We can't just convert len to max_blocks because
4419 	 * If blocksize = 4096 offset = 3072 and len = 2048
4420 	 */
4421 	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4422 		      map.m_lblk);
4423 	/*
4424 	 * credits to insert 1 extent into extent tree
4425 	 */
4426 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4427 	while (ret >= 0 && ret < max_blocks) {
4428 		map.m_lblk += ret;
4429 		map.m_len = (max_blocks -= ret);
4430 		handle = ext4_journal_start(inode, credits);
4431 		if (IS_ERR(handle)) {
4432 			ret = PTR_ERR(handle);
4433 			break;
4434 		}
4435 		ret = ext4_map_blocks(handle, inode, &map,
4436 				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4437 		if (ret <= 0) {
4438 			WARN_ON(ret <= 0);
4439 			printk(KERN_ERR "%s: ext4_ext_map_blocks "
4440 				    "returned error inode#%lu, block=%u, "
4441 				    "max_blocks=%u", __func__,
4442 				    inode->i_ino, map.m_lblk, map.m_len);
4443 		}
4444 		ext4_mark_inode_dirty(handle, inode);
4445 		ret2 = ext4_journal_stop(handle);
4446 		if (ret <= 0 || ret2 )
4447 			break;
4448 	}
4449 	return ret > 0 ? ret2 : ret;
4450 }
4451 
4452 /*
4453  * Callback function called for each extent to gather FIEMAP information.
4454  */
4455 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
4456 		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
4457 		       void *data)
4458 {
4459 	__u64	logical;
4460 	__u64	physical;
4461 	__u64	length;
4462 	__u32	flags = 0;
4463 	int		ret = 0;
4464 	struct fiemap_extent_info *fieinfo = data;
4465 	unsigned char blksize_bits;
4466 
4467 	blksize_bits = inode->i_sb->s_blocksize_bits;
4468 	logical = (__u64)newex->ec_block << blksize_bits;
4469 
4470 	if (newex->ec_start == 0) {
4471 		/*
4472 		 * No extent in extent-tree contains block @newex->ec_start,
4473 		 * then the block may stay in 1)a hole or 2)delayed-extent.
4474 		 *
4475 		 * Holes or delayed-extents are processed as follows.
4476 		 * 1. lookup dirty pages with specified range in pagecache.
4477 		 *    If no page is got, then there is no delayed-extent and
4478 		 *    return with EXT_CONTINUE.
4479 		 * 2. find the 1st mapped buffer,
4480 		 * 3. check if the mapped buffer is both in the request range
4481 		 *    and a delayed buffer. If not, there is no delayed-extent,
4482 		 *    then return.
4483 		 * 4. a delayed-extent is found, the extent will be collected.
4484 		 */
4485 		ext4_lblk_t	end = 0;
4486 		pgoff_t		last_offset;
4487 		pgoff_t		offset;
4488 		pgoff_t		index;
4489 		pgoff_t		start_index = 0;
4490 		struct page	**pages = NULL;
4491 		struct buffer_head *bh = NULL;
4492 		struct buffer_head *head = NULL;
4493 		unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
4494 
4495 		pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
4496 		if (pages == NULL)
4497 			return -ENOMEM;
4498 
4499 		offset = logical >> PAGE_SHIFT;
4500 repeat:
4501 		last_offset = offset;
4502 		head = NULL;
4503 		ret = find_get_pages_tag(inode->i_mapping, &offset,
4504 					PAGECACHE_TAG_DIRTY, nr_pages, pages);
4505 
4506 		if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4507 			/* First time, try to find a mapped buffer. */
4508 			if (ret == 0) {
4509 out:
4510 				for (index = 0; index < ret; index++)
4511 					page_cache_release(pages[index]);
4512 				/* just a hole. */
4513 				kfree(pages);
4514 				return EXT_CONTINUE;
4515 			}
4516 			index = 0;
4517 
4518 next_page:
4519 			/* Try to find the 1st mapped buffer. */
4520 			end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
4521 				  blksize_bits;
4522 			if (!page_has_buffers(pages[index]))
4523 				goto out;
4524 			head = page_buffers(pages[index]);
4525 			if (!head)
4526 				goto out;
4527 
4528 			index++;
4529 			bh = head;
4530 			do {
4531 				if (end >= newex->ec_block +
4532 					newex->ec_len)
4533 					/* The buffer is out of
4534 					 * the request range.
4535 					 */
4536 					goto out;
4537 
4538 				if (buffer_mapped(bh) &&
4539 				    end >= newex->ec_block) {
4540 					start_index = index - 1;
4541 					/* get the 1st mapped buffer. */
4542 					goto found_mapped_buffer;
4543 				}
4544 
4545 				bh = bh->b_this_page;
4546 				end++;
4547 			} while (bh != head);
4548 
4549 			/* No mapped buffer in the range found in this page,
4550 			 * We need to look up next page.
4551 			 */
4552 			if (index >= ret) {
4553 				/* There is no page left, but we need to limit
4554 				 * newex->ec_len.
4555 				 */
4556 				newex->ec_len = end - newex->ec_block;
4557 				goto out;
4558 			}
4559 			goto next_page;
4560 		} else {
4561 			/*Find contiguous delayed buffers. */
4562 			if (ret > 0 && pages[0]->index == last_offset)
4563 				head = page_buffers(pages[0]);
4564 			bh = head;
4565 			index = 1;
4566 			start_index = 0;
4567 		}
4568 
4569 found_mapped_buffer:
4570 		if (bh != NULL && buffer_delay(bh)) {
4571 			/* 1st or contiguous delayed buffer found. */
4572 			if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4573 				/*
4574 				 * 1st delayed buffer found, record
4575 				 * the start of extent.
4576 				 */
4577 				flags |= FIEMAP_EXTENT_DELALLOC;
4578 				newex->ec_block = end;
4579 				logical = (__u64)end << blksize_bits;
4580 			}
4581 			/* Find contiguous delayed buffers. */
4582 			do {
4583 				if (!buffer_delay(bh))
4584 					goto found_delayed_extent;
4585 				bh = bh->b_this_page;
4586 				end++;
4587 			} while (bh != head);
4588 
4589 			for (; index < ret; index++) {
4590 				if (!page_has_buffers(pages[index])) {
4591 					bh = NULL;
4592 					break;
4593 				}
4594 				head = page_buffers(pages[index]);
4595 				if (!head) {
4596 					bh = NULL;
4597 					break;
4598 				}
4599 
4600 				if (pages[index]->index !=
4601 				    pages[start_index]->index + index
4602 				    - start_index) {
4603 					/* Blocks are not contiguous. */
4604 					bh = NULL;
4605 					break;
4606 				}
4607 				bh = head;
4608 				do {
4609 					if (!buffer_delay(bh))
4610 						/* Delayed-extent ends. */
4611 						goto found_delayed_extent;
4612 					bh = bh->b_this_page;
4613 					end++;
4614 				} while (bh != head);
4615 			}
4616 		} else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4617 			/* a hole found. */
4618 			goto out;
4619 
4620 found_delayed_extent:
4621 		newex->ec_len = min(end - newex->ec_block,
4622 						(ext4_lblk_t)EXT_INIT_MAX_LEN);
4623 		if (ret == nr_pages && bh != NULL &&
4624 			newex->ec_len < EXT_INIT_MAX_LEN &&
4625 			buffer_delay(bh)) {
4626 			/* Have not collected an extent and continue. */
4627 			for (index = 0; index < ret; index++)
4628 				page_cache_release(pages[index]);
4629 			goto repeat;
4630 		}
4631 
4632 		for (index = 0; index < ret; index++)
4633 			page_cache_release(pages[index]);
4634 		kfree(pages);
4635 	}
4636 
4637 	physical = (__u64)newex->ec_start << blksize_bits;
4638 	length =   (__u64)newex->ec_len << blksize_bits;
4639 
4640 	if (ex && ext4_ext_is_uninitialized(ex))
4641 		flags |= FIEMAP_EXTENT_UNWRITTEN;
4642 
4643 	if (next == EXT_MAX_BLOCKS)
4644 		flags |= FIEMAP_EXTENT_LAST;
4645 
4646 	ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4647 					length, flags);
4648 	if (ret < 0)
4649 		return ret;
4650 	if (ret == 1)
4651 		return EXT_BREAK;
4652 	return EXT_CONTINUE;
4653 }
4654 /* fiemap flags we can handle specified here */
4655 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4656 
4657 static int ext4_xattr_fiemap(struct inode *inode,
4658 				struct fiemap_extent_info *fieinfo)
4659 {
4660 	__u64 physical = 0;
4661 	__u64 length;
4662 	__u32 flags = FIEMAP_EXTENT_LAST;
4663 	int blockbits = inode->i_sb->s_blocksize_bits;
4664 	int error = 0;
4665 
4666 	/* in-inode? */
4667 	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4668 		struct ext4_iloc iloc;
4669 		int offset;	/* offset of xattr in inode */
4670 
4671 		error = ext4_get_inode_loc(inode, &iloc);
4672 		if (error)
4673 			return error;
4674 		physical = iloc.bh->b_blocknr << blockbits;
4675 		offset = EXT4_GOOD_OLD_INODE_SIZE +
4676 				EXT4_I(inode)->i_extra_isize;
4677 		physical += offset;
4678 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4679 		flags |= FIEMAP_EXTENT_DATA_INLINE;
4680 		brelse(iloc.bh);
4681 	} else { /* external block */
4682 		physical = EXT4_I(inode)->i_file_acl << blockbits;
4683 		length = inode->i_sb->s_blocksize;
4684 	}
4685 
4686 	if (physical)
4687 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4688 						length, flags);
4689 	return (error < 0 ? error : 0);
4690 }
4691 
4692 /*
4693  * ext4_ext_punch_hole
4694  *
4695  * Punches a hole of "length" bytes in a file starting
4696  * at byte "offset"
4697  *
4698  * @inode:  The inode of the file to punch a hole in
4699  * @offset: The starting byte offset of the hole
4700  * @length: The length of the hole
4701  *
4702  * Returns the number of blocks removed or negative on err
4703  */
4704 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4705 {
4706 	struct inode *inode = file->f_path.dentry->d_inode;
4707 	struct super_block *sb = inode->i_sb;
4708 	struct ext4_ext_cache cache_ex;
4709 	ext4_lblk_t first_block, last_block, num_blocks, iblock, max_blocks;
4710 	struct address_space *mapping = inode->i_mapping;
4711 	struct ext4_map_blocks map;
4712 	handle_t *handle;
4713 	loff_t first_page, last_page, page_len;
4714 	loff_t first_page_offset, last_page_offset;
4715 	int ret, credits, blocks_released, err = 0;
4716 
4717 	/* No need to punch hole beyond i_size */
4718 	if (offset >= inode->i_size)
4719 		return 0;
4720 
4721 	/*
4722 	 * If the hole extends beyond i_size, set the hole
4723 	 * to end after the page that contains i_size
4724 	 */
4725 	if (offset + length > inode->i_size) {
4726 		length = inode->i_size +
4727 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4728 		   offset;
4729 	}
4730 
4731 	first_block = (offset + sb->s_blocksize - 1) >>
4732 		EXT4_BLOCK_SIZE_BITS(sb);
4733 	last_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4734 
4735 	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4736 	last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4737 
4738 	first_page_offset = first_page << PAGE_CACHE_SHIFT;
4739 	last_page_offset = last_page << PAGE_CACHE_SHIFT;
4740 
4741 	/*
4742 	 * Write out all dirty pages to avoid race conditions
4743 	 * Then release them.
4744 	 */
4745 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4746 		err = filemap_write_and_wait_range(mapping,
4747 			offset, offset + length - 1);
4748 
4749 		if (err)
4750 			return err;
4751 	}
4752 
4753 	/* Now release the pages */
4754 	if (last_page_offset > first_page_offset) {
4755 		truncate_inode_pages_range(mapping, first_page_offset,
4756 					   last_page_offset-1);
4757 	}
4758 
4759 	/* finish any pending end_io work */
4760 	ext4_flush_completed_IO(inode);
4761 
4762 	credits = ext4_writepage_trans_blocks(inode);
4763 	handle = ext4_journal_start(inode, credits);
4764 	if (IS_ERR(handle))
4765 		return PTR_ERR(handle);
4766 
4767 	err = ext4_orphan_add(handle, inode);
4768 	if (err)
4769 		goto out;
4770 
4771 	/*
4772 	 * Now we need to zero out the non-page-aligned data in the
4773 	 * pages at the start and tail of the hole, and unmap the buffer
4774 	 * heads for the block aligned regions of the page that were
4775 	 * completely zeroed.
4776 	 */
4777 	if (first_page > last_page) {
4778 		/*
4779 		 * If the file space being truncated is contained within a page
4780 		 * just zero out and unmap the middle of that page
4781 		 */
4782 		err = ext4_discard_partial_page_buffers(handle,
4783 			mapping, offset, length, 0);
4784 
4785 		if (err)
4786 			goto out;
4787 	} else {
4788 		/*
4789 		 * zero out and unmap the partial page that contains
4790 		 * the start of the hole
4791 		 */
4792 		page_len  = first_page_offset - offset;
4793 		if (page_len > 0) {
4794 			err = ext4_discard_partial_page_buffers(handle, mapping,
4795 						   offset, page_len, 0);
4796 			if (err)
4797 				goto out;
4798 		}
4799 
4800 		/*
4801 		 * zero out and unmap the partial page that contains
4802 		 * the end of the hole
4803 		 */
4804 		page_len = offset + length - last_page_offset;
4805 		if (page_len > 0) {
4806 			err = ext4_discard_partial_page_buffers(handle, mapping,
4807 					last_page_offset, page_len, 0);
4808 			if (err)
4809 				goto out;
4810 		}
4811 	}
4812 
4813 
4814 	/*
4815 	 * If i_size is contained in the last page, we need to
4816 	 * unmap and zero the partial page after i_size
4817 	 */
4818 	if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4819 	   inode->i_size % PAGE_CACHE_SIZE != 0) {
4820 
4821 		page_len = PAGE_CACHE_SIZE -
4822 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
4823 
4824 		if (page_len > 0) {
4825 			err = ext4_discard_partial_page_buffers(handle,
4826 			  mapping, inode->i_size, page_len, 0);
4827 
4828 			if (err)
4829 				goto out;
4830 		}
4831 	}
4832 
4833 	/* If there are no blocks to remove, return now */
4834 	if (first_block >= last_block)
4835 		goto out;
4836 
4837 	down_write(&EXT4_I(inode)->i_data_sem);
4838 	ext4_ext_invalidate_cache(inode);
4839 	ext4_discard_preallocations(inode);
4840 
4841 	/*
4842 	 * Loop over all the blocks and identify blocks
4843 	 * that need to be punched out
4844 	 */
4845 	iblock = first_block;
4846 	blocks_released = 0;
4847 	while (iblock < last_block) {
4848 		max_blocks = last_block - iblock;
4849 		num_blocks = 1;
4850 		memset(&map, 0, sizeof(map));
4851 		map.m_lblk = iblock;
4852 		map.m_len = max_blocks;
4853 		ret = ext4_ext_map_blocks(handle, inode, &map,
4854 			EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
4855 
4856 		if (ret > 0) {
4857 			blocks_released += ret;
4858 			num_blocks = ret;
4859 		} else if (ret == 0) {
4860 			/*
4861 			 * If map blocks could not find the block,
4862 			 * then it is in a hole.  If the hole was
4863 			 * not already cached, then map blocks should
4864 			 * put it in the cache.  So we can get the hole
4865 			 * out of the cache
4866 			 */
4867 			memset(&cache_ex, 0, sizeof(cache_ex));
4868 			if ((ext4_ext_check_cache(inode, iblock, &cache_ex)) &&
4869 				!cache_ex.ec_start) {
4870 
4871 				/* The hole is cached */
4872 				num_blocks = cache_ex.ec_block +
4873 				cache_ex.ec_len - iblock;
4874 
4875 			} else {
4876 				/* The block could not be identified */
4877 				err = -EIO;
4878 				break;
4879 			}
4880 		} else {
4881 			/* Map blocks error */
4882 			err = ret;
4883 			break;
4884 		}
4885 
4886 		if (num_blocks == 0) {
4887 			/* This condition should never happen */
4888 			ext_debug("Block lookup failed");
4889 			err = -EIO;
4890 			break;
4891 		}
4892 
4893 		iblock += num_blocks;
4894 	}
4895 
4896 	if (blocks_released > 0) {
4897 		ext4_ext_invalidate_cache(inode);
4898 		ext4_discard_preallocations(inode);
4899 	}
4900 
4901 	if (IS_SYNC(inode))
4902 		ext4_handle_sync(handle);
4903 
4904 	up_write(&EXT4_I(inode)->i_data_sem);
4905 
4906 out:
4907 	ext4_orphan_del(handle, inode);
4908 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4909 	ext4_mark_inode_dirty(handle, inode);
4910 	ext4_journal_stop(handle);
4911 	return err;
4912 }
4913 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4914 		__u64 start, __u64 len)
4915 {
4916 	ext4_lblk_t start_blk;
4917 	int error = 0;
4918 
4919 	/* fallback to generic here if not in extents fmt */
4920 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4921 		return generic_block_fiemap(inode, fieinfo, start, len,
4922 			ext4_get_block);
4923 
4924 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4925 		return -EBADR;
4926 
4927 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4928 		error = ext4_xattr_fiemap(inode, fieinfo);
4929 	} else {
4930 		ext4_lblk_t len_blks;
4931 		__u64 last_blk;
4932 
4933 		start_blk = start >> inode->i_sb->s_blocksize_bits;
4934 		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4935 		if (last_blk >= EXT_MAX_BLOCKS)
4936 			last_blk = EXT_MAX_BLOCKS-1;
4937 		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4938 
4939 		/*
4940 		 * Walk the extent tree gathering extent information.
4941 		 * ext4_ext_fiemap_cb will push extents back to user.
4942 		 */
4943 		error = ext4_ext_walk_space(inode, start_blk, len_blks,
4944 					  ext4_ext_fiemap_cb, fieinfo);
4945 	}
4946 
4947 	return error;
4948 }
4949