1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public Licens 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/module.h> 33 #include <linux/fs.h> 34 #include <linux/time.h> 35 #include <linux/jbd2.h> 36 #include <linux/highuid.h> 37 #include <linux/pagemap.h> 38 #include <linux/quotaops.h> 39 #include <linux/string.h> 40 #include <linux/slab.h> 41 #include <linux/falloc.h> 42 #include <asm/uaccess.h> 43 #include <linux/fiemap.h> 44 #include "ext4_jbd2.h" 45 46 #include <trace/events/ext4.h> 47 48 static int ext4_split_extent(handle_t *handle, 49 struct inode *inode, 50 struct ext4_ext_path *path, 51 struct ext4_map_blocks *map, 52 int split_flag, 53 int flags); 54 55 static int ext4_ext_truncate_extend_restart(handle_t *handle, 56 struct inode *inode, 57 int needed) 58 { 59 int err; 60 61 if (!ext4_handle_valid(handle)) 62 return 0; 63 if (handle->h_buffer_credits > needed) 64 return 0; 65 err = ext4_journal_extend(handle, needed); 66 if (err <= 0) 67 return err; 68 err = ext4_truncate_restart_trans(handle, inode, needed); 69 if (err == 0) 70 err = -EAGAIN; 71 72 return err; 73 } 74 75 /* 76 * could return: 77 * - EROFS 78 * - ENOMEM 79 */ 80 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 81 struct ext4_ext_path *path) 82 { 83 if (path->p_bh) { 84 /* path points to block */ 85 return ext4_journal_get_write_access(handle, path->p_bh); 86 } 87 /* path points to leaf/index in inode body */ 88 /* we use in-core data, no need to protect them */ 89 return 0; 90 } 91 92 /* 93 * could return: 94 * - EROFS 95 * - ENOMEM 96 * - EIO 97 */ 98 #define ext4_ext_dirty(handle, inode, path) \ 99 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path)) 100 static int __ext4_ext_dirty(const char *where, unsigned int line, 101 handle_t *handle, struct inode *inode, 102 struct ext4_ext_path *path) 103 { 104 int err; 105 if (path->p_bh) { 106 /* path points to block */ 107 err = __ext4_handle_dirty_metadata(where, line, handle, 108 inode, path->p_bh); 109 } else { 110 /* path points to leaf/index in inode body */ 111 err = ext4_mark_inode_dirty(handle, inode); 112 } 113 return err; 114 } 115 116 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 117 struct ext4_ext_path *path, 118 ext4_lblk_t block) 119 { 120 if (path) { 121 int depth = path->p_depth; 122 struct ext4_extent *ex; 123 124 /* 125 * Try to predict block placement assuming that we are 126 * filling in a file which will eventually be 127 * non-sparse --- i.e., in the case of libbfd writing 128 * an ELF object sections out-of-order but in a way 129 * the eventually results in a contiguous object or 130 * executable file, or some database extending a table 131 * space file. However, this is actually somewhat 132 * non-ideal if we are writing a sparse file such as 133 * qemu or KVM writing a raw image file that is going 134 * to stay fairly sparse, since it will end up 135 * fragmenting the file system's free space. Maybe we 136 * should have some hueristics or some way to allow 137 * userspace to pass a hint to file system, 138 * especially if the latter case turns out to be 139 * common. 140 */ 141 ex = path[depth].p_ext; 142 if (ex) { 143 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 144 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 145 146 if (block > ext_block) 147 return ext_pblk + (block - ext_block); 148 else 149 return ext_pblk - (ext_block - block); 150 } 151 152 /* it looks like index is empty; 153 * try to find starting block from index itself */ 154 if (path[depth].p_bh) 155 return path[depth].p_bh->b_blocknr; 156 } 157 158 /* OK. use inode's group */ 159 return ext4_inode_to_goal_block(inode); 160 } 161 162 /* 163 * Allocation for a meta data block 164 */ 165 static ext4_fsblk_t 166 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 167 struct ext4_ext_path *path, 168 struct ext4_extent *ex, int *err, unsigned int flags) 169 { 170 ext4_fsblk_t goal, newblock; 171 172 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 173 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 174 NULL, err); 175 return newblock; 176 } 177 178 static inline int ext4_ext_space_block(struct inode *inode, int check) 179 { 180 int size; 181 182 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 183 / sizeof(struct ext4_extent); 184 #ifdef AGGRESSIVE_TEST 185 if (!check && size > 6) 186 size = 6; 187 #endif 188 return size; 189 } 190 191 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 192 { 193 int size; 194 195 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 196 / sizeof(struct ext4_extent_idx); 197 #ifdef AGGRESSIVE_TEST 198 if (!check && size > 5) 199 size = 5; 200 #endif 201 return size; 202 } 203 204 static inline int ext4_ext_space_root(struct inode *inode, int check) 205 { 206 int size; 207 208 size = sizeof(EXT4_I(inode)->i_data); 209 size -= sizeof(struct ext4_extent_header); 210 size /= sizeof(struct ext4_extent); 211 #ifdef AGGRESSIVE_TEST 212 if (!check && size > 3) 213 size = 3; 214 #endif 215 return size; 216 } 217 218 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 219 { 220 int size; 221 222 size = sizeof(EXT4_I(inode)->i_data); 223 size -= sizeof(struct ext4_extent_header); 224 size /= sizeof(struct ext4_extent_idx); 225 #ifdef AGGRESSIVE_TEST 226 if (!check && size > 4) 227 size = 4; 228 #endif 229 return size; 230 } 231 232 /* 233 * Calculate the number of metadata blocks needed 234 * to allocate @blocks 235 * Worse case is one block per extent 236 */ 237 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 238 { 239 struct ext4_inode_info *ei = EXT4_I(inode); 240 int idxs; 241 242 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 243 / sizeof(struct ext4_extent_idx)); 244 245 /* 246 * If the new delayed allocation block is contiguous with the 247 * previous da block, it can share index blocks with the 248 * previous block, so we only need to allocate a new index 249 * block every idxs leaf blocks. At ldxs**2 blocks, we need 250 * an additional index block, and at ldxs**3 blocks, yet 251 * another index blocks. 252 */ 253 if (ei->i_da_metadata_calc_len && 254 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 255 int num = 0; 256 257 if ((ei->i_da_metadata_calc_len % idxs) == 0) 258 num++; 259 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 260 num++; 261 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 262 num++; 263 ei->i_da_metadata_calc_len = 0; 264 } else 265 ei->i_da_metadata_calc_len++; 266 ei->i_da_metadata_calc_last_lblock++; 267 return num; 268 } 269 270 /* 271 * In the worst case we need a new set of index blocks at 272 * every level of the inode's extent tree. 273 */ 274 ei->i_da_metadata_calc_len = 1; 275 ei->i_da_metadata_calc_last_lblock = lblock; 276 return ext_depth(inode) + 1; 277 } 278 279 static int 280 ext4_ext_max_entries(struct inode *inode, int depth) 281 { 282 int max; 283 284 if (depth == ext_depth(inode)) { 285 if (depth == 0) 286 max = ext4_ext_space_root(inode, 1); 287 else 288 max = ext4_ext_space_root_idx(inode, 1); 289 } else { 290 if (depth == 0) 291 max = ext4_ext_space_block(inode, 1); 292 else 293 max = ext4_ext_space_block_idx(inode, 1); 294 } 295 296 return max; 297 } 298 299 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 300 { 301 ext4_fsblk_t block = ext4_ext_pblock(ext); 302 int len = ext4_ext_get_actual_len(ext); 303 304 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 305 } 306 307 static int ext4_valid_extent_idx(struct inode *inode, 308 struct ext4_extent_idx *ext_idx) 309 { 310 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 311 312 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 313 } 314 315 static int ext4_valid_extent_entries(struct inode *inode, 316 struct ext4_extent_header *eh, 317 int depth) 318 { 319 unsigned short entries; 320 if (eh->eh_entries == 0) 321 return 1; 322 323 entries = le16_to_cpu(eh->eh_entries); 324 325 if (depth == 0) { 326 /* leaf entries */ 327 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 328 while (entries) { 329 if (!ext4_valid_extent(inode, ext)) 330 return 0; 331 ext++; 332 entries--; 333 } 334 } else { 335 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 336 while (entries) { 337 if (!ext4_valid_extent_idx(inode, ext_idx)) 338 return 0; 339 ext_idx++; 340 entries--; 341 } 342 } 343 return 1; 344 } 345 346 static int __ext4_ext_check(const char *function, unsigned int line, 347 struct inode *inode, struct ext4_extent_header *eh, 348 int depth) 349 { 350 const char *error_msg; 351 int max = 0; 352 353 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 354 error_msg = "invalid magic"; 355 goto corrupted; 356 } 357 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 358 error_msg = "unexpected eh_depth"; 359 goto corrupted; 360 } 361 if (unlikely(eh->eh_max == 0)) { 362 error_msg = "invalid eh_max"; 363 goto corrupted; 364 } 365 max = ext4_ext_max_entries(inode, depth); 366 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 367 error_msg = "too large eh_max"; 368 goto corrupted; 369 } 370 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 371 error_msg = "invalid eh_entries"; 372 goto corrupted; 373 } 374 if (!ext4_valid_extent_entries(inode, eh, depth)) { 375 error_msg = "invalid extent entries"; 376 goto corrupted; 377 } 378 return 0; 379 380 corrupted: 381 ext4_error_inode(inode, function, line, 0, 382 "bad header/extent: %s - magic %x, " 383 "entries %u, max %u(%u), depth %u(%u)", 384 error_msg, le16_to_cpu(eh->eh_magic), 385 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 386 max, le16_to_cpu(eh->eh_depth), depth); 387 388 return -EIO; 389 } 390 391 #define ext4_ext_check(inode, eh, depth) \ 392 __ext4_ext_check(__func__, __LINE__, inode, eh, depth) 393 394 int ext4_ext_check_inode(struct inode *inode) 395 { 396 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode)); 397 } 398 399 #ifdef EXT_DEBUG 400 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 401 { 402 int k, l = path->p_depth; 403 404 ext_debug("path:"); 405 for (k = 0; k <= l; k++, path++) { 406 if (path->p_idx) { 407 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 408 ext4_idx_pblock(path->p_idx)); 409 } else if (path->p_ext) { 410 ext_debug(" %d:[%d]%d:%llu ", 411 le32_to_cpu(path->p_ext->ee_block), 412 ext4_ext_is_uninitialized(path->p_ext), 413 ext4_ext_get_actual_len(path->p_ext), 414 ext4_ext_pblock(path->p_ext)); 415 } else 416 ext_debug(" []"); 417 } 418 ext_debug("\n"); 419 } 420 421 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 422 { 423 int depth = ext_depth(inode); 424 struct ext4_extent_header *eh; 425 struct ext4_extent *ex; 426 int i; 427 428 if (!path) 429 return; 430 431 eh = path[depth].p_hdr; 432 ex = EXT_FIRST_EXTENT(eh); 433 434 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 435 436 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 437 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 438 ext4_ext_is_uninitialized(ex), 439 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 440 } 441 ext_debug("\n"); 442 } 443 444 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 445 ext4_fsblk_t newblock, int level) 446 { 447 int depth = ext_depth(inode); 448 struct ext4_extent *ex; 449 450 if (depth != level) { 451 struct ext4_extent_idx *idx; 452 idx = path[level].p_idx; 453 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 454 ext_debug("%d: move %d:%llu in new index %llu\n", level, 455 le32_to_cpu(idx->ei_block), 456 ext4_idx_pblock(idx), 457 newblock); 458 idx++; 459 } 460 461 return; 462 } 463 464 ex = path[depth].p_ext; 465 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 466 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 467 le32_to_cpu(ex->ee_block), 468 ext4_ext_pblock(ex), 469 ext4_ext_is_uninitialized(ex), 470 ext4_ext_get_actual_len(ex), 471 newblock); 472 ex++; 473 } 474 } 475 476 #else 477 #define ext4_ext_show_path(inode, path) 478 #define ext4_ext_show_leaf(inode, path) 479 #define ext4_ext_show_move(inode, path, newblock, level) 480 #endif 481 482 void ext4_ext_drop_refs(struct ext4_ext_path *path) 483 { 484 int depth = path->p_depth; 485 int i; 486 487 for (i = 0; i <= depth; i++, path++) 488 if (path->p_bh) { 489 brelse(path->p_bh); 490 path->p_bh = NULL; 491 } 492 } 493 494 /* 495 * ext4_ext_binsearch_idx: 496 * binary search for the closest index of the given block 497 * the header must be checked before calling this 498 */ 499 static void 500 ext4_ext_binsearch_idx(struct inode *inode, 501 struct ext4_ext_path *path, ext4_lblk_t block) 502 { 503 struct ext4_extent_header *eh = path->p_hdr; 504 struct ext4_extent_idx *r, *l, *m; 505 506 507 ext_debug("binsearch for %u(idx): ", block); 508 509 l = EXT_FIRST_INDEX(eh) + 1; 510 r = EXT_LAST_INDEX(eh); 511 while (l <= r) { 512 m = l + (r - l) / 2; 513 if (block < le32_to_cpu(m->ei_block)) 514 r = m - 1; 515 else 516 l = m + 1; 517 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 518 m, le32_to_cpu(m->ei_block), 519 r, le32_to_cpu(r->ei_block)); 520 } 521 522 path->p_idx = l - 1; 523 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block), 524 ext4_idx_pblock(path->p_idx)); 525 526 #ifdef CHECK_BINSEARCH 527 { 528 struct ext4_extent_idx *chix, *ix; 529 int k; 530 531 chix = ix = EXT_FIRST_INDEX(eh); 532 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 533 if (k != 0 && 534 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 535 printk(KERN_DEBUG "k=%d, ix=0x%p, " 536 "first=0x%p\n", k, 537 ix, EXT_FIRST_INDEX(eh)); 538 printk(KERN_DEBUG "%u <= %u\n", 539 le32_to_cpu(ix->ei_block), 540 le32_to_cpu(ix[-1].ei_block)); 541 } 542 BUG_ON(k && le32_to_cpu(ix->ei_block) 543 <= le32_to_cpu(ix[-1].ei_block)); 544 if (block < le32_to_cpu(ix->ei_block)) 545 break; 546 chix = ix; 547 } 548 BUG_ON(chix != path->p_idx); 549 } 550 #endif 551 552 } 553 554 /* 555 * ext4_ext_binsearch: 556 * binary search for closest extent of the given block 557 * the header must be checked before calling this 558 */ 559 static void 560 ext4_ext_binsearch(struct inode *inode, 561 struct ext4_ext_path *path, ext4_lblk_t block) 562 { 563 struct ext4_extent_header *eh = path->p_hdr; 564 struct ext4_extent *r, *l, *m; 565 566 if (eh->eh_entries == 0) { 567 /* 568 * this leaf is empty: 569 * we get such a leaf in split/add case 570 */ 571 return; 572 } 573 574 ext_debug("binsearch for %u: ", block); 575 576 l = EXT_FIRST_EXTENT(eh) + 1; 577 r = EXT_LAST_EXTENT(eh); 578 579 while (l <= r) { 580 m = l + (r - l) / 2; 581 if (block < le32_to_cpu(m->ee_block)) 582 r = m - 1; 583 else 584 l = m + 1; 585 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 586 m, le32_to_cpu(m->ee_block), 587 r, le32_to_cpu(r->ee_block)); 588 } 589 590 path->p_ext = l - 1; 591 ext_debug(" -> %d:%llu:[%d]%d ", 592 le32_to_cpu(path->p_ext->ee_block), 593 ext4_ext_pblock(path->p_ext), 594 ext4_ext_is_uninitialized(path->p_ext), 595 ext4_ext_get_actual_len(path->p_ext)); 596 597 #ifdef CHECK_BINSEARCH 598 { 599 struct ext4_extent *chex, *ex; 600 int k; 601 602 chex = ex = EXT_FIRST_EXTENT(eh); 603 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 604 BUG_ON(k && le32_to_cpu(ex->ee_block) 605 <= le32_to_cpu(ex[-1].ee_block)); 606 if (block < le32_to_cpu(ex->ee_block)) 607 break; 608 chex = ex; 609 } 610 BUG_ON(chex != path->p_ext); 611 } 612 #endif 613 614 } 615 616 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 617 { 618 struct ext4_extent_header *eh; 619 620 eh = ext_inode_hdr(inode); 621 eh->eh_depth = 0; 622 eh->eh_entries = 0; 623 eh->eh_magic = EXT4_EXT_MAGIC; 624 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 625 ext4_mark_inode_dirty(handle, inode); 626 ext4_ext_invalidate_cache(inode); 627 return 0; 628 } 629 630 struct ext4_ext_path * 631 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block, 632 struct ext4_ext_path *path) 633 { 634 struct ext4_extent_header *eh; 635 struct buffer_head *bh; 636 short int depth, i, ppos = 0, alloc = 0; 637 638 eh = ext_inode_hdr(inode); 639 depth = ext_depth(inode); 640 641 /* account possible depth increase */ 642 if (!path) { 643 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 644 GFP_NOFS); 645 if (!path) 646 return ERR_PTR(-ENOMEM); 647 alloc = 1; 648 } 649 path[0].p_hdr = eh; 650 path[0].p_bh = NULL; 651 652 i = depth; 653 /* walk through the tree */ 654 while (i) { 655 int need_to_validate = 0; 656 657 ext_debug("depth %d: num %d, max %d\n", 658 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 659 660 ext4_ext_binsearch_idx(inode, path + ppos, block); 661 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 662 path[ppos].p_depth = i; 663 path[ppos].p_ext = NULL; 664 665 bh = sb_getblk(inode->i_sb, path[ppos].p_block); 666 if (unlikely(!bh)) 667 goto err; 668 if (!bh_uptodate_or_lock(bh)) { 669 trace_ext4_ext_load_extent(inode, block, 670 path[ppos].p_block); 671 if (bh_submit_read(bh) < 0) { 672 put_bh(bh); 673 goto err; 674 } 675 /* validate the extent entries */ 676 need_to_validate = 1; 677 } 678 eh = ext_block_hdr(bh); 679 ppos++; 680 if (unlikely(ppos > depth)) { 681 put_bh(bh); 682 EXT4_ERROR_INODE(inode, 683 "ppos %d > depth %d", ppos, depth); 684 goto err; 685 } 686 path[ppos].p_bh = bh; 687 path[ppos].p_hdr = eh; 688 i--; 689 690 if (need_to_validate && ext4_ext_check(inode, eh, i)) 691 goto err; 692 } 693 694 path[ppos].p_depth = i; 695 path[ppos].p_ext = NULL; 696 path[ppos].p_idx = NULL; 697 698 /* find extent */ 699 ext4_ext_binsearch(inode, path + ppos, block); 700 /* if not an empty leaf */ 701 if (path[ppos].p_ext) 702 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 703 704 ext4_ext_show_path(inode, path); 705 706 return path; 707 708 err: 709 ext4_ext_drop_refs(path); 710 if (alloc) 711 kfree(path); 712 return ERR_PTR(-EIO); 713 } 714 715 /* 716 * ext4_ext_insert_index: 717 * insert new index [@logical;@ptr] into the block at @curp; 718 * check where to insert: before @curp or after @curp 719 */ 720 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 721 struct ext4_ext_path *curp, 722 int logical, ext4_fsblk_t ptr) 723 { 724 struct ext4_extent_idx *ix; 725 int len, err; 726 727 err = ext4_ext_get_access(handle, inode, curp); 728 if (err) 729 return err; 730 731 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 732 EXT4_ERROR_INODE(inode, 733 "logical %d == ei_block %d!", 734 logical, le32_to_cpu(curp->p_idx->ei_block)); 735 return -EIO; 736 } 737 738 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 739 >= le16_to_cpu(curp->p_hdr->eh_max))) { 740 EXT4_ERROR_INODE(inode, 741 "eh_entries %d >= eh_max %d!", 742 le16_to_cpu(curp->p_hdr->eh_entries), 743 le16_to_cpu(curp->p_hdr->eh_max)); 744 return -EIO; 745 } 746 747 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 748 /* insert after */ 749 ext_debug("insert new index %d after: %llu\n", logical, ptr); 750 ix = curp->p_idx + 1; 751 } else { 752 /* insert before */ 753 ext_debug("insert new index %d before: %llu\n", logical, ptr); 754 ix = curp->p_idx; 755 } 756 757 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 758 BUG_ON(len < 0); 759 if (len > 0) { 760 ext_debug("insert new index %d: " 761 "move %d indices from 0x%p to 0x%p\n", 762 logical, len, ix, ix + 1); 763 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 764 } 765 766 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 767 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 768 return -EIO; 769 } 770 771 ix->ei_block = cpu_to_le32(logical); 772 ext4_idx_store_pblock(ix, ptr); 773 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 774 775 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 776 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 777 return -EIO; 778 } 779 780 err = ext4_ext_dirty(handle, inode, curp); 781 ext4_std_error(inode->i_sb, err); 782 783 return err; 784 } 785 786 /* 787 * ext4_ext_split: 788 * inserts new subtree into the path, using free index entry 789 * at depth @at: 790 * - allocates all needed blocks (new leaf and all intermediate index blocks) 791 * - makes decision where to split 792 * - moves remaining extents and index entries (right to the split point) 793 * into the newly allocated blocks 794 * - initializes subtree 795 */ 796 static int ext4_ext_split(handle_t *handle, struct inode *inode, 797 unsigned int flags, 798 struct ext4_ext_path *path, 799 struct ext4_extent *newext, int at) 800 { 801 struct buffer_head *bh = NULL; 802 int depth = ext_depth(inode); 803 struct ext4_extent_header *neh; 804 struct ext4_extent_idx *fidx; 805 int i = at, k, m, a; 806 ext4_fsblk_t newblock, oldblock; 807 __le32 border; 808 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 809 int err = 0; 810 811 /* make decision: where to split? */ 812 /* FIXME: now decision is simplest: at current extent */ 813 814 /* if current leaf will be split, then we should use 815 * border from split point */ 816 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 817 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 818 return -EIO; 819 } 820 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 821 border = path[depth].p_ext[1].ee_block; 822 ext_debug("leaf will be split." 823 " next leaf starts at %d\n", 824 le32_to_cpu(border)); 825 } else { 826 border = newext->ee_block; 827 ext_debug("leaf will be added." 828 " next leaf starts at %d\n", 829 le32_to_cpu(border)); 830 } 831 832 /* 833 * If error occurs, then we break processing 834 * and mark filesystem read-only. index won't 835 * be inserted and tree will be in consistent 836 * state. Next mount will repair buffers too. 837 */ 838 839 /* 840 * Get array to track all allocated blocks. 841 * We need this to handle errors and free blocks 842 * upon them. 843 */ 844 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 845 if (!ablocks) 846 return -ENOMEM; 847 848 /* allocate all needed blocks */ 849 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 850 for (a = 0; a < depth - at; a++) { 851 newblock = ext4_ext_new_meta_block(handle, inode, path, 852 newext, &err, flags); 853 if (newblock == 0) 854 goto cleanup; 855 ablocks[a] = newblock; 856 } 857 858 /* initialize new leaf */ 859 newblock = ablocks[--a]; 860 if (unlikely(newblock == 0)) { 861 EXT4_ERROR_INODE(inode, "newblock == 0!"); 862 err = -EIO; 863 goto cleanup; 864 } 865 bh = sb_getblk(inode->i_sb, newblock); 866 if (!bh) { 867 err = -EIO; 868 goto cleanup; 869 } 870 lock_buffer(bh); 871 872 err = ext4_journal_get_create_access(handle, bh); 873 if (err) 874 goto cleanup; 875 876 neh = ext_block_hdr(bh); 877 neh->eh_entries = 0; 878 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 879 neh->eh_magic = EXT4_EXT_MAGIC; 880 neh->eh_depth = 0; 881 882 /* move remainder of path[depth] to the new leaf */ 883 if (unlikely(path[depth].p_hdr->eh_entries != 884 path[depth].p_hdr->eh_max)) { 885 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 886 path[depth].p_hdr->eh_entries, 887 path[depth].p_hdr->eh_max); 888 err = -EIO; 889 goto cleanup; 890 } 891 /* start copy from next extent */ 892 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 893 ext4_ext_show_move(inode, path, newblock, depth); 894 if (m) { 895 struct ext4_extent *ex; 896 ex = EXT_FIRST_EXTENT(neh); 897 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 898 le16_add_cpu(&neh->eh_entries, m); 899 } 900 901 set_buffer_uptodate(bh); 902 unlock_buffer(bh); 903 904 err = ext4_handle_dirty_metadata(handle, inode, bh); 905 if (err) 906 goto cleanup; 907 brelse(bh); 908 bh = NULL; 909 910 /* correct old leaf */ 911 if (m) { 912 err = ext4_ext_get_access(handle, inode, path + depth); 913 if (err) 914 goto cleanup; 915 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 916 err = ext4_ext_dirty(handle, inode, path + depth); 917 if (err) 918 goto cleanup; 919 920 } 921 922 /* create intermediate indexes */ 923 k = depth - at - 1; 924 if (unlikely(k < 0)) { 925 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 926 err = -EIO; 927 goto cleanup; 928 } 929 if (k) 930 ext_debug("create %d intermediate indices\n", k); 931 /* insert new index into current index block */ 932 /* current depth stored in i var */ 933 i = depth - 1; 934 while (k--) { 935 oldblock = newblock; 936 newblock = ablocks[--a]; 937 bh = sb_getblk(inode->i_sb, newblock); 938 if (!bh) { 939 err = -EIO; 940 goto cleanup; 941 } 942 lock_buffer(bh); 943 944 err = ext4_journal_get_create_access(handle, bh); 945 if (err) 946 goto cleanup; 947 948 neh = ext_block_hdr(bh); 949 neh->eh_entries = cpu_to_le16(1); 950 neh->eh_magic = EXT4_EXT_MAGIC; 951 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 952 neh->eh_depth = cpu_to_le16(depth - i); 953 fidx = EXT_FIRST_INDEX(neh); 954 fidx->ei_block = border; 955 ext4_idx_store_pblock(fidx, oldblock); 956 957 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 958 i, newblock, le32_to_cpu(border), oldblock); 959 960 /* move remainder of path[i] to the new index block */ 961 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 962 EXT_LAST_INDEX(path[i].p_hdr))) { 963 EXT4_ERROR_INODE(inode, 964 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 965 le32_to_cpu(path[i].p_ext->ee_block)); 966 err = -EIO; 967 goto cleanup; 968 } 969 /* start copy indexes */ 970 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 971 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 972 EXT_MAX_INDEX(path[i].p_hdr)); 973 ext4_ext_show_move(inode, path, newblock, i); 974 if (m) { 975 memmove(++fidx, path[i].p_idx, 976 sizeof(struct ext4_extent_idx) * m); 977 le16_add_cpu(&neh->eh_entries, m); 978 } 979 set_buffer_uptodate(bh); 980 unlock_buffer(bh); 981 982 err = ext4_handle_dirty_metadata(handle, inode, bh); 983 if (err) 984 goto cleanup; 985 brelse(bh); 986 bh = NULL; 987 988 /* correct old index */ 989 if (m) { 990 err = ext4_ext_get_access(handle, inode, path + i); 991 if (err) 992 goto cleanup; 993 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 994 err = ext4_ext_dirty(handle, inode, path + i); 995 if (err) 996 goto cleanup; 997 } 998 999 i--; 1000 } 1001 1002 /* insert new index */ 1003 err = ext4_ext_insert_index(handle, inode, path + at, 1004 le32_to_cpu(border), newblock); 1005 1006 cleanup: 1007 if (bh) { 1008 if (buffer_locked(bh)) 1009 unlock_buffer(bh); 1010 brelse(bh); 1011 } 1012 1013 if (err) { 1014 /* free all allocated blocks in error case */ 1015 for (i = 0; i < depth; i++) { 1016 if (!ablocks[i]) 1017 continue; 1018 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1019 EXT4_FREE_BLOCKS_METADATA); 1020 } 1021 } 1022 kfree(ablocks); 1023 1024 return err; 1025 } 1026 1027 /* 1028 * ext4_ext_grow_indepth: 1029 * implements tree growing procedure: 1030 * - allocates new block 1031 * - moves top-level data (index block or leaf) into the new block 1032 * - initializes new top-level, creating index that points to the 1033 * just created block 1034 */ 1035 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1036 unsigned int flags, 1037 struct ext4_extent *newext) 1038 { 1039 struct ext4_extent_header *neh; 1040 struct buffer_head *bh; 1041 ext4_fsblk_t newblock; 1042 int err = 0; 1043 1044 newblock = ext4_ext_new_meta_block(handle, inode, NULL, 1045 newext, &err, flags); 1046 if (newblock == 0) 1047 return err; 1048 1049 bh = sb_getblk(inode->i_sb, newblock); 1050 if (!bh) { 1051 err = -EIO; 1052 ext4_std_error(inode->i_sb, err); 1053 return err; 1054 } 1055 lock_buffer(bh); 1056 1057 err = ext4_journal_get_create_access(handle, bh); 1058 if (err) { 1059 unlock_buffer(bh); 1060 goto out; 1061 } 1062 1063 /* move top-level index/leaf into new block */ 1064 memmove(bh->b_data, EXT4_I(inode)->i_data, 1065 sizeof(EXT4_I(inode)->i_data)); 1066 1067 /* set size of new block */ 1068 neh = ext_block_hdr(bh); 1069 /* old root could have indexes or leaves 1070 * so calculate e_max right way */ 1071 if (ext_depth(inode)) 1072 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1073 else 1074 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1075 neh->eh_magic = EXT4_EXT_MAGIC; 1076 set_buffer_uptodate(bh); 1077 unlock_buffer(bh); 1078 1079 err = ext4_handle_dirty_metadata(handle, inode, bh); 1080 if (err) 1081 goto out; 1082 1083 /* Update top-level index: num,max,pointer */ 1084 neh = ext_inode_hdr(inode); 1085 neh->eh_entries = cpu_to_le16(1); 1086 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1087 if (neh->eh_depth == 0) { 1088 /* Root extent block becomes index block */ 1089 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1090 EXT_FIRST_INDEX(neh)->ei_block = 1091 EXT_FIRST_EXTENT(neh)->ee_block; 1092 } 1093 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1094 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1095 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1096 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1097 1098 neh->eh_depth = cpu_to_le16(neh->eh_depth + 1); 1099 ext4_mark_inode_dirty(handle, inode); 1100 out: 1101 brelse(bh); 1102 1103 return err; 1104 } 1105 1106 /* 1107 * ext4_ext_create_new_leaf: 1108 * finds empty index and adds new leaf. 1109 * if no free index is found, then it requests in-depth growing. 1110 */ 1111 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1112 unsigned int flags, 1113 struct ext4_ext_path *path, 1114 struct ext4_extent *newext) 1115 { 1116 struct ext4_ext_path *curp; 1117 int depth, i, err = 0; 1118 1119 repeat: 1120 i = depth = ext_depth(inode); 1121 1122 /* walk up to the tree and look for free index entry */ 1123 curp = path + depth; 1124 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1125 i--; 1126 curp--; 1127 } 1128 1129 /* we use already allocated block for index block, 1130 * so subsequent data blocks should be contiguous */ 1131 if (EXT_HAS_FREE_INDEX(curp)) { 1132 /* if we found index with free entry, then use that 1133 * entry: create all needed subtree and add new leaf */ 1134 err = ext4_ext_split(handle, inode, flags, path, newext, i); 1135 if (err) 1136 goto out; 1137 1138 /* refill path */ 1139 ext4_ext_drop_refs(path); 1140 path = ext4_ext_find_extent(inode, 1141 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1142 path); 1143 if (IS_ERR(path)) 1144 err = PTR_ERR(path); 1145 } else { 1146 /* tree is full, time to grow in depth */ 1147 err = ext4_ext_grow_indepth(handle, inode, flags, newext); 1148 if (err) 1149 goto out; 1150 1151 /* refill path */ 1152 ext4_ext_drop_refs(path); 1153 path = ext4_ext_find_extent(inode, 1154 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1155 path); 1156 if (IS_ERR(path)) { 1157 err = PTR_ERR(path); 1158 goto out; 1159 } 1160 1161 /* 1162 * only first (depth 0 -> 1) produces free space; 1163 * in all other cases we have to split the grown tree 1164 */ 1165 depth = ext_depth(inode); 1166 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1167 /* now we need to split */ 1168 goto repeat; 1169 } 1170 } 1171 1172 out: 1173 return err; 1174 } 1175 1176 /* 1177 * search the closest allocated block to the left for *logical 1178 * and returns it at @logical + it's physical address at @phys 1179 * if *logical is the smallest allocated block, the function 1180 * returns 0 at @phys 1181 * return value contains 0 (success) or error code 1182 */ 1183 static int ext4_ext_search_left(struct inode *inode, 1184 struct ext4_ext_path *path, 1185 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1186 { 1187 struct ext4_extent_idx *ix; 1188 struct ext4_extent *ex; 1189 int depth, ee_len; 1190 1191 if (unlikely(path == NULL)) { 1192 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1193 return -EIO; 1194 } 1195 depth = path->p_depth; 1196 *phys = 0; 1197 1198 if (depth == 0 && path->p_ext == NULL) 1199 return 0; 1200 1201 /* usually extent in the path covers blocks smaller 1202 * then *logical, but it can be that extent is the 1203 * first one in the file */ 1204 1205 ex = path[depth].p_ext; 1206 ee_len = ext4_ext_get_actual_len(ex); 1207 if (*logical < le32_to_cpu(ex->ee_block)) { 1208 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1209 EXT4_ERROR_INODE(inode, 1210 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1211 *logical, le32_to_cpu(ex->ee_block)); 1212 return -EIO; 1213 } 1214 while (--depth >= 0) { 1215 ix = path[depth].p_idx; 1216 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1217 EXT4_ERROR_INODE(inode, 1218 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1219 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1220 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1221 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1222 depth); 1223 return -EIO; 1224 } 1225 } 1226 return 0; 1227 } 1228 1229 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1230 EXT4_ERROR_INODE(inode, 1231 "logical %d < ee_block %d + ee_len %d!", 1232 *logical, le32_to_cpu(ex->ee_block), ee_len); 1233 return -EIO; 1234 } 1235 1236 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1237 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1238 return 0; 1239 } 1240 1241 /* 1242 * search the closest allocated block to the right for *logical 1243 * and returns it at @logical + it's physical address at @phys 1244 * if *logical is the largest allocated block, the function 1245 * returns 0 at @phys 1246 * return value contains 0 (success) or error code 1247 */ 1248 static int ext4_ext_search_right(struct inode *inode, 1249 struct ext4_ext_path *path, 1250 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1251 struct ext4_extent **ret_ex) 1252 { 1253 struct buffer_head *bh = NULL; 1254 struct ext4_extent_header *eh; 1255 struct ext4_extent_idx *ix; 1256 struct ext4_extent *ex; 1257 ext4_fsblk_t block; 1258 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1259 int ee_len; 1260 1261 if (unlikely(path == NULL)) { 1262 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1263 return -EIO; 1264 } 1265 depth = path->p_depth; 1266 *phys = 0; 1267 1268 if (depth == 0 && path->p_ext == NULL) 1269 return 0; 1270 1271 /* usually extent in the path covers blocks smaller 1272 * then *logical, but it can be that extent is the 1273 * first one in the file */ 1274 1275 ex = path[depth].p_ext; 1276 ee_len = ext4_ext_get_actual_len(ex); 1277 if (*logical < le32_to_cpu(ex->ee_block)) { 1278 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1279 EXT4_ERROR_INODE(inode, 1280 "first_extent(path[%d].p_hdr) != ex", 1281 depth); 1282 return -EIO; 1283 } 1284 while (--depth >= 0) { 1285 ix = path[depth].p_idx; 1286 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1287 EXT4_ERROR_INODE(inode, 1288 "ix != EXT_FIRST_INDEX *logical %d!", 1289 *logical); 1290 return -EIO; 1291 } 1292 } 1293 goto found_extent; 1294 } 1295 1296 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1297 EXT4_ERROR_INODE(inode, 1298 "logical %d < ee_block %d + ee_len %d!", 1299 *logical, le32_to_cpu(ex->ee_block), ee_len); 1300 return -EIO; 1301 } 1302 1303 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1304 /* next allocated block in this leaf */ 1305 ex++; 1306 goto found_extent; 1307 } 1308 1309 /* go up and search for index to the right */ 1310 while (--depth >= 0) { 1311 ix = path[depth].p_idx; 1312 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1313 goto got_index; 1314 } 1315 1316 /* we've gone up to the root and found no index to the right */ 1317 return 0; 1318 1319 got_index: 1320 /* we've found index to the right, let's 1321 * follow it and find the closest allocated 1322 * block to the right */ 1323 ix++; 1324 block = ext4_idx_pblock(ix); 1325 while (++depth < path->p_depth) { 1326 bh = sb_bread(inode->i_sb, block); 1327 if (bh == NULL) 1328 return -EIO; 1329 eh = ext_block_hdr(bh); 1330 /* subtract from p_depth to get proper eh_depth */ 1331 if (ext4_ext_check(inode, eh, path->p_depth - depth)) { 1332 put_bh(bh); 1333 return -EIO; 1334 } 1335 ix = EXT_FIRST_INDEX(eh); 1336 block = ext4_idx_pblock(ix); 1337 put_bh(bh); 1338 } 1339 1340 bh = sb_bread(inode->i_sb, block); 1341 if (bh == NULL) 1342 return -EIO; 1343 eh = ext_block_hdr(bh); 1344 if (ext4_ext_check(inode, eh, path->p_depth - depth)) { 1345 put_bh(bh); 1346 return -EIO; 1347 } 1348 ex = EXT_FIRST_EXTENT(eh); 1349 found_extent: 1350 *logical = le32_to_cpu(ex->ee_block); 1351 *phys = ext4_ext_pblock(ex); 1352 *ret_ex = ex; 1353 if (bh) 1354 put_bh(bh); 1355 return 0; 1356 } 1357 1358 /* 1359 * ext4_ext_next_allocated_block: 1360 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1361 * NOTE: it considers block number from index entry as 1362 * allocated block. Thus, index entries have to be consistent 1363 * with leaves. 1364 */ 1365 static ext4_lblk_t 1366 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1367 { 1368 int depth; 1369 1370 BUG_ON(path == NULL); 1371 depth = path->p_depth; 1372 1373 if (depth == 0 && path->p_ext == NULL) 1374 return EXT_MAX_BLOCKS; 1375 1376 while (depth >= 0) { 1377 if (depth == path->p_depth) { 1378 /* leaf */ 1379 if (path[depth].p_ext && 1380 path[depth].p_ext != 1381 EXT_LAST_EXTENT(path[depth].p_hdr)) 1382 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1383 } else { 1384 /* index */ 1385 if (path[depth].p_idx != 1386 EXT_LAST_INDEX(path[depth].p_hdr)) 1387 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1388 } 1389 depth--; 1390 } 1391 1392 return EXT_MAX_BLOCKS; 1393 } 1394 1395 /* 1396 * ext4_ext_next_leaf_block: 1397 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1398 */ 1399 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1400 { 1401 int depth; 1402 1403 BUG_ON(path == NULL); 1404 depth = path->p_depth; 1405 1406 /* zero-tree has no leaf blocks at all */ 1407 if (depth == 0) 1408 return EXT_MAX_BLOCKS; 1409 1410 /* go to index block */ 1411 depth--; 1412 1413 while (depth >= 0) { 1414 if (path[depth].p_idx != 1415 EXT_LAST_INDEX(path[depth].p_hdr)) 1416 return (ext4_lblk_t) 1417 le32_to_cpu(path[depth].p_idx[1].ei_block); 1418 depth--; 1419 } 1420 1421 return EXT_MAX_BLOCKS; 1422 } 1423 1424 /* 1425 * ext4_ext_correct_indexes: 1426 * if leaf gets modified and modified extent is first in the leaf, 1427 * then we have to correct all indexes above. 1428 * TODO: do we need to correct tree in all cases? 1429 */ 1430 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1431 struct ext4_ext_path *path) 1432 { 1433 struct ext4_extent_header *eh; 1434 int depth = ext_depth(inode); 1435 struct ext4_extent *ex; 1436 __le32 border; 1437 int k, err = 0; 1438 1439 eh = path[depth].p_hdr; 1440 ex = path[depth].p_ext; 1441 1442 if (unlikely(ex == NULL || eh == NULL)) { 1443 EXT4_ERROR_INODE(inode, 1444 "ex %p == NULL or eh %p == NULL", ex, eh); 1445 return -EIO; 1446 } 1447 1448 if (depth == 0) { 1449 /* there is no tree at all */ 1450 return 0; 1451 } 1452 1453 if (ex != EXT_FIRST_EXTENT(eh)) { 1454 /* we correct tree if first leaf got modified only */ 1455 return 0; 1456 } 1457 1458 /* 1459 * TODO: we need correction if border is smaller than current one 1460 */ 1461 k = depth - 1; 1462 border = path[depth].p_ext->ee_block; 1463 err = ext4_ext_get_access(handle, inode, path + k); 1464 if (err) 1465 return err; 1466 path[k].p_idx->ei_block = border; 1467 err = ext4_ext_dirty(handle, inode, path + k); 1468 if (err) 1469 return err; 1470 1471 while (k--) { 1472 /* change all left-side indexes */ 1473 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1474 break; 1475 err = ext4_ext_get_access(handle, inode, path + k); 1476 if (err) 1477 break; 1478 path[k].p_idx->ei_block = border; 1479 err = ext4_ext_dirty(handle, inode, path + k); 1480 if (err) 1481 break; 1482 } 1483 1484 return err; 1485 } 1486 1487 int 1488 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1489 struct ext4_extent *ex2) 1490 { 1491 unsigned short ext1_ee_len, ext2_ee_len, max_len; 1492 1493 /* 1494 * Make sure that either both extents are uninitialized, or 1495 * both are _not_. 1496 */ 1497 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2)) 1498 return 0; 1499 1500 if (ext4_ext_is_uninitialized(ex1)) 1501 max_len = EXT_UNINIT_MAX_LEN; 1502 else 1503 max_len = EXT_INIT_MAX_LEN; 1504 1505 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1506 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1507 1508 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1509 le32_to_cpu(ex2->ee_block)) 1510 return 0; 1511 1512 /* 1513 * To allow future support for preallocated extents to be added 1514 * as an RO_COMPAT feature, refuse to merge to extents if 1515 * this can result in the top bit of ee_len being set. 1516 */ 1517 if (ext1_ee_len + ext2_ee_len > max_len) 1518 return 0; 1519 #ifdef AGGRESSIVE_TEST 1520 if (ext1_ee_len >= 4) 1521 return 0; 1522 #endif 1523 1524 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1525 return 1; 1526 return 0; 1527 } 1528 1529 /* 1530 * This function tries to merge the "ex" extent to the next extent in the tree. 1531 * It always tries to merge towards right. If you want to merge towards 1532 * left, pass "ex - 1" as argument instead of "ex". 1533 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1534 * 1 if they got merged. 1535 */ 1536 static int ext4_ext_try_to_merge_right(struct inode *inode, 1537 struct ext4_ext_path *path, 1538 struct ext4_extent *ex) 1539 { 1540 struct ext4_extent_header *eh; 1541 unsigned int depth, len; 1542 int merge_done = 0; 1543 int uninitialized = 0; 1544 1545 depth = ext_depth(inode); 1546 BUG_ON(path[depth].p_hdr == NULL); 1547 eh = path[depth].p_hdr; 1548 1549 while (ex < EXT_LAST_EXTENT(eh)) { 1550 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1551 break; 1552 /* merge with next extent! */ 1553 if (ext4_ext_is_uninitialized(ex)) 1554 uninitialized = 1; 1555 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1556 + ext4_ext_get_actual_len(ex + 1)); 1557 if (uninitialized) 1558 ext4_ext_mark_uninitialized(ex); 1559 1560 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1561 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1562 * sizeof(struct ext4_extent); 1563 memmove(ex + 1, ex + 2, len); 1564 } 1565 le16_add_cpu(&eh->eh_entries, -1); 1566 merge_done = 1; 1567 WARN_ON(eh->eh_entries == 0); 1568 if (!eh->eh_entries) 1569 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1570 } 1571 1572 return merge_done; 1573 } 1574 1575 /* 1576 * This function tries to merge the @ex extent to neighbours in the tree. 1577 * return 1 if merge left else 0. 1578 */ 1579 static int ext4_ext_try_to_merge(struct inode *inode, 1580 struct ext4_ext_path *path, 1581 struct ext4_extent *ex) { 1582 struct ext4_extent_header *eh; 1583 unsigned int depth; 1584 int merge_done = 0; 1585 int ret = 0; 1586 1587 depth = ext_depth(inode); 1588 BUG_ON(path[depth].p_hdr == NULL); 1589 eh = path[depth].p_hdr; 1590 1591 if (ex > EXT_FIRST_EXTENT(eh)) 1592 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1593 1594 if (!merge_done) 1595 ret = ext4_ext_try_to_merge_right(inode, path, ex); 1596 1597 return ret; 1598 } 1599 1600 /* 1601 * check if a portion of the "newext" extent overlaps with an 1602 * existing extent. 1603 * 1604 * If there is an overlap discovered, it updates the length of the newext 1605 * such that there will be no overlap, and then returns 1. 1606 * If there is no overlap found, it returns 0. 1607 */ 1608 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1609 struct inode *inode, 1610 struct ext4_extent *newext, 1611 struct ext4_ext_path *path) 1612 { 1613 ext4_lblk_t b1, b2; 1614 unsigned int depth, len1; 1615 unsigned int ret = 0; 1616 1617 b1 = le32_to_cpu(newext->ee_block); 1618 len1 = ext4_ext_get_actual_len(newext); 1619 depth = ext_depth(inode); 1620 if (!path[depth].p_ext) 1621 goto out; 1622 b2 = le32_to_cpu(path[depth].p_ext->ee_block); 1623 b2 &= ~(sbi->s_cluster_ratio - 1); 1624 1625 /* 1626 * get the next allocated block if the extent in the path 1627 * is before the requested block(s) 1628 */ 1629 if (b2 < b1) { 1630 b2 = ext4_ext_next_allocated_block(path); 1631 if (b2 == EXT_MAX_BLOCKS) 1632 goto out; 1633 b2 &= ~(sbi->s_cluster_ratio - 1); 1634 } 1635 1636 /* check for wrap through zero on extent logical start block*/ 1637 if (b1 + len1 < b1) { 1638 len1 = EXT_MAX_BLOCKS - b1; 1639 newext->ee_len = cpu_to_le16(len1); 1640 ret = 1; 1641 } 1642 1643 /* check for overlap */ 1644 if (b1 + len1 > b2) { 1645 newext->ee_len = cpu_to_le16(b2 - b1); 1646 ret = 1; 1647 } 1648 out: 1649 return ret; 1650 } 1651 1652 /* 1653 * ext4_ext_insert_extent: 1654 * tries to merge requsted extent into the existing extent or 1655 * inserts requested extent as new one into the tree, 1656 * creating new leaf in the no-space case. 1657 */ 1658 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1659 struct ext4_ext_path *path, 1660 struct ext4_extent *newext, int flag) 1661 { 1662 struct ext4_extent_header *eh; 1663 struct ext4_extent *ex, *fex; 1664 struct ext4_extent *nearex; /* nearest extent */ 1665 struct ext4_ext_path *npath = NULL; 1666 int depth, len, err; 1667 ext4_lblk_t next; 1668 unsigned uninitialized = 0; 1669 int flags = 0; 1670 1671 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1672 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1673 return -EIO; 1674 } 1675 depth = ext_depth(inode); 1676 ex = path[depth].p_ext; 1677 if (unlikely(path[depth].p_hdr == NULL)) { 1678 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1679 return -EIO; 1680 } 1681 1682 /* try to insert block into found extent and return */ 1683 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO) 1684 && ext4_can_extents_be_merged(inode, ex, newext)) { 1685 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n", 1686 ext4_ext_is_uninitialized(newext), 1687 ext4_ext_get_actual_len(newext), 1688 le32_to_cpu(ex->ee_block), 1689 ext4_ext_is_uninitialized(ex), 1690 ext4_ext_get_actual_len(ex), 1691 ext4_ext_pblock(ex)); 1692 err = ext4_ext_get_access(handle, inode, path + depth); 1693 if (err) 1694 return err; 1695 1696 /* 1697 * ext4_can_extents_be_merged should have checked that either 1698 * both extents are uninitialized, or both aren't. Thus we 1699 * need to check only one of them here. 1700 */ 1701 if (ext4_ext_is_uninitialized(ex)) 1702 uninitialized = 1; 1703 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1704 + ext4_ext_get_actual_len(newext)); 1705 if (uninitialized) 1706 ext4_ext_mark_uninitialized(ex); 1707 eh = path[depth].p_hdr; 1708 nearex = ex; 1709 goto merge; 1710 } 1711 1712 depth = ext_depth(inode); 1713 eh = path[depth].p_hdr; 1714 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 1715 goto has_space; 1716 1717 /* probably next leaf has space for us? */ 1718 fex = EXT_LAST_EXTENT(eh); 1719 next = EXT_MAX_BLOCKS; 1720 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 1721 next = ext4_ext_next_leaf_block(path); 1722 if (next != EXT_MAX_BLOCKS) { 1723 ext_debug("next leaf block - %u\n", next); 1724 BUG_ON(npath != NULL); 1725 npath = ext4_ext_find_extent(inode, next, NULL); 1726 if (IS_ERR(npath)) 1727 return PTR_ERR(npath); 1728 BUG_ON(npath->p_depth != path->p_depth); 1729 eh = npath[depth].p_hdr; 1730 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 1731 ext_debug("next leaf isn't full(%d)\n", 1732 le16_to_cpu(eh->eh_entries)); 1733 path = npath; 1734 goto has_space; 1735 } 1736 ext_debug("next leaf has no free space(%d,%d)\n", 1737 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 1738 } 1739 1740 /* 1741 * There is no free space in the found leaf. 1742 * We're gonna add a new leaf in the tree. 1743 */ 1744 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) 1745 flags = EXT4_MB_USE_ROOT_BLOCKS; 1746 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext); 1747 if (err) 1748 goto cleanup; 1749 depth = ext_depth(inode); 1750 eh = path[depth].p_hdr; 1751 1752 has_space: 1753 nearex = path[depth].p_ext; 1754 1755 err = ext4_ext_get_access(handle, inode, path + depth); 1756 if (err) 1757 goto cleanup; 1758 1759 if (!nearex) { 1760 /* there is no extent in this leaf, create first one */ 1761 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 1762 le32_to_cpu(newext->ee_block), 1763 ext4_ext_pblock(newext), 1764 ext4_ext_is_uninitialized(newext), 1765 ext4_ext_get_actual_len(newext)); 1766 nearex = EXT_FIRST_EXTENT(eh); 1767 } else { 1768 if (le32_to_cpu(newext->ee_block) 1769 > le32_to_cpu(nearex->ee_block)) { 1770 /* Insert after */ 1771 ext_debug("insert %u:%llu:[%d]%d before: " 1772 "nearest %p\n", 1773 le32_to_cpu(newext->ee_block), 1774 ext4_ext_pblock(newext), 1775 ext4_ext_is_uninitialized(newext), 1776 ext4_ext_get_actual_len(newext), 1777 nearex); 1778 nearex++; 1779 } else { 1780 /* Insert before */ 1781 BUG_ON(newext->ee_block == nearex->ee_block); 1782 ext_debug("insert %u:%llu:[%d]%d after: " 1783 "nearest %p\n", 1784 le32_to_cpu(newext->ee_block), 1785 ext4_ext_pblock(newext), 1786 ext4_ext_is_uninitialized(newext), 1787 ext4_ext_get_actual_len(newext), 1788 nearex); 1789 } 1790 len = EXT_LAST_EXTENT(eh) - nearex + 1; 1791 if (len > 0) { 1792 ext_debug("insert %u:%llu:[%d]%d: " 1793 "move %d extents from 0x%p to 0x%p\n", 1794 le32_to_cpu(newext->ee_block), 1795 ext4_ext_pblock(newext), 1796 ext4_ext_is_uninitialized(newext), 1797 ext4_ext_get_actual_len(newext), 1798 len, nearex, nearex + 1); 1799 memmove(nearex + 1, nearex, 1800 len * sizeof(struct ext4_extent)); 1801 } 1802 } 1803 1804 le16_add_cpu(&eh->eh_entries, 1); 1805 path[depth].p_ext = nearex; 1806 nearex->ee_block = newext->ee_block; 1807 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 1808 nearex->ee_len = newext->ee_len; 1809 1810 merge: 1811 /* try to merge extents to the right */ 1812 if (!(flag & EXT4_GET_BLOCKS_PRE_IO)) 1813 ext4_ext_try_to_merge(inode, path, nearex); 1814 1815 /* try to merge extents to the left */ 1816 1817 /* time to correct all indexes above */ 1818 err = ext4_ext_correct_indexes(handle, inode, path); 1819 if (err) 1820 goto cleanup; 1821 1822 err = ext4_ext_dirty(handle, inode, path + depth); 1823 1824 cleanup: 1825 if (npath) { 1826 ext4_ext_drop_refs(npath); 1827 kfree(npath); 1828 } 1829 ext4_ext_invalidate_cache(inode); 1830 return err; 1831 } 1832 1833 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block, 1834 ext4_lblk_t num, ext_prepare_callback func, 1835 void *cbdata) 1836 { 1837 struct ext4_ext_path *path = NULL; 1838 struct ext4_ext_cache cbex; 1839 struct ext4_extent *ex; 1840 ext4_lblk_t next, start = 0, end = 0; 1841 ext4_lblk_t last = block + num; 1842 int depth, exists, err = 0; 1843 1844 BUG_ON(func == NULL); 1845 BUG_ON(inode == NULL); 1846 1847 while (block < last && block != EXT_MAX_BLOCKS) { 1848 num = last - block; 1849 /* find extent for this block */ 1850 down_read(&EXT4_I(inode)->i_data_sem); 1851 path = ext4_ext_find_extent(inode, block, path); 1852 up_read(&EXT4_I(inode)->i_data_sem); 1853 if (IS_ERR(path)) { 1854 err = PTR_ERR(path); 1855 path = NULL; 1856 break; 1857 } 1858 1859 depth = ext_depth(inode); 1860 if (unlikely(path[depth].p_hdr == NULL)) { 1861 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1862 err = -EIO; 1863 break; 1864 } 1865 ex = path[depth].p_ext; 1866 next = ext4_ext_next_allocated_block(path); 1867 1868 exists = 0; 1869 if (!ex) { 1870 /* there is no extent yet, so try to allocate 1871 * all requested space */ 1872 start = block; 1873 end = block + num; 1874 } else if (le32_to_cpu(ex->ee_block) > block) { 1875 /* need to allocate space before found extent */ 1876 start = block; 1877 end = le32_to_cpu(ex->ee_block); 1878 if (block + num < end) 1879 end = block + num; 1880 } else if (block >= le32_to_cpu(ex->ee_block) 1881 + ext4_ext_get_actual_len(ex)) { 1882 /* need to allocate space after found extent */ 1883 start = block; 1884 end = block + num; 1885 if (end >= next) 1886 end = next; 1887 } else if (block >= le32_to_cpu(ex->ee_block)) { 1888 /* 1889 * some part of requested space is covered 1890 * by found extent 1891 */ 1892 start = block; 1893 end = le32_to_cpu(ex->ee_block) 1894 + ext4_ext_get_actual_len(ex); 1895 if (block + num < end) 1896 end = block + num; 1897 exists = 1; 1898 } else { 1899 BUG(); 1900 } 1901 BUG_ON(end <= start); 1902 1903 if (!exists) { 1904 cbex.ec_block = start; 1905 cbex.ec_len = end - start; 1906 cbex.ec_start = 0; 1907 } else { 1908 cbex.ec_block = le32_to_cpu(ex->ee_block); 1909 cbex.ec_len = ext4_ext_get_actual_len(ex); 1910 cbex.ec_start = ext4_ext_pblock(ex); 1911 } 1912 1913 if (unlikely(cbex.ec_len == 0)) { 1914 EXT4_ERROR_INODE(inode, "cbex.ec_len == 0"); 1915 err = -EIO; 1916 break; 1917 } 1918 err = func(inode, next, &cbex, ex, cbdata); 1919 ext4_ext_drop_refs(path); 1920 1921 if (err < 0) 1922 break; 1923 1924 if (err == EXT_REPEAT) 1925 continue; 1926 else if (err == EXT_BREAK) { 1927 err = 0; 1928 break; 1929 } 1930 1931 if (ext_depth(inode) != depth) { 1932 /* depth was changed. we have to realloc path */ 1933 kfree(path); 1934 path = NULL; 1935 } 1936 1937 block = cbex.ec_block + cbex.ec_len; 1938 } 1939 1940 if (path) { 1941 ext4_ext_drop_refs(path); 1942 kfree(path); 1943 } 1944 1945 return err; 1946 } 1947 1948 static void 1949 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block, 1950 __u32 len, ext4_fsblk_t start) 1951 { 1952 struct ext4_ext_cache *cex; 1953 BUG_ON(len == 0); 1954 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1955 trace_ext4_ext_put_in_cache(inode, block, len, start); 1956 cex = &EXT4_I(inode)->i_cached_extent; 1957 cex->ec_block = block; 1958 cex->ec_len = len; 1959 cex->ec_start = start; 1960 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1961 } 1962 1963 /* 1964 * ext4_ext_put_gap_in_cache: 1965 * calculate boundaries of the gap that the requested block fits into 1966 * and cache this gap 1967 */ 1968 static void 1969 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, 1970 ext4_lblk_t block) 1971 { 1972 int depth = ext_depth(inode); 1973 unsigned long len; 1974 ext4_lblk_t lblock; 1975 struct ext4_extent *ex; 1976 1977 ex = path[depth].p_ext; 1978 if (ex == NULL) { 1979 /* there is no extent yet, so gap is [0;-] */ 1980 lblock = 0; 1981 len = EXT_MAX_BLOCKS; 1982 ext_debug("cache gap(whole file):"); 1983 } else if (block < le32_to_cpu(ex->ee_block)) { 1984 lblock = block; 1985 len = le32_to_cpu(ex->ee_block) - block; 1986 ext_debug("cache gap(before): %u [%u:%u]", 1987 block, 1988 le32_to_cpu(ex->ee_block), 1989 ext4_ext_get_actual_len(ex)); 1990 } else if (block >= le32_to_cpu(ex->ee_block) 1991 + ext4_ext_get_actual_len(ex)) { 1992 ext4_lblk_t next; 1993 lblock = le32_to_cpu(ex->ee_block) 1994 + ext4_ext_get_actual_len(ex); 1995 1996 next = ext4_ext_next_allocated_block(path); 1997 ext_debug("cache gap(after): [%u:%u] %u", 1998 le32_to_cpu(ex->ee_block), 1999 ext4_ext_get_actual_len(ex), 2000 block); 2001 BUG_ON(next == lblock); 2002 len = next - lblock; 2003 } else { 2004 lblock = len = 0; 2005 BUG(); 2006 } 2007 2008 ext_debug(" -> %u:%lu\n", lblock, len); 2009 ext4_ext_put_in_cache(inode, lblock, len, 0); 2010 } 2011 2012 /* 2013 * ext4_ext_check_cache() 2014 * Checks to see if the given block is in the cache. 2015 * If it is, the cached extent is stored in the given 2016 * cache extent pointer. If the cached extent is a hole, 2017 * this routine should be used instead of 2018 * ext4_ext_in_cache if the calling function needs to 2019 * know the size of the hole. 2020 * 2021 * @inode: The files inode 2022 * @block: The block to look for in the cache 2023 * @ex: Pointer where the cached extent will be stored 2024 * if it contains block 2025 * 2026 * Return 0 if cache is invalid; 1 if the cache is valid 2027 */ 2028 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block, 2029 struct ext4_ext_cache *ex){ 2030 struct ext4_ext_cache *cex; 2031 struct ext4_sb_info *sbi; 2032 int ret = 0; 2033 2034 /* 2035 * We borrow i_block_reservation_lock to protect i_cached_extent 2036 */ 2037 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 2038 cex = &EXT4_I(inode)->i_cached_extent; 2039 sbi = EXT4_SB(inode->i_sb); 2040 2041 /* has cache valid data? */ 2042 if (cex->ec_len == 0) 2043 goto errout; 2044 2045 if (in_range(block, cex->ec_block, cex->ec_len)) { 2046 memcpy(ex, cex, sizeof(struct ext4_ext_cache)); 2047 ext_debug("%u cached by %u:%u:%llu\n", 2048 block, 2049 cex->ec_block, cex->ec_len, cex->ec_start); 2050 ret = 1; 2051 } 2052 errout: 2053 if (!ret) 2054 sbi->extent_cache_misses++; 2055 else 2056 sbi->extent_cache_hits++; 2057 trace_ext4_ext_in_cache(inode, block, ret); 2058 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 2059 return ret; 2060 } 2061 2062 /* 2063 * ext4_ext_in_cache() 2064 * Checks to see if the given block is in the cache. 2065 * If it is, the cached extent is stored in the given 2066 * extent pointer. 2067 * 2068 * @inode: The files inode 2069 * @block: The block to look for in the cache 2070 * @ex: Pointer where the cached extent will be stored 2071 * if it contains block 2072 * 2073 * Return 0 if cache is invalid; 1 if the cache is valid 2074 */ 2075 static int 2076 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block, 2077 struct ext4_extent *ex) 2078 { 2079 struct ext4_ext_cache cex; 2080 int ret = 0; 2081 2082 if (ext4_ext_check_cache(inode, block, &cex)) { 2083 ex->ee_block = cpu_to_le32(cex.ec_block); 2084 ext4_ext_store_pblock(ex, cex.ec_start); 2085 ex->ee_len = cpu_to_le16(cex.ec_len); 2086 ret = 1; 2087 } 2088 2089 return ret; 2090 } 2091 2092 2093 /* 2094 * ext4_ext_rm_idx: 2095 * removes index from the index block. 2096 */ 2097 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2098 struct ext4_ext_path *path) 2099 { 2100 int err; 2101 ext4_fsblk_t leaf; 2102 2103 /* free index block */ 2104 path--; 2105 leaf = ext4_idx_pblock(path->p_idx); 2106 if (unlikely(path->p_hdr->eh_entries == 0)) { 2107 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2108 return -EIO; 2109 } 2110 err = ext4_ext_get_access(handle, inode, path); 2111 if (err) 2112 return err; 2113 2114 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2115 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2116 len *= sizeof(struct ext4_extent_idx); 2117 memmove(path->p_idx, path->p_idx + 1, len); 2118 } 2119 2120 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2121 err = ext4_ext_dirty(handle, inode, path); 2122 if (err) 2123 return err; 2124 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2125 trace_ext4_ext_rm_idx(inode, leaf); 2126 2127 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2128 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2129 return err; 2130 } 2131 2132 /* 2133 * ext4_ext_calc_credits_for_single_extent: 2134 * This routine returns max. credits that needed to insert an extent 2135 * to the extent tree. 2136 * When pass the actual path, the caller should calculate credits 2137 * under i_data_sem. 2138 */ 2139 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2140 struct ext4_ext_path *path) 2141 { 2142 if (path) { 2143 int depth = ext_depth(inode); 2144 int ret = 0; 2145 2146 /* probably there is space in leaf? */ 2147 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2148 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2149 2150 /* 2151 * There are some space in the leaf tree, no 2152 * need to account for leaf block credit 2153 * 2154 * bitmaps and block group descriptor blocks 2155 * and other metadata blocks still need to be 2156 * accounted. 2157 */ 2158 /* 1 bitmap, 1 block group descriptor */ 2159 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2160 return ret; 2161 } 2162 } 2163 2164 return ext4_chunk_trans_blocks(inode, nrblocks); 2165 } 2166 2167 /* 2168 * How many index/leaf blocks need to change/allocate to modify nrblocks? 2169 * 2170 * if nrblocks are fit in a single extent (chunk flag is 1), then 2171 * in the worse case, each tree level index/leaf need to be changed 2172 * if the tree split due to insert a new extent, then the old tree 2173 * index/leaf need to be updated too 2174 * 2175 * If the nrblocks are discontiguous, they could cause 2176 * the whole tree split more than once, but this is really rare. 2177 */ 2178 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 2179 { 2180 int index; 2181 int depth = ext_depth(inode); 2182 2183 if (chunk) 2184 index = depth * 2; 2185 else 2186 index = depth * 3; 2187 2188 return index; 2189 } 2190 2191 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2192 struct ext4_extent *ex, 2193 ext4_fsblk_t *partial_cluster, 2194 ext4_lblk_t from, ext4_lblk_t to) 2195 { 2196 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2197 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2198 ext4_fsblk_t pblk; 2199 int flags = EXT4_FREE_BLOCKS_FORGET; 2200 2201 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2202 flags |= EXT4_FREE_BLOCKS_METADATA; 2203 /* 2204 * For bigalloc file systems, we never free a partial cluster 2205 * at the beginning of the extent. Instead, we make a note 2206 * that we tried freeing the cluster, and check to see if we 2207 * need to free it on a subsequent call to ext4_remove_blocks, 2208 * or at the end of the ext4_truncate() operation. 2209 */ 2210 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2211 2212 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster); 2213 /* 2214 * If we have a partial cluster, and it's different from the 2215 * cluster of the last block, we need to explicitly free the 2216 * partial cluster here. 2217 */ 2218 pblk = ext4_ext_pblock(ex) + ee_len - 1; 2219 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) { 2220 ext4_free_blocks(handle, inode, NULL, 2221 EXT4_C2B(sbi, *partial_cluster), 2222 sbi->s_cluster_ratio, flags); 2223 *partial_cluster = 0; 2224 } 2225 2226 #ifdef EXTENTS_STATS 2227 { 2228 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2229 spin_lock(&sbi->s_ext_stats_lock); 2230 sbi->s_ext_blocks += ee_len; 2231 sbi->s_ext_extents++; 2232 if (ee_len < sbi->s_ext_min) 2233 sbi->s_ext_min = ee_len; 2234 if (ee_len > sbi->s_ext_max) 2235 sbi->s_ext_max = ee_len; 2236 if (ext_depth(inode) > sbi->s_depth_max) 2237 sbi->s_depth_max = ext_depth(inode); 2238 spin_unlock(&sbi->s_ext_stats_lock); 2239 } 2240 #endif 2241 if (from >= le32_to_cpu(ex->ee_block) 2242 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 2243 /* tail removal */ 2244 ext4_lblk_t num; 2245 2246 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2247 pblk = ext4_ext_pblock(ex) + ee_len - num; 2248 ext_debug("free last %u blocks starting %llu\n", num, pblk); 2249 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2250 /* 2251 * If the block range to be freed didn't start at the 2252 * beginning of a cluster, and we removed the entire 2253 * extent, save the partial cluster here, since we 2254 * might need to delete if we determine that the 2255 * truncate operation has removed all of the blocks in 2256 * the cluster. 2257 */ 2258 if (pblk & (sbi->s_cluster_ratio - 1) && 2259 (ee_len == num)) 2260 *partial_cluster = EXT4_B2C(sbi, pblk); 2261 else 2262 *partial_cluster = 0; 2263 } else if (from == le32_to_cpu(ex->ee_block) 2264 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) { 2265 /* head removal */ 2266 ext4_lblk_t num; 2267 ext4_fsblk_t start; 2268 2269 num = to - from; 2270 start = ext4_ext_pblock(ex); 2271 2272 ext_debug("free first %u blocks starting %llu\n", num, start); 2273 ext4_free_blocks(handle, inode, NULL, start, num, flags); 2274 2275 } else { 2276 printk(KERN_INFO "strange request: removal(2) " 2277 "%u-%u from %u:%u\n", 2278 from, to, le32_to_cpu(ex->ee_block), ee_len); 2279 } 2280 return 0; 2281 } 2282 2283 2284 /* 2285 * ext4_ext_rm_leaf() Removes the extents associated with the 2286 * blocks appearing between "start" and "end", and splits the extents 2287 * if "start" and "end" appear in the same extent 2288 * 2289 * @handle: The journal handle 2290 * @inode: The files inode 2291 * @path: The path to the leaf 2292 * @start: The first block to remove 2293 * @end: The last block to remove 2294 */ 2295 static int 2296 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2297 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster, 2298 ext4_lblk_t start, ext4_lblk_t end) 2299 { 2300 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2301 int err = 0, correct_index = 0; 2302 int depth = ext_depth(inode), credits; 2303 struct ext4_extent_header *eh; 2304 ext4_lblk_t a, b; 2305 unsigned num; 2306 ext4_lblk_t ex_ee_block; 2307 unsigned short ex_ee_len; 2308 unsigned uninitialized = 0; 2309 struct ext4_extent *ex; 2310 2311 /* the header must be checked already in ext4_ext_remove_space() */ 2312 ext_debug("truncate since %u in leaf\n", start); 2313 if (!path[depth].p_hdr) 2314 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2315 eh = path[depth].p_hdr; 2316 if (unlikely(path[depth].p_hdr == NULL)) { 2317 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2318 return -EIO; 2319 } 2320 /* find where to start removing */ 2321 ex = EXT_LAST_EXTENT(eh); 2322 2323 ex_ee_block = le32_to_cpu(ex->ee_block); 2324 ex_ee_len = ext4_ext_get_actual_len(ex); 2325 2326 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster); 2327 2328 while (ex >= EXT_FIRST_EXTENT(eh) && 2329 ex_ee_block + ex_ee_len > start) { 2330 2331 if (ext4_ext_is_uninitialized(ex)) 2332 uninitialized = 1; 2333 else 2334 uninitialized = 0; 2335 2336 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2337 uninitialized, ex_ee_len); 2338 path[depth].p_ext = ex; 2339 2340 a = ex_ee_block > start ? ex_ee_block : start; 2341 b = ex_ee_block+ex_ee_len - 1 < end ? 2342 ex_ee_block+ex_ee_len - 1 : end; 2343 2344 ext_debug(" border %u:%u\n", a, b); 2345 2346 /* If this extent is beyond the end of the hole, skip it */ 2347 if (end <= ex_ee_block) { 2348 ex--; 2349 ex_ee_block = le32_to_cpu(ex->ee_block); 2350 ex_ee_len = ext4_ext_get_actual_len(ex); 2351 continue; 2352 } else if (b != ex_ee_block + ex_ee_len - 1) { 2353 EXT4_ERROR_INODE(inode," bad truncate %u:%u\n", 2354 start, end); 2355 err = -EIO; 2356 goto out; 2357 } else if (a != ex_ee_block) { 2358 /* remove tail of the extent */ 2359 num = a - ex_ee_block; 2360 } else { 2361 /* remove whole extent: excellent! */ 2362 num = 0; 2363 } 2364 /* 2365 * 3 for leaf, sb, and inode plus 2 (bmap and group 2366 * descriptor) for each block group; assume two block 2367 * groups plus ex_ee_len/blocks_per_block_group for 2368 * the worst case 2369 */ 2370 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2371 if (ex == EXT_FIRST_EXTENT(eh)) { 2372 correct_index = 1; 2373 credits += (ext_depth(inode)) + 1; 2374 } 2375 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2376 2377 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2378 if (err) 2379 goto out; 2380 2381 err = ext4_ext_get_access(handle, inode, path + depth); 2382 if (err) 2383 goto out; 2384 2385 err = ext4_remove_blocks(handle, inode, ex, partial_cluster, 2386 a, b); 2387 if (err) 2388 goto out; 2389 2390 if (num == 0) 2391 /* this extent is removed; mark slot entirely unused */ 2392 ext4_ext_store_pblock(ex, 0); 2393 2394 ex->ee_len = cpu_to_le16(num); 2395 /* 2396 * Do not mark uninitialized if all the blocks in the 2397 * extent have been removed. 2398 */ 2399 if (uninitialized && num) 2400 ext4_ext_mark_uninitialized(ex); 2401 /* 2402 * If the extent was completely released, 2403 * we need to remove it from the leaf 2404 */ 2405 if (num == 0) { 2406 if (end != EXT_MAX_BLOCKS - 1) { 2407 /* 2408 * For hole punching, we need to scoot all the 2409 * extents up when an extent is removed so that 2410 * we dont have blank extents in the middle 2411 */ 2412 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2413 sizeof(struct ext4_extent)); 2414 2415 /* Now get rid of the one at the end */ 2416 memset(EXT_LAST_EXTENT(eh), 0, 2417 sizeof(struct ext4_extent)); 2418 } 2419 le16_add_cpu(&eh->eh_entries, -1); 2420 } else 2421 *partial_cluster = 0; 2422 2423 err = ext4_ext_dirty(handle, inode, path + depth); 2424 if (err) 2425 goto out; 2426 2427 ext_debug("new extent: %u:%u:%llu\n", block, num, 2428 ext4_ext_pblock(ex)); 2429 ex--; 2430 ex_ee_block = le32_to_cpu(ex->ee_block); 2431 ex_ee_len = ext4_ext_get_actual_len(ex); 2432 } 2433 2434 if (correct_index && eh->eh_entries) 2435 err = ext4_ext_correct_indexes(handle, inode, path); 2436 2437 /* 2438 * If there is still a entry in the leaf node, check to see if 2439 * it references the partial cluster. This is the only place 2440 * where it could; if it doesn't, we can free the cluster. 2441 */ 2442 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) && 2443 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) != 2444 *partial_cluster)) { 2445 int flags = EXT4_FREE_BLOCKS_FORGET; 2446 2447 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2448 flags |= EXT4_FREE_BLOCKS_METADATA; 2449 2450 ext4_free_blocks(handle, inode, NULL, 2451 EXT4_C2B(sbi, *partial_cluster), 2452 sbi->s_cluster_ratio, flags); 2453 *partial_cluster = 0; 2454 } 2455 2456 /* if this leaf is free, then we should 2457 * remove it from index block above */ 2458 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2459 err = ext4_ext_rm_idx(handle, inode, path + depth); 2460 2461 out: 2462 return err; 2463 } 2464 2465 /* 2466 * ext4_ext_more_to_rm: 2467 * returns 1 if current index has to be freed (even partial) 2468 */ 2469 static int 2470 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2471 { 2472 BUG_ON(path->p_idx == NULL); 2473 2474 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2475 return 0; 2476 2477 /* 2478 * if truncate on deeper level happened, it wasn't partial, 2479 * so we have to consider current index for truncation 2480 */ 2481 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2482 return 0; 2483 return 1; 2484 } 2485 2486 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start) 2487 { 2488 struct super_block *sb = inode->i_sb; 2489 int depth = ext_depth(inode); 2490 struct ext4_ext_path *path; 2491 ext4_fsblk_t partial_cluster = 0; 2492 handle_t *handle; 2493 int i, err; 2494 2495 ext_debug("truncate since %u\n", start); 2496 2497 /* probably first extent we're gonna free will be last in block */ 2498 handle = ext4_journal_start(inode, depth + 1); 2499 if (IS_ERR(handle)) 2500 return PTR_ERR(handle); 2501 2502 again: 2503 ext4_ext_invalidate_cache(inode); 2504 2505 trace_ext4_ext_remove_space(inode, start, depth); 2506 2507 /* 2508 * We start scanning from right side, freeing all the blocks 2509 * after i_size and walking into the tree depth-wise. 2510 */ 2511 depth = ext_depth(inode); 2512 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS); 2513 if (path == NULL) { 2514 ext4_journal_stop(handle); 2515 return -ENOMEM; 2516 } 2517 path[0].p_depth = depth; 2518 path[0].p_hdr = ext_inode_hdr(inode); 2519 if (ext4_ext_check(inode, path[0].p_hdr, depth)) { 2520 err = -EIO; 2521 goto out; 2522 } 2523 i = err = 0; 2524 2525 while (i >= 0 && err == 0) { 2526 if (i == depth) { 2527 /* this is leaf block */ 2528 err = ext4_ext_rm_leaf(handle, inode, path, 2529 &partial_cluster, start, 2530 EXT_MAX_BLOCKS - 1); 2531 /* root level has p_bh == NULL, brelse() eats this */ 2532 brelse(path[i].p_bh); 2533 path[i].p_bh = NULL; 2534 i--; 2535 continue; 2536 } 2537 2538 /* this is index block */ 2539 if (!path[i].p_hdr) { 2540 ext_debug("initialize header\n"); 2541 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2542 } 2543 2544 if (!path[i].p_idx) { 2545 /* this level hasn't been touched yet */ 2546 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2547 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2548 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2549 path[i].p_hdr, 2550 le16_to_cpu(path[i].p_hdr->eh_entries)); 2551 } else { 2552 /* we were already here, see at next index */ 2553 path[i].p_idx--; 2554 } 2555 2556 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2557 i, EXT_FIRST_INDEX(path[i].p_hdr), 2558 path[i].p_idx); 2559 if (ext4_ext_more_to_rm(path + i)) { 2560 struct buffer_head *bh; 2561 /* go to the next level */ 2562 ext_debug("move to level %d (block %llu)\n", 2563 i + 1, ext4_idx_pblock(path[i].p_idx)); 2564 memset(path + i + 1, 0, sizeof(*path)); 2565 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx)); 2566 if (!bh) { 2567 /* should we reset i_size? */ 2568 err = -EIO; 2569 break; 2570 } 2571 if (WARN_ON(i + 1 > depth)) { 2572 err = -EIO; 2573 break; 2574 } 2575 if (ext4_ext_check(inode, ext_block_hdr(bh), 2576 depth - i - 1)) { 2577 err = -EIO; 2578 break; 2579 } 2580 path[i + 1].p_bh = bh; 2581 2582 /* save actual number of indexes since this 2583 * number is changed at the next iteration */ 2584 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2585 i++; 2586 } else { 2587 /* we finished processing this index, go up */ 2588 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2589 /* index is empty, remove it; 2590 * handle must be already prepared by the 2591 * truncatei_leaf() */ 2592 err = ext4_ext_rm_idx(handle, inode, path + i); 2593 } 2594 /* root level has p_bh == NULL, brelse() eats this */ 2595 brelse(path[i].p_bh); 2596 path[i].p_bh = NULL; 2597 i--; 2598 ext_debug("return to level %d\n", i); 2599 } 2600 } 2601 2602 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster, 2603 path->p_hdr->eh_entries); 2604 2605 /* If we still have something in the partial cluster and we have removed 2606 * even the first extent, then we should free the blocks in the partial 2607 * cluster as well. */ 2608 if (partial_cluster && path->p_hdr->eh_entries == 0) { 2609 int flags = EXT4_FREE_BLOCKS_FORGET; 2610 2611 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2612 flags |= EXT4_FREE_BLOCKS_METADATA; 2613 2614 ext4_free_blocks(handle, inode, NULL, 2615 EXT4_C2B(EXT4_SB(sb), partial_cluster), 2616 EXT4_SB(sb)->s_cluster_ratio, flags); 2617 partial_cluster = 0; 2618 } 2619 2620 /* TODO: flexible tree reduction should be here */ 2621 if (path->p_hdr->eh_entries == 0) { 2622 /* 2623 * truncate to zero freed all the tree, 2624 * so we need to correct eh_depth 2625 */ 2626 err = ext4_ext_get_access(handle, inode, path); 2627 if (err == 0) { 2628 ext_inode_hdr(inode)->eh_depth = 0; 2629 ext_inode_hdr(inode)->eh_max = 2630 cpu_to_le16(ext4_ext_space_root(inode, 0)); 2631 err = ext4_ext_dirty(handle, inode, path); 2632 } 2633 } 2634 out: 2635 ext4_ext_drop_refs(path); 2636 kfree(path); 2637 if (err == -EAGAIN) 2638 goto again; 2639 ext4_journal_stop(handle); 2640 2641 return err; 2642 } 2643 2644 /* 2645 * called at mount time 2646 */ 2647 void ext4_ext_init(struct super_block *sb) 2648 { 2649 /* 2650 * possible initialization would be here 2651 */ 2652 2653 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2654 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 2655 printk(KERN_INFO "EXT4-fs: file extents enabled"); 2656 #ifdef AGGRESSIVE_TEST 2657 printk(", aggressive tests"); 2658 #endif 2659 #ifdef CHECK_BINSEARCH 2660 printk(", check binsearch"); 2661 #endif 2662 #ifdef EXTENTS_STATS 2663 printk(", stats"); 2664 #endif 2665 printk("\n"); 2666 #endif 2667 #ifdef EXTENTS_STATS 2668 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 2669 EXT4_SB(sb)->s_ext_min = 1 << 30; 2670 EXT4_SB(sb)->s_ext_max = 0; 2671 #endif 2672 } 2673 } 2674 2675 /* 2676 * called at umount time 2677 */ 2678 void ext4_ext_release(struct super_block *sb) 2679 { 2680 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 2681 return; 2682 2683 #ifdef EXTENTS_STATS 2684 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 2685 struct ext4_sb_info *sbi = EXT4_SB(sb); 2686 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 2687 sbi->s_ext_blocks, sbi->s_ext_extents, 2688 sbi->s_ext_blocks / sbi->s_ext_extents); 2689 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 2690 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 2691 } 2692 #endif 2693 } 2694 2695 /* FIXME!! we need to try to merge to left or right after zero-out */ 2696 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 2697 { 2698 ext4_fsblk_t ee_pblock; 2699 unsigned int ee_len; 2700 int ret; 2701 2702 ee_len = ext4_ext_get_actual_len(ex); 2703 ee_pblock = ext4_ext_pblock(ex); 2704 2705 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS); 2706 if (ret > 0) 2707 ret = 0; 2708 2709 return ret; 2710 } 2711 2712 /* 2713 * used by extent splitting. 2714 */ 2715 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 2716 due to ENOSPC */ 2717 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */ 2718 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */ 2719 2720 /* 2721 * ext4_split_extent_at() splits an extent at given block. 2722 * 2723 * @handle: the journal handle 2724 * @inode: the file inode 2725 * @path: the path to the extent 2726 * @split: the logical block where the extent is splitted. 2727 * @split_flags: indicates if the extent could be zeroout if split fails, and 2728 * the states(init or uninit) of new extents. 2729 * @flags: flags used to insert new extent to extent tree. 2730 * 2731 * 2732 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 2733 * of which are deterimined by split_flag. 2734 * 2735 * There are two cases: 2736 * a> the extent are splitted into two extent. 2737 * b> split is not needed, and just mark the extent. 2738 * 2739 * return 0 on success. 2740 */ 2741 static int ext4_split_extent_at(handle_t *handle, 2742 struct inode *inode, 2743 struct ext4_ext_path *path, 2744 ext4_lblk_t split, 2745 int split_flag, 2746 int flags) 2747 { 2748 ext4_fsblk_t newblock; 2749 ext4_lblk_t ee_block; 2750 struct ext4_extent *ex, newex, orig_ex; 2751 struct ext4_extent *ex2 = NULL; 2752 unsigned int ee_len, depth; 2753 int err = 0; 2754 2755 ext_debug("ext4_split_extents_at: inode %lu, logical" 2756 "block %llu\n", inode->i_ino, (unsigned long long)split); 2757 2758 ext4_ext_show_leaf(inode, path); 2759 2760 depth = ext_depth(inode); 2761 ex = path[depth].p_ext; 2762 ee_block = le32_to_cpu(ex->ee_block); 2763 ee_len = ext4_ext_get_actual_len(ex); 2764 newblock = split - ee_block + ext4_ext_pblock(ex); 2765 2766 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 2767 2768 err = ext4_ext_get_access(handle, inode, path + depth); 2769 if (err) 2770 goto out; 2771 2772 if (split == ee_block) { 2773 /* 2774 * case b: block @split is the block that the extent begins with 2775 * then we just change the state of the extent, and splitting 2776 * is not needed. 2777 */ 2778 if (split_flag & EXT4_EXT_MARK_UNINIT2) 2779 ext4_ext_mark_uninitialized(ex); 2780 else 2781 ext4_ext_mark_initialized(ex); 2782 2783 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 2784 ext4_ext_try_to_merge(inode, path, ex); 2785 2786 err = ext4_ext_dirty(handle, inode, path + depth); 2787 goto out; 2788 } 2789 2790 /* case a */ 2791 memcpy(&orig_ex, ex, sizeof(orig_ex)); 2792 ex->ee_len = cpu_to_le16(split - ee_block); 2793 if (split_flag & EXT4_EXT_MARK_UNINIT1) 2794 ext4_ext_mark_uninitialized(ex); 2795 2796 /* 2797 * path may lead to new leaf, not to original leaf any more 2798 * after ext4_ext_insert_extent() returns, 2799 */ 2800 err = ext4_ext_dirty(handle, inode, path + depth); 2801 if (err) 2802 goto fix_extent_len; 2803 2804 ex2 = &newex; 2805 ex2->ee_block = cpu_to_le32(split); 2806 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 2807 ext4_ext_store_pblock(ex2, newblock); 2808 if (split_flag & EXT4_EXT_MARK_UNINIT2) 2809 ext4_ext_mark_uninitialized(ex2); 2810 2811 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags); 2812 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 2813 err = ext4_ext_zeroout(inode, &orig_ex); 2814 if (err) 2815 goto fix_extent_len; 2816 /* update the extent length and mark as initialized */ 2817 ex->ee_len = cpu_to_le32(ee_len); 2818 ext4_ext_try_to_merge(inode, path, ex); 2819 err = ext4_ext_dirty(handle, inode, path + depth); 2820 goto out; 2821 } else if (err) 2822 goto fix_extent_len; 2823 2824 out: 2825 ext4_ext_show_leaf(inode, path); 2826 return err; 2827 2828 fix_extent_len: 2829 ex->ee_len = orig_ex.ee_len; 2830 ext4_ext_dirty(handle, inode, path + depth); 2831 return err; 2832 } 2833 2834 /* 2835 * ext4_split_extents() splits an extent and mark extent which is covered 2836 * by @map as split_flags indicates 2837 * 2838 * It may result in splitting the extent into multiple extents (upto three) 2839 * There are three possibilities: 2840 * a> There is no split required 2841 * b> Splits in two extents: Split is happening at either end of the extent 2842 * c> Splits in three extents: Somone is splitting in middle of the extent 2843 * 2844 */ 2845 static int ext4_split_extent(handle_t *handle, 2846 struct inode *inode, 2847 struct ext4_ext_path *path, 2848 struct ext4_map_blocks *map, 2849 int split_flag, 2850 int flags) 2851 { 2852 ext4_lblk_t ee_block; 2853 struct ext4_extent *ex; 2854 unsigned int ee_len, depth; 2855 int err = 0; 2856 int uninitialized; 2857 int split_flag1, flags1; 2858 2859 depth = ext_depth(inode); 2860 ex = path[depth].p_ext; 2861 ee_block = le32_to_cpu(ex->ee_block); 2862 ee_len = ext4_ext_get_actual_len(ex); 2863 uninitialized = ext4_ext_is_uninitialized(ex); 2864 2865 if (map->m_lblk + map->m_len < ee_block + ee_len) { 2866 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ? 2867 EXT4_EXT_MAY_ZEROOUT : 0; 2868 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 2869 if (uninitialized) 2870 split_flag1 |= EXT4_EXT_MARK_UNINIT1 | 2871 EXT4_EXT_MARK_UNINIT2; 2872 err = ext4_split_extent_at(handle, inode, path, 2873 map->m_lblk + map->m_len, split_flag1, flags1); 2874 if (err) 2875 goto out; 2876 } 2877 2878 ext4_ext_drop_refs(path); 2879 path = ext4_ext_find_extent(inode, map->m_lblk, path); 2880 if (IS_ERR(path)) 2881 return PTR_ERR(path); 2882 2883 if (map->m_lblk >= ee_block) { 2884 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ? 2885 EXT4_EXT_MAY_ZEROOUT : 0; 2886 if (uninitialized) 2887 split_flag1 |= EXT4_EXT_MARK_UNINIT1; 2888 if (split_flag & EXT4_EXT_MARK_UNINIT2) 2889 split_flag1 |= EXT4_EXT_MARK_UNINIT2; 2890 err = ext4_split_extent_at(handle, inode, path, 2891 map->m_lblk, split_flag1, flags); 2892 if (err) 2893 goto out; 2894 } 2895 2896 ext4_ext_show_leaf(inode, path); 2897 out: 2898 return err ? err : map->m_len; 2899 } 2900 2901 #define EXT4_EXT_ZERO_LEN 7 2902 /* 2903 * This function is called by ext4_ext_map_blocks() if someone tries to write 2904 * to an uninitialized extent. It may result in splitting the uninitialized 2905 * extent into multiple extents (up to three - one initialized and two 2906 * uninitialized). 2907 * There are three possibilities: 2908 * a> There is no split required: Entire extent should be initialized 2909 * b> Splits in two extents: Write is happening at either end of the extent 2910 * c> Splits in three extents: Somone is writing in middle of the extent 2911 * 2912 * Pre-conditions: 2913 * - The extent pointed to by 'path' is uninitialized. 2914 * - The extent pointed to by 'path' contains a superset 2915 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 2916 * 2917 * Post-conditions on success: 2918 * - the returned value is the number of blocks beyond map->l_lblk 2919 * that are allocated and initialized. 2920 * It is guaranteed to be >= map->m_len. 2921 */ 2922 static int ext4_ext_convert_to_initialized(handle_t *handle, 2923 struct inode *inode, 2924 struct ext4_map_blocks *map, 2925 struct ext4_ext_path *path) 2926 { 2927 struct ext4_extent_header *eh; 2928 struct ext4_map_blocks split_map; 2929 struct ext4_extent zero_ex; 2930 struct ext4_extent *ex; 2931 ext4_lblk_t ee_block, eof_block; 2932 unsigned int ee_len, depth; 2933 int allocated; 2934 int err = 0; 2935 int split_flag = 0; 2936 2937 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 2938 "block %llu, max_blocks %u\n", inode->i_ino, 2939 (unsigned long long)map->m_lblk, map->m_len); 2940 2941 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 2942 inode->i_sb->s_blocksize_bits; 2943 if (eof_block < map->m_lblk + map->m_len) 2944 eof_block = map->m_lblk + map->m_len; 2945 2946 depth = ext_depth(inode); 2947 eh = path[depth].p_hdr; 2948 ex = path[depth].p_ext; 2949 ee_block = le32_to_cpu(ex->ee_block); 2950 ee_len = ext4_ext_get_actual_len(ex); 2951 allocated = ee_len - (map->m_lblk - ee_block); 2952 2953 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 2954 2955 /* Pre-conditions */ 2956 BUG_ON(!ext4_ext_is_uninitialized(ex)); 2957 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 2958 BUG_ON(map->m_lblk + map->m_len > ee_block + ee_len); 2959 2960 /* 2961 * Attempt to transfer newly initialized blocks from the currently 2962 * uninitialized extent to its left neighbor. This is much cheaper 2963 * than an insertion followed by a merge as those involve costly 2964 * memmove() calls. This is the common case in steady state for 2965 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append 2966 * writes. 2967 * 2968 * Limitations of the current logic: 2969 * - L1: we only deal with writes at the start of the extent. 2970 * The approach could be extended to writes at the end 2971 * of the extent but this scenario was deemed less common. 2972 * - L2: we do not deal with writes covering the whole extent. 2973 * This would require removing the extent if the transfer 2974 * is possible. 2975 * - L3: we only attempt to merge with an extent stored in the 2976 * same extent tree node. 2977 */ 2978 if ((map->m_lblk == ee_block) && /*L1*/ 2979 (map->m_len < ee_len) && /*L2*/ 2980 (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/ 2981 struct ext4_extent *prev_ex; 2982 ext4_lblk_t prev_lblk; 2983 ext4_fsblk_t prev_pblk, ee_pblk; 2984 unsigned int prev_len, write_len; 2985 2986 prev_ex = ex - 1; 2987 prev_lblk = le32_to_cpu(prev_ex->ee_block); 2988 prev_len = ext4_ext_get_actual_len(prev_ex); 2989 prev_pblk = ext4_ext_pblock(prev_ex); 2990 ee_pblk = ext4_ext_pblock(ex); 2991 write_len = map->m_len; 2992 2993 /* 2994 * A transfer of blocks from 'ex' to 'prev_ex' is allowed 2995 * upon those conditions: 2996 * - C1: prev_ex is initialized, 2997 * - C2: prev_ex is logically abutting ex, 2998 * - C3: prev_ex is physically abutting ex, 2999 * - C4: prev_ex can receive the additional blocks without 3000 * overflowing the (initialized) length limit. 3001 */ 3002 if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/ 3003 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3004 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3005 (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/ 3006 err = ext4_ext_get_access(handle, inode, path + depth); 3007 if (err) 3008 goto out; 3009 3010 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3011 map, ex, prev_ex); 3012 3013 /* Shift the start of ex by 'write_len' blocks */ 3014 ex->ee_block = cpu_to_le32(ee_block + write_len); 3015 ext4_ext_store_pblock(ex, ee_pblk + write_len); 3016 ex->ee_len = cpu_to_le16(ee_len - write_len); 3017 ext4_ext_mark_uninitialized(ex); /* Restore the flag */ 3018 3019 /* Extend prev_ex by 'write_len' blocks */ 3020 prev_ex->ee_len = cpu_to_le16(prev_len + write_len); 3021 3022 /* Mark the block containing both extents as dirty */ 3023 ext4_ext_dirty(handle, inode, path + depth); 3024 3025 /* Update path to point to the right extent */ 3026 path[depth].p_ext = prev_ex; 3027 3028 /* Result: number of initialized blocks past m_lblk */ 3029 allocated = write_len; 3030 goto out; 3031 } 3032 } 3033 3034 WARN_ON(map->m_lblk < ee_block); 3035 /* 3036 * It is safe to convert extent to initialized via explicit 3037 * zeroout only if extent is fully insde i_size or new_size. 3038 */ 3039 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3040 3041 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */ 3042 if (ee_len <= 2*EXT4_EXT_ZERO_LEN && 3043 (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3044 err = ext4_ext_zeroout(inode, ex); 3045 if (err) 3046 goto out; 3047 3048 err = ext4_ext_get_access(handle, inode, path + depth); 3049 if (err) 3050 goto out; 3051 ext4_ext_mark_initialized(ex); 3052 ext4_ext_try_to_merge(inode, path, ex); 3053 err = ext4_ext_dirty(handle, inode, path + depth); 3054 goto out; 3055 } 3056 3057 /* 3058 * four cases: 3059 * 1. split the extent into three extents. 3060 * 2. split the extent into two extents, zeroout the first half. 3061 * 3. split the extent into two extents, zeroout the second half. 3062 * 4. split the extent into two extents with out zeroout. 3063 */ 3064 split_map.m_lblk = map->m_lblk; 3065 split_map.m_len = map->m_len; 3066 3067 if (allocated > map->m_len) { 3068 if (allocated <= EXT4_EXT_ZERO_LEN && 3069 (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3070 /* case 3 */ 3071 zero_ex.ee_block = 3072 cpu_to_le32(map->m_lblk); 3073 zero_ex.ee_len = cpu_to_le16(allocated); 3074 ext4_ext_store_pblock(&zero_ex, 3075 ext4_ext_pblock(ex) + map->m_lblk - ee_block); 3076 err = ext4_ext_zeroout(inode, &zero_ex); 3077 if (err) 3078 goto out; 3079 split_map.m_lblk = map->m_lblk; 3080 split_map.m_len = allocated; 3081 } else if ((map->m_lblk - ee_block + map->m_len < 3082 EXT4_EXT_ZERO_LEN) && 3083 (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3084 /* case 2 */ 3085 if (map->m_lblk != ee_block) { 3086 zero_ex.ee_block = ex->ee_block; 3087 zero_ex.ee_len = cpu_to_le16(map->m_lblk - 3088 ee_block); 3089 ext4_ext_store_pblock(&zero_ex, 3090 ext4_ext_pblock(ex)); 3091 err = ext4_ext_zeroout(inode, &zero_ex); 3092 if (err) 3093 goto out; 3094 } 3095 3096 split_map.m_lblk = ee_block; 3097 split_map.m_len = map->m_lblk - ee_block + map->m_len; 3098 allocated = map->m_len; 3099 } 3100 } 3101 3102 allocated = ext4_split_extent(handle, inode, path, 3103 &split_map, split_flag, 0); 3104 if (allocated < 0) 3105 err = allocated; 3106 3107 out: 3108 return err ? err : allocated; 3109 } 3110 3111 /* 3112 * This function is called by ext4_ext_map_blocks() from 3113 * ext4_get_blocks_dio_write() when DIO to write 3114 * to an uninitialized extent. 3115 * 3116 * Writing to an uninitialized extent may result in splitting the uninitialized 3117 * extent into multiple /initialized uninitialized extents (up to three) 3118 * There are three possibilities: 3119 * a> There is no split required: Entire extent should be uninitialized 3120 * b> Splits in two extents: Write is happening at either end of the extent 3121 * c> Splits in three extents: Somone is writing in middle of the extent 3122 * 3123 * One of more index blocks maybe needed if the extent tree grow after 3124 * the uninitialized extent split. To prevent ENOSPC occur at the IO 3125 * complete, we need to split the uninitialized extent before DIO submit 3126 * the IO. The uninitialized extent called at this time will be split 3127 * into three uninitialized extent(at most). After IO complete, the part 3128 * being filled will be convert to initialized by the end_io callback function 3129 * via ext4_convert_unwritten_extents(). 3130 * 3131 * Returns the size of uninitialized extent to be written on success. 3132 */ 3133 static int ext4_split_unwritten_extents(handle_t *handle, 3134 struct inode *inode, 3135 struct ext4_map_blocks *map, 3136 struct ext4_ext_path *path, 3137 int flags) 3138 { 3139 ext4_lblk_t eof_block; 3140 ext4_lblk_t ee_block; 3141 struct ext4_extent *ex; 3142 unsigned int ee_len; 3143 int split_flag = 0, depth; 3144 3145 ext_debug("ext4_split_unwritten_extents: inode %lu, logical" 3146 "block %llu, max_blocks %u\n", inode->i_ino, 3147 (unsigned long long)map->m_lblk, map->m_len); 3148 3149 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3150 inode->i_sb->s_blocksize_bits; 3151 if (eof_block < map->m_lblk + map->m_len) 3152 eof_block = map->m_lblk + map->m_len; 3153 /* 3154 * It is safe to convert extent to initialized via explicit 3155 * zeroout only if extent is fully insde i_size or new_size. 3156 */ 3157 depth = ext_depth(inode); 3158 ex = path[depth].p_ext; 3159 ee_block = le32_to_cpu(ex->ee_block); 3160 ee_len = ext4_ext_get_actual_len(ex); 3161 3162 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3163 split_flag |= EXT4_EXT_MARK_UNINIT2; 3164 3165 flags |= EXT4_GET_BLOCKS_PRE_IO; 3166 return ext4_split_extent(handle, inode, path, map, split_flag, flags); 3167 } 3168 3169 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3170 struct inode *inode, 3171 struct ext4_ext_path *path) 3172 { 3173 struct ext4_extent *ex; 3174 int depth; 3175 int err = 0; 3176 3177 depth = ext_depth(inode); 3178 ex = path[depth].p_ext; 3179 3180 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3181 "block %llu, max_blocks %u\n", inode->i_ino, 3182 (unsigned long long)le32_to_cpu(ex->ee_block), 3183 ext4_ext_get_actual_len(ex)); 3184 3185 err = ext4_ext_get_access(handle, inode, path + depth); 3186 if (err) 3187 goto out; 3188 /* first mark the extent as initialized */ 3189 ext4_ext_mark_initialized(ex); 3190 3191 /* note: ext4_ext_correct_indexes() isn't needed here because 3192 * borders are not changed 3193 */ 3194 ext4_ext_try_to_merge(inode, path, ex); 3195 3196 /* Mark modified extent as dirty */ 3197 err = ext4_ext_dirty(handle, inode, path + depth); 3198 out: 3199 ext4_ext_show_leaf(inode, path); 3200 return err; 3201 } 3202 3203 static void unmap_underlying_metadata_blocks(struct block_device *bdev, 3204 sector_t block, int count) 3205 { 3206 int i; 3207 for (i = 0; i < count; i++) 3208 unmap_underlying_metadata(bdev, block + i); 3209 } 3210 3211 /* 3212 * Handle EOFBLOCKS_FL flag, clearing it if necessary 3213 */ 3214 static int check_eofblocks_fl(handle_t *handle, struct inode *inode, 3215 ext4_lblk_t lblk, 3216 struct ext4_ext_path *path, 3217 unsigned int len) 3218 { 3219 int i, depth; 3220 struct ext4_extent_header *eh; 3221 struct ext4_extent *last_ex; 3222 3223 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3224 return 0; 3225 3226 depth = ext_depth(inode); 3227 eh = path[depth].p_hdr; 3228 3229 if (unlikely(!eh->eh_entries)) { 3230 EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and " 3231 "EOFBLOCKS_FL set"); 3232 return -EIO; 3233 } 3234 last_ex = EXT_LAST_EXTENT(eh); 3235 /* 3236 * We should clear the EOFBLOCKS_FL flag if we are writing the 3237 * last block in the last extent in the file. We test this by 3238 * first checking to see if the caller to 3239 * ext4_ext_get_blocks() was interested in the last block (or 3240 * a block beyond the last block) in the current extent. If 3241 * this turns out to be false, we can bail out from this 3242 * function immediately. 3243 */ 3244 if (lblk + len < le32_to_cpu(last_ex->ee_block) + 3245 ext4_ext_get_actual_len(last_ex)) 3246 return 0; 3247 /* 3248 * If the caller does appear to be planning to write at or 3249 * beyond the end of the current extent, we then test to see 3250 * if the current extent is the last extent in the file, by 3251 * checking to make sure it was reached via the rightmost node 3252 * at each level of the tree. 3253 */ 3254 for (i = depth-1; i >= 0; i--) 3255 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) 3256 return 0; 3257 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3258 return ext4_mark_inode_dirty(handle, inode); 3259 } 3260 3261 /** 3262 * ext4_find_delalloc_range: find delayed allocated block in the given range. 3263 * 3264 * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns 3265 * whether there are any buffers marked for delayed allocation. It returns '1' 3266 * on the first delalloc'ed buffer head found. If no buffer head in the given 3267 * range is marked for delalloc, it returns 0. 3268 * lblk_start should always be <= lblk_end. 3269 * search_hint_reverse is to indicate that searching in reverse from lblk_end to 3270 * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed 3271 * block sooner). This is useful when blocks are truncated sequentially from 3272 * lblk_start towards lblk_end. 3273 */ 3274 static int ext4_find_delalloc_range(struct inode *inode, 3275 ext4_lblk_t lblk_start, 3276 ext4_lblk_t lblk_end, 3277 int search_hint_reverse) 3278 { 3279 struct address_space *mapping = inode->i_mapping; 3280 struct buffer_head *head, *bh = NULL; 3281 struct page *page; 3282 ext4_lblk_t i, pg_lblk; 3283 pgoff_t index; 3284 3285 /* reverse search wont work if fs block size is less than page size */ 3286 if (inode->i_blkbits < PAGE_CACHE_SHIFT) 3287 search_hint_reverse = 0; 3288 3289 if (search_hint_reverse) 3290 i = lblk_end; 3291 else 3292 i = lblk_start; 3293 3294 index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 3295 3296 while ((i >= lblk_start) && (i <= lblk_end)) { 3297 page = find_get_page(mapping, index); 3298 if (!page) 3299 goto nextpage; 3300 3301 if (!page_has_buffers(page)) 3302 goto nextpage; 3303 3304 head = page_buffers(page); 3305 if (!head) 3306 goto nextpage; 3307 3308 bh = head; 3309 pg_lblk = index << (PAGE_CACHE_SHIFT - 3310 inode->i_blkbits); 3311 do { 3312 if (unlikely(pg_lblk < lblk_start)) { 3313 /* 3314 * This is possible when fs block size is less 3315 * than page size and our cluster starts/ends in 3316 * middle of the page. So we need to skip the 3317 * initial few blocks till we reach the 'lblk' 3318 */ 3319 pg_lblk++; 3320 continue; 3321 } 3322 3323 /* Check if the buffer is delayed allocated and that it 3324 * is not yet mapped. (when da-buffers are mapped during 3325 * their writeout, their da_mapped bit is set.) 3326 */ 3327 if (buffer_delay(bh) && !buffer_da_mapped(bh)) { 3328 page_cache_release(page); 3329 trace_ext4_find_delalloc_range(inode, 3330 lblk_start, lblk_end, 3331 search_hint_reverse, 3332 1, i); 3333 return 1; 3334 } 3335 if (search_hint_reverse) 3336 i--; 3337 else 3338 i++; 3339 } while ((i >= lblk_start) && (i <= lblk_end) && 3340 ((bh = bh->b_this_page) != head)); 3341 nextpage: 3342 if (page) 3343 page_cache_release(page); 3344 /* 3345 * Move to next page. 'i' will be the first lblk in the next 3346 * page. 3347 */ 3348 if (search_hint_reverse) 3349 index--; 3350 else 3351 index++; 3352 i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 3353 } 3354 3355 trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end, 3356 search_hint_reverse, 0, 0); 3357 return 0; 3358 } 3359 3360 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk, 3361 int search_hint_reverse) 3362 { 3363 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3364 ext4_lblk_t lblk_start, lblk_end; 3365 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1)); 3366 lblk_end = lblk_start + sbi->s_cluster_ratio - 1; 3367 3368 return ext4_find_delalloc_range(inode, lblk_start, lblk_end, 3369 search_hint_reverse); 3370 } 3371 3372 /** 3373 * Determines how many complete clusters (out of those specified by the 'map') 3374 * are under delalloc and were reserved quota for. 3375 * This function is called when we are writing out the blocks that were 3376 * originally written with their allocation delayed, but then the space was 3377 * allocated using fallocate() before the delayed allocation could be resolved. 3378 * The cases to look for are: 3379 * ('=' indicated delayed allocated blocks 3380 * '-' indicates non-delayed allocated blocks) 3381 * (a) partial clusters towards beginning and/or end outside of allocated range 3382 * are not delalloc'ed. 3383 * Ex: 3384 * |----c---=|====c====|====c====|===-c----| 3385 * |++++++ allocated ++++++| 3386 * ==> 4 complete clusters in above example 3387 * 3388 * (b) partial cluster (outside of allocated range) towards either end is 3389 * marked for delayed allocation. In this case, we will exclude that 3390 * cluster. 3391 * Ex: 3392 * |----====c========|========c========| 3393 * |++++++ allocated ++++++| 3394 * ==> 1 complete clusters in above example 3395 * 3396 * Ex: 3397 * |================c================| 3398 * |++++++ allocated ++++++| 3399 * ==> 0 complete clusters in above example 3400 * 3401 * The ext4_da_update_reserve_space will be called only if we 3402 * determine here that there were some "entire" clusters that span 3403 * this 'allocated' range. 3404 * In the non-bigalloc case, this function will just end up returning num_blks 3405 * without ever calling ext4_find_delalloc_range. 3406 */ 3407 static unsigned int 3408 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start, 3409 unsigned int num_blks) 3410 { 3411 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3412 ext4_lblk_t alloc_cluster_start, alloc_cluster_end; 3413 ext4_lblk_t lblk_from, lblk_to, c_offset; 3414 unsigned int allocated_clusters = 0; 3415 3416 alloc_cluster_start = EXT4_B2C(sbi, lblk_start); 3417 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1); 3418 3419 /* max possible clusters for this allocation */ 3420 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1; 3421 3422 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks); 3423 3424 /* Check towards left side */ 3425 c_offset = lblk_start & (sbi->s_cluster_ratio - 1); 3426 if (c_offset) { 3427 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1)); 3428 lblk_to = lblk_from + c_offset - 1; 3429 3430 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0)) 3431 allocated_clusters--; 3432 } 3433 3434 /* Now check towards right. */ 3435 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1); 3436 if (allocated_clusters && c_offset) { 3437 lblk_from = lblk_start + num_blks; 3438 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1; 3439 3440 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0)) 3441 allocated_clusters--; 3442 } 3443 3444 return allocated_clusters; 3445 } 3446 3447 static int 3448 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode, 3449 struct ext4_map_blocks *map, 3450 struct ext4_ext_path *path, int flags, 3451 unsigned int allocated, ext4_fsblk_t newblock) 3452 { 3453 int ret = 0; 3454 int err = 0; 3455 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio; 3456 3457 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical" 3458 "block %llu, max_blocks %u, flags %d, allocated %u", 3459 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 3460 flags, allocated); 3461 ext4_ext_show_leaf(inode, path); 3462 3463 trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated, 3464 newblock); 3465 3466 /* get_block() before submit the IO, split the extent */ 3467 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) { 3468 ret = ext4_split_unwritten_extents(handle, inode, map, 3469 path, flags); 3470 /* 3471 * Flag the inode(non aio case) or end_io struct (aio case) 3472 * that this IO needs to conversion to written when IO is 3473 * completed 3474 */ 3475 if (io) 3476 ext4_set_io_unwritten_flag(inode, io); 3477 else 3478 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3479 if (ext4_should_dioread_nolock(inode)) 3480 map->m_flags |= EXT4_MAP_UNINIT; 3481 goto out; 3482 } 3483 /* IO end_io complete, convert the filled extent to written */ 3484 if ((flags & EXT4_GET_BLOCKS_CONVERT)) { 3485 ret = ext4_convert_unwritten_extents_endio(handle, inode, 3486 path); 3487 if (ret >= 0) { 3488 ext4_update_inode_fsync_trans(handle, inode, 1); 3489 err = check_eofblocks_fl(handle, inode, map->m_lblk, 3490 path, map->m_len); 3491 } else 3492 err = ret; 3493 goto out2; 3494 } 3495 /* buffered IO case */ 3496 /* 3497 * repeat fallocate creation request 3498 * we already have an unwritten extent 3499 */ 3500 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) 3501 goto map_out; 3502 3503 /* buffered READ or buffered write_begin() lookup */ 3504 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3505 /* 3506 * We have blocks reserved already. We 3507 * return allocated blocks so that delalloc 3508 * won't do block reservation for us. But 3509 * the buffer head will be unmapped so that 3510 * a read from the block returns 0s. 3511 */ 3512 map->m_flags |= EXT4_MAP_UNWRITTEN; 3513 goto out1; 3514 } 3515 3516 /* buffered write, writepage time, convert*/ 3517 ret = ext4_ext_convert_to_initialized(handle, inode, map, path); 3518 if (ret >= 0) 3519 ext4_update_inode_fsync_trans(handle, inode, 1); 3520 out: 3521 if (ret <= 0) { 3522 err = ret; 3523 goto out2; 3524 } else 3525 allocated = ret; 3526 map->m_flags |= EXT4_MAP_NEW; 3527 /* 3528 * if we allocated more blocks than requested 3529 * we need to make sure we unmap the extra block 3530 * allocated. The actual needed block will get 3531 * unmapped later when we find the buffer_head marked 3532 * new. 3533 */ 3534 if (allocated > map->m_len) { 3535 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev, 3536 newblock + map->m_len, 3537 allocated - map->m_len); 3538 allocated = map->m_len; 3539 } 3540 3541 /* 3542 * If we have done fallocate with the offset that is already 3543 * delayed allocated, we would have block reservation 3544 * and quota reservation done in the delayed write path. 3545 * But fallocate would have already updated quota and block 3546 * count for this offset. So cancel these reservation 3547 */ 3548 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 3549 unsigned int reserved_clusters; 3550 reserved_clusters = get_reserved_cluster_alloc(inode, 3551 map->m_lblk, map->m_len); 3552 if (reserved_clusters) 3553 ext4_da_update_reserve_space(inode, 3554 reserved_clusters, 3555 0); 3556 } 3557 3558 map_out: 3559 map->m_flags |= EXT4_MAP_MAPPED; 3560 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { 3561 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, 3562 map->m_len); 3563 if (err < 0) 3564 goto out2; 3565 } 3566 out1: 3567 if (allocated > map->m_len) 3568 allocated = map->m_len; 3569 ext4_ext_show_leaf(inode, path); 3570 map->m_pblk = newblock; 3571 map->m_len = allocated; 3572 out2: 3573 if (path) { 3574 ext4_ext_drop_refs(path); 3575 kfree(path); 3576 } 3577 return err ? err : allocated; 3578 } 3579 3580 /* 3581 * get_implied_cluster_alloc - check to see if the requested 3582 * allocation (in the map structure) overlaps with a cluster already 3583 * allocated in an extent. 3584 * @sb The filesystem superblock structure 3585 * @map The requested lblk->pblk mapping 3586 * @ex The extent structure which might contain an implied 3587 * cluster allocation 3588 * 3589 * This function is called by ext4_ext_map_blocks() after we failed to 3590 * find blocks that were already in the inode's extent tree. Hence, 3591 * we know that the beginning of the requested region cannot overlap 3592 * the extent from the inode's extent tree. There are three cases we 3593 * want to catch. The first is this case: 3594 * 3595 * |--- cluster # N--| 3596 * |--- extent ---| |---- requested region ---| 3597 * |==========| 3598 * 3599 * The second case that we need to test for is this one: 3600 * 3601 * |--------- cluster # N ----------------| 3602 * |--- requested region --| |------- extent ----| 3603 * |=======================| 3604 * 3605 * The third case is when the requested region lies between two extents 3606 * within the same cluster: 3607 * |------------- cluster # N-------------| 3608 * |----- ex -----| |---- ex_right ----| 3609 * |------ requested region ------| 3610 * |================| 3611 * 3612 * In each of the above cases, we need to set the map->m_pblk and 3613 * map->m_len so it corresponds to the return the extent labelled as 3614 * "|====|" from cluster #N, since it is already in use for data in 3615 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 3616 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 3617 * as a new "allocated" block region. Otherwise, we will return 0 and 3618 * ext4_ext_map_blocks() will then allocate one or more new clusters 3619 * by calling ext4_mb_new_blocks(). 3620 */ 3621 static int get_implied_cluster_alloc(struct super_block *sb, 3622 struct ext4_map_blocks *map, 3623 struct ext4_extent *ex, 3624 struct ext4_ext_path *path) 3625 { 3626 struct ext4_sb_info *sbi = EXT4_SB(sb); 3627 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1); 3628 ext4_lblk_t ex_cluster_start, ex_cluster_end; 3629 ext4_lblk_t rr_cluster_start, rr_cluster_end; 3630 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 3631 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 3632 unsigned short ee_len = ext4_ext_get_actual_len(ex); 3633 3634 /* The extent passed in that we are trying to match */ 3635 ex_cluster_start = EXT4_B2C(sbi, ee_block); 3636 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 3637 3638 /* The requested region passed into ext4_map_blocks() */ 3639 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 3640 rr_cluster_end = EXT4_B2C(sbi, map->m_lblk + map->m_len - 1); 3641 3642 if ((rr_cluster_start == ex_cluster_end) || 3643 (rr_cluster_start == ex_cluster_start)) { 3644 if (rr_cluster_start == ex_cluster_end) 3645 ee_start += ee_len - 1; 3646 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) + 3647 c_offset; 3648 map->m_len = min(map->m_len, 3649 (unsigned) sbi->s_cluster_ratio - c_offset); 3650 /* 3651 * Check for and handle this case: 3652 * 3653 * |--------- cluster # N-------------| 3654 * |------- extent ----| 3655 * |--- requested region ---| 3656 * |===========| 3657 */ 3658 3659 if (map->m_lblk < ee_block) 3660 map->m_len = min(map->m_len, ee_block - map->m_lblk); 3661 3662 /* 3663 * Check for the case where there is already another allocated 3664 * block to the right of 'ex' but before the end of the cluster. 3665 * 3666 * |------------- cluster # N-------------| 3667 * |----- ex -----| |---- ex_right ----| 3668 * |------ requested region ------| 3669 * |================| 3670 */ 3671 if (map->m_lblk > ee_block) { 3672 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 3673 map->m_len = min(map->m_len, next - map->m_lblk); 3674 } 3675 3676 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 3677 return 1; 3678 } 3679 3680 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 3681 return 0; 3682 } 3683 3684 3685 /* 3686 * Block allocation/map/preallocation routine for extents based files 3687 * 3688 * 3689 * Need to be called with 3690 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 3691 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 3692 * 3693 * return > 0, number of of blocks already mapped/allocated 3694 * if create == 0 and these are pre-allocated blocks 3695 * buffer head is unmapped 3696 * otherwise blocks are mapped 3697 * 3698 * return = 0, if plain look up failed (blocks have not been allocated) 3699 * buffer head is unmapped 3700 * 3701 * return < 0, error case. 3702 */ 3703 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 3704 struct ext4_map_blocks *map, int flags) 3705 { 3706 struct ext4_ext_path *path = NULL; 3707 struct ext4_extent newex, *ex, *ex2; 3708 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3709 ext4_fsblk_t newblock = 0; 3710 int free_on_err = 0, err = 0, depth, ret; 3711 unsigned int allocated = 0, offset = 0; 3712 unsigned int allocated_clusters = 0; 3713 unsigned int punched_out = 0; 3714 unsigned int result = 0; 3715 struct ext4_allocation_request ar; 3716 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio; 3717 ext4_lblk_t cluster_offset; 3718 3719 ext_debug("blocks %u/%u requested for inode %lu\n", 3720 map->m_lblk, map->m_len, inode->i_ino); 3721 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 3722 3723 /* check in cache */ 3724 if (!(flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) && 3725 ext4_ext_in_cache(inode, map->m_lblk, &newex)) { 3726 if (!newex.ee_start_lo && !newex.ee_start_hi) { 3727 if ((sbi->s_cluster_ratio > 1) && 3728 ext4_find_delalloc_cluster(inode, map->m_lblk, 0)) 3729 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3730 3731 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3732 /* 3733 * block isn't allocated yet and 3734 * user doesn't want to allocate it 3735 */ 3736 goto out2; 3737 } 3738 /* we should allocate requested block */ 3739 } else { 3740 /* block is already allocated */ 3741 if (sbi->s_cluster_ratio > 1) 3742 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3743 newblock = map->m_lblk 3744 - le32_to_cpu(newex.ee_block) 3745 + ext4_ext_pblock(&newex); 3746 /* number of remaining blocks in the extent */ 3747 allocated = ext4_ext_get_actual_len(&newex) - 3748 (map->m_lblk - le32_to_cpu(newex.ee_block)); 3749 goto out; 3750 } 3751 } 3752 3753 /* find extent for this block */ 3754 path = ext4_ext_find_extent(inode, map->m_lblk, NULL); 3755 if (IS_ERR(path)) { 3756 err = PTR_ERR(path); 3757 path = NULL; 3758 goto out2; 3759 } 3760 3761 depth = ext_depth(inode); 3762 3763 /* 3764 * consistent leaf must not be empty; 3765 * this situation is possible, though, _during_ tree modification; 3766 * this is why assert can't be put in ext4_ext_find_extent() 3767 */ 3768 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 3769 EXT4_ERROR_INODE(inode, "bad extent address " 3770 "lblock: %lu, depth: %d pblock %lld", 3771 (unsigned long) map->m_lblk, depth, 3772 path[depth].p_block); 3773 err = -EIO; 3774 goto out2; 3775 } 3776 3777 ex = path[depth].p_ext; 3778 if (ex) { 3779 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 3780 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 3781 unsigned short ee_len; 3782 3783 /* 3784 * Uninitialized extents are treated as holes, except that 3785 * we split out initialized portions during a write. 3786 */ 3787 ee_len = ext4_ext_get_actual_len(ex); 3788 3789 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 3790 3791 /* if found extent covers block, simply return it */ 3792 if (in_range(map->m_lblk, ee_block, ee_len)) { 3793 struct ext4_map_blocks punch_map; 3794 ext4_fsblk_t partial_cluster = 0; 3795 3796 newblock = map->m_lblk - ee_block + ee_start; 3797 /* number of remaining blocks in the extent */ 3798 allocated = ee_len - (map->m_lblk - ee_block); 3799 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 3800 ee_block, ee_len, newblock); 3801 3802 if ((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0) { 3803 /* 3804 * Do not put uninitialized extent 3805 * in the cache 3806 */ 3807 if (!ext4_ext_is_uninitialized(ex)) { 3808 ext4_ext_put_in_cache(inode, ee_block, 3809 ee_len, ee_start); 3810 goto out; 3811 } 3812 ret = ext4_ext_handle_uninitialized_extents( 3813 handle, inode, map, path, flags, 3814 allocated, newblock); 3815 return ret; 3816 } 3817 3818 /* 3819 * Punch out the map length, but only to the 3820 * end of the extent 3821 */ 3822 punched_out = allocated < map->m_len ? 3823 allocated : map->m_len; 3824 3825 /* 3826 * Sense extents need to be converted to 3827 * uninitialized, they must fit in an 3828 * uninitialized extent 3829 */ 3830 if (punched_out > EXT_UNINIT_MAX_LEN) 3831 punched_out = EXT_UNINIT_MAX_LEN; 3832 3833 punch_map.m_lblk = map->m_lblk; 3834 punch_map.m_pblk = newblock; 3835 punch_map.m_len = punched_out; 3836 punch_map.m_flags = 0; 3837 3838 /* Check to see if the extent needs to be split */ 3839 if (punch_map.m_len != ee_len || 3840 punch_map.m_lblk != ee_block) { 3841 3842 ret = ext4_split_extent(handle, inode, 3843 path, &punch_map, 0, 3844 EXT4_GET_BLOCKS_PUNCH_OUT_EXT | 3845 EXT4_GET_BLOCKS_PRE_IO); 3846 3847 if (ret < 0) { 3848 err = ret; 3849 goto out2; 3850 } 3851 /* 3852 * find extent for the block at 3853 * the start of the hole 3854 */ 3855 ext4_ext_drop_refs(path); 3856 kfree(path); 3857 3858 path = ext4_ext_find_extent(inode, 3859 map->m_lblk, NULL); 3860 if (IS_ERR(path)) { 3861 err = PTR_ERR(path); 3862 path = NULL; 3863 goto out2; 3864 } 3865 3866 depth = ext_depth(inode); 3867 ex = path[depth].p_ext; 3868 ee_len = ext4_ext_get_actual_len(ex); 3869 ee_block = le32_to_cpu(ex->ee_block); 3870 ee_start = ext4_ext_pblock(ex); 3871 3872 } 3873 3874 ext4_ext_mark_uninitialized(ex); 3875 3876 ext4_ext_invalidate_cache(inode); 3877 3878 err = ext4_ext_rm_leaf(handle, inode, path, 3879 &partial_cluster, map->m_lblk, 3880 map->m_lblk + punched_out); 3881 3882 if (!err && path->p_hdr->eh_entries == 0) { 3883 /* 3884 * Punch hole freed all of this sub tree, 3885 * so we need to correct eh_depth 3886 */ 3887 err = ext4_ext_get_access(handle, inode, path); 3888 if (err == 0) { 3889 ext_inode_hdr(inode)->eh_depth = 0; 3890 ext_inode_hdr(inode)->eh_max = 3891 cpu_to_le16(ext4_ext_space_root( 3892 inode, 0)); 3893 3894 err = ext4_ext_dirty( 3895 handle, inode, path); 3896 } 3897 } 3898 3899 goto out2; 3900 } 3901 } 3902 3903 if ((sbi->s_cluster_ratio > 1) && 3904 ext4_find_delalloc_cluster(inode, map->m_lblk, 0)) 3905 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3906 3907 /* 3908 * requested block isn't allocated yet; 3909 * we couldn't try to create block if create flag is zero 3910 */ 3911 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3912 /* 3913 * put just found gap into cache to speed up 3914 * subsequent requests 3915 */ 3916 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk); 3917 goto out2; 3918 } 3919 3920 /* 3921 * Okay, we need to do block allocation. 3922 */ 3923 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 3924 newex.ee_block = cpu_to_le32(map->m_lblk); 3925 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1); 3926 3927 /* 3928 * If we are doing bigalloc, check to see if the extent returned 3929 * by ext4_ext_find_extent() implies a cluster we can use. 3930 */ 3931 if (cluster_offset && ex && 3932 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 3933 ar.len = allocated = map->m_len; 3934 newblock = map->m_pblk; 3935 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3936 goto got_allocated_blocks; 3937 } 3938 3939 /* find neighbour allocated blocks */ 3940 ar.lleft = map->m_lblk; 3941 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 3942 if (err) 3943 goto out2; 3944 ar.lright = map->m_lblk; 3945 ex2 = NULL; 3946 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 3947 if (err) 3948 goto out2; 3949 3950 /* Check if the extent after searching to the right implies a 3951 * cluster we can use. */ 3952 if ((sbi->s_cluster_ratio > 1) && ex2 && 3953 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 3954 ar.len = allocated = map->m_len; 3955 newblock = map->m_pblk; 3956 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3957 goto got_allocated_blocks; 3958 } 3959 3960 /* 3961 * See if request is beyond maximum number of blocks we can have in 3962 * a single extent. For an initialized extent this limit is 3963 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is 3964 * EXT_UNINIT_MAX_LEN. 3965 */ 3966 if (map->m_len > EXT_INIT_MAX_LEN && 3967 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 3968 map->m_len = EXT_INIT_MAX_LEN; 3969 else if (map->m_len > EXT_UNINIT_MAX_LEN && 3970 (flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 3971 map->m_len = EXT_UNINIT_MAX_LEN; 3972 3973 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 3974 newex.ee_len = cpu_to_le16(map->m_len); 3975 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 3976 if (err) 3977 allocated = ext4_ext_get_actual_len(&newex); 3978 else 3979 allocated = map->m_len; 3980 3981 /* allocate new block */ 3982 ar.inode = inode; 3983 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 3984 ar.logical = map->m_lblk; 3985 /* 3986 * We calculate the offset from the beginning of the cluster 3987 * for the logical block number, since when we allocate a 3988 * physical cluster, the physical block should start at the 3989 * same offset from the beginning of the cluster. This is 3990 * needed so that future calls to get_implied_cluster_alloc() 3991 * work correctly. 3992 */ 3993 offset = map->m_lblk & (sbi->s_cluster_ratio - 1); 3994 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 3995 ar.goal -= offset; 3996 ar.logical -= offset; 3997 if (S_ISREG(inode->i_mode)) 3998 ar.flags = EXT4_MB_HINT_DATA; 3999 else 4000 /* disable in-core preallocation for non-regular files */ 4001 ar.flags = 0; 4002 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4003 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4004 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4005 if (!newblock) 4006 goto out2; 4007 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 4008 ar.goal, newblock, allocated); 4009 free_on_err = 1; 4010 allocated_clusters = ar.len; 4011 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4012 if (ar.len > allocated) 4013 ar.len = allocated; 4014 4015 got_allocated_blocks: 4016 /* try to insert new extent into found leaf and return */ 4017 ext4_ext_store_pblock(&newex, newblock + offset); 4018 newex.ee_len = cpu_to_le16(ar.len); 4019 /* Mark uninitialized */ 4020 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){ 4021 ext4_ext_mark_uninitialized(&newex); 4022 /* 4023 * io_end structure was created for every IO write to an 4024 * uninitialized extent. To avoid unnecessary conversion, 4025 * here we flag the IO that really needs the conversion. 4026 * For non asycn direct IO case, flag the inode state 4027 * that we need to perform conversion when IO is done. 4028 */ 4029 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) { 4030 if (io) 4031 ext4_set_io_unwritten_flag(inode, io); 4032 else 4033 ext4_set_inode_state(inode, 4034 EXT4_STATE_DIO_UNWRITTEN); 4035 } 4036 if (ext4_should_dioread_nolock(inode)) 4037 map->m_flags |= EXT4_MAP_UNINIT; 4038 } 4039 4040 err = 0; 4041 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) 4042 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4043 path, ar.len); 4044 if (!err) 4045 err = ext4_ext_insert_extent(handle, inode, path, 4046 &newex, flags); 4047 if (err && free_on_err) { 4048 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? 4049 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; 4050 /* free data blocks we just allocated */ 4051 /* not a good idea to call discard here directly, 4052 * but otherwise we'd need to call it every free() */ 4053 ext4_discard_preallocations(inode); 4054 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex), 4055 ext4_ext_get_actual_len(&newex), fb_flags); 4056 goto out2; 4057 } 4058 4059 /* previous routine could use block we allocated */ 4060 newblock = ext4_ext_pblock(&newex); 4061 allocated = ext4_ext_get_actual_len(&newex); 4062 if (allocated > map->m_len) 4063 allocated = map->m_len; 4064 map->m_flags |= EXT4_MAP_NEW; 4065 4066 /* 4067 * Update reserved blocks/metadata blocks after successful 4068 * block allocation which had been deferred till now. 4069 */ 4070 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4071 unsigned int reserved_clusters; 4072 /* 4073 * Check how many clusters we had reserved this allocated range 4074 */ 4075 reserved_clusters = get_reserved_cluster_alloc(inode, 4076 map->m_lblk, allocated); 4077 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) { 4078 if (reserved_clusters) { 4079 /* 4080 * We have clusters reserved for this range. 4081 * But since we are not doing actual allocation 4082 * and are simply using blocks from previously 4083 * allocated cluster, we should release the 4084 * reservation and not claim quota. 4085 */ 4086 ext4_da_update_reserve_space(inode, 4087 reserved_clusters, 0); 4088 } 4089 } else { 4090 BUG_ON(allocated_clusters < reserved_clusters); 4091 /* We will claim quota for all newly allocated blocks.*/ 4092 ext4_da_update_reserve_space(inode, allocated_clusters, 4093 1); 4094 if (reserved_clusters < allocated_clusters) { 4095 struct ext4_inode_info *ei = EXT4_I(inode); 4096 int reservation = allocated_clusters - 4097 reserved_clusters; 4098 /* 4099 * It seems we claimed few clusters outside of 4100 * the range of this allocation. We should give 4101 * it back to the reservation pool. This can 4102 * happen in the following case: 4103 * 4104 * * Suppose s_cluster_ratio is 4 (i.e., each 4105 * cluster has 4 blocks. Thus, the clusters 4106 * are [0-3],[4-7],[8-11]... 4107 * * First comes delayed allocation write for 4108 * logical blocks 10 & 11. Since there were no 4109 * previous delayed allocated blocks in the 4110 * range [8-11], we would reserve 1 cluster 4111 * for this write. 4112 * * Next comes write for logical blocks 3 to 8. 4113 * In this case, we will reserve 2 clusters 4114 * (for [0-3] and [4-7]; and not for [8-11] as 4115 * that range has a delayed allocated blocks. 4116 * Thus total reserved clusters now becomes 3. 4117 * * Now, during the delayed allocation writeout 4118 * time, we will first write blocks [3-8] and 4119 * allocate 3 clusters for writing these 4120 * blocks. Also, we would claim all these 4121 * three clusters above. 4122 * * Now when we come here to writeout the 4123 * blocks [10-11], we would expect to claim 4124 * the reservation of 1 cluster we had made 4125 * (and we would claim it since there are no 4126 * more delayed allocated blocks in the range 4127 * [8-11]. But our reserved cluster count had 4128 * already gone to 0. 4129 * 4130 * Thus, at the step 4 above when we determine 4131 * that there are still some unwritten delayed 4132 * allocated blocks outside of our current 4133 * block range, we should increment the 4134 * reserved clusters count so that when the 4135 * remaining blocks finally gets written, we 4136 * could claim them. 4137 */ 4138 dquot_reserve_block(inode, 4139 EXT4_C2B(sbi, reservation)); 4140 spin_lock(&ei->i_block_reservation_lock); 4141 ei->i_reserved_data_blocks += reservation; 4142 spin_unlock(&ei->i_block_reservation_lock); 4143 } 4144 } 4145 } 4146 4147 /* 4148 * Cache the extent and update transaction to commit on fdatasync only 4149 * when it is _not_ an uninitialized extent. 4150 */ 4151 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) { 4152 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock); 4153 ext4_update_inode_fsync_trans(handle, inode, 1); 4154 } else 4155 ext4_update_inode_fsync_trans(handle, inode, 0); 4156 out: 4157 if (allocated > map->m_len) 4158 allocated = map->m_len; 4159 ext4_ext_show_leaf(inode, path); 4160 map->m_flags |= EXT4_MAP_MAPPED; 4161 map->m_pblk = newblock; 4162 map->m_len = allocated; 4163 out2: 4164 if (path) { 4165 ext4_ext_drop_refs(path); 4166 kfree(path); 4167 } 4168 result = (flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) ? 4169 punched_out : allocated; 4170 4171 trace_ext4_ext_map_blocks_exit(inode, map->m_lblk, 4172 newblock, map->m_len, err ? err : result); 4173 4174 return err ? err : result; 4175 } 4176 4177 void ext4_ext_truncate(struct inode *inode) 4178 { 4179 struct address_space *mapping = inode->i_mapping; 4180 struct super_block *sb = inode->i_sb; 4181 ext4_lblk_t last_block; 4182 handle_t *handle; 4183 loff_t page_len; 4184 int err = 0; 4185 4186 /* 4187 * finish any pending end_io work so we won't run the risk of 4188 * converting any truncated blocks to initialized later 4189 */ 4190 ext4_flush_completed_IO(inode); 4191 4192 /* 4193 * probably first extent we're gonna free will be last in block 4194 */ 4195 err = ext4_writepage_trans_blocks(inode); 4196 handle = ext4_journal_start(inode, err); 4197 if (IS_ERR(handle)) 4198 return; 4199 4200 if (inode->i_size % PAGE_CACHE_SIZE != 0) { 4201 page_len = PAGE_CACHE_SIZE - 4202 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 4203 4204 err = ext4_discard_partial_page_buffers(handle, 4205 mapping, inode->i_size, page_len, 0); 4206 4207 if (err) 4208 goto out_stop; 4209 } 4210 4211 if (ext4_orphan_add(handle, inode)) 4212 goto out_stop; 4213 4214 down_write(&EXT4_I(inode)->i_data_sem); 4215 ext4_ext_invalidate_cache(inode); 4216 4217 ext4_discard_preallocations(inode); 4218 4219 /* 4220 * TODO: optimization is possible here. 4221 * Probably we need not scan at all, 4222 * because page truncation is enough. 4223 */ 4224 4225 /* we have to know where to truncate from in crash case */ 4226 EXT4_I(inode)->i_disksize = inode->i_size; 4227 ext4_mark_inode_dirty(handle, inode); 4228 4229 last_block = (inode->i_size + sb->s_blocksize - 1) 4230 >> EXT4_BLOCK_SIZE_BITS(sb); 4231 err = ext4_ext_remove_space(inode, last_block); 4232 4233 /* In a multi-transaction truncate, we only make the final 4234 * transaction synchronous. 4235 */ 4236 if (IS_SYNC(inode)) 4237 ext4_handle_sync(handle); 4238 4239 up_write(&EXT4_I(inode)->i_data_sem); 4240 4241 out_stop: 4242 /* 4243 * If this was a simple ftruncate() and the file will remain alive, 4244 * then we need to clear up the orphan record which we created above. 4245 * However, if this was a real unlink then we were called by 4246 * ext4_delete_inode(), and we allow that function to clean up the 4247 * orphan info for us. 4248 */ 4249 if (inode->i_nlink) 4250 ext4_orphan_del(handle, inode); 4251 4252 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4253 ext4_mark_inode_dirty(handle, inode); 4254 ext4_journal_stop(handle); 4255 } 4256 4257 static void ext4_falloc_update_inode(struct inode *inode, 4258 int mode, loff_t new_size, int update_ctime) 4259 { 4260 struct timespec now; 4261 4262 if (update_ctime) { 4263 now = current_fs_time(inode->i_sb); 4264 if (!timespec_equal(&inode->i_ctime, &now)) 4265 inode->i_ctime = now; 4266 } 4267 /* 4268 * Update only when preallocation was requested beyond 4269 * the file size. 4270 */ 4271 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 4272 if (new_size > i_size_read(inode)) 4273 i_size_write(inode, new_size); 4274 if (new_size > EXT4_I(inode)->i_disksize) 4275 ext4_update_i_disksize(inode, new_size); 4276 } else { 4277 /* 4278 * Mark that we allocate beyond EOF so the subsequent truncate 4279 * can proceed even if the new size is the same as i_size. 4280 */ 4281 if (new_size > i_size_read(inode)) 4282 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4283 } 4284 4285 } 4286 4287 /* 4288 * preallocate space for a file. This implements ext4's fallocate file 4289 * operation, which gets called from sys_fallocate system call. 4290 * For block-mapped files, posix_fallocate should fall back to the method 4291 * of writing zeroes to the required new blocks (the same behavior which is 4292 * expected for file systems which do not support fallocate() system call). 4293 */ 4294 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4295 { 4296 struct inode *inode = file->f_path.dentry->d_inode; 4297 handle_t *handle; 4298 loff_t new_size; 4299 unsigned int max_blocks; 4300 int ret = 0; 4301 int ret2 = 0; 4302 int retries = 0; 4303 int flags; 4304 struct ext4_map_blocks map; 4305 unsigned int credits, blkbits = inode->i_blkbits; 4306 4307 /* 4308 * currently supporting (pre)allocate mode for extent-based 4309 * files _only_ 4310 */ 4311 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4312 return -EOPNOTSUPP; 4313 4314 /* Return error if mode is not supported */ 4315 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 4316 return -EOPNOTSUPP; 4317 4318 if (mode & FALLOC_FL_PUNCH_HOLE) 4319 return ext4_punch_hole(file, offset, len); 4320 4321 trace_ext4_fallocate_enter(inode, offset, len, mode); 4322 map.m_lblk = offset >> blkbits; 4323 /* 4324 * We can't just convert len to max_blocks because 4325 * If blocksize = 4096 offset = 3072 and len = 2048 4326 */ 4327 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 4328 - map.m_lblk; 4329 /* 4330 * credits to insert 1 extent into extent tree 4331 */ 4332 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4333 mutex_lock(&inode->i_mutex); 4334 ret = inode_newsize_ok(inode, (len + offset)); 4335 if (ret) { 4336 mutex_unlock(&inode->i_mutex); 4337 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 4338 return ret; 4339 } 4340 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT; 4341 if (mode & FALLOC_FL_KEEP_SIZE) 4342 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4343 /* 4344 * Don't normalize the request if it can fit in one extent so 4345 * that it doesn't get unnecessarily split into multiple 4346 * extents. 4347 */ 4348 if (len <= EXT_UNINIT_MAX_LEN << blkbits) 4349 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4350 retry: 4351 while (ret >= 0 && ret < max_blocks) { 4352 map.m_lblk = map.m_lblk + ret; 4353 map.m_len = max_blocks = max_blocks - ret; 4354 handle = ext4_journal_start(inode, credits); 4355 if (IS_ERR(handle)) { 4356 ret = PTR_ERR(handle); 4357 break; 4358 } 4359 ret = ext4_map_blocks(handle, inode, &map, flags); 4360 if (ret <= 0) { 4361 #ifdef EXT4FS_DEBUG 4362 WARN_ON(ret <= 0); 4363 printk(KERN_ERR "%s: ext4_ext_map_blocks " 4364 "returned error inode#%lu, block=%u, " 4365 "max_blocks=%u", __func__, 4366 inode->i_ino, map.m_lblk, max_blocks); 4367 #endif 4368 ext4_mark_inode_dirty(handle, inode); 4369 ret2 = ext4_journal_stop(handle); 4370 break; 4371 } 4372 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len, 4373 blkbits) >> blkbits)) 4374 new_size = offset + len; 4375 else 4376 new_size = ((loff_t) map.m_lblk + ret) << blkbits; 4377 4378 ext4_falloc_update_inode(inode, mode, new_size, 4379 (map.m_flags & EXT4_MAP_NEW)); 4380 ext4_mark_inode_dirty(handle, inode); 4381 ret2 = ext4_journal_stop(handle); 4382 if (ret2) 4383 break; 4384 } 4385 if (ret == -ENOSPC && 4386 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4387 ret = 0; 4388 goto retry; 4389 } 4390 mutex_unlock(&inode->i_mutex); 4391 trace_ext4_fallocate_exit(inode, offset, max_blocks, 4392 ret > 0 ? ret2 : ret); 4393 return ret > 0 ? ret2 : ret; 4394 } 4395 4396 /* 4397 * This function convert a range of blocks to written extents 4398 * The caller of this function will pass the start offset and the size. 4399 * all unwritten extents within this range will be converted to 4400 * written extents. 4401 * 4402 * This function is called from the direct IO end io call back 4403 * function, to convert the fallocated extents after IO is completed. 4404 * Returns 0 on success. 4405 */ 4406 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset, 4407 ssize_t len) 4408 { 4409 handle_t *handle; 4410 unsigned int max_blocks; 4411 int ret = 0; 4412 int ret2 = 0; 4413 struct ext4_map_blocks map; 4414 unsigned int credits, blkbits = inode->i_blkbits; 4415 4416 map.m_lblk = offset >> blkbits; 4417 /* 4418 * We can't just convert len to max_blocks because 4419 * If blocksize = 4096 offset = 3072 and len = 2048 4420 */ 4421 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) - 4422 map.m_lblk); 4423 /* 4424 * credits to insert 1 extent into extent tree 4425 */ 4426 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4427 while (ret >= 0 && ret < max_blocks) { 4428 map.m_lblk += ret; 4429 map.m_len = (max_blocks -= ret); 4430 handle = ext4_journal_start(inode, credits); 4431 if (IS_ERR(handle)) { 4432 ret = PTR_ERR(handle); 4433 break; 4434 } 4435 ret = ext4_map_blocks(handle, inode, &map, 4436 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 4437 if (ret <= 0) { 4438 WARN_ON(ret <= 0); 4439 printk(KERN_ERR "%s: ext4_ext_map_blocks " 4440 "returned error inode#%lu, block=%u, " 4441 "max_blocks=%u", __func__, 4442 inode->i_ino, map.m_lblk, map.m_len); 4443 } 4444 ext4_mark_inode_dirty(handle, inode); 4445 ret2 = ext4_journal_stop(handle); 4446 if (ret <= 0 || ret2 ) 4447 break; 4448 } 4449 return ret > 0 ? ret2 : ret; 4450 } 4451 4452 /* 4453 * Callback function called for each extent to gather FIEMAP information. 4454 */ 4455 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next, 4456 struct ext4_ext_cache *newex, struct ext4_extent *ex, 4457 void *data) 4458 { 4459 __u64 logical; 4460 __u64 physical; 4461 __u64 length; 4462 __u32 flags = 0; 4463 int ret = 0; 4464 struct fiemap_extent_info *fieinfo = data; 4465 unsigned char blksize_bits; 4466 4467 blksize_bits = inode->i_sb->s_blocksize_bits; 4468 logical = (__u64)newex->ec_block << blksize_bits; 4469 4470 if (newex->ec_start == 0) { 4471 /* 4472 * No extent in extent-tree contains block @newex->ec_start, 4473 * then the block may stay in 1)a hole or 2)delayed-extent. 4474 * 4475 * Holes or delayed-extents are processed as follows. 4476 * 1. lookup dirty pages with specified range in pagecache. 4477 * If no page is got, then there is no delayed-extent and 4478 * return with EXT_CONTINUE. 4479 * 2. find the 1st mapped buffer, 4480 * 3. check if the mapped buffer is both in the request range 4481 * and a delayed buffer. If not, there is no delayed-extent, 4482 * then return. 4483 * 4. a delayed-extent is found, the extent will be collected. 4484 */ 4485 ext4_lblk_t end = 0; 4486 pgoff_t last_offset; 4487 pgoff_t offset; 4488 pgoff_t index; 4489 pgoff_t start_index = 0; 4490 struct page **pages = NULL; 4491 struct buffer_head *bh = NULL; 4492 struct buffer_head *head = NULL; 4493 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *); 4494 4495 pages = kmalloc(PAGE_SIZE, GFP_KERNEL); 4496 if (pages == NULL) 4497 return -ENOMEM; 4498 4499 offset = logical >> PAGE_SHIFT; 4500 repeat: 4501 last_offset = offset; 4502 head = NULL; 4503 ret = find_get_pages_tag(inode->i_mapping, &offset, 4504 PAGECACHE_TAG_DIRTY, nr_pages, pages); 4505 4506 if (!(flags & FIEMAP_EXTENT_DELALLOC)) { 4507 /* First time, try to find a mapped buffer. */ 4508 if (ret == 0) { 4509 out: 4510 for (index = 0; index < ret; index++) 4511 page_cache_release(pages[index]); 4512 /* just a hole. */ 4513 kfree(pages); 4514 return EXT_CONTINUE; 4515 } 4516 index = 0; 4517 4518 next_page: 4519 /* Try to find the 1st mapped buffer. */ 4520 end = ((__u64)pages[index]->index << PAGE_SHIFT) >> 4521 blksize_bits; 4522 if (!page_has_buffers(pages[index])) 4523 goto out; 4524 head = page_buffers(pages[index]); 4525 if (!head) 4526 goto out; 4527 4528 index++; 4529 bh = head; 4530 do { 4531 if (end >= newex->ec_block + 4532 newex->ec_len) 4533 /* The buffer is out of 4534 * the request range. 4535 */ 4536 goto out; 4537 4538 if (buffer_mapped(bh) && 4539 end >= newex->ec_block) { 4540 start_index = index - 1; 4541 /* get the 1st mapped buffer. */ 4542 goto found_mapped_buffer; 4543 } 4544 4545 bh = bh->b_this_page; 4546 end++; 4547 } while (bh != head); 4548 4549 /* No mapped buffer in the range found in this page, 4550 * We need to look up next page. 4551 */ 4552 if (index >= ret) { 4553 /* There is no page left, but we need to limit 4554 * newex->ec_len. 4555 */ 4556 newex->ec_len = end - newex->ec_block; 4557 goto out; 4558 } 4559 goto next_page; 4560 } else { 4561 /*Find contiguous delayed buffers. */ 4562 if (ret > 0 && pages[0]->index == last_offset) 4563 head = page_buffers(pages[0]); 4564 bh = head; 4565 index = 1; 4566 start_index = 0; 4567 } 4568 4569 found_mapped_buffer: 4570 if (bh != NULL && buffer_delay(bh)) { 4571 /* 1st or contiguous delayed buffer found. */ 4572 if (!(flags & FIEMAP_EXTENT_DELALLOC)) { 4573 /* 4574 * 1st delayed buffer found, record 4575 * the start of extent. 4576 */ 4577 flags |= FIEMAP_EXTENT_DELALLOC; 4578 newex->ec_block = end; 4579 logical = (__u64)end << blksize_bits; 4580 } 4581 /* Find contiguous delayed buffers. */ 4582 do { 4583 if (!buffer_delay(bh)) 4584 goto found_delayed_extent; 4585 bh = bh->b_this_page; 4586 end++; 4587 } while (bh != head); 4588 4589 for (; index < ret; index++) { 4590 if (!page_has_buffers(pages[index])) { 4591 bh = NULL; 4592 break; 4593 } 4594 head = page_buffers(pages[index]); 4595 if (!head) { 4596 bh = NULL; 4597 break; 4598 } 4599 4600 if (pages[index]->index != 4601 pages[start_index]->index + index 4602 - start_index) { 4603 /* Blocks are not contiguous. */ 4604 bh = NULL; 4605 break; 4606 } 4607 bh = head; 4608 do { 4609 if (!buffer_delay(bh)) 4610 /* Delayed-extent ends. */ 4611 goto found_delayed_extent; 4612 bh = bh->b_this_page; 4613 end++; 4614 } while (bh != head); 4615 } 4616 } else if (!(flags & FIEMAP_EXTENT_DELALLOC)) 4617 /* a hole found. */ 4618 goto out; 4619 4620 found_delayed_extent: 4621 newex->ec_len = min(end - newex->ec_block, 4622 (ext4_lblk_t)EXT_INIT_MAX_LEN); 4623 if (ret == nr_pages && bh != NULL && 4624 newex->ec_len < EXT_INIT_MAX_LEN && 4625 buffer_delay(bh)) { 4626 /* Have not collected an extent and continue. */ 4627 for (index = 0; index < ret; index++) 4628 page_cache_release(pages[index]); 4629 goto repeat; 4630 } 4631 4632 for (index = 0; index < ret; index++) 4633 page_cache_release(pages[index]); 4634 kfree(pages); 4635 } 4636 4637 physical = (__u64)newex->ec_start << blksize_bits; 4638 length = (__u64)newex->ec_len << blksize_bits; 4639 4640 if (ex && ext4_ext_is_uninitialized(ex)) 4641 flags |= FIEMAP_EXTENT_UNWRITTEN; 4642 4643 if (next == EXT_MAX_BLOCKS) 4644 flags |= FIEMAP_EXTENT_LAST; 4645 4646 ret = fiemap_fill_next_extent(fieinfo, logical, physical, 4647 length, flags); 4648 if (ret < 0) 4649 return ret; 4650 if (ret == 1) 4651 return EXT_BREAK; 4652 return EXT_CONTINUE; 4653 } 4654 /* fiemap flags we can handle specified here */ 4655 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 4656 4657 static int ext4_xattr_fiemap(struct inode *inode, 4658 struct fiemap_extent_info *fieinfo) 4659 { 4660 __u64 physical = 0; 4661 __u64 length; 4662 __u32 flags = FIEMAP_EXTENT_LAST; 4663 int blockbits = inode->i_sb->s_blocksize_bits; 4664 int error = 0; 4665 4666 /* in-inode? */ 4667 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4668 struct ext4_iloc iloc; 4669 int offset; /* offset of xattr in inode */ 4670 4671 error = ext4_get_inode_loc(inode, &iloc); 4672 if (error) 4673 return error; 4674 physical = iloc.bh->b_blocknr << blockbits; 4675 offset = EXT4_GOOD_OLD_INODE_SIZE + 4676 EXT4_I(inode)->i_extra_isize; 4677 physical += offset; 4678 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 4679 flags |= FIEMAP_EXTENT_DATA_INLINE; 4680 brelse(iloc.bh); 4681 } else { /* external block */ 4682 physical = EXT4_I(inode)->i_file_acl << blockbits; 4683 length = inode->i_sb->s_blocksize; 4684 } 4685 4686 if (physical) 4687 error = fiemap_fill_next_extent(fieinfo, 0, physical, 4688 length, flags); 4689 return (error < 0 ? error : 0); 4690 } 4691 4692 /* 4693 * ext4_ext_punch_hole 4694 * 4695 * Punches a hole of "length" bytes in a file starting 4696 * at byte "offset" 4697 * 4698 * @inode: The inode of the file to punch a hole in 4699 * @offset: The starting byte offset of the hole 4700 * @length: The length of the hole 4701 * 4702 * Returns the number of blocks removed or negative on err 4703 */ 4704 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length) 4705 { 4706 struct inode *inode = file->f_path.dentry->d_inode; 4707 struct super_block *sb = inode->i_sb; 4708 struct ext4_ext_cache cache_ex; 4709 ext4_lblk_t first_block, last_block, num_blocks, iblock, max_blocks; 4710 struct address_space *mapping = inode->i_mapping; 4711 struct ext4_map_blocks map; 4712 handle_t *handle; 4713 loff_t first_page, last_page, page_len; 4714 loff_t first_page_offset, last_page_offset; 4715 int ret, credits, blocks_released, err = 0; 4716 4717 /* No need to punch hole beyond i_size */ 4718 if (offset >= inode->i_size) 4719 return 0; 4720 4721 /* 4722 * If the hole extends beyond i_size, set the hole 4723 * to end after the page that contains i_size 4724 */ 4725 if (offset + length > inode->i_size) { 4726 length = inode->i_size + 4727 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 4728 offset; 4729 } 4730 4731 first_block = (offset + sb->s_blocksize - 1) >> 4732 EXT4_BLOCK_SIZE_BITS(sb); 4733 last_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4734 4735 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 4736 last_page = (offset + length) >> PAGE_CACHE_SHIFT; 4737 4738 first_page_offset = first_page << PAGE_CACHE_SHIFT; 4739 last_page_offset = last_page << PAGE_CACHE_SHIFT; 4740 4741 /* 4742 * Write out all dirty pages to avoid race conditions 4743 * Then release them. 4744 */ 4745 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4746 err = filemap_write_and_wait_range(mapping, 4747 offset, offset + length - 1); 4748 4749 if (err) 4750 return err; 4751 } 4752 4753 /* Now release the pages */ 4754 if (last_page_offset > first_page_offset) { 4755 truncate_inode_pages_range(mapping, first_page_offset, 4756 last_page_offset-1); 4757 } 4758 4759 /* finish any pending end_io work */ 4760 ext4_flush_completed_IO(inode); 4761 4762 credits = ext4_writepage_trans_blocks(inode); 4763 handle = ext4_journal_start(inode, credits); 4764 if (IS_ERR(handle)) 4765 return PTR_ERR(handle); 4766 4767 err = ext4_orphan_add(handle, inode); 4768 if (err) 4769 goto out; 4770 4771 /* 4772 * Now we need to zero out the non-page-aligned data in the 4773 * pages at the start and tail of the hole, and unmap the buffer 4774 * heads for the block aligned regions of the page that were 4775 * completely zeroed. 4776 */ 4777 if (first_page > last_page) { 4778 /* 4779 * If the file space being truncated is contained within a page 4780 * just zero out and unmap the middle of that page 4781 */ 4782 err = ext4_discard_partial_page_buffers(handle, 4783 mapping, offset, length, 0); 4784 4785 if (err) 4786 goto out; 4787 } else { 4788 /* 4789 * zero out and unmap the partial page that contains 4790 * the start of the hole 4791 */ 4792 page_len = first_page_offset - offset; 4793 if (page_len > 0) { 4794 err = ext4_discard_partial_page_buffers(handle, mapping, 4795 offset, page_len, 0); 4796 if (err) 4797 goto out; 4798 } 4799 4800 /* 4801 * zero out and unmap the partial page that contains 4802 * the end of the hole 4803 */ 4804 page_len = offset + length - last_page_offset; 4805 if (page_len > 0) { 4806 err = ext4_discard_partial_page_buffers(handle, mapping, 4807 last_page_offset, page_len, 0); 4808 if (err) 4809 goto out; 4810 } 4811 } 4812 4813 4814 /* 4815 * If i_size is contained in the last page, we need to 4816 * unmap and zero the partial page after i_size 4817 */ 4818 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page && 4819 inode->i_size % PAGE_CACHE_SIZE != 0) { 4820 4821 page_len = PAGE_CACHE_SIZE - 4822 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 4823 4824 if (page_len > 0) { 4825 err = ext4_discard_partial_page_buffers(handle, 4826 mapping, inode->i_size, page_len, 0); 4827 4828 if (err) 4829 goto out; 4830 } 4831 } 4832 4833 /* If there are no blocks to remove, return now */ 4834 if (first_block >= last_block) 4835 goto out; 4836 4837 down_write(&EXT4_I(inode)->i_data_sem); 4838 ext4_ext_invalidate_cache(inode); 4839 ext4_discard_preallocations(inode); 4840 4841 /* 4842 * Loop over all the blocks and identify blocks 4843 * that need to be punched out 4844 */ 4845 iblock = first_block; 4846 blocks_released = 0; 4847 while (iblock < last_block) { 4848 max_blocks = last_block - iblock; 4849 num_blocks = 1; 4850 memset(&map, 0, sizeof(map)); 4851 map.m_lblk = iblock; 4852 map.m_len = max_blocks; 4853 ret = ext4_ext_map_blocks(handle, inode, &map, 4854 EXT4_GET_BLOCKS_PUNCH_OUT_EXT); 4855 4856 if (ret > 0) { 4857 blocks_released += ret; 4858 num_blocks = ret; 4859 } else if (ret == 0) { 4860 /* 4861 * If map blocks could not find the block, 4862 * then it is in a hole. If the hole was 4863 * not already cached, then map blocks should 4864 * put it in the cache. So we can get the hole 4865 * out of the cache 4866 */ 4867 memset(&cache_ex, 0, sizeof(cache_ex)); 4868 if ((ext4_ext_check_cache(inode, iblock, &cache_ex)) && 4869 !cache_ex.ec_start) { 4870 4871 /* The hole is cached */ 4872 num_blocks = cache_ex.ec_block + 4873 cache_ex.ec_len - iblock; 4874 4875 } else { 4876 /* The block could not be identified */ 4877 err = -EIO; 4878 break; 4879 } 4880 } else { 4881 /* Map blocks error */ 4882 err = ret; 4883 break; 4884 } 4885 4886 if (num_blocks == 0) { 4887 /* This condition should never happen */ 4888 ext_debug("Block lookup failed"); 4889 err = -EIO; 4890 break; 4891 } 4892 4893 iblock += num_blocks; 4894 } 4895 4896 if (blocks_released > 0) { 4897 ext4_ext_invalidate_cache(inode); 4898 ext4_discard_preallocations(inode); 4899 } 4900 4901 if (IS_SYNC(inode)) 4902 ext4_handle_sync(handle); 4903 4904 up_write(&EXT4_I(inode)->i_data_sem); 4905 4906 out: 4907 ext4_orphan_del(handle, inode); 4908 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4909 ext4_mark_inode_dirty(handle, inode); 4910 ext4_journal_stop(handle); 4911 return err; 4912 } 4913 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4914 __u64 start, __u64 len) 4915 { 4916 ext4_lblk_t start_blk; 4917 int error = 0; 4918 4919 /* fallback to generic here if not in extents fmt */ 4920 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4921 return generic_block_fiemap(inode, fieinfo, start, len, 4922 ext4_get_block); 4923 4924 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 4925 return -EBADR; 4926 4927 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 4928 error = ext4_xattr_fiemap(inode, fieinfo); 4929 } else { 4930 ext4_lblk_t len_blks; 4931 __u64 last_blk; 4932 4933 start_blk = start >> inode->i_sb->s_blocksize_bits; 4934 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 4935 if (last_blk >= EXT_MAX_BLOCKS) 4936 last_blk = EXT_MAX_BLOCKS-1; 4937 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 4938 4939 /* 4940 * Walk the extent tree gathering extent information. 4941 * ext4_ext_fiemap_cb will push extents back to user. 4942 */ 4943 error = ext4_ext_walk_space(inode, start_blk, len_blks, 4944 ext4_ext_fiemap_cb, fieinfo); 4945 } 4946 4947 return error; 4948 } 4949