xref: /openbmc/linux/fs/ext4/extents.c (revision 2ed886852adfcb070bf350e66a0da0d98b2f3ab5)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
46 
47 
48 /*
49  * ext_pblock:
50  * combine low and high parts of physical block number into ext4_fsblk_t
51  */
52 ext4_fsblk_t ext_pblock(struct ext4_extent *ex)
53 {
54 	ext4_fsblk_t block;
55 
56 	block = le32_to_cpu(ex->ee_start_lo);
57 	block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1;
58 	return block;
59 }
60 
61 /*
62  * idx_pblock:
63  * combine low and high parts of a leaf physical block number into ext4_fsblk_t
64  */
65 ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix)
66 {
67 	ext4_fsblk_t block;
68 
69 	block = le32_to_cpu(ix->ei_leaf_lo);
70 	block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1;
71 	return block;
72 }
73 
74 /*
75  * ext4_ext_store_pblock:
76  * stores a large physical block number into an extent struct,
77  * breaking it into parts
78  */
79 void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb)
80 {
81 	ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
82 	ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
83 }
84 
85 /*
86  * ext4_idx_store_pblock:
87  * stores a large physical block number into an index struct,
88  * breaking it into parts
89  */
90 static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb)
91 {
92 	ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
93 	ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
94 }
95 
96 static int ext4_ext_truncate_extend_restart(handle_t *handle,
97 					    struct inode *inode,
98 					    int needed)
99 {
100 	int err;
101 
102 	if (!ext4_handle_valid(handle))
103 		return 0;
104 	if (handle->h_buffer_credits > needed)
105 		return 0;
106 	err = ext4_journal_extend(handle, needed);
107 	if (err <= 0)
108 		return err;
109 	err = ext4_truncate_restart_trans(handle, inode, needed);
110 	/*
111 	 * We have dropped i_data_sem so someone might have cached again
112 	 * an extent we are going to truncate.
113 	 */
114 	ext4_ext_invalidate_cache(inode);
115 
116 	return err;
117 }
118 
119 /*
120  * could return:
121  *  - EROFS
122  *  - ENOMEM
123  */
124 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
125 				struct ext4_ext_path *path)
126 {
127 	if (path->p_bh) {
128 		/* path points to block */
129 		return ext4_journal_get_write_access(handle, path->p_bh);
130 	}
131 	/* path points to leaf/index in inode body */
132 	/* we use in-core data, no need to protect them */
133 	return 0;
134 }
135 
136 /*
137  * could return:
138  *  - EROFS
139  *  - ENOMEM
140  *  - EIO
141  */
142 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
143 				struct ext4_ext_path *path)
144 {
145 	int err;
146 	if (path->p_bh) {
147 		/* path points to block */
148 		err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
149 	} else {
150 		/* path points to leaf/index in inode body */
151 		err = ext4_mark_inode_dirty(handle, inode);
152 	}
153 	return err;
154 }
155 
156 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
157 			      struct ext4_ext_path *path,
158 			      ext4_lblk_t block)
159 {
160 	struct ext4_inode_info *ei = EXT4_I(inode);
161 	ext4_fsblk_t bg_start;
162 	ext4_fsblk_t last_block;
163 	ext4_grpblk_t colour;
164 	ext4_group_t block_group;
165 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
166 	int depth;
167 
168 	if (path) {
169 		struct ext4_extent *ex;
170 		depth = path->p_depth;
171 
172 		/* try to predict block placement */
173 		ex = path[depth].p_ext;
174 		if (ex)
175 			return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block));
176 
177 		/* it looks like index is empty;
178 		 * try to find starting block from index itself */
179 		if (path[depth].p_bh)
180 			return path[depth].p_bh->b_blocknr;
181 	}
182 
183 	/* OK. use inode's group */
184 	block_group = ei->i_block_group;
185 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
186 		/*
187 		 * If there are at least EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
188 		 * block groups per flexgroup, reserve the first block
189 		 * group for directories and special files.  Regular
190 		 * files will start at the second block group.  This
191 		 * tends to speed up directory access and improves
192 		 * fsck times.
193 		 */
194 		block_group &= ~(flex_size-1);
195 		if (S_ISREG(inode->i_mode))
196 			block_group++;
197 	}
198 	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
199 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
200 
201 	/*
202 	 * If we are doing delayed allocation, we don't need take
203 	 * colour into account.
204 	 */
205 	if (test_opt(inode->i_sb, DELALLOC))
206 		return bg_start;
207 
208 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
209 		colour = (current->pid % 16) *
210 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
211 	else
212 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
213 	return bg_start + colour + block;
214 }
215 
216 /*
217  * Allocation for a meta data block
218  */
219 static ext4_fsblk_t
220 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
221 			struct ext4_ext_path *path,
222 			struct ext4_extent *ex, int *err)
223 {
224 	ext4_fsblk_t goal, newblock;
225 
226 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
227 	newblock = ext4_new_meta_blocks(handle, inode, goal, NULL, err);
228 	return newblock;
229 }
230 
231 static inline int ext4_ext_space_block(struct inode *inode, int check)
232 {
233 	int size;
234 
235 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
236 			/ sizeof(struct ext4_extent);
237 	if (!check) {
238 #ifdef AGGRESSIVE_TEST
239 		if (size > 6)
240 			size = 6;
241 #endif
242 	}
243 	return size;
244 }
245 
246 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
247 {
248 	int size;
249 
250 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
251 			/ sizeof(struct ext4_extent_idx);
252 	if (!check) {
253 #ifdef AGGRESSIVE_TEST
254 		if (size > 5)
255 			size = 5;
256 #endif
257 	}
258 	return size;
259 }
260 
261 static inline int ext4_ext_space_root(struct inode *inode, int check)
262 {
263 	int size;
264 
265 	size = sizeof(EXT4_I(inode)->i_data);
266 	size -= sizeof(struct ext4_extent_header);
267 	size /= sizeof(struct ext4_extent);
268 	if (!check) {
269 #ifdef AGGRESSIVE_TEST
270 		if (size > 3)
271 			size = 3;
272 #endif
273 	}
274 	return size;
275 }
276 
277 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
278 {
279 	int size;
280 
281 	size = sizeof(EXT4_I(inode)->i_data);
282 	size -= sizeof(struct ext4_extent_header);
283 	size /= sizeof(struct ext4_extent_idx);
284 	if (!check) {
285 #ifdef AGGRESSIVE_TEST
286 		if (size > 4)
287 			size = 4;
288 #endif
289 	}
290 	return size;
291 }
292 
293 /*
294  * Calculate the number of metadata blocks needed
295  * to allocate @blocks
296  * Worse case is one block per extent
297  */
298 int ext4_ext_calc_metadata_amount(struct inode *inode, sector_t lblock)
299 {
300 	struct ext4_inode_info *ei = EXT4_I(inode);
301 	int idxs, num = 0;
302 
303 	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
304 		/ sizeof(struct ext4_extent_idx));
305 
306 	/*
307 	 * If the new delayed allocation block is contiguous with the
308 	 * previous da block, it can share index blocks with the
309 	 * previous block, so we only need to allocate a new index
310 	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
311 	 * an additional index block, and at ldxs**3 blocks, yet
312 	 * another index blocks.
313 	 */
314 	if (ei->i_da_metadata_calc_len &&
315 	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
316 		if ((ei->i_da_metadata_calc_len % idxs) == 0)
317 			num++;
318 		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
319 			num++;
320 		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
321 			num++;
322 			ei->i_da_metadata_calc_len = 0;
323 		} else
324 			ei->i_da_metadata_calc_len++;
325 		ei->i_da_metadata_calc_last_lblock++;
326 		return num;
327 	}
328 
329 	/*
330 	 * In the worst case we need a new set of index blocks at
331 	 * every level of the inode's extent tree.
332 	 */
333 	ei->i_da_metadata_calc_len = 1;
334 	ei->i_da_metadata_calc_last_lblock = lblock;
335 	return ext_depth(inode) + 1;
336 }
337 
338 static int
339 ext4_ext_max_entries(struct inode *inode, int depth)
340 {
341 	int max;
342 
343 	if (depth == ext_depth(inode)) {
344 		if (depth == 0)
345 			max = ext4_ext_space_root(inode, 1);
346 		else
347 			max = ext4_ext_space_root_idx(inode, 1);
348 	} else {
349 		if (depth == 0)
350 			max = ext4_ext_space_block(inode, 1);
351 		else
352 			max = ext4_ext_space_block_idx(inode, 1);
353 	}
354 
355 	return max;
356 }
357 
358 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
359 {
360 	ext4_fsblk_t block = ext_pblock(ext);
361 	int len = ext4_ext_get_actual_len(ext);
362 
363 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
364 }
365 
366 static int ext4_valid_extent_idx(struct inode *inode,
367 				struct ext4_extent_idx *ext_idx)
368 {
369 	ext4_fsblk_t block = idx_pblock(ext_idx);
370 
371 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
372 }
373 
374 static int ext4_valid_extent_entries(struct inode *inode,
375 				struct ext4_extent_header *eh,
376 				int depth)
377 {
378 	struct ext4_extent *ext;
379 	struct ext4_extent_idx *ext_idx;
380 	unsigned short entries;
381 	if (eh->eh_entries == 0)
382 		return 1;
383 
384 	entries = le16_to_cpu(eh->eh_entries);
385 
386 	if (depth == 0) {
387 		/* leaf entries */
388 		ext = EXT_FIRST_EXTENT(eh);
389 		while (entries) {
390 			if (!ext4_valid_extent(inode, ext))
391 				return 0;
392 			ext++;
393 			entries--;
394 		}
395 	} else {
396 		ext_idx = EXT_FIRST_INDEX(eh);
397 		while (entries) {
398 			if (!ext4_valid_extent_idx(inode, ext_idx))
399 				return 0;
400 			ext_idx++;
401 			entries--;
402 		}
403 	}
404 	return 1;
405 }
406 
407 static int __ext4_ext_check(const char *function, struct inode *inode,
408 					struct ext4_extent_header *eh,
409 					int depth)
410 {
411 	const char *error_msg;
412 	int max = 0;
413 
414 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
415 		error_msg = "invalid magic";
416 		goto corrupted;
417 	}
418 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
419 		error_msg = "unexpected eh_depth";
420 		goto corrupted;
421 	}
422 	if (unlikely(eh->eh_max == 0)) {
423 		error_msg = "invalid eh_max";
424 		goto corrupted;
425 	}
426 	max = ext4_ext_max_entries(inode, depth);
427 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
428 		error_msg = "too large eh_max";
429 		goto corrupted;
430 	}
431 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
432 		error_msg = "invalid eh_entries";
433 		goto corrupted;
434 	}
435 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
436 		error_msg = "invalid extent entries";
437 		goto corrupted;
438 	}
439 	return 0;
440 
441 corrupted:
442 	__ext4_error(inode->i_sb, function,
443 			"bad header/extent in inode #%lu: %s - magic %x, "
444 			"entries %u, max %u(%u), depth %u(%u)",
445 			inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic),
446 			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
447 			max, le16_to_cpu(eh->eh_depth), depth);
448 
449 	return -EIO;
450 }
451 
452 #define ext4_ext_check(inode, eh, depth)	\
453 	__ext4_ext_check(__func__, inode, eh, depth)
454 
455 int ext4_ext_check_inode(struct inode *inode)
456 {
457 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
458 }
459 
460 #ifdef EXT_DEBUG
461 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
462 {
463 	int k, l = path->p_depth;
464 
465 	ext_debug("path:");
466 	for (k = 0; k <= l; k++, path++) {
467 		if (path->p_idx) {
468 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
469 			    idx_pblock(path->p_idx));
470 		} else if (path->p_ext) {
471 			ext_debug("  %d:[%d]%d:%llu ",
472 				  le32_to_cpu(path->p_ext->ee_block),
473 				  ext4_ext_is_uninitialized(path->p_ext),
474 				  ext4_ext_get_actual_len(path->p_ext),
475 				  ext_pblock(path->p_ext));
476 		} else
477 			ext_debug("  []");
478 	}
479 	ext_debug("\n");
480 }
481 
482 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
483 {
484 	int depth = ext_depth(inode);
485 	struct ext4_extent_header *eh;
486 	struct ext4_extent *ex;
487 	int i;
488 
489 	if (!path)
490 		return;
491 
492 	eh = path[depth].p_hdr;
493 	ex = EXT_FIRST_EXTENT(eh);
494 
495 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
496 
497 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
498 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
499 			  ext4_ext_is_uninitialized(ex),
500 			  ext4_ext_get_actual_len(ex), ext_pblock(ex));
501 	}
502 	ext_debug("\n");
503 }
504 #else
505 #define ext4_ext_show_path(inode, path)
506 #define ext4_ext_show_leaf(inode, path)
507 #endif
508 
509 void ext4_ext_drop_refs(struct ext4_ext_path *path)
510 {
511 	int depth = path->p_depth;
512 	int i;
513 
514 	for (i = 0; i <= depth; i++, path++)
515 		if (path->p_bh) {
516 			brelse(path->p_bh);
517 			path->p_bh = NULL;
518 		}
519 }
520 
521 /*
522  * ext4_ext_binsearch_idx:
523  * binary search for the closest index of the given block
524  * the header must be checked before calling this
525  */
526 static void
527 ext4_ext_binsearch_idx(struct inode *inode,
528 			struct ext4_ext_path *path, ext4_lblk_t block)
529 {
530 	struct ext4_extent_header *eh = path->p_hdr;
531 	struct ext4_extent_idx *r, *l, *m;
532 
533 
534 	ext_debug("binsearch for %u(idx):  ", block);
535 
536 	l = EXT_FIRST_INDEX(eh) + 1;
537 	r = EXT_LAST_INDEX(eh);
538 	while (l <= r) {
539 		m = l + (r - l) / 2;
540 		if (block < le32_to_cpu(m->ei_block))
541 			r = m - 1;
542 		else
543 			l = m + 1;
544 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
545 				m, le32_to_cpu(m->ei_block),
546 				r, le32_to_cpu(r->ei_block));
547 	}
548 
549 	path->p_idx = l - 1;
550 	ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
551 		  idx_pblock(path->p_idx));
552 
553 #ifdef CHECK_BINSEARCH
554 	{
555 		struct ext4_extent_idx *chix, *ix;
556 		int k;
557 
558 		chix = ix = EXT_FIRST_INDEX(eh);
559 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
560 		  if (k != 0 &&
561 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
562 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
563 				       "first=0x%p\n", k,
564 				       ix, EXT_FIRST_INDEX(eh));
565 				printk(KERN_DEBUG "%u <= %u\n",
566 				       le32_to_cpu(ix->ei_block),
567 				       le32_to_cpu(ix[-1].ei_block));
568 			}
569 			BUG_ON(k && le32_to_cpu(ix->ei_block)
570 					   <= le32_to_cpu(ix[-1].ei_block));
571 			if (block < le32_to_cpu(ix->ei_block))
572 				break;
573 			chix = ix;
574 		}
575 		BUG_ON(chix != path->p_idx);
576 	}
577 #endif
578 
579 }
580 
581 /*
582  * ext4_ext_binsearch:
583  * binary search for closest extent of the given block
584  * the header must be checked before calling this
585  */
586 static void
587 ext4_ext_binsearch(struct inode *inode,
588 		struct ext4_ext_path *path, ext4_lblk_t block)
589 {
590 	struct ext4_extent_header *eh = path->p_hdr;
591 	struct ext4_extent *r, *l, *m;
592 
593 	if (eh->eh_entries == 0) {
594 		/*
595 		 * this leaf is empty:
596 		 * we get such a leaf in split/add case
597 		 */
598 		return;
599 	}
600 
601 	ext_debug("binsearch for %u:  ", block);
602 
603 	l = EXT_FIRST_EXTENT(eh) + 1;
604 	r = EXT_LAST_EXTENT(eh);
605 
606 	while (l <= r) {
607 		m = l + (r - l) / 2;
608 		if (block < le32_to_cpu(m->ee_block))
609 			r = m - 1;
610 		else
611 			l = m + 1;
612 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
613 				m, le32_to_cpu(m->ee_block),
614 				r, le32_to_cpu(r->ee_block));
615 	}
616 
617 	path->p_ext = l - 1;
618 	ext_debug("  -> %d:%llu:[%d]%d ",
619 			le32_to_cpu(path->p_ext->ee_block),
620 			ext_pblock(path->p_ext),
621 			ext4_ext_is_uninitialized(path->p_ext),
622 			ext4_ext_get_actual_len(path->p_ext));
623 
624 #ifdef CHECK_BINSEARCH
625 	{
626 		struct ext4_extent *chex, *ex;
627 		int k;
628 
629 		chex = ex = EXT_FIRST_EXTENT(eh);
630 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
631 			BUG_ON(k && le32_to_cpu(ex->ee_block)
632 					  <= le32_to_cpu(ex[-1].ee_block));
633 			if (block < le32_to_cpu(ex->ee_block))
634 				break;
635 			chex = ex;
636 		}
637 		BUG_ON(chex != path->p_ext);
638 	}
639 #endif
640 
641 }
642 
643 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
644 {
645 	struct ext4_extent_header *eh;
646 
647 	eh = ext_inode_hdr(inode);
648 	eh->eh_depth = 0;
649 	eh->eh_entries = 0;
650 	eh->eh_magic = EXT4_EXT_MAGIC;
651 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
652 	ext4_mark_inode_dirty(handle, inode);
653 	ext4_ext_invalidate_cache(inode);
654 	return 0;
655 }
656 
657 struct ext4_ext_path *
658 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
659 					struct ext4_ext_path *path)
660 {
661 	struct ext4_extent_header *eh;
662 	struct buffer_head *bh;
663 	short int depth, i, ppos = 0, alloc = 0;
664 
665 	eh = ext_inode_hdr(inode);
666 	depth = ext_depth(inode);
667 
668 	/* account possible depth increase */
669 	if (!path) {
670 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
671 				GFP_NOFS);
672 		if (!path)
673 			return ERR_PTR(-ENOMEM);
674 		alloc = 1;
675 	}
676 	path[0].p_hdr = eh;
677 	path[0].p_bh = NULL;
678 
679 	i = depth;
680 	/* walk through the tree */
681 	while (i) {
682 		int need_to_validate = 0;
683 
684 		ext_debug("depth %d: num %d, max %d\n",
685 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
686 
687 		ext4_ext_binsearch_idx(inode, path + ppos, block);
688 		path[ppos].p_block = idx_pblock(path[ppos].p_idx);
689 		path[ppos].p_depth = i;
690 		path[ppos].p_ext = NULL;
691 
692 		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
693 		if (unlikely(!bh))
694 			goto err;
695 		if (!bh_uptodate_or_lock(bh)) {
696 			if (bh_submit_read(bh) < 0) {
697 				put_bh(bh);
698 				goto err;
699 			}
700 			/* validate the extent entries */
701 			need_to_validate = 1;
702 		}
703 		eh = ext_block_hdr(bh);
704 		ppos++;
705 		if (unlikely(ppos > depth)) {
706 			put_bh(bh);
707 			EXT4_ERROR_INODE(inode,
708 					 "ppos %d > depth %d", ppos, depth);
709 			goto err;
710 		}
711 		path[ppos].p_bh = bh;
712 		path[ppos].p_hdr = eh;
713 		i--;
714 
715 		if (need_to_validate && ext4_ext_check(inode, eh, i))
716 			goto err;
717 	}
718 
719 	path[ppos].p_depth = i;
720 	path[ppos].p_ext = NULL;
721 	path[ppos].p_idx = NULL;
722 
723 	/* find extent */
724 	ext4_ext_binsearch(inode, path + ppos, block);
725 	/* if not an empty leaf */
726 	if (path[ppos].p_ext)
727 		path[ppos].p_block = ext_pblock(path[ppos].p_ext);
728 
729 	ext4_ext_show_path(inode, path);
730 
731 	return path;
732 
733 err:
734 	ext4_ext_drop_refs(path);
735 	if (alloc)
736 		kfree(path);
737 	return ERR_PTR(-EIO);
738 }
739 
740 /*
741  * ext4_ext_insert_index:
742  * insert new index [@logical;@ptr] into the block at @curp;
743  * check where to insert: before @curp or after @curp
744  */
745 int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
746 				struct ext4_ext_path *curp,
747 				int logical, ext4_fsblk_t ptr)
748 {
749 	struct ext4_extent_idx *ix;
750 	int len, err;
751 
752 	err = ext4_ext_get_access(handle, inode, curp);
753 	if (err)
754 		return err;
755 
756 	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
757 		EXT4_ERROR_INODE(inode,
758 				 "logical %d == ei_block %d!",
759 				 logical, le32_to_cpu(curp->p_idx->ei_block));
760 		return -EIO;
761 	}
762 	len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
763 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
764 		/* insert after */
765 		if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
766 			len = (len - 1) * sizeof(struct ext4_extent_idx);
767 			len = len < 0 ? 0 : len;
768 			ext_debug("insert new index %d after: %llu. "
769 					"move %d from 0x%p to 0x%p\n",
770 					logical, ptr, len,
771 					(curp->p_idx + 1), (curp->p_idx + 2));
772 			memmove(curp->p_idx + 2, curp->p_idx + 1, len);
773 		}
774 		ix = curp->p_idx + 1;
775 	} else {
776 		/* insert before */
777 		len = len * sizeof(struct ext4_extent_idx);
778 		len = len < 0 ? 0 : len;
779 		ext_debug("insert new index %d before: %llu. "
780 				"move %d from 0x%p to 0x%p\n",
781 				logical, ptr, len,
782 				curp->p_idx, (curp->p_idx + 1));
783 		memmove(curp->p_idx + 1, curp->p_idx, len);
784 		ix = curp->p_idx;
785 	}
786 
787 	ix->ei_block = cpu_to_le32(logical);
788 	ext4_idx_store_pblock(ix, ptr);
789 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
790 
791 	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
792 			     > le16_to_cpu(curp->p_hdr->eh_max))) {
793 		EXT4_ERROR_INODE(inode,
794 				 "logical %d == ei_block %d!",
795 				 logical, le32_to_cpu(curp->p_idx->ei_block));
796 		return -EIO;
797 	}
798 	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
799 		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
800 		return -EIO;
801 	}
802 
803 	err = ext4_ext_dirty(handle, inode, curp);
804 	ext4_std_error(inode->i_sb, err);
805 
806 	return err;
807 }
808 
809 /*
810  * ext4_ext_split:
811  * inserts new subtree into the path, using free index entry
812  * at depth @at:
813  * - allocates all needed blocks (new leaf and all intermediate index blocks)
814  * - makes decision where to split
815  * - moves remaining extents and index entries (right to the split point)
816  *   into the newly allocated blocks
817  * - initializes subtree
818  */
819 static int ext4_ext_split(handle_t *handle, struct inode *inode,
820 				struct ext4_ext_path *path,
821 				struct ext4_extent *newext, int at)
822 {
823 	struct buffer_head *bh = NULL;
824 	int depth = ext_depth(inode);
825 	struct ext4_extent_header *neh;
826 	struct ext4_extent_idx *fidx;
827 	struct ext4_extent *ex;
828 	int i = at, k, m, a;
829 	ext4_fsblk_t newblock, oldblock;
830 	__le32 border;
831 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
832 	int err = 0;
833 
834 	/* make decision: where to split? */
835 	/* FIXME: now decision is simplest: at current extent */
836 
837 	/* if current leaf will be split, then we should use
838 	 * border from split point */
839 	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
840 		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
841 		return -EIO;
842 	}
843 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
844 		border = path[depth].p_ext[1].ee_block;
845 		ext_debug("leaf will be split."
846 				" next leaf starts at %d\n",
847 				  le32_to_cpu(border));
848 	} else {
849 		border = newext->ee_block;
850 		ext_debug("leaf will be added."
851 				" next leaf starts at %d\n",
852 				le32_to_cpu(border));
853 	}
854 
855 	/*
856 	 * If error occurs, then we break processing
857 	 * and mark filesystem read-only. index won't
858 	 * be inserted and tree will be in consistent
859 	 * state. Next mount will repair buffers too.
860 	 */
861 
862 	/*
863 	 * Get array to track all allocated blocks.
864 	 * We need this to handle errors and free blocks
865 	 * upon them.
866 	 */
867 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
868 	if (!ablocks)
869 		return -ENOMEM;
870 
871 	/* allocate all needed blocks */
872 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
873 	for (a = 0; a < depth - at; a++) {
874 		newblock = ext4_ext_new_meta_block(handle, inode, path,
875 						   newext, &err);
876 		if (newblock == 0)
877 			goto cleanup;
878 		ablocks[a] = newblock;
879 	}
880 
881 	/* initialize new leaf */
882 	newblock = ablocks[--a];
883 	if (unlikely(newblock == 0)) {
884 		EXT4_ERROR_INODE(inode, "newblock == 0!");
885 		err = -EIO;
886 		goto cleanup;
887 	}
888 	bh = sb_getblk(inode->i_sb, newblock);
889 	if (!bh) {
890 		err = -EIO;
891 		goto cleanup;
892 	}
893 	lock_buffer(bh);
894 
895 	err = ext4_journal_get_create_access(handle, bh);
896 	if (err)
897 		goto cleanup;
898 
899 	neh = ext_block_hdr(bh);
900 	neh->eh_entries = 0;
901 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
902 	neh->eh_magic = EXT4_EXT_MAGIC;
903 	neh->eh_depth = 0;
904 	ex = EXT_FIRST_EXTENT(neh);
905 
906 	/* move remainder of path[depth] to the new leaf */
907 	if (unlikely(path[depth].p_hdr->eh_entries !=
908 		     path[depth].p_hdr->eh_max)) {
909 		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
910 				 path[depth].p_hdr->eh_entries,
911 				 path[depth].p_hdr->eh_max);
912 		err = -EIO;
913 		goto cleanup;
914 	}
915 	/* start copy from next extent */
916 	/* TODO: we could do it by single memmove */
917 	m = 0;
918 	path[depth].p_ext++;
919 	while (path[depth].p_ext <=
920 			EXT_MAX_EXTENT(path[depth].p_hdr)) {
921 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
922 				le32_to_cpu(path[depth].p_ext->ee_block),
923 				ext_pblock(path[depth].p_ext),
924 				ext4_ext_is_uninitialized(path[depth].p_ext),
925 				ext4_ext_get_actual_len(path[depth].p_ext),
926 				newblock);
927 		/*memmove(ex++, path[depth].p_ext++,
928 				sizeof(struct ext4_extent));
929 		neh->eh_entries++;*/
930 		path[depth].p_ext++;
931 		m++;
932 	}
933 	if (m) {
934 		memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
935 		le16_add_cpu(&neh->eh_entries, m);
936 	}
937 
938 	set_buffer_uptodate(bh);
939 	unlock_buffer(bh);
940 
941 	err = ext4_handle_dirty_metadata(handle, inode, bh);
942 	if (err)
943 		goto cleanup;
944 	brelse(bh);
945 	bh = NULL;
946 
947 	/* correct old leaf */
948 	if (m) {
949 		err = ext4_ext_get_access(handle, inode, path + depth);
950 		if (err)
951 			goto cleanup;
952 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
953 		err = ext4_ext_dirty(handle, inode, path + depth);
954 		if (err)
955 			goto cleanup;
956 
957 	}
958 
959 	/* create intermediate indexes */
960 	k = depth - at - 1;
961 	if (unlikely(k < 0)) {
962 		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
963 		err = -EIO;
964 		goto cleanup;
965 	}
966 	if (k)
967 		ext_debug("create %d intermediate indices\n", k);
968 	/* insert new index into current index block */
969 	/* current depth stored in i var */
970 	i = depth - 1;
971 	while (k--) {
972 		oldblock = newblock;
973 		newblock = ablocks[--a];
974 		bh = sb_getblk(inode->i_sb, newblock);
975 		if (!bh) {
976 			err = -EIO;
977 			goto cleanup;
978 		}
979 		lock_buffer(bh);
980 
981 		err = ext4_journal_get_create_access(handle, bh);
982 		if (err)
983 			goto cleanup;
984 
985 		neh = ext_block_hdr(bh);
986 		neh->eh_entries = cpu_to_le16(1);
987 		neh->eh_magic = EXT4_EXT_MAGIC;
988 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
989 		neh->eh_depth = cpu_to_le16(depth - i);
990 		fidx = EXT_FIRST_INDEX(neh);
991 		fidx->ei_block = border;
992 		ext4_idx_store_pblock(fidx, oldblock);
993 
994 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
995 				i, newblock, le32_to_cpu(border), oldblock);
996 		/* copy indexes */
997 		m = 0;
998 		path[i].p_idx++;
999 
1000 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1001 				EXT_MAX_INDEX(path[i].p_hdr));
1002 		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1003 					EXT_LAST_INDEX(path[i].p_hdr))) {
1004 			EXT4_ERROR_INODE(inode,
1005 					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1006 					 le32_to_cpu(path[i].p_ext->ee_block));
1007 			err = -EIO;
1008 			goto cleanup;
1009 		}
1010 		while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
1011 			ext_debug("%d: move %d:%llu in new index %llu\n", i,
1012 					le32_to_cpu(path[i].p_idx->ei_block),
1013 					idx_pblock(path[i].p_idx),
1014 					newblock);
1015 			/*memmove(++fidx, path[i].p_idx++,
1016 					sizeof(struct ext4_extent_idx));
1017 			neh->eh_entries++;
1018 			BUG_ON(neh->eh_entries > neh->eh_max);*/
1019 			path[i].p_idx++;
1020 			m++;
1021 		}
1022 		if (m) {
1023 			memmove(++fidx, path[i].p_idx - m,
1024 				sizeof(struct ext4_extent_idx) * m);
1025 			le16_add_cpu(&neh->eh_entries, m);
1026 		}
1027 		set_buffer_uptodate(bh);
1028 		unlock_buffer(bh);
1029 
1030 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1031 		if (err)
1032 			goto cleanup;
1033 		brelse(bh);
1034 		bh = NULL;
1035 
1036 		/* correct old index */
1037 		if (m) {
1038 			err = ext4_ext_get_access(handle, inode, path + i);
1039 			if (err)
1040 				goto cleanup;
1041 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1042 			err = ext4_ext_dirty(handle, inode, path + i);
1043 			if (err)
1044 				goto cleanup;
1045 		}
1046 
1047 		i--;
1048 	}
1049 
1050 	/* insert new index */
1051 	err = ext4_ext_insert_index(handle, inode, path + at,
1052 				    le32_to_cpu(border), newblock);
1053 
1054 cleanup:
1055 	if (bh) {
1056 		if (buffer_locked(bh))
1057 			unlock_buffer(bh);
1058 		brelse(bh);
1059 	}
1060 
1061 	if (err) {
1062 		/* free all allocated blocks in error case */
1063 		for (i = 0; i < depth; i++) {
1064 			if (!ablocks[i])
1065 				continue;
1066 			ext4_free_blocks(handle, inode, 0, ablocks[i], 1,
1067 					 EXT4_FREE_BLOCKS_METADATA);
1068 		}
1069 	}
1070 	kfree(ablocks);
1071 
1072 	return err;
1073 }
1074 
1075 /*
1076  * ext4_ext_grow_indepth:
1077  * implements tree growing procedure:
1078  * - allocates new block
1079  * - moves top-level data (index block or leaf) into the new block
1080  * - initializes new top-level, creating index that points to the
1081  *   just created block
1082  */
1083 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1084 					struct ext4_ext_path *path,
1085 					struct ext4_extent *newext)
1086 {
1087 	struct ext4_ext_path *curp = path;
1088 	struct ext4_extent_header *neh;
1089 	struct ext4_extent_idx *fidx;
1090 	struct buffer_head *bh;
1091 	ext4_fsblk_t newblock;
1092 	int err = 0;
1093 
1094 	newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err);
1095 	if (newblock == 0)
1096 		return err;
1097 
1098 	bh = sb_getblk(inode->i_sb, newblock);
1099 	if (!bh) {
1100 		err = -EIO;
1101 		ext4_std_error(inode->i_sb, err);
1102 		return err;
1103 	}
1104 	lock_buffer(bh);
1105 
1106 	err = ext4_journal_get_create_access(handle, bh);
1107 	if (err) {
1108 		unlock_buffer(bh);
1109 		goto out;
1110 	}
1111 
1112 	/* move top-level index/leaf into new block */
1113 	memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
1114 
1115 	/* set size of new block */
1116 	neh = ext_block_hdr(bh);
1117 	/* old root could have indexes or leaves
1118 	 * so calculate e_max right way */
1119 	if (ext_depth(inode))
1120 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1121 	else
1122 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1123 	neh->eh_magic = EXT4_EXT_MAGIC;
1124 	set_buffer_uptodate(bh);
1125 	unlock_buffer(bh);
1126 
1127 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1128 	if (err)
1129 		goto out;
1130 
1131 	/* create index in new top-level index: num,max,pointer */
1132 	err = ext4_ext_get_access(handle, inode, curp);
1133 	if (err)
1134 		goto out;
1135 
1136 	curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1137 	curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1138 	curp->p_hdr->eh_entries = cpu_to_le16(1);
1139 	curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1140 
1141 	if (path[0].p_hdr->eh_depth)
1142 		curp->p_idx->ei_block =
1143 			EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1144 	else
1145 		curp->p_idx->ei_block =
1146 			EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1147 	ext4_idx_store_pblock(curp->p_idx, newblock);
1148 
1149 	neh = ext_inode_hdr(inode);
1150 	fidx = EXT_FIRST_INDEX(neh);
1151 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1152 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1153 		  le32_to_cpu(fidx->ei_block), idx_pblock(fidx));
1154 
1155 	neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1156 	err = ext4_ext_dirty(handle, inode, curp);
1157 out:
1158 	brelse(bh);
1159 
1160 	return err;
1161 }
1162 
1163 /*
1164  * ext4_ext_create_new_leaf:
1165  * finds empty index and adds new leaf.
1166  * if no free index is found, then it requests in-depth growing.
1167  */
1168 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1169 					struct ext4_ext_path *path,
1170 					struct ext4_extent *newext)
1171 {
1172 	struct ext4_ext_path *curp;
1173 	int depth, i, err = 0;
1174 
1175 repeat:
1176 	i = depth = ext_depth(inode);
1177 
1178 	/* walk up to the tree and look for free index entry */
1179 	curp = path + depth;
1180 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1181 		i--;
1182 		curp--;
1183 	}
1184 
1185 	/* we use already allocated block for index block,
1186 	 * so subsequent data blocks should be contiguous */
1187 	if (EXT_HAS_FREE_INDEX(curp)) {
1188 		/* if we found index with free entry, then use that
1189 		 * entry: create all needed subtree and add new leaf */
1190 		err = ext4_ext_split(handle, inode, path, newext, i);
1191 		if (err)
1192 			goto out;
1193 
1194 		/* refill path */
1195 		ext4_ext_drop_refs(path);
1196 		path = ext4_ext_find_extent(inode,
1197 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1198 				    path);
1199 		if (IS_ERR(path))
1200 			err = PTR_ERR(path);
1201 	} else {
1202 		/* tree is full, time to grow in depth */
1203 		err = ext4_ext_grow_indepth(handle, inode, path, newext);
1204 		if (err)
1205 			goto out;
1206 
1207 		/* refill path */
1208 		ext4_ext_drop_refs(path);
1209 		path = ext4_ext_find_extent(inode,
1210 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1211 				    path);
1212 		if (IS_ERR(path)) {
1213 			err = PTR_ERR(path);
1214 			goto out;
1215 		}
1216 
1217 		/*
1218 		 * only first (depth 0 -> 1) produces free space;
1219 		 * in all other cases we have to split the grown tree
1220 		 */
1221 		depth = ext_depth(inode);
1222 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1223 			/* now we need to split */
1224 			goto repeat;
1225 		}
1226 	}
1227 
1228 out:
1229 	return err;
1230 }
1231 
1232 /*
1233  * search the closest allocated block to the left for *logical
1234  * and returns it at @logical + it's physical address at @phys
1235  * if *logical is the smallest allocated block, the function
1236  * returns 0 at @phys
1237  * return value contains 0 (success) or error code
1238  */
1239 int
1240 ext4_ext_search_left(struct inode *inode, struct ext4_ext_path *path,
1241 			ext4_lblk_t *logical, ext4_fsblk_t *phys)
1242 {
1243 	struct ext4_extent_idx *ix;
1244 	struct ext4_extent *ex;
1245 	int depth, ee_len;
1246 
1247 	if (unlikely(path == NULL)) {
1248 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1249 		return -EIO;
1250 	}
1251 	depth = path->p_depth;
1252 	*phys = 0;
1253 
1254 	if (depth == 0 && path->p_ext == NULL)
1255 		return 0;
1256 
1257 	/* usually extent in the path covers blocks smaller
1258 	 * then *logical, but it can be that extent is the
1259 	 * first one in the file */
1260 
1261 	ex = path[depth].p_ext;
1262 	ee_len = ext4_ext_get_actual_len(ex);
1263 	if (*logical < le32_to_cpu(ex->ee_block)) {
1264 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1265 			EXT4_ERROR_INODE(inode,
1266 					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1267 					 *logical, le32_to_cpu(ex->ee_block));
1268 			return -EIO;
1269 		}
1270 		while (--depth >= 0) {
1271 			ix = path[depth].p_idx;
1272 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1273 				EXT4_ERROR_INODE(inode,
1274 				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1275 				  ix != NULL ? ix->ei_block : 0,
1276 				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1277 				    EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block : 0,
1278 				  depth);
1279 				return -EIO;
1280 			}
1281 		}
1282 		return 0;
1283 	}
1284 
1285 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1286 		EXT4_ERROR_INODE(inode,
1287 				 "logical %d < ee_block %d + ee_len %d!",
1288 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1289 		return -EIO;
1290 	}
1291 
1292 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1293 	*phys = ext_pblock(ex) + ee_len - 1;
1294 	return 0;
1295 }
1296 
1297 /*
1298  * search the closest allocated block to the right for *logical
1299  * and returns it at @logical + it's physical address at @phys
1300  * if *logical is the smallest allocated block, the function
1301  * returns 0 at @phys
1302  * return value contains 0 (success) or error code
1303  */
1304 int
1305 ext4_ext_search_right(struct inode *inode, struct ext4_ext_path *path,
1306 			ext4_lblk_t *logical, ext4_fsblk_t *phys)
1307 {
1308 	struct buffer_head *bh = NULL;
1309 	struct ext4_extent_header *eh;
1310 	struct ext4_extent_idx *ix;
1311 	struct ext4_extent *ex;
1312 	ext4_fsblk_t block;
1313 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1314 	int ee_len;
1315 
1316 	if (unlikely(path == NULL)) {
1317 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1318 		return -EIO;
1319 	}
1320 	depth = path->p_depth;
1321 	*phys = 0;
1322 
1323 	if (depth == 0 && path->p_ext == NULL)
1324 		return 0;
1325 
1326 	/* usually extent in the path covers blocks smaller
1327 	 * then *logical, but it can be that extent is the
1328 	 * first one in the file */
1329 
1330 	ex = path[depth].p_ext;
1331 	ee_len = ext4_ext_get_actual_len(ex);
1332 	if (*logical < le32_to_cpu(ex->ee_block)) {
1333 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1334 			EXT4_ERROR_INODE(inode,
1335 					 "first_extent(path[%d].p_hdr) != ex",
1336 					 depth);
1337 			return -EIO;
1338 		}
1339 		while (--depth >= 0) {
1340 			ix = path[depth].p_idx;
1341 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1342 				EXT4_ERROR_INODE(inode,
1343 						 "ix != EXT_FIRST_INDEX *logical %d!",
1344 						 *logical);
1345 				return -EIO;
1346 			}
1347 		}
1348 		*logical = le32_to_cpu(ex->ee_block);
1349 		*phys = ext_pblock(ex);
1350 		return 0;
1351 	}
1352 
1353 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1354 		EXT4_ERROR_INODE(inode,
1355 				 "logical %d < ee_block %d + ee_len %d!",
1356 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1357 		return -EIO;
1358 	}
1359 
1360 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1361 		/* next allocated block in this leaf */
1362 		ex++;
1363 		*logical = le32_to_cpu(ex->ee_block);
1364 		*phys = ext_pblock(ex);
1365 		return 0;
1366 	}
1367 
1368 	/* go up and search for index to the right */
1369 	while (--depth >= 0) {
1370 		ix = path[depth].p_idx;
1371 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1372 			goto got_index;
1373 	}
1374 
1375 	/* we've gone up to the root and found no index to the right */
1376 	return 0;
1377 
1378 got_index:
1379 	/* we've found index to the right, let's
1380 	 * follow it and find the closest allocated
1381 	 * block to the right */
1382 	ix++;
1383 	block = idx_pblock(ix);
1384 	while (++depth < path->p_depth) {
1385 		bh = sb_bread(inode->i_sb, block);
1386 		if (bh == NULL)
1387 			return -EIO;
1388 		eh = ext_block_hdr(bh);
1389 		/* subtract from p_depth to get proper eh_depth */
1390 		if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1391 			put_bh(bh);
1392 			return -EIO;
1393 		}
1394 		ix = EXT_FIRST_INDEX(eh);
1395 		block = idx_pblock(ix);
1396 		put_bh(bh);
1397 	}
1398 
1399 	bh = sb_bread(inode->i_sb, block);
1400 	if (bh == NULL)
1401 		return -EIO;
1402 	eh = ext_block_hdr(bh);
1403 	if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1404 		put_bh(bh);
1405 		return -EIO;
1406 	}
1407 	ex = EXT_FIRST_EXTENT(eh);
1408 	*logical = le32_to_cpu(ex->ee_block);
1409 	*phys = ext_pblock(ex);
1410 	put_bh(bh);
1411 	return 0;
1412 }
1413 
1414 /*
1415  * ext4_ext_next_allocated_block:
1416  * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1417  * NOTE: it considers block number from index entry as
1418  * allocated block. Thus, index entries have to be consistent
1419  * with leaves.
1420  */
1421 static ext4_lblk_t
1422 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1423 {
1424 	int depth;
1425 
1426 	BUG_ON(path == NULL);
1427 	depth = path->p_depth;
1428 
1429 	if (depth == 0 && path->p_ext == NULL)
1430 		return EXT_MAX_BLOCK;
1431 
1432 	while (depth >= 0) {
1433 		if (depth == path->p_depth) {
1434 			/* leaf */
1435 			if (path[depth].p_ext !=
1436 					EXT_LAST_EXTENT(path[depth].p_hdr))
1437 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1438 		} else {
1439 			/* index */
1440 			if (path[depth].p_idx !=
1441 					EXT_LAST_INDEX(path[depth].p_hdr))
1442 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1443 		}
1444 		depth--;
1445 	}
1446 
1447 	return EXT_MAX_BLOCK;
1448 }
1449 
1450 /*
1451  * ext4_ext_next_leaf_block:
1452  * returns first allocated block from next leaf or EXT_MAX_BLOCK
1453  */
1454 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1455 					struct ext4_ext_path *path)
1456 {
1457 	int depth;
1458 
1459 	BUG_ON(path == NULL);
1460 	depth = path->p_depth;
1461 
1462 	/* zero-tree has no leaf blocks at all */
1463 	if (depth == 0)
1464 		return EXT_MAX_BLOCK;
1465 
1466 	/* go to index block */
1467 	depth--;
1468 
1469 	while (depth >= 0) {
1470 		if (path[depth].p_idx !=
1471 				EXT_LAST_INDEX(path[depth].p_hdr))
1472 			return (ext4_lblk_t)
1473 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1474 		depth--;
1475 	}
1476 
1477 	return EXT_MAX_BLOCK;
1478 }
1479 
1480 /*
1481  * ext4_ext_correct_indexes:
1482  * if leaf gets modified and modified extent is first in the leaf,
1483  * then we have to correct all indexes above.
1484  * TODO: do we need to correct tree in all cases?
1485  */
1486 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1487 				struct ext4_ext_path *path)
1488 {
1489 	struct ext4_extent_header *eh;
1490 	int depth = ext_depth(inode);
1491 	struct ext4_extent *ex;
1492 	__le32 border;
1493 	int k, err = 0;
1494 
1495 	eh = path[depth].p_hdr;
1496 	ex = path[depth].p_ext;
1497 
1498 	if (unlikely(ex == NULL || eh == NULL)) {
1499 		EXT4_ERROR_INODE(inode,
1500 				 "ex %p == NULL or eh %p == NULL", ex, eh);
1501 		return -EIO;
1502 	}
1503 
1504 	if (depth == 0) {
1505 		/* there is no tree at all */
1506 		return 0;
1507 	}
1508 
1509 	if (ex != EXT_FIRST_EXTENT(eh)) {
1510 		/* we correct tree if first leaf got modified only */
1511 		return 0;
1512 	}
1513 
1514 	/*
1515 	 * TODO: we need correction if border is smaller than current one
1516 	 */
1517 	k = depth - 1;
1518 	border = path[depth].p_ext->ee_block;
1519 	err = ext4_ext_get_access(handle, inode, path + k);
1520 	if (err)
1521 		return err;
1522 	path[k].p_idx->ei_block = border;
1523 	err = ext4_ext_dirty(handle, inode, path + k);
1524 	if (err)
1525 		return err;
1526 
1527 	while (k--) {
1528 		/* change all left-side indexes */
1529 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1530 			break;
1531 		err = ext4_ext_get_access(handle, inode, path + k);
1532 		if (err)
1533 			break;
1534 		path[k].p_idx->ei_block = border;
1535 		err = ext4_ext_dirty(handle, inode, path + k);
1536 		if (err)
1537 			break;
1538 	}
1539 
1540 	return err;
1541 }
1542 
1543 int
1544 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1545 				struct ext4_extent *ex2)
1546 {
1547 	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1548 
1549 	/*
1550 	 * Make sure that either both extents are uninitialized, or
1551 	 * both are _not_.
1552 	 */
1553 	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1554 		return 0;
1555 
1556 	if (ext4_ext_is_uninitialized(ex1))
1557 		max_len = EXT_UNINIT_MAX_LEN;
1558 	else
1559 		max_len = EXT_INIT_MAX_LEN;
1560 
1561 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1562 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1563 
1564 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1565 			le32_to_cpu(ex2->ee_block))
1566 		return 0;
1567 
1568 	/*
1569 	 * To allow future support for preallocated extents to be added
1570 	 * as an RO_COMPAT feature, refuse to merge to extents if
1571 	 * this can result in the top bit of ee_len being set.
1572 	 */
1573 	if (ext1_ee_len + ext2_ee_len > max_len)
1574 		return 0;
1575 #ifdef AGGRESSIVE_TEST
1576 	if (ext1_ee_len >= 4)
1577 		return 0;
1578 #endif
1579 
1580 	if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2))
1581 		return 1;
1582 	return 0;
1583 }
1584 
1585 /*
1586  * This function tries to merge the "ex" extent to the next extent in the tree.
1587  * It always tries to merge towards right. If you want to merge towards
1588  * left, pass "ex - 1" as argument instead of "ex".
1589  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1590  * 1 if they got merged.
1591  */
1592 int ext4_ext_try_to_merge(struct inode *inode,
1593 			  struct ext4_ext_path *path,
1594 			  struct ext4_extent *ex)
1595 {
1596 	struct ext4_extent_header *eh;
1597 	unsigned int depth, len;
1598 	int merge_done = 0;
1599 	int uninitialized = 0;
1600 
1601 	depth = ext_depth(inode);
1602 	BUG_ON(path[depth].p_hdr == NULL);
1603 	eh = path[depth].p_hdr;
1604 
1605 	while (ex < EXT_LAST_EXTENT(eh)) {
1606 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1607 			break;
1608 		/* merge with next extent! */
1609 		if (ext4_ext_is_uninitialized(ex))
1610 			uninitialized = 1;
1611 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1612 				+ ext4_ext_get_actual_len(ex + 1));
1613 		if (uninitialized)
1614 			ext4_ext_mark_uninitialized(ex);
1615 
1616 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1617 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1618 				* sizeof(struct ext4_extent);
1619 			memmove(ex + 1, ex + 2, len);
1620 		}
1621 		le16_add_cpu(&eh->eh_entries, -1);
1622 		merge_done = 1;
1623 		WARN_ON(eh->eh_entries == 0);
1624 		if (!eh->eh_entries)
1625 			ext4_error(inode->i_sb,
1626 				   "inode#%lu, eh->eh_entries = 0!",
1627 				   inode->i_ino);
1628 	}
1629 
1630 	return merge_done;
1631 }
1632 
1633 /*
1634  * check if a portion of the "newext" extent overlaps with an
1635  * existing extent.
1636  *
1637  * If there is an overlap discovered, it updates the length of the newext
1638  * such that there will be no overlap, and then returns 1.
1639  * If there is no overlap found, it returns 0.
1640  */
1641 unsigned int ext4_ext_check_overlap(struct inode *inode,
1642 				    struct ext4_extent *newext,
1643 				    struct ext4_ext_path *path)
1644 {
1645 	ext4_lblk_t b1, b2;
1646 	unsigned int depth, len1;
1647 	unsigned int ret = 0;
1648 
1649 	b1 = le32_to_cpu(newext->ee_block);
1650 	len1 = ext4_ext_get_actual_len(newext);
1651 	depth = ext_depth(inode);
1652 	if (!path[depth].p_ext)
1653 		goto out;
1654 	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1655 
1656 	/*
1657 	 * get the next allocated block if the extent in the path
1658 	 * is before the requested block(s)
1659 	 */
1660 	if (b2 < b1) {
1661 		b2 = ext4_ext_next_allocated_block(path);
1662 		if (b2 == EXT_MAX_BLOCK)
1663 			goto out;
1664 	}
1665 
1666 	/* check for wrap through zero on extent logical start block*/
1667 	if (b1 + len1 < b1) {
1668 		len1 = EXT_MAX_BLOCK - b1;
1669 		newext->ee_len = cpu_to_le16(len1);
1670 		ret = 1;
1671 	}
1672 
1673 	/* check for overlap */
1674 	if (b1 + len1 > b2) {
1675 		newext->ee_len = cpu_to_le16(b2 - b1);
1676 		ret = 1;
1677 	}
1678 out:
1679 	return ret;
1680 }
1681 
1682 /*
1683  * ext4_ext_insert_extent:
1684  * tries to merge requsted extent into the existing extent or
1685  * inserts requested extent as new one into the tree,
1686  * creating new leaf in the no-space case.
1687  */
1688 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1689 				struct ext4_ext_path *path,
1690 				struct ext4_extent *newext, int flag)
1691 {
1692 	struct ext4_extent_header *eh;
1693 	struct ext4_extent *ex, *fex;
1694 	struct ext4_extent *nearex; /* nearest extent */
1695 	struct ext4_ext_path *npath = NULL;
1696 	int depth, len, err;
1697 	ext4_lblk_t next;
1698 	unsigned uninitialized = 0;
1699 
1700 	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1701 		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1702 		return -EIO;
1703 	}
1704 	depth = ext_depth(inode);
1705 	ex = path[depth].p_ext;
1706 	if (unlikely(path[depth].p_hdr == NULL)) {
1707 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1708 		return -EIO;
1709 	}
1710 
1711 	/* try to insert block into found extent and return */
1712 	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1713 		&& ext4_can_extents_be_merged(inode, ex, newext)) {
1714 		ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n",
1715 				ext4_ext_is_uninitialized(newext),
1716 				ext4_ext_get_actual_len(newext),
1717 				le32_to_cpu(ex->ee_block),
1718 				ext4_ext_is_uninitialized(ex),
1719 				ext4_ext_get_actual_len(ex), ext_pblock(ex));
1720 		err = ext4_ext_get_access(handle, inode, path + depth);
1721 		if (err)
1722 			return err;
1723 
1724 		/*
1725 		 * ext4_can_extents_be_merged should have checked that either
1726 		 * both extents are uninitialized, or both aren't. Thus we
1727 		 * need to check only one of them here.
1728 		 */
1729 		if (ext4_ext_is_uninitialized(ex))
1730 			uninitialized = 1;
1731 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1732 					+ ext4_ext_get_actual_len(newext));
1733 		if (uninitialized)
1734 			ext4_ext_mark_uninitialized(ex);
1735 		eh = path[depth].p_hdr;
1736 		nearex = ex;
1737 		goto merge;
1738 	}
1739 
1740 repeat:
1741 	depth = ext_depth(inode);
1742 	eh = path[depth].p_hdr;
1743 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1744 		goto has_space;
1745 
1746 	/* probably next leaf has space for us? */
1747 	fex = EXT_LAST_EXTENT(eh);
1748 	next = ext4_ext_next_leaf_block(inode, path);
1749 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1750 	    && next != EXT_MAX_BLOCK) {
1751 		ext_debug("next leaf block - %d\n", next);
1752 		BUG_ON(npath != NULL);
1753 		npath = ext4_ext_find_extent(inode, next, NULL);
1754 		if (IS_ERR(npath))
1755 			return PTR_ERR(npath);
1756 		BUG_ON(npath->p_depth != path->p_depth);
1757 		eh = npath[depth].p_hdr;
1758 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1759 			ext_debug("next leaf isnt full(%d)\n",
1760 				  le16_to_cpu(eh->eh_entries));
1761 			path = npath;
1762 			goto repeat;
1763 		}
1764 		ext_debug("next leaf has no free space(%d,%d)\n",
1765 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1766 	}
1767 
1768 	/*
1769 	 * There is no free space in the found leaf.
1770 	 * We're gonna add a new leaf in the tree.
1771 	 */
1772 	err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1773 	if (err)
1774 		goto cleanup;
1775 	depth = ext_depth(inode);
1776 	eh = path[depth].p_hdr;
1777 
1778 has_space:
1779 	nearex = path[depth].p_ext;
1780 
1781 	err = ext4_ext_get_access(handle, inode, path + depth);
1782 	if (err)
1783 		goto cleanup;
1784 
1785 	if (!nearex) {
1786 		/* there is no extent in this leaf, create first one */
1787 		ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n",
1788 				le32_to_cpu(newext->ee_block),
1789 				ext_pblock(newext),
1790 				ext4_ext_is_uninitialized(newext),
1791 				ext4_ext_get_actual_len(newext));
1792 		path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1793 	} else if (le32_to_cpu(newext->ee_block)
1794 			   > le32_to_cpu(nearex->ee_block)) {
1795 /*		BUG_ON(newext->ee_block == nearex->ee_block); */
1796 		if (nearex != EXT_LAST_EXTENT(eh)) {
1797 			len = EXT_MAX_EXTENT(eh) - nearex;
1798 			len = (len - 1) * sizeof(struct ext4_extent);
1799 			len = len < 0 ? 0 : len;
1800 			ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, "
1801 					"move %d from 0x%p to 0x%p\n",
1802 					le32_to_cpu(newext->ee_block),
1803 					ext_pblock(newext),
1804 					ext4_ext_is_uninitialized(newext),
1805 					ext4_ext_get_actual_len(newext),
1806 					nearex, len, nearex + 1, nearex + 2);
1807 			memmove(nearex + 2, nearex + 1, len);
1808 		}
1809 		path[depth].p_ext = nearex + 1;
1810 	} else {
1811 		BUG_ON(newext->ee_block == nearex->ee_block);
1812 		len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1813 		len = len < 0 ? 0 : len;
1814 		ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, "
1815 				"move %d from 0x%p to 0x%p\n",
1816 				le32_to_cpu(newext->ee_block),
1817 				ext_pblock(newext),
1818 				ext4_ext_is_uninitialized(newext),
1819 				ext4_ext_get_actual_len(newext),
1820 				nearex, len, nearex + 1, nearex + 2);
1821 		memmove(nearex + 1, nearex, len);
1822 		path[depth].p_ext = nearex;
1823 	}
1824 
1825 	le16_add_cpu(&eh->eh_entries, 1);
1826 	nearex = path[depth].p_ext;
1827 	nearex->ee_block = newext->ee_block;
1828 	ext4_ext_store_pblock(nearex, ext_pblock(newext));
1829 	nearex->ee_len = newext->ee_len;
1830 
1831 merge:
1832 	/* try to merge extents to the right */
1833 	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1834 		ext4_ext_try_to_merge(inode, path, nearex);
1835 
1836 	/* try to merge extents to the left */
1837 
1838 	/* time to correct all indexes above */
1839 	err = ext4_ext_correct_indexes(handle, inode, path);
1840 	if (err)
1841 		goto cleanup;
1842 
1843 	err = ext4_ext_dirty(handle, inode, path + depth);
1844 
1845 cleanup:
1846 	if (npath) {
1847 		ext4_ext_drop_refs(npath);
1848 		kfree(npath);
1849 	}
1850 	ext4_ext_invalidate_cache(inode);
1851 	return err;
1852 }
1853 
1854 int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1855 			ext4_lblk_t num, ext_prepare_callback func,
1856 			void *cbdata)
1857 {
1858 	struct ext4_ext_path *path = NULL;
1859 	struct ext4_ext_cache cbex;
1860 	struct ext4_extent *ex;
1861 	ext4_lblk_t next, start = 0, end = 0;
1862 	ext4_lblk_t last = block + num;
1863 	int depth, exists, err = 0;
1864 
1865 	BUG_ON(func == NULL);
1866 	BUG_ON(inode == NULL);
1867 
1868 	while (block < last && block != EXT_MAX_BLOCK) {
1869 		num = last - block;
1870 		/* find extent for this block */
1871 		down_read(&EXT4_I(inode)->i_data_sem);
1872 		path = ext4_ext_find_extent(inode, block, path);
1873 		up_read(&EXT4_I(inode)->i_data_sem);
1874 		if (IS_ERR(path)) {
1875 			err = PTR_ERR(path);
1876 			path = NULL;
1877 			break;
1878 		}
1879 
1880 		depth = ext_depth(inode);
1881 		if (unlikely(path[depth].p_hdr == NULL)) {
1882 			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1883 			err = -EIO;
1884 			break;
1885 		}
1886 		ex = path[depth].p_ext;
1887 		next = ext4_ext_next_allocated_block(path);
1888 
1889 		exists = 0;
1890 		if (!ex) {
1891 			/* there is no extent yet, so try to allocate
1892 			 * all requested space */
1893 			start = block;
1894 			end = block + num;
1895 		} else if (le32_to_cpu(ex->ee_block) > block) {
1896 			/* need to allocate space before found extent */
1897 			start = block;
1898 			end = le32_to_cpu(ex->ee_block);
1899 			if (block + num < end)
1900 				end = block + num;
1901 		} else if (block >= le32_to_cpu(ex->ee_block)
1902 					+ ext4_ext_get_actual_len(ex)) {
1903 			/* need to allocate space after found extent */
1904 			start = block;
1905 			end = block + num;
1906 			if (end >= next)
1907 				end = next;
1908 		} else if (block >= le32_to_cpu(ex->ee_block)) {
1909 			/*
1910 			 * some part of requested space is covered
1911 			 * by found extent
1912 			 */
1913 			start = block;
1914 			end = le32_to_cpu(ex->ee_block)
1915 				+ ext4_ext_get_actual_len(ex);
1916 			if (block + num < end)
1917 				end = block + num;
1918 			exists = 1;
1919 		} else {
1920 			BUG();
1921 		}
1922 		BUG_ON(end <= start);
1923 
1924 		if (!exists) {
1925 			cbex.ec_block = start;
1926 			cbex.ec_len = end - start;
1927 			cbex.ec_start = 0;
1928 			cbex.ec_type = EXT4_EXT_CACHE_GAP;
1929 		} else {
1930 			cbex.ec_block = le32_to_cpu(ex->ee_block);
1931 			cbex.ec_len = ext4_ext_get_actual_len(ex);
1932 			cbex.ec_start = ext_pblock(ex);
1933 			cbex.ec_type = EXT4_EXT_CACHE_EXTENT;
1934 		}
1935 
1936 		if (unlikely(cbex.ec_len == 0)) {
1937 			EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1938 			err = -EIO;
1939 			break;
1940 		}
1941 		err = func(inode, path, &cbex, ex, cbdata);
1942 		ext4_ext_drop_refs(path);
1943 
1944 		if (err < 0)
1945 			break;
1946 
1947 		if (err == EXT_REPEAT)
1948 			continue;
1949 		else if (err == EXT_BREAK) {
1950 			err = 0;
1951 			break;
1952 		}
1953 
1954 		if (ext_depth(inode) != depth) {
1955 			/* depth was changed. we have to realloc path */
1956 			kfree(path);
1957 			path = NULL;
1958 		}
1959 
1960 		block = cbex.ec_block + cbex.ec_len;
1961 	}
1962 
1963 	if (path) {
1964 		ext4_ext_drop_refs(path);
1965 		kfree(path);
1966 	}
1967 
1968 	return err;
1969 }
1970 
1971 static void
1972 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1973 			__u32 len, ext4_fsblk_t start, int type)
1974 {
1975 	struct ext4_ext_cache *cex;
1976 	BUG_ON(len == 0);
1977 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1978 	cex = &EXT4_I(inode)->i_cached_extent;
1979 	cex->ec_type = type;
1980 	cex->ec_block = block;
1981 	cex->ec_len = len;
1982 	cex->ec_start = start;
1983 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1984 }
1985 
1986 /*
1987  * ext4_ext_put_gap_in_cache:
1988  * calculate boundaries of the gap that the requested block fits into
1989  * and cache this gap
1990  */
1991 static void
1992 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1993 				ext4_lblk_t block)
1994 {
1995 	int depth = ext_depth(inode);
1996 	unsigned long len;
1997 	ext4_lblk_t lblock;
1998 	struct ext4_extent *ex;
1999 
2000 	ex = path[depth].p_ext;
2001 	if (ex == NULL) {
2002 		/* there is no extent yet, so gap is [0;-] */
2003 		lblock = 0;
2004 		len = EXT_MAX_BLOCK;
2005 		ext_debug("cache gap(whole file):");
2006 	} else if (block < le32_to_cpu(ex->ee_block)) {
2007 		lblock = block;
2008 		len = le32_to_cpu(ex->ee_block) - block;
2009 		ext_debug("cache gap(before): %u [%u:%u]",
2010 				block,
2011 				le32_to_cpu(ex->ee_block),
2012 				 ext4_ext_get_actual_len(ex));
2013 	} else if (block >= le32_to_cpu(ex->ee_block)
2014 			+ ext4_ext_get_actual_len(ex)) {
2015 		ext4_lblk_t next;
2016 		lblock = le32_to_cpu(ex->ee_block)
2017 			+ ext4_ext_get_actual_len(ex);
2018 
2019 		next = ext4_ext_next_allocated_block(path);
2020 		ext_debug("cache gap(after): [%u:%u] %u",
2021 				le32_to_cpu(ex->ee_block),
2022 				ext4_ext_get_actual_len(ex),
2023 				block);
2024 		BUG_ON(next == lblock);
2025 		len = next - lblock;
2026 	} else {
2027 		lblock = len = 0;
2028 		BUG();
2029 	}
2030 
2031 	ext_debug(" -> %u:%lu\n", lblock, len);
2032 	ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP);
2033 }
2034 
2035 static int
2036 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2037 			struct ext4_extent *ex)
2038 {
2039 	struct ext4_ext_cache *cex;
2040 	int ret = EXT4_EXT_CACHE_NO;
2041 
2042 	/*
2043 	 * We borrow i_block_reservation_lock to protect i_cached_extent
2044 	 */
2045 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2046 	cex = &EXT4_I(inode)->i_cached_extent;
2047 
2048 	/* has cache valid data? */
2049 	if (cex->ec_type == EXT4_EXT_CACHE_NO)
2050 		goto errout;
2051 
2052 	BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP &&
2053 			cex->ec_type != EXT4_EXT_CACHE_EXTENT);
2054 	if (in_range(block, cex->ec_block, cex->ec_len)) {
2055 		ex->ee_block = cpu_to_le32(cex->ec_block);
2056 		ext4_ext_store_pblock(ex, cex->ec_start);
2057 		ex->ee_len = cpu_to_le16(cex->ec_len);
2058 		ext_debug("%u cached by %u:%u:%llu\n",
2059 				block,
2060 				cex->ec_block, cex->ec_len, cex->ec_start);
2061 		ret = cex->ec_type;
2062 	}
2063 errout:
2064 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2065 	return ret;
2066 }
2067 
2068 /*
2069  * ext4_ext_rm_idx:
2070  * removes index from the index block.
2071  * It's used in truncate case only, thus all requests are for
2072  * last index in the block only.
2073  */
2074 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2075 			struct ext4_ext_path *path)
2076 {
2077 	int err;
2078 	ext4_fsblk_t leaf;
2079 
2080 	/* free index block */
2081 	path--;
2082 	leaf = idx_pblock(path->p_idx);
2083 	if (unlikely(path->p_hdr->eh_entries == 0)) {
2084 		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2085 		return -EIO;
2086 	}
2087 	err = ext4_ext_get_access(handle, inode, path);
2088 	if (err)
2089 		return err;
2090 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2091 	err = ext4_ext_dirty(handle, inode, path);
2092 	if (err)
2093 		return err;
2094 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2095 	ext4_free_blocks(handle, inode, 0, leaf, 1,
2096 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2097 	return err;
2098 }
2099 
2100 /*
2101  * ext4_ext_calc_credits_for_single_extent:
2102  * This routine returns max. credits that needed to insert an extent
2103  * to the extent tree.
2104  * When pass the actual path, the caller should calculate credits
2105  * under i_data_sem.
2106  */
2107 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2108 						struct ext4_ext_path *path)
2109 {
2110 	if (path) {
2111 		int depth = ext_depth(inode);
2112 		int ret = 0;
2113 
2114 		/* probably there is space in leaf? */
2115 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2116 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2117 
2118 			/*
2119 			 *  There are some space in the leaf tree, no
2120 			 *  need to account for leaf block credit
2121 			 *
2122 			 *  bitmaps and block group descriptor blocks
2123 			 *  and other metadat blocks still need to be
2124 			 *  accounted.
2125 			 */
2126 			/* 1 bitmap, 1 block group descriptor */
2127 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2128 			return ret;
2129 		}
2130 	}
2131 
2132 	return ext4_chunk_trans_blocks(inode, nrblocks);
2133 }
2134 
2135 /*
2136  * How many index/leaf blocks need to change/allocate to modify nrblocks?
2137  *
2138  * if nrblocks are fit in a single extent (chunk flag is 1), then
2139  * in the worse case, each tree level index/leaf need to be changed
2140  * if the tree split due to insert a new extent, then the old tree
2141  * index/leaf need to be updated too
2142  *
2143  * If the nrblocks are discontiguous, they could cause
2144  * the whole tree split more than once, but this is really rare.
2145  */
2146 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2147 {
2148 	int index;
2149 	int depth = ext_depth(inode);
2150 
2151 	if (chunk)
2152 		index = depth * 2;
2153 	else
2154 		index = depth * 3;
2155 
2156 	return index;
2157 }
2158 
2159 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2160 				struct ext4_extent *ex,
2161 				ext4_lblk_t from, ext4_lblk_t to)
2162 {
2163 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2164 	int flags = EXT4_FREE_BLOCKS_FORGET;
2165 
2166 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2167 		flags |= EXT4_FREE_BLOCKS_METADATA;
2168 #ifdef EXTENTS_STATS
2169 	{
2170 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2171 		spin_lock(&sbi->s_ext_stats_lock);
2172 		sbi->s_ext_blocks += ee_len;
2173 		sbi->s_ext_extents++;
2174 		if (ee_len < sbi->s_ext_min)
2175 			sbi->s_ext_min = ee_len;
2176 		if (ee_len > sbi->s_ext_max)
2177 			sbi->s_ext_max = ee_len;
2178 		if (ext_depth(inode) > sbi->s_depth_max)
2179 			sbi->s_depth_max = ext_depth(inode);
2180 		spin_unlock(&sbi->s_ext_stats_lock);
2181 	}
2182 #endif
2183 	if (from >= le32_to_cpu(ex->ee_block)
2184 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2185 		/* tail removal */
2186 		ext4_lblk_t num;
2187 		ext4_fsblk_t start;
2188 
2189 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2190 		start = ext_pblock(ex) + ee_len - num;
2191 		ext_debug("free last %u blocks starting %llu\n", num, start);
2192 		ext4_free_blocks(handle, inode, 0, start, num, flags);
2193 	} else if (from == le32_to_cpu(ex->ee_block)
2194 		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2195 		printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n",
2196 			from, to, le32_to_cpu(ex->ee_block), ee_len);
2197 	} else {
2198 		printk(KERN_INFO "strange request: removal(2) "
2199 				"%u-%u from %u:%u\n",
2200 				from, to, le32_to_cpu(ex->ee_block), ee_len);
2201 	}
2202 	return 0;
2203 }
2204 
2205 static int
2206 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2207 		struct ext4_ext_path *path, ext4_lblk_t start)
2208 {
2209 	int err = 0, correct_index = 0;
2210 	int depth = ext_depth(inode), credits;
2211 	struct ext4_extent_header *eh;
2212 	ext4_lblk_t a, b, block;
2213 	unsigned num;
2214 	ext4_lblk_t ex_ee_block;
2215 	unsigned short ex_ee_len;
2216 	unsigned uninitialized = 0;
2217 	struct ext4_extent *ex;
2218 
2219 	/* the header must be checked already in ext4_ext_remove_space() */
2220 	ext_debug("truncate since %u in leaf\n", start);
2221 	if (!path[depth].p_hdr)
2222 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2223 	eh = path[depth].p_hdr;
2224 	if (unlikely(path[depth].p_hdr == NULL)) {
2225 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2226 		return -EIO;
2227 	}
2228 	/* find where to start removing */
2229 	ex = EXT_LAST_EXTENT(eh);
2230 
2231 	ex_ee_block = le32_to_cpu(ex->ee_block);
2232 	ex_ee_len = ext4_ext_get_actual_len(ex);
2233 
2234 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2235 			ex_ee_block + ex_ee_len > start) {
2236 
2237 		if (ext4_ext_is_uninitialized(ex))
2238 			uninitialized = 1;
2239 		else
2240 			uninitialized = 0;
2241 
2242 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2243 			 uninitialized, ex_ee_len);
2244 		path[depth].p_ext = ex;
2245 
2246 		a = ex_ee_block > start ? ex_ee_block : start;
2247 		b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
2248 			ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
2249 
2250 		ext_debug("  border %u:%u\n", a, b);
2251 
2252 		if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
2253 			block = 0;
2254 			num = 0;
2255 			BUG();
2256 		} else if (a != ex_ee_block) {
2257 			/* remove tail of the extent */
2258 			block = ex_ee_block;
2259 			num = a - block;
2260 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2261 			/* remove head of the extent */
2262 			block = a;
2263 			num = b - a;
2264 			/* there is no "make a hole" API yet */
2265 			BUG();
2266 		} else {
2267 			/* remove whole extent: excellent! */
2268 			block = ex_ee_block;
2269 			num = 0;
2270 			BUG_ON(a != ex_ee_block);
2271 			BUG_ON(b != ex_ee_block + ex_ee_len - 1);
2272 		}
2273 
2274 		/*
2275 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2276 		 * descriptor) for each block group; assume two block
2277 		 * groups plus ex_ee_len/blocks_per_block_group for
2278 		 * the worst case
2279 		 */
2280 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2281 		if (ex == EXT_FIRST_EXTENT(eh)) {
2282 			correct_index = 1;
2283 			credits += (ext_depth(inode)) + 1;
2284 		}
2285 		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2286 
2287 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2288 		if (err)
2289 			goto out;
2290 
2291 		err = ext4_ext_get_access(handle, inode, path + depth);
2292 		if (err)
2293 			goto out;
2294 
2295 		err = ext4_remove_blocks(handle, inode, ex, a, b);
2296 		if (err)
2297 			goto out;
2298 
2299 		if (num == 0) {
2300 			/* this extent is removed; mark slot entirely unused */
2301 			ext4_ext_store_pblock(ex, 0);
2302 			le16_add_cpu(&eh->eh_entries, -1);
2303 		}
2304 
2305 		ex->ee_block = cpu_to_le32(block);
2306 		ex->ee_len = cpu_to_le16(num);
2307 		/*
2308 		 * Do not mark uninitialized if all the blocks in the
2309 		 * extent have been removed.
2310 		 */
2311 		if (uninitialized && num)
2312 			ext4_ext_mark_uninitialized(ex);
2313 
2314 		err = ext4_ext_dirty(handle, inode, path + depth);
2315 		if (err)
2316 			goto out;
2317 
2318 		ext_debug("new extent: %u:%u:%llu\n", block, num,
2319 				ext_pblock(ex));
2320 		ex--;
2321 		ex_ee_block = le32_to_cpu(ex->ee_block);
2322 		ex_ee_len = ext4_ext_get_actual_len(ex);
2323 	}
2324 
2325 	if (correct_index && eh->eh_entries)
2326 		err = ext4_ext_correct_indexes(handle, inode, path);
2327 
2328 	/* if this leaf is free, then we should
2329 	 * remove it from index block above */
2330 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2331 		err = ext4_ext_rm_idx(handle, inode, path + depth);
2332 
2333 out:
2334 	return err;
2335 }
2336 
2337 /*
2338  * ext4_ext_more_to_rm:
2339  * returns 1 if current index has to be freed (even partial)
2340  */
2341 static int
2342 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2343 {
2344 	BUG_ON(path->p_idx == NULL);
2345 
2346 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2347 		return 0;
2348 
2349 	/*
2350 	 * if truncate on deeper level happened, it wasn't partial,
2351 	 * so we have to consider current index for truncation
2352 	 */
2353 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2354 		return 0;
2355 	return 1;
2356 }
2357 
2358 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2359 {
2360 	struct super_block *sb = inode->i_sb;
2361 	int depth = ext_depth(inode);
2362 	struct ext4_ext_path *path;
2363 	handle_t *handle;
2364 	int i = 0, err = 0;
2365 
2366 	ext_debug("truncate since %u\n", start);
2367 
2368 	/* probably first extent we're gonna free will be last in block */
2369 	handle = ext4_journal_start(inode, depth + 1);
2370 	if (IS_ERR(handle))
2371 		return PTR_ERR(handle);
2372 
2373 	ext4_ext_invalidate_cache(inode);
2374 
2375 	/*
2376 	 * We start scanning from right side, freeing all the blocks
2377 	 * after i_size and walking into the tree depth-wise.
2378 	 */
2379 	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2380 	if (path == NULL) {
2381 		ext4_journal_stop(handle);
2382 		return -ENOMEM;
2383 	}
2384 	path[0].p_hdr = ext_inode_hdr(inode);
2385 	if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2386 		err = -EIO;
2387 		goto out;
2388 	}
2389 	path[0].p_depth = depth;
2390 
2391 	while (i >= 0 && err == 0) {
2392 		if (i == depth) {
2393 			/* this is leaf block */
2394 			err = ext4_ext_rm_leaf(handle, inode, path, start);
2395 			/* root level has p_bh == NULL, brelse() eats this */
2396 			brelse(path[i].p_bh);
2397 			path[i].p_bh = NULL;
2398 			i--;
2399 			continue;
2400 		}
2401 
2402 		/* this is index block */
2403 		if (!path[i].p_hdr) {
2404 			ext_debug("initialize header\n");
2405 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2406 		}
2407 
2408 		if (!path[i].p_idx) {
2409 			/* this level hasn't been touched yet */
2410 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2411 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2412 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2413 				  path[i].p_hdr,
2414 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2415 		} else {
2416 			/* we were already here, see at next index */
2417 			path[i].p_idx--;
2418 		}
2419 
2420 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2421 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2422 				path[i].p_idx);
2423 		if (ext4_ext_more_to_rm(path + i)) {
2424 			struct buffer_head *bh;
2425 			/* go to the next level */
2426 			ext_debug("move to level %d (block %llu)\n",
2427 				  i + 1, idx_pblock(path[i].p_idx));
2428 			memset(path + i + 1, 0, sizeof(*path));
2429 			bh = sb_bread(sb, idx_pblock(path[i].p_idx));
2430 			if (!bh) {
2431 				/* should we reset i_size? */
2432 				err = -EIO;
2433 				break;
2434 			}
2435 			if (WARN_ON(i + 1 > depth)) {
2436 				err = -EIO;
2437 				break;
2438 			}
2439 			if (ext4_ext_check(inode, ext_block_hdr(bh),
2440 							depth - i - 1)) {
2441 				err = -EIO;
2442 				break;
2443 			}
2444 			path[i + 1].p_bh = bh;
2445 
2446 			/* save actual number of indexes since this
2447 			 * number is changed at the next iteration */
2448 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2449 			i++;
2450 		} else {
2451 			/* we finished processing this index, go up */
2452 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2453 				/* index is empty, remove it;
2454 				 * handle must be already prepared by the
2455 				 * truncatei_leaf() */
2456 				err = ext4_ext_rm_idx(handle, inode, path + i);
2457 			}
2458 			/* root level has p_bh == NULL, brelse() eats this */
2459 			brelse(path[i].p_bh);
2460 			path[i].p_bh = NULL;
2461 			i--;
2462 			ext_debug("return to level %d\n", i);
2463 		}
2464 	}
2465 
2466 	/* TODO: flexible tree reduction should be here */
2467 	if (path->p_hdr->eh_entries == 0) {
2468 		/*
2469 		 * truncate to zero freed all the tree,
2470 		 * so we need to correct eh_depth
2471 		 */
2472 		err = ext4_ext_get_access(handle, inode, path);
2473 		if (err == 0) {
2474 			ext_inode_hdr(inode)->eh_depth = 0;
2475 			ext_inode_hdr(inode)->eh_max =
2476 				cpu_to_le16(ext4_ext_space_root(inode, 0));
2477 			err = ext4_ext_dirty(handle, inode, path);
2478 		}
2479 	}
2480 out:
2481 	ext4_ext_drop_refs(path);
2482 	kfree(path);
2483 	ext4_journal_stop(handle);
2484 
2485 	return err;
2486 }
2487 
2488 /*
2489  * called at mount time
2490  */
2491 void ext4_ext_init(struct super_block *sb)
2492 {
2493 	/*
2494 	 * possible initialization would be here
2495 	 */
2496 
2497 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2498 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2499 		printk(KERN_INFO "EXT4-fs: file extents enabled");
2500 #ifdef AGGRESSIVE_TEST
2501 		printk(", aggressive tests");
2502 #endif
2503 #ifdef CHECK_BINSEARCH
2504 		printk(", check binsearch");
2505 #endif
2506 #ifdef EXTENTS_STATS
2507 		printk(", stats");
2508 #endif
2509 		printk("\n");
2510 #endif
2511 #ifdef EXTENTS_STATS
2512 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2513 		EXT4_SB(sb)->s_ext_min = 1 << 30;
2514 		EXT4_SB(sb)->s_ext_max = 0;
2515 #endif
2516 	}
2517 }
2518 
2519 /*
2520  * called at umount time
2521  */
2522 void ext4_ext_release(struct super_block *sb)
2523 {
2524 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2525 		return;
2526 
2527 #ifdef EXTENTS_STATS
2528 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2529 		struct ext4_sb_info *sbi = EXT4_SB(sb);
2530 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2531 			sbi->s_ext_blocks, sbi->s_ext_extents,
2532 			sbi->s_ext_blocks / sbi->s_ext_extents);
2533 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2534 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2535 	}
2536 #endif
2537 }
2538 
2539 static void bi_complete(struct bio *bio, int error)
2540 {
2541 	complete((struct completion *)bio->bi_private);
2542 }
2543 
2544 /* FIXME!! we need to try to merge to left or right after zero-out  */
2545 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2546 {
2547 	int ret;
2548 	struct bio *bio;
2549 	int blkbits, blocksize;
2550 	sector_t ee_pblock;
2551 	struct completion event;
2552 	unsigned int ee_len, len, done, offset;
2553 
2554 
2555 	blkbits   = inode->i_blkbits;
2556 	blocksize = inode->i_sb->s_blocksize;
2557 	ee_len    = ext4_ext_get_actual_len(ex);
2558 	ee_pblock = ext_pblock(ex);
2559 
2560 	/* convert ee_pblock to 512 byte sectors */
2561 	ee_pblock = ee_pblock << (blkbits - 9);
2562 
2563 	while (ee_len > 0) {
2564 
2565 		if (ee_len > BIO_MAX_PAGES)
2566 			len = BIO_MAX_PAGES;
2567 		else
2568 			len = ee_len;
2569 
2570 		bio = bio_alloc(GFP_NOIO, len);
2571 		if (!bio)
2572 			return -ENOMEM;
2573 
2574 		bio->bi_sector = ee_pblock;
2575 		bio->bi_bdev   = inode->i_sb->s_bdev;
2576 
2577 		done = 0;
2578 		offset = 0;
2579 		while (done < len) {
2580 			ret = bio_add_page(bio, ZERO_PAGE(0),
2581 							blocksize, offset);
2582 			if (ret != blocksize) {
2583 				/*
2584 				 * We can't add any more pages because of
2585 				 * hardware limitations.  Start a new bio.
2586 				 */
2587 				break;
2588 			}
2589 			done++;
2590 			offset += blocksize;
2591 			if (offset >= PAGE_CACHE_SIZE)
2592 				offset = 0;
2593 		}
2594 
2595 		init_completion(&event);
2596 		bio->bi_private = &event;
2597 		bio->bi_end_io = bi_complete;
2598 		submit_bio(WRITE, bio);
2599 		wait_for_completion(&event);
2600 
2601 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2602 			bio_put(bio);
2603 			return -EIO;
2604 		}
2605 		bio_put(bio);
2606 		ee_len    -= done;
2607 		ee_pblock += done  << (blkbits - 9);
2608 	}
2609 	return 0;
2610 }
2611 
2612 #define EXT4_EXT_ZERO_LEN 7
2613 /*
2614  * This function is called by ext4_ext_map_blocks() if someone tries to write
2615  * to an uninitialized extent. It may result in splitting the uninitialized
2616  * extent into multiple extents (upto three - one initialized and two
2617  * uninitialized).
2618  * There are three possibilities:
2619  *   a> There is no split required: Entire extent should be initialized
2620  *   b> Splits in two extents: Write is happening at either end of the extent
2621  *   c> Splits in three extents: Somone is writing in middle of the extent
2622  */
2623 static int ext4_ext_convert_to_initialized(handle_t *handle,
2624 					   struct inode *inode,
2625 					   struct ext4_map_blocks *map,
2626 					   struct ext4_ext_path *path)
2627 {
2628 	struct ext4_extent *ex, newex, orig_ex;
2629 	struct ext4_extent *ex1 = NULL;
2630 	struct ext4_extent *ex2 = NULL;
2631 	struct ext4_extent *ex3 = NULL;
2632 	struct ext4_extent_header *eh;
2633 	ext4_lblk_t ee_block, eof_block;
2634 	unsigned int allocated, ee_len, depth;
2635 	ext4_fsblk_t newblock;
2636 	int err = 0;
2637 	int ret = 0;
2638 	int may_zeroout;
2639 
2640 	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2641 		"block %llu, max_blocks %u\n", inode->i_ino,
2642 		(unsigned long long)map->m_lblk, map->m_len);
2643 
2644 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2645 		inode->i_sb->s_blocksize_bits;
2646 	if (eof_block < map->m_lblk + map->m_len)
2647 		eof_block = map->m_lblk + map->m_len;
2648 
2649 	depth = ext_depth(inode);
2650 	eh = path[depth].p_hdr;
2651 	ex = path[depth].p_ext;
2652 	ee_block = le32_to_cpu(ex->ee_block);
2653 	ee_len = ext4_ext_get_actual_len(ex);
2654 	allocated = ee_len - (map->m_lblk - ee_block);
2655 	newblock = map->m_lblk - ee_block + ext_pblock(ex);
2656 
2657 	ex2 = ex;
2658 	orig_ex.ee_block = ex->ee_block;
2659 	orig_ex.ee_len   = cpu_to_le16(ee_len);
2660 	ext4_ext_store_pblock(&orig_ex, ext_pblock(ex));
2661 
2662 	/*
2663 	 * It is safe to convert extent to initialized via explicit
2664 	 * zeroout only if extent is fully insde i_size or new_size.
2665 	 */
2666 	may_zeroout = ee_block + ee_len <= eof_block;
2667 
2668 	err = ext4_ext_get_access(handle, inode, path + depth);
2669 	if (err)
2670 		goto out;
2671 	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2672 	if (ee_len <= 2*EXT4_EXT_ZERO_LEN && may_zeroout) {
2673 		err =  ext4_ext_zeroout(inode, &orig_ex);
2674 		if (err)
2675 			goto fix_extent_len;
2676 		/* update the extent length and mark as initialized */
2677 		ex->ee_block = orig_ex.ee_block;
2678 		ex->ee_len   = orig_ex.ee_len;
2679 		ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2680 		ext4_ext_dirty(handle, inode, path + depth);
2681 		/* zeroed the full extent */
2682 		return allocated;
2683 	}
2684 
2685 	/* ex1: ee_block to map->m_lblk - 1 : uninitialized */
2686 	if (map->m_lblk > ee_block) {
2687 		ex1 = ex;
2688 		ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
2689 		ext4_ext_mark_uninitialized(ex1);
2690 		ex2 = &newex;
2691 	}
2692 	/*
2693 	 * for sanity, update the length of the ex2 extent before
2694 	 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2695 	 * overlap of blocks.
2696 	 */
2697 	if (!ex1 && allocated > map->m_len)
2698 		ex2->ee_len = cpu_to_le16(map->m_len);
2699 	/* ex3: to ee_block + ee_len : uninitialised */
2700 	if (allocated > map->m_len) {
2701 		unsigned int newdepth;
2702 		/* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */
2703 		if (allocated <= EXT4_EXT_ZERO_LEN && may_zeroout) {
2704 			/*
2705 			 * map->m_lblk == ee_block is handled by the zerouout
2706 			 * at the beginning.
2707 			 * Mark first half uninitialized.
2708 			 * Mark second half initialized and zero out the
2709 			 * initialized extent
2710 			 */
2711 			ex->ee_block = orig_ex.ee_block;
2712 			ex->ee_len   = cpu_to_le16(ee_len - allocated);
2713 			ext4_ext_mark_uninitialized(ex);
2714 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2715 			ext4_ext_dirty(handle, inode, path + depth);
2716 
2717 			ex3 = &newex;
2718 			ex3->ee_block = cpu_to_le32(map->m_lblk);
2719 			ext4_ext_store_pblock(ex3, newblock);
2720 			ex3->ee_len = cpu_to_le16(allocated);
2721 			err = ext4_ext_insert_extent(handle, inode, path,
2722 							ex3, 0);
2723 			if (err == -ENOSPC) {
2724 				err =  ext4_ext_zeroout(inode, &orig_ex);
2725 				if (err)
2726 					goto fix_extent_len;
2727 				ex->ee_block = orig_ex.ee_block;
2728 				ex->ee_len   = orig_ex.ee_len;
2729 				ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2730 				ext4_ext_dirty(handle, inode, path + depth);
2731 				/* blocks available from map->m_lblk */
2732 				return allocated;
2733 
2734 			} else if (err)
2735 				goto fix_extent_len;
2736 
2737 			/*
2738 			 * We need to zero out the second half because
2739 			 * an fallocate request can update file size and
2740 			 * converting the second half to initialized extent
2741 			 * implies that we can leak some junk data to user
2742 			 * space.
2743 			 */
2744 			err =  ext4_ext_zeroout(inode, ex3);
2745 			if (err) {
2746 				/*
2747 				 * We should actually mark the
2748 				 * second half as uninit and return error
2749 				 * Insert would have changed the extent
2750 				 */
2751 				depth = ext_depth(inode);
2752 				ext4_ext_drop_refs(path);
2753 				path = ext4_ext_find_extent(inode, map->m_lblk,
2754 							    path);
2755 				if (IS_ERR(path)) {
2756 					err = PTR_ERR(path);
2757 					return err;
2758 				}
2759 				/* get the second half extent details */
2760 				ex = path[depth].p_ext;
2761 				err = ext4_ext_get_access(handle, inode,
2762 								path + depth);
2763 				if (err)
2764 					return err;
2765 				ext4_ext_mark_uninitialized(ex);
2766 				ext4_ext_dirty(handle, inode, path + depth);
2767 				return err;
2768 			}
2769 
2770 			/* zeroed the second half */
2771 			return allocated;
2772 		}
2773 		ex3 = &newex;
2774 		ex3->ee_block = cpu_to_le32(map->m_lblk + map->m_len);
2775 		ext4_ext_store_pblock(ex3, newblock + map->m_len);
2776 		ex3->ee_len = cpu_to_le16(allocated - map->m_len);
2777 		ext4_ext_mark_uninitialized(ex3);
2778 		err = ext4_ext_insert_extent(handle, inode, path, ex3, 0);
2779 		if (err == -ENOSPC && may_zeroout) {
2780 			err =  ext4_ext_zeroout(inode, &orig_ex);
2781 			if (err)
2782 				goto fix_extent_len;
2783 			/* update the extent length and mark as initialized */
2784 			ex->ee_block = orig_ex.ee_block;
2785 			ex->ee_len   = orig_ex.ee_len;
2786 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2787 			ext4_ext_dirty(handle, inode, path + depth);
2788 			/* zeroed the full extent */
2789 			/* blocks available from map->m_lblk */
2790 			return allocated;
2791 
2792 		} else if (err)
2793 			goto fix_extent_len;
2794 		/*
2795 		 * The depth, and hence eh & ex might change
2796 		 * as part of the insert above.
2797 		 */
2798 		newdepth = ext_depth(inode);
2799 		/*
2800 		 * update the extent length after successful insert of the
2801 		 * split extent
2802 		 */
2803 		ee_len -= ext4_ext_get_actual_len(ex3);
2804 		orig_ex.ee_len = cpu_to_le16(ee_len);
2805 		may_zeroout = ee_block + ee_len <= eof_block;
2806 
2807 		depth = newdepth;
2808 		ext4_ext_drop_refs(path);
2809 		path = ext4_ext_find_extent(inode, map->m_lblk, path);
2810 		if (IS_ERR(path)) {
2811 			err = PTR_ERR(path);
2812 			goto out;
2813 		}
2814 		eh = path[depth].p_hdr;
2815 		ex = path[depth].p_ext;
2816 		if (ex2 != &newex)
2817 			ex2 = ex;
2818 
2819 		err = ext4_ext_get_access(handle, inode, path + depth);
2820 		if (err)
2821 			goto out;
2822 
2823 		allocated = map->m_len;
2824 
2825 		/* If extent has less than EXT4_EXT_ZERO_LEN and we are trying
2826 		 * to insert a extent in the middle zerout directly
2827 		 * otherwise give the extent a chance to merge to left
2828 		 */
2829 		if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN &&
2830 			map->m_lblk != ee_block && may_zeroout) {
2831 			err =  ext4_ext_zeroout(inode, &orig_ex);
2832 			if (err)
2833 				goto fix_extent_len;
2834 			/* update the extent length and mark as initialized */
2835 			ex->ee_block = orig_ex.ee_block;
2836 			ex->ee_len   = orig_ex.ee_len;
2837 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2838 			ext4_ext_dirty(handle, inode, path + depth);
2839 			/* zero out the first half */
2840 			/* blocks available from map->m_lblk */
2841 			return allocated;
2842 		}
2843 	}
2844 	/*
2845 	 * If there was a change of depth as part of the
2846 	 * insertion of ex3 above, we need to update the length
2847 	 * of the ex1 extent again here
2848 	 */
2849 	if (ex1 && ex1 != ex) {
2850 		ex1 = ex;
2851 		ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
2852 		ext4_ext_mark_uninitialized(ex1);
2853 		ex2 = &newex;
2854 	}
2855 	/* ex2: map->m_lblk to map->m_lblk + maxblocks-1 : initialised */
2856 	ex2->ee_block = cpu_to_le32(map->m_lblk);
2857 	ext4_ext_store_pblock(ex2, newblock);
2858 	ex2->ee_len = cpu_to_le16(allocated);
2859 	if (ex2 != ex)
2860 		goto insert;
2861 	/*
2862 	 * New (initialized) extent starts from the first block
2863 	 * in the current extent. i.e., ex2 == ex
2864 	 * We have to see if it can be merged with the extent
2865 	 * on the left.
2866 	 */
2867 	if (ex2 > EXT_FIRST_EXTENT(eh)) {
2868 		/*
2869 		 * To merge left, pass "ex2 - 1" to try_to_merge(),
2870 		 * since it merges towards right _only_.
2871 		 */
2872 		ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
2873 		if (ret) {
2874 			err = ext4_ext_correct_indexes(handle, inode, path);
2875 			if (err)
2876 				goto out;
2877 			depth = ext_depth(inode);
2878 			ex2--;
2879 		}
2880 	}
2881 	/*
2882 	 * Try to Merge towards right. This might be required
2883 	 * only when the whole extent is being written to.
2884 	 * i.e. ex2 == ex and ex3 == NULL.
2885 	 */
2886 	if (!ex3) {
2887 		ret = ext4_ext_try_to_merge(inode, path, ex2);
2888 		if (ret) {
2889 			err = ext4_ext_correct_indexes(handle, inode, path);
2890 			if (err)
2891 				goto out;
2892 		}
2893 	}
2894 	/* Mark modified extent as dirty */
2895 	err = ext4_ext_dirty(handle, inode, path + depth);
2896 	goto out;
2897 insert:
2898 	err = ext4_ext_insert_extent(handle, inode, path, &newex, 0);
2899 	if (err == -ENOSPC && may_zeroout) {
2900 		err =  ext4_ext_zeroout(inode, &orig_ex);
2901 		if (err)
2902 			goto fix_extent_len;
2903 		/* update the extent length and mark as initialized */
2904 		ex->ee_block = orig_ex.ee_block;
2905 		ex->ee_len   = orig_ex.ee_len;
2906 		ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2907 		ext4_ext_dirty(handle, inode, path + depth);
2908 		/* zero out the first half */
2909 		return allocated;
2910 	} else if (err)
2911 		goto fix_extent_len;
2912 out:
2913 	ext4_ext_show_leaf(inode, path);
2914 	return err ? err : allocated;
2915 
2916 fix_extent_len:
2917 	ex->ee_block = orig_ex.ee_block;
2918 	ex->ee_len   = orig_ex.ee_len;
2919 	ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2920 	ext4_ext_mark_uninitialized(ex);
2921 	ext4_ext_dirty(handle, inode, path + depth);
2922 	return err;
2923 }
2924 
2925 /*
2926  * This function is called by ext4_ext_map_blocks() from
2927  * ext4_get_blocks_dio_write() when DIO to write
2928  * to an uninitialized extent.
2929  *
2930  * Writing to an uninitized extent may result in splitting the uninitialized
2931  * extent into multiple /intialized unintialized extents (up to three)
2932  * There are three possibilities:
2933  *   a> There is no split required: Entire extent should be uninitialized
2934  *   b> Splits in two extents: Write is happening at either end of the extent
2935  *   c> Splits in three extents: Somone is writing in middle of the extent
2936  *
2937  * One of more index blocks maybe needed if the extent tree grow after
2938  * the unintialized extent split. To prevent ENOSPC occur at the IO
2939  * complete, we need to split the uninitialized extent before DIO submit
2940  * the IO. The uninitilized extent called at this time will be split
2941  * into three uninitialized extent(at most). After IO complete, the part
2942  * being filled will be convert to initialized by the end_io callback function
2943  * via ext4_convert_unwritten_extents().
2944  *
2945  * Returns the size of uninitialized extent to be written on success.
2946  */
2947 static int ext4_split_unwritten_extents(handle_t *handle,
2948 					struct inode *inode,
2949 					struct ext4_map_blocks *map,
2950 					struct ext4_ext_path *path,
2951 					int flags)
2952 {
2953 	struct ext4_extent *ex, newex, orig_ex;
2954 	struct ext4_extent *ex1 = NULL;
2955 	struct ext4_extent *ex2 = NULL;
2956 	struct ext4_extent *ex3 = NULL;
2957 	struct ext4_extent_header *eh;
2958 	ext4_lblk_t ee_block, eof_block;
2959 	unsigned int allocated, ee_len, depth;
2960 	ext4_fsblk_t newblock;
2961 	int err = 0;
2962 	int may_zeroout;
2963 
2964 	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
2965 		"block %llu, max_blocks %u\n", inode->i_ino,
2966 		(unsigned long long)map->m_lblk, map->m_len);
2967 
2968 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2969 		inode->i_sb->s_blocksize_bits;
2970 	if (eof_block < map->m_lblk + map->m_len)
2971 		eof_block = map->m_lblk + map->m_len;
2972 
2973 	depth = ext_depth(inode);
2974 	eh = path[depth].p_hdr;
2975 	ex = path[depth].p_ext;
2976 	ee_block = le32_to_cpu(ex->ee_block);
2977 	ee_len = ext4_ext_get_actual_len(ex);
2978 	allocated = ee_len - (map->m_lblk - ee_block);
2979 	newblock = map->m_lblk - ee_block + ext_pblock(ex);
2980 
2981 	ex2 = ex;
2982 	orig_ex.ee_block = ex->ee_block;
2983 	orig_ex.ee_len   = cpu_to_le16(ee_len);
2984 	ext4_ext_store_pblock(&orig_ex, ext_pblock(ex));
2985 
2986 	/*
2987 	 * It is safe to convert extent to initialized via explicit
2988 	 * zeroout only if extent is fully insde i_size or new_size.
2989 	 */
2990 	may_zeroout = ee_block + ee_len <= eof_block;
2991 
2992 	/*
2993  	 * If the uninitialized extent begins at the same logical
2994  	 * block where the write begins, and the write completely
2995  	 * covers the extent, then we don't need to split it.
2996  	 */
2997 	if ((map->m_lblk == ee_block) && (allocated <= map->m_len))
2998 		return allocated;
2999 
3000 	err = ext4_ext_get_access(handle, inode, path + depth);
3001 	if (err)
3002 		goto out;
3003 	/* ex1: ee_block to map->m_lblk - 1 : uninitialized */
3004 	if (map->m_lblk > ee_block) {
3005 		ex1 = ex;
3006 		ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
3007 		ext4_ext_mark_uninitialized(ex1);
3008 		ex2 = &newex;
3009 	}
3010 	/*
3011 	 * for sanity, update the length of the ex2 extent before
3012 	 * we insert ex3, if ex1 is NULL. This is to avoid temporary
3013 	 * overlap of blocks.
3014 	 */
3015 	if (!ex1 && allocated > map->m_len)
3016 		ex2->ee_len = cpu_to_le16(map->m_len);
3017 	/* ex3: to ee_block + ee_len : uninitialised */
3018 	if (allocated > map->m_len) {
3019 		unsigned int newdepth;
3020 		ex3 = &newex;
3021 		ex3->ee_block = cpu_to_le32(map->m_lblk + map->m_len);
3022 		ext4_ext_store_pblock(ex3, newblock + map->m_len);
3023 		ex3->ee_len = cpu_to_le16(allocated - map->m_len);
3024 		ext4_ext_mark_uninitialized(ex3);
3025 		err = ext4_ext_insert_extent(handle, inode, path, ex3, flags);
3026 		if (err == -ENOSPC && may_zeroout) {
3027 			err =  ext4_ext_zeroout(inode, &orig_ex);
3028 			if (err)
3029 				goto fix_extent_len;
3030 			/* update the extent length and mark as initialized */
3031 			ex->ee_block = orig_ex.ee_block;
3032 			ex->ee_len   = orig_ex.ee_len;
3033 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
3034 			ext4_ext_dirty(handle, inode, path + depth);
3035 			/* zeroed the full extent */
3036 			/* blocks available from map->m_lblk */
3037 			return allocated;
3038 
3039 		} else if (err)
3040 			goto fix_extent_len;
3041 		/*
3042 		 * The depth, and hence eh & ex might change
3043 		 * as part of the insert above.
3044 		 */
3045 		newdepth = ext_depth(inode);
3046 		/*
3047 		 * update the extent length after successful insert of the
3048 		 * split extent
3049 		 */
3050 		ee_len -= ext4_ext_get_actual_len(ex3);
3051 		orig_ex.ee_len = cpu_to_le16(ee_len);
3052 		may_zeroout = ee_block + ee_len <= eof_block;
3053 
3054 		depth = newdepth;
3055 		ext4_ext_drop_refs(path);
3056 		path = ext4_ext_find_extent(inode, map->m_lblk, path);
3057 		if (IS_ERR(path)) {
3058 			err = PTR_ERR(path);
3059 			goto out;
3060 		}
3061 		eh = path[depth].p_hdr;
3062 		ex = path[depth].p_ext;
3063 		if (ex2 != &newex)
3064 			ex2 = ex;
3065 
3066 		err = ext4_ext_get_access(handle, inode, path + depth);
3067 		if (err)
3068 			goto out;
3069 
3070 		allocated = map->m_len;
3071 	}
3072 	/*
3073 	 * If there was a change of depth as part of the
3074 	 * insertion of ex3 above, we need to update the length
3075 	 * of the ex1 extent again here
3076 	 */
3077 	if (ex1 && ex1 != ex) {
3078 		ex1 = ex;
3079 		ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
3080 		ext4_ext_mark_uninitialized(ex1);
3081 		ex2 = &newex;
3082 	}
3083 	/*
3084 	 * ex2: map->m_lblk to map->m_lblk + map->m_len-1 : to be written
3085 	 * using direct I/O, uninitialised still.
3086 	 */
3087 	ex2->ee_block = cpu_to_le32(map->m_lblk);
3088 	ext4_ext_store_pblock(ex2, newblock);
3089 	ex2->ee_len = cpu_to_le16(allocated);
3090 	ext4_ext_mark_uninitialized(ex2);
3091 	if (ex2 != ex)
3092 		goto insert;
3093 	/* Mark modified extent as dirty */
3094 	err = ext4_ext_dirty(handle, inode, path + depth);
3095 	ext_debug("out here\n");
3096 	goto out;
3097 insert:
3098 	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3099 	if (err == -ENOSPC && may_zeroout) {
3100 		err =  ext4_ext_zeroout(inode, &orig_ex);
3101 		if (err)
3102 			goto fix_extent_len;
3103 		/* update the extent length and mark as initialized */
3104 		ex->ee_block = orig_ex.ee_block;
3105 		ex->ee_len   = orig_ex.ee_len;
3106 		ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
3107 		ext4_ext_dirty(handle, inode, path + depth);
3108 		/* zero out the first half */
3109 		return allocated;
3110 	} else if (err)
3111 		goto fix_extent_len;
3112 out:
3113 	ext4_ext_show_leaf(inode, path);
3114 	return err ? err : allocated;
3115 
3116 fix_extent_len:
3117 	ex->ee_block = orig_ex.ee_block;
3118 	ex->ee_len   = orig_ex.ee_len;
3119 	ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
3120 	ext4_ext_mark_uninitialized(ex);
3121 	ext4_ext_dirty(handle, inode, path + depth);
3122 	return err;
3123 }
3124 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3125 					      struct inode *inode,
3126 					      struct ext4_ext_path *path)
3127 {
3128 	struct ext4_extent *ex;
3129 	struct ext4_extent_header *eh;
3130 	int depth;
3131 	int err = 0;
3132 	int ret = 0;
3133 
3134 	depth = ext_depth(inode);
3135 	eh = path[depth].p_hdr;
3136 	ex = path[depth].p_ext;
3137 
3138 	err = ext4_ext_get_access(handle, inode, path + depth);
3139 	if (err)
3140 		goto out;
3141 	/* first mark the extent as initialized */
3142 	ext4_ext_mark_initialized(ex);
3143 
3144 	/*
3145 	 * We have to see if it can be merged with the extent
3146 	 * on the left.
3147 	 */
3148 	if (ex > EXT_FIRST_EXTENT(eh)) {
3149 		/*
3150 		 * To merge left, pass "ex - 1" to try_to_merge(),
3151 		 * since it merges towards right _only_.
3152 		 */
3153 		ret = ext4_ext_try_to_merge(inode, path, ex - 1);
3154 		if (ret) {
3155 			err = ext4_ext_correct_indexes(handle, inode, path);
3156 			if (err)
3157 				goto out;
3158 			depth = ext_depth(inode);
3159 			ex--;
3160 		}
3161 	}
3162 	/*
3163 	 * Try to Merge towards right.
3164 	 */
3165 	ret = ext4_ext_try_to_merge(inode, path, ex);
3166 	if (ret) {
3167 		err = ext4_ext_correct_indexes(handle, inode, path);
3168 		if (err)
3169 			goto out;
3170 		depth = ext_depth(inode);
3171 	}
3172 	/* Mark modified extent as dirty */
3173 	err = ext4_ext_dirty(handle, inode, path + depth);
3174 out:
3175 	ext4_ext_show_leaf(inode, path);
3176 	return err;
3177 }
3178 
3179 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3180 			sector_t block, int count)
3181 {
3182 	int i;
3183 	for (i = 0; i < count; i++)
3184                 unmap_underlying_metadata(bdev, block + i);
3185 }
3186 
3187 static int
3188 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3189 			struct ext4_map_blocks *map,
3190 			struct ext4_ext_path *path, int flags,
3191 			unsigned int allocated, ext4_fsblk_t newblock)
3192 {
3193 	int ret = 0;
3194 	int err = 0;
3195 	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3196 
3197 	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3198 		  "block %llu, max_blocks %u, flags %d, allocated %u",
3199 		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3200 		  flags, allocated);
3201 	ext4_ext_show_leaf(inode, path);
3202 
3203 	/* get_block() before submit the IO, split the extent */
3204 	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3205 		ret = ext4_split_unwritten_extents(handle, inode, map,
3206 						   path, flags);
3207 		/*
3208 		 * Flag the inode(non aio case) or end_io struct (aio case)
3209 		 * that this IO needs to convertion to written when IO is
3210 		 * completed
3211 		 */
3212 		if (io)
3213 			io->flag = EXT4_IO_UNWRITTEN;
3214 		else
3215 			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3216 		if (ext4_should_dioread_nolock(inode))
3217 			map->m_flags |= EXT4_MAP_UNINIT;
3218 		goto out;
3219 	}
3220 	/* IO end_io complete, convert the filled extent to written */
3221 	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3222 		ret = ext4_convert_unwritten_extents_endio(handle, inode,
3223 							path);
3224 		if (ret >= 0)
3225 			ext4_update_inode_fsync_trans(handle, inode, 1);
3226 		goto out2;
3227 	}
3228 	/* buffered IO case */
3229 	/*
3230 	 * repeat fallocate creation request
3231 	 * we already have an unwritten extent
3232 	 */
3233 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3234 		goto map_out;
3235 
3236 	/* buffered READ or buffered write_begin() lookup */
3237 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3238 		/*
3239 		 * We have blocks reserved already.  We
3240 		 * return allocated blocks so that delalloc
3241 		 * won't do block reservation for us.  But
3242 		 * the buffer head will be unmapped so that
3243 		 * a read from the block returns 0s.
3244 		 */
3245 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3246 		goto out1;
3247 	}
3248 
3249 	/* buffered write, writepage time, convert*/
3250 	ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3251 	if (ret >= 0)
3252 		ext4_update_inode_fsync_trans(handle, inode, 1);
3253 out:
3254 	if (ret <= 0) {
3255 		err = ret;
3256 		goto out2;
3257 	} else
3258 		allocated = ret;
3259 	map->m_flags |= EXT4_MAP_NEW;
3260 	/*
3261 	 * if we allocated more blocks than requested
3262 	 * we need to make sure we unmap the extra block
3263 	 * allocated. The actual needed block will get
3264 	 * unmapped later when we find the buffer_head marked
3265 	 * new.
3266 	 */
3267 	if (allocated > map->m_len) {
3268 		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3269 					newblock + map->m_len,
3270 					allocated - map->m_len);
3271 		allocated = map->m_len;
3272 	}
3273 
3274 	/*
3275 	 * If we have done fallocate with the offset that is already
3276 	 * delayed allocated, we would have block reservation
3277 	 * and quota reservation done in the delayed write path.
3278 	 * But fallocate would have already updated quota and block
3279 	 * count for this offset. So cancel these reservation
3280 	 */
3281 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3282 		ext4_da_update_reserve_space(inode, allocated, 0);
3283 
3284 map_out:
3285 	map->m_flags |= EXT4_MAP_MAPPED;
3286 out1:
3287 	if (allocated > map->m_len)
3288 		allocated = map->m_len;
3289 	ext4_ext_show_leaf(inode, path);
3290 	map->m_pblk = newblock;
3291 	map->m_len = allocated;
3292 out2:
3293 	if (path) {
3294 		ext4_ext_drop_refs(path);
3295 		kfree(path);
3296 	}
3297 	return err ? err : allocated;
3298 }
3299 /*
3300  * Block allocation/map/preallocation routine for extents based files
3301  *
3302  *
3303  * Need to be called with
3304  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3305  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3306  *
3307  * return > 0, number of of blocks already mapped/allocated
3308  *          if create == 0 and these are pre-allocated blocks
3309  *          	buffer head is unmapped
3310  *          otherwise blocks are mapped
3311  *
3312  * return = 0, if plain look up failed (blocks have not been allocated)
3313  *          buffer head is unmapped
3314  *
3315  * return < 0, error case.
3316  */
3317 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3318 			struct ext4_map_blocks *map, int flags)
3319 {
3320 	struct ext4_ext_path *path = NULL;
3321 	struct ext4_extent_header *eh;
3322 	struct ext4_extent newex, *ex, *last_ex;
3323 	ext4_fsblk_t newblock;
3324 	int err = 0, depth, ret, cache_type;
3325 	unsigned int allocated = 0;
3326 	struct ext4_allocation_request ar;
3327 	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3328 
3329 	ext_debug("blocks %u/%u requested for inode %lu\n",
3330 		  map->m_lblk, map->m_len, inode->i_ino);
3331 
3332 	/* check in cache */
3333 	cache_type = ext4_ext_in_cache(inode, map->m_lblk, &newex);
3334 	if (cache_type) {
3335 		if (cache_type == EXT4_EXT_CACHE_GAP) {
3336 			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3337 				/*
3338 				 * block isn't allocated yet and
3339 				 * user doesn't want to allocate it
3340 				 */
3341 				goto out2;
3342 			}
3343 			/* we should allocate requested block */
3344 		} else if (cache_type == EXT4_EXT_CACHE_EXTENT) {
3345 			/* block is already allocated */
3346 			newblock = map->m_lblk
3347 				   - le32_to_cpu(newex.ee_block)
3348 				   + ext_pblock(&newex);
3349 			/* number of remaining blocks in the extent */
3350 			allocated = ext4_ext_get_actual_len(&newex) -
3351 				(map->m_lblk - le32_to_cpu(newex.ee_block));
3352 			goto out;
3353 		} else {
3354 			BUG();
3355 		}
3356 	}
3357 
3358 	/* find extent for this block */
3359 	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3360 	if (IS_ERR(path)) {
3361 		err = PTR_ERR(path);
3362 		path = NULL;
3363 		goto out2;
3364 	}
3365 
3366 	depth = ext_depth(inode);
3367 
3368 	/*
3369 	 * consistent leaf must not be empty;
3370 	 * this situation is possible, though, _during_ tree modification;
3371 	 * this is why assert can't be put in ext4_ext_find_extent()
3372 	 */
3373 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3374 		EXT4_ERROR_INODE(inode, "bad extent address "
3375 				 "iblock: %d, depth: %d pblock %lld",
3376 				 map->m_lblk, depth, path[depth].p_block);
3377 		err = -EIO;
3378 		goto out2;
3379 	}
3380 	eh = path[depth].p_hdr;
3381 
3382 	ex = path[depth].p_ext;
3383 	if (ex) {
3384 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3385 		ext4_fsblk_t ee_start = ext_pblock(ex);
3386 		unsigned short ee_len;
3387 
3388 		/*
3389 		 * Uninitialized extents are treated as holes, except that
3390 		 * we split out initialized portions during a write.
3391 		 */
3392 		ee_len = ext4_ext_get_actual_len(ex);
3393 		/* if found extent covers block, simply return it */
3394 		if (in_range(map->m_lblk, ee_block, ee_len)) {
3395 			newblock = map->m_lblk - ee_block + ee_start;
3396 			/* number of remaining blocks in the extent */
3397 			allocated = ee_len - (map->m_lblk - ee_block);
3398 			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3399 				  ee_block, ee_len, newblock);
3400 
3401 			/* Do not put uninitialized extent in the cache */
3402 			if (!ext4_ext_is_uninitialized(ex)) {
3403 				ext4_ext_put_in_cache(inode, ee_block,
3404 							ee_len, ee_start,
3405 							EXT4_EXT_CACHE_EXTENT);
3406 				goto out;
3407 			}
3408 			ret = ext4_ext_handle_uninitialized_extents(handle,
3409 					inode, map, path, flags, allocated,
3410 					newblock);
3411 			return ret;
3412 		}
3413 	}
3414 
3415 	/*
3416 	 * requested block isn't allocated yet;
3417 	 * we couldn't try to create block if create flag is zero
3418 	 */
3419 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3420 		/*
3421 		 * put just found gap into cache to speed up
3422 		 * subsequent requests
3423 		 */
3424 		ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3425 		goto out2;
3426 	}
3427 	/*
3428 	 * Okay, we need to do block allocation.
3429 	 */
3430 
3431 	/* find neighbour allocated blocks */
3432 	ar.lleft = map->m_lblk;
3433 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3434 	if (err)
3435 		goto out2;
3436 	ar.lright = map->m_lblk;
3437 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
3438 	if (err)
3439 		goto out2;
3440 
3441 	/*
3442 	 * See if request is beyond maximum number of blocks we can have in
3443 	 * a single extent. For an initialized extent this limit is
3444 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3445 	 * EXT_UNINIT_MAX_LEN.
3446 	 */
3447 	if (map->m_len > EXT_INIT_MAX_LEN &&
3448 	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3449 		map->m_len = EXT_INIT_MAX_LEN;
3450 	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3451 		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3452 		map->m_len = EXT_UNINIT_MAX_LEN;
3453 
3454 	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3455 	newex.ee_block = cpu_to_le32(map->m_lblk);
3456 	newex.ee_len = cpu_to_le16(map->m_len);
3457 	err = ext4_ext_check_overlap(inode, &newex, path);
3458 	if (err)
3459 		allocated = ext4_ext_get_actual_len(&newex);
3460 	else
3461 		allocated = map->m_len;
3462 
3463 	/* allocate new block */
3464 	ar.inode = inode;
3465 	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3466 	ar.logical = map->m_lblk;
3467 	ar.len = allocated;
3468 	if (S_ISREG(inode->i_mode))
3469 		ar.flags = EXT4_MB_HINT_DATA;
3470 	else
3471 		/* disable in-core preallocation for non-regular files */
3472 		ar.flags = 0;
3473 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
3474 	if (!newblock)
3475 		goto out2;
3476 	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
3477 		  ar.goal, newblock, allocated);
3478 
3479 	/* try to insert new extent into found leaf and return */
3480 	ext4_ext_store_pblock(&newex, newblock);
3481 	newex.ee_len = cpu_to_le16(ar.len);
3482 	/* Mark uninitialized */
3483 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
3484 		ext4_ext_mark_uninitialized(&newex);
3485 		/*
3486 		 * io_end structure was created for every IO write to an
3487 		 * uninitialized extent. To avoid unecessary conversion,
3488 		 * here we flag the IO that really needs the conversion.
3489 		 * For non asycn direct IO case, flag the inode state
3490 		 * that we need to perform convertion when IO is done.
3491 		 */
3492 		if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3493 			if (io)
3494 				io->flag = EXT4_IO_UNWRITTEN;
3495 			else
3496 				ext4_set_inode_state(inode,
3497 						     EXT4_STATE_DIO_UNWRITTEN);
3498 		}
3499 		if (ext4_should_dioread_nolock(inode))
3500 			map->m_flags |= EXT4_MAP_UNINIT;
3501 	}
3502 
3503 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL)) {
3504 		if (unlikely(!eh->eh_entries)) {
3505 			EXT4_ERROR_INODE(inode,
3506 					 "eh->eh_entries == 0 ee_block %d",
3507 					 ex->ee_block);
3508 			err = -EIO;
3509 			goto out2;
3510 		}
3511 		last_ex = EXT_LAST_EXTENT(eh);
3512 		if (map->m_lblk + ar.len > le32_to_cpu(last_ex->ee_block)
3513 		    + ext4_ext_get_actual_len(last_ex))
3514 			EXT4_I(inode)->i_flags &= ~EXT4_EOFBLOCKS_FL;
3515 	}
3516 	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3517 	if (err) {
3518 		/* free data blocks we just allocated */
3519 		/* not a good idea to call discard here directly,
3520 		 * but otherwise we'd need to call it every free() */
3521 		ext4_discard_preallocations(inode);
3522 		ext4_free_blocks(handle, inode, 0, ext_pblock(&newex),
3523 				 ext4_ext_get_actual_len(&newex), 0);
3524 		goto out2;
3525 	}
3526 
3527 	/* previous routine could use block we allocated */
3528 	newblock = ext_pblock(&newex);
3529 	allocated = ext4_ext_get_actual_len(&newex);
3530 	if (allocated > map->m_len)
3531 		allocated = map->m_len;
3532 	map->m_flags |= EXT4_MAP_NEW;
3533 
3534 	/*
3535 	 * Update reserved blocks/metadata blocks after successful
3536 	 * block allocation which had been deferred till now.
3537 	 */
3538 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3539 		ext4_da_update_reserve_space(inode, allocated, 1);
3540 
3541 	/*
3542 	 * Cache the extent and update transaction to commit on fdatasync only
3543 	 * when it is _not_ an uninitialized extent.
3544 	 */
3545 	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
3546 		ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock,
3547 						EXT4_EXT_CACHE_EXTENT);
3548 		ext4_update_inode_fsync_trans(handle, inode, 1);
3549 	} else
3550 		ext4_update_inode_fsync_trans(handle, inode, 0);
3551 out:
3552 	if (allocated > map->m_len)
3553 		allocated = map->m_len;
3554 	ext4_ext_show_leaf(inode, path);
3555 	map->m_flags |= EXT4_MAP_MAPPED;
3556 	map->m_pblk = newblock;
3557 	map->m_len = allocated;
3558 out2:
3559 	if (path) {
3560 		ext4_ext_drop_refs(path);
3561 		kfree(path);
3562 	}
3563 	return err ? err : allocated;
3564 }
3565 
3566 void ext4_ext_truncate(struct inode *inode)
3567 {
3568 	struct address_space *mapping = inode->i_mapping;
3569 	struct super_block *sb = inode->i_sb;
3570 	ext4_lblk_t last_block;
3571 	handle_t *handle;
3572 	int err = 0;
3573 
3574 	/*
3575 	 * probably first extent we're gonna free will be last in block
3576 	 */
3577 	err = ext4_writepage_trans_blocks(inode);
3578 	handle = ext4_journal_start(inode, err);
3579 	if (IS_ERR(handle))
3580 		return;
3581 
3582 	if (inode->i_size & (sb->s_blocksize - 1))
3583 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3584 
3585 	if (ext4_orphan_add(handle, inode))
3586 		goto out_stop;
3587 
3588 	down_write(&EXT4_I(inode)->i_data_sem);
3589 	ext4_ext_invalidate_cache(inode);
3590 
3591 	ext4_discard_preallocations(inode);
3592 
3593 	/*
3594 	 * TODO: optimization is possible here.
3595 	 * Probably we need not scan at all,
3596 	 * because page truncation is enough.
3597 	 */
3598 
3599 	/* we have to know where to truncate from in crash case */
3600 	EXT4_I(inode)->i_disksize = inode->i_size;
3601 	ext4_mark_inode_dirty(handle, inode);
3602 
3603 	last_block = (inode->i_size + sb->s_blocksize - 1)
3604 			>> EXT4_BLOCK_SIZE_BITS(sb);
3605 	err = ext4_ext_remove_space(inode, last_block);
3606 
3607 	/* In a multi-transaction truncate, we only make the final
3608 	 * transaction synchronous.
3609 	 */
3610 	if (IS_SYNC(inode))
3611 		ext4_handle_sync(handle);
3612 
3613 out_stop:
3614 	up_write(&EXT4_I(inode)->i_data_sem);
3615 	/*
3616 	 * If this was a simple ftruncate() and the file will remain alive,
3617 	 * then we need to clear up the orphan record which we created above.
3618 	 * However, if this was a real unlink then we were called by
3619 	 * ext4_delete_inode(), and we allow that function to clean up the
3620 	 * orphan info for us.
3621 	 */
3622 	if (inode->i_nlink)
3623 		ext4_orphan_del(handle, inode);
3624 
3625 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3626 	ext4_mark_inode_dirty(handle, inode);
3627 	ext4_journal_stop(handle);
3628 }
3629 
3630 static void ext4_falloc_update_inode(struct inode *inode,
3631 				int mode, loff_t new_size, int update_ctime)
3632 {
3633 	struct timespec now;
3634 
3635 	if (update_ctime) {
3636 		now = current_fs_time(inode->i_sb);
3637 		if (!timespec_equal(&inode->i_ctime, &now))
3638 			inode->i_ctime = now;
3639 	}
3640 	/*
3641 	 * Update only when preallocation was requested beyond
3642 	 * the file size.
3643 	 */
3644 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3645 		if (new_size > i_size_read(inode))
3646 			i_size_write(inode, new_size);
3647 		if (new_size > EXT4_I(inode)->i_disksize)
3648 			ext4_update_i_disksize(inode, new_size);
3649 	} else {
3650 		/*
3651 		 * Mark that we allocate beyond EOF so the subsequent truncate
3652 		 * can proceed even if the new size is the same as i_size.
3653 		 */
3654 		if (new_size > i_size_read(inode))
3655 			EXT4_I(inode)->i_flags |= EXT4_EOFBLOCKS_FL;
3656 	}
3657 
3658 }
3659 
3660 /*
3661  * preallocate space for a file. This implements ext4's fallocate inode
3662  * operation, which gets called from sys_fallocate system call.
3663  * For block-mapped files, posix_fallocate should fall back to the method
3664  * of writing zeroes to the required new blocks (the same behavior which is
3665  * expected for file systems which do not support fallocate() system call).
3666  */
3667 long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len)
3668 {
3669 	handle_t *handle;
3670 	loff_t new_size;
3671 	unsigned int max_blocks;
3672 	int ret = 0;
3673 	int ret2 = 0;
3674 	int retries = 0;
3675 	struct ext4_map_blocks map;
3676 	unsigned int credits, blkbits = inode->i_blkbits;
3677 
3678 	/*
3679 	 * currently supporting (pre)allocate mode for extent-based
3680 	 * files _only_
3681 	 */
3682 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3683 		return -EOPNOTSUPP;
3684 
3685 	/* preallocation to directories is currently not supported */
3686 	if (S_ISDIR(inode->i_mode))
3687 		return -ENODEV;
3688 
3689 	map.m_lblk = offset >> blkbits;
3690 	/*
3691 	 * We can't just convert len to max_blocks because
3692 	 * If blocksize = 4096 offset = 3072 and len = 2048
3693 	 */
3694 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3695 		- map.m_lblk;
3696 	/*
3697 	 * credits to insert 1 extent into extent tree
3698 	 */
3699 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3700 	mutex_lock(&inode->i_mutex);
3701 	ret = inode_newsize_ok(inode, (len + offset));
3702 	if (ret) {
3703 		mutex_unlock(&inode->i_mutex);
3704 		return ret;
3705 	}
3706 retry:
3707 	while (ret >= 0 && ret < max_blocks) {
3708 		map.m_lblk = map.m_lblk + ret;
3709 		map.m_len = max_blocks = max_blocks - ret;
3710 		handle = ext4_journal_start(inode, credits);
3711 		if (IS_ERR(handle)) {
3712 			ret = PTR_ERR(handle);
3713 			break;
3714 		}
3715 		ret = ext4_map_blocks(handle, inode, &map,
3716 				      EXT4_GET_BLOCKS_CREATE_UNINIT_EXT);
3717 		if (ret <= 0) {
3718 #ifdef EXT4FS_DEBUG
3719 			WARN_ON(ret <= 0);
3720 			printk(KERN_ERR "%s: ext4_ext_map_blocks "
3721 				    "returned error inode#%lu, block=%u, "
3722 				    "max_blocks=%u", __func__,
3723 				    inode->i_ino, block, max_blocks);
3724 #endif
3725 			ext4_mark_inode_dirty(handle, inode);
3726 			ret2 = ext4_journal_stop(handle);
3727 			break;
3728 		}
3729 		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3730 						blkbits) >> blkbits))
3731 			new_size = offset + len;
3732 		else
3733 			new_size = (map.m_lblk + ret) << blkbits;
3734 
3735 		ext4_falloc_update_inode(inode, mode, new_size,
3736 					 (map.m_flags & EXT4_MAP_NEW));
3737 		ext4_mark_inode_dirty(handle, inode);
3738 		ret2 = ext4_journal_stop(handle);
3739 		if (ret2)
3740 			break;
3741 	}
3742 	if (ret == -ENOSPC &&
3743 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
3744 		ret = 0;
3745 		goto retry;
3746 	}
3747 	mutex_unlock(&inode->i_mutex);
3748 	return ret > 0 ? ret2 : ret;
3749 }
3750 
3751 /*
3752  * This function convert a range of blocks to written extents
3753  * The caller of this function will pass the start offset and the size.
3754  * all unwritten extents within this range will be converted to
3755  * written extents.
3756  *
3757  * This function is called from the direct IO end io call back
3758  * function, to convert the fallocated extents after IO is completed.
3759  * Returns 0 on success.
3760  */
3761 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
3762 				    ssize_t len)
3763 {
3764 	handle_t *handle;
3765 	unsigned int max_blocks;
3766 	int ret = 0;
3767 	int ret2 = 0;
3768 	struct ext4_map_blocks map;
3769 	unsigned int credits, blkbits = inode->i_blkbits;
3770 
3771 	map.m_lblk = offset >> blkbits;
3772 	/*
3773 	 * We can't just convert len to max_blocks because
3774 	 * If blocksize = 4096 offset = 3072 and len = 2048
3775 	 */
3776 	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
3777 		      map.m_lblk);
3778 	/*
3779 	 * credits to insert 1 extent into extent tree
3780 	 */
3781 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3782 	while (ret >= 0 && ret < max_blocks) {
3783 		map.m_lblk += ret;
3784 		map.m_len = (max_blocks -= ret);
3785 		handle = ext4_journal_start(inode, credits);
3786 		if (IS_ERR(handle)) {
3787 			ret = PTR_ERR(handle);
3788 			break;
3789 		}
3790 		ret = ext4_map_blocks(handle, inode, &map,
3791 				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
3792 		if (ret <= 0) {
3793 			WARN_ON(ret <= 0);
3794 			printk(KERN_ERR "%s: ext4_ext_map_blocks "
3795 				    "returned error inode#%lu, block=%u, "
3796 				    "max_blocks=%u", __func__,
3797 				    inode->i_ino, map.m_lblk, map.m_len);
3798 		}
3799 		ext4_mark_inode_dirty(handle, inode);
3800 		ret2 = ext4_journal_stop(handle);
3801 		if (ret <= 0 || ret2 )
3802 			break;
3803 	}
3804 	return ret > 0 ? ret2 : ret;
3805 }
3806 /*
3807  * Callback function called for each extent to gather FIEMAP information.
3808  */
3809 static int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path,
3810 		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
3811 		       void *data)
3812 {
3813 	struct fiemap_extent_info *fieinfo = data;
3814 	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
3815 	__u64	logical;
3816 	__u64	physical;
3817 	__u64	length;
3818 	__u32	flags = 0;
3819 	int	error;
3820 
3821 	logical =  (__u64)newex->ec_block << blksize_bits;
3822 
3823 	if (newex->ec_type == EXT4_EXT_CACHE_GAP) {
3824 		pgoff_t offset;
3825 		struct page *page;
3826 		struct buffer_head *bh = NULL;
3827 
3828 		offset = logical >> PAGE_SHIFT;
3829 		page = find_get_page(inode->i_mapping, offset);
3830 		if (!page || !page_has_buffers(page))
3831 			return EXT_CONTINUE;
3832 
3833 		bh = page_buffers(page);
3834 
3835 		if (!bh)
3836 			return EXT_CONTINUE;
3837 
3838 		if (buffer_delay(bh)) {
3839 			flags |= FIEMAP_EXTENT_DELALLOC;
3840 			page_cache_release(page);
3841 		} else {
3842 			page_cache_release(page);
3843 			return EXT_CONTINUE;
3844 		}
3845 	}
3846 
3847 	physical = (__u64)newex->ec_start << blksize_bits;
3848 	length =   (__u64)newex->ec_len << blksize_bits;
3849 
3850 	if (ex && ext4_ext_is_uninitialized(ex))
3851 		flags |= FIEMAP_EXTENT_UNWRITTEN;
3852 
3853 	/*
3854 	 * If this extent reaches EXT_MAX_BLOCK, it must be last.
3855 	 *
3856 	 * Or if ext4_ext_next_allocated_block is EXT_MAX_BLOCK,
3857 	 * this also indicates no more allocated blocks.
3858 	 *
3859 	 * XXX this might miss a single-block extent at EXT_MAX_BLOCK
3860 	 */
3861 	if (ext4_ext_next_allocated_block(path) == EXT_MAX_BLOCK ||
3862 	    newex->ec_block + newex->ec_len - 1 == EXT_MAX_BLOCK) {
3863 		loff_t size = i_size_read(inode);
3864 		loff_t bs = EXT4_BLOCK_SIZE(inode->i_sb);
3865 
3866 		flags |= FIEMAP_EXTENT_LAST;
3867 		if ((flags & FIEMAP_EXTENT_DELALLOC) &&
3868 		    logical+length > size)
3869 			length = (size - logical + bs - 1) & ~(bs-1);
3870 	}
3871 
3872 	error = fiemap_fill_next_extent(fieinfo, logical, physical,
3873 					length, flags);
3874 	if (error < 0)
3875 		return error;
3876 	if (error == 1)
3877 		return EXT_BREAK;
3878 
3879 	return EXT_CONTINUE;
3880 }
3881 
3882 /* fiemap flags we can handle specified here */
3883 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
3884 
3885 static int ext4_xattr_fiemap(struct inode *inode,
3886 				struct fiemap_extent_info *fieinfo)
3887 {
3888 	__u64 physical = 0;
3889 	__u64 length;
3890 	__u32 flags = FIEMAP_EXTENT_LAST;
3891 	int blockbits = inode->i_sb->s_blocksize_bits;
3892 	int error = 0;
3893 
3894 	/* in-inode? */
3895 	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
3896 		struct ext4_iloc iloc;
3897 		int offset;	/* offset of xattr in inode */
3898 
3899 		error = ext4_get_inode_loc(inode, &iloc);
3900 		if (error)
3901 			return error;
3902 		physical = iloc.bh->b_blocknr << blockbits;
3903 		offset = EXT4_GOOD_OLD_INODE_SIZE +
3904 				EXT4_I(inode)->i_extra_isize;
3905 		physical += offset;
3906 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
3907 		flags |= FIEMAP_EXTENT_DATA_INLINE;
3908 		brelse(iloc.bh);
3909 	} else { /* external block */
3910 		physical = EXT4_I(inode)->i_file_acl << blockbits;
3911 		length = inode->i_sb->s_blocksize;
3912 	}
3913 
3914 	if (physical)
3915 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
3916 						length, flags);
3917 	return (error < 0 ? error : 0);
3918 }
3919 
3920 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3921 		__u64 start, __u64 len)
3922 {
3923 	ext4_lblk_t start_blk;
3924 	int error = 0;
3925 
3926 	/* fallback to generic here if not in extents fmt */
3927 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3928 		return generic_block_fiemap(inode, fieinfo, start, len,
3929 			ext4_get_block);
3930 
3931 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
3932 		return -EBADR;
3933 
3934 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
3935 		error = ext4_xattr_fiemap(inode, fieinfo);
3936 	} else {
3937 		ext4_lblk_t len_blks;
3938 		__u64 last_blk;
3939 
3940 		start_blk = start >> inode->i_sb->s_blocksize_bits;
3941 		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
3942 		if (last_blk >= EXT_MAX_BLOCK)
3943 			last_blk = EXT_MAX_BLOCK-1;
3944 		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
3945 
3946 		/*
3947 		 * Walk the extent tree gathering extent information.
3948 		 * ext4_ext_fiemap_cb will push extents back to user.
3949 		 */
3950 		error = ext4_ext_walk_space(inode, start_blk, len_blks,
3951 					  ext4_ext_fiemap_cb, fieinfo);
3952 	}
3953 
3954 	return error;
3955 }
3956 
3957