1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public Licens 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/fs.h> 33 #include <linux/time.h> 34 #include <linux/jbd2.h> 35 #include <linux/highuid.h> 36 #include <linux/pagemap.h> 37 #include <linux/quotaops.h> 38 #include <linux/string.h> 39 #include <linux/slab.h> 40 #include <asm/uaccess.h> 41 #include <linux/fiemap.h> 42 #include "ext4_jbd2.h" 43 #include "ext4_extents.h" 44 #include "xattr.h" 45 46 #include <trace/events/ext4.h> 47 48 /* 49 * used by extent splitting. 50 */ 51 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 52 due to ENOSPC */ 53 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */ 54 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */ 55 56 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */ 57 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */ 58 59 static __le32 ext4_extent_block_csum(struct inode *inode, 60 struct ext4_extent_header *eh) 61 { 62 struct ext4_inode_info *ei = EXT4_I(inode); 63 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 64 __u32 csum; 65 66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, 67 EXT4_EXTENT_TAIL_OFFSET(eh)); 68 return cpu_to_le32(csum); 69 } 70 71 static int ext4_extent_block_csum_verify(struct inode *inode, 72 struct ext4_extent_header *eh) 73 { 74 struct ext4_extent_tail *et; 75 76 if (!ext4_has_metadata_csum(inode->i_sb)) 77 return 1; 78 79 et = find_ext4_extent_tail(eh); 80 if (et->et_checksum != ext4_extent_block_csum(inode, eh)) 81 return 0; 82 return 1; 83 } 84 85 static void ext4_extent_block_csum_set(struct inode *inode, 86 struct ext4_extent_header *eh) 87 { 88 struct ext4_extent_tail *et; 89 90 if (!ext4_has_metadata_csum(inode->i_sb)) 91 return; 92 93 et = find_ext4_extent_tail(eh); 94 et->et_checksum = ext4_extent_block_csum(inode, eh); 95 } 96 97 static int ext4_split_extent(handle_t *handle, 98 struct inode *inode, 99 struct ext4_ext_path **ppath, 100 struct ext4_map_blocks *map, 101 int split_flag, 102 int flags); 103 104 static int ext4_split_extent_at(handle_t *handle, 105 struct inode *inode, 106 struct ext4_ext_path **ppath, 107 ext4_lblk_t split, 108 int split_flag, 109 int flags); 110 111 static int ext4_find_delayed_extent(struct inode *inode, 112 struct extent_status *newes); 113 114 static int ext4_ext_truncate_extend_restart(handle_t *handle, 115 struct inode *inode, 116 int needed) 117 { 118 int err; 119 120 if (!ext4_handle_valid(handle)) 121 return 0; 122 if (handle->h_buffer_credits > needed) 123 return 0; 124 err = ext4_journal_extend(handle, needed); 125 if (err <= 0) 126 return err; 127 err = ext4_truncate_restart_trans(handle, inode, needed); 128 if (err == 0) 129 err = -EAGAIN; 130 131 return err; 132 } 133 134 /* 135 * could return: 136 * - EROFS 137 * - ENOMEM 138 */ 139 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 140 struct ext4_ext_path *path) 141 { 142 if (path->p_bh) { 143 /* path points to block */ 144 BUFFER_TRACE(path->p_bh, "get_write_access"); 145 return ext4_journal_get_write_access(handle, path->p_bh); 146 } 147 /* path points to leaf/index in inode body */ 148 /* we use in-core data, no need to protect them */ 149 return 0; 150 } 151 152 /* 153 * could return: 154 * - EROFS 155 * - ENOMEM 156 * - EIO 157 */ 158 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle, 159 struct inode *inode, struct ext4_ext_path *path) 160 { 161 int err; 162 163 WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); 164 if (path->p_bh) { 165 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); 166 /* path points to block */ 167 err = __ext4_handle_dirty_metadata(where, line, handle, 168 inode, path->p_bh); 169 } else { 170 /* path points to leaf/index in inode body */ 171 err = ext4_mark_inode_dirty(handle, inode); 172 } 173 return err; 174 } 175 176 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 177 struct ext4_ext_path *path, 178 ext4_lblk_t block) 179 { 180 if (path) { 181 int depth = path->p_depth; 182 struct ext4_extent *ex; 183 184 /* 185 * Try to predict block placement assuming that we are 186 * filling in a file which will eventually be 187 * non-sparse --- i.e., in the case of libbfd writing 188 * an ELF object sections out-of-order but in a way 189 * the eventually results in a contiguous object or 190 * executable file, or some database extending a table 191 * space file. However, this is actually somewhat 192 * non-ideal if we are writing a sparse file such as 193 * qemu or KVM writing a raw image file that is going 194 * to stay fairly sparse, since it will end up 195 * fragmenting the file system's free space. Maybe we 196 * should have some hueristics or some way to allow 197 * userspace to pass a hint to file system, 198 * especially if the latter case turns out to be 199 * common. 200 */ 201 ex = path[depth].p_ext; 202 if (ex) { 203 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 204 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 205 206 if (block > ext_block) 207 return ext_pblk + (block - ext_block); 208 else 209 return ext_pblk - (ext_block - block); 210 } 211 212 /* it looks like index is empty; 213 * try to find starting block from index itself */ 214 if (path[depth].p_bh) 215 return path[depth].p_bh->b_blocknr; 216 } 217 218 /* OK. use inode's group */ 219 return ext4_inode_to_goal_block(inode); 220 } 221 222 /* 223 * Allocation for a meta data block 224 */ 225 static ext4_fsblk_t 226 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 227 struct ext4_ext_path *path, 228 struct ext4_extent *ex, int *err, unsigned int flags) 229 { 230 ext4_fsblk_t goal, newblock; 231 232 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 233 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 234 NULL, err); 235 return newblock; 236 } 237 238 static inline int ext4_ext_space_block(struct inode *inode, int check) 239 { 240 int size; 241 242 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 243 / sizeof(struct ext4_extent); 244 #ifdef AGGRESSIVE_TEST 245 if (!check && size > 6) 246 size = 6; 247 #endif 248 return size; 249 } 250 251 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 252 { 253 int size; 254 255 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 256 / sizeof(struct ext4_extent_idx); 257 #ifdef AGGRESSIVE_TEST 258 if (!check && size > 5) 259 size = 5; 260 #endif 261 return size; 262 } 263 264 static inline int ext4_ext_space_root(struct inode *inode, int check) 265 { 266 int size; 267 268 size = sizeof(EXT4_I(inode)->i_data); 269 size -= sizeof(struct ext4_extent_header); 270 size /= sizeof(struct ext4_extent); 271 #ifdef AGGRESSIVE_TEST 272 if (!check && size > 3) 273 size = 3; 274 #endif 275 return size; 276 } 277 278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 279 { 280 int size; 281 282 size = sizeof(EXT4_I(inode)->i_data); 283 size -= sizeof(struct ext4_extent_header); 284 size /= sizeof(struct ext4_extent_idx); 285 #ifdef AGGRESSIVE_TEST 286 if (!check && size > 4) 287 size = 4; 288 #endif 289 return size; 290 } 291 292 static inline int 293 ext4_force_split_extent_at(handle_t *handle, struct inode *inode, 294 struct ext4_ext_path **ppath, ext4_lblk_t lblk, 295 int nofail) 296 { 297 struct ext4_ext_path *path = *ppath; 298 int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext); 299 300 return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ? 301 EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0, 302 EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO | 303 (nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0)); 304 } 305 306 /* 307 * Calculate the number of metadata blocks needed 308 * to allocate @blocks 309 * Worse case is one block per extent 310 */ 311 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 312 { 313 struct ext4_inode_info *ei = EXT4_I(inode); 314 int idxs; 315 316 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 317 / sizeof(struct ext4_extent_idx)); 318 319 /* 320 * If the new delayed allocation block is contiguous with the 321 * previous da block, it can share index blocks with the 322 * previous block, so we only need to allocate a new index 323 * block every idxs leaf blocks. At ldxs**2 blocks, we need 324 * an additional index block, and at ldxs**3 blocks, yet 325 * another index blocks. 326 */ 327 if (ei->i_da_metadata_calc_len && 328 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 329 int num = 0; 330 331 if ((ei->i_da_metadata_calc_len % idxs) == 0) 332 num++; 333 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 334 num++; 335 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 336 num++; 337 ei->i_da_metadata_calc_len = 0; 338 } else 339 ei->i_da_metadata_calc_len++; 340 ei->i_da_metadata_calc_last_lblock++; 341 return num; 342 } 343 344 /* 345 * In the worst case we need a new set of index blocks at 346 * every level of the inode's extent tree. 347 */ 348 ei->i_da_metadata_calc_len = 1; 349 ei->i_da_metadata_calc_last_lblock = lblock; 350 return ext_depth(inode) + 1; 351 } 352 353 static int 354 ext4_ext_max_entries(struct inode *inode, int depth) 355 { 356 int max; 357 358 if (depth == ext_depth(inode)) { 359 if (depth == 0) 360 max = ext4_ext_space_root(inode, 1); 361 else 362 max = ext4_ext_space_root_idx(inode, 1); 363 } else { 364 if (depth == 0) 365 max = ext4_ext_space_block(inode, 1); 366 else 367 max = ext4_ext_space_block_idx(inode, 1); 368 } 369 370 return max; 371 } 372 373 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 374 { 375 ext4_fsblk_t block = ext4_ext_pblock(ext); 376 int len = ext4_ext_get_actual_len(ext); 377 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block); 378 ext4_lblk_t last = lblock + len - 1; 379 380 if (lblock > last) 381 return 0; 382 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 383 } 384 385 static int ext4_valid_extent_idx(struct inode *inode, 386 struct ext4_extent_idx *ext_idx) 387 { 388 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 389 390 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 391 } 392 393 static int ext4_valid_extent_entries(struct inode *inode, 394 struct ext4_extent_header *eh, 395 int depth) 396 { 397 unsigned short entries; 398 if (eh->eh_entries == 0) 399 return 1; 400 401 entries = le16_to_cpu(eh->eh_entries); 402 403 if (depth == 0) { 404 /* leaf entries */ 405 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 406 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 407 ext4_fsblk_t pblock = 0; 408 ext4_lblk_t lblock = 0; 409 ext4_lblk_t prev = 0; 410 int len = 0; 411 while (entries) { 412 if (!ext4_valid_extent(inode, ext)) 413 return 0; 414 415 /* Check for overlapping extents */ 416 lblock = le32_to_cpu(ext->ee_block); 417 len = ext4_ext_get_actual_len(ext); 418 if ((lblock <= prev) && prev) { 419 pblock = ext4_ext_pblock(ext); 420 es->s_last_error_block = cpu_to_le64(pblock); 421 return 0; 422 } 423 ext++; 424 entries--; 425 prev = lblock + len - 1; 426 } 427 } else { 428 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 429 while (entries) { 430 if (!ext4_valid_extent_idx(inode, ext_idx)) 431 return 0; 432 ext_idx++; 433 entries--; 434 } 435 } 436 return 1; 437 } 438 439 static int __ext4_ext_check(const char *function, unsigned int line, 440 struct inode *inode, struct ext4_extent_header *eh, 441 int depth, ext4_fsblk_t pblk) 442 { 443 const char *error_msg; 444 int max = 0; 445 446 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 447 error_msg = "invalid magic"; 448 goto corrupted; 449 } 450 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 451 error_msg = "unexpected eh_depth"; 452 goto corrupted; 453 } 454 if (unlikely(eh->eh_max == 0)) { 455 error_msg = "invalid eh_max"; 456 goto corrupted; 457 } 458 max = ext4_ext_max_entries(inode, depth); 459 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 460 error_msg = "too large eh_max"; 461 goto corrupted; 462 } 463 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 464 error_msg = "invalid eh_entries"; 465 goto corrupted; 466 } 467 if (!ext4_valid_extent_entries(inode, eh, depth)) { 468 error_msg = "invalid extent entries"; 469 goto corrupted; 470 } 471 /* Verify checksum on non-root extent tree nodes */ 472 if (ext_depth(inode) != depth && 473 !ext4_extent_block_csum_verify(inode, eh)) { 474 error_msg = "extent tree corrupted"; 475 goto corrupted; 476 } 477 return 0; 478 479 corrupted: 480 ext4_error_inode(inode, function, line, 0, 481 "pblk %llu bad header/extent: %s - magic %x, " 482 "entries %u, max %u(%u), depth %u(%u)", 483 (unsigned long long) pblk, error_msg, 484 le16_to_cpu(eh->eh_magic), 485 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 486 max, le16_to_cpu(eh->eh_depth), depth); 487 return -EIO; 488 } 489 490 #define ext4_ext_check(inode, eh, depth, pblk) \ 491 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk)) 492 493 int ext4_ext_check_inode(struct inode *inode) 494 { 495 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0); 496 } 497 498 static struct buffer_head * 499 __read_extent_tree_block(const char *function, unsigned int line, 500 struct inode *inode, ext4_fsblk_t pblk, int depth, 501 int flags) 502 { 503 struct buffer_head *bh; 504 int err; 505 506 bh = sb_getblk(inode->i_sb, pblk); 507 if (unlikely(!bh)) 508 return ERR_PTR(-ENOMEM); 509 510 if (!bh_uptodate_or_lock(bh)) { 511 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_); 512 err = bh_submit_read(bh); 513 if (err < 0) 514 goto errout; 515 } 516 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE)) 517 return bh; 518 err = __ext4_ext_check(function, line, inode, 519 ext_block_hdr(bh), depth, pblk); 520 if (err) 521 goto errout; 522 set_buffer_verified(bh); 523 /* 524 * If this is a leaf block, cache all of its entries 525 */ 526 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) { 527 struct ext4_extent_header *eh = ext_block_hdr(bh); 528 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh); 529 ext4_lblk_t prev = 0; 530 int i; 531 532 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) { 533 unsigned int status = EXTENT_STATUS_WRITTEN; 534 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block); 535 int len = ext4_ext_get_actual_len(ex); 536 537 if (prev && (prev != lblk)) 538 ext4_es_cache_extent(inode, prev, 539 lblk - prev, ~0, 540 EXTENT_STATUS_HOLE); 541 542 if (ext4_ext_is_unwritten(ex)) 543 status = EXTENT_STATUS_UNWRITTEN; 544 ext4_es_cache_extent(inode, lblk, len, 545 ext4_ext_pblock(ex), status); 546 prev = lblk + len; 547 } 548 } 549 return bh; 550 errout: 551 put_bh(bh); 552 return ERR_PTR(err); 553 554 } 555 556 #define read_extent_tree_block(inode, pblk, depth, flags) \ 557 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \ 558 (depth), (flags)) 559 560 /* 561 * This function is called to cache a file's extent information in the 562 * extent status tree 563 */ 564 int ext4_ext_precache(struct inode *inode) 565 { 566 struct ext4_inode_info *ei = EXT4_I(inode); 567 struct ext4_ext_path *path = NULL; 568 struct buffer_head *bh; 569 int i = 0, depth, ret = 0; 570 571 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 572 return 0; /* not an extent-mapped inode */ 573 574 down_read(&ei->i_data_sem); 575 depth = ext_depth(inode); 576 577 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 578 GFP_NOFS); 579 if (path == NULL) { 580 up_read(&ei->i_data_sem); 581 return -ENOMEM; 582 } 583 584 /* Don't cache anything if there are no external extent blocks */ 585 if (depth == 0) 586 goto out; 587 path[0].p_hdr = ext_inode_hdr(inode); 588 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0); 589 if (ret) 590 goto out; 591 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr); 592 while (i >= 0) { 593 /* 594 * If this is a leaf block or we've reached the end of 595 * the index block, go up 596 */ 597 if ((i == depth) || 598 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) { 599 brelse(path[i].p_bh); 600 path[i].p_bh = NULL; 601 i--; 602 continue; 603 } 604 bh = read_extent_tree_block(inode, 605 ext4_idx_pblock(path[i].p_idx++), 606 depth - i - 1, 607 EXT4_EX_FORCE_CACHE); 608 if (IS_ERR(bh)) { 609 ret = PTR_ERR(bh); 610 break; 611 } 612 i++; 613 path[i].p_bh = bh; 614 path[i].p_hdr = ext_block_hdr(bh); 615 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr); 616 } 617 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED); 618 out: 619 up_read(&ei->i_data_sem); 620 ext4_ext_drop_refs(path); 621 kfree(path); 622 return ret; 623 } 624 625 #ifdef EXT_DEBUG 626 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 627 { 628 int k, l = path->p_depth; 629 630 ext_debug("path:"); 631 for (k = 0; k <= l; k++, path++) { 632 if (path->p_idx) { 633 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 634 ext4_idx_pblock(path->p_idx)); 635 } else if (path->p_ext) { 636 ext_debug(" %d:[%d]%d:%llu ", 637 le32_to_cpu(path->p_ext->ee_block), 638 ext4_ext_is_unwritten(path->p_ext), 639 ext4_ext_get_actual_len(path->p_ext), 640 ext4_ext_pblock(path->p_ext)); 641 } else 642 ext_debug(" []"); 643 } 644 ext_debug("\n"); 645 } 646 647 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 648 { 649 int depth = ext_depth(inode); 650 struct ext4_extent_header *eh; 651 struct ext4_extent *ex; 652 int i; 653 654 if (!path) 655 return; 656 657 eh = path[depth].p_hdr; 658 ex = EXT_FIRST_EXTENT(eh); 659 660 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 661 662 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 663 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 664 ext4_ext_is_unwritten(ex), 665 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 666 } 667 ext_debug("\n"); 668 } 669 670 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 671 ext4_fsblk_t newblock, int level) 672 { 673 int depth = ext_depth(inode); 674 struct ext4_extent *ex; 675 676 if (depth != level) { 677 struct ext4_extent_idx *idx; 678 idx = path[level].p_idx; 679 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 680 ext_debug("%d: move %d:%llu in new index %llu\n", level, 681 le32_to_cpu(idx->ei_block), 682 ext4_idx_pblock(idx), 683 newblock); 684 idx++; 685 } 686 687 return; 688 } 689 690 ex = path[depth].p_ext; 691 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 692 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 693 le32_to_cpu(ex->ee_block), 694 ext4_ext_pblock(ex), 695 ext4_ext_is_unwritten(ex), 696 ext4_ext_get_actual_len(ex), 697 newblock); 698 ex++; 699 } 700 } 701 702 #else 703 #define ext4_ext_show_path(inode, path) 704 #define ext4_ext_show_leaf(inode, path) 705 #define ext4_ext_show_move(inode, path, newblock, level) 706 #endif 707 708 void ext4_ext_drop_refs(struct ext4_ext_path *path) 709 { 710 int depth, i; 711 712 if (!path) 713 return; 714 depth = path->p_depth; 715 for (i = 0; i <= depth; i++, path++) 716 if (path->p_bh) { 717 brelse(path->p_bh); 718 path->p_bh = NULL; 719 } 720 } 721 722 /* 723 * ext4_ext_binsearch_idx: 724 * binary search for the closest index of the given block 725 * the header must be checked before calling this 726 */ 727 static void 728 ext4_ext_binsearch_idx(struct inode *inode, 729 struct ext4_ext_path *path, ext4_lblk_t block) 730 { 731 struct ext4_extent_header *eh = path->p_hdr; 732 struct ext4_extent_idx *r, *l, *m; 733 734 735 ext_debug("binsearch for %u(idx): ", block); 736 737 l = EXT_FIRST_INDEX(eh) + 1; 738 r = EXT_LAST_INDEX(eh); 739 while (l <= r) { 740 m = l + (r - l) / 2; 741 if (block < le32_to_cpu(m->ei_block)) 742 r = m - 1; 743 else 744 l = m + 1; 745 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 746 m, le32_to_cpu(m->ei_block), 747 r, le32_to_cpu(r->ei_block)); 748 } 749 750 path->p_idx = l - 1; 751 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), 752 ext4_idx_pblock(path->p_idx)); 753 754 #ifdef CHECK_BINSEARCH 755 { 756 struct ext4_extent_idx *chix, *ix; 757 int k; 758 759 chix = ix = EXT_FIRST_INDEX(eh); 760 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 761 if (k != 0 && 762 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 763 printk(KERN_DEBUG "k=%d, ix=0x%p, " 764 "first=0x%p\n", k, 765 ix, EXT_FIRST_INDEX(eh)); 766 printk(KERN_DEBUG "%u <= %u\n", 767 le32_to_cpu(ix->ei_block), 768 le32_to_cpu(ix[-1].ei_block)); 769 } 770 BUG_ON(k && le32_to_cpu(ix->ei_block) 771 <= le32_to_cpu(ix[-1].ei_block)); 772 if (block < le32_to_cpu(ix->ei_block)) 773 break; 774 chix = ix; 775 } 776 BUG_ON(chix != path->p_idx); 777 } 778 #endif 779 780 } 781 782 /* 783 * ext4_ext_binsearch: 784 * binary search for closest extent of the given block 785 * the header must be checked before calling this 786 */ 787 static void 788 ext4_ext_binsearch(struct inode *inode, 789 struct ext4_ext_path *path, ext4_lblk_t block) 790 { 791 struct ext4_extent_header *eh = path->p_hdr; 792 struct ext4_extent *r, *l, *m; 793 794 if (eh->eh_entries == 0) { 795 /* 796 * this leaf is empty: 797 * we get such a leaf in split/add case 798 */ 799 return; 800 } 801 802 ext_debug("binsearch for %u: ", block); 803 804 l = EXT_FIRST_EXTENT(eh) + 1; 805 r = EXT_LAST_EXTENT(eh); 806 807 while (l <= r) { 808 m = l + (r - l) / 2; 809 if (block < le32_to_cpu(m->ee_block)) 810 r = m - 1; 811 else 812 l = m + 1; 813 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 814 m, le32_to_cpu(m->ee_block), 815 r, le32_to_cpu(r->ee_block)); 816 } 817 818 path->p_ext = l - 1; 819 ext_debug(" -> %d:%llu:[%d]%d ", 820 le32_to_cpu(path->p_ext->ee_block), 821 ext4_ext_pblock(path->p_ext), 822 ext4_ext_is_unwritten(path->p_ext), 823 ext4_ext_get_actual_len(path->p_ext)); 824 825 #ifdef CHECK_BINSEARCH 826 { 827 struct ext4_extent *chex, *ex; 828 int k; 829 830 chex = ex = EXT_FIRST_EXTENT(eh); 831 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 832 BUG_ON(k && le32_to_cpu(ex->ee_block) 833 <= le32_to_cpu(ex[-1].ee_block)); 834 if (block < le32_to_cpu(ex->ee_block)) 835 break; 836 chex = ex; 837 } 838 BUG_ON(chex != path->p_ext); 839 } 840 #endif 841 842 } 843 844 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 845 { 846 struct ext4_extent_header *eh; 847 848 eh = ext_inode_hdr(inode); 849 eh->eh_depth = 0; 850 eh->eh_entries = 0; 851 eh->eh_magic = EXT4_EXT_MAGIC; 852 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 853 ext4_mark_inode_dirty(handle, inode); 854 return 0; 855 } 856 857 struct ext4_ext_path * 858 ext4_find_extent(struct inode *inode, ext4_lblk_t block, 859 struct ext4_ext_path **orig_path, int flags) 860 { 861 struct ext4_extent_header *eh; 862 struct buffer_head *bh; 863 struct ext4_ext_path *path = orig_path ? *orig_path : NULL; 864 short int depth, i, ppos = 0; 865 int ret; 866 867 eh = ext_inode_hdr(inode); 868 depth = ext_depth(inode); 869 870 if (path) { 871 ext4_ext_drop_refs(path); 872 if (depth > path[0].p_maxdepth) { 873 kfree(path); 874 *orig_path = path = NULL; 875 } 876 } 877 if (!path) { 878 /* account possible depth increase */ 879 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 880 GFP_NOFS); 881 if (unlikely(!path)) 882 return ERR_PTR(-ENOMEM); 883 path[0].p_maxdepth = depth + 1; 884 } 885 path[0].p_hdr = eh; 886 path[0].p_bh = NULL; 887 888 i = depth; 889 /* walk through the tree */ 890 while (i) { 891 ext_debug("depth %d: num %d, max %d\n", 892 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 893 894 ext4_ext_binsearch_idx(inode, path + ppos, block); 895 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 896 path[ppos].p_depth = i; 897 path[ppos].p_ext = NULL; 898 899 bh = read_extent_tree_block(inode, path[ppos].p_block, --i, 900 flags); 901 if (unlikely(IS_ERR(bh))) { 902 ret = PTR_ERR(bh); 903 goto err; 904 } 905 906 eh = ext_block_hdr(bh); 907 ppos++; 908 if (unlikely(ppos > depth)) { 909 put_bh(bh); 910 EXT4_ERROR_INODE(inode, 911 "ppos %d > depth %d", ppos, depth); 912 ret = -EIO; 913 goto err; 914 } 915 path[ppos].p_bh = bh; 916 path[ppos].p_hdr = eh; 917 } 918 919 path[ppos].p_depth = i; 920 path[ppos].p_ext = NULL; 921 path[ppos].p_idx = NULL; 922 923 /* find extent */ 924 ext4_ext_binsearch(inode, path + ppos, block); 925 /* if not an empty leaf */ 926 if (path[ppos].p_ext) 927 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 928 929 ext4_ext_show_path(inode, path); 930 931 return path; 932 933 err: 934 ext4_ext_drop_refs(path); 935 kfree(path); 936 if (orig_path) 937 *orig_path = NULL; 938 return ERR_PTR(ret); 939 } 940 941 /* 942 * ext4_ext_insert_index: 943 * insert new index [@logical;@ptr] into the block at @curp; 944 * check where to insert: before @curp or after @curp 945 */ 946 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 947 struct ext4_ext_path *curp, 948 int logical, ext4_fsblk_t ptr) 949 { 950 struct ext4_extent_idx *ix; 951 int len, err; 952 953 err = ext4_ext_get_access(handle, inode, curp); 954 if (err) 955 return err; 956 957 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 958 EXT4_ERROR_INODE(inode, 959 "logical %d == ei_block %d!", 960 logical, le32_to_cpu(curp->p_idx->ei_block)); 961 return -EIO; 962 } 963 964 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 965 >= le16_to_cpu(curp->p_hdr->eh_max))) { 966 EXT4_ERROR_INODE(inode, 967 "eh_entries %d >= eh_max %d!", 968 le16_to_cpu(curp->p_hdr->eh_entries), 969 le16_to_cpu(curp->p_hdr->eh_max)); 970 return -EIO; 971 } 972 973 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 974 /* insert after */ 975 ext_debug("insert new index %d after: %llu\n", logical, ptr); 976 ix = curp->p_idx + 1; 977 } else { 978 /* insert before */ 979 ext_debug("insert new index %d before: %llu\n", logical, ptr); 980 ix = curp->p_idx; 981 } 982 983 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 984 BUG_ON(len < 0); 985 if (len > 0) { 986 ext_debug("insert new index %d: " 987 "move %d indices from 0x%p to 0x%p\n", 988 logical, len, ix, ix + 1); 989 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 990 } 991 992 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 993 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 994 return -EIO; 995 } 996 997 ix->ei_block = cpu_to_le32(logical); 998 ext4_idx_store_pblock(ix, ptr); 999 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 1000 1001 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 1002 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 1003 return -EIO; 1004 } 1005 1006 err = ext4_ext_dirty(handle, inode, curp); 1007 ext4_std_error(inode->i_sb, err); 1008 1009 return err; 1010 } 1011 1012 /* 1013 * ext4_ext_split: 1014 * inserts new subtree into the path, using free index entry 1015 * at depth @at: 1016 * - allocates all needed blocks (new leaf and all intermediate index blocks) 1017 * - makes decision where to split 1018 * - moves remaining extents and index entries (right to the split point) 1019 * into the newly allocated blocks 1020 * - initializes subtree 1021 */ 1022 static int ext4_ext_split(handle_t *handle, struct inode *inode, 1023 unsigned int flags, 1024 struct ext4_ext_path *path, 1025 struct ext4_extent *newext, int at) 1026 { 1027 struct buffer_head *bh = NULL; 1028 int depth = ext_depth(inode); 1029 struct ext4_extent_header *neh; 1030 struct ext4_extent_idx *fidx; 1031 int i = at, k, m, a; 1032 ext4_fsblk_t newblock, oldblock; 1033 __le32 border; 1034 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 1035 int err = 0; 1036 1037 /* make decision: where to split? */ 1038 /* FIXME: now decision is simplest: at current extent */ 1039 1040 /* if current leaf will be split, then we should use 1041 * border from split point */ 1042 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 1043 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 1044 return -EIO; 1045 } 1046 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 1047 border = path[depth].p_ext[1].ee_block; 1048 ext_debug("leaf will be split." 1049 " next leaf starts at %d\n", 1050 le32_to_cpu(border)); 1051 } else { 1052 border = newext->ee_block; 1053 ext_debug("leaf will be added." 1054 " next leaf starts at %d\n", 1055 le32_to_cpu(border)); 1056 } 1057 1058 /* 1059 * If error occurs, then we break processing 1060 * and mark filesystem read-only. index won't 1061 * be inserted and tree will be in consistent 1062 * state. Next mount will repair buffers too. 1063 */ 1064 1065 /* 1066 * Get array to track all allocated blocks. 1067 * We need this to handle errors and free blocks 1068 * upon them. 1069 */ 1070 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 1071 if (!ablocks) 1072 return -ENOMEM; 1073 1074 /* allocate all needed blocks */ 1075 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 1076 for (a = 0; a < depth - at; a++) { 1077 newblock = ext4_ext_new_meta_block(handle, inode, path, 1078 newext, &err, flags); 1079 if (newblock == 0) 1080 goto cleanup; 1081 ablocks[a] = newblock; 1082 } 1083 1084 /* initialize new leaf */ 1085 newblock = ablocks[--a]; 1086 if (unlikely(newblock == 0)) { 1087 EXT4_ERROR_INODE(inode, "newblock == 0!"); 1088 err = -EIO; 1089 goto cleanup; 1090 } 1091 bh = sb_getblk(inode->i_sb, newblock); 1092 if (unlikely(!bh)) { 1093 err = -ENOMEM; 1094 goto cleanup; 1095 } 1096 lock_buffer(bh); 1097 1098 err = ext4_journal_get_create_access(handle, bh); 1099 if (err) 1100 goto cleanup; 1101 1102 neh = ext_block_hdr(bh); 1103 neh->eh_entries = 0; 1104 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1105 neh->eh_magic = EXT4_EXT_MAGIC; 1106 neh->eh_depth = 0; 1107 1108 /* move remainder of path[depth] to the new leaf */ 1109 if (unlikely(path[depth].p_hdr->eh_entries != 1110 path[depth].p_hdr->eh_max)) { 1111 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 1112 path[depth].p_hdr->eh_entries, 1113 path[depth].p_hdr->eh_max); 1114 err = -EIO; 1115 goto cleanup; 1116 } 1117 /* start copy from next extent */ 1118 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 1119 ext4_ext_show_move(inode, path, newblock, depth); 1120 if (m) { 1121 struct ext4_extent *ex; 1122 ex = EXT_FIRST_EXTENT(neh); 1123 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 1124 le16_add_cpu(&neh->eh_entries, m); 1125 } 1126 1127 ext4_extent_block_csum_set(inode, neh); 1128 set_buffer_uptodate(bh); 1129 unlock_buffer(bh); 1130 1131 err = ext4_handle_dirty_metadata(handle, inode, bh); 1132 if (err) 1133 goto cleanup; 1134 brelse(bh); 1135 bh = NULL; 1136 1137 /* correct old leaf */ 1138 if (m) { 1139 err = ext4_ext_get_access(handle, inode, path + depth); 1140 if (err) 1141 goto cleanup; 1142 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 1143 err = ext4_ext_dirty(handle, inode, path + depth); 1144 if (err) 1145 goto cleanup; 1146 1147 } 1148 1149 /* create intermediate indexes */ 1150 k = depth - at - 1; 1151 if (unlikely(k < 0)) { 1152 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 1153 err = -EIO; 1154 goto cleanup; 1155 } 1156 if (k) 1157 ext_debug("create %d intermediate indices\n", k); 1158 /* insert new index into current index block */ 1159 /* current depth stored in i var */ 1160 i = depth - 1; 1161 while (k--) { 1162 oldblock = newblock; 1163 newblock = ablocks[--a]; 1164 bh = sb_getblk(inode->i_sb, newblock); 1165 if (unlikely(!bh)) { 1166 err = -ENOMEM; 1167 goto cleanup; 1168 } 1169 lock_buffer(bh); 1170 1171 err = ext4_journal_get_create_access(handle, bh); 1172 if (err) 1173 goto cleanup; 1174 1175 neh = ext_block_hdr(bh); 1176 neh->eh_entries = cpu_to_le16(1); 1177 neh->eh_magic = EXT4_EXT_MAGIC; 1178 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1179 neh->eh_depth = cpu_to_le16(depth - i); 1180 fidx = EXT_FIRST_INDEX(neh); 1181 fidx->ei_block = border; 1182 ext4_idx_store_pblock(fidx, oldblock); 1183 1184 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 1185 i, newblock, le32_to_cpu(border), oldblock); 1186 1187 /* move remainder of path[i] to the new index block */ 1188 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 1189 EXT_LAST_INDEX(path[i].p_hdr))) { 1190 EXT4_ERROR_INODE(inode, 1191 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 1192 le32_to_cpu(path[i].p_ext->ee_block)); 1193 err = -EIO; 1194 goto cleanup; 1195 } 1196 /* start copy indexes */ 1197 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 1198 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 1199 EXT_MAX_INDEX(path[i].p_hdr)); 1200 ext4_ext_show_move(inode, path, newblock, i); 1201 if (m) { 1202 memmove(++fidx, path[i].p_idx, 1203 sizeof(struct ext4_extent_idx) * m); 1204 le16_add_cpu(&neh->eh_entries, m); 1205 } 1206 ext4_extent_block_csum_set(inode, neh); 1207 set_buffer_uptodate(bh); 1208 unlock_buffer(bh); 1209 1210 err = ext4_handle_dirty_metadata(handle, inode, bh); 1211 if (err) 1212 goto cleanup; 1213 brelse(bh); 1214 bh = NULL; 1215 1216 /* correct old index */ 1217 if (m) { 1218 err = ext4_ext_get_access(handle, inode, path + i); 1219 if (err) 1220 goto cleanup; 1221 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1222 err = ext4_ext_dirty(handle, inode, path + i); 1223 if (err) 1224 goto cleanup; 1225 } 1226 1227 i--; 1228 } 1229 1230 /* insert new index */ 1231 err = ext4_ext_insert_index(handle, inode, path + at, 1232 le32_to_cpu(border), newblock); 1233 1234 cleanup: 1235 if (bh) { 1236 if (buffer_locked(bh)) 1237 unlock_buffer(bh); 1238 brelse(bh); 1239 } 1240 1241 if (err) { 1242 /* free all allocated blocks in error case */ 1243 for (i = 0; i < depth; i++) { 1244 if (!ablocks[i]) 1245 continue; 1246 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1247 EXT4_FREE_BLOCKS_METADATA); 1248 } 1249 } 1250 kfree(ablocks); 1251 1252 return err; 1253 } 1254 1255 /* 1256 * ext4_ext_grow_indepth: 1257 * implements tree growing procedure: 1258 * - allocates new block 1259 * - moves top-level data (index block or leaf) into the new block 1260 * - initializes new top-level, creating index that points to the 1261 * just created block 1262 */ 1263 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1264 unsigned int flags) 1265 { 1266 struct ext4_extent_header *neh; 1267 struct buffer_head *bh; 1268 ext4_fsblk_t newblock, goal = 0; 1269 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 1270 int err = 0; 1271 1272 /* Try to prepend new index to old one */ 1273 if (ext_depth(inode)) 1274 goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode))); 1275 if (goal > le32_to_cpu(es->s_first_data_block)) { 1276 flags |= EXT4_MB_HINT_TRY_GOAL; 1277 goal--; 1278 } else 1279 goal = ext4_inode_to_goal_block(inode); 1280 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 1281 NULL, &err); 1282 if (newblock == 0) 1283 return err; 1284 1285 bh = sb_getblk(inode->i_sb, newblock); 1286 if (unlikely(!bh)) 1287 return -ENOMEM; 1288 lock_buffer(bh); 1289 1290 err = ext4_journal_get_create_access(handle, bh); 1291 if (err) { 1292 unlock_buffer(bh); 1293 goto out; 1294 } 1295 1296 /* move top-level index/leaf into new block */ 1297 memmove(bh->b_data, EXT4_I(inode)->i_data, 1298 sizeof(EXT4_I(inode)->i_data)); 1299 1300 /* set size of new block */ 1301 neh = ext_block_hdr(bh); 1302 /* old root could have indexes or leaves 1303 * so calculate e_max right way */ 1304 if (ext_depth(inode)) 1305 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1306 else 1307 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1308 neh->eh_magic = EXT4_EXT_MAGIC; 1309 ext4_extent_block_csum_set(inode, neh); 1310 set_buffer_uptodate(bh); 1311 unlock_buffer(bh); 1312 1313 err = ext4_handle_dirty_metadata(handle, inode, bh); 1314 if (err) 1315 goto out; 1316 1317 /* Update top-level index: num,max,pointer */ 1318 neh = ext_inode_hdr(inode); 1319 neh->eh_entries = cpu_to_le16(1); 1320 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1321 if (neh->eh_depth == 0) { 1322 /* Root extent block becomes index block */ 1323 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1324 EXT_FIRST_INDEX(neh)->ei_block = 1325 EXT_FIRST_EXTENT(neh)->ee_block; 1326 } 1327 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1328 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1329 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1330 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1331 1332 le16_add_cpu(&neh->eh_depth, 1); 1333 ext4_mark_inode_dirty(handle, inode); 1334 out: 1335 brelse(bh); 1336 1337 return err; 1338 } 1339 1340 /* 1341 * ext4_ext_create_new_leaf: 1342 * finds empty index and adds new leaf. 1343 * if no free index is found, then it requests in-depth growing. 1344 */ 1345 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1346 unsigned int mb_flags, 1347 unsigned int gb_flags, 1348 struct ext4_ext_path **ppath, 1349 struct ext4_extent *newext) 1350 { 1351 struct ext4_ext_path *path = *ppath; 1352 struct ext4_ext_path *curp; 1353 int depth, i, err = 0; 1354 1355 repeat: 1356 i = depth = ext_depth(inode); 1357 1358 /* walk up to the tree and look for free index entry */ 1359 curp = path + depth; 1360 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1361 i--; 1362 curp--; 1363 } 1364 1365 /* we use already allocated block for index block, 1366 * so subsequent data blocks should be contiguous */ 1367 if (EXT_HAS_FREE_INDEX(curp)) { 1368 /* if we found index with free entry, then use that 1369 * entry: create all needed subtree and add new leaf */ 1370 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i); 1371 if (err) 1372 goto out; 1373 1374 /* refill path */ 1375 path = ext4_find_extent(inode, 1376 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1377 ppath, gb_flags); 1378 if (IS_ERR(path)) 1379 err = PTR_ERR(path); 1380 } else { 1381 /* tree is full, time to grow in depth */ 1382 err = ext4_ext_grow_indepth(handle, inode, mb_flags); 1383 if (err) 1384 goto out; 1385 1386 /* refill path */ 1387 path = ext4_find_extent(inode, 1388 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1389 ppath, gb_flags); 1390 if (IS_ERR(path)) { 1391 err = PTR_ERR(path); 1392 goto out; 1393 } 1394 1395 /* 1396 * only first (depth 0 -> 1) produces free space; 1397 * in all other cases we have to split the grown tree 1398 */ 1399 depth = ext_depth(inode); 1400 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1401 /* now we need to split */ 1402 goto repeat; 1403 } 1404 } 1405 1406 out: 1407 return err; 1408 } 1409 1410 /* 1411 * search the closest allocated block to the left for *logical 1412 * and returns it at @logical + it's physical address at @phys 1413 * if *logical is the smallest allocated block, the function 1414 * returns 0 at @phys 1415 * return value contains 0 (success) or error code 1416 */ 1417 static int ext4_ext_search_left(struct inode *inode, 1418 struct ext4_ext_path *path, 1419 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1420 { 1421 struct ext4_extent_idx *ix; 1422 struct ext4_extent *ex; 1423 int depth, ee_len; 1424 1425 if (unlikely(path == NULL)) { 1426 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1427 return -EIO; 1428 } 1429 depth = path->p_depth; 1430 *phys = 0; 1431 1432 if (depth == 0 && path->p_ext == NULL) 1433 return 0; 1434 1435 /* usually extent in the path covers blocks smaller 1436 * then *logical, but it can be that extent is the 1437 * first one in the file */ 1438 1439 ex = path[depth].p_ext; 1440 ee_len = ext4_ext_get_actual_len(ex); 1441 if (*logical < le32_to_cpu(ex->ee_block)) { 1442 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1443 EXT4_ERROR_INODE(inode, 1444 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1445 *logical, le32_to_cpu(ex->ee_block)); 1446 return -EIO; 1447 } 1448 while (--depth >= 0) { 1449 ix = path[depth].p_idx; 1450 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1451 EXT4_ERROR_INODE(inode, 1452 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1453 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1454 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1455 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1456 depth); 1457 return -EIO; 1458 } 1459 } 1460 return 0; 1461 } 1462 1463 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1464 EXT4_ERROR_INODE(inode, 1465 "logical %d < ee_block %d + ee_len %d!", 1466 *logical, le32_to_cpu(ex->ee_block), ee_len); 1467 return -EIO; 1468 } 1469 1470 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1471 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1472 return 0; 1473 } 1474 1475 /* 1476 * search the closest allocated block to the right for *logical 1477 * and returns it at @logical + it's physical address at @phys 1478 * if *logical is the largest allocated block, the function 1479 * returns 0 at @phys 1480 * return value contains 0 (success) or error code 1481 */ 1482 static int ext4_ext_search_right(struct inode *inode, 1483 struct ext4_ext_path *path, 1484 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1485 struct ext4_extent **ret_ex) 1486 { 1487 struct buffer_head *bh = NULL; 1488 struct ext4_extent_header *eh; 1489 struct ext4_extent_idx *ix; 1490 struct ext4_extent *ex; 1491 ext4_fsblk_t block; 1492 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1493 int ee_len; 1494 1495 if (unlikely(path == NULL)) { 1496 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1497 return -EIO; 1498 } 1499 depth = path->p_depth; 1500 *phys = 0; 1501 1502 if (depth == 0 && path->p_ext == NULL) 1503 return 0; 1504 1505 /* usually extent in the path covers blocks smaller 1506 * then *logical, but it can be that extent is the 1507 * first one in the file */ 1508 1509 ex = path[depth].p_ext; 1510 ee_len = ext4_ext_get_actual_len(ex); 1511 if (*logical < le32_to_cpu(ex->ee_block)) { 1512 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1513 EXT4_ERROR_INODE(inode, 1514 "first_extent(path[%d].p_hdr) != ex", 1515 depth); 1516 return -EIO; 1517 } 1518 while (--depth >= 0) { 1519 ix = path[depth].p_idx; 1520 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1521 EXT4_ERROR_INODE(inode, 1522 "ix != EXT_FIRST_INDEX *logical %d!", 1523 *logical); 1524 return -EIO; 1525 } 1526 } 1527 goto found_extent; 1528 } 1529 1530 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1531 EXT4_ERROR_INODE(inode, 1532 "logical %d < ee_block %d + ee_len %d!", 1533 *logical, le32_to_cpu(ex->ee_block), ee_len); 1534 return -EIO; 1535 } 1536 1537 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1538 /* next allocated block in this leaf */ 1539 ex++; 1540 goto found_extent; 1541 } 1542 1543 /* go up and search for index to the right */ 1544 while (--depth >= 0) { 1545 ix = path[depth].p_idx; 1546 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1547 goto got_index; 1548 } 1549 1550 /* we've gone up to the root and found no index to the right */ 1551 return 0; 1552 1553 got_index: 1554 /* we've found index to the right, let's 1555 * follow it and find the closest allocated 1556 * block to the right */ 1557 ix++; 1558 block = ext4_idx_pblock(ix); 1559 while (++depth < path->p_depth) { 1560 /* subtract from p_depth to get proper eh_depth */ 1561 bh = read_extent_tree_block(inode, block, 1562 path->p_depth - depth, 0); 1563 if (IS_ERR(bh)) 1564 return PTR_ERR(bh); 1565 eh = ext_block_hdr(bh); 1566 ix = EXT_FIRST_INDEX(eh); 1567 block = ext4_idx_pblock(ix); 1568 put_bh(bh); 1569 } 1570 1571 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0); 1572 if (IS_ERR(bh)) 1573 return PTR_ERR(bh); 1574 eh = ext_block_hdr(bh); 1575 ex = EXT_FIRST_EXTENT(eh); 1576 found_extent: 1577 *logical = le32_to_cpu(ex->ee_block); 1578 *phys = ext4_ext_pblock(ex); 1579 *ret_ex = ex; 1580 if (bh) 1581 put_bh(bh); 1582 return 0; 1583 } 1584 1585 /* 1586 * ext4_ext_next_allocated_block: 1587 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1588 * NOTE: it considers block number from index entry as 1589 * allocated block. Thus, index entries have to be consistent 1590 * with leaves. 1591 */ 1592 ext4_lblk_t 1593 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1594 { 1595 int depth; 1596 1597 BUG_ON(path == NULL); 1598 depth = path->p_depth; 1599 1600 if (depth == 0 && path->p_ext == NULL) 1601 return EXT_MAX_BLOCKS; 1602 1603 while (depth >= 0) { 1604 if (depth == path->p_depth) { 1605 /* leaf */ 1606 if (path[depth].p_ext && 1607 path[depth].p_ext != 1608 EXT_LAST_EXTENT(path[depth].p_hdr)) 1609 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1610 } else { 1611 /* index */ 1612 if (path[depth].p_idx != 1613 EXT_LAST_INDEX(path[depth].p_hdr)) 1614 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1615 } 1616 depth--; 1617 } 1618 1619 return EXT_MAX_BLOCKS; 1620 } 1621 1622 /* 1623 * ext4_ext_next_leaf_block: 1624 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1625 */ 1626 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1627 { 1628 int depth; 1629 1630 BUG_ON(path == NULL); 1631 depth = path->p_depth; 1632 1633 /* zero-tree has no leaf blocks at all */ 1634 if (depth == 0) 1635 return EXT_MAX_BLOCKS; 1636 1637 /* go to index block */ 1638 depth--; 1639 1640 while (depth >= 0) { 1641 if (path[depth].p_idx != 1642 EXT_LAST_INDEX(path[depth].p_hdr)) 1643 return (ext4_lblk_t) 1644 le32_to_cpu(path[depth].p_idx[1].ei_block); 1645 depth--; 1646 } 1647 1648 return EXT_MAX_BLOCKS; 1649 } 1650 1651 /* 1652 * ext4_ext_correct_indexes: 1653 * if leaf gets modified and modified extent is first in the leaf, 1654 * then we have to correct all indexes above. 1655 * TODO: do we need to correct tree in all cases? 1656 */ 1657 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1658 struct ext4_ext_path *path) 1659 { 1660 struct ext4_extent_header *eh; 1661 int depth = ext_depth(inode); 1662 struct ext4_extent *ex; 1663 __le32 border; 1664 int k, err = 0; 1665 1666 eh = path[depth].p_hdr; 1667 ex = path[depth].p_ext; 1668 1669 if (unlikely(ex == NULL || eh == NULL)) { 1670 EXT4_ERROR_INODE(inode, 1671 "ex %p == NULL or eh %p == NULL", ex, eh); 1672 return -EIO; 1673 } 1674 1675 if (depth == 0) { 1676 /* there is no tree at all */ 1677 return 0; 1678 } 1679 1680 if (ex != EXT_FIRST_EXTENT(eh)) { 1681 /* we correct tree if first leaf got modified only */ 1682 return 0; 1683 } 1684 1685 /* 1686 * TODO: we need correction if border is smaller than current one 1687 */ 1688 k = depth - 1; 1689 border = path[depth].p_ext->ee_block; 1690 err = ext4_ext_get_access(handle, inode, path + k); 1691 if (err) 1692 return err; 1693 path[k].p_idx->ei_block = border; 1694 err = ext4_ext_dirty(handle, inode, path + k); 1695 if (err) 1696 return err; 1697 1698 while (k--) { 1699 /* change all left-side indexes */ 1700 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1701 break; 1702 err = ext4_ext_get_access(handle, inode, path + k); 1703 if (err) 1704 break; 1705 path[k].p_idx->ei_block = border; 1706 err = ext4_ext_dirty(handle, inode, path + k); 1707 if (err) 1708 break; 1709 } 1710 1711 return err; 1712 } 1713 1714 int 1715 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1716 struct ext4_extent *ex2) 1717 { 1718 unsigned short ext1_ee_len, ext2_ee_len; 1719 1720 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2)) 1721 return 0; 1722 1723 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1724 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1725 1726 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1727 le32_to_cpu(ex2->ee_block)) 1728 return 0; 1729 1730 /* 1731 * To allow future support for preallocated extents to be added 1732 * as an RO_COMPAT feature, refuse to merge to extents if 1733 * this can result in the top bit of ee_len being set. 1734 */ 1735 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN) 1736 return 0; 1737 if (ext4_ext_is_unwritten(ex1) && 1738 (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) || 1739 atomic_read(&EXT4_I(inode)->i_unwritten) || 1740 (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN))) 1741 return 0; 1742 #ifdef AGGRESSIVE_TEST 1743 if (ext1_ee_len >= 4) 1744 return 0; 1745 #endif 1746 1747 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1748 return 1; 1749 return 0; 1750 } 1751 1752 /* 1753 * This function tries to merge the "ex" extent to the next extent in the tree. 1754 * It always tries to merge towards right. If you want to merge towards 1755 * left, pass "ex - 1" as argument instead of "ex". 1756 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1757 * 1 if they got merged. 1758 */ 1759 static int ext4_ext_try_to_merge_right(struct inode *inode, 1760 struct ext4_ext_path *path, 1761 struct ext4_extent *ex) 1762 { 1763 struct ext4_extent_header *eh; 1764 unsigned int depth, len; 1765 int merge_done = 0, unwritten; 1766 1767 depth = ext_depth(inode); 1768 BUG_ON(path[depth].p_hdr == NULL); 1769 eh = path[depth].p_hdr; 1770 1771 while (ex < EXT_LAST_EXTENT(eh)) { 1772 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1773 break; 1774 /* merge with next extent! */ 1775 unwritten = ext4_ext_is_unwritten(ex); 1776 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1777 + ext4_ext_get_actual_len(ex + 1)); 1778 if (unwritten) 1779 ext4_ext_mark_unwritten(ex); 1780 1781 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1782 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1783 * sizeof(struct ext4_extent); 1784 memmove(ex + 1, ex + 2, len); 1785 } 1786 le16_add_cpu(&eh->eh_entries, -1); 1787 merge_done = 1; 1788 WARN_ON(eh->eh_entries == 0); 1789 if (!eh->eh_entries) 1790 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1791 } 1792 1793 return merge_done; 1794 } 1795 1796 /* 1797 * This function does a very simple check to see if we can collapse 1798 * an extent tree with a single extent tree leaf block into the inode. 1799 */ 1800 static void ext4_ext_try_to_merge_up(handle_t *handle, 1801 struct inode *inode, 1802 struct ext4_ext_path *path) 1803 { 1804 size_t s; 1805 unsigned max_root = ext4_ext_space_root(inode, 0); 1806 ext4_fsblk_t blk; 1807 1808 if ((path[0].p_depth != 1) || 1809 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || 1810 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) 1811 return; 1812 1813 /* 1814 * We need to modify the block allocation bitmap and the block 1815 * group descriptor to release the extent tree block. If we 1816 * can't get the journal credits, give up. 1817 */ 1818 if (ext4_journal_extend(handle, 2)) 1819 return; 1820 1821 /* 1822 * Copy the extent data up to the inode 1823 */ 1824 blk = ext4_idx_pblock(path[0].p_idx); 1825 s = le16_to_cpu(path[1].p_hdr->eh_entries) * 1826 sizeof(struct ext4_extent_idx); 1827 s += sizeof(struct ext4_extent_header); 1828 1829 path[1].p_maxdepth = path[0].p_maxdepth; 1830 memcpy(path[0].p_hdr, path[1].p_hdr, s); 1831 path[0].p_depth = 0; 1832 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + 1833 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); 1834 path[0].p_hdr->eh_max = cpu_to_le16(max_root); 1835 1836 brelse(path[1].p_bh); 1837 ext4_free_blocks(handle, inode, NULL, blk, 1, 1838 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 1839 } 1840 1841 /* 1842 * This function tries to merge the @ex extent to neighbours in the tree. 1843 * return 1 if merge left else 0. 1844 */ 1845 static void ext4_ext_try_to_merge(handle_t *handle, 1846 struct inode *inode, 1847 struct ext4_ext_path *path, 1848 struct ext4_extent *ex) { 1849 struct ext4_extent_header *eh; 1850 unsigned int depth; 1851 int merge_done = 0; 1852 1853 depth = ext_depth(inode); 1854 BUG_ON(path[depth].p_hdr == NULL); 1855 eh = path[depth].p_hdr; 1856 1857 if (ex > EXT_FIRST_EXTENT(eh)) 1858 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1859 1860 if (!merge_done) 1861 (void) ext4_ext_try_to_merge_right(inode, path, ex); 1862 1863 ext4_ext_try_to_merge_up(handle, inode, path); 1864 } 1865 1866 /* 1867 * check if a portion of the "newext" extent overlaps with an 1868 * existing extent. 1869 * 1870 * If there is an overlap discovered, it updates the length of the newext 1871 * such that there will be no overlap, and then returns 1. 1872 * If there is no overlap found, it returns 0. 1873 */ 1874 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1875 struct inode *inode, 1876 struct ext4_extent *newext, 1877 struct ext4_ext_path *path) 1878 { 1879 ext4_lblk_t b1, b2; 1880 unsigned int depth, len1; 1881 unsigned int ret = 0; 1882 1883 b1 = le32_to_cpu(newext->ee_block); 1884 len1 = ext4_ext_get_actual_len(newext); 1885 depth = ext_depth(inode); 1886 if (!path[depth].p_ext) 1887 goto out; 1888 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block)); 1889 1890 /* 1891 * get the next allocated block if the extent in the path 1892 * is before the requested block(s) 1893 */ 1894 if (b2 < b1) { 1895 b2 = ext4_ext_next_allocated_block(path); 1896 if (b2 == EXT_MAX_BLOCKS) 1897 goto out; 1898 b2 = EXT4_LBLK_CMASK(sbi, b2); 1899 } 1900 1901 /* check for wrap through zero on extent logical start block*/ 1902 if (b1 + len1 < b1) { 1903 len1 = EXT_MAX_BLOCKS - b1; 1904 newext->ee_len = cpu_to_le16(len1); 1905 ret = 1; 1906 } 1907 1908 /* check for overlap */ 1909 if (b1 + len1 > b2) { 1910 newext->ee_len = cpu_to_le16(b2 - b1); 1911 ret = 1; 1912 } 1913 out: 1914 return ret; 1915 } 1916 1917 /* 1918 * ext4_ext_insert_extent: 1919 * tries to merge requsted extent into the existing extent or 1920 * inserts requested extent as new one into the tree, 1921 * creating new leaf in the no-space case. 1922 */ 1923 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1924 struct ext4_ext_path **ppath, 1925 struct ext4_extent *newext, int gb_flags) 1926 { 1927 struct ext4_ext_path *path = *ppath; 1928 struct ext4_extent_header *eh; 1929 struct ext4_extent *ex, *fex; 1930 struct ext4_extent *nearex; /* nearest extent */ 1931 struct ext4_ext_path *npath = NULL; 1932 int depth, len, err; 1933 ext4_lblk_t next; 1934 int mb_flags = 0, unwritten; 1935 1936 if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1937 mb_flags |= EXT4_MB_DELALLOC_RESERVED; 1938 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1939 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1940 return -EIO; 1941 } 1942 depth = ext_depth(inode); 1943 ex = path[depth].p_ext; 1944 eh = path[depth].p_hdr; 1945 if (unlikely(path[depth].p_hdr == NULL)) { 1946 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1947 return -EIO; 1948 } 1949 1950 /* try to insert block into found extent and return */ 1951 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) { 1952 1953 /* 1954 * Try to see whether we should rather test the extent on 1955 * right from ex, or from the left of ex. This is because 1956 * ext4_find_extent() can return either extent on the 1957 * left, or on the right from the searched position. This 1958 * will make merging more effective. 1959 */ 1960 if (ex < EXT_LAST_EXTENT(eh) && 1961 (le32_to_cpu(ex->ee_block) + 1962 ext4_ext_get_actual_len(ex) < 1963 le32_to_cpu(newext->ee_block))) { 1964 ex += 1; 1965 goto prepend; 1966 } else if ((ex > EXT_FIRST_EXTENT(eh)) && 1967 (le32_to_cpu(newext->ee_block) + 1968 ext4_ext_get_actual_len(newext) < 1969 le32_to_cpu(ex->ee_block))) 1970 ex -= 1; 1971 1972 /* Try to append newex to the ex */ 1973 if (ext4_can_extents_be_merged(inode, ex, newext)) { 1974 ext_debug("append [%d]%d block to %u:[%d]%d" 1975 "(from %llu)\n", 1976 ext4_ext_is_unwritten(newext), 1977 ext4_ext_get_actual_len(newext), 1978 le32_to_cpu(ex->ee_block), 1979 ext4_ext_is_unwritten(ex), 1980 ext4_ext_get_actual_len(ex), 1981 ext4_ext_pblock(ex)); 1982 err = ext4_ext_get_access(handle, inode, 1983 path + depth); 1984 if (err) 1985 return err; 1986 unwritten = ext4_ext_is_unwritten(ex); 1987 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1988 + ext4_ext_get_actual_len(newext)); 1989 if (unwritten) 1990 ext4_ext_mark_unwritten(ex); 1991 eh = path[depth].p_hdr; 1992 nearex = ex; 1993 goto merge; 1994 } 1995 1996 prepend: 1997 /* Try to prepend newex to the ex */ 1998 if (ext4_can_extents_be_merged(inode, newext, ex)) { 1999 ext_debug("prepend %u[%d]%d block to %u:[%d]%d" 2000 "(from %llu)\n", 2001 le32_to_cpu(newext->ee_block), 2002 ext4_ext_is_unwritten(newext), 2003 ext4_ext_get_actual_len(newext), 2004 le32_to_cpu(ex->ee_block), 2005 ext4_ext_is_unwritten(ex), 2006 ext4_ext_get_actual_len(ex), 2007 ext4_ext_pblock(ex)); 2008 err = ext4_ext_get_access(handle, inode, 2009 path + depth); 2010 if (err) 2011 return err; 2012 2013 unwritten = ext4_ext_is_unwritten(ex); 2014 ex->ee_block = newext->ee_block; 2015 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext)); 2016 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 2017 + ext4_ext_get_actual_len(newext)); 2018 if (unwritten) 2019 ext4_ext_mark_unwritten(ex); 2020 eh = path[depth].p_hdr; 2021 nearex = ex; 2022 goto merge; 2023 } 2024 } 2025 2026 depth = ext_depth(inode); 2027 eh = path[depth].p_hdr; 2028 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 2029 goto has_space; 2030 2031 /* probably next leaf has space for us? */ 2032 fex = EXT_LAST_EXTENT(eh); 2033 next = EXT_MAX_BLOCKS; 2034 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 2035 next = ext4_ext_next_leaf_block(path); 2036 if (next != EXT_MAX_BLOCKS) { 2037 ext_debug("next leaf block - %u\n", next); 2038 BUG_ON(npath != NULL); 2039 npath = ext4_find_extent(inode, next, NULL, 0); 2040 if (IS_ERR(npath)) 2041 return PTR_ERR(npath); 2042 BUG_ON(npath->p_depth != path->p_depth); 2043 eh = npath[depth].p_hdr; 2044 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 2045 ext_debug("next leaf isn't full(%d)\n", 2046 le16_to_cpu(eh->eh_entries)); 2047 path = npath; 2048 goto has_space; 2049 } 2050 ext_debug("next leaf has no free space(%d,%d)\n", 2051 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 2052 } 2053 2054 /* 2055 * There is no free space in the found leaf. 2056 * We're gonna add a new leaf in the tree. 2057 */ 2058 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 2059 mb_flags |= EXT4_MB_USE_RESERVED; 2060 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags, 2061 ppath, newext); 2062 if (err) 2063 goto cleanup; 2064 depth = ext_depth(inode); 2065 eh = path[depth].p_hdr; 2066 2067 has_space: 2068 nearex = path[depth].p_ext; 2069 2070 err = ext4_ext_get_access(handle, inode, path + depth); 2071 if (err) 2072 goto cleanup; 2073 2074 if (!nearex) { 2075 /* there is no extent in this leaf, create first one */ 2076 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 2077 le32_to_cpu(newext->ee_block), 2078 ext4_ext_pblock(newext), 2079 ext4_ext_is_unwritten(newext), 2080 ext4_ext_get_actual_len(newext)); 2081 nearex = EXT_FIRST_EXTENT(eh); 2082 } else { 2083 if (le32_to_cpu(newext->ee_block) 2084 > le32_to_cpu(nearex->ee_block)) { 2085 /* Insert after */ 2086 ext_debug("insert %u:%llu:[%d]%d before: " 2087 "nearest %p\n", 2088 le32_to_cpu(newext->ee_block), 2089 ext4_ext_pblock(newext), 2090 ext4_ext_is_unwritten(newext), 2091 ext4_ext_get_actual_len(newext), 2092 nearex); 2093 nearex++; 2094 } else { 2095 /* Insert before */ 2096 BUG_ON(newext->ee_block == nearex->ee_block); 2097 ext_debug("insert %u:%llu:[%d]%d after: " 2098 "nearest %p\n", 2099 le32_to_cpu(newext->ee_block), 2100 ext4_ext_pblock(newext), 2101 ext4_ext_is_unwritten(newext), 2102 ext4_ext_get_actual_len(newext), 2103 nearex); 2104 } 2105 len = EXT_LAST_EXTENT(eh) - nearex + 1; 2106 if (len > 0) { 2107 ext_debug("insert %u:%llu:[%d]%d: " 2108 "move %d extents from 0x%p to 0x%p\n", 2109 le32_to_cpu(newext->ee_block), 2110 ext4_ext_pblock(newext), 2111 ext4_ext_is_unwritten(newext), 2112 ext4_ext_get_actual_len(newext), 2113 len, nearex, nearex + 1); 2114 memmove(nearex + 1, nearex, 2115 len * sizeof(struct ext4_extent)); 2116 } 2117 } 2118 2119 le16_add_cpu(&eh->eh_entries, 1); 2120 path[depth].p_ext = nearex; 2121 nearex->ee_block = newext->ee_block; 2122 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 2123 nearex->ee_len = newext->ee_len; 2124 2125 merge: 2126 /* try to merge extents */ 2127 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) 2128 ext4_ext_try_to_merge(handle, inode, path, nearex); 2129 2130 2131 /* time to correct all indexes above */ 2132 err = ext4_ext_correct_indexes(handle, inode, path); 2133 if (err) 2134 goto cleanup; 2135 2136 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 2137 2138 cleanup: 2139 ext4_ext_drop_refs(npath); 2140 kfree(npath); 2141 return err; 2142 } 2143 2144 static int ext4_fill_fiemap_extents(struct inode *inode, 2145 ext4_lblk_t block, ext4_lblk_t num, 2146 struct fiemap_extent_info *fieinfo) 2147 { 2148 struct ext4_ext_path *path = NULL; 2149 struct ext4_extent *ex; 2150 struct extent_status es; 2151 ext4_lblk_t next, next_del, start = 0, end = 0; 2152 ext4_lblk_t last = block + num; 2153 int exists, depth = 0, err = 0; 2154 unsigned int flags = 0; 2155 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 2156 2157 while (block < last && block != EXT_MAX_BLOCKS) { 2158 num = last - block; 2159 /* find extent for this block */ 2160 down_read(&EXT4_I(inode)->i_data_sem); 2161 2162 path = ext4_find_extent(inode, block, &path, 0); 2163 if (IS_ERR(path)) { 2164 up_read(&EXT4_I(inode)->i_data_sem); 2165 err = PTR_ERR(path); 2166 path = NULL; 2167 break; 2168 } 2169 2170 depth = ext_depth(inode); 2171 if (unlikely(path[depth].p_hdr == NULL)) { 2172 up_read(&EXT4_I(inode)->i_data_sem); 2173 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2174 err = -EIO; 2175 break; 2176 } 2177 ex = path[depth].p_ext; 2178 next = ext4_ext_next_allocated_block(path); 2179 2180 flags = 0; 2181 exists = 0; 2182 if (!ex) { 2183 /* there is no extent yet, so try to allocate 2184 * all requested space */ 2185 start = block; 2186 end = block + num; 2187 } else if (le32_to_cpu(ex->ee_block) > block) { 2188 /* need to allocate space before found extent */ 2189 start = block; 2190 end = le32_to_cpu(ex->ee_block); 2191 if (block + num < end) 2192 end = block + num; 2193 } else if (block >= le32_to_cpu(ex->ee_block) 2194 + ext4_ext_get_actual_len(ex)) { 2195 /* need to allocate space after found extent */ 2196 start = block; 2197 end = block + num; 2198 if (end >= next) 2199 end = next; 2200 } else if (block >= le32_to_cpu(ex->ee_block)) { 2201 /* 2202 * some part of requested space is covered 2203 * by found extent 2204 */ 2205 start = block; 2206 end = le32_to_cpu(ex->ee_block) 2207 + ext4_ext_get_actual_len(ex); 2208 if (block + num < end) 2209 end = block + num; 2210 exists = 1; 2211 } else { 2212 BUG(); 2213 } 2214 BUG_ON(end <= start); 2215 2216 if (!exists) { 2217 es.es_lblk = start; 2218 es.es_len = end - start; 2219 es.es_pblk = 0; 2220 } else { 2221 es.es_lblk = le32_to_cpu(ex->ee_block); 2222 es.es_len = ext4_ext_get_actual_len(ex); 2223 es.es_pblk = ext4_ext_pblock(ex); 2224 if (ext4_ext_is_unwritten(ex)) 2225 flags |= FIEMAP_EXTENT_UNWRITTEN; 2226 } 2227 2228 /* 2229 * Find delayed extent and update es accordingly. We call 2230 * it even in !exists case to find out whether es is the 2231 * last existing extent or not. 2232 */ 2233 next_del = ext4_find_delayed_extent(inode, &es); 2234 if (!exists && next_del) { 2235 exists = 1; 2236 flags |= (FIEMAP_EXTENT_DELALLOC | 2237 FIEMAP_EXTENT_UNKNOWN); 2238 } 2239 up_read(&EXT4_I(inode)->i_data_sem); 2240 2241 if (unlikely(es.es_len == 0)) { 2242 EXT4_ERROR_INODE(inode, "es.es_len == 0"); 2243 err = -EIO; 2244 break; 2245 } 2246 2247 /* 2248 * This is possible iff next == next_del == EXT_MAX_BLOCKS. 2249 * we need to check next == EXT_MAX_BLOCKS because it is 2250 * possible that an extent is with unwritten and delayed 2251 * status due to when an extent is delayed allocated and 2252 * is allocated by fallocate status tree will track both of 2253 * them in a extent. 2254 * 2255 * So we could return a unwritten and delayed extent, and 2256 * its block is equal to 'next'. 2257 */ 2258 if (next == next_del && next == EXT_MAX_BLOCKS) { 2259 flags |= FIEMAP_EXTENT_LAST; 2260 if (unlikely(next_del != EXT_MAX_BLOCKS || 2261 next != EXT_MAX_BLOCKS)) { 2262 EXT4_ERROR_INODE(inode, 2263 "next extent == %u, next " 2264 "delalloc extent = %u", 2265 next, next_del); 2266 err = -EIO; 2267 break; 2268 } 2269 } 2270 2271 if (exists) { 2272 err = fiemap_fill_next_extent(fieinfo, 2273 (__u64)es.es_lblk << blksize_bits, 2274 (__u64)es.es_pblk << blksize_bits, 2275 (__u64)es.es_len << blksize_bits, 2276 flags); 2277 if (err < 0) 2278 break; 2279 if (err == 1) { 2280 err = 0; 2281 break; 2282 } 2283 } 2284 2285 block = es.es_lblk + es.es_len; 2286 } 2287 2288 ext4_ext_drop_refs(path); 2289 kfree(path); 2290 return err; 2291 } 2292 2293 /* 2294 * ext4_ext_put_gap_in_cache: 2295 * calculate boundaries of the gap that the requested block fits into 2296 * and cache this gap 2297 */ 2298 static void 2299 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, 2300 ext4_lblk_t block) 2301 { 2302 int depth = ext_depth(inode); 2303 ext4_lblk_t len; 2304 ext4_lblk_t lblock; 2305 struct ext4_extent *ex; 2306 struct extent_status es; 2307 2308 ex = path[depth].p_ext; 2309 if (ex == NULL) { 2310 /* there is no extent yet, so gap is [0;-] */ 2311 lblock = 0; 2312 len = EXT_MAX_BLOCKS; 2313 ext_debug("cache gap(whole file):"); 2314 } else if (block < le32_to_cpu(ex->ee_block)) { 2315 lblock = block; 2316 len = le32_to_cpu(ex->ee_block) - block; 2317 ext_debug("cache gap(before): %u [%u:%u]", 2318 block, 2319 le32_to_cpu(ex->ee_block), 2320 ext4_ext_get_actual_len(ex)); 2321 } else if (block >= le32_to_cpu(ex->ee_block) 2322 + ext4_ext_get_actual_len(ex)) { 2323 ext4_lblk_t next; 2324 lblock = le32_to_cpu(ex->ee_block) 2325 + ext4_ext_get_actual_len(ex); 2326 2327 next = ext4_ext_next_allocated_block(path); 2328 ext_debug("cache gap(after): [%u:%u] %u", 2329 le32_to_cpu(ex->ee_block), 2330 ext4_ext_get_actual_len(ex), 2331 block); 2332 BUG_ON(next == lblock); 2333 len = next - lblock; 2334 } else { 2335 BUG(); 2336 } 2337 2338 ext4_es_find_delayed_extent_range(inode, lblock, lblock + len - 1, &es); 2339 if (es.es_len) { 2340 /* There's delayed extent containing lblock? */ 2341 if (es.es_lblk <= lblock) 2342 return; 2343 len = min(es.es_lblk - lblock, len); 2344 } 2345 ext_debug(" -> %u:%u\n", lblock, len); 2346 ext4_es_insert_extent(inode, lblock, len, ~0, EXTENT_STATUS_HOLE); 2347 } 2348 2349 /* 2350 * ext4_ext_rm_idx: 2351 * removes index from the index block. 2352 */ 2353 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2354 struct ext4_ext_path *path, int depth) 2355 { 2356 int err; 2357 ext4_fsblk_t leaf; 2358 2359 /* free index block */ 2360 depth--; 2361 path = path + depth; 2362 leaf = ext4_idx_pblock(path->p_idx); 2363 if (unlikely(path->p_hdr->eh_entries == 0)) { 2364 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2365 return -EIO; 2366 } 2367 err = ext4_ext_get_access(handle, inode, path); 2368 if (err) 2369 return err; 2370 2371 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2372 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2373 len *= sizeof(struct ext4_extent_idx); 2374 memmove(path->p_idx, path->p_idx + 1, len); 2375 } 2376 2377 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2378 err = ext4_ext_dirty(handle, inode, path); 2379 if (err) 2380 return err; 2381 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2382 trace_ext4_ext_rm_idx(inode, leaf); 2383 2384 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2385 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2386 2387 while (--depth >= 0) { 2388 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr)) 2389 break; 2390 path--; 2391 err = ext4_ext_get_access(handle, inode, path); 2392 if (err) 2393 break; 2394 path->p_idx->ei_block = (path+1)->p_idx->ei_block; 2395 err = ext4_ext_dirty(handle, inode, path); 2396 if (err) 2397 break; 2398 } 2399 return err; 2400 } 2401 2402 /* 2403 * ext4_ext_calc_credits_for_single_extent: 2404 * This routine returns max. credits that needed to insert an extent 2405 * to the extent tree. 2406 * When pass the actual path, the caller should calculate credits 2407 * under i_data_sem. 2408 */ 2409 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2410 struct ext4_ext_path *path) 2411 { 2412 if (path) { 2413 int depth = ext_depth(inode); 2414 int ret = 0; 2415 2416 /* probably there is space in leaf? */ 2417 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2418 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2419 2420 /* 2421 * There are some space in the leaf tree, no 2422 * need to account for leaf block credit 2423 * 2424 * bitmaps and block group descriptor blocks 2425 * and other metadata blocks still need to be 2426 * accounted. 2427 */ 2428 /* 1 bitmap, 1 block group descriptor */ 2429 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2430 return ret; 2431 } 2432 } 2433 2434 return ext4_chunk_trans_blocks(inode, nrblocks); 2435 } 2436 2437 /* 2438 * How many index/leaf blocks need to change/allocate to add @extents extents? 2439 * 2440 * If we add a single extent, then in the worse case, each tree level 2441 * index/leaf need to be changed in case of the tree split. 2442 * 2443 * If more extents are inserted, they could cause the whole tree split more 2444 * than once, but this is really rare. 2445 */ 2446 int ext4_ext_index_trans_blocks(struct inode *inode, int extents) 2447 { 2448 int index; 2449 int depth; 2450 2451 /* If we are converting the inline data, only one is needed here. */ 2452 if (ext4_has_inline_data(inode)) 2453 return 1; 2454 2455 depth = ext_depth(inode); 2456 2457 if (extents <= 1) 2458 index = depth * 2; 2459 else 2460 index = depth * 3; 2461 2462 return index; 2463 } 2464 2465 static inline int get_default_free_blocks_flags(struct inode *inode) 2466 { 2467 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2468 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; 2469 else if (ext4_should_journal_data(inode)) 2470 return EXT4_FREE_BLOCKS_FORGET; 2471 return 0; 2472 } 2473 2474 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2475 struct ext4_extent *ex, 2476 long long *partial_cluster, 2477 ext4_lblk_t from, ext4_lblk_t to) 2478 { 2479 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2480 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2481 ext4_fsblk_t pblk; 2482 int flags = get_default_free_blocks_flags(inode); 2483 2484 /* 2485 * For bigalloc file systems, we never free a partial cluster 2486 * at the beginning of the extent. Instead, we make a note 2487 * that we tried freeing the cluster, and check to see if we 2488 * need to free it on a subsequent call to ext4_remove_blocks, 2489 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space. 2490 */ 2491 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2492 2493 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster); 2494 /* 2495 * If we have a partial cluster, and it's different from the 2496 * cluster of the last block, we need to explicitly free the 2497 * partial cluster here. 2498 */ 2499 pblk = ext4_ext_pblock(ex) + ee_len - 1; 2500 if (*partial_cluster > 0 && 2501 *partial_cluster != (long long) EXT4_B2C(sbi, pblk)) { 2502 ext4_free_blocks(handle, inode, NULL, 2503 EXT4_C2B(sbi, *partial_cluster), 2504 sbi->s_cluster_ratio, flags); 2505 *partial_cluster = 0; 2506 } 2507 2508 #ifdef EXTENTS_STATS 2509 { 2510 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2511 spin_lock(&sbi->s_ext_stats_lock); 2512 sbi->s_ext_blocks += ee_len; 2513 sbi->s_ext_extents++; 2514 if (ee_len < sbi->s_ext_min) 2515 sbi->s_ext_min = ee_len; 2516 if (ee_len > sbi->s_ext_max) 2517 sbi->s_ext_max = ee_len; 2518 if (ext_depth(inode) > sbi->s_depth_max) 2519 sbi->s_depth_max = ext_depth(inode); 2520 spin_unlock(&sbi->s_ext_stats_lock); 2521 } 2522 #endif 2523 if (from >= le32_to_cpu(ex->ee_block) 2524 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 2525 /* tail removal */ 2526 ext4_lblk_t num; 2527 long long first_cluster; 2528 2529 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2530 pblk = ext4_ext_pblock(ex) + ee_len - num; 2531 /* 2532 * Usually we want to free partial cluster at the end of the 2533 * extent, except for the situation when the cluster is still 2534 * used by any other extent (partial_cluster is negative). 2535 */ 2536 if (*partial_cluster < 0 && 2537 *partial_cluster == -(long long) EXT4_B2C(sbi, pblk+num-1)) 2538 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER; 2539 2540 ext_debug("free last %u blocks starting %llu partial %lld\n", 2541 num, pblk, *partial_cluster); 2542 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2543 /* 2544 * If the block range to be freed didn't start at the 2545 * beginning of a cluster, and we removed the entire 2546 * extent and the cluster is not used by any other extent, 2547 * save the partial cluster here, since we might need to 2548 * delete if we determine that the truncate or punch hole 2549 * operation has removed all of the blocks in the cluster. 2550 * If that cluster is used by another extent, preserve its 2551 * negative value so it isn't freed later on. 2552 * 2553 * If the whole extent wasn't freed, we've reached the 2554 * start of the truncated/punched region and have finished 2555 * removing blocks. If there's a partial cluster here it's 2556 * shared with the remainder of the extent and is no longer 2557 * a candidate for removal. 2558 */ 2559 if (EXT4_PBLK_COFF(sbi, pblk) && ee_len == num) { 2560 first_cluster = (long long) EXT4_B2C(sbi, pblk); 2561 if (first_cluster != -*partial_cluster) 2562 *partial_cluster = first_cluster; 2563 } else { 2564 *partial_cluster = 0; 2565 } 2566 } else 2567 ext4_error(sbi->s_sb, "strange request: removal(2) " 2568 "%u-%u from %u:%u\n", 2569 from, to, le32_to_cpu(ex->ee_block), ee_len); 2570 return 0; 2571 } 2572 2573 2574 /* 2575 * ext4_ext_rm_leaf() Removes the extents associated with the 2576 * blocks appearing between "start" and "end". Both "start" 2577 * and "end" must appear in the same extent or EIO is returned. 2578 * 2579 * @handle: The journal handle 2580 * @inode: The files inode 2581 * @path: The path to the leaf 2582 * @partial_cluster: The cluster which we'll have to free if all extents 2583 * has been released from it. However, if this value is 2584 * negative, it's a cluster just to the right of the 2585 * punched region and it must not be freed. 2586 * @start: The first block to remove 2587 * @end: The last block to remove 2588 */ 2589 static int 2590 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2591 struct ext4_ext_path *path, 2592 long long *partial_cluster, 2593 ext4_lblk_t start, ext4_lblk_t end) 2594 { 2595 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2596 int err = 0, correct_index = 0; 2597 int depth = ext_depth(inode), credits; 2598 struct ext4_extent_header *eh; 2599 ext4_lblk_t a, b; 2600 unsigned num; 2601 ext4_lblk_t ex_ee_block; 2602 unsigned short ex_ee_len; 2603 unsigned unwritten = 0; 2604 struct ext4_extent *ex; 2605 ext4_fsblk_t pblk; 2606 2607 /* the header must be checked already in ext4_ext_remove_space() */ 2608 ext_debug("truncate since %u in leaf to %u\n", start, end); 2609 if (!path[depth].p_hdr) 2610 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2611 eh = path[depth].p_hdr; 2612 if (unlikely(path[depth].p_hdr == NULL)) { 2613 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2614 return -EIO; 2615 } 2616 /* find where to start removing */ 2617 ex = path[depth].p_ext; 2618 if (!ex) 2619 ex = EXT_LAST_EXTENT(eh); 2620 2621 ex_ee_block = le32_to_cpu(ex->ee_block); 2622 ex_ee_len = ext4_ext_get_actual_len(ex); 2623 2624 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster); 2625 2626 while (ex >= EXT_FIRST_EXTENT(eh) && 2627 ex_ee_block + ex_ee_len > start) { 2628 2629 if (ext4_ext_is_unwritten(ex)) 2630 unwritten = 1; 2631 else 2632 unwritten = 0; 2633 2634 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2635 unwritten, ex_ee_len); 2636 path[depth].p_ext = ex; 2637 2638 a = ex_ee_block > start ? ex_ee_block : start; 2639 b = ex_ee_block+ex_ee_len - 1 < end ? 2640 ex_ee_block+ex_ee_len - 1 : end; 2641 2642 ext_debug(" border %u:%u\n", a, b); 2643 2644 /* If this extent is beyond the end of the hole, skip it */ 2645 if (end < ex_ee_block) { 2646 /* 2647 * We're going to skip this extent and move to another, 2648 * so note that its first cluster is in use to avoid 2649 * freeing it when removing blocks. Eventually, the 2650 * right edge of the truncated/punched region will 2651 * be just to the left. 2652 */ 2653 if (sbi->s_cluster_ratio > 1) { 2654 pblk = ext4_ext_pblock(ex); 2655 *partial_cluster = 2656 -(long long) EXT4_B2C(sbi, pblk); 2657 } 2658 ex--; 2659 ex_ee_block = le32_to_cpu(ex->ee_block); 2660 ex_ee_len = ext4_ext_get_actual_len(ex); 2661 continue; 2662 } else if (b != ex_ee_block + ex_ee_len - 1) { 2663 EXT4_ERROR_INODE(inode, 2664 "can not handle truncate %u:%u " 2665 "on extent %u:%u", 2666 start, end, ex_ee_block, 2667 ex_ee_block + ex_ee_len - 1); 2668 err = -EIO; 2669 goto out; 2670 } else if (a != ex_ee_block) { 2671 /* remove tail of the extent */ 2672 num = a - ex_ee_block; 2673 } else { 2674 /* remove whole extent: excellent! */ 2675 num = 0; 2676 } 2677 /* 2678 * 3 for leaf, sb, and inode plus 2 (bmap and group 2679 * descriptor) for each block group; assume two block 2680 * groups plus ex_ee_len/blocks_per_block_group for 2681 * the worst case 2682 */ 2683 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2684 if (ex == EXT_FIRST_EXTENT(eh)) { 2685 correct_index = 1; 2686 credits += (ext_depth(inode)) + 1; 2687 } 2688 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2689 2690 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2691 if (err) 2692 goto out; 2693 2694 err = ext4_ext_get_access(handle, inode, path + depth); 2695 if (err) 2696 goto out; 2697 2698 err = ext4_remove_blocks(handle, inode, ex, partial_cluster, 2699 a, b); 2700 if (err) 2701 goto out; 2702 2703 if (num == 0) 2704 /* this extent is removed; mark slot entirely unused */ 2705 ext4_ext_store_pblock(ex, 0); 2706 2707 ex->ee_len = cpu_to_le16(num); 2708 /* 2709 * Do not mark unwritten if all the blocks in the 2710 * extent have been removed. 2711 */ 2712 if (unwritten && num) 2713 ext4_ext_mark_unwritten(ex); 2714 /* 2715 * If the extent was completely released, 2716 * we need to remove it from the leaf 2717 */ 2718 if (num == 0) { 2719 if (end != EXT_MAX_BLOCKS - 1) { 2720 /* 2721 * For hole punching, we need to scoot all the 2722 * extents up when an extent is removed so that 2723 * we dont have blank extents in the middle 2724 */ 2725 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2726 sizeof(struct ext4_extent)); 2727 2728 /* Now get rid of the one at the end */ 2729 memset(EXT_LAST_EXTENT(eh), 0, 2730 sizeof(struct ext4_extent)); 2731 } 2732 le16_add_cpu(&eh->eh_entries, -1); 2733 } 2734 2735 err = ext4_ext_dirty(handle, inode, path + depth); 2736 if (err) 2737 goto out; 2738 2739 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, 2740 ext4_ext_pblock(ex)); 2741 ex--; 2742 ex_ee_block = le32_to_cpu(ex->ee_block); 2743 ex_ee_len = ext4_ext_get_actual_len(ex); 2744 } 2745 2746 if (correct_index && eh->eh_entries) 2747 err = ext4_ext_correct_indexes(handle, inode, path); 2748 2749 /* 2750 * If there's a partial cluster and at least one extent remains in 2751 * the leaf, free the partial cluster if it isn't shared with the 2752 * current extent. If it is shared with the current extent 2753 * we zero partial_cluster because we've reached the start of the 2754 * truncated/punched region and we're done removing blocks. 2755 */ 2756 if (*partial_cluster > 0 && ex >= EXT_FIRST_EXTENT(eh)) { 2757 pblk = ext4_ext_pblock(ex) + ex_ee_len - 1; 2758 if (*partial_cluster != (long long) EXT4_B2C(sbi, pblk)) { 2759 ext4_free_blocks(handle, inode, NULL, 2760 EXT4_C2B(sbi, *partial_cluster), 2761 sbi->s_cluster_ratio, 2762 get_default_free_blocks_flags(inode)); 2763 } 2764 *partial_cluster = 0; 2765 } 2766 2767 /* if this leaf is free, then we should 2768 * remove it from index block above */ 2769 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2770 err = ext4_ext_rm_idx(handle, inode, path, depth); 2771 2772 out: 2773 return err; 2774 } 2775 2776 /* 2777 * ext4_ext_more_to_rm: 2778 * returns 1 if current index has to be freed (even partial) 2779 */ 2780 static int 2781 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2782 { 2783 BUG_ON(path->p_idx == NULL); 2784 2785 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2786 return 0; 2787 2788 /* 2789 * if truncate on deeper level happened, it wasn't partial, 2790 * so we have to consider current index for truncation 2791 */ 2792 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2793 return 0; 2794 return 1; 2795 } 2796 2797 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2798 ext4_lblk_t end) 2799 { 2800 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2801 int depth = ext_depth(inode); 2802 struct ext4_ext_path *path = NULL; 2803 long long partial_cluster = 0; 2804 handle_t *handle; 2805 int i = 0, err = 0; 2806 2807 ext_debug("truncate since %u to %u\n", start, end); 2808 2809 /* probably first extent we're gonna free will be last in block */ 2810 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1); 2811 if (IS_ERR(handle)) 2812 return PTR_ERR(handle); 2813 2814 again: 2815 trace_ext4_ext_remove_space(inode, start, end, depth); 2816 2817 /* 2818 * Check if we are removing extents inside the extent tree. If that 2819 * is the case, we are going to punch a hole inside the extent tree 2820 * so we have to check whether we need to split the extent covering 2821 * the last block to remove so we can easily remove the part of it 2822 * in ext4_ext_rm_leaf(). 2823 */ 2824 if (end < EXT_MAX_BLOCKS - 1) { 2825 struct ext4_extent *ex; 2826 ext4_lblk_t ee_block, ex_end, lblk; 2827 ext4_fsblk_t pblk; 2828 2829 /* find extent for or closest extent to this block */ 2830 path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE); 2831 if (IS_ERR(path)) { 2832 ext4_journal_stop(handle); 2833 return PTR_ERR(path); 2834 } 2835 depth = ext_depth(inode); 2836 /* Leaf not may not exist only if inode has no blocks at all */ 2837 ex = path[depth].p_ext; 2838 if (!ex) { 2839 if (depth) { 2840 EXT4_ERROR_INODE(inode, 2841 "path[%d].p_hdr == NULL", 2842 depth); 2843 err = -EIO; 2844 } 2845 goto out; 2846 } 2847 2848 ee_block = le32_to_cpu(ex->ee_block); 2849 ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1; 2850 2851 /* 2852 * See if the last block is inside the extent, if so split 2853 * the extent at 'end' block so we can easily remove the 2854 * tail of the first part of the split extent in 2855 * ext4_ext_rm_leaf(). 2856 */ 2857 if (end >= ee_block && end < ex_end) { 2858 2859 /* 2860 * If we're going to split the extent, note that 2861 * the cluster containing the block after 'end' is 2862 * in use to avoid freeing it when removing blocks. 2863 */ 2864 if (sbi->s_cluster_ratio > 1) { 2865 pblk = ext4_ext_pblock(ex) + end - ee_block + 2; 2866 partial_cluster = 2867 -(long long) EXT4_B2C(sbi, pblk); 2868 } 2869 2870 /* 2871 * Split the extent in two so that 'end' is the last 2872 * block in the first new extent. Also we should not 2873 * fail removing space due to ENOSPC so try to use 2874 * reserved block if that happens. 2875 */ 2876 err = ext4_force_split_extent_at(handle, inode, &path, 2877 end + 1, 1); 2878 if (err < 0) 2879 goto out; 2880 2881 } else if (sbi->s_cluster_ratio > 1 && end >= ex_end) { 2882 /* 2883 * If there's an extent to the right its first cluster 2884 * contains the immediate right boundary of the 2885 * truncated/punched region. Set partial_cluster to 2886 * its negative value so it won't be freed if shared 2887 * with the current extent. The end < ee_block case 2888 * is handled in ext4_ext_rm_leaf(). 2889 */ 2890 lblk = ex_end + 1; 2891 err = ext4_ext_search_right(inode, path, &lblk, &pblk, 2892 &ex); 2893 if (err) 2894 goto out; 2895 if (pblk) 2896 partial_cluster = 2897 -(long long) EXT4_B2C(sbi, pblk); 2898 } 2899 } 2900 /* 2901 * We start scanning from right side, freeing all the blocks 2902 * after i_size and walking into the tree depth-wise. 2903 */ 2904 depth = ext_depth(inode); 2905 if (path) { 2906 int k = i = depth; 2907 while (--k > 0) 2908 path[k].p_block = 2909 le16_to_cpu(path[k].p_hdr->eh_entries)+1; 2910 } else { 2911 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 2912 GFP_NOFS); 2913 if (path == NULL) { 2914 ext4_journal_stop(handle); 2915 return -ENOMEM; 2916 } 2917 path[0].p_maxdepth = path[0].p_depth = depth; 2918 path[0].p_hdr = ext_inode_hdr(inode); 2919 i = 0; 2920 2921 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) { 2922 err = -EIO; 2923 goto out; 2924 } 2925 } 2926 err = 0; 2927 2928 while (i >= 0 && err == 0) { 2929 if (i == depth) { 2930 /* this is leaf block */ 2931 err = ext4_ext_rm_leaf(handle, inode, path, 2932 &partial_cluster, start, 2933 end); 2934 /* root level has p_bh == NULL, brelse() eats this */ 2935 brelse(path[i].p_bh); 2936 path[i].p_bh = NULL; 2937 i--; 2938 continue; 2939 } 2940 2941 /* this is index block */ 2942 if (!path[i].p_hdr) { 2943 ext_debug("initialize header\n"); 2944 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2945 } 2946 2947 if (!path[i].p_idx) { 2948 /* this level hasn't been touched yet */ 2949 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2950 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2951 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2952 path[i].p_hdr, 2953 le16_to_cpu(path[i].p_hdr->eh_entries)); 2954 } else { 2955 /* we were already here, see at next index */ 2956 path[i].p_idx--; 2957 } 2958 2959 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2960 i, EXT_FIRST_INDEX(path[i].p_hdr), 2961 path[i].p_idx); 2962 if (ext4_ext_more_to_rm(path + i)) { 2963 struct buffer_head *bh; 2964 /* go to the next level */ 2965 ext_debug("move to level %d (block %llu)\n", 2966 i + 1, ext4_idx_pblock(path[i].p_idx)); 2967 memset(path + i + 1, 0, sizeof(*path)); 2968 bh = read_extent_tree_block(inode, 2969 ext4_idx_pblock(path[i].p_idx), depth - i - 1, 2970 EXT4_EX_NOCACHE); 2971 if (IS_ERR(bh)) { 2972 /* should we reset i_size? */ 2973 err = PTR_ERR(bh); 2974 break; 2975 } 2976 /* Yield here to deal with large extent trees. 2977 * Should be a no-op if we did IO above. */ 2978 cond_resched(); 2979 if (WARN_ON(i + 1 > depth)) { 2980 err = -EIO; 2981 break; 2982 } 2983 path[i + 1].p_bh = bh; 2984 2985 /* save actual number of indexes since this 2986 * number is changed at the next iteration */ 2987 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2988 i++; 2989 } else { 2990 /* we finished processing this index, go up */ 2991 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2992 /* index is empty, remove it; 2993 * handle must be already prepared by the 2994 * truncatei_leaf() */ 2995 err = ext4_ext_rm_idx(handle, inode, path, i); 2996 } 2997 /* root level has p_bh == NULL, brelse() eats this */ 2998 brelse(path[i].p_bh); 2999 path[i].p_bh = NULL; 3000 i--; 3001 ext_debug("return to level %d\n", i); 3002 } 3003 } 3004 3005 trace_ext4_ext_remove_space_done(inode, start, end, depth, 3006 partial_cluster, path->p_hdr->eh_entries); 3007 3008 /* 3009 * If we still have something in the partial cluster and we have removed 3010 * even the first extent, then we should free the blocks in the partial 3011 * cluster as well. (This code will only run when there are no leaves 3012 * to the immediate left of the truncated/punched region.) 3013 */ 3014 if (partial_cluster > 0 && err == 0) { 3015 /* don't zero partial_cluster since it's not used afterwards */ 3016 ext4_free_blocks(handle, inode, NULL, 3017 EXT4_C2B(sbi, partial_cluster), 3018 sbi->s_cluster_ratio, 3019 get_default_free_blocks_flags(inode)); 3020 } 3021 3022 /* TODO: flexible tree reduction should be here */ 3023 if (path->p_hdr->eh_entries == 0) { 3024 /* 3025 * truncate to zero freed all the tree, 3026 * so we need to correct eh_depth 3027 */ 3028 err = ext4_ext_get_access(handle, inode, path); 3029 if (err == 0) { 3030 ext_inode_hdr(inode)->eh_depth = 0; 3031 ext_inode_hdr(inode)->eh_max = 3032 cpu_to_le16(ext4_ext_space_root(inode, 0)); 3033 err = ext4_ext_dirty(handle, inode, path); 3034 } 3035 } 3036 out: 3037 ext4_ext_drop_refs(path); 3038 kfree(path); 3039 path = NULL; 3040 if (err == -EAGAIN) 3041 goto again; 3042 ext4_journal_stop(handle); 3043 3044 return err; 3045 } 3046 3047 /* 3048 * called at mount time 3049 */ 3050 void ext4_ext_init(struct super_block *sb) 3051 { 3052 /* 3053 * possible initialization would be here 3054 */ 3055 3056 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 3057 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 3058 printk(KERN_INFO "EXT4-fs: file extents enabled" 3059 #ifdef AGGRESSIVE_TEST 3060 ", aggressive tests" 3061 #endif 3062 #ifdef CHECK_BINSEARCH 3063 ", check binsearch" 3064 #endif 3065 #ifdef EXTENTS_STATS 3066 ", stats" 3067 #endif 3068 "\n"); 3069 #endif 3070 #ifdef EXTENTS_STATS 3071 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 3072 EXT4_SB(sb)->s_ext_min = 1 << 30; 3073 EXT4_SB(sb)->s_ext_max = 0; 3074 #endif 3075 } 3076 } 3077 3078 /* 3079 * called at umount time 3080 */ 3081 void ext4_ext_release(struct super_block *sb) 3082 { 3083 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 3084 return; 3085 3086 #ifdef EXTENTS_STATS 3087 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 3088 struct ext4_sb_info *sbi = EXT4_SB(sb); 3089 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 3090 sbi->s_ext_blocks, sbi->s_ext_extents, 3091 sbi->s_ext_blocks / sbi->s_ext_extents); 3092 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 3093 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 3094 } 3095 #endif 3096 } 3097 3098 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex) 3099 { 3100 ext4_lblk_t ee_block; 3101 ext4_fsblk_t ee_pblock; 3102 unsigned int ee_len; 3103 3104 ee_block = le32_to_cpu(ex->ee_block); 3105 ee_len = ext4_ext_get_actual_len(ex); 3106 ee_pblock = ext4_ext_pblock(ex); 3107 3108 if (ee_len == 0) 3109 return 0; 3110 3111 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock, 3112 EXTENT_STATUS_WRITTEN); 3113 } 3114 3115 /* FIXME!! we need to try to merge to left or right after zero-out */ 3116 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 3117 { 3118 ext4_fsblk_t ee_pblock; 3119 unsigned int ee_len; 3120 int ret; 3121 3122 ee_len = ext4_ext_get_actual_len(ex); 3123 ee_pblock = ext4_ext_pblock(ex); 3124 3125 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS); 3126 if (ret > 0) 3127 ret = 0; 3128 3129 return ret; 3130 } 3131 3132 /* 3133 * ext4_split_extent_at() splits an extent at given block. 3134 * 3135 * @handle: the journal handle 3136 * @inode: the file inode 3137 * @path: the path to the extent 3138 * @split: the logical block where the extent is splitted. 3139 * @split_flags: indicates if the extent could be zeroout if split fails, and 3140 * the states(init or unwritten) of new extents. 3141 * @flags: flags used to insert new extent to extent tree. 3142 * 3143 * 3144 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 3145 * of which are deterimined by split_flag. 3146 * 3147 * There are two cases: 3148 * a> the extent are splitted into two extent. 3149 * b> split is not needed, and just mark the extent. 3150 * 3151 * return 0 on success. 3152 */ 3153 static int ext4_split_extent_at(handle_t *handle, 3154 struct inode *inode, 3155 struct ext4_ext_path **ppath, 3156 ext4_lblk_t split, 3157 int split_flag, 3158 int flags) 3159 { 3160 struct ext4_ext_path *path = *ppath; 3161 ext4_fsblk_t newblock; 3162 ext4_lblk_t ee_block; 3163 struct ext4_extent *ex, newex, orig_ex, zero_ex; 3164 struct ext4_extent *ex2 = NULL; 3165 unsigned int ee_len, depth; 3166 int err = 0; 3167 3168 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == 3169 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); 3170 3171 ext_debug("ext4_split_extents_at: inode %lu, logical" 3172 "block %llu\n", inode->i_ino, (unsigned long long)split); 3173 3174 ext4_ext_show_leaf(inode, path); 3175 3176 depth = ext_depth(inode); 3177 ex = path[depth].p_ext; 3178 ee_block = le32_to_cpu(ex->ee_block); 3179 ee_len = ext4_ext_get_actual_len(ex); 3180 newblock = split - ee_block + ext4_ext_pblock(ex); 3181 3182 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 3183 BUG_ON(!ext4_ext_is_unwritten(ex) && 3184 split_flag & (EXT4_EXT_MAY_ZEROOUT | 3185 EXT4_EXT_MARK_UNWRIT1 | 3186 EXT4_EXT_MARK_UNWRIT2)); 3187 3188 err = ext4_ext_get_access(handle, inode, path + depth); 3189 if (err) 3190 goto out; 3191 3192 if (split == ee_block) { 3193 /* 3194 * case b: block @split is the block that the extent begins with 3195 * then we just change the state of the extent, and splitting 3196 * is not needed. 3197 */ 3198 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3199 ext4_ext_mark_unwritten(ex); 3200 else 3201 ext4_ext_mark_initialized(ex); 3202 3203 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 3204 ext4_ext_try_to_merge(handle, inode, path, ex); 3205 3206 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3207 goto out; 3208 } 3209 3210 /* case a */ 3211 memcpy(&orig_ex, ex, sizeof(orig_ex)); 3212 ex->ee_len = cpu_to_le16(split - ee_block); 3213 if (split_flag & EXT4_EXT_MARK_UNWRIT1) 3214 ext4_ext_mark_unwritten(ex); 3215 3216 /* 3217 * path may lead to new leaf, not to original leaf any more 3218 * after ext4_ext_insert_extent() returns, 3219 */ 3220 err = ext4_ext_dirty(handle, inode, path + depth); 3221 if (err) 3222 goto fix_extent_len; 3223 3224 ex2 = &newex; 3225 ex2->ee_block = cpu_to_le32(split); 3226 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 3227 ext4_ext_store_pblock(ex2, newblock); 3228 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3229 ext4_ext_mark_unwritten(ex2); 3230 3231 err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags); 3232 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3233 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { 3234 if (split_flag & EXT4_EXT_DATA_VALID1) { 3235 err = ext4_ext_zeroout(inode, ex2); 3236 zero_ex.ee_block = ex2->ee_block; 3237 zero_ex.ee_len = cpu_to_le16( 3238 ext4_ext_get_actual_len(ex2)); 3239 ext4_ext_store_pblock(&zero_ex, 3240 ext4_ext_pblock(ex2)); 3241 } else { 3242 err = ext4_ext_zeroout(inode, ex); 3243 zero_ex.ee_block = ex->ee_block; 3244 zero_ex.ee_len = cpu_to_le16( 3245 ext4_ext_get_actual_len(ex)); 3246 ext4_ext_store_pblock(&zero_ex, 3247 ext4_ext_pblock(ex)); 3248 } 3249 } else { 3250 err = ext4_ext_zeroout(inode, &orig_ex); 3251 zero_ex.ee_block = orig_ex.ee_block; 3252 zero_ex.ee_len = cpu_to_le16( 3253 ext4_ext_get_actual_len(&orig_ex)); 3254 ext4_ext_store_pblock(&zero_ex, 3255 ext4_ext_pblock(&orig_ex)); 3256 } 3257 3258 if (err) 3259 goto fix_extent_len; 3260 /* update the extent length and mark as initialized */ 3261 ex->ee_len = cpu_to_le16(ee_len); 3262 ext4_ext_try_to_merge(handle, inode, path, ex); 3263 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3264 if (err) 3265 goto fix_extent_len; 3266 3267 /* update extent status tree */ 3268 err = ext4_zeroout_es(inode, &zero_ex); 3269 3270 goto out; 3271 } else if (err) 3272 goto fix_extent_len; 3273 3274 out: 3275 ext4_ext_show_leaf(inode, path); 3276 return err; 3277 3278 fix_extent_len: 3279 ex->ee_len = orig_ex.ee_len; 3280 ext4_ext_dirty(handle, inode, path + path->p_depth); 3281 return err; 3282 } 3283 3284 /* 3285 * ext4_split_extents() splits an extent and mark extent which is covered 3286 * by @map as split_flags indicates 3287 * 3288 * It may result in splitting the extent into multiple extents (up to three) 3289 * There are three possibilities: 3290 * a> There is no split required 3291 * b> Splits in two extents: Split is happening at either end of the extent 3292 * c> Splits in three extents: Somone is splitting in middle of the extent 3293 * 3294 */ 3295 static int ext4_split_extent(handle_t *handle, 3296 struct inode *inode, 3297 struct ext4_ext_path **ppath, 3298 struct ext4_map_blocks *map, 3299 int split_flag, 3300 int flags) 3301 { 3302 struct ext4_ext_path *path = *ppath; 3303 ext4_lblk_t ee_block; 3304 struct ext4_extent *ex; 3305 unsigned int ee_len, depth; 3306 int err = 0; 3307 int unwritten; 3308 int split_flag1, flags1; 3309 int allocated = map->m_len; 3310 3311 depth = ext_depth(inode); 3312 ex = path[depth].p_ext; 3313 ee_block = le32_to_cpu(ex->ee_block); 3314 ee_len = ext4_ext_get_actual_len(ex); 3315 unwritten = ext4_ext_is_unwritten(ex); 3316 3317 if (map->m_lblk + map->m_len < ee_block + ee_len) { 3318 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; 3319 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 3320 if (unwritten) 3321 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 | 3322 EXT4_EXT_MARK_UNWRIT2; 3323 if (split_flag & EXT4_EXT_DATA_VALID2) 3324 split_flag1 |= EXT4_EXT_DATA_VALID1; 3325 err = ext4_split_extent_at(handle, inode, ppath, 3326 map->m_lblk + map->m_len, split_flag1, flags1); 3327 if (err) 3328 goto out; 3329 } else { 3330 allocated = ee_len - (map->m_lblk - ee_block); 3331 } 3332 /* 3333 * Update path is required because previous ext4_split_extent_at() may 3334 * result in split of original leaf or extent zeroout. 3335 */ 3336 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3337 if (IS_ERR(path)) 3338 return PTR_ERR(path); 3339 depth = ext_depth(inode); 3340 ex = path[depth].p_ext; 3341 if (!ex) { 3342 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3343 (unsigned long) map->m_lblk); 3344 return -EIO; 3345 } 3346 unwritten = ext4_ext_is_unwritten(ex); 3347 split_flag1 = 0; 3348 3349 if (map->m_lblk >= ee_block) { 3350 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2; 3351 if (unwritten) { 3352 split_flag1 |= EXT4_EXT_MARK_UNWRIT1; 3353 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT | 3354 EXT4_EXT_MARK_UNWRIT2); 3355 } 3356 err = ext4_split_extent_at(handle, inode, ppath, 3357 map->m_lblk, split_flag1, flags); 3358 if (err) 3359 goto out; 3360 } 3361 3362 ext4_ext_show_leaf(inode, path); 3363 out: 3364 return err ? err : allocated; 3365 } 3366 3367 /* 3368 * This function is called by ext4_ext_map_blocks() if someone tries to write 3369 * to an unwritten extent. It may result in splitting the unwritten 3370 * extent into multiple extents (up to three - one initialized and two 3371 * unwritten). 3372 * There are three possibilities: 3373 * a> There is no split required: Entire extent should be initialized 3374 * b> Splits in two extents: Write is happening at either end of the extent 3375 * c> Splits in three extents: Somone is writing in middle of the extent 3376 * 3377 * Pre-conditions: 3378 * - The extent pointed to by 'path' is unwritten. 3379 * - The extent pointed to by 'path' contains a superset 3380 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 3381 * 3382 * Post-conditions on success: 3383 * - the returned value is the number of blocks beyond map->l_lblk 3384 * that are allocated and initialized. 3385 * It is guaranteed to be >= map->m_len. 3386 */ 3387 static int ext4_ext_convert_to_initialized(handle_t *handle, 3388 struct inode *inode, 3389 struct ext4_map_blocks *map, 3390 struct ext4_ext_path **ppath, 3391 int flags) 3392 { 3393 struct ext4_ext_path *path = *ppath; 3394 struct ext4_sb_info *sbi; 3395 struct ext4_extent_header *eh; 3396 struct ext4_map_blocks split_map; 3397 struct ext4_extent zero_ex; 3398 struct ext4_extent *ex, *abut_ex; 3399 ext4_lblk_t ee_block, eof_block; 3400 unsigned int ee_len, depth, map_len = map->m_len; 3401 int allocated = 0, max_zeroout = 0; 3402 int err = 0; 3403 int split_flag = 0; 3404 3405 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 3406 "block %llu, max_blocks %u\n", inode->i_ino, 3407 (unsigned long long)map->m_lblk, map_len); 3408 3409 sbi = EXT4_SB(inode->i_sb); 3410 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3411 inode->i_sb->s_blocksize_bits; 3412 if (eof_block < map->m_lblk + map_len) 3413 eof_block = map->m_lblk + map_len; 3414 3415 depth = ext_depth(inode); 3416 eh = path[depth].p_hdr; 3417 ex = path[depth].p_ext; 3418 ee_block = le32_to_cpu(ex->ee_block); 3419 ee_len = ext4_ext_get_actual_len(ex); 3420 zero_ex.ee_len = 0; 3421 3422 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3423 3424 /* Pre-conditions */ 3425 BUG_ON(!ext4_ext_is_unwritten(ex)); 3426 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3427 3428 /* 3429 * Attempt to transfer newly initialized blocks from the currently 3430 * unwritten extent to its neighbor. This is much cheaper 3431 * than an insertion followed by a merge as those involve costly 3432 * memmove() calls. Transferring to the left is the common case in 3433 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE) 3434 * followed by append writes. 3435 * 3436 * Limitations of the current logic: 3437 * - L1: we do not deal with writes covering the whole extent. 3438 * This would require removing the extent if the transfer 3439 * is possible. 3440 * - L2: we only attempt to merge with an extent stored in the 3441 * same extent tree node. 3442 */ 3443 if ((map->m_lblk == ee_block) && 3444 /* See if we can merge left */ 3445 (map_len < ee_len) && /*L1*/ 3446 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/ 3447 ext4_lblk_t prev_lblk; 3448 ext4_fsblk_t prev_pblk, ee_pblk; 3449 unsigned int prev_len; 3450 3451 abut_ex = ex - 1; 3452 prev_lblk = le32_to_cpu(abut_ex->ee_block); 3453 prev_len = ext4_ext_get_actual_len(abut_ex); 3454 prev_pblk = ext4_ext_pblock(abut_ex); 3455 ee_pblk = ext4_ext_pblock(ex); 3456 3457 /* 3458 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3459 * upon those conditions: 3460 * - C1: abut_ex is initialized, 3461 * - C2: abut_ex is logically abutting ex, 3462 * - C3: abut_ex is physically abutting ex, 3463 * - C4: abut_ex can receive the additional blocks without 3464 * overflowing the (initialized) length limit. 3465 */ 3466 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3467 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3468 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3469 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3470 err = ext4_ext_get_access(handle, inode, path + depth); 3471 if (err) 3472 goto out; 3473 3474 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3475 map, ex, abut_ex); 3476 3477 /* Shift the start of ex by 'map_len' blocks */ 3478 ex->ee_block = cpu_to_le32(ee_block + map_len); 3479 ext4_ext_store_pblock(ex, ee_pblk + map_len); 3480 ex->ee_len = cpu_to_le16(ee_len - map_len); 3481 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3482 3483 /* Extend abut_ex by 'map_len' blocks */ 3484 abut_ex->ee_len = cpu_to_le16(prev_len + map_len); 3485 3486 /* Result: number of initialized blocks past m_lblk */ 3487 allocated = map_len; 3488 } 3489 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) && 3490 (map_len < ee_len) && /*L1*/ 3491 ex < EXT_LAST_EXTENT(eh)) { /*L2*/ 3492 /* See if we can merge right */ 3493 ext4_lblk_t next_lblk; 3494 ext4_fsblk_t next_pblk, ee_pblk; 3495 unsigned int next_len; 3496 3497 abut_ex = ex + 1; 3498 next_lblk = le32_to_cpu(abut_ex->ee_block); 3499 next_len = ext4_ext_get_actual_len(abut_ex); 3500 next_pblk = ext4_ext_pblock(abut_ex); 3501 ee_pblk = ext4_ext_pblock(ex); 3502 3503 /* 3504 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3505 * upon those conditions: 3506 * - C1: abut_ex is initialized, 3507 * - C2: abut_ex is logically abutting ex, 3508 * - C3: abut_ex is physically abutting ex, 3509 * - C4: abut_ex can receive the additional blocks without 3510 * overflowing the (initialized) length limit. 3511 */ 3512 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3513 ((map->m_lblk + map_len) == next_lblk) && /*C2*/ 3514 ((ee_pblk + ee_len) == next_pblk) && /*C3*/ 3515 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3516 err = ext4_ext_get_access(handle, inode, path + depth); 3517 if (err) 3518 goto out; 3519 3520 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3521 map, ex, abut_ex); 3522 3523 /* Shift the start of abut_ex by 'map_len' blocks */ 3524 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len); 3525 ext4_ext_store_pblock(abut_ex, next_pblk - map_len); 3526 ex->ee_len = cpu_to_le16(ee_len - map_len); 3527 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3528 3529 /* Extend abut_ex by 'map_len' blocks */ 3530 abut_ex->ee_len = cpu_to_le16(next_len + map_len); 3531 3532 /* Result: number of initialized blocks past m_lblk */ 3533 allocated = map_len; 3534 } 3535 } 3536 if (allocated) { 3537 /* Mark the block containing both extents as dirty */ 3538 ext4_ext_dirty(handle, inode, path + depth); 3539 3540 /* Update path to point to the right extent */ 3541 path[depth].p_ext = abut_ex; 3542 goto out; 3543 } else 3544 allocated = ee_len - (map->m_lblk - ee_block); 3545 3546 WARN_ON(map->m_lblk < ee_block); 3547 /* 3548 * It is safe to convert extent to initialized via explicit 3549 * zeroout only if extent is fully inside i_size or new_size. 3550 */ 3551 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3552 3553 if (EXT4_EXT_MAY_ZEROOUT & split_flag) 3554 max_zeroout = sbi->s_extent_max_zeroout_kb >> 3555 (inode->i_sb->s_blocksize_bits - 10); 3556 3557 /* If extent is less than s_max_zeroout_kb, zeroout directly */ 3558 if (max_zeroout && (ee_len <= max_zeroout)) { 3559 err = ext4_ext_zeroout(inode, ex); 3560 if (err) 3561 goto out; 3562 zero_ex.ee_block = ex->ee_block; 3563 zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)); 3564 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex)); 3565 3566 err = ext4_ext_get_access(handle, inode, path + depth); 3567 if (err) 3568 goto out; 3569 ext4_ext_mark_initialized(ex); 3570 ext4_ext_try_to_merge(handle, inode, path, ex); 3571 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3572 goto out; 3573 } 3574 3575 /* 3576 * four cases: 3577 * 1. split the extent into three extents. 3578 * 2. split the extent into two extents, zeroout the first half. 3579 * 3. split the extent into two extents, zeroout the second half. 3580 * 4. split the extent into two extents with out zeroout. 3581 */ 3582 split_map.m_lblk = map->m_lblk; 3583 split_map.m_len = map->m_len; 3584 3585 if (max_zeroout && (allocated > map->m_len)) { 3586 if (allocated <= max_zeroout) { 3587 /* case 3 */ 3588 zero_ex.ee_block = 3589 cpu_to_le32(map->m_lblk); 3590 zero_ex.ee_len = cpu_to_le16(allocated); 3591 ext4_ext_store_pblock(&zero_ex, 3592 ext4_ext_pblock(ex) + map->m_lblk - ee_block); 3593 err = ext4_ext_zeroout(inode, &zero_ex); 3594 if (err) 3595 goto out; 3596 split_map.m_lblk = map->m_lblk; 3597 split_map.m_len = allocated; 3598 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) { 3599 /* case 2 */ 3600 if (map->m_lblk != ee_block) { 3601 zero_ex.ee_block = ex->ee_block; 3602 zero_ex.ee_len = cpu_to_le16(map->m_lblk - 3603 ee_block); 3604 ext4_ext_store_pblock(&zero_ex, 3605 ext4_ext_pblock(ex)); 3606 err = ext4_ext_zeroout(inode, &zero_ex); 3607 if (err) 3608 goto out; 3609 } 3610 3611 split_map.m_lblk = ee_block; 3612 split_map.m_len = map->m_lblk - ee_block + map->m_len; 3613 allocated = map->m_len; 3614 } 3615 } 3616 3617 err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag, 3618 flags); 3619 if (err > 0) 3620 err = 0; 3621 out: 3622 /* If we have gotten a failure, don't zero out status tree */ 3623 if (!err) 3624 err = ext4_zeroout_es(inode, &zero_ex); 3625 return err ? err : allocated; 3626 } 3627 3628 /* 3629 * This function is called by ext4_ext_map_blocks() from 3630 * ext4_get_blocks_dio_write() when DIO to write 3631 * to an unwritten extent. 3632 * 3633 * Writing to an unwritten extent may result in splitting the unwritten 3634 * extent into multiple initialized/unwritten extents (up to three) 3635 * There are three possibilities: 3636 * a> There is no split required: Entire extent should be unwritten 3637 * b> Splits in two extents: Write is happening at either end of the extent 3638 * c> Splits in three extents: Somone is writing in middle of the extent 3639 * 3640 * This works the same way in the case of initialized -> unwritten conversion. 3641 * 3642 * One of more index blocks maybe needed if the extent tree grow after 3643 * the unwritten extent split. To prevent ENOSPC occur at the IO 3644 * complete, we need to split the unwritten extent before DIO submit 3645 * the IO. The unwritten extent called at this time will be split 3646 * into three unwritten extent(at most). After IO complete, the part 3647 * being filled will be convert to initialized by the end_io callback function 3648 * via ext4_convert_unwritten_extents(). 3649 * 3650 * Returns the size of unwritten extent to be written on success. 3651 */ 3652 static int ext4_split_convert_extents(handle_t *handle, 3653 struct inode *inode, 3654 struct ext4_map_blocks *map, 3655 struct ext4_ext_path **ppath, 3656 int flags) 3657 { 3658 struct ext4_ext_path *path = *ppath; 3659 ext4_lblk_t eof_block; 3660 ext4_lblk_t ee_block; 3661 struct ext4_extent *ex; 3662 unsigned int ee_len; 3663 int split_flag = 0, depth; 3664 3665 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n", 3666 __func__, inode->i_ino, 3667 (unsigned long long)map->m_lblk, map->m_len); 3668 3669 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3670 inode->i_sb->s_blocksize_bits; 3671 if (eof_block < map->m_lblk + map->m_len) 3672 eof_block = map->m_lblk + map->m_len; 3673 /* 3674 * It is safe to convert extent to initialized via explicit 3675 * zeroout only if extent is fully insde i_size or new_size. 3676 */ 3677 depth = ext_depth(inode); 3678 ex = path[depth].p_ext; 3679 ee_block = le32_to_cpu(ex->ee_block); 3680 ee_len = ext4_ext_get_actual_len(ex); 3681 3682 /* Convert to unwritten */ 3683 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) { 3684 split_flag |= EXT4_EXT_DATA_VALID1; 3685 /* Convert to initialized */ 3686 } else if (flags & EXT4_GET_BLOCKS_CONVERT) { 3687 split_flag |= ee_block + ee_len <= eof_block ? 3688 EXT4_EXT_MAY_ZEROOUT : 0; 3689 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2); 3690 } 3691 flags |= EXT4_GET_BLOCKS_PRE_IO; 3692 return ext4_split_extent(handle, inode, ppath, map, split_flag, flags); 3693 } 3694 3695 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3696 struct inode *inode, 3697 struct ext4_map_blocks *map, 3698 struct ext4_ext_path **ppath) 3699 { 3700 struct ext4_ext_path *path = *ppath; 3701 struct ext4_extent *ex; 3702 ext4_lblk_t ee_block; 3703 unsigned int ee_len; 3704 int depth; 3705 int err = 0; 3706 3707 depth = ext_depth(inode); 3708 ex = path[depth].p_ext; 3709 ee_block = le32_to_cpu(ex->ee_block); 3710 ee_len = ext4_ext_get_actual_len(ex); 3711 3712 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3713 "block %llu, max_blocks %u\n", inode->i_ino, 3714 (unsigned long long)ee_block, ee_len); 3715 3716 /* If extent is larger than requested it is a clear sign that we still 3717 * have some extent state machine issues left. So extent_split is still 3718 * required. 3719 * TODO: Once all related issues will be fixed this situation should be 3720 * illegal. 3721 */ 3722 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3723 #ifdef EXT4_DEBUG 3724 ext4_warning("Inode (%ld) finished: extent logical block %llu," 3725 " len %u; IO logical block %llu, len %u\n", 3726 inode->i_ino, (unsigned long long)ee_block, ee_len, 3727 (unsigned long long)map->m_lblk, map->m_len); 3728 #endif 3729 err = ext4_split_convert_extents(handle, inode, map, ppath, 3730 EXT4_GET_BLOCKS_CONVERT); 3731 if (err < 0) 3732 return err; 3733 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3734 if (IS_ERR(path)) 3735 return PTR_ERR(path); 3736 depth = ext_depth(inode); 3737 ex = path[depth].p_ext; 3738 } 3739 3740 err = ext4_ext_get_access(handle, inode, path + depth); 3741 if (err) 3742 goto out; 3743 /* first mark the extent as initialized */ 3744 ext4_ext_mark_initialized(ex); 3745 3746 /* note: ext4_ext_correct_indexes() isn't needed here because 3747 * borders are not changed 3748 */ 3749 ext4_ext_try_to_merge(handle, inode, path, ex); 3750 3751 /* Mark modified extent as dirty */ 3752 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3753 out: 3754 ext4_ext_show_leaf(inode, path); 3755 return err; 3756 } 3757 3758 static void unmap_underlying_metadata_blocks(struct block_device *bdev, 3759 sector_t block, int count) 3760 { 3761 int i; 3762 for (i = 0; i < count; i++) 3763 unmap_underlying_metadata(bdev, block + i); 3764 } 3765 3766 /* 3767 * Handle EOFBLOCKS_FL flag, clearing it if necessary 3768 */ 3769 static int check_eofblocks_fl(handle_t *handle, struct inode *inode, 3770 ext4_lblk_t lblk, 3771 struct ext4_ext_path *path, 3772 unsigned int len) 3773 { 3774 int i, depth; 3775 struct ext4_extent_header *eh; 3776 struct ext4_extent *last_ex; 3777 3778 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3779 return 0; 3780 3781 depth = ext_depth(inode); 3782 eh = path[depth].p_hdr; 3783 3784 /* 3785 * We're going to remove EOFBLOCKS_FL entirely in future so we 3786 * do not care for this case anymore. Simply remove the flag 3787 * if there are no extents. 3788 */ 3789 if (unlikely(!eh->eh_entries)) 3790 goto out; 3791 last_ex = EXT_LAST_EXTENT(eh); 3792 /* 3793 * We should clear the EOFBLOCKS_FL flag if we are writing the 3794 * last block in the last extent in the file. We test this by 3795 * first checking to see if the caller to 3796 * ext4_ext_get_blocks() was interested in the last block (or 3797 * a block beyond the last block) in the current extent. If 3798 * this turns out to be false, we can bail out from this 3799 * function immediately. 3800 */ 3801 if (lblk + len < le32_to_cpu(last_ex->ee_block) + 3802 ext4_ext_get_actual_len(last_ex)) 3803 return 0; 3804 /* 3805 * If the caller does appear to be planning to write at or 3806 * beyond the end of the current extent, we then test to see 3807 * if the current extent is the last extent in the file, by 3808 * checking to make sure it was reached via the rightmost node 3809 * at each level of the tree. 3810 */ 3811 for (i = depth-1; i >= 0; i--) 3812 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) 3813 return 0; 3814 out: 3815 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3816 return ext4_mark_inode_dirty(handle, inode); 3817 } 3818 3819 /** 3820 * ext4_find_delalloc_range: find delayed allocated block in the given range. 3821 * 3822 * Return 1 if there is a delalloc block in the range, otherwise 0. 3823 */ 3824 int ext4_find_delalloc_range(struct inode *inode, 3825 ext4_lblk_t lblk_start, 3826 ext4_lblk_t lblk_end) 3827 { 3828 struct extent_status es; 3829 3830 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es); 3831 if (es.es_len == 0) 3832 return 0; /* there is no delay extent in this tree */ 3833 else if (es.es_lblk <= lblk_start && 3834 lblk_start < es.es_lblk + es.es_len) 3835 return 1; 3836 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end) 3837 return 1; 3838 else 3839 return 0; 3840 } 3841 3842 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk) 3843 { 3844 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3845 ext4_lblk_t lblk_start, lblk_end; 3846 lblk_start = EXT4_LBLK_CMASK(sbi, lblk); 3847 lblk_end = lblk_start + sbi->s_cluster_ratio - 1; 3848 3849 return ext4_find_delalloc_range(inode, lblk_start, lblk_end); 3850 } 3851 3852 /** 3853 * Determines how many complete clusters (out of those specified by the 'map') 3854 * are under delalloc and were reserved quota for. 3855 * This function is called when we are writing out the blocks that were 3856 * originally written with their allocation delayed, but then the space was 3857 * allocated using fallocate() before the delayed allocation could be resolved. 3858 * The cases to look for are: 3859 * ('=' indicated delayed allocated blocks 3860 * '-' indicates non-delayed allocated blocks) 3861 * (a) partial clusters towards beginning and/or end outside of allocated range 3862 * are not delalloc'ed. 3863 * Ex: 3864 * |----c---=|====c====|====c====|===-c----| 3865 * |++++++ allocated ++++++| 3866 * ==> 4 complete clusters in above example 3867 * 3868 * (b) partial cluster (outside of allocated range) towards either end is 3869 * marked for delayed allocation. In this case, we will exclude that 3870 * cluster. 3871 * Ex: 3872 * |----====c========|========c========| 3873 * |++++++ allocated ++++++| 3874 * ==> 1 complete clusters in above example 3875 * 3876 * Ex: 3877 * |================c================| 3878 * |++++++ allocated ++++++| 3879 * ==> 0 complete clusters in above example 3880 * 3881 * The ext4_da_update_reserve_space will be called only if we 3882 * determine here that there were some "entire" clusters that span 3883 * this 'allocated' range. 3884 * In the non-bigalloc case, this function will just end up returning num_blks 3885 * without ever calling ext4_find_delalloc_range. 3886 */ 3887 static unsigned int 3888 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start, 3889 unsigned int num_blks) 3890 { 3891 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3892 ext4_lblk_t alloc_cluster_start, alloc_cluster_end; 3893 ext4_lblk_t lblk_from, lblk_to, c_offset; 3894 unsigned int allocated_clusters = 0; 3895 3896 alloc_cluster_start = EXT4_B2C(sbi, lblk_start); 3897 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1); 3898 3899 /* max possible clusters for this allocation */ 3900 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1; 3901 3902 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks); 3903 3904 /* Check towards left side */ 3905 c_offset = EXT4_LBLK_COFF(sbi, lblk_start); 3906 if (c_offset) { 3907 lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start); 3908 lblk_to = lblk_from + c_offset - 1; 3909 3910 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3911 allocated_clusters--; 3912 } 3913 3914 /* Now check towards right. */ 3915 c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks); 3916 if (allocated_clusters && c_offset) { 3917 lblk_from = lblk_start + num_blks; 3918 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1; 3919 3920 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3921 allocated_clusters--; 3922 } 3923 3924 return allocated_clusters; 3925 } 3926 3927 static int 3928 convert_initialized_extent(handle_t *handle, struct inode *inode, 3929 struct ext4_map_blocks *map, 3930 struct ext4_ext_path **ppath, int flags, 3931 unsigned int allocated, ext4_fsblk_t newblock) 3932 { 3933 struct ext4_ext_path *path = *ppath; 3934 struct ext4_extent *ex; 3935 ext4_lblk_t ee_block; 3936 unsigned int ee_len; 3937 int depth; 3938 int err = 0; 3939 3940 /* 3941 * Make sure that the extent is no bigger than we support with 3942 * unwritten extent 3943 */ 3944 if (map->m_len > EXT_UNWRITTEN_MAX_LEN) 3945 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2; 3946 3947 depth = ext_depth(inode); 3948 ex = path[depth].p_ext; 3949 ee_block = le32_to_cpu(ex->ee_block); 3950 ee_len = ext4_ext_get_actual_len(ex); 3951 3952 ext_debug("%s: inode %lu, logical" 3953 "block %llu, max_blocks %u\n", __func__, inode->i_ino, 3954 (unsigned long long)ee_block, ee_len); 3955 3956 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3957 err = ext4_split_convert_extents(handle, inode, map, ppath, 3958 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN); 3959 if (err < 0) 3960 return err; 3961 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3962 if (IS_ERR(path)) 3963 return PTR_ERR(path); 3964 depth = ext_depth(inode); 3965 ex = path[depth].p_ext; 3966 if (!ex) { 3967 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3968 (unsigned long) map->m_lblk); 3969 return -EIO; 3970 } 3971 } 3972 3973 err = ext4_ext_get_access(handle, inode, path + depth); 3974 if (err) 3975 return err; 3976 /* first mark the extent as unwritten */ 3977 ext4_ext_mark_unwritten(ex); 3978 3979 /* note: ext4_ext_correct_indexes() isn't needed here because 3980 * borders are not changed 3981 */ 3982 ext4_ext_try_to_merge(handle, inode, path, ex); 3983 3984 /* Mark modified extent as dirty */ 3985 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3986 if (err) 3987 return err; 3988 ext4_ext_show_leaf(inode, path); 3989 3990 ext4_update_inode_fsync_trans(handle, inode, 1); 3991 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len); 3992 if (err) 3993 return err; 3994 map->m_flags |= EXT4_MAP_UNWRITTEN; 3995 if (allocated > map->m_len) 3996 allocated = map->m_len; 3997 map->m_len = allocated; 3998 return allocated; 3999 } 4000 4001 static int 4002 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode, 4003 struct ext4_map_blocks *map, 4004 struct ext4_ext_path **ppath, int flags, 4005 unsigned int allocated, ext4_fsblk_t newblock) 4006 { 4007 struct ext4_ext_path *path = *ppath; 4008 int ret = 0; 4009 int err = 0; 4010 ext4_io_end_t *io = ext4_inode_aio(inode); 4011 4012 ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical " 4013 "block %llu, max_blocks %u, flags %x, allocated %u\n", 4014 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 4015 flags, allocated); 4016 ext4_ext_show_leaf(inode, path); 4017 4018 /* 4019 * When writing into unwritten space, we should not fail to 4020 * allocate metadata blocks for the new extent block if needed. 4021 */ 4022 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL; 4023 4024 trace_ext4_ext_handle_unwritten_extents(inode, map, flags, 4025 allocated, newblock); 4026 4027 /* get_block() before submit the IO, split the extent */ 4028 if (flags & EXT4_GET_BLOCKS_PRE_IO) { 4029 ret = ext4_split_convert_extents(handle, inode, map, ppath, 4030 flags | EXT4_GET_BLOCKS_CONVERT); 4031 if (ret <= 0) 4032 goto out; 4033 /* 4034 * Flag the inode(non aio case) or end_io struct (aio case) 4035 * that this IO needs to conversion to written when IO is 4036 * completed 4037 */ 4038 if (io) 4039 ext4_set_io_unwritten_flag(inode, io); 4040 else 4041 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 4042 map->m_flags |= EXT4_MAP_UNWRITTEN; 4043 goto out; 4044 } 4045 /* IO end_io complete, convert the filled extent to written */ 4046 if (flags & EXT4_GET_BLOCKS_CONVERT) { 4047 ret = ext4_convert_unwritten_extents_endio(handle, inode, map, 4048 ppath); 4049 if (ret >= 0) { 4050 ext4_update_inode_fsync_trans(handle, inode, 1); 4051 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4052 path, map->m_len); 4053 } else 4054 err = ret; 4055 map->m_flags |= EXT4_MAP_MAPPED; 4056 map->m_pblk = newblock; 4057 if (allocated > map->m_len) 4058 allocated = map->m_len; 4059 map->m_len = allocated; 4060 goto out2; 4061 } 4062 /* buffered IO case */ 4063 /* 4064 * repeat fallocate creation request 4065 * we already have an unwritten extent 4066 */ 4067 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) { 4068 map->m_flags |= EXT4_MAP_UNWRITTEN; 4069 goto map_out; 4070 } 4071 4072 /* buffered READ or buffered write_begin() lookup */ 4073 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4074 /* 4075 * We have blocks reserved already. We 4076 * return allocated blocks so that delalloc 4077 * won't do block reservation for us. But 4078 * the buffer head will be unmapped so that 4079 * a read from the block returns 0s. 4080 */ 4081 map->m_flags |= EXT4_MAP_UNWRITTEN; 4082 goto out1; 4083 } 4084 4085 /* buffered write, writepage time, convert*/ 4086 ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags); 4087 if (ret >= 0) 4088 ext4_update_inode_fsync_trans(handle, inode, 1); 4089 out: 4090 if (ret <= 0) { 4091 err = ret; 4092 goto out2; 4093 } else 4094 allocated = ret; 4095 map->m_flags |= EXT4_MAP_NEW; 4096 /* 4097 * if we allocated more blocks than requested 4098 * we need to make sure we unmap the extra block 4099 * allocated. The actual needed block will get 4100 * unmapped later when we find the buffer_head marked 4101 * new. 4102 */ 4103 if (allocated > map->m_len) { 4104 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev, 4105 newblock + map->m_len, 4106 allocated - map->m_len); 4107 allocated = map->m_len; 4108 } 4109 map->m_len = allocated; 4110 4111 /* 4112 * If we have done fallocate with the offset that is already 4113 * delayed allocated, we would have block reservation 4114 * and quota reservation done in the delayed write path. 4115 * But fallocate would have already updated quota and block 4116 * count for this offset. So cancel these reservation 4117 */ 4118 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4119 unsigned int reserved_clusters; 4120 reserved_clusters = get_reserved_cluster_alloc(inode, 4121 map->m_lblk, map->m_len); 4122 if (reserved_clusters) 4123 ext4_da_update_reserve_space(inode, 4124 reserved_clusters, 4125 0); 4126 } 4127 4128 map_out: 4129 map->m_flags |= EXT4_MAP_MAPPED; 4130 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { 4131 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, 4132 map->m_len); 4133 if (err < 0) 4134 goto out2; 4135 } 4136 out1: 4137 if (allocated > map->m_len) 4138 allocated = map->m_len; 4139 ext4_ext_show_leaf(inode, path); 4140 map->m_pblk = newblock; 4141 map->m_len = allocated; 4142 out2: 4143 return err ? err : allocated; 4144 } 4145 4146 /* 4147 * get_implied_cluster_alloc - check to see if the requested 4148 * allocation (in the map structure) overlaps with a cluster already 4149 * allocated in an extent. 4150 * @sb The filesystem superblock structure 4151 * @map The requested lblk->pblk mapping 4152 * @ex The extent structure which might contain an implied 4153 * cluster allocation 4154 * 4155 * This function is called by ext4_ext_map_blocks() after we failed to 4156 * find blocks that were already in the inode's extent tree. Hence, 4157 * we know that the beginning of the requested region cannot overlap 4158 * the extent from the inode's extent tree. There are three cases we 4159 * want to catch. The first is this case: 4160 * 4161 * |--- cluster # N--| 4162 * |--- extent ---| |---- requested region ---| 4163 * |==========| 4164 * 4165 * The second case that we need to test for is this one: 4166 * 4167 * |--------- cluster # N ----------------| 4168 * |--- requested region --| |------- extent ----| 4169 * |=======================| 4170 * 4171 * The third case is when the requested region lies between two extents 4172 * within the same cluster: 4173 * |------------- cluster # N-------------| 4174 * |----- ex -----| |---- ex_right ----| 4175 * |------ requested region ------| 4176 * |================| 4177 * 4178 * In each of the above cases, we need to set the map->m_pblk and 4179 * map->m_len so it corresponds to the return the extent labelled as 4180 * "|====|" from cluster #N, since it is already in use for data in 4181 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 4182 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 4183 * as a new "allocated" block region. Otherwise, we will return 0 and 4184 * ext4_ext_map_blocks() will then allocate one or more new clusters 4185 * by calling ext4_mb_new_blocks(). 4186 */ 4187 static int get_implied_cluster_alloc(struct super_block *sb, 4188 struct ext4_map_blocks *map, 4189 struct ext4_extent *ex, 4190 struct ext4_ext_path *path) 4191 { 4192 struct ext4_sb_info *sbi = EXT4_SB(sb); 4193 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4194 ext4_lblk_t ex_cluster_start, ex_cluster_end; 4195 ext4_lblk_t rr_cluster_start; 4196 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4197 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4198 unsigned short ee_len = ext4_ext_get_actual_len(ex); 4199 4200 /* The extent passed in that we are trying to match */ 4201 ex_cluster_start = EXT4_B2C(sbi, ee_block); 4202 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 4203 4204 /* The requested region passed into ext4_map_blocks() */ 4205 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 4206 4207 if ((rr_cluster_start == ex_cluster_end) || 4208 (rr_cluster_start == ex_cluster_start)) { 4209 if (rr_cluster_start == ex_cluster_end) 4210 ee_start += ee_len - 1; 4211 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset; 4212 map->m_len = min(map->m_len, 4213 (unsigned) sbi->s_cluster_ratio - c_offset); 4214 /* 4215 * Check for and handle this case: 4216 * 4217 * |--------- cluster # N-------------| 4218 * |------- extent ----| 4219 * |--- requested region ---| 4220 * |===========| 4221 */ 4222 4223 if (map->m_lblk < ee_block) 4224 map->m_len = min(map->m_len, ee_block - map->m_lblk); 4225 4226 /* 4227 * Check for the case where there is already another allocated 4228 * block to the right of 'ex' but before the end of the cluster. 4229 * 4230 * |------------- cluster # N-------------| 4231 * |----- ex -----| |---- ex_right ----| 4232 * |------ requested region ------| 4233 * |================| 4234 */ 4235 if (map->m_lblk > ee_block) { 4236 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 4237 map->m_len = min(map->m_len, next - map->m_lblk); 4238 } 4239 4240 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 4241 return 1; 4242 } 4243 4244 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 4245 return 0; 4246 } 4247 4248 4249 /* 4250 * Block allocation/map/preallocation routine for extents based files 4251 * 4252 * 4253 * Need to be called with 4254 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 4255 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 4256 * 4257 * return > 0, number of of blocks already mapped/allocated 4258 * if create == 0 and these are pre-allocated blocks 4259 * buffer head is unmapped 4260 * otherwise blocks are mapped 4261 * 4262 * return = 0, if plain look up failed (blocks have not been allocated) 4263 * buffer head is unmapped 4264 * 4265 * return < 0, error case. 4266 */ 4267 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 4268 struct ext4_map_blocks *map, int flags) 4269 { 4270 struct ext4_ext_path *path = NULL; 4271 struct ext4_extent newex, *ex, *ex2; 4272 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4273 ext4_fsblk_t newblock = 0; 4274 int free_on_err = 0, err = 0, depth, ret; 4275 unsigned int allocated = 0, offset = 0; 4276 unsigned int allocated_clusters = 0; 4277 struct ext4_allocation_request ar; 4278 ext4_io_end_t *io = ext4_inode_aio(inode); 4279 ext4_lblk_t cluster_offset; 4280 int set_unwritten = 0; 4281 bool map_from_cluster = false; 4282 4283 ext_debug("blocks %u/%u requested for inode %lu\n", 4284 map->m_lblk, map->m_len, inode->i_ino); 4285 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 4286 4287 /* find extent for this block */ 4288 path = ext4_find_extent(inode, map->m_lblk, NULL, 0); 4289 if (IS_ERR(path)) { 4290 err = PTR_ERR(path); 4291 path = NULL; 4292 goto out2; 4293 } 4294 4295 depth = ext_depth(inode); 4296 4297 /* 4298 * consistent leaf must not be empty; 4299 * this situation is possible, though, _during_ tree modification; 4300 * this is why assert can't be put in ext4_find_extent() 4301 */ 4302 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 4303 EXT4_ERROR_INODE(inode, "bad extent address " 4304 "lblock: %lu, depth: %d pblock %lld", 4305 (unsigned long) map->m_lblk, depth, 4306 path[depth].p_block); 4307 err = -EIO; 4308 goto out2; 4309 } 4310 4311 ex = path[depth].p_ext; 4312 if (ex) { 4313 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4314 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4315 unsigned short ee_len; 4316 4317 4318 /* 4319 * unwritten extents are treated as holes, except that 4320 * we split out initialized portions during a write. 4321 */ 4322 ee_len = ext4_ext_get_actual_len(ex); 4323 4324 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 4325 4326 /* if found extent covers block, simply return it */ 4327 if (in_range(map->m_lblk, ee_block, ee_len)) { 4328 newblock = map->m_lblk - ee_block + ee_start; 4329 /* number of remaining blocks in the extent */ 4330 allocated = ee_len - (map->m_lblk - ee_block); 4331 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 4332 ee_block, ee_len, newblock); 4333 4334 /* 4335 * If the extent is initialized check whether the 4336 * caller wants to convert it to unwritten. 4337 */ 4338 if ((!ext4_ext_is_unwritten(ex)) && 4339 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) { 4340 allocated = convert_initialized_extent( 4341 handle, inode, map, &path, 4342 flags, allocated, newblock); 4343 goto out2; 4344 } else if (!ext4_ext_is_unwritten(ex)) 4345 goto out; 4346 4347 ret = ext4_ext_handle_unwritten_extents( 4348 handle, inode, map, &path, flags, 4349 allocated, newblock); 4350 if (ret < 0) 4351 err = ret; 4352 else 4353 allocated = ret; 4354 goto out2; 4355 } 4356 } 4357 4358 /* 4359 * requested block isn't allocated yet; 4360 * we couldn't try to create block if create flag is zero 4361 */ 4362 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4363 /* 4364 * put just found gap into cache to speed up 4365 * subsequent requests 4366 */ 4367 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk); 4368 goto out2; 4369 } 4370 4371 /* 4372 * Okay, we need to do block allocation. 4373 */ 4374 newex.ee_block = cpu_to_le32(map->m_lblk); 4375 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4376 4377 /* 4378 * If we are doing bigalloc, check to see if the extent returned 4379 * by ext4_find_extent() implies a cluster we can use. 4380 */ 4381 if (cluster_offset && ex && 4382 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 4383 ar.len = allocated = map->m_len; 4384 newblock = map->m_pblk; 4385 map_from_cluster = true; 4386 goto got_allocated_blocks; 4387 } 4388 4389 /* find neighbour allocated blocks */ 4390 ar.lleft = map->m_lblk; 4391 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 4392 if (err) 4393 goto out2; 4394 ar.lright = map->m_lblk; 4395 ex2 = NULL; 4396 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 4397 if (err) 4398 goto out2; 4399 4400 /* Check if the extent after searching to the right implies a 4401 * cluster we can use. */ 4402 if ((sbi->s_cluster_ratio > 1) && ex2 && 4403 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 4404 ar.len = allocated = map->m_len; 4405 newblock = map->m_pblk; 4406 map_from_cluster = true; 4407 goto got_allocated_blocks; 4408 } 4409 4410 /* 4411 * See if request is beyond maximum number of blocks we can have in 4412 * a single extent. For an initialized extent this limit is 4413 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is 4414 * EXT_UNWRITTEN_MAX_LEN. 4415 */ 4416 if (map->m_len > EXT_INIT_MAX_LEN && 4417 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4418 map->m_len = EXT_INIT_MAX_LEN; 4419 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN && 4420 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4421 map->m_len = EXT_UNWRITTEN_MAX_LEN; 4422 4423 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 4424 newex.ee_len = cpu_to_le16(map->m_len); 4425 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 4426 if (err) 4427 allocated = ext4_ext_get_actual_len(&newex); 4428 else 4429 allocated = map->m_len; 4430 4431 /* allocate new block */ 4432 ar.inode = inode; 4433 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 4434 ar.logical = map->m_lblk; 4435 /* 4436 * We calculate the offset from the beginning of the cluster 4437 * for the logical block number, since when we allocate a 4438 * physical cluster, the physical block should start at the 4439 * same offset from the beginning of the cluster. This is 4440 * needed so that future calls to get_implied_cluster_alloc() 4441 * work correctly. 4442 */ 4443 offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4444 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 4445 ar.goal -= offset; 4446 ar.logical -= offset; 4447 if (S_ISREG(inode->i_mode)) 4448 ar.flags = EXT4_MB_HINT_DATA; 4449 else 4450 /* disable in-core preallocation for non-regular files */ 4451 ar.flags = 0; 4452 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4453 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4454 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 4455 ar.flags |= EXT4_MB_DELALLOC_RESERVED; 4456 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4457 if (!newblock) 4458 goto out2; 4459 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 4460 ar.goal, newblock, allocated); 4461 free_on_err = 1; 4462 allocated_clusters = ar.len; 4463 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4464 if (ar.len > allocated) 4465 ar.len = allocated; 4466 4467 got_allocated_blocks: 4468 /* try to insert new extent into found leaf and return */ 4469 ext4_ext_store_pblock(&newex, newblock + offset); 4470 newex.ee_len = cpu_to_le16(ar.len); 4471 /* Mark unwritten */ 4472 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){ 4473 ext4_ext_mark_unwritten(&newex); 4474 map->m_flags |= EXT4_MAP_UNWRITTEN; 4475 /* 4476 * io_end structure was created for every IO write to an 4477 * unwritten extent. To avoid unnecessary conversion, 4478 * here we flag the IO that really needs the conversion. 4479 * For non asycn direct IO case, flag the inode state 4480 * that we need to perform conversion when IO is done. 4481 */ 4482 if (flags & EXT4_GET_BLOCKS_PRE_IO) 4483 set_unwritten = 1; 4484 } 4485 4486 err = 0; 4487 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) 4488 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4489 path, ar.len); 4490 if (!err) 4491 err = ext4_ext_insert_extent(handle, inode, &path, 4492 &newex, flags); 4493 4494 if (!err && set_unwritten) { 4495 if (io) 4496 ext4_set_io_unwritten_flag(inode, io); 4497 else 4498 ext4_set_inode_state(inode, 4499 EXT4_STATE_DIO_UNWRITTEN); 4500 } 4501 4502 if (err && free_on_err) { 4503 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? 4504 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; 4505 /* free data blocks we just allocated */ 4506 /* not a good idea to call discard here directly, 4507 * but otherwise we'd need to call it every free() */ 4508 ext4_discard_preallocations(inode); 4509 ext4_free_blocks(handle, inode, NULL, newblock, 4510 EXT4_C2B(sbi, allocated_clusters), fb_flags); 4511 goto out2; 4512 } 4513 4514 /* previous routine could use block we allocated */ 4515 newblock = ext4_ext_pblock(&newex); 4516 allocated = ext4_ext_get_actual_len(&newex); 4517 if (allocated > map->m_len) 4518 allocated = map->m_len; 4519 map->m_flags |= EXT4_MAP_NEW; 4520 4521 /* 4522 * Update reserved blocks/metadata blocks after successful 4523 * block allocation which had been deferred till now. 4524 */ 4525 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4526 unsigned int reserved_clusters; 4527 /* 4528 * Check how many clusters we had reserved this allocated range 4529 */ 4530 reserved_clusters = get_reserved_cluster_alloc(inode, 4531 map->m_lblk, allocated); 4532 if (map_from_cluster) { 4533 if (reserved_clusters) { 4534 /* 4535 * We have clusters reserved for this range. 4536 * But since we are not doing actual allocation 4537 * and are simply using blocks from previously 4538 * allocated cluster, we should release the 4539 * reservation and not claim quota. 4540 */ 4541 ext4_da_update_reserve_space(inode, 4542 reserved_clusters, 0); 4543 } 4544 } else { 4545 BUG_ON(allocated_clusters < reserved_clusters); 4546 if (reserved_clusters < allocated_clusters) { 4547 struct ext4_inode_info *ei = EXT4_I(inode); 4548 int reservation = allocated_clusters - 4549 reserved_clusters; 4550 /* 4551 * It seems we claimed few clusters outside of 4552 * the range of this allocation. We should give 4553 * it back to the reservation pool. This can 4554 * happen in the following case: 4555 * 4556 * * Suppose s_cluster_ratio is 4 (i.e., each 4557 * cluster has 4 blocks. Thus, the clusters 4558 * are [0-3],[4-7],[8-11]... 4559 * * First comes delayed allocation write for 4560 * logical blocks 10 & 11. Since there were no 4561 * previous delayed allocated blocks in the 4562 * range [8-11], we would reserve 1 cluster 4563 * for this write. 4564 * * Next comes write for logical blocks 3 to 8. 4565 * In this case, we will reserve 2 clusters 4566 * (for [0-3] and [4-7]; and not for [8-11] as 4567 * that range has a delayed allocated blocks. 4568 * Thus total reserved clusters now becomes 3. 4569 * * Now, during the delayed allocation writeout 4570 * time, we will first write blocks [3-8] and 4571 * allocate 3 clusters for writing these 4572 * blocks. Also, we would claim all these 4573 * three clusters above. 4574 * * Now when we come here to writeout the 4575 * blocks [10-11], we would expect to claim 4576 * the reservation of 1 cluster we had made 4577 * (and we would claim it since there are no 4578 * more delayed allocated blocks in the range 4579 * [8-11]. But our reserved cluster count had 4580 * already gone to 0. 4581 * 4582 * Thus, at the step 4 above when we determine 4583 * that there are still some unwritten delayed 4584 * allocated blocks outside of our current 4585 * block range, we should increment the 4586 * reserved clusters count so that when the 4587 * remaining blocks finally gets written, we 4588 * could claim them. 4589 */ 4590 dquot_reserve_block(inode, 4591 EXT4_C2B(sbi, reservation)); 4592 spin_lock(&ei->i_block_reservation_lock); 4593 ei->i_reserved_data_blocks += reservation; 4594 spin_unlock(&ei->i_block_reservation_lock); 4595 } 4596 /* 4597 * We will claim quota for all newly allocated blocks. 4598 * We're updating the reserved space *after* the 4599 * correction above so we do not accidentally free 4600 * all the metadata reservation because we might 4601 * actually need it later on. 4602 */ 4603 ext4_da_update_reserve_space(inode, allocated_clusters, 4604 1); 4605 } 4606 } 4607 4608 /* 4609 * Cache the extent and update transaction to commit on fdatasync only 4610 * when it is _not_ an unwritten extent. 4611 */ 4612 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0) 4613 ext4_update_inode_fsync_trans(handle, inode, 1); 4614 else 4615 ext4_update_inode_fsync_trans(handle, inode, 0); 4616 out: 4617 if (allocated > map->m_len) 4618 allocated = map->m_len; 4619 ext4_ext_show_leaf(inode, path); 4620 map->m_flags |= EXT4_MAP_MAPPED; 4621 map->m_pblk = newblock; 4622 map->m_len = allocated; 4623 out2: 4624 ext4_ext_drop_refs(path); 4625 kfree(path); 4626 4627 trace_ext4_ext_map_blocks_exit(inode, flags, map, 4628 err ? err : allocated); 4629 return err ? err : allocated; 4630 } 4631 4632 void ext4_ext_truncate(handle_t *handle, struct inode *inode) 4633 { 4634 struct super_block *sb = inode->i_sb; 4635 ext4_lblk_t last_block; 4636 int err = 0; 4637 4638 /* 4639 * TODO: optimization is possible here. 4640 * Probably we need not scan at all, 4641 * because page truncation is enough. 4642 */ 4643 4644 /* we have to know where to truncate from in crash case */ 4645 EXT4_I(inode)->i_disksize = inode->i_size; 4646 ext4_mark_inode_dirty(handle, inode); 4647 4648 last_block = (inode->i_size + sb->s_blocksize - 1) 4649 >> EXT4_BLOCK_SIZE_BITS(sb); 4650 retry: 4651 err = ext4_es_remove_extent(inode, last_block, 4652 EXT_MAX_BLOCKS - last_block); 4653 if (err == -ENOMEM) { 4654 cond_resched(); 4655 congestion_wait(BLK_RW_ASYNC, HZ/50); 4656 goto retry; 4657 } 4658 if (err) { 4659 ext4_std_error(inode->i_sb, err); 4660 return; 4661 } 4662 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4663 ext4_std_error(inode->i_sb, err); 4664 } 4665 4666 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset, 4667 ext4_lblk_t len, loff_t new_size, 4668 int flags, int mode) 4669 { 4670 struct inode *inode = file_inode(file); 4671 handle_t *handle; 4672 int ret = 0; 4673 int ret2 = 0; 4674 int retries = 0; 4675 struct ext4_map_blocks map; 4676 unsigned int credits; 4677 loff_t epos; 4678 4679 map.m_lblk = offset; 4680 map.m_len = len; 4681 /* 4682 * Don't normalize the request if it can fit in one extent so 4683 * that it doesn't get unnecessarily split into multiple 4684 * extents. 4685 */ 4686 if (len <= EXT_UNWRITTEN_MAX_LEN) 4687 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4688 4689 /* 4690 * credits to insert 1 extent into extent tree 4691 */ 4692 credits = ext4_chunk_trans_blocks(inode, len); 4693 4694 retry: 4695 while (ret >= 0 && len) { 4696 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4697 credits); 4698 if (IS_ERR(handle)) { 4699 ret = PTR_ERR(handle); 4700 break; 4701 } 4702 ret = ext4_map_blocks(handle, inode, &map, flags); 4703 if (ret <= 0) { 4704 ext4_debug("inode #%lu: block %u: len %u: " 4705 "ext4_ext_map_blocks returned %d", 4706 inode->i_ino, map.m_lblk, 4707 map.m_len, ret); 4708 ext4_mark_inode_dirty(handle, inode); 4709 ret2 = ext4_journal_stop(handle); 4710 break; 4711 } 4712 map.m_lblk += ret; 4713 map.m_len = len = len - ret; 4714 epos = (loff_t)map.m_lblk << inode->i_blkbits; 4715 inode->i_ctime = ext4_current_time(inode); 4716 if (new_size) { 4717 if (epos > new_size) 4718 epos = new_size; 4719 if (ext4_update_inode_size(inode, epos) & 0x1) 4720 inode->i_mtime = inode->i_ctime; 4721 } else { 4722 if (epos > inode->i_size) 4723 ext4_set_inode_flag(inode, 4724 EXT4_INODE_EOFBLOCKS); 4725 } 4726 ext4_mark_inode_dirty(handle, inode); 4727 ret2 = ext4_journal_stop(handle); 4728 if (ret2) 4729 break; 4730 } 4731 if (ret == -ENOSPC && 4732 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4733 ret = 0; 4734 goto retry; 4735 } 4736 4737 return ret > 0 ? ret2 : ret; 4738 } 4739 4740 static long ext4_zero_range(struct file *file, loff_t offset, 4741 loff_t len, int mode) 4742 { 4743 struct inode *inode = file_inode(file); 4744 handle_t *handle = NULL; 4745 unsigned int max_blocks; 4746 loff_t new_size = 0; 4747 int ret = 0; 4748 int flags; 4749 int credits; 4750 int partial_begin, partial_end; 4751 loff_t start, end; 4752 ext4_lblk_t lblk; 4753 struct address_space *mapping = inode->i_mapping; 4754 unsigned int blkbits = inode->i_blkbits; 4755 4756 trace_ext4_zero_range(inode, offset, len, mode); 4757 4758 if (!S_ISREG(inode->i_mode)) 4759 return -EINVAL; 4760 4761 /* Call ext4_force_commit to flush all data in case of data=journal. */ 4762 if (ext4_should_journal_data(inode)) { 4763 ret = ext4_force_commit(inode->i_sb); 4764 if (ret) 4765 return ret; 4766 } 4767 4768 /* 4769 * Write out all dirty pages to avoid race conditions 4770 * Then release them. 4771 */ 4772 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4773 ret = filemap_write_and_wait_range(mapping, offset, 4774 offset + len - 1); 4775 if (ret) 4776 return ret; 4777 } 4778 4779 /* 4780 * Round up offset. This is not fallocate, we neet to zero out 4781 * blocks, so convert interior block aligned part of the range to 4782 * unwritten and possibly manually zero out unaligned parts of the 4783 * range. 4784 */ 4785 start = round_up(offset, 1 << blkbits); 4786 end = round_down((offset + len), 1 << blkbits); 4787 4788 if (start < offset || end > offset + len) 4789 return -EINVAL; 4790 partial_begin = offset & ((1 << blkbits) - 1); 4791 partial_end = (offset + len) & ((1 << blkbits) - 1); 4792 4793 lblk = start >> blkbits; 4794 max_blocks = (end >> blkbits); 4795 if (max_blocks < lblk) 4796 max_blocks = 0; 4797 else 4798 max_blocks -= lblk; 4799 4800 mutex_lock(&inode->i_mutex); 4801 4802 /* 4803 * Indirect files do not support unwritten extnets 4804 */ 4805 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4806 ret = -EOPNOTSUPP; 4807 goto out_mutex; 4808 } 4809 4810 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4811 offset + len > i_size_read(inode)) { 4812 new_size = offset + len; 4813 ret = inode_newsize_ok(inode, new_size); 4814 if (ret) 4815 goto out_mutex; 4816 } 4817 4818 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4819 if (mode & FALLOC_FL_KEEP_SIZE) 4820 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4821 4822 /* Preallocate the range including the unaligned edges */ 4823 if (partial_begin || partial_end) { 4824 ret = ext4_alloc_file_blocks(file, 4825 round_down(offset, 1 << blkbits) >> blkbits, 4826 (round_up((offset + len), 1 << blkbits) - 4827 round_down(offset, 1 << blkbits)) >> blkbits, 4828 new_size, flags, mode); 4829 if (ret) 4830 goto out_mutex; 4831 4832 } 4833 4834 /* Zero range excluding the unaligned edges */ 4835 if (max_blocks > 0) { 4836 flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN | 4837 EXT4_EX_NOCACHE); 4838 4839 /* Now release the pages and zero block aligned part of pages*/ 4840 truncate_pagecache_range(inode, start, end - 1); 4841 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4842 4843 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4844 ext4_inode_block_unlocked_dio(inode); 4845 inode_dio_wait(inode); 4846 4847 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, 4848 flags, mode); 4849 if (ret) 4850 goto out_dio; 4851 /* 4852 * Remove entire range from the extent status tree. 4853 * 4854 * ext4_es_remove_extent(inode, lblk, max_blocks) is 4855 * NOT sufficient. I'm not sure why this is the case, 4856 * but let's be conservative and remove the extent 4857 * status tree for the entire inode. There should be 4858 * no outstanding delalloc extents thanks to the 4859 * filemap_write_and_wait_range() call above. 4860 */ 4861 ret = ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 4862 if (ret) 4863 goto out_dio; 4864 } 4865 if (!partial_begin && !partial_end) 4866 goto out_dio; 4867 4868 /* 4869 * In worst case we have to writeout two nonadjacent unwritten 4870 * blocks and update the inode 4871 */ 4872 credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1; 4873 if (ext4_should_journal_data(inode)) 4874 credits += 2; 4875 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 4876 if (IS_ERR(handle)) { 4877 ret = PTR_ERR(handle); 4878 ext4_std_error(inode->i_sb, ret); 4879 goto out_dio; 4880 } 4881 4882 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4883 if (new_size) { 4884 ext4_update_inode_size(inode, new_size); 4885 } else { 4886 /* 4887 * Mark that we allocate beyond EOF so the subsequent truncate 4888 * can proceed even if the new size is the same as i_size. 4889 */ 4890 if ((offset + len) > i_size_read(inode)) 4891 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4892 } 4893 ext4_mark_inode_dirty(handle, inode); 4894 4895 /* Zero out partial block at the edges of the range */ 4896 ret = ext4_zero_partial_blocks(handle, inode, offset, len); 4897 4898 if (file->f_flags & O_SYNC) 4899 ext4_handle_sync(handle); 4900 4901 ext4_journal_stop(handle); 4902 out_dio: 4903 ext4_inode_resume_unlocked_dio(inode); 4904 out_mutex: 4905 mutex_unlock(&inode->i_mutex); 4906 return ret; 4907 } 4908 4909 /* 4910 * preallocate space for a file. This implements ext4's fallocate file 4911 * operation, which gets called from sys_fallocate system call. 4912 * For block-mapped files, posix_fallocate should fall back to the method 4913 * of writing zeroes to the required new blocks (the same behavior which is 4914 * expected for file systems which do not support fallocate() system call). 4915 */ 4916 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4917 { 4918 struct inode *inode = file_inode(file); 4919 loff_t new_size = 0; 4920 unsigned int max_blocks; 4921 int ret = 0; 4922 int flags; 4923 ext4_lblk_t lblk; 4924 unsigned int blkbits = inode->i_blkbits; 4925 4926 /* Return error if mode is not supported */ 4927 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 4928 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE)) 4929 return -EOPNOTSUPP; 4930 4931 if (mode & FALLOC_FL_PUNCH_HOLE) 4932 return ext4_punch_hole(inode, offset, len); 4933 4934 ret = ext4_convert_inline_data(inode); 4935 if (ret) 4936 return ret; 4937 4938 /* 4939 * currently supporting (pre)allocate mode for extent-based 4940 * files _only_ 4941 */ 4942 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4943 return -EOPNOTSUPP; 4944 4945 if (mode & FALLOC_FL_COLLAPSE_RANGE) 4946 return ext4_collapse_range(inode, offset, len); 4947 4948 if (mode & FALLOC_FL_ZERO_RANGE) 4949 return ext4_zero_range(file, offset, len, mode); 4950 4951 trace_ext4_fallocate_enter(inode, offset, len, mode); 4952 lblk = offset >> blkbits; 4953 /* 4954 * We can't just convert len to max_blocks because 4955 * If blocksize = 4096 offset = 3072 and len = 2048 4956 */ 4957 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 4958 - lblk; 4959 4960 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4961 if (mode & FALLOC_FL_KEEP_SIZE) 4962 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4963 4964 mutex_lock(&inode->i_mutex); 4965 4966 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4967 offset + len > i_size_read(inode)) { 4968 new_size = offset + len; 4969 ret = inode_newsize_ok(inode, new_size); 4970 if (ret) 4971 goto out; 4972 } 4973 4974 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, 4975 flags, mode); 4976 if (ret) 4977 goto out; 4978 4979 if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) { 4980 ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 4981 EXT4_I(inode)->i_sync_tid); 4982 } 4983 out: 4984 mutex_unlock(&inode->i_mutex); 4985 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 4986 return ret; 4987 } 4988 4989 /* 4990 * This function convert a range of blocks to written extents 4991 * The caller of this function will pass the start offset and the size. 4992 * all unwritten extents within this range will be converted to 4993 * written extents. 4994 * 4995 * This function is called from the direct IO end io call back 4996 * function, to convert the fallocated extents after IO is completed. 4997 * Returns 0 on success. 4998 */ 4999 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode, 5000 loff_t offset, ssize_t len) 5001 { 5002 unsigned int max_blocks; 5003 int ret = 0; 5004 int ret2 = 0; 5005 struct ext4_map_blocks map; 5006 unsigned int credits, blkbits = inode->i_blkbits; 5007 5008 map.m_lblk = offset >> blkbits; 5009 /* 5010 * We can't just convert len to max_blocks because 5011 * If blocksize = 4096 offset = 3072 and len = 2048 5012 */ 5013 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) - 5014 map.m_lblk); 5015 /* 5016 * This is somewhat ugly but the idea is clear: When transaction is 5017 * reserved, everything goes into it. Otherwise we rather start several 5018 * smaller transactions for conversion of each extent separately. 5019 */ 5020 if (handle) { 5021 handle = ext4_journal_start_reserved(handle, 5022 EXT4_HT_EXT_CONVERT); 5023 if (IS_ERR(handle)) 5024 return PTR_ERR(handle); 5025 credits = 0; 5026 } else { 5027 /* 5028 * credits to insert 1 extent into extent tree 5029 */ 5030 credits = ext4_chunk_trans_blocks(inode, max_blocks); 5031 } 5032 while (ret >= 0 && ret < max_blocks) { 5033 map.m_lblk += ret; 5034 map.m_len = (max_blocks -= ret); 5035 if (credits) { 5036 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 5037 credits); 5038 if (IS_ERR(handle)) { 5039 ret = PTR_ERR(handle); 5040 break; 5041 } 5042 } 5043 ret = ext4_map_blocks(handle, inode, &map, 5044 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 5045 if (ret <= 0) 5046 ext4_warning(inode->i_sb, 5047 "inode #%lu: block %u: len %u: " 5048 "ext4_ext_map_blocks returned %d", 5049 inode->i_ino, map.m_lblk, 5050 map.m_len, ret); 5051 ext4_mark_inode_dirty(handle, inode); 5052 if (credits) 5053 ret2 = ext4_journal_stop(handle); 5054 if (ret <= 0 || ret2) 5055 break; 5056 } 5057 if (!credits) 5058 ret2 = ext4_journal_stop(handle); 5059 return ret > 0 ? ret2 : ret; 5060 } 5061 5062 /* 5063 * If newes is not existing extent (newes->ec_pblk equals zero) find 5064 * delayed extent at start of newes and update newes accordingly and 5065 * return start of the next delayed extent. 5066 * 5067 * If newes is existing extent (newes->ec_pblk is not equal zero) 5068 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed 5069 * extent found. Leave newes unmodified. 5070 */ 5071 static int ext4_find_delayed_extent(struct inode *inode, 5072 struct extent_status *newes) 5073 { 5074 struct extent_status es; 5075 ext4_lblk_t block, next_del; 5076 5077 if (newes->es_pblk == 0) { 5078 ext4_es_find_delayed_extent_range(inode, newes->es_lblk, 5079 newes->es_lblk + newes->es_len - 1, &es); 5080 5081 /* 5082 * No extent in extent-tree contains block @newes->es_pblk, 5083 * then the block may stay in 1)a hole or 2)delayed-extent. 5084 */ 5085 if (es.es_len == 0) 5086 /* A hole found. */ 5087 return 0; 5088 5089 if (es.es_lblk > newes->es_lblk) { 5090 /* A hole found. */ 5091 newes->es_len = min(es.es_lblk - newes->es_lblk, 5092 newes->es_len); 5093 return 0; 5094 } 5095 5096 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk; 5097 } 5098 5099 block = newes->es_lblk + newes->es_len; 5100 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es); 5101 if (es.es_len == 0) 5102 next_del = EXT_MAX_BLOCKS; 5103 else 5104 next_del = es.es_lblk; 5105 5106 return next_del; 5107 } 5108 /* fiemap flags we can handle specified here */ 5109 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 5110 5111 static int ext4_xattr_fiemap(struct inode *inode, 5112 struct fiemap_extent_info *fieinfo) 5113 { 5114 __u64 physical = 0; 5115 __u64 length; 5116 __u32 flags = FIEMAP_EXTENT_LAST; 5117 int blockbits = inode->i_sb->s_blocksize_bits; 5118 int error = 0; 5119 5120 /* in-inode? */ 5121 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 5122 struct ext4_iloc iloc; 5123 int offset; /* offset of xattr in inode */ 5124 5125 error = ext4_get_inode_loc(inode, &iloc); 5126 if (error) 5127 return error; 5128 physical = (__u64)iloc.bh->b_blocknr << blockbits; 5129 offset = EXT4_GOOD_OLD_INODE_SIZE + 5130 EXT4_I(inode)->i_extra_isize; 5131 physical += offset; 5132 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 5133 flags |= FIEMAP_EXTENT_DATA_INLINE; 5134 brelse(iloc.bh); 5135 } else { /* external block */ 5136 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits; 5137 length = inode->i_sb->s_blocksize; 5138 } 5139 5140 if (physical) 5141 error = fiemap_fill_next_extent(fieinfo, 0, physical, 5142 length, flags); 5143 return (error < 0 ? error : 0); 5144 } 5145 5146 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 5147 __u64 start, __u64 len) 5148 { 5149 ext4_lblk_t start_blk; 5150 int error = 0; 5151 5152 if (ext4_has_inline_data(inode)) { 5153 int has_inline = 1; 5154 5155 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline, 5156 start, len); 5157 5158 if (has_inline) 5159 return error; 5160 } 5161 5162 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 5163 error = ext4_ext_precache(inode); 5164 if (error) 5165 return error; 5166 } 5167 5168 /* fallback to generic here if not in extents fmt */ 5169 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5170 return generic_block_fiemap(inode, fieinfo, start, len, 5171 ext4_get_block); 5172 5173 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 5174 return -EBADR; 5175 5176 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 5177 error = ext4_xattr_fiemap(inode, fieinfo); 5178 } else { 5179 ext4_lblk_t len_blks; 5180 __u64 last_blk; 5181 5182 start_blk = start >> inode->i_sb->s_blocksize_bits; 5183 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 5184 if (last_blk >= EXT_MAX_BLOCKS) 5185 last_blk = EXT_MAX_BLOCKS-1; 5186 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 5187 5188 /* 5189 * Walk the extent tree gathering extent information 5190 * and pushing extents back to the user. 5191 */ 5192 error = ext4_fill_fiemap_extents(inode, start_blk, 5193 len_blks, fieinfo); 5194 } 5195 return error; 5196 } 5197 5198 /* 5199 * ext4_access_path: 5200 * Function to access the path buffer for marking it dirty. 5201 * It also checks if there are sufficient credits left in the journal handle 5202 * to update path. 5203 */ 5204 static int 5205 ext4_access_path(handle_t *handle, struct inode *inode, 5206 struct ext4_ext_path *path) 5207 { 5208 int credits, err; 5209 5210 if (!ext4_handle_valid(handle)) 5211 return 0; 5212 5213 /* 5214 * Check if need to extend journal credits 5215 * 3 for leaf, sb, and inode plus 2 (bmap and group 5216 * descriptor) for each block group; assume two block 5217 * groups 5218 */ 5219 if (handle->h_buffer_credits < 7) { 5220 credits = ext4_writepage_trans_blocks(inode); 5221 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 5222 /* EAGAIN is success */ 5223 if (err && err != -EAGAIN) 5224 return err; 5225 } 5226 5227 err = ext4_ext_get_access(handle, inode, path); 5228 return err; 5229 } 5230 5231 /* 5232 * ext4_ext_shift_path_extents: 5233 * Shift the extents of a path structure lying between path[depth].p_ext 5234 * and EXT_LAST_EXTENT(path[depth].p_hdr) downwards, by subtracting shift 5235 * from starting block for each extent. 5236 */ 5237 static int 5238 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift, 5239 struct inode *inode, handle_t *handle, 5240 ext4_lblk_t *start) 5241 { 5242 int depth, err = 0; 5243 struct ext4_extent *ex_start, *ex_last; 5244 bool update = 0; 5245 depth = path->p_depth; 5246 5247 while (depth >= 0) { 5248 if (depth == path->p_depth) { 5249 ex_start = path[depth].p_ext; 5250 if (!ex_start) 5251 return -EIO; 5252 5253 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr); 5254 5255 err = ext4_access_path(handle, inode, path + depth); 5256 if (err) 5257 goto out; 5258 5259 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr)) 5260 update = 1; 5261 5262 *start = le32_to_cpu(ex_last->ee_block) + 5263 ext4_ext_get_actual_len(ex_last); 5264 5265 while (ex_start <= ex_last) { 5266 le32_add_cpu(&ex_start->ee_block, -shift); 5267 /* Try to merge to the left. */ 5268 if ((ex_start > 5269 EXT_FIRST_EXTENT(path[depth].p_hdr)) && 5270 ext4_ext_try_to_merge_right(inode, 5271 path, ex_start - 1)) 5272 ex_last--; 5273 else 5274 ex_start++; 5275 } 5276 err = ext4_ext_dirty(handle, inode, path + depth); 5277 if (err) 5278 goto out; 5279 5280 if (--depth < 0 || !update) 5281 break; 5282 } 5283 5284 /* Update index too */ 5285 err = ext4_access_path(handle, inode, path + depth); 5286 if (err) 5287 goto out; 5288 5289 le32_add_cpu(&path[depth].p_idx->ei_block, -shift); 5290 err = ext4_ext_dirty(handle, inode, path + depth); 5291 if (err) 5292 goto out; 5293 5294 /* we are done if current index is not a starting index */ 5295 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr)) 5296 break; 5297 5298 depth--; 5299 } 5300 5301 out: 5302 return err; 5303 } 5304 5305 /* 5306 * ext4_ext_shift_extents: 5307 * All the extents which lies in the range from start to the last allocated 5308 * block for the file are shifted downwards by shift blocks. 5309 * On success, 0 is returned, error otherwise. 5310 */ 5311 static int 5312 ext4_ext_shift_extents(struct inode *inode, handle_t *handle, 5313 ext4_lblk_t start, ext4_lblk_t shift) 5314 { 5315 struct ext4_ext_path *path; 5316 int ret = 0, depth; 5317 struct ext4_extent *extent; 5318 ext4_lblk_t stop_block; 5319 ext4_lblk_t ex_start, ex_end; 5320 5321 /* Let path point to the last extent */ 5322 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 0); 5323 if (IS_ERR(path)) 5324 return PTR_ERR(path); 5325 5326 depth = path->p_depth; 5327 extent = path[depth].p_ext; 5328 if (!extent) 5329 goto out; 5330 5331 stop_block = le32_to_cpu(extent->ee_block) + 5332 ext4_ext_get_actual_len(extent); 5333 5334 /* Nothing to shift, if hole is at the end of file */ 5335 if (start >= stop_block) 5336 goto out; 5337 5338 /* 5339 * Don't start shifting extents until we make sure the hole is big 5340 * enough to accomodate the shift. 5341 */ 5342 path = ext4_find_extent(inode, start - 1, &path, 0); 5343 if (IS_ERR(path)) 5344 return PTR_ERR(path); 5345 depth = path->p_depth; 5346 extent = path[depth].p_ext; 5347 if (extent) { 5348 ex_start = le32_to_cpu(extent->ee_block); 5349 ex_end = le32_to_cpu(extent->ee_block) + 5350 ext4_ext_get_actual_len(extent); 5351 } else { 5352 ex_start = 0; 5353 ex_end = 0; 5354 } 5355 5356 if ((start == ex_start && shift > ex_start) || 5357 (shift > start - ex_end)) 5358 return -EINVAL; 5359 5360 /* Its safe to start updating extents */ 5361 while (start < stop_block) { 5362 path = ext4_find_extent(inode, start, &path, 0); 5363 if (IS_ERR(path)) 5364 return PTR_ERR(path); 5365 depth = path->p_depth; 5366 extent = path[depth].p_ext; 5367 if (!extent) { 5368 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 5369 (unsigned long) start); 5370 return -EIO; 5371 } 5372 if (start > le32_to_cpu(extent->ee_block)) { 5373 /* Hole, move to the next extent */ 5374 if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) { 5375 path[depth].p_ext++; 5376 } else { 5377 start = ext4_ext_next_allocated_block(path); 5378 continue; 5379 } 5380 } 5381 ret = ext4_ext_shift_path_extents(path, shift, inode, 5382 handle, &start); 5383 if (ret) 5384 break; 5385 } 5386 out: 5387 ext4_ext_drop_refs(path); 5388 kfree(path); 5389 return ret; 5390 } 5391 5392 /* 5393 * ext4_collapse_range: 5394 * This implements the fallocate's collapse range functionality for ext4 5395 * Returns: 0 and non-zero on error. 5396 */ 5397 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len) 5398 { 5399 struct super_block *sb = inode->i_sb; 5400 ext4_lblk_t punch_start, punch_stop; 5401 handle_t *handle; 5402 unsigned int credits; 5403 loff_t new_size, ioffset; 5404 int ret; 5405 5406 /* Collapse range works only on fs block size aligned offsets. */ 5407 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) || 5408 len & (EXT4_CLUSTER_SIZE(sb) - 1)) 5409 return -EINVAL; 5410 5411 if (!S_ISREG(inode->i_mode)) 5412 return -EINVAL; 5413 5414 trace_ext4_collapse_range(inode, offset, len); 5415 5416 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5417 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb); 5418 5419 /* Call ext4_force_commit to flush all data in case of data=journal. */ 5420 if (ext4_should_journal_data(inode)) { 5421 ret = ext4_force_commit(inode->i_sb); 5422 if (ret) 5423 return ret; 5424 } 5425 5426 /* 5427 * Need to round down offset to be aligned with page size boundary 5428 * for page size > block size. 5429 */ 5430 ioffset = round_down(offset, PAGE_SIZE); 5431 5432 /* Write out all dirty pages */ 5433 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, 5434 LLONG_MAX); 5435 if (ret) 5436 return ret; 5437 5438 /* Take mutex lock */ 5439 mutex_lock(&inode->i_mutex); 5440 5441 /* 5442 * There is no need to overlap collapse range with EOF, in which case 5443 * it is effectively a truncate operation 5444 */ 5445 if (offset + len >= i_size_read(inode)) { 5446 ret = -EINVAL; 5447 goto out_mutex; 5448 } 5449 5450 /* Currently just for extent based files */ 5451 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5452 ret = -EOPNOTSUPP; 5453 goto out_mutex; 5454 } 5455 5456 truncate_pagecache(inode, ioffset); 5457 5458 /* Wait for existing dio to complete */ 5459 ext4_inode_block_unlocked_dio(inode); 5460 inode_dio_wait(inode); 5461 5462 credits = ext4_writepage_trans_blocks(inode); 5463 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5464 if (IS_ERR(handle)) { 5465 ret = PTR_ERR(handle); 5466 goto out_dio; 5467 } 5468 5469 down_write(&EXT4_I(inode)->i_data_sem); 5470 ext4_discard_preallocations(inode); 5471 5472 ret = ext4_es_remove_extent(inode, punch_start, 5473 EXT_MAX_BLOCKS - punch_start); 5474 if (ret) { 5475 up_write(&EXT4_I(inode)->i_data_sem); 5476 goto out_stop; 5477 } 5478 5479 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1); 5480 if (ret) { 5481 up_write(&EXT4_I(inode)->i_data_sem); 5482 goto out_stop; 5483 } 5484 ext4_discard_preallocations(inode); 5485 5486 ret = ext4_ext_shift_extents(inode, handle, punch_stop, 5487 punch_stop - punch_start); 5488 if (ret) { 5489 up_write(&EXT4_I(inode)->i_data_sem); 5490 goto out_stop; 5491 } 5492 5493 new_size = i_size_read(inode) - len; 5494 i_size_write(inode, new_size); 5495 EXT4_I(inode)->i_disksize = new_size; 5496 5497 up_write(&EXT4_I(inode)->i_data_sem); 5498 if (IS_SYNC(inode)) 5499 ext4_handle_sync(handle); 5500 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 5501 ext4_mark_inode_dirty(handle, inode); 5502 5503 out_stop: 5504 ext4_journal_stop(handle); 5505 out_dio: 5506 ext4_inode_resume_unlocked_dio(inode); 5507 out_mutex: 5508 mutex_unlock(&inode->i_mutex); 5509 return ret; 5510 } 5511 5512 /** 5513 * ext4_swap_extents - Swap extents between two inodes 5514 * 5515 * @inode1: First inode 5516 * @inode2: Second inode 5517 * @lblk1: Start block for first inode 5518 * @lblk2: Start block for second inode 5519 * @count: Number of blocks to swap 5520 * @mark_unwritten: Mark second inode's extents as unwritten after swap 5521 * @erp: Pointer to save error value 5522 * 5523 * This helper routine does exactly what is promise "swap extents". All other 5524 * stuff such as page-cache locking consistency, bh mapping consistency or 5525 * extent's data copying must be performed by caller. 5526 * Locking: 5527 * i_mutex is held for both inodes 5528 * i_data_sem is locked for write for both inodes 5529 * Assumptions: 5530 * All pages from requested range are locked for both inodes 5531 */ 5532 int 5533 ext4_swap_extents(handle_t *handle, struct inode *inode1, 5534 struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2, 5535 ext4_lblk_t count, int unwritten, int *erp) 5536 { 5537 struct ext4_ext_path *path1 = NULL; 5538 struct ext4_ext_path *path2 = NULL; 5539 int replaced_count = 0; 5540 5541 BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem)); 5542 BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem)); 5543 BUG_ON(!mutex_is_locked(&inode1->i_mutex)); 5544 BUG_ON(!mutex_is_locked(&inode1->i_mutex)); 5545 5546 *erp = ext4_es_remove_extent(inode1, lblk1, count); 5547 if (unlikely(*erp)) 5548 return 0; 5549 *erp = ext4_es_remove_extent(inode2, lblk2, count); 5550 if (unlikely(*erp)) 5551 return 0; 5552 5553 while (count) { 5554 struct ext4_extent *ex1, *ex2, tmp_ex; 5555 ext4_lblk_t e1_blk, e2_blk; 5556 int e1_len, e2_len, len; 5557 int split = 0; 5558 5559 path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE); 5560 if (unlikely(IS_ERR(path1))) { 5561 *erp = PTR_ERR(path1); 5562 path1 = NULL; 5563 finish: 5564 count = 0; 5565 goto repeat; 5566 } 5567 path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE); 5568 if (unlikely(IS_ERR(path2))) { 5569 *erp = PTR_ERR(path2); 5570 path2 = NULL; 5571 goto finish; 5572 } 5573 ex1 = path1[path1->p_depth].p_ext; 5574 ex2 = path2[path2->p_depth].p_ext; 5575 /* Do we have somthing to swap ? */ 5576 if (unlikely(!ex2 || !ex1)) 5577 goto finish; 5578 5579 e1_blk = le32_to_cpu(ex1->ee_block); 5580 e2_blk = le32_to_cpu(ex2->ee_block); 5581 e1_len = ext4_ext_get_actual_len(ex1); 5582 e2_len = ext4_ext_get_actual_len(ex2); 5583 5584 /* Hole handling */ 5585 if (!in_range(lblk1, e1_blk, e1_len) || 5586 !in_range(lblk2, e2_blk, e2_len)) { 5587 ext4_lblk_t next1, next2; 5588 5589 /* if hole after extent, then go to next extent */ 5590 next1 = ext4_ext_next_allocated_block(path1); 5591 next2 = ext4_ext_next_allocated_block(path2); 5592 /* If hole before extent, then shift to that extent */ 5593 if (e1_blk > lblk1) 5594 next1 = e1_blk; 5595 if (e2_blk > lblk2) 5596 next2 = e1_blk; 5597 /* Do we have something to swap */ 5598 if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS) 5599 goto finish; 5600 /* Move to the rightest boundary */ 5601 len = next1 - lblk1; 5602 if (len < next2 - lblk2) 5603 len = next2 - lblk2; 5604 if (len > count) 5605 len = count; 5606 lblk1 += len; 5607 lblk2 += len; 5608 count -= len; 5609 goto repeat; 5610 } 5611 5612 /* Prepare left boundary */ 5613 if (e1_blk < lblk1) { 5614 split = 1; 5615 *erp = ext4_force_split_extent_at(handle, inode1, 5616 &path1, lblk1, 0); 5617 if (unlikely(*erp)) 5618 goto finish; 5619 } 5620 if (e2_blk < lblk2) { 5621 split = 1; 5622 *erp = ext4_force_split_extent_at(handle, inode2, 5623 &path2, lblk2, 0); 5624 if (unlikely(*erp)) 5625 goto finish; 5626 } 5627 /* ext4_split_extent_at() may result in leaf extent split, 5628 * path must to be revalidated. */ 5629 if (split) 5630 goto repeat; 5631 5632 /* Prepare right boundary */ 5633 len = count; 5634 if (len > e1_blk + e1_len - lblk1) 5635 len = e1_blk + e1_len - lblk1; 5636 if (len > e2_blk + e2_len - lblk2) 5637 len = e2_blk + e2_len - lblk2; 5638 5639 if (len != e1_len) { 5640 split = 1; 5641 *erp = ext4_force_split_extent_at(handle, inode1, 5642 &path1, lblk1 + len, 0); 5643 if (unlikely(*erp)) 5644 goto finish; 5645 } 5646 if (len != e2_len) { 5647 split = 1; 5648 *erp = ext4_force_split_extent_at(handle, inode2, 5649 &path2, lblk2 + len, 0); 5650 if (*erp) 5651 goto finish; 5652 } 5653 /* ext4_split_extent_at() may result in leaf extent split, 5654 * path must to be revalidated. */ 5655 if (split) 5656 goto repeat; 5657 5658 BUG_ON(e2_len != e1_len); 5659 *erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth); 5660 if (unlikely(*erp)) 5661 goto finish; 5662 *erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth); 5663 if (unlikely(*erp)) 5664 goto finish; 5665 5666 /* Both extents are fully inside boundaries. Swap it now */ 5667 tmp_ex = *ex1; 5668 ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2)); 5669 ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex)); 5670 ex1->ee_len = cpu_to_le16(e2_len); 5671 ex2->ee_len = cpu_to_le16(e1_len); 5672 if (unwritten) 5673 ext4_ext_mark_unwritten(ex2); 5674 if (ext4_ext_is_unwritten(&tmp_ex)) 5675 ext4_ext_mark_unwritten(ex1); 5676 5677 ext4_ext_try_to_merge(handle, inode2, path2, ex2); 5678 ext4_ext_try_to_merge(handle, inode1, path1, ex1); 5679 *erp = ext4_ext_dirty(handle, inode2, path2 + 5680 path2->p_depth); 5681 if (unlikely(*erp)) 5682 goto finish; 5683 *erp = ext4_ext_dirty(handle, inode1, path1 + 5684 path1->p_depth); 5685 /* 5686 * Looks scarry ah..? second inode already points to new blocks, 5687 * and it was successfully dirtied. But luckily error may happen 5688 * only due to journal error, so full transaction will be 5689 * aborted anyway. 5690 */ 5691 if (unlikely(*erp)) 5692 goto finish; 5693 lblk1 += len; 5694 lblk2 += len; 5695 replaced_count += len; 5696 count -= len; 5697 5698 repeat: 5699 ext4_ext_drop_refs(path1); 5700 kfree(path1); 5701 ext4_ext_drop_refs(path2); 5702 kfree(path2); 5703 path1 = path2 = NULL; 5704 } 5705 return replaced_count; 5706 } 5707