1 /* 2 * linux/fs/ext4/balloc.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993 10 * Big-endian to little-endian byte-swapping/bitmaps by 11 * David S. Miller (davem@caip.rutgers.edu), 1995 12 */ 13 14 #include <linux/time.h> 15 #include <linux/capability.h> 16 #include <linux/fs.h> 17 #include <linux/jbd2.h> 18 #include <linux/ext4_fs.h> 19 #include <linux/ext4_jbd2.h> 20 #include <linux/quotaops.h> 21 #include <linux/buffer_head.h> 22 23 #include "group.h" 24 /* 25 * balloc.c contains the blocks allocation and deallocation routines 26 */ 27 28 /* 29 * Calculate the block group number and offset, given a block number 30 */ 31 void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr, 32 unsigned long *blockgrpp, ext4_grpblk_t *offsetp) 33 { 34 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 35 ext4_grpblk_t offset; 36 37 blocknr = blocknr - le32_to_cpu(es->s_first_data_block); 38 offset = do_div(blocknr, EXT4_BLOCKS_PER_GROUP(sb)); 39 if (offsetp) 40 *offsetp = offset; 41 if (blockgrpp) 42 *blockgrpp = blocknr; 43 44 } 45 46 /* Initializes an uninitialized block bitmap if given, and returns the 47 * number of blocks free in the group. */ 48 unsigned ext4_init_block_bitmap(struct super_block *sb, struct buffer_head *bh, 49 int block_group, struct ext4_group_desc *gdp) 50 { 51 unsigned long start; 52 int bit, bit_max; 53 unsigned free_blocks, group_blocks; 54 struct ext4_sb_info *sbi = EXT4_SB(sb); 55 56 if (bh) { 57 J_ASSERT_BH(bh, buffer_locked(bh)); 58 59 /* If checksum is bad mark all blocks used to prevent allocation 60 * essentially implementing a per-group read-only flag. */ 61 if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) { 62 ext4_error(sb, __FUNCTION__, 63 "Checksum bad for group %u\n", block_group); 64 gdp->bg_free_blocks_count = 0; 65 gdp->bg_free_inodes_count = 0; 66 gdp->bg_itable_unused = 0; 67 memset(bh->b_data, 0xff, sb->s_blocksize); 68 return 0; 69 } 70 memset(bh->b_data, 0, sb->s_blocksize); 71 } 72 73 /* Check for superblock and gdt backups in this group */ 74 bit_max = ext4_bg_has_super(sb, block_group); 75 76 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 77 block_group < le32_to_cpu(sbi->s_es->s_first_meta_bg) * 78 sbi->s_desc_per_block) { 79 if (bit_max) { 80 bit_max += ext4_bg_num_gdb(sb, block_group); 81 bit_max += 82 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks); 83 } 84 } else { /* For META_BG_BLOCK_GROUPS */ 85 int group_rel = (block_group - 86 le32_to_cpu(sbi->s_es->s_first_meta_bg)) % 87 EXT4_DESC_PER_BLOCK(sb); 88 if (group_rel == 0 || group_rel == 1 || 89 (group_rel == EXT4_DESC_PER_BLOCK(sb) - 1)) 90 bit_max += 1; 91 } 92 93 if (block_group == sbi->s_groups_count - 1) { 94 /* 95 * Even though mke2fs always initialize first and last group 96 * if some other tool enabled the EXT4_BG_BLOCK_UNINIT we need 97 * to make sure we calculate the right free blocks 98 */ 99 group_blocks = ext4_blocks_count(sbi->s_es) - 100 le32_to_cpu(sbi->s_es->s_first_data_block) - 101 (EXT4_BLOCKS_PER_GROUP(sb) * (sbi->s_groups_count -1)); 102 } else { 103 group_blocks = EXT4_BLOCKS_PER_GROUP(sb); 104 } 105 106 free_blocks = group_blocks - bit_max; 107 108 if (bh) { 109 for (bit = 0; bit < bit_max; bit++) 110 ext4_set_bit(bit, bh->b_data); 111 112 start = block_group * EXT4_BLOCKS_PER_GROUP(sb) + 113 le32_to_cpu(sbi->s_es->s_first_data_block); 114 115 /* Set bits for block and inode bitmaps, and inode table */ 116 ext4_set_bit(ext4_block_bitmap(sb, gdp) - start, bh->b_data); 117 ext4_set_bit(ext4_inode_bitmap(sb, gdp) - start, bh->b_data); 118 for (bit = (ext4_inode_table(sb, gdp) - start), 119 bit_max = bit + sbi->s_itb_per_group; bit < bit_max; bit++) 120 ext4_set_bit(bit, bh->b_data); 121 122 /* 123 * Also if the number of blocks within the group is 124 * less than the blocksize * 8 ( which is the size 125 * of bitmap ), set rest of the block bitmap to 1 126 */ 127 mark_bitmap_end(group_blocks, sb->s_blocksize * 8, bh->b_data); 128 } 129 130 return free_blocks - sbi->s_itb_per_group - 2; 131 } 132 133 134 /* 135 * The free blocks are managed by bitmaps. A file system contains several 136 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 137 * block for inodes, N blocks for the inode table and data blocks. 138 * 139 * The file system contains group descriptors which are located after the 140 * super block. Each descriptor contains the number of the bitmap block and 141 * the free blocks count in the block. The descriptors are loaded in memory 142 * when a file system is mounted (see ext4_fill_super). 143 */ 144 145 146 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1) 147 148 /** 149 * ext4_get_group_desc() -- load group descriptor from disk 150 * @sb: super block 151 * @block_group: given block group 152 * @bh: pointer to the buffer head to store the block 153 * group descriptor 154 */ 155 struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb, 156 unsigned int block_group, 157 struct buffer_head ** bh) 158 { 159 unsigned long group_desc; 160 unsigned long offset; 161 struct ext4_group_desc * desc; 162 struct ext4_sb_info *sbi = EXT4_SB(sb); 163 164 if (block_group >= sbi->s_groups_count) { 165 ext4_error (sb, "ext4_get_group_desc", 166 "block_group >= groups_count - " 167 "block_group = %d, groups_count = %lu", 168 block_group, sbi->s_groups_count); 169 170 return NULL; 171 } 172 smp_rmb(); 173 174 group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb); 175 offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1); 176 if (!sbi->s_group_desc[group_desc]) { 177 ext4_error (sb, "ext4_get_group_desc", 178 "Group descriptor not loaded - " 179 "block_group = %d, group_desc = %lu, desc = %lu", 180 block_group, group_desc, offset); 181 return NULL; 182 } 183 184 desc = (struct ext4_group_desc *)( 185 (__u8 *)sbi->s_group_desc[group_desc]->b_data + 186 offset * EXT4_DESC_SIZE(sb)); 187 if (bh) 188 *bh = sbi->s_group_desc[group_desc]; 189 return desc; 190 } 191 192 static inline int 193 block_in_use(ext4_fsblk_t block, struct super_block *sb, unsigned char *map) 194 { 195 ext4_grpblk_t offset; 196 197 ext4_get_group_no_and_offset(sb, block, NULL, &offset); 198 return ext4_test_bit (offset, map); 199 } 200 201 /** 202 * read_block_bitmap() 203 * @sb: super block 204 * @block_group: given block group 205 * 206 * Read the bitmap for a given block_group, reading into the specified 207 * slot in the superblock's bitmap cache. 208 * 209 * Return buffer_head on success or NULL in case of failure. 210 */ 211 struct buffer_head * 212 read_block_bitmap(struct super_block *sb, unsigned int block_group) 213 { 214 int i; 215 struct ext4_group_desc * desc; 216 struct buffer_head * bh = NULL; 217 ext4_fsblk_t bitmap_blk; 218 219 desc = ext4_get_group_desc(sb, block_group, NULL); 220 if (!desc) 221 return NULL; 222 bitmap_blk = ext4_block_bitmap(sb, desc); 223 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 224 bh = sb_getblk(sb, bitmap_blk); 225 if (!buffer_uptodate(bh)) { 226 lock_buffer(bh); 227 if (!buffer_uptodate(bh)) { 228 ext4_init_block_bitmap(sb, bh, block_group, 229 desc); 230 set_buffer_uptodate(bh); 231 } 232 unlock_buffer(bh); 233 } 234 } else { 235 bh = sb_bread(sb, bitmap_blk); 236 } 237 if (!bh) 238 ext4_error (sb, __FUNCTION__, 239 "Cannot read block bitmap - " 240 "block_group = %d, block_bitmap = %llu", 241 block_group, bitmap_blk); 242 243 /* check whether block bitmap block number is set */ 244 if (!block_in_use(bitmap_blk, sb, bh->b_data)) { 245 /* bad block bitmap */ 246 goto error_out; 247 } 248 249 /* check whether the inode bitmap block number is set */ 250 bitmap_blk = ext4_inode_bitmap(sb, desc); 251 if (!block_in_use(bitmap_blk, sb, bh->b_data)) { 252 /* bad block bitmap */ 253 goto error_out; 254 } 255 /* check whether the inode table block number is set */ 256 bitmap_blk = ext4_inode_table(sb, desc); 257 for (i = 0; i < EXT4_SB(sb)->s_itb_per_group; i++, bitmap_blk++) { 258 if (!block_in_use(bitmap_blk, sb, bh->b_data)) { 259 /* bad block bitmap */ 260 goto error_out; 261 } 262 } 263 264 return bh; 265 266 error_out: 267 brelse(bh); 268 ext4_error(sb, __FUNCTION__, 269 "Invalid block bitmap - " 270 "block_group = %d, block = %llu", 271 block_group, bitmap_blk); 272 return NULL; 273 274 } 275 /* 276 * The reservation window structure operations 277 * -------------------------------------------- 278 * Operations include: 279 * dump, find, add, remove, is_empty, find_next_reservable_window, etc. 280 * 281 * We use a red-black tree to represent per-filesystem reservation 282 * windows. 283 * 284 */ 285 286 /** 287 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map 288 * @rb_root: root of per-filesystem reservation rb tree 289 * @verbose: verbose mode 290 * @fn: function which wishes to dump the reservation map 291 * 292 * If verbose is turned on, it will print the whole block reservation 293 * windows(start, end). Otherwise, it will only print out the "bad" windows, 294 * those windows that overlap with their immediate neighbors. 295 */ 296 #if 1 297 static void __rsv_window_dump(struct rb_root *root, int verbose, 298 const char *fn) 299 { 300 struct rb_node *n; 301 struct ext4_reserve_window_node *rsv, *prev; 302 int bad; 303 304 restart: 305 n = rb_first(root); 306 bad = 0; 307 prev = NULL; 308 309 printk("Block Allocation Reservation Windows Map (%s):\n", fn); 310 while (n) { 311 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node); 312 if (verbose) 313 printk("reservation window 0x%p " 314 "start: %llu, end: %llu\n", 315 rsv, rsv->rsv_start, rsv->rsv_end); 316 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) { 317 printk("Bad reservation %p (start >= end)\n", 318 rsv); 319 bad = 1; 320 } 321 if (prev && prev->rsv_end >= rsv->rsv_start) { 322 printk("Bad reservation %p (prev->end >= start)\n", 323 rsv); 324 bad = 1; 325 } 326 if (bad) { 327 if (!verbose) { 328 printk("Restarting reservation walk in verbose mode\n"); 329 verbose = 1; 330 goto restart; 331 } 332 } 333 n = rb_next(n); 334 prev = rsv; 335 } 336 printk("Window map complete.\n"); 337 if (bad) 338 BUG(); 339 } 340 #define rsv_window_dump(root, verbose) \ 341 __rsv_window_dump((root), (verbose), __FUNCTION__) 342 #else 343 #define rsv_window_dump(root, verbose) do {} while (0) 344 #endif 345 346 /** 347 * goal_in_my_reservation() 348 * @rsv: inode's reservation window 349 * @grp_goal: given goal block relative to the allocation block group 350 * @group: the current allocation block group 351 * @sb: filesystem super block 352 * 353 * Test if the given goal block (group relative) is within the file's 354 * own block reservation window range. 355 * 356 * If the reservation window is outside the goal allocation group, return 0; 357 * grp_goal (given goal block) could be -1, which means no specific 358 * goal block. In this case, always return 1. 359 * If the goal block is within the reservation window, return 1; 360 * otherwise, return 0; 361 */ 362 static int 363 goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal, 364 unsigned int group, struct super_block * sb) 365 { 366 ext4_fsblk_t group_first_block, group_last_block; 367 368 group_first_block = ext4_group_first_block_no(sb, group); 369 group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1); 370 371 if ((rsv->_rsv_start > group_last_block) || 372 (rsv->_rsv_end < group_first_block)) 373 return 0; 374 if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start) 375 || (grp_goal + group_first_block > rsv->_rsv_end))) 376 return 0; 377 return 1; 378 } 379 380 /** 381 * search_reserve_window() 382 * @rb_root: root of reservation tree 383 * @goal: target allocation block 384 * 385 * Find the reserved window which includes the goal, or the previous one 386 * if the goal is not in any window. 387 * Returns NULL if there are no windows or if all windows start after the goal. 388 */ 389 static struct ext4_reserve_window_node * 390 search_reserve_window(struct rb_root *root, ext4_fsblk_t goal) 391 { 392 struct rb_node *n = root->rb_node; 393 struct ext4_reserve_window_node *rsv; 394 395 if (!n) 396 return NULL; 397 398 do { 399 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node); 400 401 if (goal < rsv->rsv_start) 402 n = n->rb_left; 403 else if (goal > rsv->rsv_end) 404 n = n->rb_right; 405 else 406 return rsv; 407 } while (n); 408 /* 409 * We've fallen off the end of the tree: the goal wasn't inside 410 * any particular node. OK, the previous node must be to one 411 * side of the interval containing the goal. If it's the RHS, 412 * we need to back up one. 413 */ 414 if (rsv->rsv_start > goal) { 415 n = rb_prev(&rsv->rsv_node); 416 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node); 417 } 418 return rsv; 419 } 420 421 /** 422 * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree. 423 * @sb: super block 424 * @rsv: reservation window to add 425 * 426 * Must be called with rsv_lock hold. 427 */ 428 void ext4_rsv_window_add(struct super_block *sb, 429 struct ext4_reserve_window_node *rsv) 430 { 431 struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root; 432 struct rb_node *node = &rsv->rsv_node; 433 ext4_fsblk_t start = rsv->rsv_start; 434 435 struct rb_node ** p = &root->rb_node; 436 struct rb_node * parent = NULL; 437 struct ext4_reserve_window_node *this; 438 439 while (*p) 440 { 441 parent = *p; 442 this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node); 443 444 if (start < this->rsv_start) 445 p = &(*p)->rb_left; 446 else if (start > this->rsv_end) 447 p = &(*p)->rb_right; 448 else { 449 rsv_window_dump(root, 1); 450 BUG(); 451 } 452 } 453 454 rb_link_node(node, parent, p); 455 rb_insert_color(node, root); 456 } 457 458 /** 459 * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree 460 * @sb: super block 461 * @rsv: reservation window to remove 462 * 463 * Mark the block reservation window as not allocated, and unlink it 464 * from the filesystem reservation window rb tree. Must be called with 465 * rsv_lock hold. 466 */ 467 static void rsv_window_remove(struct super_block *sb, 468 struct ext4_reserve_window_node *rsv) 469 { 470 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED; 471 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED; 472 rsv->rsv_alloc_hit = 0; 473 rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root); 474 } 475 476 /* 477 * rsv_is_empty() -- Check if the reservation window is allocated. 478 * @rsv: given reservation window to check 479 * 480 * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED. 481 */ 482 static inline int rsv_is_empty(struct ext4_reserve_window *rsv) 483 { 484 /* a valid reservation end block could not be 0 */ 485 return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED; 486 } 487 488 /** 489 * ext4_init_block_alloc_info() 490 * @inode: file inode structure 491 * 492 * Allocate and initialize the reservation window structure, and 493 * link the window to the ext4 inode structure at last 494 * 495 * The reservation window structure is only dynamically allocated 496 * and linked to ext4 inode the first time the open file 497 * needs a new block. So, before every ext4_new_block(s) call, for 498 * regular files, we should check whether the reservation window 499 * structure exists or not. In the latter case, this function is called. 500 * Fail to do so will result in block reservation being turned off for that 501 * open file. 502 * 503 * This function is called from ext4_get_blocks_handle(), also called 504 * when setting the reservation window size through ioctl before the file 505 * is open for write (needs block allocation). 506 * 507 * Needs truncate_mutex protection prior to call this function. 508 */ 509 void ext4_init_block_alloc_info(struct inode *inode) 510 { 511 struct ext4_inode_info *ei = EXT4_I(inode); 512 struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info; 513 struct super_block *sb = inode->i_sb; 514 515 block_i = kmalloc(sizeof(*block_i), GFP_NOFS); 516 if (block_i) { 517 struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node; 518 519 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED; 520 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED; 521 522 /* 523 * if filesystem is mounted with NORESERVATION, the goal 524 * reservation window size is set to zero to indicate 525 * block reservation is off 526 */ 527 if (!test_opt(sb, RESERVATION)) 528 rsv->rsv_goal_size = 0; 529 else 530 rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS; 531 rsv->rsv_alloc_hit = 0; 532 block_i->last_alloc_logical_block = 0; 533 block_i->last_alloc_physical_block = 0; 534 } 535 ei->i_block_alloc_info = block_i; 536 } 537 538 /** 539 * ext4_discard_reservation() 540 * @inode: inode 541 * 542 * Discard(free) block reservation window on last file close, or truncate 543 * or at last iput(). 544 * 545 * It is being called in three cases: 546 * ext4_release_file(): last writer close the file 547 * ext4_clear_inode(): last iput(), when nobody link to this file. 548 * ext4_truncate(): when the block indirect map is about to change. 549 * 550 */ 551 void ext4_discard_reservation(struct inode *inode) 552 { 553 struct ext4_inode_info *ei = EXT4_I(inode); 554 struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info; 555 struct ext4_reserve_window_node *rsv; 556 spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock; 557 558 if (!block_i) 559 return; 560 561 rsv = &block_i->rsv_window_node; 562 if (!rsv_is_empty(&rsv->rsv_window)) { 563 spin_lock(rsv_lock); 564 if (!rsv_is_empty(&rsv->rsv_window)) 565 rsv_window_remove(inode->i_sb, rsv); 566 spin_unlock(rsv_lock); 567 } 568 } 569 570 /** 571 * ext4_free_blocks_sb() -- Free given blocks and update quota 572 * @handle: handle to this transaction 573 * @sb: super block 574 * @block: start physcial block to free 575 * @count: number of blocks to free 576 * @pdquot_freed_blocks: pointer to quota 577 */ 578 void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb, 579 ext4_fsblk_t block, unsigned long count, 580 unsigned long *pdquot_freed_blocks) 581 { 582 struct buffer_head *bitmap_bh = NULL; 583 struct buffer_head *gd_bh; 584 unsigned long block_group; 585 ext4_grpblk_t bit; 586 unsigned long i; 587 unsigned long overflow; 588 struct ext4_group_desc * desc; 589 struct ext4_super_block * es; 590 struct ext4_sb_info *sbi; 591 int err = 0, ret; 592 ext4_grpblk_t group_freed; 593 594 *pdquot_freed_blocks = 0; 595 sbi = EXT4_SB(sb); 596 es = sbi->s_es; 597 if (block < le32_to_cpu(es->s_first_data_block) || 598 block + count < block || 599 block + count > ext4_blocks_count(es)) { 600 ext4_error (sb, "ext4_free_blocks", 601 "Freeing blocks not in datazone - " 602 "block = %llu, count = %lu", block, count); 603 goto error_return; 604 } 605 606 ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1); 607 608 do_more: 609 overflow = 0; 610 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 611 /* 612 * Check to see if we are freeing blocks across a group 613 * boundary. 614 */ 615 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) { 616 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb); 617 count -= overflow; 618 } 619 brelse(bitmap_bh); 620 bitmap_bh = read_block_bitmap(sb, block_group); 621 if (!bitmap_bh) 622 goto error_return; 623 desc = ext4_get_group_desc (sb, block_group, &gd_bh); 624 if (!desc) 625 goto error_return; 626 627 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 628 in_range(ext4_inode_bitmap(sb, desc), block, count) || 629 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 630 in_range(block + count - 1, ext4_inode_table(sb, desc), 631 sbi->s_itb_per_group)) 632 ext4_error (sb, "ext4_free_blocks", 633 "Freeing blocks in system zones - " 634 "Block = %llu, count = %lu", 635 block, count); 636 637 /* 638 * We are about to start releasing blocks in the bitmap, 639 * so we need undo access. 640 */ 641 /* @@@ check errors */ 642 BUFFER_TRACE(bitmap_bh, "getting undo access"); 643 err = ext4_journal_get_undo_access(handle, bitmap_bh); 644 if (err) 645 goto error_return; 646 647 /* 648 * We are about to modify some metadata. Call the journal APIs 649 * to unshare ->b_data if a currently-committing transaction is 650 * using it 651 */ 652 BUFFER_TRACE(gd_bh, "get_write_access"); 653 err = ext4_journal_get_write_access(handle, gd_bh); 654 if (err) 655 goto error_return; 656 657 jbd_lock_bh_state(bitmap_bh); 658 659 for (i = 0, group_freed = 0; i < count; i++) { 660 /* 661 * An HJ special. This is expensive... 662 */ 663 #ifdef CONFIG_JBD2_DEBUG 664 jbd_unlock_bh_state(bitmap_bh); 665 { 666 struct buffer_head *debug_bh; 667 debug_bh = sb_find_get_block(sb, block + i); 668 if (debug_bh) { 669 BUFFER_TRACE(debug_bh, "Deleted!"); 670 if (!bh2jh(bitmap_bh)->b_committed_data) 671 BUFFER_TRACE(debug_bh, 672 "No commited data in bitmap"); 673 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap"); 674 __brelse(debug_bh); 675 } 676 } 677 jbd_lock_bh_state(bitmap_bh); 678 #endif 679 if (need_resched()) { 680 jbd_unlock_bh_state(bitmap_bh); 681 cond_resched(); 682 jbd_lock_bh_state(bitmap_bh); 683 } 684 /* @@@ This prevents newly-allocated data from being 685 * freed and then reallocated within the same 686 * transaction. 687 * 688 * Ideally we would want to allow that to happen, but to 689 * do so requires making jbd2_journal_forget() capable of 690 * revoking the queued write of a data block, which 691 * implies blocking on the journal lock. *forget() 692 * cannot block due to truncate races. 693 * 694 * Eventually we can fix this by making jbd2_journal_forget() 695 * return a status indicating whether or not it was able 696 * to revoke the buffer. On successful revoke, it is 697 * safe not to set the allocation bit in the committed 698 * bitmap, because we know that there is no outstanding 699 * activity on the buffer any more and so it is safe to 700 * reallocate it. 701 */ 702 BUFFER_TRACE(bitmap_bh, "set in b_committed_data"); 703 J_ASSERT_BH(bitmap_bh, 704 bh2jh(bitmap_bh)->b_committed_data != NULL); 705 ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i, 706 bh2jh(bitmap_bh)->b_committed_data); 707 708 /* 709 * We clear the bit in the bitmap after setting the committed 710 * data bit, because this is the reverse order to that which 711 * the allocator uses. 712 */ 713 BUFFER_TRACE(bitmap_bh, "clear bit"); 714 if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group), 715 bit + i, bitmap_bh->b_data)) { 716 jbd_unlock_bh_state(bitmap_bh); 717 ext4_error(sb, __FUNCTION__, 718 "bit already cleared for block %llu", 719 (ext4_fsblk_t)(block + i)); 720 jbd_lock_bh_state(bitmap_bh); 721 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 722 } else { 723 group_freed++; 724 } 725 } 726 jbd_unlock_bh_state(bitmap_bh); 727 728 spin_lock(sb_bgl_lock(sbi, block_group)); 729 desc->bg_free_blocks_count = 730 cpu_to_le16(le16_to_cpu(desc->bg_free_blocks_count) + 731 group_freed); 732 desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc); 733 spin_unlock(sb_bgl_lock(sbi, block_group)); 734 percpu_counter_add(&sbi->s_freeblocks_counter, count); 735 736 /* We dirtied the bitmap block */ 737 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 738 err = ext4_journal_dirty_metadata(handle, bitmap_bh); 739 740 /* And the group descriptor block */ 741 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 742 ret = ext4_journal_dirty_metadata(handle, gd_bh); 743 if (!err) err = ret; 744 *pdquot_freed_blocks += group_freed; 745 746 if (overflow && !err) { 747 block += count; 748 count = overflow; 749 goto do_more; 750 } 751 sb->s_dirt = 1; 752 error_return: 753 brelse(bitmap_bh); 754 ext4_std_error(sb, err); 755 return; 756 } 757 758 /** 759 * ext4_free_blocks() -- Free given blocks and update quota 760 * @handle: handle for this transaction 761 * @inode: inode 762 * @block: start physical block to free 763 * @count: number of blocks to count 764 */ 765 void ext4_free_blocks(handle_t *handle, struct inode *inode, 766 ext4_fsblk_t block, unsigned long count) 767 { 768 struct super_block * sb; 769 unsigned long dquot_freed_blocks; 770 771 sb = inode->i_sb; 772 if (!sb) { 773 printk ("ext4_free_blocks: nonexistent device"); 774 return; 775 } 776 ext4_free_blocks_sb(handle, sb, block, count, &dquot_freed_blocks); 777 if (dquot_freed_blocks) 778 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks); 779 return; 780 } 781 782 /** 783 * ext4_test_allocatable() 784 * @nr: given allocation block group 785 * @bh: bufferhead contains the bitmap of the given block group 786 * 787 * For ext4 allocations, we must not reuse any blocks which are 788 * allocated in the bitmap buffer's "last committed data" copy. This 789 * prevents deletes from freeing up the page for reuse until we have 790 * committed the delete transaction. 791 * 792 * If we didn't do this, then deleting something and reallocating it as 793 * data would allow the old block to be overwritten before the 794 * transaction committed (because we force data to disk before commit). 795 * This would lead to corruption if we crashed between overwriting the 796 * data and committing the delete. 797 * 798 * @@@ We may want to make this allocation behaviour conditional on 799 * data-writes at some point, and disable it for metadata allocations or 800 * sync-data inodes. 801 */ 802 static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh) 803 { 804 int ret; 805 struct journal_head *jh = bh2jh(bh); 806 807 if (ext4_test_bit(nr, bh->b_data)) 808 return 0; 809 810 jbd_lock_bh_state(bh); 811 if (!jh->b_committed_data) 812 ret = 1; 813 else 814 ret = !ext4_test_bit(nr, jh->b_committed_data); 815 jbd_unlock_bh_state(bh); 816 return ret; 817 } 818 819 /** 820 * bitmap_search_next_usable_block() 821 * @start: the starting block (group relative) of the search 822 * @bh: bufferhead contains the block group bitmap 823 * @maxblocks: the ending block (group relative) of the reservation 824 * 825 * The bitmap search --- search forward alternately through the actual 826 * bitmap on disk and the last-committed copy in journal, until we find a 827 * bit free in both bitmaps. 828 */ 829 static ext4_grpblk_t 830 bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh, 831 ext4_grpblk_t maxblocks) 832 { 833 ext4_grpblk_t next; 834 struct journal_head *jh = bh2jh(bh); 835 836 while (start < maxblocks) { 837 next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start); 838 if (next >= maxblocks) 839 return -1; 840 if (ext4_test_allocatable(next, bh)) 841 return next; 842 jbd_lock_bh_state(bh); 843 if (jh->b_committed_data) 844 start = ext4_find_next_zero_bit(jh->b_committed_data, 845 maxblocks, next); 846 jbd_unlock_bh_state(bh); 847 } 848 return -1; 849 } 850 851 /** 852 * find_next_usable_block() 853 * @start: the starting block (group relative) to find next 854 * allocatable block in bitmap. 855 * @bh: bufferhead contains the block group bitmap 856 * @maxblocks: the ending block (group relative) for the search 857 * 858 * Find an allocatable block in a bitmap. We honor both the bitmap and 859 * its last-committed copy (if that exists), and perform the "most 860 * appropriate allocation" algorithm of looking for a free block near 861 * the initial goal; then for a free byte somewhere in the bitmap; then 862 * for any free bit in the bitmap. 863 */ 864 static ext4_grpblk_t 865 find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh, 866 ext4_grpblk_t maxblocks) 867 { 868 ext4_grpblk_t here, next; 869 char *p, *r; 870 871 if (start > 0) { 872 /* 873 * The goal was occupied; search forward for a free 874 * block within the next XX blocks. 875 * 876 * end_goal is more or less random, but it has to be 877 * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the 878 * next 64-bit boundary is simple.. 879 */ 880 ext4_grpblk_t end_goal = (start + 63) & ~63; 881 if (end_goal > maxblocks) 882 end_goal = maxblocks; 883 here = ext4_find_next_zero_bit(bh->b_data, end_goal, start); 884 if (here < end_goal && ext4_test_allocatable(here, bh)) 885 return here; 886 ext4_debug("Bit not found near goal\n"); 887 } 888 889 here = start; 890 if (here < 0) 891 here = 0; 892 893 p = ((char *)bh->b_data) + (here >> 3); 894 r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3)); 895 next = (r - ((char *)bh->b_data)) << 3; 896 897 if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh)) 898 return next; 899 900 /* 901 * The bitmap search --- search forward alternately through the actual 902 * bitmap and the last-committed copy until we find a bit free in 903 * both 904 */ 905 here = bitmap_search_next_usable_block(here, bh, maxblocks); 906 return here; 907 } 908 909 /** 910 * claim_block() 911 * @block: the free block (group relative) to allocate 912 * @bh: the bufferhead containts the block group bitmap 913 * 914 * We think we can allocate this block in this bitmap. Try to set the bit. 915 * If that succeeds then check that nobody has allocated and then freed the 916 * block since we saw that is was not marked in b_committed_data. If it _was_ 917 * allocated and freed then clear the bit in the bitmap again and return 918 * zero (failure). 919 */ 920 static inline int 921 claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh) 922 { 923 struct journal_head *jh = bh2jh(bh); 924 int ret; 925 926 if (ext4_set_bit_atomic(lock, block, bh->b_data)) 927 return 0; 928 jbd_lock_bh_state(bh); 929 if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) { 930 ext4_clear_bit_atomic(lock, block, bh->b_data); 931 ret = 0; 932 } else { 933 ret = 1; 934 } 935 jbd_unlock_bh_state(bh); 936 return ret; 937 } 938 939 /** 940 * ext4_try_to_allocate() 941 * @sb: superblock 942 * @handle: handle to this transaction 943 * @group: given allocation block group 944 * @bitmap_bh: bufferhead holds the block bitmap 945 * @grp_goal: given target block within the group 946 * @count: target number of blocks to allocate 947 * @my_rsv: reservation window 948 * 949 * Attempt to allocate blocks within a give range. Set the range of allocation 950 * first, then find the first free bit(s) from the bitmap (within the range), 951 * and at last, allocate the blocks by claiming the found free bit as allocated. 952 * 953 * To set the range of this allocation: 954 * if there is a reservation window, only try to allocate block(s) from the 955 * file's own reservation window; 956 * Otherwise, the allocation range starts from the give goal block, ends at 957 * the block group's last block. 958 * 959 * If we failed to allocate the desired block then we may end up crossing to a 960 * new bitmap. In that case we must release write access to the old one via 961 * ext4_journal_release_buffer(), else we'll run out of credits. 962 */ 963 static ext4_grpblk_t 964 ext4_try_to_allocate(struct super_block *sb, handle_t *handle, int group, 965 struct buffer_head *bitmap_bh, ext4_grpblk_t grp_goal, 966 unsigned long *count, struct ext4_reserve_window *my_rsv) 967 { 968 ext4_fsblk_t group_first_block; 969 ext4_grpblk_t start, end; 970 unsigned long num = 0; 971 972 /* we do allocation within the reservation window if we have a window */ 973 if (my_rsv) { 974 group_first_block = ext4_group_first_block_no(sb, group); 975 if (my_rsv->_rsv_start >= group_first_block) 976 start = my_rsv->_rsv_start - group_first_block; 977 else 978 /* reservation window cross group boundary */ 979 start = 0; 980 end = my_rsv->_rsv_end - group_first_block + 1; 981 if (end > EXT4_BLOCKS_PER_GROUP(sb)) 982 /* reservation window crosses group boundary */ 983 end = EXT4_BLOCKS_PER_GROUP(sb); 984 if ((start <= grp_goal) && (grp_goal < end)) 985 start = grp_goal; 986 else 987 grp_goal = -1; 988 } else { 989 if (grp_goal > 0) 990 start = grp_goal; 991 else 992 start = 0; 993 end = EXT4_BLOCKS_PER_GROUP(sb); 994 } 995 996 BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb)); 997 998 repeat: 999 if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) { 1000 grp_goal = find_next_usable_block(start, bitmap_bh, end); 1001 if (grp_goal < 0) 1002 goto fail_access; 1003 if (!my_rsv) { 1004 int i; 1005 1006 for (i = 0; i < 7 && grp_goal > start && 1007 ext4_test_allocatable(grp_goal - 1, 1008 bitmap_bh); 1009 i++, grp_goal--) 1010 ; 1011 } 1012 } 1013 start = grp_goal; 1014 1015 if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group), 1016 grp_goal, bitmap_bh)) { 1017 /* 1018 * The block was allocated by another thread, or it was 1019 * allocated and then freed by another thread 1020 */ 1021 start++; 1022 grp_goal++; 1023 if (start >= end) 1024 goto fail_access; 1025 goto repeat; 1026 } 1027 num++; 1028 grp_goal++; 1029 while (num < *count && grp_goal < end 1030 && ext4_test_allocatable(grp_goal, bitmap_bh) 1031 && claim_block(sb_bgl_lock(EXT4_SB(sb), group), 1032 grp_goal, bitmap_bh)) { 1033 num++; 1034 grp_goal++; 1035 } 1036 *count = num; 1037 return grp_goal - num; 1038 fail_access: 1039 *count = num; 1040 return -1; 1041 } 1042 1043 /** 1044 * find_next_reservable_window(): 1045 * find a reservable space within the given range. 1046 * It does not allocate the reservation window for now: 1047 * alloc_new_reservation() will do the work later. 1048 * 1049 * @search_head: the head of the searching list; 1050 * This is not necessarily the list head of the whole filesystem 1051 * 1052 * We have both head and start_block to assist the search 1053 * for the reservable space. The list starts from head, 1054 * but we will shift to the place where start_block is, 1055 * then start from there, when looking for a reservable space. 1056 * 1057 * @size: the target new reservation window size 1058 * 1059 * @group_first_block: the first block we consider to start 1060 * the real search from 1061 * 1062 * @last_block: 1063 * the maximum block number that our goal reservable space 1064 * could start from. This is normally the last block in this 1065 * group. The search will end when we found the start of next 1066 * possible reservable space is out of this boundary. 1067 * This could handle the cross boundary reservation window 1068 * request. 1069 * 1070 * basically we search from the given range, rather than the whole 1071 * reservation double linked list, (start_block, last_block) 1072 * to find a free region that is of my size and has not 1073 * been reserved. 1074 * 1075 */ 1076 static int find_next_reservable_window( 1077 struct ext4_reserve_window_node *search_head, 1078 struct ext4_reserve_window_node *my_rsv, 1079 struct super_block * sb, 1080 ext4_fsblk_t start_block, 1081 ext4_fsblk_t last_block) 1082 { 1083 struct rb_node *next; 1084 struct ext4_reserve_window_node *rsv, *prev; 1085 ext4_fsblk_t cur; 1086 int size = my_rsv->rsv_goal_size; 1087 1088 /* TODO: make the start of the reservation window byte-aligned */ 1089 /* cur = *start_block & ~7;*/ 1090 cur = start_block; 1091 rsv = search_head; 1092 if (!rsv) 1093 return -1; 1094 1095 while (1) { 1096 if (cur <= rsv->rsv_end) 1097 cur = rsv->rsv_end + 1; 1098 1099 /* TODO? 1100 * in the case we could not find a reservable space 1101 * that is what is expected, during the re-search, we could 1102 * remember what's the largest reservable space we could have 1103 * and return that one. 1104 * 1105 * For now it will fail if we could not find the reservable 1106 * space with expected-size (or more)... 1107 */ 1108 if (cur > last_block) 1109 return -1; /* fail */ 1110 1111 prev = rsv; 1112 next = rb_next(&rsv->rsv_node); 1113 rsv = rb_entry(next,struct ext4_reserve_window_node,rsv_node); 1114 1115 /* 1116 * Reached the last reservation, we can just append to the 1117 * previous one. 1118 */ 1119 if (!next) 1120 break; 1121 1122 if (cur + size <= rsv->rsv_start) { 1123 /* 1124 * Found a reserveable space big enough. We could 1125 * have a reservation across the group boundary here 1126 */ 1127 break; 1128 } 1129 } 1130 /* 1131 * we come here either : 1132 * when we reach the end of the whole list, 1133 * and there is empty reservable space after last entry in the list. 1134 * append it to the end of the list. 1135 * 1136 * or we found one reservable space in the middle of the list, 1137 * return the reservation window that we could append to. 1138 * succeed. 1139 */ 1140 1141 if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window))) 1142 rsv_window_remove(sb, my_rsv); 1143 1144 /* 1145 * Let's book the whole avaliable window for now. We will check the 1146 * disk bitmap later and then, if there are free blocks then we adjust 1147 * the window size if it's larger than requested. 1148 * Otherwise, we will remove this node from the tree next time 1149 * call find_next_reservable_window. 1150 */ 1151 my_rsv->rsv_start = cur; 1152 my_rsv->rsv_end = cur + size - 1; 1153 my_rsv->rsv_alloc_hit = 0; 1154 1155 if (prev != my_rsv) 1156 ext4_rsv_window_add(sb, my_rsv); 1157 1158 return 0; 1159 } 1160 1161 /** 1162 * alloc_new_reservation()--allocate a new reservation window 1163 * 1164 * To make a new reservation, we search part of the filesystem 1165 * reservation list (the list that inside the group). We try to 1166 * allocate a new reservation window near the allocation goal, 1167 * or the beginning of the group, if there is no goal. 1168 * 1169 * We first find a reservable space after the goal, then from 1170 * there, we check the bitmap for the first free block after 1171 * it. If there is no free block until the end of group, then the 1172 * whole group is full, we failed. Otherwise, check if the free 1173 * block is inside the expected reservable space, if so, we 1174 * succeed. 1175 * If the first free block is outside the reservable space, then 1176 * start from the first free block, we search for next available 1177 * space, and go on. 1178 * 1179 * on succeed, a new reservation will be found and inserted into the list 1180 * It contains at least one free block, and it does not overlap with other 1181 * reservation windows. 1182 * 1183 * failed: we failed to find a reservation window in this group 1184 * 1185 * @rsv: the reservation 1186 * 1187 * @grp_goal: The goal (group-relative). It is where the search for a 1188 * free reservable space should start from. 1189 * if we have a grp_goal(grp_goal >0 ), then start from there, 1190 * no grp_goal(grp_goal = -1), we start from the first block 1191 * of the group. 1192 * 1193 * @sb: the super block 1194 * @group: the group we are trying to allocate in 1195 * @bitmap_bh: the block group block bitmap 1196 * 1197 */ 1198 static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv, 1199 ext4_grpblk_t grp_goal, struct super_block *sb, 1200 unsigned int group, struct buffer_head *bitmap_bh) 1201 { 1202 struct ext4_reserve_window_node *search_head; 1203 ext4_fsblk_t group_first_block, group_end_block, start_block; 1204 ext4_grpblk_t first_free_block; 1205 struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root; 1206 unsigned long size; 1207 int ret; 1208 spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock; 1209 1210 group_first_block = ext4_group_first_block_no(sb, group); 1211 group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1); 1212 1213 if (grp_goal < 0) 1214 start_block = group_first_block; 1215 else 1216 start_block = grp_goal + group_first_block; 1217 1218 size = my_rsv->rsv_goal_size; 1219 1220 if (!rsv_is_empty(&my_rsv->rsv_window)) { 1221 /* 1222 * if the old reservation is cross group boundary 1223 * and if the goal is inside the old reservation window, 1224 * we will come here when we just failed to allocate from 1225 * the first part of the window. We still have another part 1226 * that belongs to the next group. In this case, there is no 1227 * point to discard our window and try to allocate a new one 1228 * in this group(which will fail). we should 1229 * keep the reservation window, just simply move on. 1230 * 1231 * Maybe we could shift the start block of the reservation 1232 * window to the first block of next group. 1233 */ 1234 1235 if ((my_rsv->rsv_start <= group_end_block) && 1236 (my_rsv->rsv_end > group_end_block) && 1237 (start_block >= my_rsv->rsv_start)) 1238 return -1; 1239 1240 if ((my_rsv->rsv_alloc_hit > 1241 (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) { 1242 /* 1243 * if the previously allocation hit ratio is 1244 * greater than 1/2, then we double the size of 1245 * the reservation window the next time, 1246 * otherwise we keep the same size window 1247 */ 1248 size = size * 2; 1249 if (size > EXT4_MAX_RESERVE_BLOCKS) 1250 size = EXT4_MAX_RESERVE_BLOCKS; 1251 my_rsv->rsv_goal_size= size; 1252 } 1253 } 1254 1255 spin_lock(rsv_lock); 1256 /* 1257 * shift the search start to the window near the goal block 1258 */ 1259 search_head = search_reserve_window(fs_rsv_root, start_block); 1260 1261 /* 1262 * find_next_reservable_window() simply finds a reservable window 1263 * inside the given range(start_block, group_end_block). 1264 * 1265 * To make sure the reservation window has a free bit inside it, we 1266 * need to check the bitmap after we found a reservable window. 1267 */ 1268 retry: 1269 ret = find_next_reservable_window(search_head, my_rsv, sb, 1270 start_block, group_end_block); 1271 1272 if (ret == -1) { 1273 if (!rsv_is_empty(&my_rsv->rsv_window)) 1274 rsv_window_remove(sb, my_rsv); 1275 spin_unlock(rsv_lock); 1276 return -1; 1277 } 1278 1279 /* 1280 * On success, find_next_reservable_window() returns the 1281 * reservation window where there is a reservable space after it. 1282 * Before we reserve this reservable space, we need 1283 * to make sure there is at least a free block inside this region. 1284 * 1285 * searching the first free bit on the block bitmap and copy of 1286 * last committed bitmap alternatively, until we found a allocatable 1287 * block. Search start from the start block of the reservable space 1288 * we just found. 1289 */ 1290 spin_unlock(rsv_lock); 1291 first_free_block = bitmap_search_next_usable_block( 1292 my_rsv->rsv_start - group_first_block, 1293 bitmap_bh, group_end_block - group_first_block + 1); 1294 1295 if (first_free_block < 0) { 1296 /* 1297 * no free block left on the bitmap, no point 1298 * to reserve the space. return failed. 1299 */ 1300 spin_lock(rsv_lock); 1301 if (!rsv_is_empty(&my_rsv->rsv_window)) 1302 rsv_window_remove(sb, my_rsv); 1303 spin_unlock(rsv_lock); 1304 return -1; /* failed */ 1305 } 1306 1307 start_block = first_free_block + group_first_block; 1308 /* 1309 * check if the first free block is within the 1310 * free space we just reserved 1311 */ 1312 if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end) 1313 return 0; /* success */ 1314 /* 1315 * if the first free bit we found is out of the reservable space 1316 * continue search for next reservable space, 1317 * start from where the free block is, 1318 * we also shift the list head to where we stopped last time 1319 */ 1320 search_head = my_rsv; 1321 spin_lock(rsv_lock); 1322 goto retry; 1323 } 1324 1325 /** 1326 * try_to_extend_reservation() 1327 * @my_rsv: given reservation window 1328 * @sb: super block 1329 * @size: the delta to extend 1330 * 1331 * Attempt to expand the reservation window large enough to have 1332 * required number of free blocks 1333 * 1334 * Since ext4_try_to_allocate() will always allocate blocks within 1335 * the reservation window range, if the window size is too small, 1336 * multiple blocks allocation has to stop at the end of the reservation 1337 * window. To make this more efficient, given the total number of 1338 * blocks needed and the current size of the window, we try to 1339 * expand the reservation window size if necessary on a best-effort 1340 * basis before ext4_new_blocks() tries to allocate blocks, 1341 */ 1342 static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv, 1343 struct super_block *sb, int size) 1344 { 1345 struct ext4_reserve_window_node *next_rsv; 1346 struct rb_node *next; 1347 spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock; 1348 1349 if (!spin_trylock(rsv_lock)) 1350 return; 1351 1352 next = rb_next(&my_rsv->rsv_node); 1353 1354 if (!next) 1355 my_rsv->rsv_end += size; 1356 else { 1357 next_rsv = rb_entry(next, struct ext4_reserve_window_node, rsv_node); 1358 1359 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size) 1360 my_rsv->rsv_end += size; 1361 else 1362 my_rsv->rsv_end = next_rsv->rsv_start - 1; 1363 } 1364 spin_unlock(rsv_lock); 1365 } 1366 1367 /** 1368 * ext4_try_to_allocate_with_rsv() 1369 * @sb: superblock 1370 * @handle: handle to this transaction 1371 * @group: given allocation block group 1372 * @bitmap_bh: bufferhead holds the block bitmap 1373 * @grp_goal: given target block within the group 1374 * @count: target number of blocks to allocate 1375 * @my_rsv: reservation window 1376 * @errp: pointer to store the error code 1377 * 1378 * This is the main function used to allocate a new block and its reservation 1379 * window. 1380 * 1381 * Each time when a new block allocation is need, first try to allocate from 1382 * its own reservation. If it does not have a reservation window, instead of 1383 * looking for a free bit on bitmap first, then look up the reservation list to 1384 * see if it is inside somebody else's reservation window, we try to allocate a 1385 * reservation window for it starting from the goal first. Then do the block 1386 * allocation within the reservation window. 1387 * 1388 * This will avoid keeping on searching the reservation list again and 1389 * again when somebody is looking for a free block (without 1390 * reservation), and there are lots of free blocks, but they are all 1391 * being reserved. 1392 * 1393 * We use a red-black tree for the per-filesystem reservation list. 1394 * 1395 */ 1396 static ext4_grpblk_t 1397 ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle, 1398 unsigned int group, struct buffer_head *bitmap_bh, 1399 ext4_grpblk_t grp_goal, 1400 struct ext4_reserve_window_node * my_rsv, 1401 unsigned long *count, int *errp) 1402 { 1403 ext4_fsblk_t group_first_block, group_last_block; 1404 ext4_grpblk_t ret = 0; 1405 int fatal; 1406 unsigned long num = *count; 1407 1408 *errp = 0; 1409 1410 /* 1411 * Make sure we use undo access for the bitmap, because it is critical 1412 * that we do the frozen_data COW on bitmap buffers in all cases even 1413 * if the buffer is in BJ_Forget state in the committing transaction. 1414 */ 1415 BUFFER_TRACE(bitmap_bh, "get undo access for new block"); 1416 fatal = ext4_journal_get_undo_access(handle, bitmap_bh); 1417 if (fatal) { 1418 *errp = fatal; 1419 return -1; 1420 } 1421 1422 /* 1423 * we don't deal with reservation when 1424 * filesystem is mounted without reservation 1425 * or the file is not a regular file 1426 * or last attempt to allocate a block with reservation turned on failed 1427 */ 1428 if (my_rsv == NULL ) { 1429 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh, 1430 grp_goal, count, NULL); 1431 goto out; 1432 } 1433 /* 1434 * grp_goal is a group relative block number (if there is a goal) 1435 * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb) 1436 * first block is a filesystem wide block number 1437 * first block is the block number of the first block in this group 1438 */ 1439 group_first_block = ext4_group_first_block_no(sb, group); 1440 group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1); 1441 1442 /* 1443 * Basically we will allocate a new block from inode's reservation 1444 * window. 1445 * 1446 * We need to allocate a new reservation window, if: 1447 * a) inode does not have a reservation window; or 1448 * b) last attempt to allocate a block from existing reservation 1449 * failed; or 1450 * c) we come here with a goal and with a reservation window 1451 * 1452 * We do not need to allocate a new reservation window if we come here 1453 * at the beginning with a goal and the goal is inside the window, or 1454 * we don't have a goal but already have a reservation window. 1455 * then we could go to allocate from the reservation window directly. 1456 */ 1457 while (1) { 1458 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) || 1459 !goal_in_my_reservation(&my_rsv->rsv_window, 1460 grp_goal, group, sb)) { 1461 if (my_rsv->rsv_goal_size < *count) 1462 my_rsv->rsv_goal_size = *count; 1463 ret = alloc_new_reservation(my_rsv, grp_goal, sb, 1464 group, bitmap_bh); 1465 if (ret < 0) 1466 break; /* failed */ 1467 1468 if (!goal_in_my_reservation(&my_rsv->rsv_window, 1469 grp_goal, group, sb)) 1470 grp_goal = -1; 1471 } else if (grp_goal >= 0) { 1472 int curr = my_rsv->rsv_end - 1473 (grp_goal + group_first_block) + 1; 1474 1475 if (curr < *count) 1476 try_to_extend_reservation(my_rsv, sb, 1477 *count - curr); 1478 } 1479 1480 if ((my_rsv->rsv_start > group_last_block) || 1481 (my_rsv->rsv_end < group_first_block)) { 1482 rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1); 1483 BUG(); 1484 } 1485 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh, 1486 grp_goal, &num, &my_rsv->rsv_window); 1487 if (ret >= 0) { 1488 my_rsv->rsv_alloc_hit += num; 1489 *count = num; 1490 break; /* succeed */ 1491 } 1492 num = *count; 1493 } 1494 out: 1495 if (ret >= 0) { 1496 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for " 1497 "bitmap block"); 1498 fatal = ext4_journal_dirty_metadata(handle, bitmap_bh); 1499 if (fatal) { 1500 *errp = fatal; 1501 return -1; 1502 } 1503 return ret; 1504 } 1505 1506 BUFFER_TRACE(bitmap_bh, "journal_release_buffer"); 1507 ext4_journal_release_buffer(handle, bitmap_bh); 1508 return ret; 1509 } 1510 1511 /** 1512 * ext4_has_free_blocks() 1513 * @sbi: in-core super block structure. 1514 * 1515 * Check if filesystem has at least 1 free block available for allocation. 1516 */ 1517 static int ext4_has_free_blocks(struct ext4_sb_info *sbi) 1518 { 1519 ext4_fsblk_t free_blocks, root_blocks; 1520 1521 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 1522 root_blocks = ext4_r_blocks_count(sbi->s_es); 1523 if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) && 1524 sbi->s_resuid != current->fsuid && 1525 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) { 1526 return 0; 1527 } 1528 return 1; 1529 } 1530 1531 /** 1532 * ext4_should_retry_alloc() 1533 * @sb: super block 1534 * @retries number of attemps has been made 1535 * 1536 * ext4_should_retry_alloc() is called when ENOSPC is returned, and if 1537 * it is profitable to retry the operation, this function will wait 1538 * for the current or commiting transaction to complete, and then 1539 * return TRUE. 1540 * 1541 * if the total number of retries exceed three times, return FALSE. 1542 */ 1543 int ext4_should_retry_alloc(struct super_block *sb, int *retries) 1544 { 1545 if (!ext4_has_free_blocks(EXT4_SB(sb)) || (*retries)++ > 3) 1546 return 0; 1547 1548 jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id); 1549 1550 return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal); 1551 } 1552 1553 /** 1554 * ext4_new_blocks() -- core block(s) allocation function 1555 * @handle: handle to this transaction 1556 * @inode: file inode 1557 * @goal: given target block(filesystem wide) 1558 * @count: target number of blocks to allocate 1559 * @errp: error code 1560 * 1561 * ext4_new_blocks uses a goal block to assist allocation. It tries to 1562 * allocate block(s) from the block group contains the goal block first. If that 1563 * fails, it will try to allocate block(s) from other block groups without 1564 * any specific goal block. 1565 * 1566 */ 1567 ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode, 1568 ext4_fsblk_t goal, unsigned long *count, int *errp) 1569 { 1570 struct buffer_head *bitmap_bh = NULL; 1571 struct buffer_head *gdp_bh; 1572 unsigned long group_no; 1573 int goal_group; 1574 ext4_grpblk_t grp_target_blk; /* blockgroup relative goal block */ 1575 ext4_grpblk_t grp_alloc_blk; /* blockgroup-relative allocated block*/ 1576 ext4_fsblk_t ret_block; /* filesyetem-wide allocated block */ 1577 int bgi; /* blockgroup iteration index */ 1578 int fatal = 0, err; 1579 int performed_allocation = 0; 1580 ext4_grpblk_t free_blocks; /* number of free blocks in a group */ 1581 struct super_block *sb; 1582 struct ext4_group_desc *gdp; 1583 struct ext4_super_block *es; 1584 struct ext4_sb_info *sbi; 1585 struct ext4_reserve_window_node *my_rsv = NULL; 1586 struct ext4_block_alloc_info *block_i; 1587 unsigned short windowsz = 0; 1588 #ifdef EXT4FS_DEBUG 1589 static int goal_hits, goal_attempts; 1590 #endif 1591 unsigned long ngroups; 1592 unsigned long num = *count; 1593 1594 *errp = -ENOSPC; 1595 sb = inode->i_sb; 1596 if (!sb) { 1597 printk("ext4_new_block: nonexistent device"); 1598 return 0; 1599 } 1600 1601 /* 1602 * Check quota for allocation of this block. 1603 */ 1604 if (DQUOT_ALLOC_BLOCK(inode, num)) { 1605 *errp = -EDQUOT; 1606 return 0; 1607 } 1608 1609 sbi = EXT4_SB(sb); 1610 es = EXT4_SB(sb)->s_es; 1611 ext4_debug("goal=%lu.\n", goal); 1612 /* 1613 * Allocate a block from reservation only when 1614 * filesystem is mounted with reservation(default,-o reservation), and 1615 * it's a regular file, and 1616 * the desired window size is greater than 0 (One could use ioctl 1617 * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off 1618 * reservation on that particular file) 1619 */ 1620 block_i = EXT4_I(inode)->i_block_alloc_info; 1621 if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0)) 1622 my_rsv = &block_i->rsv_window_node; 1623 1624 if (!ext4_has_free_blocks(sbi)) { 1625 *errp = -ENOSPC; 1626 goto out; 1627 } 1628 1629 /* 1630 * First, test whether the goal block is free. 1631 */ 1632 if (goal < le32_to_cpu(es->s_first_data_block) || 1633 goal >= ext4_blocks_count(es)) 1634 goal = le32_to_cpu(es->s_first_data_block); 1635 ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk); 1636 goal_group = group_no; 1637 retry_alloc: 1638 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh); 1639 if (!gdp) 1640 goto io_error; 1641 1642 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count); 1643 /* 1644 * if there is not enough free blocks to make a new resevation 1645 * turn off reservation for this allocation 1646 */ 1647 if (my_rsv && (free_blocks < windowsz) 1648 && (rsv_is_empty(&my_rsv->rsv_window))) 1649 my_rsv = NULL; 1650 1651 if (free_blocks > 0) { 1652 bitmap_bh = read_block_bitmap(sb, group_no); 1653 if (!bitmap_bh) 1654 goto io_error; 1655 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle, 1656 group_no, bitmap_bh, grp_target_blk, 1657 my_rsv, &num, &fatal); 1658 if (fatal) 1659 goto out; 1660 if (grp_alloc_blk >= 0) 1661 goto allocated; 1662 } 1663 1664 ngroups = EXT4_SB(sb)->s_groups_count; 1665 smp_rmb(); 1666 1667 /* 1668 * Now search the rest of the groups. We assume that 1669 * i and gdp correctly point to the last group visited. 1670 */ 1671 for (bgi = 0; bgi < ngroups; bgi++) { 1672 group_no++; 1673 if (group_no >= ngroups) 1674 group_no = 0; 1675 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh); 1676 if (!gdp) 1677 goto io_error; 1678 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count); 1679 /* 1680 * skip this group if the number of 1681 * free blocks is less than half of the reservation 1682 * window size. 1683 */ 1684 if (free_blocks <= (windowsz/2)) 1685 continue; 1686 1687 brelse(bitmap_bh); 1688 bitmap_bh = read_block_bitmap(sb, group_no); 1689 if (!bitmap_bh) 1690 goto io_error; 1691 /* 1692 * try to allocate block(s) from this group, without a goal(-1). 1693 */ 1694 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle, 1695 group_no, bitmap_bh, -1, my_rsv, 1696 &num, &fatal); 1697 if (fatal) 1698 goto out; 1699 if (grp_alloc_blk >= 0) 1700 goto allocated; 1701 } 1702 /* 1703 * We may end up a bogus ealier ENOSPC error due to 1704 * filesystem is "full" of reservations, but 1705 * there maybe indeed free blocks avaliable on disk 1706 * In this case, we just forget about the reservations 1707 * just do block allocation as without reservations. 1708 */ 1709 if (my_rsv) { 1710 my_rsv = NULL; 1711 windowsz = 0; 1712 group_no = goal_group; 1713 goto retry_alloc; 1714 } 1715 /* No space left on the device */ 1716 *errp = -ENOSPC; 1717 goto out; 1718 1719 allocated: 1720 1721 ext4_debug("using block group %d(%d)\n", 1722 group_no, gdp->bg_free_blocks_count); 1723 1724 BUFFER_TRACE(gdp_bh, "get_write_access"); 1725 fatal = ext4_journal_get_write_access(handle, gdp_bh); 1726 if (fatal) 1727 goto out; 1728 1729 ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no); 1730 1731 if (in_range(ext4_block_bitmap(sb, gdp), ret_block, num) || 1732 in_range(ext4_inode_bitmap(sb, gdp), ret_block, num) || 1733 in_range(ret_block, ext4_inode_table(sb, gdp), 1734 EXT4_SB(sb)->s_itb_per_group) || 1735 in_range(ret_block + num - 1, ext4_inode_table(sb, gdp), 1736 EXT4_SB(sb)->s_itb_per_group)) 1737 ext4_error(sb, "ext4_new_block", 1738 "Allocating block in system zone - " 1739 "blocks from %llu, length %lu", 1740 ret_block, num); 1741 1742 performed_allocation = 1; 1743 1744 #ifdef CONFIG_JBD2_DEBUG 1745 { 1746 struct buffer_head *debug_bh; 1747 1748 /* Record bitmap buffer state in the newly allocated block */ 1749 debug_bh = sb_find_get_block(sb, ret_block); 1750 if (debug_bh) { 1751 BUFFER_TRACE(debug_bh, "state when allocated"); 1752 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state"); 1753 brelse(debug_bh); 1754 } 1755 } 1756 jbd_lock_bh_state(bitmap_bh); 1757 spin_lock(sb_bgl_lock(sbi, group_no)); 1758 if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) { 1759 int i; 1760 1761 for (i = 0; i < num; i++) { 1762 if (ext4_test_bit(grp_alloc_blk+i, 1763 bh2jh(bitmap_bh)->b_committed_data)) { 1764 printk("%s: block was unexpectedly set in " 1765 "b_committed_data\n", __FUNCTION__); 1766 } 1767 } 1768 } 1769 ext4_debug("found bit %d\n", grp_alloc_blk); 1770 spin_unlock(sb_bgl_lock(sbi, group_no)); 1771 jbd_unlock_bh_state(bitmap_bh); 1772 #endif 1773 1774 if (ret_block + num - 1 >= ext4_blocks_count(es)) { 1775 ext4_error(sb, "ext4_new_block", 1776 "block(%llu) >= blocks count(%llu) - " 1777 "block_group = %lu, es == %p ", ret_block, 1778 ext4_blocks_count(es), group_no, es); 1779 goto out; 1780 } 1781 1782 /* 1783 * It is up to the caller to add the new buffer to a journal 1784 * list of some description. We don't know in advance whether 1785 * the caller wants to use it as metadata or data. 1786 */ 1787 ext4_debug("allocating block %lu. Goal hits %d of %d.\n", 1788 ret_block, goal_hits, goal_attempts); 1789 1790 spin_lock(sb_bgl_lock(sbi, group_no)); 1791 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) 1792 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 1793 gdp->bg_free_blocks_count = 1794 cpu_to_le16(le16_to_cpu(gdp->bg_free_blocks_count)-num); 1795 gdp->bg_checksum = ext4_group_desc_csum(sbi, group_no, gdp); 1796 spin_unlock(sb_bgl_lock(sbi, group_no)); 1797 percpu_counter_sub(&sbi->s_freeblocks_counter, num); 1798 1799 BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor"); 1800 err = ext4_journal_dirty_metadata(handle, gdp_bh); 1801 if (!fatal) 1802 fatal = err; 1803 1804 sb->s_dirt = 1; 1805 if (fatal) 1806 goto out; 1807 1808 *errp = 0; 1809 brelse(bitmap_bh); 1810 DQUOT_FREE_BLOCK(inode, *count-num); 1811 *count = num; 1812 return ret_block; 1813 1814 io_error: 1815 *errp = -EIO; 1816 out: 1817 if (fatal) { 1818 *errp = fatal; 1819 ext4_std_error(sb, fatal); 1820 } 1821 /* 1822 * Undo the block allocation 1823 */ 1824 if (!performed_allocation) 1825 DQUOT_FREE_BLOCK(inode, *count); 1826 brelse(bitmap_bh); 1827 return 0; 1828 } 1829 1830 ext4_fsblk_t ext4_new_block(handle_t *handle, struct inode *inode, 1831 ext4_fsblk_t goal, int *errp) 1832 { 1833 unsigned long count = 1; 1834 1835 return ext4_new_blocks(handle, inode, goal, &count, errp); 1836 } 1837 1838 /** 1839 * ext4_count_free_blocks() -- count filesystem free blocks 1840 * @sb: superblock 1841 * 1842 * Adds up the number of free blocks from each block group. 1843 */ 1844 ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb) 1845 { 1846 ext4_fsblk_t desc_count; 1847 struct ext4_group_desc *gdp; 1848 int i; 1849 unsigned long ngroups = EXT4_SB(sb)->s_groups_count; 1850 #ifdef EXT4FS_DEBUG 1851 struct ext4_super_block *es; 1852 ext4_fsblk_t bitmap_count; 1853 unsigned long x; 1854 struct buffer_head *bitmap_bh = NULL; 1855 1856 es = EXT4_SB(sb)->s_es; 1857 desc_count = 0; 1858 bitmap_count = 0; 1859 gdp = NULL; 1860 1861 smp_rmb(); 1862 for (i = 0; i < ngroups; i++) { 1863 gdp = ext4_get_group_desc(sb, i, NULL); 1864 if (!gdp) 1865 continue; 1866 desc_count += le16_to_cpu(gdp->bg_free_blocks_count); 1867 brelse(bitmap_bh); 1868 bitmap_bh = read_block_bitmap(sb, i); 1869 if (bitmap_bh == NULL) 1870 continue; 1871 1872 x = ext4_count_free(bitmap_bh, sb->s_blocksize); 1873 printk("group %d: stored = %d, counted = %lu\n", 1874 i, le16_to_cpu(gdp->bg_free_blocks_count), x); 1875 bitmap_count += x; 1876 } 1877 brelse(bitmap_bh); 1878 printk("ext4_count_free_blocks: stored = %llu" 1879 ", computed = %llu, %llu\n", 1880 EXT4_FREE_BLOCKS_COUNT(es), 1881 desc_count, bitmap_count); 1882 return bitmap_count; 1883 #else 1884 desc_count = 0; 1885 smp_rmb(); 1886 for (i = 0; i < ngroups; i++) { 1887 gdp = ext4_get_group_desc(sb, i, NULL); 1888 if (!gdp) 1889 continue; 1890 desc_count += le16_to_cpu(gdp->bg_free_blocks_count); 1891 } 1892 1893 return desc_count; 1894 #endif 1895 } 1896 1897 static inline int test_root(int a, int b) 1898 { 1899 int num = b; 1900 1901 while (a > num) 1902 num *= b; 1903 return num == a; 1904 } 1905 1906 static int ext4_group_sparse(int group) 1907 { 1908 if (group <= 1) 1909 return 1; 1910 if (!(group & 1)) 1911 return 0; 1912 return (test_root(group, 7) || test_root(group, 5) || 1913 test_root(group, 3)); 1914 } 1915 1916 /** 1917 * ext4_bg_has_super - number of blocks used by the superblock in group 1918 * @sb: superblock for filesystem 1919 * @group: group number to check 1920 * 1921 * Return the number of blocks used by the superblock (primary or backup) 1922 * in this group. Currently this will be only 0 or 1. 1923 */ 1924 int ext4_bg_has_super(struct super_block *sb, int group) 1925 { 1926 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 1927 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) && 1928 !ext4_group_sparse(group)) 1929 return 0; 1930 return 1; 1931 } 1932 1933 static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb, int group) 1934 { 1935 unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb); 1936 unsigned long first = metagroup * EXT4_DESC_PER_BLOCK(sb); 1937 unsigned long last = first + EXT4_DESC_PER_BLOCK(sb) - 1; 1938 1939 if (group == first || group == first + 1 || group == last) 1940 return 1; 1941 return 0; 1942 } 1943 1944 static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb, int group) 1945 { 1946 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 1947 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) && 1948 !ext4_group_sparse(group)) 1949 return 0; 1950 return EXT4_SB(sb)->s_gdb_count; 1951 } 1952 1953 /** 1954 * ext4_bg_num_gdb - number of blocks used by the group table in group 1955 * @sb: superblock for filesystem 1956 * @group: group number to check 1957 * 1958 * Return the number of blocks used by the group descriptor table 1959 * (primary or backup) in this group. In the future there may be a 1960 * different number of descriptor blocks in each group. 1961 */ 1962 unsigned long ext4_bg_num_gdb(struct super_block *sb, int group) 1963 { 1964 unsigned long first_meta_bg = 1965 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg); 1966 unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb); 1967 1968 if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) || 1969 metagroup < first_meta_bg) 1970 return ext4_bg_num_gdb_nometa(sb,group); 1971 1972 return ext4_bg_num_gdb_meta(sb,group); 1973 1974 } 1975