xref: /openbmc/linux/fs/ext4/balloc.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  *  linux/fs/ext4/balloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10  *  Big-endian to little-endian byte-swapping/bitmaps by
11  *        David S. Miller (davem@caip.rutgers.edu), 1995
12  */
13 
14 #include <linux/time.h>
15 #include <linux/capability.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/ext4_fs.h>
19 #include <linux/ext4_jbd2.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 
23 #include "group.h"
24 /*
25  * balloc.c contains the blocks allocation and deallocation routines
26  */
27 
28 /*
29  * Calculate the block group number and offset, given a block number
30  */
31 void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr,
32 		unsigned long *blockgrpp, ext4_grpblk_t *offsetp)
33 {
34 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
35 	ext4_grpblk_t offset;
36 
37 	blocknr = blocknr - le32_to_cpu(es->s_first_data_block);
38 	offset = do_div(blocknr, EXT4_BLOCKS_PER_GROUP(sb));
39 	if (offsetp)
40 		*offsetp = offset;
41 	if (blockgrpp)
42 		*blockgrpp = blocknr;
43 
44 }
45 
46 /* Initializes an uninitialized block bitmap if given, and returns the
47  * number of blocks free in the group. */
48 unsigned ext4_init_block_bitmap(struct super_block *sb, struct buffer_head *bh,
49 				int block_group, struct ext4_group_desc *gdp)
50 {
51 	unsigned long start;
52 	int bit, bit_max;
53 	unsigned free_blocks, group_blocks;
54 	struct ext4_sb_info *sbi = EXT4_SB(sb);
55 
56 	if (bh) {
57 		J_ASSERT_BH(bh, buffer_locked(bh));
58 
59 		/* If checksum is bad mark all blocks used to prevent allocation
60 		 * essentially implementing a per-group read-only flag. */
61 		if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
62 			ext4_error(sb, __FUNCTION__,
63 				   "Checksum bad for group %u\n", block_group);
64 			gdp->bg_free_blocks_count = 0;
65 			gdp->bg_free_inodes_count = 0;
66 			gdp->bg_itable_unused = 0;
67 			memset(bh->b_data, 0xff, sb->s_blocksize);
68 			return 0;
69 		}
70 		memset(bh->b_data, 0, sb->s_blocksize);
71 	}
72 
73 	/* Check for superblock and gdt backups in this group */
74 	bit_max = ext4_bg_has_super(sb, block_group);
75 
76 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
77 	    block_group < le32_to_cpu(sbi->s_es->s_first_meta_bg) *
78 			  sbi->s_desc_per_block) {
79 		if (bit_max) {
80 			bit_max += ext4_bg_num_gdb(sb, block_group);
81 			bit_max +=
82 				le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks);
83 		}
84 	} else { /* For META_BG_BLOCK_GROUPS */
85 		int group_rel = (block_group -
86 				 le32_to_cpu(sbi->s_es->s_first_meta_bg)) %
87 				EXT4_DESC_PER_BLOCK(sb);
88 		if (group_rel == 0 || group_rel == 1 ||
89 		    (group_rel == EXT4_DESC_PER_BLOCK(sb) - 1))
90 			bit_max += 1;
91 	}
92 
93 	if (block_group == sbi->s_groups_count - 1) {
94 		/*
95 		 * Even though mke2fs always initialize first and last group
96 		 * if some other tool enabled the EXT4_BG_BLOCK_UNINIT we need
97 		 * to make sure we calculate the right free blocks
98 		 */
99 		group_blocks = ext4_blocks_count(sbi->s_es) -
100 			le32_to_cpu(sbi->s_es->s_first_data_block) -
101 			(EXT4_BLOCKS_PER_GROUP(sb) * (sbi->s_groups_count -1));
102 	} else {
103 		group_blocks = EXT4_BLOCKS_PER_GROUP(sb);
104 	}
105 
106 	free_blocks = group_blocks - bit_max;
107 
108 	if (bh) {
109 		for (bit = 0; bit < bit_max; bit++)
110 			ext4_set_bit(bit, bh->b_data);
111 
112 		start = block_group * EXT4_BLOCKS_PER_GROUP(sb) +
113 			le32_to_cpu(sbi->s_es->s_first_data_block);
114 
115 		/* Set bits for block and inode bitmaps, and inode table */
116 		ext4_set_bit(ext4_block_bitmap(sb, gdp) - start, bh->b_data);
117 		ext4_set_bit(ext4_inode_bitmap(sb, gdp) - start, bh->b_data);
118 		for (bit = (ext4_inode_table(sb, gdp) - start),
119 		     bit_max = bit + sbi->s_itb_per_group; bit < bit_max; bit++)
120 			ext4_set_bit(bit, bh->b_data);
121 
122 		/*
123 		 * Also if the number of blocks within the group is
124 		 * less than the blocksize * 8 ( which is the size
125 		 * of bitmap ), set rest of the block bitmap to 1
126 		 */
127 		mark_bitmap_end(group_blocks, sb->s_blocksize * 8, bh->b_data);
128 	}
129 
130 	return free_blocks - sbi->s_itb_per_group - 2;
131 }
132 
133 
134 /*
135  * The free blocks are managed by bitmaps.  A file system contains several
136  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
137  * block for inodes, N blocks for the inode table and data blocks.
138  *
139  * The file system contains group descriptors which are located after the
140  * super block.  Each descriptor contains the number of the bitmap block and
141  * the free blocks count in the block.  The descriptors are loaded in memory
142  * when a file system is mounted (see ext4_fill_super).
143  */
144 
145 
146 #define in_range(b, first, len)	((b) >= (first) && (b) <= (first) + (len) - 1)
147 
148 /**
149  * ext4_get_group_desc() -- load group descriptor from disk
150  * @sb:			super block
151  * @block_group:	given block group
152  * @bh:			pointer to the buffer head to store the block
153  *			group descriptor
154  */
155 struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb,
156 					     unsigned int block_group,
157 					     struct buffer_head ** bh)
158 {
159 	unsigned long group_desc;
160 	unsigned long offset;
161 	struct ext4_group_desc * desc;
162 	struct ext4_sb_info *sbi = EXT4_SB(sb);
163 
164 	if (block_group >= sbi->s_groups_count) {
165 		ext4_error (sb, "ext4_get_group_desc",
166 			    "block_group >= groups_count - "
167 			    "block_group = %d, groups_count = %lu",
168 			    block_group, sbi->s_groups_count);
169 
170 		return NULL;
171 	}
172 	smp_rmb();
173 
174 	group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
175 	offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
176 	if (!sbi->s_group_desc[group_desc]) {
177 		ext4_error (sb, "ext4_get_group_desc",
178 			    "Group descriptor not loaded - "
179 			    "block_group = %d, group_desc = %lu, desc = %lu",
180 			     block_group, group_desc, offset);
181 		return NULL;
182 	}
183 
184 	desc = (struct ext4_group_desc *)(
185 		(__u8 *)sbi->s_group_desc[group_desc]->b_data +
186 		offset * EXT4_DESC_SIZE(sb));
187 	if (bh)
188 		*bh = sbi->s_group_desc[group_desc];
189 	return desc;
190 }
191 
192 static inline int
193 block_in_use(ext4_fsblk_t block, struct super_block *sb, unsigned char *map)
194 {
195 	ext4_grpblk_t offset;
196 
197 	ext4_get_group_no_and_offset(sb, block, NULL, &offset);
198 	return ext4_test_bit (offset, map);
199 }
200 
201 /**
202  * read_block_bitmap()
203  * @sb:			super block
204  * @block_group:	given block group
205  *
206  * Read the bitmap for a given block_group, reading into the specified
207  * slot in the superblock's bitmap cache.
208  *
209  * Return buffer_head on success or NULL in case of failure.
210  */
211 struct buffer_head *
212 read_block_bitmap(struct super_block *sb, unsigned int block_group)
213 {
214 	int i;
215 	struct ext4_group_desc * desc;
216 	struct buffer_head * bh = NULL;
217 	ext4_fsblk_t bitmap_blk;
218 
219 	desc = ext4_get_group_desc(sb, block_group, NULL);
220 	if (!desc)
221 		return NULL;
222 	bitmap_blk = ext4_block_bitmap(sb, desc);
223 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
224 		bh = sb_getblk(sb, bitmap_blk);
225 		if (!buffer_uptodate(bh)) {
226 			lock_buffer(bh);
227 			if (!buffer_uptodate(bh)) {
228 				ext4_init_block_bitmap(sb, bh, block_group,
229 						       desc);
230 				set_buffer_uptodate(bh);
231 			}
232 			unlock_buffer(bh);
233 		}
234 	} else {
235 		bh = sb_bread(sb, bitmap_blk);
236 	}
237 	if (!bh)
238 		ext4_error (sb, __FUNCTION__,
239 			    "Cannot read block bitmap - "
240 			    "block_group = %d, block_bitmap = %llu",
241 			    block_group, bitmap_blk);
242 
243 	/* check whether block bitmap block number is set */
244 	if (!block_in_use(bitmap_blk, sb, bh->b_data)) {
245 		/* bad block bitmap */
246 		goto error_out;
247 	}
248 
249 	/* check whether the inode bitmap block number is set */
250 	bitmap_blk = ext4_inode_bitmap(sb, desc);
251 	if (!block_in_use(bitmap_blk, sb, bh->b_data)) {
252 		/* bad block bitmap */
253 		goto error_out;
254 	}
255 	/* check whether the inode table block number is set */
256 	bitmap_blk = ext4_inode_table(sb, desc);
257 	for (i = 0; i < EXT4_SB(sb)->s_itb_per_group; i++, bitmap_blk++) {
258 		if (!block_in_use(bitmap_blk, sb, bh->b_data)) {
259 			/* bad block bitmap */
260 			goto error_out;
261 		}
262 	}
263 
264 	return bh;
265 
266 error_out:
267 	brelse(bh);
268 	ext4_error(sb, __FUNCTION__,
269 			"Invalid block bitmap - "
270 			"block_group = %d, block = %llu",
271 			block_group, bitmap_blk);
272 	return NULL;
273 
274 }
275 /*
276  * The reservation window structure operations
277  * --------------------------------------------
278  * Operations include:
279  * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
280  *
281  * We use a red-black tree to represent per-filesystem reservation
282  * windows.
283  *
284  */
285 
286 /**
287  * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
288  * @rb_root:		root of per-filesystem reservation rb tree
289  * @verbose:		verbose mode
290  * @fn:			function which wishes to dump the reservation map
291  *
292  * If verbose is turned on, it will print the whole block reservation
293  * windows(start, end).	Otherwise, it will only print out the "bad" windows,
294  * those windows that overlap with their immediate neighbors.
295  */
296 #if 1
297 static void __rsv_window_dump(struct rb_root *root, int verbose,
298 			      const char *fn)
299 {
300 	struct rb_node *n;
301 	struct ext4_reserve_window_node *rsv, *prev;
302 	int bad;
303 
304 restart:
305 	n = rb_first(root);
306 	bad = 0;
307 	prev = NULL;
308 
309 	printk("Block Allocation Reservation Windows Map (%s):\n", fn);
310 	while (n) {
311 		rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
312 		if (verbose)
313 			printk("reservation window 0x%p "
314 			       "start:  %llu, end:  %llu\n",
315 			       rsv, rsv->rsv_start, rsv->rsv_end);
316 		if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
317 			printk("Bad reservation %p (start >= end)\n",
318 			       rsv);
319 			bad = 1;
320 		}
321 		if (prev && prev->rsv_end >= rsv->rsv_start) {
322 			printk("Bad reservation %p (prev->end >= start)\n",
323 			       rsv);
324 			bad = 1;
325 		}
326 		if (bad) {
327 			if (!verbose) {
328 				printk("Restarting reservation walk in verbose mode\n");
329 				verbose = 1;
330 				goto restart;
331 			}
332 		}
333 		n = rb_next(n);
334 		prev = rsv;
335 	}
336 	printk("Window map complete.\n");
337 	if (bad)
338 		BUG();
339 }
340 #define rsv_window_dump(root, verbose) \
341 	__rsv_window_dump((root), (verbose), __FUNCTION__)
342 #else
343 #define rsv_window_dump(root, verbose) do {} while (0)
344 #endif
345 
346 /**
347  * goal_in_my_reservation()
348  * @rsv:		inode's reservation window
349  * @grp_goal:		given goal block relative to the allocation block group
350  * @group:		the current allocation block group
351  * @sb:			filesystem super block
352  *
353  * Test if the given goal block (group relative) is within the file's
354  * own block reservation window range.
355  *
356  * If the reservation window is outside the goal allocation group, return 0;
357  * grp_goal (given goal block) could be -1, which means no specific
358  * goal block. In this case, always return 1.
359  * If the goal block is within the reservation window, return 1;
360  * otherwise, return 0;
361  */
362 static int
363 goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal,
364 			unsigned int group, struct super_block * sb)
365 {
366 	ext4_fsblk_t group_first_block, group_last_block;
367 
368 	group_first_block = ext4_group_first_block_no(sb, group);
369 	group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
370 
371 	if ((rsv->_rsv_start > group_last_block) ||
372 	    (rsv->_rsv_end < group_first_block))
373 		return 0;
374 	if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
375 		|| (grp_goal + group_first_block > rsv->_rsv_end)))
376 		return 0;
377 	return 1;
378 }
379 
380 /**
381  * search_reserve_window()
382  * @rb_root:		root of reservation tree
383  * @goal:		target allocation block
384  *
385  * Find the reserved window which includes the goal, or the previous one
386  * if the goal is not in any window.
387  * Returns NULL if there are no windows or if all windows start after the goal.
388  */
389 static struct ext4_reserve_window_node *
390 search_reserve_window(struct rb_root *root, ext4_fsblk_t goal)
391 {
392 	struct rb_node *n = root->rb_node;
393 	struct ext4_reserve_window_node *rsv;
394 
395 	if (!n)
396 		return NULL;
397 
398 	do {
399 		rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
400 
401 		if (goal < rsv->rsv_start)
402 			n = n->rb_left;
403 		else if (goal > rsv->rsv_end)
404 			n = n->rb_right;
405 		else
406 			return rsv;
407 	} while (n);
408 	/*
409 	 * We've fallen off the end of the tree: the goal wasn't inside
410 	 * any particular node.  OK, the previous node must be to one
411 	 * side of the interval containing the goal.  If it's the RHS,
412 	 * we need to back up one.
413 	 */
414 	if (rsv->rsv_start > goal) {
415 		n = rb_prev(&rsv->rsv_node);
416 		rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
417 	}
418 	return rsv;
419 }
420 
421 /**
422  * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
423  * @sb:			super block
424  * @rsv:		reservation window to add
425  *
426  * Must be called with rsv_lock hold.
427  */
428 void ext4_rsv_window_add(struct super_block *sb,
429 		    struct ext4_reserve_window_node *rsv)
430 {
431 	struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root;
432 	struct rb_node *node = &rsv->rsv_node;
433 	ext4_fsblk_t start = rsv->rsv_start;
434 
435 	struct rb_node ** p = &root->rb_node;
436 	struct rb_node * parent = NULL;
437 	struct ext4_reserve_window_node *this;
438 
439 	while (*p)
440 	{
441 		parent = *p;
442 		this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node);
443 
444 		if (start < this->rsv_start)
445 			p = &(*p)->rb_left;
446 		else if (start > this->rsv_end)
447 			p = &(*p)->rb_right;
448 		else {
449 			rsv_window_dump(root, 1);
450 			BUG();
451 		}
452 	}
453 
454 	rb_link_node(node, parent, p);
455 	rb_insert_color(node, root);
456 }
457 
458 /**
459  * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
460  * @sb:			super block
461  * @rsv:		reservation window to remove
462  *
463  * Mark the block reservation window as not allocated, and unlink it
464  * from the filesystem reservation window rb tree. Must be called with
465  * rsv_lock hold.
466  */
467 static void rsv_window_remove(struct super_block *sb,
468 			      struct ext4_reserve_window_node *rsv)
469 {
470 	rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
471 	rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
472 	rsv->rsv_alloc_hit = 0;
473 	rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root);
474 }
475 
476 /*
477  * rsv_is_empty() -- Check if the reservation window is allocated.
478  * @rsv:		given reservation window to check
479  *
480  * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
481  */
482 static inline int rsv_is_empty(struct ext4_reserve_window *rsv)
483 {
484 	/* a valid reservation end block could not be 0 */
485 	return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
486 }
487 
488 /**
489  * ext4_init_block_alloc_info()
490  * @inode:		file inode structure
491  *
492  * Allocate and initialize the	reservation window structure, and
493  * link the window to the ext4 inode structure at last
494  *
495  * The reservation window structure is only dynamically allocated
496  * and linked to ext4 inode the first time the open file
497  * needs a new block. So, before every ext4_new_block(s) call, for
498  * regular files, we should check whether the reservation window
499  * structure exists or not. In the latter case, this function is called.
500  * Fail to do so will result in block reservation being turned off for that
501  * open file.
502  *
503  * This function is called from ext4_get_blocks_handle(), also called
504  * when setting the reservation window size through ioctl before the file
505  * is open for write (needs block allocation).
506  *
507  * Needs truncate_mutex protection prior to call this function.
508  */
509 void ext4_init_block_alloc_info(struct inode *inode)
510 {
511 	struct ext4_inode_info *ei = EXT4_I(inode);
512 	struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
513 	struct super_block *sb = inode->i_sb;
514 
515 	block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
516 	if (block_i) {
517 		struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node;
518 
519 		rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
520 		rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
521 
522 		/*
523 		 * if filesystem is mounted with NORESERVATION, the goal
524 		 * reservation window size is set to zero to indicate
525 		 * block reservation is off
526 		 */
527 		if (!test_opt(sb, RESERVATION))
528 			rsv->rsv_goal_size = 0;
529 		else
530 			rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS;
531 		rsv->rsv_alloc_hit = 0;
532 		block_i->last_alloc_logical_block = 0;
533 		block_i->last_alloc_physical_block = 0;
534 	}
535 	ei->i_block_alloc_info = block_i;
536 }
537 
538 /**
539  * ext4_discard_reservation()
540  * @inode:		inode
541  *
542  * Discard(free) block reservation window on last file close, or truncate
543  * or at last iput().
544  *
545  * It is being called in three cases:
546  *	ext4_release_file(): last writer close the file
547  *	ext4_clear_inode(): last iput(), when nobody link to this file.
548  *	ext4_truncate(): when the block indirect map is about to change.
549  *
550  */
551 void ext4_discard_reservation(struct inode *inode)
552 {
553 	struct ext4_inode_info *ei = EXT4_I(inode);
554 	struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
555 	struct ext4_reserve_window_node *rsv;
556 	spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock;
557 
558 	if (!block_i)
559 		return;
560 
561 	rsv = &block_i->rsv_window_node;
562 	if (!rsv_is_empty(&rsv->rsv_window)) {
563 		spin_lock(rsv_lock);
564 		if (!rsv_is_empty(&rsv->rsv_window))
565 			rsv_window_remove(inode->i_sb, rsv);
566 		spin_unlock(rsv_lock);
567 	}
568 }
569 
570 /**
571  * ext4_free_blocks_sb() -- Free given blocks and update quota
572  * @handle:			handle to this transaction
573  * @sb:				super block
574  * @block:			start physcial block to free
575  * @count:			number of blocks to free
576  * @pdquot_freed_blocks:	pointer to quota
577  */
578 void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb,
579 			 ext4_fsblk_t block, unsigned long count,
580 			 unsigned long *pdquot_freed_blocks)
581 {
582 	struct buffer_head *bitmap_bh = NULL;
583 	struct buffer_head *gd_bh;
584 	unsigned long block_group;
585 	ext4_grpblk_t bit;
586 	unsigned long i;
587 	unsigned long overflow;
588 	struct ext4_group_desc * desc;
589 	struct ext4_super_block * es;
590 	struct ext4_sb_info *sbi;
591 	int err = 0, ret;
592 	ext4_grpblk_t group_freed;
593 
594 	*pdquot_freed_blocks = 0;
595 	sbi = EXT4_SB(sb);
596 	es = sbi->s_es;
597 	if (block < le32_to_cpu(es->s_first_data_block) ||
598 	    block + count < block ||
599 	    block + count > ext4_blocks_count(es)) {
600 		ext4_error (sb, "ext4_free_blocks",
601 			    "Freeing blocks not in datazone - "
602 			    "block = %llu, count = %lu", block, count);
603 		goto error_return;
604 	}
605 
606 	ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1);
607 
608 do_more:
609 	overflow = 0;
610 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
611 	/*
612 	 * Check to see if we are freeing blocks across a group
613 	 * boundary.
614 	 */
615 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
616 		overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
617 		count -= overflow;
618 	}
619 	brelse(bitmap_bh);
620 	bitmap_bh = read_block_bitmap(sb, block_group);
621 	if (!bitmap_bh)
622 		goto error_return;
623 	desc = ext4_get_group_desc (sb, block_group, &gd_bh);
624 	if (!desc)
625 		goto error_return;
626 
627 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
628 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
629 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
630 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
631 		     sbi->s_itb_per_group))
632 		ext4_error (sb, "ext4_free_blocks",
633 			    "Freeing blocks in system zones - "
634 			    "Block = %llu, count = %lu",
635 			    block, count);
636 
637 	/*
638 	 * We are about to start releasing blocks in the bitmap,
639 	 * so we need undo access.
640 	 */
641 	/* @@@ check errors */
642 	BUFFER_TRACE(bitmap_bh, "getting undo access");
643 	err = ext4_journal_get_undo_access(handle, bitmap_bh);
644 	if (err)
645 		goto error_return;
646 
647 	/*
648 	 * We are about to modify some metadata.  Call the journal APIs
649 	 * to unshare ->b_data if a currently-committing transaction is
650 	 * using it
651 	 */
652 	BUFFER_TRACE(gd_bh, "get_write_access");
653 	err = ext4_journal_get_write_access(handle, gd_bh);
654 	if (err)
655 		goto error_return;
656 
657 	jbd_lock_bh_state(bitmap_bh);
658 
659 	for (i = 0, group_freed = 0; i < count; i++) {
660 		/*
661 		 * An HJ special.  This is expensive...
662 		 */
663 #ifdef CONFIG_JBD2_DEBUG
664 		jbd_unlock_bh_state(bitmap_bh);
665 		{
666 			struct buffer_head *debug_bh;
667 			debug_bh = sb_find_get_block(sb, block + i);
668 			if (debug_bh) {
669 				BUFFER_TRACE(debug_bh, "Deleted!");
670 				if (!bh2jh(bitmap_bh)->b_committed_data)
671 					BUFFER_TRACE(debug_bh,
672 						"No commited data in bitmap");
673 				BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
674 				__brelse(debug_bh);
675 			}
676 		}
677 		jbd_lock_bh_state(bitmap_bh);
678 #endif
679 		if (need_resched()) {
680 			jbd_unlock_bh_state(bitmap_bh);
681 			cond_resched();
682 			jbd_lock_bh_state(bitmap_bh);
683 		}
684 		/* @@@ This prevents newly-allocated data from being
685 		 * freed and then reallocated within the same
686 		 * transaction.
687 		 *
688 		 * Ideally we would want to allow that to happen, but to
689 		 * do so requires making jbd2_journal_forget() capable of
690 		 * revoking the queued write of a data block, which
691 		 * implies blocking on the journal lock.  *forget()
692 		 * cannot block due to truncate races.
693 		 *
694 		 * Eventually we can fix this by making jbd2_journal_forget()
695 		 * return a status indicating whether or not it was able
696 		 * to revoke the buffer.  On successful revoke, it is
697 		 * safe not to set the allocation bit in the committed
698 		 * bitmap, because we know that there is no outstanding
699 		 * activity on the buffer any more and so it is safe to
700 		 * reallocate it.
701 		 */
702 		BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
703 		J_ASSERT_BH(bitmap_bh,
704 				bh2jh(bitmap_bh)->b_committed_data != NULL);
705 		ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
706 				bh2jh(bitmap_bh)->b_committed_data);
707 
708 		/*
709 		 * We clear the bit in the bitmap after setting the committed
710 		 * data bit, because this is the reverse order to that which
711 		 * the allocator uses.
712 		 */
713 		BUFFER_TRACE(bitmap_bh, "clear bit");
714 		if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
715 						bit + i, bitmap_bh->b_data)) {
716 			jbd_unlock_bh_state(bitmap_bh);
717 			ext4_error(sb, __FUNCTION__,
718 				   "bit already cleared for block %llu",
719 				   (ext4_fsblk_t)(block + i));
720 			jbd_lock_bh_state(bitmap_bh);
721 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
722 		} else {
723 			group_freed++;
724 		}
725 	}
726 	jbd_unlock_bh_state(bitmap_bh);
727 
728 	spin_lock(sb_bgl_lock(sbi, block_group));
729 	desc->bg_free_blocks_count =
730 		cpu_to_le16(le16_to_cpu(desc->bg_free_blocks_count) +
731 			group_freed);
732 	desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
733 	spin_unlock(sb_bgl_lock(sbi, block_group));
734 	percpu_counter_add(&sbi->s_freeblocks_counter, count);
735 
736 	/* We dirtied the bitmap block */
737 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
738 	err = ext4_journal_dirty_metadata(handle, bitmap_bh);
739 
740 	/* And the group descriptor block */
741 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
742 	ret = ext4_journal_dirty_metadata(handle, gd_bh);
743 	if (!err) err = ret;
744 	*pdquot_freed_blocks += group_freed;
745 
746 	if (overflow && !err) {
747 		block += count;
748 		count = overflow;
749 		goto do_more;
750 	}
751 	sb->s_dirt = 1;
752 error_return:
753 	brelse(bitmap_bh);
754 	ext4_std_error(sb, err);
755 	return;
756 }
757 
758 /**
759  * ext4_free_blocks() -- Free given blocks and update quota
760  * @handle:		handle for this transaction
761  * @inode:		inode
762  * @block:		start physical block to free
763  * @count:		number of blocks to count
764  */
765 void ext4_free_blocks(handle_t *handle, struct inode *inode,
766 			ext4_fsblk_t block, unsigned long count)
767 {
768 	struct super_block * sb;
769 	unsigned long dquot_freed_blocks;
770 
771 	sb = inode->i_sb;
772 	if (!sb) {
773 		printk ("ext4_free_blocks: nonexistent device");
774 		return;
775 	}
776 	ext4_free_blocks_sb(handle, sb, block, count, &dquot_freed_blocks);
777 	if (dquot_freed_blocks)
778 		DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
779 	return;
780 }
781 
782 /**
783  * ext4_test_allocatable()
784  * @nr:			given allocation block group
785  * @bh:			bufferhead contains the bitmap of the given block group
786  *
787  * For ext4 allocations, we must not reuse any blocks which are
788  * allocated in the bitmap buffer's "last committed data" copy.  This
789  * prevents deletes from freeing up the page for reuse until we have
790  * committed the delete transaction.
791  *
792  * If we didn't do this, then deleting something and reallocating it as
793  * data would allow the old block to be overwritten before the
794  * transaction committed (because we force data to disk before commit).
795  * This would lead to corruption if we crashed between overwriting the
796  * data and committing the delete.
797  *
798  * @@@ We may want to make this allocation behaviour conditional on
799  * data-writes at some point, and disable it for metadata allocations or
800  * sync-data inodes.
801  */
802 static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh)
803 {
804 	int ret;
805 	struct journal_head *jh = bh2jh(bh);
806 
807 	if (ext4_test_bit(nr, bh->b_data))
808 		return 0;
809 
810 	jbd_lock_bh_state(bh);
811 	if (!jh->b_committed_data)
812 		ret = 1;
813 	else
814 		ret = !ext4_test_bit(nr, jh->b_committed_data);
815 	jbd_unlock_bh_state(bh);
816 	return ret;
817 }
818 
819 /**
820  * bitmap_search_next_usable_block()
821  * @start:		the starting block (group relative) of the search
822  * @bh:			bufferhead contains the block group bitmap
823  * @maxblocks:		the ending block (group relative) of the reservation
824  *
825  * The bitmap search --- search forward alternately through the actual
826  * bitmap on disk and the last-committed copy in journal, until we find a
827  * bit free in both bitmaps.
828  */
829 static ext4_grpblk_t
830 bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
831 					ext4_grpblk_t maxblocks)
832 {
833 	ext4_grpblk_t next;
834 	struct journal_head *jh = bh2jh(bh);
835 
836 	while (start < maxblocks) {
837 		next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start);
838 		if (next >= maxblocks)
839 			return -1;
840 		if (ext4_test_allocatable(next, bh))
841 			return next;
842 		jbd_lock_bh_state(bh);
843 		if (jh->b_committed_data)
844 			start = ext4_find_next_zero_bit(jh->b_committed_data,
845 							maxblocks, next);
846 		jbd_unlock_bh_state(bh);
847 	}
848 	return -1;
849 }
850 
851 /**
852  * find_next_usable_block()
853  * @start:		the starting block (group relative) to find next
854  *			allocatable block in bitmap.
855  * @bh:			bufferhead contains the block group bitmap
856  * @maxblocks:		the ending block (group relative) for the search
857  *
858  * Find an allocatable block in a bitmap.  We honor both the bitmap and
859  * its last-committed copy (if that exists), and perform the "most
860  * appropriate allocation" algorithm of looking for a free block near
861  * the initial goal; then for a free byte somewhere in the bitmap; then
862  * for any free bit in the bitmap.
863  */
864 static ext4_grpblk_t
865 find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
866 			ext4_grpblk_t maxblocks)
867 {
868 	ext4_grpblk_t here, next;
869 	char *p, *r;
870 
871 	if (start > 0) {
872 		/*
873 		 * The goal was occupied; search forward for a free
874 		 * block within the next XX blocks.
875 		 *
876 		 * end_goal is more or less random, but it has to be
877 		 * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
878 		 * next 64-bit boundary is simple..
879 		 */
880 		ext4_grpblk_t end_goal = (start + 63) & ~63;
881 		if (end_goal > maxblocks)
882 			end_goal = maxblocks;
883 		here = ext4_find_next_zero_bit(bh->b_data, end_goal, start);
884 		if (here < end_goal && ext4_test_allocatable(here, bh))
885 			return here;
886 		ext4_debug("Bit not found near goal\n");
887 	}
888 
889 	here = start;
890 	if (here < 0)
891 		here = 0;
892 
893 	p = ((char *)bh->b_data) + (here >> 3);
894 	r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
895 	next = (r - ((char *)bh->b_data)) << 3;
896 
897 	if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh))
898 		return next;
899 
900 	/*
901 	 * The bitmap search --- search forward alternately through the actual
902 	 * bitmap and the last-committed copy until we find a bit free in
903 	 * both
904 	 */
905 	here = bitmap_search_next_usable_block(here, bh, maxblocks);
906 	return here;
907 }
908 
909 /**
910  * claim_block()
911  * @block:		the free block (group relative) to allocate
912  * @bh:			the bufferhead containts the block group bitmap
913  *
914  * We think we can allocate this block in this bitmap.  Try to set the bit.
915  * If that succeeds then check that nobody has allocated and then freed the
916  * block since we saw that is was not marked in b_committed_data.  If it _was_
917  * allocated and freed then clear the bit in the bitmap again and return
918  * zero (failure).
919  */
920 static inline int
921 claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh)
922 {
923 	struct journal_head *jh = bh2jh(bh);
924 	int ret;
925 
926 	if (ext4_set_bit_atomic(lock, block, bh->b_data))
927 		return 0;
928 	jbd_lock_bh_state(bh);
929 	if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) {
930 		ext4_clear_bit_atomic(lock, block, bh->b_data);
931 		ret = 0;
932 	} else {
933 		ret = 1;
934 	}
935 	jbd_unlock_bh_state(bh);
936 	return ret;
937 }
938 
939 /**
940  * ext4_try_to_allocate()
941  * @sb:			superblock
942  * @handle:		handle to this transaction
943  * @group:		given allocation block group
944  * @bitmap_bh:		bufferhead holds the block bitmap
945  * @grp_goal:		given target block within the group
946  * @count:		target number of blocks to allocate
947  * @my_rsv:		reservation window
948  *
949  * Attempt to allocate blocks within a give range. Set the range of allocation
950  * first, then find the first free bit(s) from the bitmap (within the range),
951  * and at last, allocate the blocks by claiming the found free bit as allocated.
952  *
953  * To set the range of this allocation:
954  *	if there is a reservation window, only try to allocate block(s) from the
955  *	file's own reservation window;
956  *	Otherwise, the allocation range starts from the give goal block, ends at
957  *	the block group's last block.
958  *
959  * If we failed to allocate the desired block then we may end up crossing to a
960  * new bitmap.  In that case we must release write access to the old one via
961  * ext4_journal_release_buffer(), else we'll run out of credits.
962  */
963 static ext4_grpblk_t
964 ext4_try_to_allocate(struct super_block *sb, handle_t *handle, int group,
965 			struct buffer_head *bitmap_bh, ext4_grpblk_t grp_goal,
966 			unsigned long *count, struct ext4_reserve_window *my_rsv)
967 {
968 	ext4_fsblk_t group_first_block;
969 	ext4_grpblk_t start, end;
970 	unsigned long num = 0;
971 
972 	/* we do allocation within the reservation window if we have a window */
973 	if (my_rsv) {
974 		group_first_block = ext4_group_first_block_no(sb, group);
975 		if (my_rsv->_rsv_start >= group_first_block)
976 			start = my_rsv->_rsv_start - group_first_block;
977 		else
978 			/* reservation window cross group boundary */
979 			start = 0;
980 		end = my_rsv->_rsv_end - group_first_block + 1;
981 		if (end > EXT4_BLOCKS_PER_GROUP(sb))
982 			/* reservation window crosses group boundary */
983 			end = EXT4_BLOCKS_PER_GROUP(sb);
984 		if ((start <= grp_goal) && (grp_goal < end))
985 			start = grp_goal;
986 		else
987 			grp_goal = -1;
988 	} else {
989 		if (grp_goal > 0)
990 			start = grp_goal;
991 		else
992 			start = 0;
993 		end = EXT4_BLOCKS_PER_GROUP(sb);
994 	}
995 
996 	BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb));
997 
998 repeat:
999 	if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) {
1000 		grp_goal = find_next_usable_block(start, bitmap_bh, end);
1001 		if (grp_goal < 0)
1002 			goto fail_access;
1003 		if (!my_rsv) {
1004 			int i;
1005 
1006 			for (i = 0; i < 7 && grp_goal > start &&
1007 					ext4_test_allocatable(grp_goal - 1,
1008 								bitmap_bh);
1009 					i++, grp_goal--)
1010 				;
1011 		}
1012 	}
1013 	start = grp_goal;
1014 
1015 	if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1016 		grp_goal, bitmap_bh)) {
1017 		/*
1018 		 * The block was allocated by another thread, or it was
1019 		 * allocated and then freed by another thread
1020 		 */
1021 		start++;
1022 		grp_goal++;
1023 		if (start >= end)
1024 			goto fail_access;
1025 		goto repeat;
1026 	}
1027 	num++;
1028 	grp_goal++;
1029 	while (num < *count && grp_goal < end
1030 		&& ext4_test_allocatable(grp_goal, bitmap_bh)
1031 		&& claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1032 				grp_goal, bitmap_bh)) {
1033 		num++;
1034 		grp_goal++;
1035 	}
1036 	*count = num;
1037 	return grp_goal - num;
1038 fail_access:
1039 	*count = num;
1040 	return -1;
1041 }
1042 
1043 /**
1044  *	find_next_reservable_window():
1045  *		find a reservable space within the given range.
1046  *		It does not allocate the reservation window for now:
1047  *		alloc_new_reservation() will do the work later.
1048  *
1049  *	@search_head: the head of the searching list;
1050  *		This is not necessarily the list head of the whole filesystem
1051  *
1052  *		We have both head and start_block to assist the search
1053  *		for the reservable space. The list starts from head,
1054  *		but we will shift to the place where start_block is,
1055  *		then start from there, when looking for a reservable space.
1056  *
1057  *	@size: the target new reservation window size
1058  *
1059  *	@group_first_block: the first block we consider to start
1060  *			the real search from
1061  *
1062  *	@last_block:
1063  *		the maximum block number that our goal reservable space
1064  *		could start from. This is normally the last block in this
1065  *		group. The search will end when we found the start of next
1066  *		possible reservable space is out of this boundary.
1067  *		This could handle the cross boundary reservation window
1068  *		request.
1069  *
1070  *	basically we search from the given range, rather than the whole
1071  *	reservation double linked list, (start_block, last_block)
1072  *	to find a free region that is of my size and has not
1073  *	been reserved.
1074  *
1075  */
1076 static int find_next_reservable_window(
1077 				struct ext4_reserve_window_node *search_head,
1078 				struct ext4_reserve_window_node *my_rsv,
1079 				struct super_block * sb,
1080 				ext4_fsblk_t start_block,
1081 				ext4_fsblk_t last_block)
1082 {
1083 	struct rb_node *next;
1084 	struct ext4_reserve_window_node *rsv, *prev;
1085 	ext4_fsblk_t cur;
1086 	int size = my_rsv->rsv_goal_size;
1087 
1088 	/* TODO: make the start of the reservation window byte-aligned */
1089 	/* cur = *start_block & ~7;*/
1090 	cur = start_block;
1091 	rsv = search_head;
1092 	if (!rsv)
1093 		return -1;
1094 
1095 	while (1) {
1096 		if (cur <= rsv->rsv_end)
1097 			cur = rsv->rsv_end + 1;
1098 
1099 		/* TODO?
1100 		 * in the case we could not find a reservable space
1101 		 * that is what is expected, during the re-search, we could
1102 		 * remember what's the largest reservable space we could have
1103 		 * and return that one.
1104 		 *
1105 		 * For now it will fail if we could not find the reservable
1106 		 * space with expected-size (or more)...
1107 		 */
1108 		if (cur > last_block)
1109 			return -1;		/* fail */
1110 
1111 		prev = rsv;
1112 		next = rb_next(&rsv->rsv_node);
1113 		rsv = rb_entry(next,struct ext4_reserve_window_node,rsv_node);
1114 
1115 		/*
1116 		 * Reached the last reservation, we can just append to the
1117 		 * previous one.
1118 		 */
1119 		if (!next)
1120 			break;
1121 
1122 		if (cur + size <= rsv->rsv_start) {
1123 			/*
1124 			 * Found a reserveable space big enough.  We could
1125 			 * have a reservation across the group boundary here
1126 			 */
1127 			break;
1128 		}
1129 	}
1130 	/*
1131 	 * we come here either :
1132 	 * when we reach the end of the whole list,
1133 	 * and there is empty reservable space after last entry in the list.
1134 	 * append it to the end of the list.
1135 	 *
1136 	 * or we found one reservable space in the middle of the list,
1137 	 * return the reservation window that we could append to.
1138 	 * succeed.
1139 	 */
1140 
1141 	if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
1142 		rsv_window_remove(sb, my_rsv);
1143 
1144 	/*
1145 	 * Let's book the whole avaliable window for now.  We will check the
1146 	 * disk bitmap later and then, if there are free blocks then we adjust
1147 	 * the window size if it's larger than requested.
1148 	 * Otherwise, we will remove this node from the tree next time
1149 	 * call find_next_reservable_window.
1150 	 */
1151 	my_rsv->rsv_start = cur;
1152 	my_rsv->rsv_end = cur + size - 1;
1153 	my_rsv->rsv_alloc_hit = 0;
1154 
1155 	if (prev != my_rsv)
1156 		ext4_rsv_window_add(sb, my_rsv);
1157 
1158 	return 0;
1159 }
1160 
1161 /**
1162  *	alloc_new_reservation()--allocate a new reservation window
1163  *
1164  *		To make a new reservation, we search part of the filesystem
1165  *		reservation list (the list that inside the group). We try to
1166  *		allocate a new reservation window near the allocation goal,
1167  *		or the beginning of the group, if there is no goal.
1168  *
1169  *		We first find a reservable space after the goal, then from
1170  *		there, we check the bitmap for the first free block after
1171  *		it. If there is no free block until the end of group, then the
1172  *		whole group is full, we failed. Otherwise, check if the free
1173  *		block is inside the expected reservable space, if so, we
1174  *		succeed.
1175  *		If the first free block is outside the reservable space, then
1176  *		start from the first free block, we search for next available
1177  *		space, and go on.
1178  *
1179  *	on succeed, a new reservation will be found and inserted into the list
1180  *	It contains at least one free block, and it does not overlap with other
1181  *	reservation windows.
1182  *
1183  *	failed: we failed to find a reservation window in this group
1184  *
1185  *	@rsv: the reservation
1186  *
1187  *	@grp_goal: The goal (group-relative).  It is where the search for a
1188  *		free reservable space should start from.
1189  *		if we have a grp_goal(grp_goal >0 ), then start from there,
1190  *		no grp_goal(grp_goal = -1), we start from the first block
1191  *		of the group.
1192  *
1193  *	@sb: the super block
1194  *	@group: the group we are trying to allocate in
1195  *	@bitmap_bh: the block group block bitmap
1196  *
1197  */
1198 static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv,
1199 		ext4_grpblk_t grp_goal, struct super_block *sb,
1200 		unsigned int group, struct buffer_head *bitmap_bh)
1201 {
1202 	struct ext4_reserve_window_node *search_head;
1203 	ext4_fsblk_t group_first_block, group_end_block, start_block;
1204 	ext4_grpblk_t first_free_block;
1205 	struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root;
1206 	unsigned long size;
1207 	int ret;
1208 	spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1209 
1210 	group_first_block = ext4_group_first_block_no(sb, group);
1211 	group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1212 
1213 	if (grp_goal < 0)
1214 		start_block = group_first_block;
1215 	else
1216 		start_block = grp_goal + group_first_block;
1217 
1218 	size = my_rsv->rsv_goal_size;
1219 
1220 	if (!rsv_is_empty(&my_rsv->rsv_window)) {
1221 		/*
1222 		 * if the old reservation is cross group boundary
1223 		 * and if the goal is inside the old reservation window,
1224 		 * we will come here when we just failed to allocate from
1225 		 * the first part of the window. We still have another part
1226 		 * that belongs to the next group. In this case, there is no
1227 		 * point to discard our window and try to allocate a new one
1228 		 * in this group(which will fail). we should
1229 		 * keep the reservation window, just simply move on.
1230 		 *
1231 		 * Maybe we could shift the start block of the reservation
1232 		 * window to the first block of next group.
1233 		 */
1234 
1235 		if ((my_rsv->rsv_start <= group_end_block) &&
1236 				(my_rsv->rsv_end > group_end_block) &&
1237 				(start_block >= my_rsv->rsv_start))
1238 			return -1;
1239 
1240 		if ((my_rsv->rsv_alloc_hit >
1241 		     (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
1242 			/*
1243 			 * if the previously allocation hit ratio is
1244 			 * greater than 1/2, then we double the size of
1245 			 * the reservation window the next time,
1246 			 * otherwise we keep the same size window
1247 			 */
1248 			size = size * 2;
1249 			if (size > EXT4_MAX_RESERVE_BLOCKS)
1250 				size = EXT4_MAX_RESERVE_BLOCKS;
1251 			my_rsv->rsv_goal_size= size;
1252 		}
1253 	}
1254 
1255 	spin_lock(rsv_lock);
1256 	/*
1257 	 * shift the search start to the window near the goal block
1258 	 */
1259 	search_head = search_reserve_window(fs_rsv_root, start_block);
1260 
1261 	/*
1262 	 * find_next_reservable_window() simply finds a reservable window
1263 	 * inside the given range(start_block, group_end_block).
1264 	 *
1265 	 * To make sure the reservation window has a free bit inside it, we
1266 	 * need to check the bitmap after we found a reservable window.
1267 	 */
1268 retry:
1269 	ret = find_next_reservable_window(search_head, my_rsv, sb,
1270 						start_block, group_end_block);
1271 
1272 	if (ret == -1) {
1273 		if (!rsv_is_empty(&my_rsv->rsv_window))
1274 			rsv_window_remove(sb, my_rsv);
1275 		spin_unlock(rsv_lock);
1276 		return -1;
1277 	}
1278 
1279 	/*
1280 	 * On success, find_next_reservable_window() returns the
1281 	 * reservation window where there is a reservable space after it.
1282 	 * Before we reserve this reservable space, we need
1283 	 * to make sure there is at least a free block inside this region.
1284 	 *
1285 	 * searching the first free bit on the block bitmap and copy of
1286 	 * last committed bitmap alternatively, until we found a allocatable
1287 	 * block. Search start from the start block of the reservable space
1288 	 * we just found.
1289 	 */
1290 	spin_unlock(rsv_lock);
1291 	first_free_block = bitmap_search_next_usable_block(
1292 			my_rsv->rsv_start - group_first_block,
1293 			bitmap_bh, group_end_block - group_first_block + 1);
1294 
1295 	if (first_free_block < 0) {
1296 		/*
1297 		 * no free block left on the bitmap, no point
1298 		 * to reserve the space. return failed.
1299 		 */
1300 		spin_lock(rsv_lock);
1301 		if (!rsv_is_empty(&my_rsv->rsv_window))
1302 			rsv_window_remove(sb, my_rsv);
1303 		spin_unlock(rsv_lock);
1304 		return -1;		/* failed */
1305 	}
1306 
1307 	start_block = first_free_block + group_first_block;
1308 	/*
1309 	 * check if the first free block is within the
1310 	 * free space we just reserved
1311 	 */
1312 	if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
1313 		return 0;		/* success */
1314 	/*
1315 	 * if the first free bit we found is out of the reservable space
1316 	 * continue search for next reservable space,
1317 	 * start from where the free block is,
1318 	 * we also shift the list head to where we stopped last time
1319 	 */
1320 	search_head = my_rsv;
1321 	spin_lock(rsv_lock);
1322 	goto retry;
1323 }
1324 
1325 /**
1326  * try_to_extend_reservation()
1327  * @my_rsv:		given reservation window
1328  * @sb:			super block
1329  * @size:		the delta to extend
1330  *
1331  * Attempt to expand the reservation window large enough to have
1332  * required number of free blocks
1333  *
1334  * Since ext4_try_to_allocate() will always allocate blocks within
1335  * the reservation window range, if the window size is too small,
1336  * multiple blocks allocation has to stop at the end of the reservation
1337  * window. To make this more efficient, given the total number of
1338  * blocks needed and the current size of the window, we try to
1339  * expand the reservation window size if necessary on a best-effort
1340  * basis before ext4_new_blocks() tries to allocate blocks,
1341  */
1342 static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv,
1343 			struct super_block *sb, int size)
1344 {
1345 	struct ext4_reserve_window_node *next_rsv;
1346 	struct rb_node *next;
1347 	spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1348 
1349 	if (!spin_trylock(rsv_lock))
1350 		return;
1351 
1352 	next = rb_next(&my_rsv->rsv_node);
1353 
1354 	if (!next)
1355 		my_rsv->rsv_end += size;
1356 	else {
1357 		next_rsv = rb_entry(next, struct ext4_reserve_window_node, rsv_node);
1358 
1359 		if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1360 			my_rsv->rsv_end += size;
1361 		else
1362 			my_rsv->rsv_end = next_rsv->rsv_start - 1;
1363 	}
1364 	spin_unlock(rsv_lock);
1365 }
1366 
1367 /**
1368  * ext4_try_to_allocate_with_rsv()
1369  * @sb:			superblock
1370  * @handle:		handle to this transaction
1371  * @group:		given allocation block group
1372  * @bitmap_bh:		bufferhead holds the block bitmap
1373  * @grp_goal:		given target block within the group
1374  * @count:		target number of blocks to allocate
1375  * @my_rsv:		reservation window
1376  * @errp:		pointer to store the error code
1377  *
1378  * This is the main function used to allocate a new block and its reservation
1379  * window.
1380  *
1381  * Each time when a new block allocation is need, first try to allocate from
1382  * its own reservation.  If it does not have a reservation window, instead of
1383  * looking for a free bit on bitmap first, then look up the reservation list to
1384  * see if it is inside somebody else's reservation window, we try to allocate a
1385  * reservation window for it starting from the goal first. Then do the block
1386  * allocation within the reservation window.
1387  *
1388  * This will avoid keeping on searching the reservation list again and
1389  * again when somebody is looking for a free block (without
1390  * reservation), and there are lots of free blocks, but they are all
1391  * being reserved.
1392  *
1393  * We use a red-black tree for the per-filesystem reservation list.
1394  *
1395  */
1396 static ext4_grpblk_t
1397 ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1398 			unsigned int group, struct buffer_head *bitmap_bh,
1399 			ext4_grpblk_t grp_goal,
1400 			struct ext4_reserve_window_node * my_rsv,
1401 			unsigned long *count, int *errp)
1402 {
1403 	ext4_fsblk_t group_first_block, group_last_block;
1404 	ext4_grpblk_t ret = 0;
1405 	int fatal;
1406 	unsigned long num = *count;
1407 
1408 	*errp = 0;
1409 
1410 	/*
1411 	 * Make sure we use undo access for the bitmap, because it is critical
1412 	 * that we do the frozen_data COW on bitmap buffers in all cases even
1413 	 * if the buffer is in BJ_Forget state in the committing transaction.
1414 	 */
1415 	BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1416 	fatal = ext4_journal_get_undo_access(handle, bitmap_bh);
1417 	if (fatal) {
1418 		*errp = fatal;
1419 		return -1;
1420 	}
1421 
1422 	/*
1423 	 * we don't deal with reservation when
1424 	 * filesystem is mounted without reservation
1425 	 * or the file is not a regular file
1426 	 * or last attempt to allocate a block with reservation turned on failed
1427 	 */
1428 	if (my_rsv == NULL ) {
1429 		ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1430 						grp_goal, count, NULL);
1431 		goto out;
1432 	}
1433 	/*
1434 	 * grp_goal is a group relative block number (if there is a goal)
1435 	 * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1436 	 * first block is a filesystem wide block number
1437 	 * first block is the block number of the first block in this group
1438 	 */
1439 	group_first_block = ext4_group_first_block_no(sb, group);
1440 	group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1441 
1442 	/*
1443 	 * Basically we will allocate a new block from inode's reservation
1444 	 * window.
1445 	 *
1446 	 * We need to allocate a new reservation window, if:
1447 	 * a) inode does not have a reservation window; or
1448 	 * b) last attempt to allocate a block from existing reservation
1449 	 *    failed; or
1450 	 * c) we come here with a goal and with a reservation window
1451 	 *
1452 	 * We do not need to allocate a new reservation window if we come here
1453 	 * at the beginning with a goal and the goal is inside the window, or
1454 	 * we don't have a goal but already have a reservation window.
1455 	 * then we could go to allocate from the reservation window directly.
1456 	 */
1457 	while (1) {
1458 		if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1459 			!goal_in_my_reservation(&my_rsv->rsv_window,
1460 						grp_goal, group, sb)) {
1461 			if (my_rsv->rsv_goal_size < *count)
1462 				my_rsv->rsv_goal_size = *count;
1463 			ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1464 							group, bitmap_bh);
1465 			if (ret < 0)
1466 				break;			/* failed */
1467 
1468 			if (!goal_in_my_reservation(&my_rsv->rsv_window,
1469 							grp_goal, group, sb))
1470 				grp_goal = -1;
1471 		} else if (grp_goal >= 0) {
1472 			int curr = my_rsv->rsv_end -
1473 					(grp_goal + group_first_block) + 1;
1474 
1475 			if (curr < *count)
1476 				try_to_extend_reservation(my_rsv, sb,
1477 							*count - curr);
1478 		}
1479 
1480 		if ((my_rsv->rsv_start > group_last_block) ||
1481 				(my_rsv->rsv_end < group_first_block)) {
1482 			rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1);
1483 			BUG();
1484 		}
1485 		ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1486 					   grp_goal, &num, &my_rsv->rsv_window);
1487 		if (ret >= 0) {
1488 			my_rsv->rsv_alloc_hit += num;
1489 			*count = num;
1490 			break;				/* succeed */
1491 		}
1492 		num = *count;
1493 	}
1494 out:
1495 	if (ret >= 0) {
1496 		BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1497 					"bitmap block");
1498 		fatal = ext4_journal_dirty_metadata(handle, bitmap_bh);
1499 		if (fatal) {
1500 			*errp = fatal;
1501 			return -1;
1502 		}
1503 		return ret;
1504 	}
1505 
1506 	BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1507 	ext4_journal_release_buffer(handle, bitmap_bh);
1508 	return ret;
1509 }
1510 
1511 /**
1512  * ext4_has_free_blocks()
1513  * @sbi:		in-core super block structure.
1514  *
1515  * Check if filesystem has at least 1 free block available for allocation.
1516  */
1517 static int ext4_has_free_blocks(struct ext4_sb_info *sbi)
1518 {
1519 	ext4_fsblk_t free_blocks, root_blocks;
1520 
1521 	free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1522 	root_blocks = ext4_r_blocks_count(sbi->s_es);
1523 	if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
1524 		sbi->s_resuid != current->fsuid &&
1525 		(sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
1526 		return 0;
1527 	}
1528 	return 1;
1529 }
1530 
1531 /**
1532  * ext4_should_retry_alloc()
1533  * @sb:			super block
1534  * @retries		number of attemps has been made
1535  *
1536  * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1537  * it is profitable to retry the operation, this function will wait
1538  * for the current or commiting transaction to complete, and then
1539  * return TRUE.
1540  *
1541  * if the total number of retries exceed three times, return FALSE.
1542  */
1543 int ext4_should_retry_alloc(struct super_block *sb, int *retries)
1544 {
1545 	if (!ext4_has_free_blocks(EXT4_SB(sb)) || (*retries)++ > 3)
1546 		return 0;
1547 
1548 	jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1549 
1550 	return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal);
1551 }
1552 
1553 /**
1554  * ext4_new_blocks() -- core block(s) allocation function
1555  * @handle:		handle to this transaction
1556  * @inode:		file inode
1557  * @goal:		given target block(filesystem wide)
1558  * @count:		target number of blocks to allocate
1559  * @errp:		error code
1560  *
1561  * ext4_new_blocks uses a goal block to assist allocation.  It tries to
1562  * allocate block(s) from the block group contains the goal block first. If that
1563  * fails, it will try to allocate block(s) from other block groups without
1564  * any specific goal block.
1565  *
1566  */
1567 ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode,
1568 			ext4_fsblk_t goal, unsigned long *count, int *errp)
1569 {
1570 	struct buffer_head *bitmap_bh = NULL;
1571 	struct buffer_head *gdp_bh;
1572 	unsigned long group_no;
1573 	int goal_group;
1574 	ext4_grpblk_t grp_target_blk;	/* blockgroup relative goal block */
1575 	ext4_grpblk_t grp_alloc_blk;	/* blockgroup-relative allocated block*/
1576 	ext4_fsblk_t ret_block;		/* filesyetem-wide allocated block */
1577 	int bgi;			/* blockgroup iteration index */
1578 	int fatal = 0, err;
1579 	int performed_allocation = 0;
1580 	ext4_grpblk_t free_blocks;	/* number of free blocks in a group */
1581 	struct super_block *sb;
1582 	struct ext4_group_desc *gdp;
1583 	struct ext4_super_block *es;
1584 	struct ext4_sb_info *sbi;
1585 	struct ext4_reserve_window_node *my_rsv = NULL;
1586 	struct ext4_block_alloc_info *block_i;
1587 	unsigned short windowsz = 0;
1588 #ifdef EXT4FS_DEBUG
1589 	static int goal_hits, goal_attempts;
1590 #endif
1591 	unsigned long ngroups;
1592 	unsigned long num = *count;
1593 
1594 	*errp = -ENOSPC;
1595 	sb = inode->i_sb;
1596 	if (!sb) {
1597 		printk("ext4_new_block: nonexistent device");
1598 		return 0;
1599 	}
1600 
1601 	/*
1602 	 * Check quota for allocation of this block.
1603 	 */
1604 	if (DQUOT_ALLOC_BLOCK(inode, num)) {
1605 		*errp = -EDQUOT;
1606 		return 0;
1607 	}
1608 
1609 	sbi = EXT4_SB(sb);
1610 	es = EXT4_SB(sb)->s_es;
1611 	ext4_debug("goal=%lu.\n", goal);
1612 	/*
1613 	 * Allocate a block from reservation only when
1614 	 * filesystem is mounted with reservation(default,-o reservation), and
1615 	 * it's a regular file, and
1616 	 * the desired window size is greater than 0 (One could use ioctl
1617 	 * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1618 	 * reservation on that particular file)
1619 	 */
1620 	block_i = EXT4_I(inode)->i_block_alloc_info;
1621 	if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1622 		my_rsv = &block_i->rsv_window_node;
1623 
1624 	if (!ext4_has_free_blocks(sbi)) {
1625 		*errp = -ENOSPC;
1626 		goto out;
1627 	}
1628 
1629 	/*
1630 	 * First, test whether the goal block is free.
1631 	 */
1632 	if (goal < le32_to_cpu(es->s_first_data_block) ||
1633 	    goal >= ext4_blocks_count(es))
1634 		goal = le32_to_cpu(es->s_first_data_block);
1635 	ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk);
1636 	goal_group = group_no;
1637 retry_alloc:
1638 	gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1639 	if (!gdp)
1640 		goto io_error;
1641 
1642 	free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1643 	/*
1644 	 * if there is not enough free blocks to make a new resevation
1645 	 * turn off reservation for this allocation
1646 	 */
1647 	if (my_rsv && (free_blocks < windowsz)
1648 		&& (rsv_is_empty(&my_rsv->rsv_window)))
1649 		my_rsv = NULL;
1650 
1651 	if (free_blocks > 0) {
1652 		bitmap_bh = read_block_bitmap(sb, group_no);
1653 		if (!bitmap_bh)
1654 			goto io_error;
1655 		grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1656 					group_no, bitmap_bh, grp_target_blk,
1657 					my_rsv,	&num, &fatal);
1658 		if (fatal)
1659 			goto out;
1660 		if (grp_alloc_blk >= 0)
1661 			goto allocated;
1662 	}
1663 
1664 	ngroups = EXT4_SB(sb)->s_groups_count;
1665 	smp_rmb();
1666 
1667 	/*
1668 	 * Now search the rest of the groups.  We assume that
1669 	 * i and gdp correctly point to the last group visited.
1670 	 */
1671 	for (bgi = 0; bgi < ngroups; bgi++) {
1672 		group_no++;
1673 		if (group_no >= ngroups)
1674 			group_no = 0;
1675 		gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1676 		if (!gdp)
1677 			goto io_error;
1678 		free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1679 		/*
1680 		 * skip this group if the number of
1681 		 * free blocks is less than half of the reservation
1682 		 * window size.
1683 		 */
1684 		if (free_blocks <= (windowsz/2))
1685 			continue;
1686 
1687 		brelse(bitmap_bh);
1688 		bitmap_bh = read_block_bitmap(sb, group_no);
1689 		if (!bitmap_bh)
1690 			goto io_error;
1691 		/*
1692 		 * try to allocate block(s) from this group, without a goal(-1).
1693 		 */
1694 		grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1695 					group_no, bitmap_bh, -1, my_rsv,
1696 					&num, &fatal);
1697 		if (fatal)
1698 			goto out;
1699 		if (grp_alloc_blk >= 0)
1700 			goto allocated;
1701 	}
1702 	/*
1703 	 * We may end up a bogus ealier ENOSPC error due to
1704 	 * filesystem is "full" of reservations, but
1705 	 * there maybe indeed free blocks avaliable on disk
1706 	 * In this case, we just forget about the reservations
1707 	 * just do block allocation as without reservations.
1708 	 */
1709 	if (my_rsv) {
1710 		my_rsv = NULL;
1711 		windowsz = 0;
1712 		group_no = goal_group;
1713 		goto retry_alloc;
1714 	}
1715 	/* No space left on the device */
1716 	*errp = -ENOSPC;
1717 	goto out;
1718 
1719 allocated:
1720 
1721 	ext4_debug("using block group %d(%d)\n",
1722 			group_no, gdp->bg_free_blocks_count);
1723 
1724 	BUFFER_TRACE(gdp_bh, "get_write_access");
1725 	fatal = ext4_journal_get_write_access(handle, gdp_bh);
1726 	if (fatal)
1727 		goto out;
1728 
1729 	ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no);
1730 
1731 	if (in_range(ext4_block_bitmap(sb, gdp), ret_block, num) ||
1732 	    in_range(ext4_inode_bitmap(sb, gdp), ret_block, num) ||
1733 	    in_range(ret_block, ext4_inode_table(sb, gdp),
1734 		     EXT4_SB(sb)->s_itb_per_group) ||
1735 	    in_range(ret_block + num - 1, ext4_inode_table(sb, gdp),
1736 		     EXT4_SB(sb)->s_itb_per_group))
1737 		ext4_error(sb, "ext4_new_block",
1738 			    "Allocating block in system zone - "
1739 			    "blocks from %llu, length %lu",
1740 			     ret_block, num);
1741 
1742 	performed_allocation = 1;
1743 
1744 #ifdef CONFIG_JBD2_DEBUG
1745 	{
1746 		struct buffer_head *debug_bh;
1747 
1748 		/* Record bitmap buffer state in the newly allocated block */
1749 		debug_bh = sb_find_get_block(sb, ret_block);
1750 		if (debug_bh) {
1751 			BUFFER_TRACE(debug_bh, "state when allocated");
1752 			BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1753 			brelse(debug_bh);
1754 		}
1755 	}
1756 	jbd_lock_bh_state(bitmap_bh);
1757 	spin_lock(sb_bgl_lock(sbi, group_no));
1758 	if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1759 		int i;
1760 
1761 		for (i = 0; i < num; i++) {
1762 			if (ext4_test_bit(grp_alloc_blk+i,
1763 					bh2jh(bitmap_bh)->b_committed_data)) {
1764 				printk("%s: block was unexpectedly set in "
1765 					"b_committed_data\n", __FUNCTION__);
1766 			}
1767 		}
1768 	}
1769 	ext4_debug("found bit %d\n", grp_alloc_blk);
1770 	spin_unlock(sb_bgl_lock(sbi, group_no));
1771 	jbd_unlock_bh_state(bitmap_bh);
1772 #endif
1773 
1774 	if (ret_block + num - 1 >= ext4_blocks_count(es)) {
1775 		ext4_error(sb, "ext4_new_block",
1776 			    "block(%llu) >= blocks count(%llu) - "
1777 			    "block_group = %lu, es == %p ", ret_block,
1778 			ext4_blocks_count(es), group_no, es);
1779 		goto out;
1780 	}
1781 
1782 	/*
1783 	 * It is up to the caller to add the new buffer to a journal
1784 	 * list of some description.  We don't know in advance whether
1785 	 * the caller wants to use it as metadata or data.
1786 	 */
1787 	ext4_debug("allocating block %lu. Goal hits %d of %d.\n",
1788 			ret_block, goal_hits, goal_attempts);
1789 
1790 	spin_lock(sb_bgl_lock(sbi, group_no));
1791 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1792 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1793 	gdp->bg_free_blocks_count =
1794 			cpu_to_le16(le16_to_cpu(gdp->bg_free_blocks_count)-num);
1795 	gdp->bg_checksum = ext4_group_desc_csum(sbi, group_no, gdp);
1796 	spin_unlock(sb_bgl_lock(sbi, group_no));
1797 	percpu_counter_sub(&sbi->s_freeblocks_counter, num);
1798 
1799 	BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1800 	err = ext4_journal_dirty_metadata(handle, gdp_bh);
1801 	if (!fatal)
1802 		fatal = err;
1803 
1804 	sb->s_dirt = 1;
1805 	if (fatal)
1806 		goto out;
1807 
1808 	*errp = 0;
1809 	brelse(bitmap_bh);
1810 	DQUOT_FREE_BLOCK(inode, *count-num);
1811 	*count = num;
1812 	return ret_block;
1813 
1814 io_error:
1815 	*errp = -EIO;
1816 out:
1817 	if (fatal) {
1818 		*errp = fatal;
1819 		ext4_std_error(sb, fatal);
1820 	}
1821 	/*
1822 	 * Undo the block allocation
1823 	 */
1824 	if (!performed_allocation)
1825 		DQUOT_FREE_BLOCK(inode, *count);
1826 	brelse(bitmap_bh);
1827 	return 0;
1828 }
1829 
1830 ext4_fsblk_t ext4_new_block(handle_t *handle, struct inode *inode,
1831 			ext4_fsblk_t goal, int *errp)
1832 {
1833 	unsigned long count = 1;
1834 
1835 	return ext4_new_blocks(handle, inode, goal, &count, errp);
1836 }
1837 
1838 /**
1839  * ext4_count_free_blocks() -- count filesystem free blocks
1840  * @sb:		superblock
1841  *
1842  * Adds up the number of free blocks from each block group.
1843  */
1844 ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb)
1845 {
1846 	ext4_fsblk_t desc_count;
1847 	struct ext4_group_desc *gdp;
1848 	int i;
1849 	unsigned long ngroups = EXT4_SB(sb)->s_groups_count;
1850 #ifdef EXT4FS_DEBUG
1851 	struct ext4_super_block *es;
1852 	ext4_fsblk_t bitmap_count;
1853 	unsigned long x;
1854 	struct buffer_head *bitmap_bh = NULL;
1855 
1856 	es = EXT4_SB(sb)->s_es;
1857 	desc_count = 0;
1858 	bitmap_count = 0;
1859 	gdp = NULL;
1860 
1861 	smp_rmb();
1862 	for (i = 0; i < ngroups; i++) {
1863 		gdp = ext4_get_group_desc(sb, i, NULL);
1864 		if (!gdp)
1865 			continue;
1866 		desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1867 		brelse(bitmap_bh);
1868 		bitmap_bh = read_block_bitmap(sb, i);
1869 		if (bitmap_bh == NULL)
1870 			continue;
1871 
1872 		x = ext4_count_free(bitmap_bh, sb->s_blocksize);
1873 		printk("group %d: stored = %d, counted = %lu\n",
1874 			i, le16_to_cpu(gdp->bg_free_blocks_count), x);
1875 		bitmap_count += x;
1876 	}
1877 	brelse(bitmap_bh);
1878 	printk("ext4_count_free_blocks: stored = %llu"
1879 		", computed = %llu, %llu\n",
1880 	       EXT4_FREE_BLOCKS_COUNT(es),
1881 		desc_count, bitmap_count);
1882 	return bitmap_count;
1883 #else
1884 	desc_count = 0;
1885 	smp_rmb();
1886 	for (i = 0; i < ngroups; i++) {
1887 		gdp = ext4_get_group_desc(sb, i, NULL);
1888 		if (!gdp)
1889 			continue;
1890 		desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1891 	}
1892 
1893 	return desc_count;
1894 #endif
1895 }
1896 
1897 static inline int test_root(int a, int b)
1898 {
1899 	int num = b;
1900 
1901 	while (a > num)
1902 		num *= b;
1903 	return num == a;
1904 }
1905 
1906 static int ext4_group_sparse(int group)
1907 {
1908 	if (group <= 1)
1909 		return 1;
1910 	if (!(group & 1))
1911 		return 0;
1912 	return (test_root(group, 7) || test_root(group, 5) ||
1913 		test_root(group, 3));
1914 }
1915 
1916 /**
1917  *	ext4_bg_has_super - number of blocks used by the superblock in group
1918  *	@sb: superblock for filesystem
1919  *	@group: group number to check
1920  *
1921  *	Return the number of blocks used by the superblock (primary or backup)
1922  *	in this group.  Currently this will be only 0 or 1.
1923  */
1924 int ext4_bg_has_super(struct super_block *sb, int group)
1925 {
1926 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1927 				EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1928 			!ext4_group_sparse(group))
1929 		return 0;
1930 	return 1;
1931 }
1932 
1933 static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb, int group)
1934 {
1935 	unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
1936 	unsigned long first = metagroup * EXT4_DESC_PER_BLOCK(sb);
1937 	unsigned long last = first + EXT4_DESC_PER_BLOCK(sb) - 1;
1938 
1939 	if (group == first || group == first + 1 || group == last)
1940 		return 1;
1941 	return 0;
1942 }
1943 
1944 static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb, int group)
1945 {
1946 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1947 				EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1948 			!ext4_group_sparse(group))
1949 		return 0;
1950 	return EXT4_SB(sb)->s_gdb_count;
1951 }
1952 
1953 /**
1954  *	ext4_bg_num_gdb - number of blocks used by the group table in group
1955  *	@sb: superblock for filesystem
1956  *	@group: group number to check
1957  *
1958  *	Return the number of blocks used by the group descriptor table
1959  *	(primary or backup) in this group.  In the future there may be a
1960  *	different number of descriptor blocks in each group.
1961  */
1962 unsigned long ext4_bg_num_gdb(struct super_block *sb, int group)
1963 {
1964 	unsigned long first_meta_bg =
1965 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg);
1966 	unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
1967 
1968 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) ||
1969 			metagroup < first_meta_bg)
1970 		return ext4_bg_num_gdb_nometa(sb,group);
1971 
1972 	return ext4_bg_num_gdb_meta(sb,group);
1973 
1974 }
1975