1 /* 2 * linux/fs/ext2/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@dcs.ed.ac.uk), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/smp_lock.h> 26 #include <linux/time.h> 27 #include <linux/highuid.h> 28 #include <linux/pagemap.h> 29 #include <linux/quotaops.h> 30 #include <linux/module.h> 31 #include <linux/writeback.h> 32 #include <linux/buffer_head.h> 33 #include <linux/mpage.h> 34 #include "ext2.h" 35 #include "acl.h" 36 37 MODULE_AUTHOR("Remy Card and others"); 38 MODULE_DESCRIPTION("Second Extended Filesystem"); 39 MODULE_LICENSE("GPL"); 40 41 static int ext2_update_inode(struct inode * inode, int do_sync); 42 43 /* 44 * Test whether an inode is a fast symlink. 45 */ 46 static inline int ext2_inode_is_fast_symlink(struct inode *inode) 47 { 48 int ea_blocks = EXT2_I(inode)->i_file_acl ? 49 (inode->i_sb->s_blocksize >> 9) : 0; 50 51 return (S_ISLNK(inode->i_mode) && 52 inode->i_blocks - ea_blocks == 0); 53 } 54 55 /* 56 * Called at the last iput() if i_nlink is zero. 57 */ 58 void ext2_delete_inode (struct inode * inode) 59 { 60 if (is_bad_inode(inode)) 61 goto no_delete; 62 EXT2_I(inode)->i_dtime = get_seconds(); 63 mark_inode_dirty(inode); 64 ext2_update_inode(inode, inode_needs_sync(inode)); 65 66 inode->i_size = 0; 67 if (inode->i_blocks) 68 ext2_truncate (inode); 69 ext2_free_inode (inode); 70 71 return; 72 no_delete: 73 clear_inode(inode); /* We must guarantee clearing of inode... */ 74 } 75 76 void ext2_discard_prealloc (struct inode * inode) 77 { 78 #ifdef EXT2_PREALLOCATE 79 struct ext2_inode_info *ei = EXT2_I(inode); 80 write_lock(&ei->i_meta_lock); 81 if (ei->i_prealloc_count) { 82 unsigned short total = ei->i_prealloc_count; 83 unsigned long block = ei->i_prealloc_block; 84 ei->i_prealloc_count = 0; 85 ei->i_prealloc_block = 0; 86 write_unlock(&ei->i_meta_lock); 87 ext2_free_blocks (inode, block, total); 88 return; 89 } else 90 write_unlock(&ei->i_meta_lock); 91 #endif 92 } 93 94 static int ext2_alloc_block (struct inode * inode, unsigned long goal, int *err) 95 { 96 #ifdef EXT2FS_DEBUG 97 static unsigned long alloc_hits, alloc_attempts; 98 #endif 99 unsigned long result; 100 101 102 #ifdef EXT2_PREALLOCATE 103 struct ext2_inode_info *ei = EXT2_I(inode); 104 write_lock(&ei->i_meta_lock); 105 if (ei->i_prealloc_count && 106 (goal == ei->i_prealloc_block || goal + 1 == ei->i_prealloc_block)) 107 { 108 result = ei->i_prealloc_block++; 109 ei->i_prealloc_count--; 110 write_unlock(&ei->i_meta_lock); 111 ext2_debug ("preallocation hit (%lu/%lu).\n", 112 ++alloc_hits, ++alloc_attempts); 113 } else { 114 write_unlock(&ei->i_meta_lock); 115 ext2_discard_prealloc (inode); 116 ext2_debug ("preallocation miss (%lu/%lu).\n", 117 alloc_hits, ++alloc_attempts); 118 if (S_ISREG(inode->i_mode)) 119 result = ext2_new_block (inode, goal, 120 &ei->i_prealloc_count, 121 &ei->i_prealloc_block, err); 122 else 123 result = ext2_new_block(inode, goal, NULL, NULL, err); 124 } 125 #else 126 result = ext2_new_block (inode, goal, 0, 0, err); 127 #endif 128 return result; 129 } 130 131 typedef struct { 132 __le32 *p; 133 __le32 key; 134 struct buffer_head *bh; 135 } Indirect; 136 137 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 138 { 139 p->key = *(p->p = v); 140 p->bh = bh; 141 } 142 143 static inline int verify_chain(Indirect *from, Indirect *to) 144 { 145 while (from <= to && from->key == *from->p) 146 from++; 147 return (from > to); 148 } 149 150 /** 151 * ext2_block_to_path - parse the block number into array of offsets 152 * @inode: inode in question (we are only interested in its superblock) 153 * @i_block: block number to be parsed 154 * @offsets: array to store the offsets in 155 * @boundary: set this non-zero if the referred-to block is likely to be 156 * followed (on disk) by an indirect block. 157 * To store the locations of file's data ext2 uses a data structure common 158 * for UNIX filesystems - tree of pointers anchored in the inode, with 159 * data blocks at leaves and indirect blocks in intermediate nodes. 160 * This function translates the block number into path in that tree - 161 * return value is the path length and @offsets[n] is the offset of 162 * pointer to (n+1)th node in the nth one. If @block is out of range 163 * (negative or too large) warning is printed and zero returned. 164 * 165 * Note: function doesn't find node addresses, so no IO is needed. All 166 * we need to know is the capacity of indirect blocks (taken from the 167 * inode->i_sb). 168 */ 169 170 /* 171 * Portability note: the last comparison (check that we fit into triple 172 * indirect block) is spelled differently, because otherwise on an 173 * architecture with 32-bit longs and 8Kb pages we might get into trouble 174 * if our filesystem had 8Kb blocks. We might use long long, but that would 175 * kill us on x86. Oh, well, at least the sign propagation does not matter - 176 * i_block would have to be negative in the very beginning, so we would not 177 * get there at all. 178 */ 179 180 static int ext2_block_to_path(struct inode *inode, 181 long i_block, int offsets[4], int *boundary) 182 { 183 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb); 184 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb); 185 const long direct_blocks = EXT2_NDIR_BLOCKS, 186 indirect_blocks = ptrs, 187 double_blocks = (1 << (ptrs_bits * 2)); 188 int n = 0; 189 int final = 0; 190 191 if (i_block < 0) { 192 ext2_warning (inode->i_sb, "ext2_block_to_path", "block < 0"); 193 } else if (i_block < direct_blocks) { 194 offsets[n++] = i_block; 195 final = direct_blocks; 196 } else if ( (i_block -= direct_blocks) < indirect_blocks) { 197 offsets[n++] = EXT2_IND_BLOCK; 198 offsets[n++] = i_block; 199 final = ptrs; 200 } else if ((i_block -= indirect_blocks) < double_blocks) { 201 offsets[n++] = EXT2_DIND_BLOCK; 202 offsets[n++] = i_block >> ptrs_bits; 203 offsets[n++] = i_block & (ptrs - 1); 204 final = ptrs; 205 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 206 offsets[n++] = EXT2_TIND_BLOCK; 207 offsets[n++] = i_block >> (ptrs_bits * 2); 208 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 209 offsets[n++] = i_block & (ptrs - 1); 210 final = ptrs; 211 } else { 212 ext2_warning (inode->i_sb, "ext2_block_to_path", "block > big"); 213 } 214 if (boundary) 215 *boundary = (i_block & (ptrs - 1)) == (final - 1); 216 return n; 217 } 218 219 /** 220 * ext2_get_branch - read the chain of indirect blocks leading to data 221 * @inode: inode in question 222 * @depth: depth of the chain (1 - direct pointer, etc.) 223 * @offsets: offsets of pointers in inode/indirect blocks 224 * @chain: place to store the result 225 * @err: here we store the error value 226 * 227 * Function fills the array of triples <key, p, bh> and returns %NULL 228 * if everything went OK or the pointer to the last filled triple 229 * (incomplete one) otherwise. Upon the return chain[i].key contains 230 * the number of (i+1)-th block in the chain (as it is stored in memory, 231 * i.e. little-endian 32-bit), chain[i].p contains the address of that 232 * number (it points into struct inode for i==0 and into the bh->b_data 233 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 234 * block for i>0 and NULL for i==0. In other words, it holds the block 235 * numbers of the chain, addresses they were taken from (and where we can 236 * verify that chain did not change) and buffer_heads hosting these 237 * numbers. 238 * 239 * Function stops when it stumbles upon zero pointer (absent block) 240 * (pointer to last triple returned, *@err == 0) 241 * or when it gets an IO error reading an indirect block 242 * (ditto, *@err == -EIO) 243 * or when it notices that chain had been changed while it was reading 244 * (ditto, *@err == -EAGAIN) 245 * or when it reads all @depth-1 indirect blocks successfully and finds 246 * the whole chain, all way to the data (returns %NULL, *err == 0). 247 */ 248 static Indirect *ext2_get_branch(struct inode *inode, 249 int depth, 250 int *offsets, 251 Indirect chain[4], 252 int *err) 253 { 254 struct super_block *sb = inode->i_sb; 255 Indirect *p = chain; 256 struct buffer_head *bh; 257 258 *err = 0; 259 /* i_data is not going away, no lock needed */ 260 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets); 261 if (!p->key) 262 goto no_block; 263 while (--depth) { 264 bh = sb_bread(sb, le32_to_cpu(p->key)); 265 if (!bh) 266 goto failure; 267 read_lock(&EXT2_I(inode)->i_meta_lock); 268 if (!verify_chain(chain, p)) 269 goto changed; 270 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets); 271 read_unlock(&EXT2_I(inode)->i_meta_lock); 272 if (!p->key) 273 goto no_block; 274 } 275 return NULL; 276 277 changed: 278 read_unlock(&EXT2_I(inode)->i_meta_lock); 279 brelse(bh); 280 *err = -EAGAIN; 281 goto no_block; 282 failure: 283 *err = -EIO; 284 no_block: 285 return p; 286 } 287 288 /** 289 * ext2_find_near - find a place for allocation with sufficient locality 290 * @inode: owner 291 * @ind: descriptor of indirect block. 292 * 293 * This function returns the prefered place for block allocation. 294 * It is used when heuristic for sequential allocation fails. 295 * Rules are: 296 * + if there is a block to the left of our position - allocate near it. 297 * + if pointer will live in indirect block - allocate near that block. 298 * + if pointer will live in inode - allocate in the same cylinder group. 299 * 300 * In the latter case we colour the starting block by the callers PID to 301 * prevent it from clashing with concurrent allocations for a different inode 302 * in the same block group. The PID is used here so that functionally related 303 * files will be close-by on-disk. 304 * 305 * Caller must make sure that @ind is valid and will stay that way. 306 */ 307 308 static unsigned long ext2_find_near(struct inode *inode, Indirect *ind) 309 { 310 struct ext2_inode_info *ei = EXT2_I(inode); 311 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 312 __le32 *p; 313 unsigned long bg_start; 314 unsigned long colour; 315 316 /* Try to find previous block */ 317 for (p = ind->p - 1; p >= start; p--) 318 if (*p) 319 return le32_to_cpu(*p); 320 321 /* No such thing, so let's try location of indirect block */ 322 if (ind->bh) 323 return ind->bh->b_blocknr; 324 325 /* 326 * It is going to be refered from inode itself? OK, just put it into 327 * the same cylinder group then. 328 */ 329 bg_start = (ei->i_block_group * EXT2_BLOCKS_PER_GROUP(inode->i_sb)) + 330 le32_to_cpu(EXT2_SB(inode->i_sb)->s_es->s_first_data_block); 331 colour = (current->pid % 16) * 332 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16); 333 return bg_start + colour; 334 } 335 336 /** 337 * ext2_find_goal - find a prefered place for allocation. 338 * @inode: owner 339 * @block: block we want 340 * @chain: chain of indirect blocks 341 * @partial: pointer to the last triple within a chain 342 * @goal: place to store the result. 343 * 344 * Normally this function find the prefered place for block allocation, 345 * stores it in *@goal and returns zero. If the branch had been changed 346 * under us we return -EAGAIN. 347 */ 348 349 static inline int ext2_find_goal(struct inode *inode, 350 long block, 351 Indirect chain[4], 352 Indirect *partial, 353 unsigned long *goal) 354 { 355 struct ext2_inode_info *ei = EXT2_I(inode); 356 write_lock(&ei->i_meta_lock); 357 if ((block == ei->i_next_alloc_block + 1) && ei->i_next_alloc_goal) { 358 ei->i_next_alloc_block++; 359 ei->i_next_alloc_goal++; 360 } 361 if (verify_chain(chain, partial)) { 362 /* 363 * try the heuristic for sequential allocation, 364 * failing that at least try to get decent locality. 365 */ 366 if (block == ei->i_next_alloc_block) 367 *goal = ei->i_next_alloc_goal; 368 if (!*goal) 369 *goal = ext2_find_near(inode, partial); 370 write_unlock(&ei->i_meta_lock); 371 return 0; 372 } 373 write_unlock(&ei->i_meta_lock); 374 return -EAGAIN; 375 } 376 377 /** 378 * ext2_alloc_branch - allocate and set up a chain of blocks. 379 * @inode: owner 380 * @num: depth of the chain (number of blocks to allocate) 381 * @offsets: offsets (in the blocks) to store the pointers to next. 382 * @branch: place to store the chain in. 383 * 384 * This function allocates @num blocks, zeroes out all but the last one, 385 * links them into chain and (if we are synchronous) writes them to disk. 386 * In other words, it prepares a branch that can be spliced onto the 387 * inode. It stores the information about that chain in the branch[], in 388 * the same format as ext2_get_branch() would do. We are calling it after 389 * we had read the existing part of chain and partial points to the last 390 * triple of that (one with zero ->key). Upon the exit we have the same 391 * picture as after the successful ext2_get_block(), excpet that in one 392 * place chain is disconnected - *branch->p is still zero (we did not 393 * set the last link), but branch->key contains the number that should 394 * be placed into *branch->p to fill that gap. 395 * 396 * If allocation fails we free all blocks we've allocated (and forget 397 * their buffer_heads) and return the error value the from failed 398 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain 399 * as described above and return 0. 400 */ 401 402 static int ext2_alloc_branch(struct inode *inode, 403 int num, 404 unsigned long goal, 405 int *offsets, 406 Indirect *branch) 407 { 408 int blocksize = inode->i_sb->s_blocksize; 409 int n = 0; 410 int err; 411 int i; 412 int parent = ext2_alloc_block(inode, goal, &err); 413 414 branch[0].key = cpu_to_le32(parent); 415 if (parent) for (n = 1; n < num; n++) { 416 struct buffer_head *bh; 417 /* Allocate the next block */ 418 int nr = ext2_alloc_block(inode, parent, &err); 419 if (!nr) 420 break; 421 branch[n].key = cpu_to_le32(nr); 422 /* 423 * Get buffer_head for parent block, zero it out and set 424 * the pointer to new one, then send parent to disk. 425 */ 426 bh = sb_getblk(inode->i_sb, parent); 427 lock_buffer(bh); 428 memset(bh->b_data, 0, blocksize); 429 branch[n].bh = bh; 430 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 431 *branch[n].p = branch[n].key; 432 set_buffer_uptodate(bh); 433 unlock_buffer(bh); 434 mark_buffer_dirty_inode(bh, inode); 435 /* We used to sync bh here if IS_SYNC(inode). 436 * But we now rely upon generic_osync_inode() 437 * and b_inode_buffers. But not for directories. 438 */ 439 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 440 sync_dirty_buffer(bh); 441 parent = nr; 442 } 443 if (n == num) 444 return 0; 445 446 /* Allocation failed, free what we already allocated */ 447 for (i = 1; i < n; i++) 448 bforget(branch[i].bh); 449 for (i = 0; i < n; i++) 450 ext2_free_blocks(inode, le32_to_cpu(branch[i].key), 1); 451 return err; 452 } 453 454 /** 455 * ext2_splice_branch - splice the allocated branch onto inode. 456 * @inode: owner 457 * @block: (logical) number of block we are adding 458 * @chain: chain of indirect blocks (with a missing link - see 459 * ext2_alloc_branch) 460 * @where: location of missing link 461 * @num: number of blocks we are adding 462 * 463 * This function verifies that chain (up to the missing link) had not 464 * changed, fills the missing link and does all housekeeping needed in 465 * inode (->i_blocks, etc.). In case of success we end up with the full 466 * chain to new block and return 0. Otherwise (== chain had been changed) 467 * we free the new blocks (forgetting their buffer_heads, indeed) and 468 * return -EAGAIN. 469 */ 470 471 static inline int ext2_splice_branch(struct inode *inode, 472 long block, 473 Indirect chain[4], 474 Indirect *where, 475 int num) 476 { 477 struct ext2_inode_info *ei = EXT2_I(inode); 478 int i; 479 480 /* Verify that place we are splicing to is still there and vacant */ 481 482 write_lock(&ei->i_meta_lock); 483 if (!verify_chain(chain, where-1) || *where->p) 484 goto changed; 485 486 /* That's it */ 487 488 *where->p = where->key; 489 ei->i_next_alloc_block = block; 490 ei->i_next_alloc_goal = le32_to_cpu(where[num-1].key); 491 492 write_unlock(&ei->i_meta_lock); 493 494 /* We are done with atomic stuff, now do the rest of housekeeping */ 495 496 inode->i_ctime = CURRENT_TIME_SEC; 497 498 /* had we spliced it onto indirect block? */ 499 if (where->bh) 500 mark_buffer_dirty_inode(where->bh, inode); 501 502 mark_inode_dirty(inode); 503 return 0; 504 505 changed: 506 write_unlock(&ei->i_meta_lock); 507 for (i = 1; i < num; i++) 508 bforget(where[i].bh); 509 for (i = 0; i < num; i++) 510 ext2_free_blocks(inode, le32_to_cpu(where[i].key), 1); 511 return -EAGAIN; 512 } 513 514 /* 515 * Allocation strategy is simple: if we have to allocate something, we will 516 * have to go the whole way to leaf. So let's do it before attaching anything 517 * to tree, set linkage between the newborn blocks, write them if sync is 518 * required, recheck the path, free and repeat if check fails, otherwise 519 * set the last missing link (that will protect us from any truncate-generated 520 * removals - all blocks on the path are immune now) and possibly force the 521 * write on the parent block. 522 * That has a nice additional property: no special recovery from the failed 523 * allocations is needed - we simply release blocks and do not touch anything 524 * reachable from inode. 525 */ 526 527 int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) 528 { 529 int err = -EIO; 530 int offsets[4]; 531 Indirect chain[4]; 532 Indirect *partial; 533 unsigned long goal; 534 int left; 535 int boundary = 0; 536 int depth = ext2_block_to_path(inode, iblock, offsets, &boundary); 537 538 if (depth == 0) 539 goto out; 540 541 reread: 542 partial = ext2_get_branch(inode, depth, offsets, chain, &err); 543 544 /* Simplest case - block found, no allocation needed */ 545 if (!partial) { 546 got_it: 547 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 548 if (boundary) 549 set_buffer_boundary(bh_result); 550 /* Clean up and exit */ 551 partial = chain+depth-1; /* the whole chain */ 552 goto cleanup; 553 } 554 555 /* Next simple case - plain lookup or failed read of indirect block */ 556 if (!create || err == -EIO) { 557 cleanup: 558 while (partial > chain) { 559 brelse(partial->bh); 560 partial--; 561 } 562 out: 563 return err; 564 } 565 566 /* 567 * Indirect block might be removed by truncate while we were 568 * reading it. Handling of that case (forget what we've got and 569 * reread) is taken out of the main path. 570 */ 571 if (err == -EAGAIN) 572 goto changed; 573 574 goal = 0; 575 if (ext2_find_goal(inode, iblock, chain, partial, &goal) < 0) 576 goto changed; 577 578 left = (chain + depth) - partial; 579 err = ext2_alloc_branch(inode, left, goal, 580 offsets+(partial-chain), partial); 581 if (err) 582 goto cleanup; 583 584 if (ext2_splice_branch(inode, iblock, chain, partial, left) < 0) 585 goto changed; 586 587 set_buffer_new(bh_result); 588 goto got_it; 589 590 changed: 591 while (partial > chain) { 592 brelse(partial->bh); 593 partial--; 594 } 595 goto reread; 596 } 597 598 static int ext2_writepage(struct page *page, struct writeback_control *wbc) 599 { 600 return block_write_full_page(page, ext2_get_block, wbc); 601 } 602 603 static int ext2_readpage(struct file *file, struct page *page) 604 { 605 return mpage_readpage(page, ext2_get_block); 606 } 607 608 static int 609 ext2_readpages(struct file *file, struct address_space *mapping, 610 struct list_head *pages, unsigned nr_pages) 611 { 612 return mpage_readpages(mapping, pages, nr_pages, ext2_get_block); 613 } 614 615 static int 616 ext2_prepare_write(struct file *file, struct page *page, 617 unsigned from, unsigned to) 618 { 619 return block_prepare_write(page,from,to,ext2_get_block); 620 } 621 622 static int 623 ext2_nobh_prepare_write(struct file *file, struct page *page, 624 unsigned from, unsigned to) 625 { 626 return nobh_prepare_write(page,from,to,ext2_get_block); 627 } 628 629 static int ext2_nobh_writepage(struct page *page, 630 struct writeback_control *wbc) 631 { 632 return nobh_writepage(page, ext2_get_block, wbc); 633 } 634 635 static sector_t ext2_bmap(struct address_space *mapping, sector_t block) 636 { 637 return generic_block_bmap(mapping,block,ext2_get_block); 638 } 639 640 static int 641 ext2_get_blocks(struct inode *inode, sector_t iblock, unsigned long max_blocks, 642 struct buffer_head *bh_result, int create) 643 { 644 int ret; 645 646 ret = ext2_get_block(inode, iblock, bh_result, create); 647 if (ret == 0) 648 bh_result->b_size = (1 << inode->i_blkbits); 649 return ret; 650 } 651 652 static ssize_t 653 ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 654 loff_t offset, unsigned long nr_segs) 655 { 656 struct file *file = iocb->ki_filp; 657 struct inode *inode = file->f_mapping->host; 658 659 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 660 offset, nr_segs, ext2_get_blocks, NULL); 661 } 662 663 static int 664 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc) 665 { 666 return mpage_writepages(mapping, wbc, ext2_get_block); 667 } 668 669 struct address_space_operations ext2_aops = { 670 .readpage = ext2_readpage, 671 .readpages = ext2_readpages, 672 .writepage = ext2_writepage, 673 .sync_page = block_sync_page, 674 .prepare_write = ext2_prepare_write, 675 .commit_write = generic_commit_write, 676 .bmap = ext2_bmap, 677 .direct_IO = ext2_direct_IO, 678 .writepages = ext2_writepages, 679 }; 680 681 struct address_space_operations ext2_nobh_aops = { 682 .readpage = ext2_readpage, 683 .readpages = ext2_readpages, 684 .writepage = ext2_nobh_writepage, 685 .sync_page = block_sync_page, 686 .prepare_write = ext2_nobh_prepare_write, 687 .commit_write = nobh_commit_write, 688 .bmap = ext2_bmap, 689 .direct_IO = ext2_direct_IO, 690 .writepages = ext2_writepages, 691 }; 692 693 /* 694 * Probably it should be a library function... search for first non-zero word 695 * or memcmp with zero_page, whatever is better for particular architecture. 696 * Linus? 697 */ 698 static inline int all_zeroes(__le32 *p, __le32 *q) 699 { 700 while (p < q) 701 if (*p++) 702 return 0; 703 return 1; 704 } 705 706 /** 707 * ext2_find_shared - find the indirect blocks for partial truncation. 708 * @inode: inode in question 709 * @depth: depth of the affected branch 710 * @offsets: offsets of pointers in that branch (see ext2_block_to_path) 711 * @chain: place to store the pointers to partial indirect blocks 712 * @top: place to the (detached) top of branch 713 * 714 * This is a helper function used by ext2_truncate(). 715 * 716 * When we do truncate() we may have to clean the ends of several indirect 717 * blocks but leave the blocks themselves alive. Block is partially 718 * truncated if some data below the new i_size is refered from it (and 719 * it is on the path to the first completely truncated data block, indeed). 720 * We have to free the top of that path along with everything to the right 721 * of the path. Since no allocation past the truncation point is possible 722 * until ext2_truncate() finishes, we may safely do the latter, but top 723 * of branch may require special attention - pageout below the truncation 724 * point might try to populate it. 725 * 726 * We atomically detach the top of branch from the tree, store the block 727 * number of its root in *@top, pointers to buffer_heads of partially 728 * truncated blocks - in @chain[].bh and pointers to their last elements 729 * that should not be removed - in @chain[].p. Return value is the pointer 730 * to last filled element of @chain. 731 * 732 * The work left to caller to do the actual freeing of subtrees: 733 * a) free the subtree starting from *@top 734 * b) free the subtrees whose roots are stored in 735 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 736 * c) free the subtrees growing from the inode past the @chain[0].p 737 * (no partially truncated stuff there). 738 */ 739 740 static Indirect *ext2_find_shared(struct inode *inode, 741 int depth, 742 int offsets[4], 743 Indirect chain[4], 744 __le32 *top) 745 { 746 Indirect *partial, *p; 747 int k, err; 748 749 *top = 0; 750 for (k = depth; k > 1 && !offsets[k-1]; k--) 751 ; 752 partial = ext2_get_branch(inode, k, offsets, chain, &err); 753 if (!partial) 754 partial = chain + k-1; 755 /* 756 * If the branch acquired continuation since we've looked at it - 757 * fine, it should all survive and (new) top doesn't belong to us. 758 */ 759 write_lock(&EXT2_I(inode)->i_meta_lock); 760 if (!partial->key && *partial->p) { 761 write_unlock(&EXT2_I(inode)->i_meta_lock); 762 goto no_top; 763 } 764 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--) 765 ; 766 /* 767 * OK, we've found the last block that must survive. The rest of our 768 * branch should be detached before unlocking. However, if that rest 769 * of branch is all ours and does not grow immediately from the inode 770 * it's easier to cheat and just decrement partial->p. 771 */ 772 if (p == chain + k - 1 && p > chain) { 773 p->p--; 774 } else { 775 *top = *p->p; 776 *p->p = 0; 777 } 778 write_unlock(&EXT2_I(inode)->i_meta_lock); 779 780 while(partial > p) 781 { 782 brelse(partial->bh); 783 partial--; 784 } 785 no_top: 786 return partial; 787 } 788 789 /** 790 * ext2_free_data - free a list of data blocks 791 * @inode: inode we are dealing with 792 * @p: array of block numbers 793 * @q: points immediately past the end of array 794 * 795 * We are freeing all blocks refered from that array (numbers are 796 * stored as little-endian 32-bit) and updating @inode->i_blocks 797 * appropriately. 798 */ 799 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q) 800 { 801 unsigned long block_to_free = 0, count = 0; 802 unsigned long nr; 803 804 for ( ; p < q ; p++) { 805 nr = le32_to_cpu(*p); 806 if (nr) { 807 *p = 0; 808 /* accumulate blocks to free if they're contiguous */ 809 if (count == 0) 810 goto free_this; 811 else if (block_to_free == nr - count) 812 count++; 813 else { 814 mark_inode_dirty(inode); 815 ext2_free_blocks (inode, block_to_free, count); 816 free_this: 817 block_to_free = nr; 818 count = 1; 819 } 820 } 821 } 822 if (count > 0) { 823 mark_inode_dirty(inode); 824 ext2_free_blocks (inode, block_to_free, count); 825 } 826 } 827 828 /** 829 * ext2_free_branches - free an array of branches 830 * @inode: inode we are dealing with 831 * @p: array of block numbers 832 * @q: pointer immediately past the end of array 833 * @depth: depth of the branches to free 834 * 835 * We are freeing all blocks refered from these branches (numbers are 836 * stored as little-endian 32-bit) and updating @inode->i_blocks 837 * appropriately. 838 */ 839 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth) 840 { 841 struct buffer_head * bh; 842 unsigned long nr; 843 844 if (depth--) { 845 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb); 846 for ( ; p < q ; p++) { 847 nr = le32_to_cpu(*p); 848 if (!nr) 849 continue; 850 *p = 0; 851 bh = sb_bread(inode->i_sb, nr); 852 /* 853 * A read failure? Report error and clear slot 854 * (should be rare). 855 */ 856 if (!bh) { 857 ext2_error(inode->i_sb, "ext2_free_branches", 858 "Read failure, inode=%ld, block=%ld", 859 inode->i_ino, nr); 860 continue; 861 } 862 ext2_free_branches(inode, 863 (__le32*)bh->b_data, 864 (__le32*)bh->b_data + addr_per_block, 865 depth); 866 bforget(bh); 867 ext2_free_blocks(inode, nr, 1); 868 mark_inode_dirty(inode); 869 } 870 } else 871 ext2_free_data(inode, p, q); 872 } 873 874 void ext2_truncate (struct inode * inode) 875 { 876 __le32 *i_data = EXT2_I(inode)->i_data; 877 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb); 878 int offsets[4]; 879 Indirect chain[4]; 880 Indirect *partial; 881 __le32 nr = 0; 882 int n; 883 long iblock; 884 unsigned blocksize; 885 886 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 887 S_ISLNK(inode->i_mode))) 888 return; 889 if (ext2_inode_is_fast_symlink(inode)) 890 return; 891 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 892 return; 893 894 ext2_discard_prealloc(inode); 895 896 blocksize = inode->i_sb->s_blocksize; 897 iblock = (inode->i_size + blocksize-1) 898 >> EXT2_BLOCK_SIZE_BITS(inode->i_sb); 899 900 if (test_opt(inode->i_sb, NOBH)) 901 nobh_truncate_page(inode->i_mapping, inode->i_size); 902 else 903 block_truncate_page(inode->i_mapping, 904 inode->i_size, ext2_get_block); 905 906 n = ext2_block_to_path(inode, iblock, offsets, NULL); 907 if (n == 0) 908 return; 909 910 if (n == 1) { 911 ext2_free_data(inode, i_data+offsets[0], 912 i_data + EXT2_NDIR_BLOCKS); 913 goto do_indirects; 914 } 915 916 partial = ext2_find_shared(inode, n, offsets, chain, &nr); 917 /* Kill the top of shared branch (already detached) */ 918 if (nr) { 919 if (partial == chain) 920 mark_inode_dirty(inode); 921 else 922 mark_buffer_dirty_inode(partial->bh, inode); 923 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial); 924 } 925 /* Clear the ends of indirect blocks on the shared branch */ 926 while (partial > chain) { 927 ext2_free_branches(inode, 928 partial->p + 1, 929 (__le32*)partial->bh->b_data+addr_per_block, 930 (chain+n-1) - partial); 931 mark_buffer_dirty_inode(partial->bh, inode); 932 brelse (partial->bh); 933 partial--; 934 } 935 do_indirects: 936 /* Kill the remaining (whole) subtrees */ 937 switch (offsets[0]) { 938 default: 939 nr = i_data[EXT2_IND_BLOCK]; 940 if (nr) { 941 i_data[EXT2_IND_BLOCK] = 0; 942 mark_inode_dirty(inode); 943 ext2_free_branches(inode, &nr, &nr+1, 1); 944 } 945 case EXT2_IND_BLOCK: 946 nr = i_data[EXT2_DIND_BLOCK]; 947 if (nr) { 948 i_data[EXT2_DIND_BLOCK] = 0; 949 mark_inode_dirty(inode); 950 ext2_free_branches(inode, &nr, &nr+1, 2); 951 } 952 case EXT2_DIND_BLOCK: 953 nr = i_data[EXT2_TIND_BLOCK]; 954 if (nr) { 955 i_data[EXT2_TIND_BLOCK] = 0; 956 mark_inode_dirty(inode); 957 ext2_free_branches(inode, &nr, &nr+1, 3); 958 } 959 case EXT2_TIND_BLOCK: 960 ; 961 } 962 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC; 963 if (inode_needs_sync(inode)) { 964 sync_mapping_buffers(inode->i_mapping); 965 ext2_sync_inode (inode); 966 } else { 967 mark_inode_dirty(inode); 968 } 969 } 970 971 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino, 972 struct buffer_head **p) 973 { 974 struct buffer_head * bh; 975 unsigned long block_group; 976 unsigned long block; 977 unsigned long offset; 978 struct ext2_group_desc * gdp; 979 980 *p = NULL; 981 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) || 982 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count)) 983 goto Einval; 984 985 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb); 986 gdp = ext2_get_group_desc(sb, block_group, &bh); 987 if (!gdp) 988 goto Egdp; 989 /* 990 * Figure out the offset within the block group inode table 991 */ 992 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb); 993 block = le32_to_cpu(gdp->bg_inode_table) + 994 (offset >> EXT2_BLOCK_SIZE_BITS(sb)); 995 if (!(bh = sb_bread(sb, block))) 996 goto Eio; 997 998 *p = bh; 999 offset &= (EXT2_BLOCK_SIZE(sb) - 1); 1000 return (struct ext2_inode *) (bh->b_data + offset); 1001 1002 Einval: 1003 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu", 1004 (unsigned long) ino); 1005 return ERR_PTR(-EINVAL); 1006 Eio: 1007 ext2_error(sb, "ext2_get_inode", 1008 "unable to read inode block - inode=%lu, block=%lu", 1009 (unsigned long) ino, block); 1010 Egdp: 1011 return ERR_PTR(-EIO); 1012 } 1013 1014 void ext2_set_inode_flags(struct inode *inode) 1015 { 1016 unsigned int flags = EXT2_I(inode)->i_flags; 1017 1018 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 1019 if (flags & EXT2_SYNC_FL) 1020 inode->i_flags |= S_SYNC; 1021 if (flags & EXT2_APPEND_FL) 1022 inode->i_flags |= S_APPEND; 1023 if (flags & EXT2_IMMUTABLE_FL) 1024 inode->i_flags |= S_IMMUTABLE; 1025 if (flags & EXT2_NOATIME_FL) 1026 inode->i_flags |= S_NOATIME; 1027 if (flags & EXT2_DIRSYNC_FL) 1028 inode->i_flags |= S_DIRSYNC; 1029 } 1030 1031 void ext2_read_inode (struct inode * inode) 1032 { 1033 struct ext2_inode_info *ei = EXT2_I(inode); 1034 ino_t ino = inode->i_ino; 1035 struct buffer_head * bh; 1036 struct ext2_inode * raw_inode = ext2_get_inode(inode->i_sb, ino, &bh); 1037 int n; 1038 1039 #ifdef CONFIG_EXT2_FS_POSIX_ACL 1040 ei->i_acl = EXT2_ACL_NOT_CACHED; 1041 ei->i_default_acl = EXT2_ACL_NOT_CACHED; 1042 #endif 1043 if (IS_ERR(raw_inode)) 1044 goto bad_inode; 1045 1046 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 1047 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 1048 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 1049 if (!(test_opt (inode->i_sb, NO_UID32))) { 1050 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 1051 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 1052 } 1053 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 1054 inode->i_size = le32_to_cpu(raw_inode->i_size); 1055 inode->i_atime.tv_sec = le32_to_cpu(raw_inode->i_atime); 1056 inode->i_ctime.tv_sec = le32_to_cpu(raw_inode->i_ctime); 1057 inode->i_mtime.tv_sec = le32_to_cpu(raw_inode->i_mtime); 1058 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0; 1059 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 1060 /* We now have enough fields to check if the inode was active or not. 1061 * This is needed because nfsd might try to access dead inodes 1062 * the test is that same one that e2fsck uses 1063 * NeilBrown 1999oct15 1064 */ 1065 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) { 1066 /* this inode is deleted */ 1067 brelse (bh); 1068 goto bad_inode; 1069 } 1070 inode->i_blksize = PAGE_SIZE; /* This is the optimal IO size (for stat), not the fs block size */ 1071 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks); 1072 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 1073 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr); 1074 ei->i_frag_no = raw_inode->i_frag; 1075 ei->i_frag_size = raw_inode->i_fsize; 1076 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl); 1077 ei->i_dir_acl = 0; 1078 if (S_ISREG(inode->i_mode)) 1079 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32; 1080 else 1081 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl); 1082 ei->i_dtime = 0; 1083 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 1084 ei->i_state = 0; 1085 ei->i_next_alloc_block = 0; 1086 ei->i_next_alloc_goal = 0; 1087 ei->i_prealloc_count = 0; 1088 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb); 1089 ei->i_dir_start_lookup = 0; 1090 1091 /* 1092 * NOTE! The in-memory inode i_data array is in little-endian order 1093 * even on big-endian machines: we do NOT byteswap the block numbers! 1094 */ 1095 for (n = 0; n < EXT2_N_BLOCKS; n++) 1096 ei->i_data[n] = raw_inode->i_block[n]; 1097 1098 if (S_ISREG(inode->i_mode)) { 1099 inode->i_op = &ext2_file_inode_operations; 1100 inode->i_fop = &ext2_file_operations; 1101 if (test_opt(inode->i_sb, NOBH)) 1102 inode->i_mapping->a_ops = &ext2_nobh_aops; 1103 else 1104 inode->i_mapping->a_ops = &ext2_aops; 1105 } else if (S_ISDIR(inode->i_mode)) { 1106 inode->i_op = &ext2_dir_inode_operations; 1107 inode->i_fop = &ext2_dir_operations; 1108 if (test_opt(inode->i_sb, NOBH)) 1109 inode->i_mapping->a_ops = &ext2_nobh_aops; 1110 else 1111 inode->i_mapping->a_ops = &ext2_aops; 1112 } else if (S_ISLNK(inode->i_mode)) { 1113 if (ext2_inode_is_fast_symlink(inode)) 1114 inode->i_op = &ext2_fast_symlink_inode_operations; 1115 else { 1116 inode->i_op = &ext2_symlink_inode_operations; 1117 if (test_opt(inode->i_sb, NOBH)) 1118 inode->i_mapping->a_ops = &ext2_nobh_aops; 1119 else 1120 inode->i_mapping->a_ops = &ext2_aops; 1121 } 1122 } else { 1123 inode->i_op = &ext2_special_inode_operations; 1124 if (raw_inode->i_block[0]) 1125 init_special_inode(inode, inode->i_mode, 1126 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 1127 else 1128 init_special_inode(inode, inode->i_mode, 1129 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 1130 } 1131 brelse (bh); 1132 ext2_set_inode_flags(inode); 1133 return; 1134 1135 bad_inode: 1136 make_bad_inode(inode); 1137 return; 1138 } 1139 1140 static int ext2_update_inode(struct inode * inode, int do_sync) 1141 { 1142 struct ext2_inode_info *ei = EXT2_I(inode); 1143 struct super_block *sb = inode->i_sb; 1144 ino_t ino = inode->i_ino; 1145 uid_t uid = inode->i_uid; 1146 gid_t gid = inode->i_gid; 1147 struct buffer_head * bh; 1148 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh); 1149 int n; 1150 int err = 0; 1151 1152 if (IS_ERR(raw_inode)) 1153 return -EIO; 1154 1155 /* For fields not not tracking in the in-memory inode, 1156 * initialise them to zero for new inodes. */ 1157 if (ei->i_state & EXT2_STATE_NEW) 1158 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size); 1159 1160 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 1161 if (!(test_opt(sb, NO_UID32))) { 1162 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid)); 1163 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid)); 1164 /* 1165 * Fix up interoperability with old kernels. Otherwise, old inodes get 1166 * re-used with the upper 16 bits of the uid/gid intact 1167 */ 1168 if (!ei->i_dtime) { 1169 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid)); 1170 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid)); 1171 } else { 1172 raw_inode->i_uid_high = 0; 1173 raw_inode->i_gid_high = 0; 1174 } 1175 } else { 1176 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid)); 1177 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid)); 1178 raw_inode->i_uid_high = 0; 1179 raw_inode->i_gid_high = 0; 1180 } 1181 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 1182 raw_inode->i_size = cpu_to_le32(inode->i_size); 1183 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec); 1184 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec); 1185 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec); 1186 1187 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks); 1188 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 1189 raw_inode->i_flags = cpu_to_le32(ei->i_flags); 1190 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr); 1191 raw_inode->i_frag = ei->i_frag_no; 1192 raw_inode->i_fsize = ei->i_frag_size; 1193 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl); 1194 if (!S_ISREG(inode->i_mode)) 1195 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl); 1196 else { 1197 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32); 1198 if (inode->i_size > 0x7fffffffULL) { 1199 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb, 1200 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) || 1201 EXT2_SB(sb)->s_es->s_rev_level == 1202 cpu_to_le32(EXT2_GOOD_OLD_REV)) { 1203 /* If this is the first large file 1204 * created, add a flag to the superblock. 1205 */ 1206 lock_kernel(); 1207 ext2_update_dynamic_rev(sb); 1208 EXT2_SET_RO_COMPAT_FEATURE(sb, 1209 EXT2_FEATURE_RO_COMPAT_LARGE_FILE); 1210 unlock_kernel(); 1211 ext2_write_super(sb); 1212 } 1213 } 1214 } 1215 1216 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 1217 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1218 if (old_valid_dev(inode->i_rdev)) { 1219 raw_inode->i_block[0] = 1220 cpu_to_le32(old_encode_dev(inode->i_rdev)); 1221 raw_inode->i_block[1] = 0; 1222 } else { 1223 raw_inode->i_block[0] = 0; 1224 raw_inode->i_block[1] = 1225 cpu_to_le32(new_encode_dev(inode->i_rdev)); 1226 raw_inode->i_block[2] = 0; 1227 } 1228 } else for (n = 0; n < EXT2_N_BLOCKS; n++) 1229 raw_inode->i_block[n] = ei->i_data[n]; 1230 mark_buffer_dirty(bh); 1231 if (do_sync) { 1232 sync_dirty_buffer(bh); 1233 if (buffer_req(bh) && !buffer_uptodate(bh)) { 1234 printk ("IO error syncing ext2 inode [%s:%08lx]\n", 1235 sb->s_id, (unsigned long) ino); 1236 err = -EIO; 1237 } 1238 } 1239 ei->i_state &= ~EXT2_STATE_NEW; 1240 brelse (bh); 1241 return err; 1242 } 1243 1244 int ext2_write_inode(struct inode *inode, int wait) 1245 { 1246 return ext2_update_inode(inode, wait); 1247 } 1248 1249 int ext2_sync_inode(struct inode *inode) 1250 { 1251 struct writeback_control wbc = { 1252 .sync_mode = WB_SYNC_ALL, 1253 .nr_to_write = 0, /* sys_fsync did this */ 1254 }; 1255 return sync_inode(inode, &wbc); 1256 } 1257 1258 int ext2_setattr(struct dentry *dentry, struct iattr *iattr) 1259 { 1260 struct inode *inode = dentry->d_inode; 1261 int error; 1262 1263 error = inode_change_ok(inode, iattr); 1264 if (error) 1265 return error; 1266 if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) || 1267 (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) { 1268 error = DQUOT_TRANSFER(inode, iattr) ? -EDQUOT : 0; 1269 if (error) 1270 return error; 1271 } 1272 error = inode_setattr(inode, iattr); 1273 if (!error && (iattr->ia_valid & ATTR_MODE)) 1274 error = ext2_acl_chmod(inode); 1275 return error; 1276 } 1277