1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/kmod.h> 59 #include <linux/fsnotify.h> 60 #include <linux/fs_struct.h> 61 #include <linux/oom.h> 62 #include <linux/compat.h> 63 #include <linux/vmalloc.h> 64 #include <linux/io_uring.h> 65 #include <linux/syscall_user_dispatch.h> 66 #include <linux/coredump.h> 67 #include <linux/time_namespace.h> 68 #include <linux/user_events.h> 69 70 #include <linux/uaccess.h> 71 #include <asm/mmu_context.h> 72 #include <asm/tlb.h> 73 74 #include <trace/events/task.h> 75 #include "internal.h" 76 77 #include <trace/events/sched.h> 78 79 static int bprm_creds_from_file(struct linux_binprm *bprm); 80 81 int suid_dumpable = 0; 82 83 static LIST_HEAD(formats); 84 static DEFINE_RWLOCK(binfmt_lock); 85 86 void __register_binfmt(struct linux_binfmt * fmt, int insert) 87 { 88 write_lock(&binfmt_lock); 89 insert ? list_add(&fmt->lh, &formats) : 90 list_add_tail(&fmt->lh, &formats); 91 write_unlock(&binfmt_lock); 92 } 93 94 EXPORT_SYMBOL(__register_binfmt); 95 96 void unregister_binfmt(struct linux_binfmt * fmt) 97 { 98 write_lock(&binfmt_lock); 99 list_del(&fmt->lh); 100 write_unlock(&binfmt_lock); 101 } 102 103 EXPORT_SYMBOL(unregister_binfmt); 104 105 static inline void put_binfmt(struct linux_binfmt * fmt) 106 { 107 module_put(fmt->module); 108 } 109 110 bool path_noexec(const struct path *path) 111 { 112 return (path->mnt->mnt_flags & MNT_NOEXEC) || 113 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 114 } 115 116 #ifdef CONFIG_USELIB 117 /* 118 * Note that a shared library must be both readable and executable due to 119 * security reasons. 120 * 121 * Also note that we take the address to load from the file itself. 122 */ 123 SYSCALL_DEFINE1(uselib, const char __user *, library) 124 { 125 struct linux_binfmt *fmt; 126 struct file *file; 127 struct filename *tmp = getname(library); 128 int error = PTR_ERR(tmp); 129 static const struct open_flags uselib_flags = { 130 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 131 .acc_mode = MAY_READ | MAY_EXEC, 132 .intent = LOOKUP_OPEN, 133 .lookup_flags = LOOKUP_FOLLOW, 134 }; 135 136 if (IS_ERR(tmp)) 137 goto out; 138 139 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 140 putname(tmp); 141 error = PTR_ERR(file); 142 if (IS_ERR(file)) 143 goto out; 144 145 /* 146 * may_open() has already checked for this, so it should be 147 * impossible to trip now. But we need to be extra cautious 148 * and check again at the very end too. 149 */ 150 error = -EACCES; 151 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 152 path_noexec(&file->f_path))) 153 goto exit; 154 155 error = -ENOEXEC; 156 157 read_lock(&binfmt_lock); 158 list_for_each_entry(fmt, &formats, lh) { 159 if (!fmt->load_shlib) 160 continue; 161 if (!try_module_get(fmt->module)) 162 continue; 163 read_unlock(&binfmt_lock); 164 error = fmt->load_shlib(file); 165 read_lock(&binfmt_lock); 166 put_binfmt(fmt); 167 if (error != -ENOEXEC) 168 break; 169 } 170 read_unlock(&binfmt_lock); 171 exit: 172 fput(file); 173 out: 174 return error; 175 } 176 #endif /* #ifdef CONFIG_USELIB */ 177 178 #ifdef CONFIG_MMU 179 /* 180 * The nascent bprm->mm is not visible until exec_mmap() but it can 181 * use a lot of memory, account these pages in current->mm temporary 182 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 183 * change the counter back via acct_arg_size(0). 184 */ 185 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 186 { 187 struct mm_struct *mm = current->mm; 188 long diff = (long)(pages - bprm->vma_pages); 189 190 if (!mm || !diff) 191 return; 192 193 bprm->vma_pages = pages; 194 add_mm_counter(mm, MM_ANONPAGES, diff); 195 } 196 197 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 198 int write) 199 { 200 struct page *page; 201 struct vm_area_struct *vma = bprm->vma; 202 struct mm_struct *mm = bprm->mm; 203 int ret; 204 205 /* 206 * Avoid relying on expanding the stack down in GUP (which 207 * does not work for STACK_GROWSUP anyway), and just do it 208 * by hand ahead of time. 209 */ 210 if (write && pos < vma->vm_start) { 211 mmap_write_lock(mm); 212 ret = expand_downwards(vma, pos); 213 if (unlikely(ret < 0)) { 214 mmap_write_unlock(mm); 215 return NULL; 216 } 217 mmap_write_downgrade(mm); 218 } else 219 mmap_read_lock(mm); 220 221 /* 222 * We are doing an exec(). 'current' is the process 223 * doing the exec and 'mm' is the new process's mm. 224 */ 225 ret = get_user_pages_remote(mm, pos, 1, 226 write ? FOLL_WRITE : 0, 227 &page, NULL); 228 mmap_read_unlock(mm); 229 if (ret <= 0) 230 return NULL; 231 232 if (write) 233 acct_arg_size(bprm, vma_pages(vma)); 234 235 return page; 236 } 237 238 static void put_arg_page(struct page *page) 239 { 240 put_page(page); 241 } 242 243 static void free_arg_pages(struct linux_binprm *bprm) 244 { 245 } 246 247 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 248 struct page *page) 249 { 250 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 251 } 252 253 static int __bprm_mm_init(struct linux_binprm *bprm) 254 { 255 int err; 256 struct vm_area_struct *vma = NULL; 257 struct mm_struct *mm = bprm->mm; 258 259 bprm->vma = vma = vm_area_alloc(mm); 260 if (!vma) 261 return -ENOMEM; 262 vma_set_anonymous(vma); 263 264 if (mmap_write_lock_killable(mm)) { 265 err = -EINTR; 266 goto err_free; 267 } 268 269 /* 270 * Place the stack at the largest stack address the architecture 271 * supports. Later, we'll move this to an appropriate place. We don't 272 * use STACK_TOP because that can depend on attributes which aren't 273 * configured yet. 274 */ 275 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 276 vma->vm_end = STACK_TOP_MAX; 277 vma->vm_start = vma->vm_end - PAGE_SIZE; 278 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP); 279 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 280 281 err = insert_vm_struct(mm, vma); 282 if (err) 283 goto err; 284 285 mm->stack_vm = mm->total_vm = 1; 286 mmap_write_unlock(mm); 287 bprm->p = vma->vm_end - sizeof(void *); 288 return 0; 289 err: 290 mmap_write_unlock(mm); 291 err_free: 292 bprm->vma = NULL; 293 vm_area_free(vma); 294 return err; 295 } 296 297 static bool valid_arg_len(struct linux_binprm *bprm, long len) 298 { 299 return len <= MAX_ARG_STRLEN; 300 } 301 302 #else 303 304 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 305 { 306 } 307 308 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 309 int write) 310 { 311 struct page *page; 312 313 page = bprm->page[pos / PAGE_SIZE]; 314 if (!page && write) { 315 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 316 if (!page) 317 return NULL; 318 bprm->page[pos / PAGE_SIZE] = page; 319 } 320 321 return page; 322 } 323 324 static void put_arg_page(struct page *page) 325 { 326 } 327 328 static void free_arg_page(struct linux_binprm *bprm, int i) 329 { 330 if (bprm->page[i]) { 331 __free_page(bprm->page[i]); 332 bprm->page[i] = NULL; 333 } 334 } 335 336 static void free_arg_pages(struct linux_binprm *bprm) 337 { 338 int i; 339 340 for (i = 0; i < MAX_ARG_PAGES; i++) 341 free_arg_page(bprm, i); 342 } 343 344 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 345 struct page *page) 346 { 347 } 348 349 static int __bprm_mm_init(struct linux_binprm *bprm) 350 { 351 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 352 return 0; 353 } 354 355 static bool valid_arg_len(struct linux_binprm *bprm, long len) 356 { 357 return len <= bprm->p; 358 } 359 360 #endif /* CONFIG_MMU */ 361 362 /* 363 * Create a new mm_struct and populate it with a temporary stack 364 * vm_area_struct. We don't have enough context at this point to set the stack 365 * flags, permissions, and offset, so we use temporary values. We'll update 366 * them later in setup_arg_pages(). 367 */ 368 static int bprm_mm_init(struct linux_binprm *bprm) 369 { 370 int err; 371 struct mm_struct *mm = NULL; 372 373 bprm->mm = mm = mm_alloc(); 374 err = -ENOMEM; 375 if (!mm) 376 goto err; 377 378 /* Save current stack limit for all calculations made during exec. */ 379 task_lock(current->group_leader); 380 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 381 task_unlock(current->group_leader); 382 383 err = __bprm_mm_init(bprm); 384 if (err) 385 goto err; 386 387 return 0; 388 389 err: 390 if (mm) { 391 bprm->mm = NULL; 392 mmdrop(mm); 393 } 394 395 return err; 396 } 397 398 struct user_arg_ptr { 399 #ifdef CONFIG_COMPAT 400 bool is_compat; 401 #endif 402 union { 403 const char __user *const __user *native; 404 #ifdef CONFIG_COMPAT 405 const compat_uptr_t __user *compat; 406 #endif 407 } ptr; 408 }; 409 410 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 411 { 412 const char __user *native; 413 414 #ifdef CONFIG_COMPAT 415 if (unlikely(argv.is_compat)) { 416 compat_uptr_t compat; 417 418 if (get_user(compat, argv.ptr.compat + nr)) 419 return ERR_PTR(-EFAULT); 420 421 return compat_ptr(compat); 422 } 423 #endif 424 425 if (get_user(native, argv.ptr.native + nr)) 426 return ERR_PTR(-EFAULT); 427 428 return native; 429 } 430 431 /* 432 * count() counts the number of strings in array ARGV. 433 */ 434 static int count(struct user_arg_ptr argv, int max) 435 { 436 int i = 0; 437 438 if (argv.ptr.native != NULL) { 439 for (;;) { 440 const char __user *p = get_user_arg_ptr(argv, i); 441 442 if (!p) 443 break; 444 445 if (IS_ERR(p)) 446 return -EFAULT; 447 448 if (i >= max) 449 return -E2BIG; 450 ++i; 451 452 if (fatal_signal_pending(current)) 453 return -ERESTARTNOHAND; 454 cond_resched(); 455 } 456 } 457 return i; 458 } 459 460 static int count_strings_kernel(const char *const *argv) 461 { 462 int i; 463 464 if (!argv) 465 return 0; 466 467 for (i = 0; argv[i]; ++i) { 468 if (i >= MAX_ARG_STRINGS) 469 return -E2BIG; 470 if (fatal_signal_pending(current)) 471 return -ERESTARTNOHAND; 472 cond_resched(); 473 } 474 return i; 475 } 476 477 static int bprm_stack_limits(struct linux_binprm *bprm) 478 { 479 unsigned long limit, ptr_size; 480 481 /* 482 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 483 * (whichever is smaller) for the argv+env strings. 484 * This ensures that: 485 * - the remaining binfmt code will not run out of stack space, 486 * - the program will have a reasonable amount of stack left 487 * to work from. 488 */ 489 limit = _STK_LIM / 4 * 3; 490 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 491 /* 492 * We've historically supported up to 32 pages (ARG_MAX) 493 * of argument strings even with small stacks 494 */ 495 limit = max_t(unsigned long, limit, ARG_MAX); 496 /* 497 * We must account for the size of all the argv and envp pointers to 498 * the argv and envp strings, since they will also take up space in 499 * the stack. They aren't stored until much later when we can't 500 * signal to the parent that the child has run out of stack space. 501 * Instead, calculate it here so it's possible to fail gracefully. 502 * 503 * In the case of argc = 0, make sure there is space for adding a 504 * empty string (which will bump argc to 1), to ensure confused 505 * userspace programs don't start processing from argv[1], thinking 506 * argc can never be 0, to keep them from walking envp by accident. 507 * See do_execveat_common(). 508 */ 509 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *); 510 if (limit <= ptr_size) 511 return -E2BIG; 512 limit -= ptr_size; 513 514 bprm->argmin = bprm->p - limit; 515 return 0; 516 } 517 518 /* 519 * 'copy_strings()' copies argument/environment strings from the old 520 * processes's memory to the new process's stack. The call to get_user_pages() 521 * ensures the destination page is created and not swapped out. 522 */ 523 static int copy_strings(int argc, struct user_arg_ptr argv, 524 struct linux_binprm *bprm) 525 { 526 struct page *kmapped_page = NULL; 527 char *kaddr = NULL; 528 unsigned long kpos = 0; 529 int ret; 530 531 while (argc-- > 0) { 532 const char __user *str; 533 int len; 534 unsigned long pos; 535 536 ret = -EFAULT; 537 str = get_user_arg_ptr(argv, argc); 538 if (IS_ERR(str)) 539 goto out; 540 541 len = strnlen_user(str, MAX_ARG_STRLEN); 542 if (!len) 543 goto out; 544 545 ret = -E2BIG; 546 if (!valid_arg_len(bprm, len)) 547 goto out; 548 549 /* We're going to work our way backwards. */ 550 pos = bprm->p; 551 str += len; 552 bprm->p -= len; 553 #ifdef CONFIG_MMU 554 if (bprm->p < bprm->argmin) 555 goto out; 556 #endif 557 558 while (len > 0) { 559 int offset, bytes_to_copy; 560 561 if (fatal_signal_pending(current)) { 562 ret = -ERESTARTNOHAND; 563 goto out; 564 } 565 cond_resched(); 566 567 offset = pos % PAGE_SIZE; 568 if (offset == 0) 569 offset = PAGE_SIZE; 570 571 bytes_to_copy = offset; 572 if (bytes_to_copy > len) 573 bytes_to_copy = len; 574 575 offset -= bytes_to_copy; 576 pos -= bytes_to_copy; 577 str -= bytes_to_copy; 578 len -= bytes_to_copy; 579 580 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 581 struct page *page; 582 583 page = get_arg_page(bprm, pos, 1); 584 if (!page) { 585 ret = -E2BIG; 586 goto out; 587 } 588 589 if (kmapped_page) { 590 flush_dcache_page(kmapped_page); 591 kunmap_local(kaddr); 592 put_arg_page(kmapped_page); 593 } 594 kmapped_page = page; 595 kaddr = kmap_local_page(kmapped_page); 596 kpos = pos & PAGE_MASK; 597 flush_arg_page(bprm, kpos, kmapped_page); 598 } 599 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 600 ret = -EFAULT; 601 goto out; 602 } 603 } 604 } 605 ret = 0; 606 out: 607 if (kmapped_page) { 608 flush_dcache_page(kmapped_page); 609 kunmap_local(kaddr); 610 put_arg_page(kmapped_page); 611 } 612 return ret; 613 } 614 615 /* 616 * Copy and argument/environment string from the kernel to the processes stack. 617 */ 618 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 619 { 620 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 621 unsigned long pos = bprm->p; 622 623 if (len == 0) 624 return -EFAULT; 625 if (!valid_arg_len(bprm, len)) 626 return -E2BIG; 627 628 /* We're going to work our way backwards. */ 629 arg += len; 630 bprm->p -= len; 631 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin) 632 return -E2BIG; 633 634 while (len > 0) { 635 unsigned int bytes_to_copy = min_t(unsigned int, len, 636 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 637 struct page *page; 638 639 pos -= bytes_to_copy; 640 arg -= bytes_to_copy; 641 len -= bytes_to_copy; 642 643 page = get_arg_page(bprm, pos, 1); 644 if (!page) 645 return -E2BIG; 646 flush_arg_page(bprm, pos & PAGE_MASK, page); 647 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy); 648 put_arg_page(page); 649 } 650 651 return 0; 652 } 653 EXPORT_SYMBOL(copy_string_kernel); 654 655 static int copy_strings_kernel(int argc, const char *const *argv, 656 struct linux_binprm *bprm) 657 { 658 while (argc-- > 0) { 659 int ret = copy_string_kernel(argv[argc], bprm); 660 if (ret < 0) 661 return ret; 662 if (fatal_signal_pending(current)) 663 return -ERESTARTNOHAND; 664 cond_resched(); 665 } 666 return 0; 667 } 668 669 #ifdef CONFIG_MMU 670 671 /* 672 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 673 * the binfmt code determines where the new stack should reside, we shift it to 674 * its final location. The process proceeds as follows: 675 * 676 * 1) Use shift to calculate the new vma endpoints. 677 * 2) Extend vma to cover both the old and new ranges. This ensures the 678 * arguments passed to subsequent functions are consistent. 679 * 3) Move vma's page tables to the new range. 680 * 4) Free up any cleared pgd range. 681 * 5) Shrink the vma to cover only the new range. 682 */ 683 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 684 { 685 struct mm_struct *mm = vma->vm_mm; 686 unsigned long old_start = vma->vm_start; 687 unsigned long old_end = vma->vm_end; 688 unsigned long length = old_end - old_start; 689 unsigned long new_start = old_start - shift; 690 unsigned long new_end = old_end - shift; 691 VMA_ITERATOR(vmi, mm, new_start); 692 struct vm_area_struct *next; 693 struct mmu_gather tlb; 694 695 BUG_ON(new_start > new_end); 696 697 /* 698 * ensure there are no vmas between where we want to go 699 * and where we are 700 */ 701 if (vma != vma_next(&vmi)) 702 return -EFAULT; 703 704 /* 705 * cover the whole range: [new_start, old_end) 706 */ 707 if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL)) 708 return -ENOMEM; 709 710 /* 711 * move the page tables downwards, on failure we rely on 712 * process cleanup to remove whatever mess we made. 713 */ 714 if (length != move_page_tables(vma, old_start, 715 vma, new_start, length, false)) 716 return -ENOMEM; 717 718 lru_add_drain(); 719 tlb_gather_mmu(&tlb, mm); 720 next = vma_next(&vmi); 721 if (new_end > old_start) { 722 /* 723 * when the old and new regions overlap clear from new_end. 724 */ 725 free_pgd_range(&tlb, new_end, old_end, new_end, 726 next ? next->vm_start : USER_PGTABLES_CEILING); 727 } else { 728 /* 729 * otherwise, clean from old_start; this is done to not touch 730 * the address space in [new_end, old_start) some architectures 731 * have constraints on va-space that make this illegal (IA64) - 732 * for the others its just a little faster. 733 */ 734 free_pgd_range(&tlb, old_start, old_end, new_end, 735 next ? next->vm_start : USER_PGTABLES_CEILING); 736 } 737 tlb_finish_mmu(&tlb); 738 739 vma_prev(&vmi); 740 /* Shrink the vma to just the new range */ 741 return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff); 742 } 743 744 /* 745 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 746 * the stack is optionally relocated, and some extra space is added. 747 */ 748 int setup_arg_pages(struct linux_binprm *bprm, 749 unsigned long stack_top, 750 int executable_stack) 751 { 752 unsigned long ret; 753 unsigned long stack_shift; 754 struct mm_struct *mm = current->mm; 755 struct vm_area_struct *vma = bprm->vma; 756 struct vm_area_struct *prev = NULL; 757 unsigned long vm_flags; 758 unsigned long stack_base; 759 unsigned long stack_size; 760 unsigned long stack_expand; 761 unsigned long rlim_stack; 762 struct mmu_gather tlb; 763 struct vma_iterator vmi; 764 765 #ifdef CONFIG_STACK_GROWSUP 766 /* Limit stack size */ 767 stack_base = bprm->rlim_stack.rlim_max; 768 769 stack_base = calc_max_stack_size(stack_base); 770 771 /* Add space for stack randomization. */ 772 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 773 774 /* Make sure we didn't let the argument array grow too large. */ 775 if (vma->vm_end - vma->vm_start > stack_base) 776 return -ENOMEM; 777 778 stack_base = PAGE_ALIGN(stack_top - stack_base); 779 780 stack_shift = vma->vm_start - stack_base; 781 mm->arg_start = bprm->p - stack_shift; 782 bprm->p = vma->vm_end - stack_shift; 783 #else 784 stack_top = arch_align_stack(stack_top); 785 stack_top = PAGE_ALIGN(stack_top); 786 787 if (unlikely(stack_top < mmap_min_addr) || 788 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 789 return -ENOMEM; 790 791 stack_shift = vma->vm_end - stack_top; 792 793 bprm->p -= stack_shift; 794 mm->arg_start = bprm->p; 795 #endif 796 797 if (bprm->loader) 798 bprm->loader -= stack_shift; 799 bprm->exec -= stack_shift; 800 801 if (mmap_write_lock_killable(mm)) 802 return -EINTR; 803 804 vm_flags = VM_STACK_FLAGS; 805 806 /* 807 * Adjust stack execute permissions; explicitly enable for 808 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 809 * (arch default) otherwise. 810 */ 811 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 812 vm_flags |= VM_EXEC; 813 else if (executable_stack == EXSTACK_DISABLE_X) 814 vm_flags &= ~VM_EXEC; 815 vm_flags |= mm->def_flags; 816 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 817 818 vma_iter_init(&vmi, mm, vma->vm_start); 819 820 tlb_gather_mmu(&tlb, mm); 821 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end, 822 vm_flags); 823 tlb_finish_mmu(&tlb); 824 825 if (ret) 826 goto out_unlock; 827 BUG_ON(prev != vma); 828 829 if (unlikely(vm_flags & VM_EXEC)) { 830 pr_warn_once("process '%pD4' started with executable stack\n", 831 bprm->file); 832 } 833 834 /* Move stack pages down in memory. */ 835 if (stack_shift) { 836 ret = shift_arg_pages(vma, stack_shift); 837 if (ret) 838 goto out_unlock; 839 } 840 841 /* mprotect_fixup is overkill to remove the temporary stack flags */ 842 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP); 843 844 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 845 stack_size = vma->vm_end - vma->vm_start; 846 /* 847 * Align this down to a page boundary as expand_stack 848 * will align it up. 849 */ 850 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 851 852 stack_expand = min(rlim_stack, stack_size + stack_expand); 853 854 #ifdef CONFIG_STACK_GROWSUP 855 stack_base = vma->vm_start + stack_expand; 856 #else 857 stack_base = vma->vm_end - stack_expand; 858 #endif 859 current->mm->start_stack = bprm->p; 860 ret = expand_stack_locked(vma, stack_base); 861 if (ret) 862 ret = -EFAULT; 863 864 out_unlock: 865 mmap_write_unlock(mm); 866 return ret; 867 } 868 EXPORT_SYMBOL(setup_arg_pages); 869 870 #else 871 872 /* 873 * Transfer the program arguments and environment from the holding pages 874 * onto the stack. The provided stack pointer is adjusted accordingly. 875 */ 876 int transfer_args_to_stack(struct linux_binprm *bprm, 877 unsigned long *sp_location) 878 { 879 unsigned long index, stop, sp; 880 int ret = 0; 881 882 stop = bprm->p >> PAGE_SHIFT; 883 sp = *sp_location; 884 885 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 886 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 887 char *src = kmap_local_page(bprm->page[index]) + offset; 888 sp -= PAGE_SIZE - offset; 889 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 890 ret = -EFAULT; 891 kunmap_local(src); 892 if (ret) 893 goto out; 894 } 895 896 *sp_location = sp; 897 898 out: 899 return ret; 900 } 901 EXPORT_SYMBOL(transfer_args_to_stack); 902 903 #endif /* CONFIG_MMU */ 904 905 static struct file *do_open_execat(int fd, struct filename *name, int flags) 906 { 907 struct file *file; 908 int err; 909 struct open_flags open_exec_flags = { 910 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 911 .acc_mode = MAY_EXEC, 912 .intent = LOOKUP_OPEN, 913 .lookup_flags = LOOKUP_FOLLOW, 914 }; 915 916 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 917 return ERR_PTR(-EINVAL); 918 if (flags & AT_SYMLINK_NOFOLLOW) 919 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 920 if (flags & AT_EMPTY_PATH) 921 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 922 923 file = do_filp_open(fd, name, &open_exec_flags); 924 if (IS_ERR(file)) 925 goto out; 926 927 /* 928 * may_open() has already checked for this, so it should be 929 * impossible to trip now. But we need to be extra cautious 930 * and check again at the very end too. 931 */ 932 err = -EACCES; 933 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 934 path_noexec(&file->f_path))) 935 goto exit; 936 937 err = deny_write_access(file); 938 if (err) 939 goto exit; 940 941 out: 942 return file; 943 944 exit: 945 fput(file); 946 return ERR_PTR(err); 947 } 948 949 struct file *open_exec(const char *name) 950 { 951 struct filename *filename = getname_kernel(name); 952 struct file *f = ERR_CAST(filename); 953 954 if (!IS_ERR(filename)) { 955 f = do_open_execat(AT_FDCWD, filename, 0); 956 putname(filename); 957 } 958 return f; 959 } 960 EXPORT_SYMBOL(open_exec); 961 962 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC) 963 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 964 { 965 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 966 if (res > 0) 967 flush_icache_user_range(addr, addr + len); 968 return res; 969 } 970 EXPORT_SYMBOL(read_code); 971 #endif 972 973 /* 974 * Maps the mm_struct mm into the current task struct. 975 * On success, this function returns with exec_update_lock 976 * held for writing. 977 */ 978 static int exec_mmap(struct mm_struct *mm) 979 { 980 struct task_struct *tsk; 981 struct mm_struct *old_mm, *active_mm; 982 int ret; 983 984 /* Notify parent that we're no longer interested in the old VM */ 985 tsk = current; 986 old_mm = current->mm; 987 exec_mm_release(tsk, old_mm); 988 if (old_mm) 989 sync_mm_rss(old_mm); 990 991 ret = down_write_killable(&tsk->signal->exec_update_lock); 992 if (ret) 993 return ret; 994 995 if (old_mm) { 996 /* 997 * If there is a pending fatal signal perhaps a signal 998 * whose default action is to create a coredump get 999 * out and die instead of going through with the exec. 1000 */ 1001 ret = mmap_read_lock_killable(old_mm); 1002 if (ret) { 1003 up_write(&tsk->signal->exec_update_lock); 1004 return ret; 1005 } 1006 } 1007 1008 task_lock(tsk); 1009 membarrier_exec_mmap(mm); 1010 1011 local_irq_disable(); 1012 active_mm = tsk->active_mm; 1013 tsk->active_mm = mm; 1014 tsk->mm = mm; 1015 mm_init_cid(mm); 1016 /* 1017 * This prevents preemption while active_mm is being loaded and 1018 * it and mm are being updated, which could cause problems for 1019 * lazy tlb mm refcounting when these are updated by context 1020 * switches. Not all architectures can handle irqs off over 1021 * activate_mm yet. 1022 */ 1023 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1024 local_irq_enable(); 1025 activate_mm(active_mm, mm); 1026 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1027 local_irq_enable(); 1028 lru_gen_add_mm(mm); 1029 task_unlock(tsk); 1030 lru_gen_use_mm(mm); 1031 if (old_mm) { 1032 mmap_read_unlock(old_mm); 1033 BUG_ON(active_mm != old_mm); 1034 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1035 mm_update_next_owner(old_mm); 1036 mmput(old_mm); 1037 return 0; 1038 } 1039 mmdrop_lazy_tlb(active_mm); 1040 return 0; 1041 } 1042 1043 static int de_thread(struct task_struct *tsk) 1044 { 1045 struct signal_struct *sig = tsk->signal; 1046 struct sighand_struct *oldsighand = tsk->sighand; 1047 spinlock_t *lock = &oldsighand->siglock; 1048 1049 if (thread_group_empty(tsk)) 1050 goto no_thread_group; 1051 1052 /* 1053 * Kill all other threads in the thread group. 1054 */ 1055 spin_lock_irq(lock); 1056 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) { 1057 /* 1058 * Another group action in progress, just 1059 * return so that the signal is processed. 1060 */ 1061 spin_unlock_irq(lock); 1062 return -EAGAIN; 1063 } 1064 1065 sig->group_exec_task = tsk; 1066 sig->notify_count = zap_other_threads(tsk); 1067 if (!thread_group_leader(tsk)) 1068 sig->notify_count--; 1069 1070 while (sig->notify_count) { 1071 __set_current_state(TASK_KILLABLE); 1072 spin_unlock_irq(lock); 1073 schedule(); 1074 if (__fatal_signal_pending(tsk)) 1075 goto killed; 1076 spin_lock_irq(lock); 1077 } 1078 spin_unlock_irq(lock); 1079 1080 /* 1081 * At this point all other threads have exited, all we have to 1082 * do is to wait for the thread group leader to become inactive, 1083 * and to assume its PID: 1084 */ 1085 if (!thread_group_leader(tsk)) { 1086 struct task_struct *leader = tsk->group_leader; 1087 1088 for (;;) { 1089 cgroup_threadgroup_change_begin(tsk); 1090 write_lock_irq(&tasklist_lock); 1091 /* 1092 * Do this under tasklist_lock to ensure that 1093 * exit_notify() can't miss ->group_exec_task 1094 */ 1095 sig->notify_count = -1; 1096 if (likely(leader->exit_state)) 1097 break; 1098 __set_current_state(TASK_KILLABLE); 1099 write_unlock_irq(&tasklist_lock); 1100 cgroup_threadgroup_change_end(tsk); 1101 schedule(); 1102 if (__fatal_signal_pending(tsk)) 1103 goto killed; 1104 } 1105 1106 /* 1107 * The only record we have of the real-time age of a 1108 * process, regardless of execs it's done, is start_time. 1109 * All the past CPU time is accumulated in signal_struct 1110 * from sister threads now dead. But in this non-leader 1111 * exec, nothing survives from the original leader thread, 1112 * whose birth marks the true age of this process now. 1113 * When we take on its identity by switching to its PID, we 1114 * also take its birthdate (always earlier than our own). 1115 */ 1116 tsk->start_time = leader->start_time; 1117 tsk->start_boottime = leader->start_boottime; 1118 1119 BUG_ON(!same_thread_group(leader, tsk)); 1120 /* 1121 * An exec() starts a new thread group with the 1122 * TGID of the previous thread group. Rehash the 1123 * two threads with a switched PID, and release 1124 * the former thread group leader: 1125 */ 1126 1127 /* Become a process group leader with the old leader's pid. 1128 * The old leader becomes a thread of the this thread group. 1129 */ 1130 exchange_tids(tsk, leader); 1131 transfer_pid(leader, tsk, PIDTYPE_TGID); 1132 transfer_pid(leader, tsk, PIDTYPE_PGID); 1133 transfer_pid(leader, tsk, PIDTYPE_SID); 1134 1135 list_replace_rcu(&leader->tasks, &tsk->tasks); 1136 list_replace_init(&leader->sibling, &tsk->sibling); 1137 1138 tsk->group_leader = tsk; 1139 leader->group_leader = tsk; 1140 1141 tsk->exit_signal = SIGCHLD; 1142 leader->exit_signal = -1; 1143 1144 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1145 leader->exit_state = EXIT_DEAD; 1146 1147 /* 1148 * We are going to release_task()->ptrace_unlink() silently, 1149 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1150 * the tracer won't block again waiting for this thread. 1151 */ 1152 if (unlikely(leader->ptrace)) 1153 __wake_up_parent(leader, leader->parent); 1154 write_unlock_irq(&tasklist_lock); 1155 cgroup_threadgroup_change_end(tsk); 1156 1157 release_task(leader); 1158 } 1159 1160 sig->group_exec_task = NULL; 1161 sig->notify_count = 0; 1162 1163 no_thread_group: 1164 /* we have changed execution domain */ 1165 tsk->exit_signal = SIGCHLD; 1166 1167 BUG_ON(!thread_group_leader(tsk)); 1168 return 0; 1169 1170 killed: 1171 /* protects against exit_notify() and __exit_signal() */ 1172 read_lock(&tasklist_lock); 1173 sig->group_exec_task = NULL; 1174 sig->notify_count = 0; 1175 read_unlock(&tasklist_lock); 1176 return -EAGAIN; 1177 } 1178 1179 1180 /* 1181 * This function makes sure the current process has its own signal table, 1182 * so that flush_signal_handlers can later reset the handlers without 1183 * disturbing other processes. (Other processes might share the signal 1184 * table via the CLONE_SIGHAND option to clone().) 1185 */ 1186 static int unshare_sighand(struct task_struct *me) 1187 { 1188 struct sighand_struct *oldsighand = me->sighand; 1189 1190 if (refcount_read(&oldsighand->count) != 1) { 1191 struct sighand_struct *newsighand; 1192 /* 1193 * This ->sighand is shared with the CLONE_SIGHAND 1194 * but not CLONE_THREAD task, switch to the new one. 1195 */ 1196 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1197 if (!newsighand) 1198 return -ENOMEM; 1199 1200 refcount_set(&newsighand->count, 1); 1201 1202 write_lock_irq(&tasklist_lock); 1203 spin_lock(&oldsighand->siglock); 1204 memcpy(newsighand->action, oldsighand->action, 1205 sizeof(newsighand->action)); 1206 rcu_assign_pointer(me->sighand, newsighand); 1207 spin_unlock(&oldsighand->siglock); 1208 write_unlock_irq(&tasklist_lock); 1209 1210 __cleanup_sighand(oldsighand); 1211 } 1212 return 0; 1213 } 1214 1215 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1216 { 1217 task_lock(tsk); 1218 /* Always NUL terminated and zero-padded */ 1219 strscpy_pad(buf, tsk->comm, buf_size); 1220 task_unlock(tsk); 1221 return buf; 1222 } 1223 EXPORT_SYMBOL_GPL(__get_task_comm); 1224 1225 /* 1226 * These functions flushes out all traces of the currently running executable 1227 * so that a new one can be started 1228 */ 1229 1230 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1231 { 1232 task_lock(tsk); 1233 trace_task_rename(tsk, buf); 1234 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm)); 1235 task_unlock(tsk); 1236 perf_event_comm(tsk, exec); 1237 } 1238 1239 /* 1240 * Calling this is the point of no return. None of the failures will be 1241 * seen by userspace since either the process is already taking a fatal 1242 * signal (via de_thread() or coredump), or will have SEGV raised 1243 * (after exec_mmap()) by search_binary_handler (see below). 1244 */ 1245 int begin_new_exec(struct linux_binprm * bprm) 1246 { 1247 struct task_struct *me = current; 1248 int retval; 1249 1250 /* Once we are committed compute the creds */ 1251 retval = bprm_creds_from_file(bprm); 1252 if (retval) 1253 return retval; 1254 1255 /* 1256 * Ensure all future errors are fatal. 1257 */ 1258 bprm->point_of_no_return = true; 1259 1260 /* 1261 * Make this the only thread in the thread group. 1262 */ 1263 retval = de_thread(me); 1264 if (retval) 1265 goto out; 1266 1267 /* 1268 * Cancel any io_uring activity across execve 1269 */ 1270 io_uring_task_cancel(); 1271 1272 /* Ensure the files table is not shared. */ 1273 retval = unshare_files(); 1274 if (retval) 1275 goto out; 1276 1277 /* 1278 * Must be called _before_ exec_mmap() as bprm->mm is 1279 * not visible until then. Doing it here also ensures 1280 * we don't race against replace_mm_exe_file(). 1281 */ 1282 retval = set_mm_exe_file(bprm->mm, bprm->file); 1283 if (retval) 1284 goto out; 1285 1286 /* If the binary is not readable then enforce mm->dumpable=0 */ 1287 would_dump(bprm, bprm->file); 1288 if (bprm->have_execfd) 1289 would_dump(bprm, bprm->executable); 1290 1291 /* 1292 * Release all of the old mmap stuff 1293 */ 1294 acct_arg_size(bprm, 0); 1295 retval = exec_mmap(bprm->mm); 1296 if (retval) 1297 goto out; 1298 1299 bprm->mm = NULL; 1300 1301 retval = exec_task_namespaces(); 1302 if (retval) 1303 goto out_unlock; 1304 1305 #ifdef CONFIG_POSIX_TIMERS 1306 spin_lock_irq(&me->sighand->siglock); 1307 posix_cpu_timers_exit(me); 1308 spin_unlock_irq(&me->sighand->siglock); 1309 exit_itimers(me); 1310 flush_itimer_signals(); 1311 #endif 1312 1313 /* 1314 * Make the signal table private. 1315 */ 1316 retval = unshare_sighand(me); 1317 if (retval) 1318 goto out_unlock; 1319 1320 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | 1321 PF_NOFREEZE | PF_NO_SETAFFINITY); 1322 flush_thread(); 1323 me->personality &= ~bprm->per_clear; 1324 1325 clear_syscall_work_syscall_user_dispatch(me); 1326 1327 /* 1328 * We have to apply CLOEXEC before we change whether the process is 1329 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1330 * trying to access the should-be-closed file descriptors of a process 1331 * undergoing exec(2). 1332 */ 1333 do_close_on_exec(me->files); 1334 1335 if (bprm->secureexec) { 1336 /* Make sure parent cannot signal privileged process. */ 1337 me->pdeath_signal = 0; 1338 1339 /* 1340 * For secureexec, reset the stack limit to sane default to 1341 * avoid bad behavior from the prior rlimits. This has to 1342 * happen before arch_pick_mmap_layout(), which examines 1343 * RLIMIT_STACK, but after the point of no return to avoid 1344 * needing to clean up the change on failure. 1345 */ 1346 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1347 bprm->rlim_stack.rlim_cur = _STK_LIM; 1348 } 1349 1350 me->sas_ss_sp = me->sas_ss_size = 0; 1351 1352 /* 1353 * Figure out dumpability. Note that this checking only of current 1354 * is wrong, but userspace depends on it. This should be testing 1355 * bprm->secureexec instead. 1356 */ 1357 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1358 !(uid_eq(current_euid(), current_uid()) && 1359 gid_eq(current_egid(), current_gid()))) 1360 set_dumpable(current->mm, suid_dumpable); 1361 else 1362 set_dumpable(current->mm, SUID_DUMP_USER); 1363 1364 perf_event_exec(); 1365 __set_task_comm(me, kbasename(bprm->filename), true); 1366 1367 /* An exec changes our domain. We are no longer part of the thread 1368 group */ 1369 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1370 flush_signal_handlers(me, 0); 1371 1372 retval = set_cred_ucounts(bprm->cred); 1373 if (retval < 0) 1374 goto out_unlock; 1375 1376 /* 1377 * install the new credentials for this executable 1378 */ 1379 security_bprm_committing_creds(bprm); 1380 1381 commit_creds(bprm->cred); 1382 bprm->cred = NULL; 1383 1384 /* 1385 * Disable monitoring for regular users 1386 * when executing setuid binaries. Must 1387 * wait until new credentials are committed 1388 * by commit_creds() above 1389 */ 1390 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1391 perf_event_exit_task(me); 1392 /* 1393 * cred_guard_mutex must be held at least to this point to prevent 1394 * ptrace_attach() from altering our determination of the task's 1395 * credentials; any time after this it may be unlocked. 1396 */ 1397 security_bprm_committed_creds(bprm); 1398 1399 /* Pass the opened binary to the interpreter. */ 1400 if (bprm->have_execfd) { 1401 retval = get_unused_fd_flags(0); 1402 if (retval < 0) 1403 goto out_unlock; 1404 fd_install(retval, bprm->executable); 1405 bprm->executable = NULL; 1406 bprm->execfd = retval; 1407 } 1408 return 0; 1409 1410 out_unlock: 1411 up_write(&me->signal->exec_update_lock); 1412 out: 1413 return retval; 1414 } 1415 EXPORT_SYMBOL(begin_new_exec); 1416 1417 void would_dump(struct linux_binprm *bprm, struct file *file) 1418 { 1419 struct inode *inode = file_inode(file); 1420 struct mnt_idmap *idmap = file_mnt_idmap(file); 1421 if (inode_permission(idmap, inode, MAY_READ) < 0) { 1422 struct user_namespace *old, *user_ns; 1423 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1424 1425 /* Ensure mm->user_ns contains the executable */ 1426 user_ns = old = bprm->mm->user_ns; 1427 while ((user_ns != &init_user_ns) && 1428 !privileged_wrt_inode_uidgid(user_ns, idmap, inode)) 1429 user_ns = user_ns->parent; 1430 1431 if (old != user_ns) { 1432 bprm->mm->user_ns = get_user_ns(user_ns); 1433 put_user_ns(old); 1434 } 1435 } 1436 } 1437 EXPORT_SYMBOL(would_dump); 1438 1439 void setup_new_exec(struct linux_binprm * bprm) 1440 { 1441 /* Setup things that can depend upon the personality */ 1442 struct task_struct *me = current; 1443 1444 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1445 1446 arch_setup_new_exec(); 1447 1448 /* Set the new mm task size. We have to do that late because it may 1449 * depend on TIF_32BIT which is only updated in flush_thread() on 1450 * some architectures like powerpc 1451 */ 1452 me->mm->task_size = TASK_SIZE; 1453 up_write(&me->signal->exec_update_lock); 1454 mutex_unlock(&me->signal->cred_guard_mutex); 1455 } 1456 EXPORT_SYMBOL(setup_new_exec); 1457 1458 /* Runs immediately before start_thread() takes over. */ 1459 void finalize_exec(struct linux_binprm *bprm) 1460 { 1461 /* Store any stack rlimit changes before starting thread. */ 1462 task_lock(current->group_leader); 1463 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1464 task_unlock(current->group_leader); 1465 } 1466 EXPORT_SYMBOL(finalize_exec); 1467 1468 /* 1469 * Prepare credentials and lock ->cred_guard_mutex. 1470 * setup_new_exec() commits the new creds and drops the lock. 1471 * Or, if exec fails before, free_bprm() should release ->cred 1472 * and unlock. 1473 */ 1474 static int prepare_bprm_creds(struct linux_binprm *bprm) 1475 { 1476 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1477 return -ERESTARTNOINTR; 1478 1479 bprm->cred = prepare_exec_creds(); 1480 if (likely(bprm->cred)) 1481 return 0; 1482 1483 mutex_unlock(¤t->signal->cred_guard_mutex); 1484 return -ENOMEM; 1485 } 1486 1487 static void free_bprm(struct linux_binprm *bprm) 1488 { 1489 if (bprm->mm) { 1490 acct_arg_size(bprm, 0); 1491 mmput(bprm->mm); 1492 } 1493 free_arg_pages(bprm); 1494 if (bprm->cred) { 1495 mutex_unlock(¤t->signal->cred_guard_mutex); 1496 abort_creds(bprm->cred); 1497 } 1498 if (bprm->file) { 1499 allow_write_access(bprm->file); 1500 fput(bprm->file); 1501 } 1502 if (bprm->executable) 1503 fput(bprm->executable); 1504 /* If a binfmt changed the interp, free it. */ 1505 if (bprm->interp != bprm->filename) 1506 kfree(bprm->interp); 1507 kfree(bprm->fdpath); 1508 kfree(bprm); 1509 } 1510 1511 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename) 1512 { 1513 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1514 int retval = -ENOMEM; 1515 if (!bprm) 1516 goto out; 1517 1518 if (fd == AT_FDCWD || filename->name[0] == '/') { 1519 bprm->filename = filename->name; 1520 } else { 1521 if (filename->name[0] == '\0') 1522 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1523 else 1524 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1525 fd, filename->name); 1526 if (!bprm->fdpath) 1527 goto out_free; 1528 1529 bprm->filename = bprm->fdpath; 1530 } 1531 bprm->interp = bprm->filename; 1532 1533 retval = bprm_mm_init(bprm); 1534 if (retval) 1535 goto out_free; 1536 return bprm; 1537 1538 out_free: 1539 free_bprm(bprm); 1540 out: 1541 return ERR_PTR(retval); 1542 } 1543 1544 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1545 { 1546 /* If a binfmt changed the interp, free it first. */ 1547 if (bprm->interp != bprm->filename) 1548 kfree(bprm->interp); 1549 bprm->interp = kstrdup(interp, GFP_KERNEL); 1550 if (!bprm->interp) 1551 return -ENOMEM; 1552 return 0; 1553 } 1554 EXPORT_SYMBOL(bprm_change_interp); 1555 1556 /* 1557 * determine how safe it is to execute the proposed program 1558 * - the caller must hold ->cred_guard_mutex to protect against 1559 * PTRACE_ATTACH or seccomp thread-sync 1560 */ 1561 static void check_unsafe_exec(struct linux_binprm *bprm) 1562 { 1563 struct task_struct *p = current, *t; 1564 unsigned n_fs; 1565 1566 if (p->ptrace) 1567 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1568 1569 /* 1570 * This isn't strictly necessary, but it makes it harder for LSMs to 1571 * mess up. 1572 */ 1573 if (task_no_new_privs(current)) 1574 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1575 1576 /* 1577 * If another task is sharing our fs, we cannot safely 1578 * suid exec because the differently privileged task 1579 * will be able to manipulate the current directory, etc. 1580 * It would be nice to force an unshare instead... 1581 */ 1582 t = p; 1583 n_fs = 1; 1584 spin_lock(&p->fs->lock); 1585 rcu_read_lock(); 1586 while_each_thread(p, t) { 1587 if (t->fs == p->fs) 1588 n_fs++; 1589 } 1590 rcu_read_unlock(); 1591 1592 if (p->fs->users > n_fs) 1593 bprm->unsafe |= LSM_UNSAFE_SHARE; 1594 else 1595 p->fs->in_exec = 1; 1596 spin_unlock(&p->fs->lock); 1597 } 1598 1599 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1600 { 1601 /* Handle suid and sgid on files */ 1602 struct mnt_idmap *idmap; 1603 struct inode *inode = file_inode(file); 1604 unsigned int mode; 1605 vfsuid_t vfsuid; 1606 vfsgid_t vfsgid; 1607 1608 if (!mnt_may_suid(file->f_path.mnt)) 1609 return; 1610 1611 if (task_no_new_privs(current)) 1612 return; 1613 1614 mode = READ_ONCE(inode->i_mode); 1615 if (!(mode & (S_ISUID|S_ISGID))) 1616 return; 1617 1618 idmap = file_mnt_idmap(file); 1619 1620 /* Be careful if suid/sgid is set */ 1621 inode_lock(inode); 1622 1623 /* reload atomically mode/uid/gid now that lock held */ 1624 mode = inode->i_mode; 1625 vfsuid = i_uid_into_vfsuid(idmap, inode); 1626 vfsgid = i_gid_into_vfsgid(idmap, inode); 1627 inode_unlock(inode); 1628 1629 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1630 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) || 1631 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid)) 1632 return; 1633 1634 if (mode & S_ISUID) { 1635 bprm->per_clear |= PER_CLEAR_ON_SETID; 1636 bprm->cred->euid = vfsuid_into_kuid(vfsuid); 1637 } 1638 1639 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1640 bprm->per_clear |= PER_CLEAR_ON_SETID; 1641 bprm->cred->egid = vfsgid_into_kgid(vfsgid); 1642 } 1643 } 1644 1645 /* 1646 * Compute brpm->cred based upon the final binary. 1647 */ 1648 static int bprm_creds_from_file(struct linux_binprm *bprm) 1649 { 1650 /* Compute creds based on which file? */ 1651 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1652 1653 bprm_fill_uid(bprm, file); 1654 return security_bprm_creds_from_file(bprm, file); 1655 } 1656 1657 /* 1658 * Fill the binprm structure from the inode. 1659 * Read the first BINPRM_BUF_SIZE bytes 1660 * 1661 * This may be called multiple times for binary chains (scripts for example). 1662 */ 1663 static int prepare_binprm(struct linux_binprm *bprm) 1664 { 1665 loff_t pos = 0; 1666 1667 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1668 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1669 } 1670 1671 /* 1672 * Arguments are '\0' separated strings found at the location bprm->p 1673 * points to; chop off the first by relocating brpm->p to right after 1674 * the first '\0' encountered. 1675 */ 1676 int remove_arg_zero(struct linux_binprm *bprm) 1677 { 1678 int ret = 0; 1679 unsigned long offset; 1680 char *kaddr; 1681 struct page *page; 1682 1683 if (!bprm->argc) 1684 return 0; 1685 1686 do { 1687 offset = bprm->p & ~PAGE_MASK; 1688 page = get_arg_page(bprm, bprm->p, 0); 1689 if (!page) { 1690 ret = -EFAULT; 1691 goto out; 1692 } 1693 kaddr = kmap_local_page(page); 1694 1695 for (; offset < PAGE_SIZE && kaddr[offset]; 1696 offset++, bprm->p++) 1697 ; 1698 1699 kunmap_local(kaddr); 1700 put_arg_page(page); 1701 } while (offset == PAGE_SIZE); 1702 1703 bprm->p++; 1704 bprm->argc--; 1705 ret = 0; 1706 1707 out: 1708 return ret; 1709 } 1710 EXPORT_SYMBOL(remove_arg_zero); 1711 1712 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1713 /* 1714 * cycle the list of binary formats handler, until one recognizes the image 1715 */ 1716 static int search_binary_handler(struct linux_binprm *bprm) 1717 { 1718 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1719 struct linux_binfmt *fmt; 1720 int retval; 1721 1722 retval = prepare_binprm(bprm); 1723 if (retval < 0) 1724 return retval; 1725 1726 retval = security_bprm_check(bprm); 1727 if (retval) 1728 return retval; 1729 1730 retval = -ENOENT; 1731 retry: 1732 read_lock(&binfmt_lock); 1733 list_for_each_entry(fmt, &formats, lh) { 1734 if (!try_module_get(fmt->module)) 1735 continue; 1736 read_unlock(&binfmt_lock); 1737 1738 retval = fmt->load_binary(bprm); 1739 1740 read_lock(&binfmt_lock); 1741 put_binfmt(fmt); 1742 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1743 read_unlock(&binfmt_lock); 1744 return retval; 1745 } 1746 } 1747 read_unlock(&binfmt_lock); 1748 1749 if (need_retry) { 1750 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1751 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1752 return retval; 1753 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1754 return retval; 1755 need_retry = false; 1756 goto retry; 1757 } 1758 1759 return retval; 1760 } 1761 1762 /* binfmt handlers will call back into begin_new_exec() on success. */ 1763 static int exec_binprm(struct linux_binprm *bprm) 1764 { 1765 pid_t old_pid, old_vpid; 1766 int ret, depth; 1767 1768 /* Need to fetch pid before load_binary changes it */ 1769 old_pid = current->pid; 1770 rcu_read_lock(); 1771 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1772 rcu_read_unlock(); 1773 1774 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1775 for (depth = 0;; depth++) { 1776 struct file *exec; 1777 if (depth > 5) 1778 return -ELOOP; 1779 1780 ret = search_binary_handler(bprm); 1781 if (ret < 0) 1782 return ret; 1783 if (!bprm->interpreter) 1784 break; 1785 1786 exec = bprm->file; 1787 bprm->file = bprm->interpreter; 1788 bprm->interpreter = NULL; 1789 1790 allow_write_access(exec); 1791 if (unlikely(bprm->have_execfd)) { 1792 if (bprm->executable) { 1793 fput(exec); 1794 return -ENOEXEC; 1795 } 1796 bprm->executable = exec; 1797 } else 1798 fput(exec); 1799 } 1800 1801 audit_bprm(bprm); 1802 trace_sched_process_exec(current, old_pid, bprm); 1803 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1804 proc_exec_connector(current); 1805 return 0; 1806 } 1807 1808 /* 1809 * sys_execve() executes a new program. 1810 */ 1811 static int bprm_execve(struct linux_binprm *bprm, 1812 int fd, struct filename *filename, int flags) 1813 { 1814 struct file *file; 1815 int retval; 1816 1817 retval = prepare_bprm_creds(bprm); 1818 if (retval) 1819 return retval; 1820 1821 /* 1822 * Check for unsafe execution states before exec_binprm(), which 1823 * will call back into begin_new_exec(), into bprm_creds_from_file(), 1824 * where setuid-ness is evaluated. 1825 */ 1826 check_unsafe_exec(bprm); 1827 current->in_execve = 1; 1828 sched_mm_cid_before_execve(current); 1829 1830 file = do_open_execat(fd, filename, flags); 1831 retval = PTR_ERR(file); 1832 if (IS_ERR(file)) 1833 goto out_unmark; 1834 1835 sched_exec(); 1836 1837 bprm->file = file; 1838 /* 1839 * Record that a name derived from an O_CLOEXEC fd will be 1840 * inaccessible after exec. This allows the code in exec to 1841 * choose to fail when the executable is not mmaped into the 1842 * interpreter and an open file descriptor is not passed to 1843 * the interpreter. This makes for a better user experience 1844 * than having the interpreter start and then immediately fail 1845 * when it finds the executable is inaccessible. 1846 */ 1847 if (bprm->fdpath && get_close_on_exec(fd)) 1848 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1849 1850 /* Set the unchanging part of bprm->cred */ 1851 retval = security_bprm_creds_for_exec(bprm); 1852 if (retval) 1853 goto out; 1854 1855 retval = exec_binprm(bprm); 1856 if (retval < 0) 1857 goto out; 1858 1859 sched_mm_cid_after_execve(current); 1860 /* execve succeeded */ 1861 current->fs->in_exec = 0; 1862 current->in_execve = 0; 1863 rseq_execve(current); 1864 user_events_execve(current); 1865 acct_update_integrals(current); 1866 task_numa_free(current, false); 1867 return retval; 1868 1869 out: 1870 /* 1871 * If past the point of no return ensure the code never 1872 * returns to the userspace process. Use an existing fatal 1873 * signal if present otherwise terminate the process with 1874 * SIGSEGV. 1875 */ 1876 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1877 force_fatal_sig(SIGSEGV); 1878 1879 out_unmark: 1880 sched_mm_cid_after_execve(current); 1881 current->fs->in_exec = 0; 1882 current->in_execve = 0; 1883 1884 return retval; 1885 } 1886 1887 static int do_execveat_common(int fd, struct filename *filename, 1888 struct user_arg_ptr argv, 1889 struct user_arg_ptr envp, 1890 int flags) 1891 { 1892 struct linux_binprm *bprm; 1893 int retval; 1894 1895 if (IS_ERR(filename)) 1896 return PTR_ERR(filename); 1897 1898 /* 1899 * We move the actual failure in case of RLIMIT_NPROC excess from 1900 * set*uid() to execve() because too many poorly written programs 1901 * don't check setuid() return code. Here we additionally recheck 1902 * whether NPROC limit is still exceeded. 1903 */ 1904 if ((current->flags & PF_NPROC_EXCEEDED) && 1905 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1906 retval = -EAGAIN; 1907 goto out_ret; 1908 } 1909 1910 /* We're below the limit (still or again), so we don't want to make 1911 * further execve() calls fail. */ 1912 current->flags &= ~PF_NPROC_EXCEEDED; 1913 1914 bprm = alloc_bprm(fd, filename); 1915 if (IS_ERR(bprm)) { 1916 retval = PTR_ERR(bprm); 1917 goto out_ret; 1918 } 1919 1920 retval = count(argv, MAX_ARG_STRINGS); 1921 if (retval == 0) 1922 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n", 1923 current->comm, bprm->filename); 1924 if (retval < 0) 1925 goto out_free; 1926 bprm->argc = retval; 1927 1928 retval = count(envp, MAX_ARG_STRINGS); 1929 if (retval < 0) 1930 goto out_free; 1931 bprm->envc = retval; 1932 1933 retval = bprm_stack_limits(bprm); 1934 if (retval < 0) 1935 goto out_free; 1936 1937 retval = copy_string_kernel(bprm->filename, bprm); 1938 if (retval < 0) 1939 goto out_free; 1940 bprm->exec = bprm->p; 1941 1942 retval = copy_strings(bprm->envc, envp, bprm); 1943 if (retval < 0) 1944 goto out_free; 1945 1946 retval = copy_strings(bprm->argc, argv, bprm); 1947 if (retval < 0) 1948 goto out_free; 1949 1950 /* 1951 * When argv is empty, add an empty string ("") as argv[0] to 1952 * ensure confused userspace programs that start processing 1953 * from argv[1] won't end up walking envp. See also 1954 * bprm_stack_limits(). 1955 */ 1956 if (bprm->argc == 0) { 1957 retval = copy_string_kernel("", bprm); 1958 if (retval < 0) 1959 goto out_free; 1960 bprm->argc = 1; 1961 } 1962 1963 retval = bprm_execve(bprm, fd, filename, flags); 1964 out_free: 1965 free_bprm(bprm); 1966 1967 out_ret: 1968 putname(filename); 1969 return retval; 1970 } 1971 1972 int kernel_execve(const char *kernel_filename, 1973 const char *const *argv, const char *const *envp) 1974 { 1975 struct filename *filename; 1976 struct linux_binprm *bprm; 1977 int fd = AT_FDCWD; 1978 int retval; 1979 1980 /* It is non-sense for kernel threads to call execve */ 1981 if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) 1982 return -EINVAL; 1983 1984 filename = getname_kernel(kernel_filename); 1985 if (IS_ERR(filename)) 1986 return PTR_ERR(filename); 1987 1988 bprm = alloc_bprm(fd, filename); 1989 if (IS_ERR(bprm)) { 1990 retval = PTR_ERR(bprm); 1991 goto out_ret; 1992 } 1993 1994 retval = count_strings_kernel(argv); 1995 if (WARN_ON_ONCE(retval == 0)) 1996 retval = -EINVAL; 1997 if (retval < 0) 1998 goto out_free; 1999 bprm->argc = retval; 2000 2001 retval = count_strings_kernel(envp); 2002 if (retval < 0) 2003 goto out_free; 2004 bprm->envc = retval; 2005 2006 retval = bprm_stack_limits(bprm); 2007 if (retval < 0) 2008 goto out_free; 2009 2010 retval = copy_string_kernel(bprm->filename, bprm); 2011 if (retval < 0) 2012 goto out_free; 2013 bprm->exec = bprm->p; 2014 2015 retval = copy_strings_kernel(bprm->envc, envp, bprm); 2016 if (retval < 0) 2017 goto out_free; 2018 2019 retval = copy_strings_kernel(bprm->argc, argv, bprm); 2020 if (retval < 0) 2021 goto out_free; 2022 2023 retval = bprm_execve(bprm, fd, filename, 0); 2024 out_free: 2025 free_bprm(bprm); 2026 out_ret: 2027 putname(filename); 2028 return retval; 2029 } 2030 2031 static int do_execve(struct filename *filename, 2032 const char __user *const __user *__argv, 2033 const char __user *const __user *__envp) 2034 { 2035 struct user_arg_ptr argv = { .ptr.native = __argv }; 2036 struct user_arg_ptr envp = { .ptr.native = __envp }; 2037 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2038 } 2039 2040 static int do_execveat(int fd, struct filename *filename, 2041 const char __user *const __user *__argv, 2042 const char __user *const __user *__envp, 2043 int flags) 2044 { 2045 struct user_arg_ptr argv = { .ptr.native = __argv }; 2046 struct user_arg_ptr envp = { .ptr.native = __envp }; 2047 2048 return do_execveat_common(fd, filename, argv, envp, flags); 2049 } 2050 2051 #ifdef CONFIG_COMPAT 2052 static int compat_do_execve(struct filename *filename, 2053 const compat_uptr_t __user *__argv, 2054 const compat_uptr_t __user *__envp) 2055 { 2056 struct user_arg_ptr argv = { 2057 .is_compat = true, 2058 .ptr.compat = __argv, 2059 }; 2060 struct user_arg_ptr envp = { 2061 .is_compat = true, 2062 .ptr.compat = __envp, 2063 }; 2064 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2065 } 2066 2067 static int compat_do_execveat(int fd, struct filename *filename, 2068 const compat_uptr_t __user *__argv, 2069 const compat_uptr_t __user *__envp, 2070 int flags) 2071 { 2072 struct user_arg_ptr argv = { 2073 .is_compat = true, 2074 .ptr.compat = __argv, 2075 }; 2076 struct user_arg_ptr envp = { 2077 .is_compat = true, 2078 .ptr.compat = __envp, 2079 }; 2080 return do_execveat_common(fd, filename, argv, envp, flags); 2081 } 2082 #endif 2083 2084 void set_binfmt(struct linux_binfmt *new) 2085 { 2086 struct mm_struct *mm = current->mm; 2087 2088 if (mm->binfmt) 2089 module_put(mm->binfmt->module); 2090 2091 mm->binfmt = new; 2092 if (new) 2093 __module_get(new->module); 2094 } 2095 EXPORT_SYMBOL(set_binfmt); 2096 2097 /* 2098 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2099 */ 2100 void set_dumpable(struct mm_struct *mm, int value) 2101 { 2102 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2103 return; 2104 2105 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2106 } 2107 2108 SYSCALL_DEFINE3(execve, 2109 const char __user *, filename, 2110 const char __user *const __user *, argv, 2111 const char __user *const __user *, envp) 2112 { 2113 return do_execve(getname(filename), argv, envp); 2114 } 2115 2116 SYSCALL_DEFINE5(execveat, 2117 int, fd, const char __user *, filename, 2118 const char __user *const __user *, argv, 2119 const char __user *const __user *, envp, 2120 int, flags) 2121 { 2122 return do_execveat(fd, 2123 getname_uflags(filename, flags), 2124 argv, envp, flags); 2125 } 2126 2127 #ifdef CONFIG_COMPAT 2128 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2129 const compat_uptr_t __user *, argv, 2130 const compat_uptr_t __user *, envp) 2131 { 2132 return compat_do_execve(getname(filename), argv, envp); 2133 } 2134 2135 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2136 const char __user *, filename, 2137 const compat_uptr_t __user *, argv, 2138 const compat_uptr_t __user *, envp, 2139 int, flags) 2140 { 2141 return compat_do_execveat(fd, 2142 getname_uflags(filename, flags), 2143 argv, envp, flags); 2144 } 2145 #endif 2146 2147 #ifdef CONFIG_SYSCTL 2148 2149 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write, 2150 void *buffer, size_t *lenp, loff_t *ppos) 2151 { 2152 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2153 2154 if (!error) 2155 validate_coredump_safety(); 2156 return error; 2157 } 2158 2159 static struct ctl_table fs_exec_sysctls[] = { 2160 { 2161 .procname = "suid_dumpable", 2162 .data = &suid_dumpable, 2163 .maxlen = sizeof(int), 2164 .mode = 0644, 2165 .proc_handler = proc_dointvec_minmax_coredump, 2166 .extra1 = SYSCTL_ZERO, 2167 .extra2 = SYSCTL_TWO, 2168 }, 2169 { } 2170 }; 2171 2172 static int __init init_fs_exec_sysctls(void) 2173 { 2174 register_sysctl_init("fs", fs_exec_sysctls); 2175 return 0; 2176 } 2177 2178 fs_initcall(init_fs_exec_sysctls); 2179 #endif /* CONFIG_SYSCTL */ 2180