xref: /openbmc/linux/fs/exec.c (revision 59458f40e25915a355d8b1d701425fe9f4f9ea23)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/init.h>
33 #include <linux/pagemap.h>
34 #include <linux/highmem.h>
35 #include <linux/spinlock.h>
36 #include <linux/key.h>
37 #include <linux/personality.h>
38 #include <linux/binfmts.h>
39 #include <linux/swap.h>
40 #include <linux/utsname.h>
41 #include <linux/module.h>
42 #include <linux/namei.h>
43 #include <linux/proc_fs.h>
44 #include <linux/ptrace.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/rmap.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 
53 #include <asm/uaccess.h>
54 #include <asm/mmu_context.h>
55 
56 #ifdef CONFIG_KMOD
57 #include <linux/kmod.h>
58 #endif
59 
60 int core_uses_pid;
61 char core_pattern[128] = "core";
62 int suid_dumpable = 0;
63 
64 EXPORT_SYMBOL(suid_dumpable);
65 /* The maximal length of core_pattern is also specified in sysctl.c */
66 
67 static struct linux_binfmt *formats;
68 static DEFINE_RWLOCK(binfmt_lock);
69 
70 int register_binfmt(struct linux_binfmt * fmt)
71 {
72 	struct linux_binfmt ** tmp = &formats;
73 
74 	if (!fmt)
75 		return -EINVAL;
76 	if (fmt->next)
77 		return -EBUSY;
78 	write_lock(&binfmt_lock);
79 	while (*tmp) {
80 		if (fmt == *tmp) {
81 			write_unlock(&binfmt_lock);
82 			return -EBUSY;
83 		}
84 		tmp = &(*tmp)->next;
85 	}
86 	fmt->next = formats;
87 	formats = fmt;
88 	write_unlock(&binfmt_lock);
89 	return 0;
90 }
91 
92 EXPORT_SYMBOL(register_binfmt);
93 
94 int unregister_binfmt(struct linux_binfmt * fmt)
95 {
96 	struct linux_binfmt ** tmp = &formats;
97 
98 	write_lock(&binfmt_lock);
99 	while (*tmp) {
100 		if (fmt == *tmp) {
101 			*tmp = fmt->next;
102 			write_unlock(&binfmt_lock);
103 			return 0;
104 		}
105 		tmp = &(*tmp)->next;
106 	}
107 	write_unlock(&binfmt_lock);
108 	return -EINVAL;
109 }
110 
111 EXPORT_SYMBOL(unregister_binfmt);
112 
113 static inline void put_binfmt(struct linux_binfmt * fmt)
114 {
115 	module_put(fmt->module);
116 }
117 
118 /*
119  * Note that a shared library must be both readable and executable due to
120  * security reasons.
121  *
122  * Also note that we take the address to load from from the file itself.
123  */
124 asmlinkage long sys_uselib(const char __user * library)
125 {
126 	struct file * file;
127 	struct nameidata nd;
128 	int error;
129 
130 	error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
131 	if (error)
132 		goto out;
133 
134 	error = -EINVAL;
135 	if (!S_ISREG(nd.dentry->d_inode->i_mode))
136 		goto exit;
137 
138 	error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
139 	if (error)
140 		goto exit;
141 
142 	file = nameidata_to_filp(&nd, O_RDONLY);
143 	error = PTR_ERR(file);
144 	if (IS_ERR(file))
145 		goto out;
146 
147 	error = -ENOEXEC;
148 	if(file->f_op) {
149 		struct linux_binfmt * fmt;
150 
151 		read_lock(&binfmt_lock);
152 		for (fmt = formats ; fmt ; fmt = fmt->next) {
153 			if (!fmt->load_shlib)
154 				continue;
155 			if (!try_module_get(fmt->module))
156 				continue;
157 			read_unlock(&binfmt_lock);
158 			error = fmt->load_shlib(file);
159 			read_lock(&binfmt_lock);
160 			put_binfmt(fmt);
161 			if (error != -ENOEXEC)
162 				break;
163 		}
164 		read_unlock(&binfmt_lock);
165 	}
166 	fput(file);
167 out:
168   	return error;
169 exit:
170 	release_open_intent(&nd);
171 	path_release(&nd);
172 	goto out;
173 }
174 
175 /*
176  * count() counts the number of strings in array ARGV.
177  */
178 static int count(char __user * __user * argv, int max)
179 {
180 	int i = 0;
181 
182 	if (argv != NULL) {
183 		for (;;) {
184 			char __user * p;
185 
186 			if (get_user(p, argv))
187 				return -EFAULT;
188 			if (!p)
189 				break;
190 			argv++;
191 			if(++i > max)
192 				return -E2BIG;
193 			cond_resched();
194 		}
195 	}
196 	return i;
197 }
198 
199 /*
200  * 'copy_strings()' copies argument/environment strings from user
201  * memory to free pages in kernel mem. These are in a format ready
202  * to be put directly into the top of new user memory.
203  */
204 static int copy_strings(int argc, char __user * __user * argv,
205 			struct linux_binprm *bprm)
206 {
207 	struct page *kmapped_page = NULL;
208 	char *kaddr = NULL;
209 	int ret;
210 
211 	while (argc-- > 0) {
212 		char __user *str;
213 		int len;
214 		unsigned long pos;
215 
216 		if (get_user(str, argv+argc) ||
217 				!(len = strnlen_user(str, bprm->p))) {
218 			ret = -EFAULT;
219 			goto out;
220 		}
221 
222 		if (bprm->p < len)  {
223 			ret = -E2BIG;
224 			goto out;
225 		}
226 
227 		bprm->p -= len;
228 		/* XXX: add architecture specific overflow check here. */
229 		pos = bprm->p;
230 
231 		while (len > 0) {
232 			int i, new, err;
233 			int offset, bytes_to_copy;
234 			struct page *page;
235 
236 			offset = pos % PAGE_SIZE;
237 			i = pos/PAGE_SIZE;
238 			page = bprm->page[i];
239 			new = 0;
240 			if (!page) {
241 				page = alloc_page(GFP_HIGHUSER);
242 				bprm->page[i] = page;
243 				if (!page) {
244 					ret = -ENOMEM;
245 					goto out;
246 				}
247 				new = 1;
248 			}
249 
250 			if (page != kmapped_page) {
251 				if (kmapped_page)
252 					kunmap(kmapped_page);
253 				kmapped_page = page;
254 				kaddr = kmap(kmapped_page);
255 			}
256 			if (new && offset)
257 				memset(kaddr, 0, offset);
258 			bytes_to_copy = PAGE_SIZE - offset;
259 			if (bytes_to_copy > len) {
260 				bytes_to_copy = len;
261 				if (new)
262 					memset(kaddr+offset+len, 0,
263 						PAGE_SIZE-offset-len);
264 			}
265 			err = copy_from_user(kaddr+offset, str, bytes_to_copy);
266 			if (err) {
267 				ret = -EFAULT;
268 				goto out;
269 			}
270 
271 			pos += bytes_to_copy;
272 			str += bytes_to_copy;
273 			len -= bytes_to_copy;
274 		}
275 	}
276 	ret = 0;
277 out:
278 	if (kmapped_page)
279 		kunmap(kmapped_page);
280 	return ret;
281 }
282 
283 /*
284  * Like copy_strings, but get argv and its values from kernel memory.
285  */
286 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
287 {
288 	int r;
289 	mm_segment_t oldfs = get_fs();
290 	set_fs(KERNEL_DS);
291 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
292 	set_fs(oldfs);
293 	return r;
294 }
295 
296 EXPORT_SYMBOL(copy_strings_kernel);
297 
298 #ifdef CONFIG_MMU
299 /*
300  * This routine is used to map in a page into an address space: needed by
301  * execve() for the initial stack and environment pages.
302  *
303  * vma->vm_mm->mmap_sem is held for writing.
304  */
305 void install_arg_page(struct vm_area_struct *vma,
306 			struct page *page, unsigned long address)
307 {
308 	struct mm_struct *mm = vma->vm_mm;
309 	pte_t * pte;
310 	spinlock_t *ptl;
311 
312 	if (unlikely(anon_vma_prepare(vma)))
313 		goto out;
314 
315 	flush_dcache_page(page);
316 	pte = get_locked_pte(mm, address, &ptl);
317 	if (!pte)
318 		goto out;
319 	if (!pte_none(*pte)) {
320 		pte_unmap_unlock(pte, ptl);
321 		goto out;
322 	}
323 	inc_mm_counter(mm, anon_rss);
324 	lru_cache_add_active(page);
325 	set_pte_at(mm, address, pte, pte_mkdirty(pte_mkwrite(mk_pte(
326 					page, vma->vm_page_prot))));
327 	page_add_new_anon_rmap(page, vma, address);
328 	pte_unmap_unlock(pte, ptl);
329 
330 	/* no need for flush_tlb */
331 	return;
332 out:
333 	__free_page(page);
334 	force_sig(SIGKILL, current);
335 }
336 
337 #define EXTRA_STACK_VM_PAGES	20	/* random */
338 
339 int setup_arg_pages(struct linux_binprm *bprm,
340 		    unsigned long stack_top,
341 		    int executable_stack)
342 {
343 	unsigned long stack_base;
344 	struct vm_area_struct *mpnt;
345 	struct mm_struct *mm = current->mm;
346 	int i, ret;
347 	long arg_size;
348 
349 #ifdef CONFIG_STACK_GROWSUP
350 	/* Move the argument and environment strings to the bottom of the
351 	 * stack space.
352 	 */
353 	int offset, j;
354 	char *to, *from;
355 
356 	/* Start by shifting all the pages down */
357 	i = 0;
358 	for (j = 0; j < MAX_ARG_PAGES; j++) {
359 		struct page *page = bprm->page[j];
360 		if (!page)
361 			continue;
362 		bprm->page[i++] = page;
363 	}
364 
365 	/* Now move them within their pages */
366 	offset = bprm->p % PAGE_SIZE;
367 	to = kmap(bprm->page[0]);
368 	for (j = 1; j < i; j++) {
369 		memmove(to, to + offset, PAGE_SIZE - offset);
370 		from = kmap(bprm->page[j]);
371 		memcpy(to + PAGE_SIZE - offset, from, offset);
372 		kunmap(bprm->page[j - 1]);
373 		to = from;
374 	}
375 	memmove(to, to + offset, PAGE_SIZE - offset);
376 	kunmap(bprm->page[j - 1]);
377 
378 	/* Limit stack size to 1GB */
379 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
380 	if (stack_base > (1 << 30))
381 		stack_base = 1 << 30;
382 	stack_base = PAGE_ALIGN(stack_top - stack_base);
383 
384 	/* Adjust bprm->p to point to the end of the strings. */
385 	bprm->p = stack_base + PAGE_SIZE * i - offset;
386 
387 	mm->arg_start = stack_base;
388 	arg_size = i << PAGE_SHIFT;
389 
390 	/* zero pages that were copied above */
391 	while (i < MAX_ARG_PAGES)
392 		bprm->page[i++] = NULL;
393 #else
394 	stack_base = arch_align_stack(stack_top - MAX_ARG_PAGES*PAGE_SIZE);
395 	stack_base = PAGE_ALIGN(stack_base);
396 	bprm->p += stack_base;
397 	mm->arg_start = bprm->p;
398 	arg_size = stack_top - (PAGE_MASK & (unsigned long) mm->arg_start);
399 #endif
400 
401 	arg_size += EXTRA_STACK_VM_PAGES * PAGE_SIZE;
402 
403 	if (bprm->loader)
404 		bprm->loader += stack_base;
405 	bprm->exec += stack_base;
406 
407 	mpnt = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
408 	if (!mpnt)
409 		return -ENOMEM;
410 
411 	memset(mpnt, 0, sizeof(*mpnt));
412 
413 	down_write(&mm->mmap_sem);
414 	{
415 		mpnt->vm_mm = mm;
416 #ifdef CONFIG_STACK_GROWSUP
417 		mpnt->vm_start = stack_base;
418 		mpnt->vm_end = stack_base + arg_size;
419 #else
420 		mpnt->vm_end = stack_top;
421 		mpnt->vm_start = mpnt->vm_end - arg_size;
422 #endif
423 		/* Adjust stack execute permissions; explicitly enable
424 		 * for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X
425 		 * and leave alone (arch default) otherwise. */
426 		if (unlikely(executable_stack == EXSTACK_ENABLE_X))
427 			mpnt->vm_flags = VM_STACK_FLAGS |  VM_EXEC;
428 		else if (executable_stack == EXSTACK_DISABLE_X)
429 			mpnt->vm_flags = VM_STACK_FLAGS & ~VM_EXEC;
430 		else
431 			mpnt->vm_flags = VM_STACK_FLAGS;
432 		mpnt->vm_flags |= mm->def_flags;
433 		mpnt->vm_page_prot = protection_map[mpnt->vm_flags & 0x7];
434 		if ((ret = insert_vm_struct(mm, mpnt))) {
435 			up_write(&mm->mmap_sem);
436 			kmem_cache_free(vm_area_cachep, mpnt);
437 			return ret;
438 		}
439 		mm->stack_vm = mm->total_vm = vma_pages(mpnt);
440 	}
441 
442 	for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
443 		struct page *page = bprm->page[i];
444 		if (page) {
445 			bprm->page[i] = NULL;
446 			install_arg_page(mpnt, page, stack_base);
447 		}
448 		stack_base += PAGE_SIZE;
449 	}
450 	up_write(&mm->mmap_sem);
451 
452 	return 0;
453 }
454 
455 EXPORT_SYMBOL(setup_arg_pages);
456 
457 #define free_arg_pages(bprm) do { } while (0)
458 
459 #else
460 
461 static inline void free_arg_pages(struct linux_binprm *bprm)
462 {
463 	int i;
464 
465 	for (i = 0; i < MAX_ARG_PAGES; i++) {
466 		if (bprm->page[i])
467 			__free_page(bprm->page[i]);
468 		bprm->page[i] = NULL;
469 	}
470 }
471 
472 #endif /* CONFIG_MMU */
473 
474 struct file *open_exec(const char *name)
475 {
476 	struct nameidata nd;
477 	int err;
478 	struct file *file;
479 
480 	err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
481 	file = ERR_PTR(err);
482 
483 	if (!err) {
484 		struct inode *inode = nd.dentry->d_inode;
485 		file = ERR_PTR(-EACCES);
486 		if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
487 		    S_ISREG(inode->i_mode)) {
488 			int err = vfs_permission(&nd, MAY_EXEC);
489 			file = ERR_PTR(err);
490 			if (!err) {
491 				file = nameidata_to_filp(&nd, O_RDONLY);
492 				if (!IS_ERR(file)) {
493 					err = deny_write_access(file);
494 					if (err) {
495 						fput(file);
496 						file = ERR_PTR(err);
497 					}
498 				}
499 out:
500 				return file;
501 			}
502 		}
503 		release_open_intent(&nd);
504 		path_release(&nd);
505 	}
506 	goto out;
507 }
508 
509 EXPORT_SYMBOL(open_exec);
510 
511 int kernel_read(struct file *file, unsigned long offset,
512 	char *addr, unsigned long count)
513 {
514 	mm_segment_t old_fs;
515 	loff_t pos = offset;
516 	int result;
517 
518 	old_fs = get_fs();
519 	set_fs(get_ds());
520 	/* The cast to a user pointer is valid due to the set_fs() */
521 	result = vfs_read(file, (void __user *)addr, count, &pos);
522 	set_fs(old_fs);
523 	return result;
524 }
525 
526 EXPORT_SYMBOL(kernel_read);
527 
528 static int exec_mmap(struct mm_struct *mm)
529 {
530 	struct task_struct *tsk;
531 	struct mm_struct * old_mm, *active_mm;
532 
533 	/* Notify parent that we're no longer interested in the old VM */
534 	tsk = current;
535 	old_mm = current->mm;
536 	mm_release(tsk, old_mm);
537 
538 	if (old_mm) {
539 		/*
540 		 * Make sure that if there is a core dump in progress
541 		 * for the old mm, we get out and die instead of going
542 		 * through with the exec.  We must hold mmap_sem around
543 		 * checking core_waiters and changing tsk->mm.  The
544 		 * core-inducing thread will increment core_waiters for
545 		 * each thread whose ->mm == old_mm.
546 		 */
547 		down_read(&old_mm->mmap_sem);
548 		if (unlikely(old_mm->core_waiters)) {
549 			up_read(&old_mm->mmap_sem);
550 			return -EINTR;
551 		}
552 	}
553 	task_lock(tsk);
554 	active_mm = tsk->active_mm;
555 	tsk->mm = mm;
556 	tsk->active_mm = mm;
557 	activate_mm(active_mm, mm);
558 	task_unlock(tsk);
559 	arch_pick_mmap_layout(mm);
560 	if (old_mm) {
561 		up_read(&old_mm->mmap_sem);
562 		BUG_ON(active_mm != old_mm);
563 		mmput(old_mm);
564 		return 0;
565 	}
566 	mmdrop(active_mm);
567 	return 0;
568 }
569 
570 /*
571  * This function makes sure the current process has its own signal table,
572  * so that flush_signal_handlers can later reset the handlers without
573  * disturbing other processes.  (Other processes might share the signal
574  * table via the CLONE_SIGHAND option to clone().)
575  */
576 static int de_thread(struct task_struct *tsk)
577 {
578 	struct signal_struct *sig = tsk->signal;
579 	struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
580 	spinlock_t *lock = &oldsighand->siglock;
581 	struct task_struct *leader = NULL;
582 	int count;
583 
584 	/*
585 	 * If we don't share sighandlers, then we aren't sharing anything
586 	 * and we can just re-use it all.
587 	 */
588 	if (atomic_read(&oldsighand->count) <= 1) {
589 		BUG_ON(atomic_read(&sig->count) != 1);
590 		exit_itimers(sig);
591 		return 0;
592 	}
593 
594 	newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
595 	if (!newsighand)
596 		return -ENOMEM;
597 
598 	if (thread_group_empty(tsk))
599 		goto no_thread_group;
600 
601 	/*
602 	 * Kill all other threads in the thread group.
603 	 * We must hold tasklist_lock to call zap_other_threads.
604 	 */
605 	read_lock(&tasklist_lock);
606 	spin_lock_irq(lock);
607 	if (sig->flags & SIGNAL_GROUP_EXIT) {
608 		/*
609 		 * Another group action in progress, just
610 		 * return so that the signal is processed.
611 		 */
612 		spin_unlock_irq(lock);
613 		read_unlock(&tasklist_lock);
614 		kmem_cache_free(sighand_cachep, newsighand);
615 		return -EAGAIN;
616 	}
617 
618 	/*
619 	 * child_reaper ignores SIGKILL, change it now.
620 	 * Reparenting needs write_lock on tasklist_lock,
621 	 * so it is safe to do it under read_lock.
622 	 */
623 	if (unlikely(tsk->group_leader == child_reaper))
624 		child_reaper = tsk;
625 
626 	zap_other_threads(tsk);
627 	read_unlock(&tasklist_lock);
628 
629 	/*
630 	 * Account for the thread group leader hanging around:
631 	 */
632 	count = 1;
633 	if (!thread_group_leader(tsk)) {
634 		count = 2;
635 		/*
636 		 * The SIGALRM timer survives the exec, but needs to point
637 		 * at us as the new group leader now.  We have a race with
638 		 * a timer firing now getting the old leader, so we need to
639 		 * synchronize with any firing (by calling del_timer_sync)
640 		 * before we can safely let the old group leader die.
641 		 */
642 		sig->tsk = tsk;
643 		spin_unlock_irq(lock);
644 		if (hrtimer_cancel(&sig->real_timer))
645 			hrtimer_restart(&sig->real_timer);
646 		spin_lock_irq(lock);
647 	}
648 	while (atomic_read(&sig->count) > count) {
649 		sig->group_exit_task = tsk;
650 		sig->notify_count = count;
651 		__set_current_state(TASK_UNINTERRUPTIBLE);
652 		spin_unlock_irq(lock);
653 		schedule();
654 		spin_lock_irq(lock);
655 	}
656 	sig->group_exit_task = NULL;
657 	sig->notify_count = 0;
658 	spin_unlock_irq(lock);
659 
660 	/*
661 	 * At this point all other threads have exited, all we have to
662 	 * do is to wait for the thread group leader to become inactive,
663 	 * and to assume its PID:
664 	 */
665 	if (!thread_group_leader(tsk)) {
666 		/*
667 		 * Wait for the thread group leader to be a zombie.
668 		 * It should already be zombie at this point, most
669 		 * of the time.
670 		 */
671 		leader = tsk->group_leader;
672 		while (leader->exit_state != EXIT_ZOMBIE)
673 			yield();
674 
675 		/*
676 		 * The only record we have of the real-time age of a
677 		 * process, regardless of execs it's done, is start_time.
678 		 * All the past CPU time is accumulated in signal_struct
679 		 * from sister threads now dead.  But in this non-leader
680 		 * exec, nothing survives from the original leader thread,
681 		 * whose birth marks the true age of this process now.
682 		 * When we take on its identity by switching to its PID, we
683 		 * also take its birthdate (always earlier than our own).
684 		 */
685 		tsk->start_time = leader->start_time;
686 
687 		write_lock_irq(&tasklist_lock);
688 
689 		BUG_ON(leader->tgid != tsk->tgid);
690 		BUG_ON(tsk->pid == tsk->tgid);
691 		/*
692 		 * An exec() starts a new thread group with the
693 		 * TGID of the previous thread group. Rehash the
694 		 * two threads with a switched PID, and release
695 		 * the former thread group leader:
696 		 */
697 
698 		/* Become a process group leader with the old leader's pid.
699 		 * The old leader becomes a thread of the this thread group.
700 		 * Note: The old leader also uses this pid until release_task
701 		 *       is called.  Odd but simple and correct.
702 		 */
703 		detach_pid(tsk, PIDTYPE_PID);
704 		tsk->pid = leader->pid;
705 		attach_pid(tsk, PIDTYPE_PID,  tsk->pid);
706 		transfer_pid(leader, tsk, PIDTYPE_PGID);
707 		transfer_pid(leader, tsk, PIDTYPE_SID);
708 		list_replace_rcu(&leader->tasks, &tsk->tasks);
709 
710 		tsk->group_leader = tsk;
711 		leader->group_leader = tsk;
712 
713 		tsk->exit_signal = SIGCHLD;
714 
715 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
716 		leader->exit_state = EXIT_DEAD;
717 
718 		write_unlock_irq(&tasklist_lock);
719         }
720 
721 	/*
722 	 * There may be one thread left which is just exiting,
723 	 * but it's safe to stop telling the group to kill themselves.
724 	 */
725 	sig->flags = 0;
726 
727 no_thread_group:
728 	exit_itimers(sig);
729 	if (leader)
730 		release_task(leader);
731 
732 	BUG_ON(atomic_read(&sig->count) != 1);
733 
734 	if (atomic_read(&oldsighand->count) == 1) {
735 		/*
736 		 * Now that we nuked the rest of the thread group,
737 		 * it turns out we are not sharing sighand any more either.
738 		 * So we can just keep it.
739 		 */
740 		kmem_cache_free(sighand_cachep, newsighand);
741 	} else {
742 		/*
743 		 * Move our state over to newsighand and switch it in.
744 		 */
745 		atomic_set(&newsighand->count, 1);
746 		memcpy(newsighand->action, oldsighand->action,
747 		       sizeof(newsighand->action));
748 
749 		write_lock_irq(&tasklist_lock);
750 		spin_lock(&oldsighand->siglock);
751 		spin_lock_nested(&newsighand->siglock, SINGLE_DEPTH_NESTING);
752 
753 		rcu_assign_pointer(tsk->sighand, newsighand);
754 		recalc_sigpending();
755 
756 		spin_unlock(&newsighand->siglock);
757 		spin_unlock(&oldsighand->siglock);
758 		write_unlock_irq(&tasklist_lock);
759 
760 		if (atomic_dec_and_test(&oldsighand->count))
761 			kmem_cache_free(sighand_cachep, oldsighand);
762 	}
763 
764 	BUG_ON(!thread_group_leader(tsk));
765 	return 0;
766 }
767 
768 /*
769  * These functions flushes out all traces of the currently running executable
770  * so that a new one can be started
771  */
772 
773 static void flush_old_files(struct files_struct * files)
774 {
775 	long j = -1;
776 	struct fdtable *fdt;
777 
778 	spin_lock(&files->file_lock);
779 	for (;;) {
780 		unsigned long set, i;
781 
782 		j++;
783 		i = j * __NFDBITS;
784 		fdt = files_fdtable(files);
785 		if (i >= fdt->max_fds || i >= fdt->max_fdset)
786 			break;
787 		set = fdt->close_on_exec->fds_bits[j];
788 		if (!set)
789 			continue;
790 		fdt->close_on_exec->fds_bits[j] = 0;
791 		spin_unlock(&files->file_lock);
792 		for ( ; set ; i++,set >>= 1) {
793 			if (set & 1) {
794 				sys_close(i);
795 			}
796 		}
797 		spin_lock(&files->file_lock);
798 
799 	}
800 	spin_unlock(&files->file_lock);
801 }
802 
803 void get_task_comm(char *buf, struct task_struct *tsk)
804 {
805 	/* buf must be at least sizeof(tsk->comm) in size */
806 	task_lock(tsk);
807 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
808 	task_unlock(tsk);
809 }
810 
811 void set_task_comm(struct task_struct *tsk, char *buf)
812 {
813 	task_lock(tsk);
814 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
815 	task_unlock(tsk);
816 }
817 
818 int flush_old_exec(struct linux_binprm * bprm)
819 {
820 	char * name;
821 	int i, ch, retval;
822 	struct files_struct *files;
823 	char tcomm[sizeof(current->comm)];
824 
825 	/*
826 	 * Make sure we have a private signal table and that
827 	 * we are unassociated from the previous thread group.
828 	 */
829 	retval = de_thread(current);
830 	if (retval)
831 		goto out;
832 
833 	/*
834 	 * Make sure we have private file handles. Ask the
835 	 * fork helper to do the work for us and the exit
836 	 * helper to do the cleanup of the old one.
837 	 */
838 	files = current->files;		/* refcounted so safe to hold */
839 	retval = unshare_files();
840 	if (retval)
841 		goto out;
842 	/*
843 	 * Release all of the old mmap stuff
844 	 */
845 	retval = exec_mmap(bprm->mm);
846 	if (retval)
847 		goto mmap_failed;
848 
849 	bprm->mm = NULL;		/* We're using it now */
850 
851 	/* This is the point of no return */
852 	put_files_struct(files);
853 
854 	current->sas_ss_sp = current->sas_ss_size = 0;
855 
856 	if (current->euid == current->uid && current->egid == current->gid)
857 		current->mm->dumpable = 1;
858 	else
859 		current->mm->dumpable = suid_dumpable;
860 
861 	name = bprm->filename;
862 
863 	/* Copies the binary name from after last slash */
864 	for (i=0; (ch = *(name++)) != '\0';) {
865 		if (ch == '/')
866 			i = 0; /* overwrite what we wrote */
867 		else
868 			if (i < (sizeof(tcomm) - 1))
869 				tcomm[i++] = ch;
870 	}
871 	tcomm[i] = '\0';
872 	set_task_comm(current, tcomm);
873 
874 	current->flags &= ~PF_RANDOMIZE;
875 	flush_thread();
876 
877 	/* Set the new mm task size. We have to do that late because it may
878 	 * depend on TIF_32BIT which is only updated in flush_thread() on
879 	 * some architectures like powerpc
880 	 */
881 	current->mm->task_size = TASK_SIZE;
882 
883 	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid ||
884 	    file_permission(bprm->file, MAY_READ) ||
885 	    (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
886 		suid_keys(current);
887 		current->mm->dumpable = suid_dumpable;
888 	}
889 
890 	/* An exec changes our domain. We are no longer part of the thread
891 	   group */
892 
893 	current->self_exec_id++;
894 
895 	flush_signal_handlers(current, 0);
896 	flush_old_files(current->files);
897 
898 	return 0;
899 
900 mmap_failed:
901 	reset_files_struct(current, files);
902 out:
903 	return retval;
904 }
905 
906 EXPORT_SYMBOL(flush_old_exec);
907 
908 /*
909  * Fill the binprm structure from the inode.
910  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
911  */
912 int prepare_binprm(struct linux_binprm *bprm)
913 {
914 	int mode;
915 	struct inode * inode = bprm->file->f_dentry->d_inode;
916 	int retval;
917 
918 	mode = inode->i_mode;
919 	if (bprm->file->f_op == NULL)
920 		return -EACCES;
921 
922 	bprm->e_uid = current->euid;
923 	bprm->e_gid = current->egid;
924 
925 	if(!(bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)) {
926 		/* Set-uid? */
927 		if (mode & S_ISUID) {
928 			current->personality &= ~PER_CLEAR_ON_SETID;
929 			bprm->e_uid = inode->i_uid;
930 		}
931 
932 		/* Set-gid? */
933 		/*
934 		 * If setgid is set but no group execute bit then this
935 		 * is a candidate for mandatory locking, not a setgid
936 		 * executable.
937 		 */
938 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
939 			current->personality &= ~PER_CLEAR_ON_SETID;
940 			bprm->e_gid = inode->i_gid;
941 		}
942 	}
943 
944 	/* fill in binprm security blob */
945 	retval = security_bprm_set(bprm);
946 	if (retval)
947 		return retval;
948 
949 	memset(bprm->buf,0,BINPRM_BUF_SIZE);
950 	return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
951 }
952 
953 EXPORT_SYMBOL(prepare_binprm);
954 
955 static int unsafe_exec(struct task_struct *p)
956 {
957 	int unsafe = 0;
958 	if (p->ptrace & PT_PTRACED) {
959 		if (p->ptrace & PT_PTRACE_CAP)
960 			unsafe |= LSM_UNSAFE_PTRACE_CAP;
961 		else
962 			unsafe |= LSM_UNSAFE_PTRACE;
963 	}
964 	if (atomic_read(&p->fs->count) > 1 ||
965 	    atomic_read(&p->files->count) > 1 ||
966 	    atomic_read(&p->sighand->count) > 1)
967 		unsafe |= LSM_UNSAFE_SHARE;
968 
969 	return unsafe;
970 }
971 
972 void compute_creds(struct linux_binprm *bprm)
973 {
974 	int unsafe;
975 
976 	if (bprm->e_uid != current->uid)
977 		suid_keys(current);
978 	exec_keys(current);
979 
980 	task_lock(current);
981 	unsafe = unsafe_exec(current);
982 	security_bprm_apply_creds(bprm, unsafe);
983 	task_unlock(current);
984 	security_bprm_post_apply_creds(bprm);
985 }
986 
987 EXPORT_SYMBOL(compute_creds);
988 
989 void remove_arg_zero(struct linux_binprm *bprm)
990 {
991 	if (bprm->argc) {
992 		unsigned long offset;
993 		char * kaddr;
994 		struct page *page;
995 
996 		offset = bprm->p % PAGE_SIZE;
997 		goto inside;
998 
999 		while (bprm->p++, *(kaddr+offset++)) {
1000 			if (offset != PAGE_SIZE)
1001 				continue;
1002 			offset = 0;
1003 			kunmap_atomic(kaddr, KM_USER0);
1004 inside:
1005 			page = bprm->page[bprm->p/PAGE_SIZE];
1006 			kaddr = kmap_atomic(page, KM_USER0);
1007 		}
1008 		kunmap_atomic(kaddr, KM_USER0);
1009 		bprm->argc--;
1010 	}
1011 }
1012 
1013 EXPORT_SYMBOL(remove_arg_zero);
1014 
1015 /*
1016  * cycle the list of binary formats handler, until one recognizes the image
1017  */
1018 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1019 {
1020 	int try,retval;
1021 	struct linux_binfmt *fmt;
1022 #ifdef __alpha__
1023 	/* handle /sbin/loader.. */
1024 	{
1025 	    struct exec * eh = (struct exec *) bprm->buf;
1026 
1027 	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1028 		(eh->fh.f_flags & 0x3000) == 0x3000)
1029 	    {
1030 		struct file * file;
1031 		unsigned long loader;
1032 
1033 		allow_write_access(bprm->file);
1034 		fput(bprm->file);
1035 		bprm->file = NULL;
1036 
1037 	        loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1038 
1039 		file = open_exec("/sbin/loader");
1040 		retval = PTR_ERR(file);
1041 		if (IS_ERR(file))
1042 			return retval;
1043 
1044 		/* Remember if the application is TASO.  */
1045 		bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1046 
1047 		bprm->file = file;
1048 		bprm->loader = loader;
1049 		retval = prepare_binprm(bprm);
1050 		if (retval<0)
1051 			return retval;
1052 		/* should call search_binary_handler recursively here,
1053 		   but it does not matter */
1054 	    }
1055 	}
1056 #endif
1057 	retval = security_bprm_check(bprm);
1058 	if (retval)
1059 		return retval;
1060 
1061 	/* kernel module loader fixup */
1062 	/* so we don't try to load run modprobe in kernel space. */
1063 	set_fs(USER_DS);
1064 
1065 	retval = audit_bprm(bprm);
1066 	if (retval)
1067 		return retval;
1068 
1069 	retval = -ENOENT;
1070 	for (try=0; try<2; try++) {
1071 		read_lock(&binfmt_lock);
1072 		for (fmt = formats ; fmt ; fmt = fmt->next) {
1073 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1074 			if (!fn)
1075 				continue;
1076 			if (!try_module_get(fmt->module))
1077 				continue;
1078 			read_unlock(&binfmt_lock);
1079 			retval = fn(bprm, regs);
1080 			if (retval >= 0) {
1081 				put_binfmt(fmt);
1082 				allow_write_access(bprm->file);
1083 				if (bprm->file)
1084 					fput(bprm->file);
1085 				bprm->file = NULL;
1086 				current->did_exec = 1;
1087 				proc_exec_connector(current);
1088 				return retval;
1089 			}
1090 			read_lock(&binfmt_lock);
1091 			put_binfmt(fmt);
1092 			if (retval != -ENOEXEC || bprm->mm == NULL)
1093 				break;
1094 			if (!bprm->file) {
1095 				read_unlock(&binfmt_lock);
1096 				return retval;
1097 			}
1098 		}
1099 		read_unlock(&binfmt_lock);
1100 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1101 			break;
1102 #ifdef CONFIG_KMOD
1103 		}else{
1104 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1105 			if (printable(bprm->buf[0]) &&
1106 			    printable(bprm->buf[1]) &&
1107 			    printable(bprm->buf[2]) &&
1108 			    printable(bprm->buf[3]))
1109 				break; /* -ENOEXEC */
1110 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1111 #endif
1112 		}
1113 	}
1114 	return retval;
1115 }
1116 
1117 EXPORT_SYMBOL(search_binary_handler);
1118 
1119 /*
1120  * sys_execve() executes a new program.
1121  */
1122 int do_execve(char * filename,
1123 	char __user *__user *argv,
1124 	char __user *__user *envp,
1125 	struct pt_regs * regs)
1126 {
1127 	struct linux_binprm *bprm;
1128 	struct file *file;
1129 	int retval;
1130 	int i;
1131 
1132 	retval = -ENOMEM;
1133 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1134 	if (!bprm)
1135 		goto out_ret;
1136 
1137 	file = open_exec(filename);
1138 	retval = PTR_ERR(file);
1139 	if (IS_ERR(file))
1140 		goto out_kfree;
1141 
1142 	sched_exec();
1143 
1144 	bprm->p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1145 
1146 	bprm->file = file;
1147 	bprm->filename = filename;
1148 	bprm->interp = filename;
1149 	bprm->mm = mm_alloc();
1150 	retval = -ENOMEM;
1151 	if (!bprm->mm)
1152 		goto out_file;
1153 
1154 	retval = init_new_context(current, bprm->mm);
1155 	if (retval < 0)
1156 		goto out_mm;
1157 
1158 	bprm->argc = count(argv, bprm->p / sizeof(void *));
1159 	if ((retval = bprm->argc) < 0)
1160 		goto out_mm;
1161 
1162 	bprm->envc = count(envp, bprm->p / sizeof(void *));
1163 	if ((retval = bprm->envc) < 0)
1164 		goto out_mm;
1165 
1166 	retval = security_bprm_alloc(bprm);
1167 	if (retval)
1168 		goto out;
1169 
1170 	retval = prepare_binprm(bprm);
1171 	if (retval < 0)
1172 		goto out;
1173 
1174 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1175 	if (retval < 0)
1176 		goto out;
1177 
1178 	bprm->exec = bprm->p;
1179 	retval = copy_strings(bprm->envc, envp, bprm);
1180 	if (retval < 0)
1181 		goto out;
1182 
1183 	retval = copy_strings(bprm->argc, argv, bprm);
1184 	if (retval < 0)
1185 		goto out;
1186 
1187 	retval = search_binary_handler(bprm,regs);
1188 	if (retval >= 0) {
1189 		free_arg_pages(bprm);
1190 
1191 		/* execve success */
1192 		security_bprm_free(bprm);
1193 		acct_update_integrals(current);
1194 		kfree(bprm);
1195 		return retval;
1196 	}
1197 
1198 out:
1199 	/* Something went wrong, return the inode and free the argument pages*/
1200 	for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1201 		struct page * page = bprm->page[i];
1202 		if (page)
1203 			__free_page(page);
1204 	}
1205 
1206 	if (bprm->security)
1207 		security_bprm_free(bprm);
1208 
1209 out_mm:
1210 	if (bprm->mm)
1211 		mmdrop(bprm->mm);
1212 
1213 out_file:
1214 	if (bprm->file) {
1215 		allow_write_access(bprm->file);
1216 		fput(bprm->file);
1217 	}
1218 
1219 out_kfree:
1220 	kfree(bprm);
1221 
1222 out_ret:
1223 	return retval;
1224 }
1225 
1226 int set_binfmt(struct linux_binfmt *new)
1227 {
1228 	struct linux_binfmt *old = current->binfmt;
1229 
1230 	if (new) {
1231 		if (!try_module_get(new->module))
1232 			return -1;
1233 	}
1234 	current->binfmt = new;
1235 	if (old)
1236 		module_put(old->module);
1237 	return 0;
1238 }
1239 
1240 EXPORT_SYMBOL(set_binfmt);
1241 
1242 #define CORENAME_MAX_SIZE 64
1243 
1244 /* format_corename will inspect the pattern parameter, and output a
1245  * name into corename, which must have space for at least
1246  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1247  */
1248 static void format_corename(char *corename, const char *pattern, long signr)
1249 {
1250 	const char *pat_ptr = pattern;
1251 	char *out_ptr = corename;
1252 	char *const out_end = corename + CORENAME_MAX_SIZE;
1253 	int rc;
1254 	int pid_in_pattern = 0;
1255 
1256 	/* Repeat as long as we have more pattern to process and more output
1257 	   space */
1258 	while (*pat_ptr) {
1259 		if (*pat_ptr != '%') {
1260 			if (out_ptr == out_end)
1261 				goto out;
1262 			*out_ptr++ = *pat_ptr++;
1263 		} else {
1264 			switch (*++pat_ptr) {
1265 			case 0:
1266 				goto out;
1267 			/* Double percent, output one percent */
1268 			case '%':
1269 				if (out_ptr == out_end)
1270 					goto out;
1271 				*out_ptr++ = '%';
1272 				break;
1273 			/* pid */
1274 			case 'p':
1275 				pid_in_pattern = 1;
1276 				rc = snprintf(out_ptr, out_end - out_ptr,
1277 					      "%d", current->tgid);
1278 				if (rc > out_end - out_ptr)
1279 					goto out;
1280 				out_ptr += rc;
1281 				break;
1282 			/* uid */
1283 			case 'u':
1284 				rc = snprintf(out_ptr, out_end - out_ptr,
1285 					      "%d", current->uid);
1286 				if (rc > out_end - out_ptr)
1287 					goto out;
1288 				out_ptr += rc;
1289 				break;
1290 			/* gid */
1291 			case 'g':
1292 				rc = snprintf(out_ptr, out_end - out_ptr,
1293 					      "%d", current->gid);
1294 				if (rc > out_end - out_ptr)
1295 					goto out;
1296 				out_ptr += rc;
1297 				break;
1298 			/* signal that caused the coredump */
1299 			case 's':
1300 				rc = snprintf(out_ptr, out_end - out_ptr,
1301 					      "%ld", signr);
1302 				if (rc > out_end - out_ptr)
1303 					goto out;
1304 				out_ptr += rc;
1305 				break;
1306 			/* UNIX time of coredump */
1307 			case 't': {
1308 				struct timeval tv;
1309 				do_gettimeofday(&tv);
1310 				rc = snprintf(out_ptr, out_end - out_ptr,
1311 					      "%lu", tv.tv_sec);
1312 				if (rc > out_end - out_ptr)
1313 					goto out;
1314 				out_ptr += rc;
1315 				break;
1316 			}
1317 			/* hostname */
1318 			case 'h':
1319 				down_read(&uts_sem);
1320 				rc = snprintf(out_ptr, out_end - out_ptr,
1321 					      "%s", system_utsname.nodename);
1322 				up_read(&uts_sem);
1323 				if (rc > out_end - out_ptr)
1324 					goto out;
1325 				out_ptr += rc;
1326 				break;
1327 			/* executable */
1328 			case 'e':
1329 				rc = snprintf(out_ptr, out_end - out_ptr,
1330 					      "%s", current->comm);
1331 				if (rc > out_end - out_ptr)
1332 					goto out;
1333 				out_ptr += rc;
1334 				break;
1335 			default:
1336 				break;
1337 			}
1338 			++pat_ptr;
1339 		}
1340 	}
1341 	/* Backward compatibility with core_uses_pid:
1342 	 *
1343 	 * If core_pattern does not include a %p (as is the default)
1344 	 * and core_uses_pid is set, then .%pid will be appended to
1345 	 * the filename */
1346 	if (!pid_in_pattern
1347             && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1348 		rc = snprintf(out_ptr, out_end - out_ptr,
1349 			      ".%d", current->tgid);
1350 		if (rc > out_end - out_ptr)
1351 			goto out;
1352 		out_ptr += rc;
1353 	}
1354       out:
1355 	*out_ptr = 0;
1356 }
1357 
1358 static void zap_process(struct task_struct *start)
1359 {
1360 	struct task_struct *t;
1361 
1362 	start->signal->flags = SIGNAL_GROUP_EXIT;
1363 	start->signal->group_stop_count = 0;
1364 
1365 	t = start;
1366 	do {
1367 		if (t != current && t->mm) {
1368 			t->mm->core_waiters++;
1369 			sigaddset(&t->pending.signal, SIGKILL);
1370 			signal_wake_up(t, 1);
1371 		}
1372 	} while ((t = next_thread(t)) != start);
1373 }
1374 
1375 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1376 				int exit_code)
1377 {
1378 	struct task_struct *g, *p;
1379 	unsigned long flags;
1380 	int err = -EAGAIN;
1381 
1382 	spin_lock_irq(&tsk->sighand->siglock);
1383 	if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
1384 		tsk->signal->group_exit_code = exit_code;
1385 		zap_process(tsk);
1386 		err = 0;
1387 	}
1388 	spin_unlock_irq(&tsk->sighand->siglock);
1389 	if (err)
1390 		return err;
1391 
1392 	if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1393 		goto done;
1394 
1395 	rcu_read_lock();
1396 	for_each_process(g) {
1397 		if (g == tsk->group_leader)
1398 			continue;
1399 
1400 		p = g;
1401 		do {
1402 			if (p->mm) {
1403 				if (p->mm == mm) {
1404 					/*
1405 					 * p->sighand can't disappear, but
1406 					 * may be changed by de_thread()
1407 					 */
1408 					lock_task_sighand(p, &flags);
1409 					zap_process(p);
1410 					unlock_task_sighand(p, &flags);
1411 				}
1412 				break;
1413 			}
1414 		} while ((p = next_thread(p)) != g);
1415 	}
1416 	rcu_read_unlock();
1417 done:
1418 	return mm->core_waiters;
1419 }
1420 
1421 static int coredump_wait(int exit_code)
1422 {
1423 	struct task_struct *tsk = current;
1424 	struct mm_struct *mm = tsk->mm;
1425 	struct completion startup_done;
1426 	struct completion *vfork_done;
1427 	int core_waiters;
1428 
1429 	init_completion(&mm->core_done);
1430 	init_completion(&startup_done);
1431 	mm->core_startup_done = &startup_done;
1432 
1433 	core_waiters = zap_threads(tsk, mm, exit_code);
1434 	up_write(&mm->mmap_sem);
1435 
1436 	if (unlikely(core_waiters < 0))
1437 		goto fail;
1438 
1439 	/*
1440 	 * Make sure nobody is waiting for us to release the VM,
1441 	 * otherwise we can deadlock when we wait on each other
1442 	 */
1443 	vfork_done = tsk->vfork_done;
1444 	if (vfork_done) {
1445 		tsk->vfork_done = NULL;
1446 		complete(vfork_done);
1447 	}
1448 
1449 	if (core_waiters)
1450 		wait_for_completion(&startup_done);
1451 fail:
1452 	BUG_ON(mm->core_waiters);
1453 	return core_waiters;
1454 }
1455 
1456 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1457 {
1458 	char corename[CORENAME_MAX_SIZE + 1];
1459 	struct mm_struct *mm = current->mm;
1460 	struct linux_binfmt * binfmt;
1461 	struct inode * inode;
1462 	struct file * file;
1463 	int retval = 0;
1464 	int fsuid = current->fsuid;
1465 	int flag = 0;
1466 	int ispipe = 0;
1467 
1468 	binfmt = current->binfmt;
1469 	if (!binfmt || !binfmt->core_dump)
1470 		goto fail;
1471 	down_write(&mm->mmap_sem);
1472 	if (!mm->dumpable) {
1473 		up_write(&mm->mmap_sem);
1474 		goto fail;
1475 	}
1476 
1477 	/*
1478 	 *	We cannot trust fsuid as being the "true" uid of the
1479 	 *	process nor do we know its entire history. We only know it
1480 	 *	was tainted so we dump it as root in mode 2.
1481 	 */
1482 	if (mm->dumpable == 2) {	/* Setuid core dump mode */
1483 		flag = O_EXCL;		/* Stop rewrite attacks */
1484 		current->fsuid = 0;	/* Dump root private */
1485 	}
1486 	mm->dumpable = 0;
1487 
1488 	retval = coredump_wait(exit_code);
1489 	if (retval < 0)
1490 		goto fail;
1491 
1492 	/*
1493 	 * Clear any false indication of pending signals that might
1494 	 * be seen by the filesystem code called to write the core file.
1495 	 */
1496 	clear_thread_flag(TIF_SIGPENDING);
1497 
1498 	if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
1499 		goto fail_unlock;
1500 
1501 	/*
1502 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1503 	 * uses lock_kernel()
1504 	 */
1505  	lock_kernel();
1506 	format_corename(corename, core_pattern, signr);
1507 	unlock_kernel();
1508  	if (corename[0] == '|') {
1509 		/* SIGPIPE can happen, but it's just never processed */
1510  		if(call_usermodehelper_pipe(corename+1, NULL, NULL, &file)) {
1511  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1512 			       corename);
1513  			goto fail_unlock;
1514  		}
1515 		ispipe = 1;
1516  	} else
1517  		file = filp_open(corename,
1518 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE, 0600);
1519 	if (IS_ERR(file))
1520 		goto fail_unlock;
1521 	inode = file->f_dentry->d_inode;
1522 	if (inode->i_nlink > 1)
1523 		goto close_fail;	/* multiple links - don't dump */
1524 	if (!ispipe && d_unhashed(file->f_dentry))
1525 		goto close_fail;
1526 
1527 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1528 	   but keep the previous behaviour for now. */
1529 	if (!ispipe && !S_ISREG(inode->i_mode))
1530 		goto close_fail;
1531 	if (!file->f_op)
1532 		goto close_fail;
1533 	if (!file->f_op->write)
1534 		goto close_fail;
1535 	if (!ispipe && do_truncate(file->f_dentry, 0, 0, file) != 0)
1536 		goto close_fail;
1537 
1538 	retval = binfmt->core_dump(signr, regs, file);
1539 
1540 	if (retval)
1541 		current->signal->group_exit_code |= 0x80;
1542 close_fail:
1543 	filp_close(file, NULL);
1544 fail_unlock:
1545 	current->fsuid = fsuid;
1546 	complete_all(&mm->core_done);
1547 fail:
1548 	return retval;
1549 }
1550