1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/swap.h> 32 #include <linux/string.h> 33 #include <linux/init.h> 34 #include <linux/pagemap.h> 35 #include <linux/perf_event.h> 36 #include <linux/highmem.h> 37 #include <linux/spinlock.h> 38 #include <linux/key.h> 39 #include <linux/personality.h> 40 #include <linux/binfmts.h> 41 #include <linux/utsname.h> 42 #include <linux/pid_namespace.h> 43 #include <linux/module.h> 44 #include <linux/namei.h> 45 #include <linux/mount.h> 46 #include <linux/security.h> 47 #include <linux/syscalls.h> 48 #include <linux/tsacct_kern.h> 49 #include <linux/cn_proc.h> 50 #include <linux/audit.h> 51 #include <linux/tracehook.h> 52 #include <linux/kmod.h> 53 #include <linux/fsnotify.h> 54 #include <linux/fs_struct.h> 55 #include <linux/pipe_fs_i.h> 56 #include <linux/oom.h> 57 #include <linux/compat.h> 58 59 #include <asm/uaccess.h> 60 #include <asm/mmu_context.h> 61 #include <asm/tlb.h> 62 #include "internal.h" 63 64 int core_uses_pid; 65 char core_pattern[CORENAME_MAX_SIZE] = "core"; 66 unsigned int core_pipe_limit; 67 int suid_dumpable = 0; 68 69 struct core_name { 70 char *corename; 71 int used, size; 72 }; 73 static atomic_t call_count = ATOMIC_INIT(1); 74 75 /* The maximal length of core_pattern is also specified in sysctl.c */ 76 77 static LIST_HEAD(formats); 78 static DEFINE_RWLOCK(binfmt_lock); 79 80 int __register_binfmt(struct linux_binfmt * fmt, int insert) 81 { 82 if (!fmt) 83 return -EINVAL; 84 write_lock(&binfmt_lock); 85 insert ? list_add(&fmt->lh, &formats) : 86 list_add_tail(&fmt->lh, &formats); 87 write_unlock(&binfmt_lock); 88 return 0; 89 } 90 91 EXPORT_SYMBOL(__register_binfmt); 92 93 void unregister_binfmt(struct linux_binfmt * fmt) 94 { 95 write_lock(&binfmt_lock); 96 list_del(&fmt->lh); 97 write_unlock(&binfmt_lock); 98 } 99 100 EXPORT_SYMBOL(unregister_binfmt); 101 102 static inline void put_binfmt(struct linux_binfmt * fmt) 103 { 104 module_put(fmt->module); 105 } 106 107 /* 108 * Note that a shared library must be both readable and executable due to 109 * security reasons. 110 * 111 * Also note that we take the address to load from from the file itself. 112 */ 113 SYSCALL_DEFINE1(uselib, const char __user *, library) 114 { 115 struct file *file; 116 char *tmp = getname(library); 117 int error = PTR_ERR(tmp); 118 static const struct open_flags uselib_flags = { 119 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 120 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN, 121 .intent = LOOKUP_OPEN 122 }; 123 124 if (IS_ERR(tmp)) 125 goto out; 126 127 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW); 128 putname(tmp); 129 error = PTR_ERR(file); 130 if (IS_ERR(file)) 131 goto out; 132 133 error = -EINVAL; 134 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 135 goto exit; 136 137 error = -EACCES; 138 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 139 goto exit; 140 141 fsnotify_open(file); 142 143 error = -ENOEXEC; 144 if(file->f_op) { 145 struct linux_binfmt * fmt; 146 147 read_lock(&binfmt_lock); 148 list_for_each_entry(fmt, &formats, lh) { 149 if (!fmt->load_shlib) 150 continue; 151 if (!try_module_get(fmt->module)) 152 continue; 153 read_unlock(&binfmt_lock); 154 error = fmt->load_shlib(file); 155 read_lock(&binfmt_lock); 156 put_binfmt(fmt); 157 if (error != -ENOEXEC) 158 break; 159 } 160 read_unlock(&binfmt_lock); 161 } 162 exit: 163 fput(file); 164 out: 165 return error; 166 } 167 168 #ifdef CONFIG_MMU 169 /* 170 * The nascent bprm->mm is not visible until exec_mmap() but it can 171 * use a lot of memory, account these pages in current->mm temporary 172 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 173 * change the counter back via acct_arg_size(0). 174 */ 175 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 176 { 177 struct mm_struct *mm = current->mm; 178 long diff = (long)(pages - bprm->vma_pages); 179 180 if (!mm || !diff) 181 return; 182 183 bprm->vma_pages = pages; 184 185 #ifdef SPLIT_RSS_COUNTING 186 add_mm_counter(mm, MM_ANONPAGES, diff); 187 #else 188 spin_lock(&mm->page_table_lock); 189 add_mm_counter(mm, MM_ANONPAGES, diff); 190 spin_unlock(&mm->page_table_lock); 191 #endif 192 } 193 194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 195 int write) 196 { 197 struct page *page; 198 int ret; 199 200 #ifdef CONFIG_STACK_GROWSUP 201 if (write) { 202 ret = expand_downwards(bprm->vma, pos); 203 if (ret < 0) 204 return NULL; 205 } 206 #endif 207 ret = get_user_pages(current, bprm->mm, pos, 208 1, write, 1, &page, NULL); 209 if (ret <= 0) 210 return NULL; 211 212 if (write) { 213 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 214 struct rlimit *rlim; 215 216 acct_arg_size(bprm, size / PAGE_SIZE); 217 218 /* 219 * We've historically supported up to 32 pages (ARG_MAX) 220 * of argument strings even with small stacks 221 */ 222 if (size <= ARG_MAX) 223 return page; 224 225 /* 226 * Limit to 1/4-th the stack size for the argv+env strings. 227 * This ensures that: 228 * - the remaining binfmt code will not run out of stack space, 229 * - the program will have a reasonable amount of stack left 230 * to work from. 231 */ 232 rlim = current->signal->rlim; 233 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { 234 put_page(page); 235 return NULL; 236 } 237 } 238 239 return page; 240 } 241 242 static void put_arg_page(struct page *page) 243 { 244 put_page(page); 245 } 246 247 static void free_arg_page(struct linux_binprm *bprm, int i) 248 { 249 } 250 251 static void free_arg_pages(struct linux_binprm *bprm) 252 { 253 } 254 255 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 256 struct page *page) 257 { 258 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 259 } 260 261 static int __bprm_mm_init(struct linux_binprm *bprm) 262 { 263 int err; 264 struct vm_area_struct *vma = NULL; 265 struct mm_struct *mm = bprm->mm; 266 267 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 268 if (!vma) 269 return -ENOMEM; 270 271 down_write(&mm->mmap_sem); 272 vma->vm_mm = mm; 273 274 /* 275 * Place the stack at the largest stack address the architecture 276 * supports. Later, we'll move this to an appropriate place. We don't 277 * use STACK_TOP because that can depend on attributes which aren't 278 * configured yet. 279 */ 280 BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 281 vma->vm_end = STACK_TOP_MAX; 282 vma->vm_start = vma->vm_end - PAGE_SIZE; 283 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 284 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 285 INIT_LIST_HEAD(&vma->anon_vma_chain); 286 287 err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1); 288 if (err) 289 goto err; 290 291 err = insert_vm_struct(mm, vma); 292 if (err) 293 goto err; 294 295 mm->stack_vm = mm->total_vm = 1; 296 up_write(&mm->mmap_sem); 297 bprm->p = vma->vm_end - sizeof(void *); 298 return 0; 299 err: 300 up_write(&mm->mmap_sem); 301 bprm->vma = NULL; 302 kmem_cache_free(vm_area_cachep, vma); 303 return err; 304 } 305 306 static bool valid_arg_len(struct linux_binprm *bprm, long len) 307 { 308 return len <= MAX_ARG_STRLEN; 309 } 310 311 #else 312 313 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 314 { 315 } 316 317 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 318 int write) 319 { 320 struct page *page; 321 322 page = bprm->page[pos / PAGE_SIZE]; 323 if (!page && write) { 324 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 325 if (!page) 326 return NULL; 327 bprm->page[pos / PAGE_SIZE] = page; 328 } 329 330 return page; 331 } 332 333 static void put_arg_page(struct page *page) 334 { 335 } 336 337 static void free_arg_page(struct linux_binprm *bprm, int i) 338 { 339 if (bprm->page[i]) { 340 __free_page(bprm->page[i]); 341 bprm->page[i] = NULL; 342 } 343 } 344 345 static void free_arg_pages(struct linux_binprm *bprm) 346 { 347 int i; 348 349 for (i = 0; i < MAX_ARG_PAGES; i++) 350 free_arg_page(bprm, i); 351 } 352 353 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 354 struct page *page) 355 { 356 } 357 358 static int __bprm_mm_init(struct linux_binprm *bprm) 359 { 360 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 361 return 0; 362 } 363 364 static bool valid_arg_len(struct linux_binprm *bprm, long len) 365 { 366 return len <= bprm->p; 367 } 368 369 #endif /* CONFIG_MMU */ 370 371 /* 372 * Create a new mm_struct and populate it with a temporary stack 373 * vm_area_struct. We don't have enough context at this point to set the stack 374 * flags, permissions, and offset, so we use temporary values. We'll update 375 * them later in setup_arg_pages(). 376 */ 377 int bprm_mm_init(struct linux_binprm *bprm) 378 { 379 int err; 380 struct mm_struct *mm = NULL; 381 382 bprm->mm = mm = mm_alloc(); 383 err = -ENOMEM; 384 if (!mm) 385 goto err; 386 387 err = init_new_context(current, mm); 388 if (err) 389 goto err; 390 391 err = __bprm_mm_init(bprm); 392 if (err) 393 goto err; 394 395 return 0; 396 397 err: 398 if (mm) { 399 bprm->mm = NULL; 400 mmdrop(mm); 401 } 402 403 return err; 404 } 405 406 struct user_arg_ptr { 407 #ifdef CONFIG_COMPAT 408 bool is_compat; 409 #endif 410 union { 411 const char __user *const __user *native; 412 #ifdef CONFIG_COMPAT 413 compat_uptr_t __user *compat; 414 #endif 415 } ptr; 416 }; 417 418 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 419 { 420 const char __user *native; 421 422 #ifdef CONFIG_COMPAT 423 if (unlikely(argv.is_compat)) { 424 compat_uptr_t compat; 425 426 if (get_user(compat, argv.ptr.compat + nr)) 427 return ERR_PTR(-EFAULT); 428 429 return compat_ptr(compat); 430 } 431 #endif 432 433 if (get_user(native, argv.ptr.native + nr)) 434 return ERR_PTR(-EFAULT); 435 436 return native; 437 } 438 439 /* 440 * count() counts the number of strings in array ARGV. 441 */ 442 static int count(struct user_arg_ptr argv, int max) 443 { 444 int i = 0; 445 446 if (argv.ptr.native != NULL) { 447 for (;;) { 448 const char __user *p = get_user_arg_ptr(argv, i); 449 450 if (!p) 451 break; 452 453 if (IS_ERR(p)) 454 return -EFAULT; 455 456 if (i++ >= max) 457 return -E2BIG; 458 459 if (fatal_signal_pending(current)) 460 return -ERESTARTNOHAND; 461 cond_resched(); 462 } 463 } 464 return i; 465 } 466 467 /* 468 * 'copy_strings()' copies argument/environment strings from the old 469 * processes's memory to the new process's stack. The call to get_user_pages() 470 * ensures the destination page is created and not swapped out. 471 */ 472 static int copy_strings(int argc, struct user_arg_ptr argv, 473 struct linux_binprm *bprm) 474 { 475 struct page *kmapped_page = NULL; 476 char *kaddr = NULL; 477 unsigned long kpos = 0; 478 int ret; 479 480 while (argc-- > 0) { 481 const char __user *str; 482 int len; 483 unsigned long pos; 484 485 ret = -EFAULT; 486 str = get_user_arg_ptr(argv, argc); 487 if (IS_ERR(str)) 488 goto out; 489 490 len = strnlen_user(str, MAX_ARG_STRLEN); 491 if (!len) 492 goto out; 493 494 ret = -E2BIG; 495 if (!valid_arg_len(bprm, len)) 496 goto out; 497 498 /* We're going to work our way backwords. */ 499 pos = bprm->p; 500 str += len; 501 bprm->p -= len; 502 503 while (len > 0) { 504 int offset, bytes_to_copy; 505 506 if (fatal_signal_pending(current)) { 507 ret = -ERESTARTNOHAND; 508 goto out; 509 } 510 cond_resched(); 511 512 offset = pos % PAGE_SIZE; 513 if (offset == 0) 514 offset = PAGE_SIZE; 515 516 bytes_to_copy = offset; 517 if (bytes_to_copy > len) 518 bytes_to_copy = len; 519 520 offset -= bytes_to_copy; 521 pos -= bytes_to_copy; 522 str -= bytes_to_copy; 523 len -= bytes_to_copy; 524 525 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 526 struct page *page; 527 528 page = get_arg_page(bprm, pos, 1); 529 if (!page) { 530 ret = -E2BIG; 531 goto out; 532 } 533 534 if (kmapped_page) { 535 flush_kernel_dcache_page(kmapped_page); 536 kunmap(kmapped_page); 537 put_arg_page(kmapped_page); 538 } 539 kmapped_page = page; 540 kaddr = kmap(kmapped_page); 541 kpos = pos & PAGE_MASK; 542 flush_arg_page(bprm, kpos, kmapped_page); 543 } 544 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 545 ret = -EFAULT; 546 goto out; 547 } 548 } 549 } 550 ret = 0; 551 out: 552 if (kmapped_page) { 553 flush_kernel_dcache_page(kmapped_page); 554 kunmap(kmapped_page); 555 put_arg_page(kmapped_page); 556 } 557 return ret; 558 } 559 560 /* 561 * Like copy_strings, but get argv and its values from kernel memory. 562 */ 563 int copy_strings_kernel(int argc, const char *const *__argv, 564 struct linux_binprm *bprm) 565 { 566 int r; 567 mm_segment_t oldfs = get_fs(); 568 struct user_arg_ptr argv = { 569 .ptr.native = (const char __user *const __user *)__argv, 570 }; 571 572 set_fs(KERNEL_DS); 573 r = copy_strings(argc, argv, bprm); 574 set_fs(oldfs); 575 576 return r; 577 } 578 EXPORT_SYMBOL(copy_strings_kernel); 579 580 #ifdef CONFIG_MMU 581 582 /* 583 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 584 * the binfmt code determines where the new stack should reside, we shift it to 585 * its final location. The process proceeds as follows: 586 * 587 * 1) Use shift to calculate the new vma endpoints. 588 * 2) Extend vma to cover both the old and new ranges. This ensures the 589 * arguments passed to subsequent functions are consistent. 590 * 3) Move vma's page tables to the new range. 591 * 4) Free up any cleared pgd range. 592 * 5) Shrink the vma to cover only the new range. 593 */ 594 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 595 { 596 struct mm_struct *mm = vma->vm_mm; 597 unsigned long old_start = vma->vm_start; 598 unsigned long old_end = vma->vm_end; 599 unsigned long length = old_end - old_start; 600 unsigned long new_start = old_start - shift; 601 unsigned long new_end = old_end - shift; 602 struct mmu_gather tlb; 603 604 BUG_ON(new_start > new_end); 605 606 /* 607 * ensure there are no vmas between where we want to go 608 * and where we are 609 */ 610 if (vma != find_vma(mm, new_start)) 611 return -EFAULT; 612 613 /* 614 * cover the whole range: [new_start, old_end) 615 */ 616 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 617 return -ENOMEM; 618 619 /* 620 * move the page tables downwards, on failure we rely on 621 * process cleanup to remove whatever mess we made. 622 */ 623 if (length != move_page_tables(vma, old_start, 624 vma, new_start, length)) 625 return -ENOMEM; 626 627 lru_add_drain(); 628 tlb_gather_mmu(&tlb, mm, 0); 629 if (new_end > old_start) { 630 /* 631 * when the old and new regions overlap clear from new_end. 632 */ 633 free_pgd_range(&tlb, new_end, old_end, new_end, 634 vma->vm_next ? vma->vm_next->vm_start : 0); 635 } else { 636 /* 637 * otherwise, clean from old_start; this is done to not touch 638 * the address space in [new_end, old_start) some architectures 639 * have constraints on va-space that make this illegal (IA64) - 640 * for the others its just a little faster. 641 */ 642 free_pgd_range(&tlb, old_start, old_end, new_end, 643 vma->vm_next ? vma->vm_next->vm_start : 0); 644 } 645 tlb_finish_mmu(&tlb, new_end, old_end); 646 647 /* 648 * Shrink the vma to just the new range. Always succeeds. 649 */ 650 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 651 652 return 0; 653 } 654 655 /* 656 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 657 * the stack is optionally relocated, and some extra space is added. 658 */ 659 int setup_arg_pages(struct linux_binprm *bprm, 660 unsigned long stack_top, 661 int executable_stack) 662 { 663 unsigned long ret; 664 unsigned long stack_shift; 665 struct mm_struct *mm = current->mm; 666 struct vm_area_struct *vma = bprm->vma; 667 struct vm_area_struct *prev = NULL; 668 unsigned long vm_flags; 669 unsigned long stack_base; 670 unsigned long stack_size; 671 unsigned long stack_expand; 672 unsigned long rlim_stack; 673 674 #ifdef CONFIG_STACK_GROWSUP 675 /* Limit stack size to 1GB */ 676 stack_base = rlimit_max(RLIMIT_STACK); 677 if (stack_base > (1 << 30)) 678 stack_base = 1 << 30; 679 680 /* Make sure we didn't let the argument array grow too large. */ 681 if (vma->vm_end - vma->vm_start > stack_base) 682 return -ENOMEM; 683 684 stack_base = PAGE_ALIGN(stack_top - stack_base); 685 686 stack_shift = vma->vm_start - stack_base; 687 mm->arg_start = bprm->p - stack_shift; 688 bprm->p = vma->vm_end - stack_shift; 689 #else 690 stack_top = arch_align_stack(stack_top); 691 stack_top = PAGE_ALIGN(stack_top); 692 693 if (unlikely(stack_top < mmap_min_addr) || 694 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 695 return -ENOMEM; 696 697 stack_shift = vma->vm_end - stack_top; 698 699 bprm->p -= stack_shift; 700 mm->arg_start = bprm->p; 701 #endif 702 703 if (bprm->loader) 704 bprm->loader -= stack_shift; 705 bprm->exec -= stack_shift; 706 707 down_write(&mm->mmap_sem); 708 vm_flags = VM_STACK_FLAGS; 709 710 /* 711 * Adjust stack execute permissions; explicitly enable for 712 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 713 * (arch default) otherwise. 714 */ 715 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 716 vm_flags |= VM_EXEC; 717 else if (executable_stack == EXSTACK_DISABLE_X) 718 vm_flags &= ~VM_EXEC; 719 vm_flags |= mm->def_flags; 720 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 721 722 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 723 vm_flags); 724 if (ret) 725 goto out_unlock; 726 BUG_ON(prev != vma); 727 728 /* Move stack pages down in memory. */ 729 if (stack_shift) { 730 ret = shift_arg_pages(vma, stack_shift); 731 if (ret) 732 goto out_unlock; 733 } 734 735 /* mprotect_fixup is overkill to remove the temporary stack flags */ 736 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 737 738 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 739 stack_size = vma->vm_end - vma->vm_start; 740 /* 741 * Align this down to a page boundary as expand_stack 742 * will align it up. 743 */ 744 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; 745 #ifdef CONFIG_STACK_GROWSUP 746 if (stack_size + stack_expand > rlim_stack) 747 stack_base = vma->vm_start + rlim_stack; 748 else 749 stack_base = vma->vm_end + stack_expand; 750 #else 751 if (stack_size + stack_expand > rlim_stack) 752 stack_base = vma->vm_end - rlim_stack; 753 else 754 stack_base = vma->vm_start - stack_expand; 755 #endif 756 current->mm->start_stack = bprm->p; 757 ret = expand_stack(vma, stack_base); 758 if (ret) 759 ret = -EFAULT; 760 761 out_unlock: 762 up_write(&mm->mmap_sem); 763 return ret; 764 } 765 EXPORT_SYMBOL(setup_arg_pages); 766 767 #endif /* CONFIG_MMU */ 768 769 struct file *open_exec(const char *name) 770 { 771 struct file *file; 772 int err; 773 static const struct open_flags open_exec_flags = { 774 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 775 .acc_mode = MAY_EXEC | MAY_OPEN, 776 .intent = LOOKUP_OPEN 777 }; 778 779 file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW); 780 if (IS_ERR(file)) 781 goto out; 782 783 err = -EACCES; 784 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 785 goto exit; 786 787 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 788 goto exit; 789 790 fsnotify_open(file); 791 792 err = deny_write_access(file); 793 if (err) 794 goto exit; 795 796 out: 797 return file; 798 799 exit: 800 fput(file); 801 return ERR_PTR(err); 802 } 803 EXPORT_SYMBOL(open_exec); 804 805 int kernel_read(struct file *file, loff_t offset, 806 char *addr, unsigned long count) 807 { 808 mm_segment_t old_fs; 809 loff_t pos = offset; 810 int result; 811 812 old_fs = get_fs(); 813 set_fs(get_ds()); 814 /* The cast to a user pointer is valid due to the set_fs() */ 815 result = vfs_read(file, (void __user *)addr, count, &pos); 816 set_fs(old_fs); 817 return result; 818 } 819 820 EXPORT_SYMBOL(kernel_read); 821 822 static int exec_mmap(struct mm_struct *mm) 823 { 824 struct task_struct *tsk; 825 struct mm_struct * old_mm, *active_mm; 826 827 /* Notify parent that we're no longer interested in the old VM */ 828 tsk = current; 829 old_mm = current->mm; 830 sync_mm_rss(tsk, old_mm); 831 mm_release(tsk, old_mm); 832 833 if (old_mm) { 834 /* 835 * Make sure that if there is a core dump in progress 836 * for the old mm, we get out and die instead of going 837 * through with the exec. We must hold mmap_sem around 838 * checking core_state and changing tsk->mm. 839 */ 840 down_read(&old_mm->mmap_sem); 841 if (unlikely(old_mm->core_state)) { 842 up_read(&old_mm->mmap_sem); 843 return -EINTR; 844 } 845 } 846 task_lock(tsk); 847 active_mm = tsk->active_mm; 848 tsk->mm = mm; 849 tsk->active_mm = mm; 850 activate_mm(active_mm, mm); 851 if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) { 852 atomic_dec(&old_mm->oom_disable_count); 853 atomic_inc(&tsk->mm->oom_disable_count); 854 } 855 task_unlock(tsk); 856 arch_pick_mmap_layout(mm); 857 if (old_mm) { 858 up_read(&old_mm->mmap_sem); 859 BUG_ON(active_mm != old_mm); 860 mm_update_next_owner(old_mm); 861 mmput(old_mm); 862 return 0; 863 } 864 mmdrop(active_mm); 865 return 0; 866 } 867 868 /* 869 * This function makes sure the current process has its own signal table, 870 * so that flush_signal_handlers can later reset the handlers without 871 * disturbing other processes. (Other processes might share the signal 872 * table via the CLONE_SIGHAND option to clone().) 873 */ 874 static int de_thread(struct task_struct *tsk) 875 { 876 struct signal_struct *sig = tsk->signal; 877 struct sighand_struct *oldsighand = tsk->sighand; 878 spinlock_t *lock = &oldsighand->siglock; 879 880 if (thread_group_empty(tsk)) 881 goto no_thread_group; 882 883 /* 884 * Kill all other threads in the thread group. 885 */ 886 spin_lock_irq(lock); 887 if (signal_group_exit(sig)) { 888 /* 889 * Another group action in progress, just 890 * return so that the signal is processed. 891 */ 892 spin_unlock_irq(lock); 893 return -EAGAIN; 894 } 895 896 sig->group_exit_task = tsk; 897 sig->notify_count = zap_other_threads(tsk); 898 if (!thread_group_leader(tsk)) 899 sig->notify_count--; 900 901 while (sig->notify_count) { 902 __set_current_state(TASK_UNINTERRUPTIBLE); 903 spin_unlock_irq(lock); 904 schedule(); 905 spin_lock_irq(lock); 906 } 907 spin_unlock_irq(lock); 908 909 /* 910 * At this point all other threads have exited, all we have to 911 * do is to wait for the thread group leader to become inactive, 912 * and to assume its PID: 913 */ 914 if (!thread_group_leader(tsk)) { 915 struct task_struct *leader = tsk->group_leader; 916 917 sig->notify_count = -1; /* for exit_notify() */ 918 for (;;) { 919 write_lock_irq(&tasklist_lock); 920 if (likely(leader->exit_state)) 921 break; 922 __set_current_state(TASK_UNINTERRUPTIBLE); 923 write_unlock_irq(&tasklist_lock); 924 schedule(); 925 } 926 927 /* 928 * The only record we have of the real-time age of a 929 * process, regardless of execs it's done, is start_time. 930 * All the past CPU time is accumulated in signal_struct 931 * from sister threads now dead. But in this non-leader 932 * exec, nothing survives from the original leader thread, 933 * whose birth marks the true age of this process now. 934 * When we take on its identity by switching to its PID, we 935 * also take its birthdate (always earlier than our own). 936 */ 937 tsk->start_time = leader->start_time; 938 939 BUG_ON(!same_thread_group(leader, tsk)); 940 BUG_ON(has_group_leader_pid(tsk)); 941 /* 942 * An exec() starts a new thread group with the 943 * TGID of the previous thread group. Rehash the 944 * two threads with a switched PID, and release 945 * the former thread group leader: 946 */ 947 948 /* Become a process group leader with the old leader's pid. 949 * The old leader becomes a thread of the this thread group. 950 * Note: The old leader also uses this pid until release_task 951 * is called. Odd but simple and correct. 952 */ 953 detach_pid(tsk, PIDTYPE_PID); 954 tsk->pid = leader->pid; 955 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 956 transfer_pid(leader, tsk, PIDTYPE_PGID); 957 transfer_pid(leader, tsk, PIDTYPE_SID); 958 959 list_replace_rcu(&leader->tasks, &tsk->tasks); 960 list_replace_init(&leader->sibling, &tsk->sibling); 961 962 tsk->group_leader = tsk; 963 leader->group_leader = tsk; 964 965 tsk->exit_signal = SIGCHLD; 966 967 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 968 leader->exit_state = EXIT_DEAD; 969 write_unlock_irq(&tasklist_lock); 970 971 release_task(leader); 972 } 973 974 sig->group_exit_task = NULL; 975 sig->notify_count = 0; 976 977 no_thread_group: 978 if (current->mm) 979 setmax_mm_hiwater_rss(&sig->maxrss, current->mm); 980 981 exit_itimers(sig); 982 flush_itimer_signals(); 983 984 if (atomic_read(&oldsighand->count) != 1) { 985 struct sighand_struct *newsighand; 986 /* 987 * This ->sighand is shared with the CLONE_SIGHAND 988 * but not CLONE_THREAD task, switch to the new one. 989 */ 990 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 991 if (!newsighand) 992 return -ENOMEM; 993 994 atomic_set(&newsighand->count, 1); 995 memcpy(newsighand->action, oldsighand->action, 996 sizeof(newsighand->action)); 997 998 write_lock_irq(&tasklist_lock); 999 spin_lock(&oldsighand->siglock); 1000 rcu_assign_pointer(tsk->sighand, newsighand); 1001 spin_unlock(&oldsighand->siglock); 1002 write_unlock_irq(&tasklist_lock); 1003 1004 __cleanup_sighand(oldsighand); 1005 } 1006 1007 BUG_ON(!thread_group_leader(tsk)); 1008 return 0; 1009 } 1010 1011 /* 1012 * These functions flushes out all traces of the currently running executable 1013 * so that a new one can be started 1014 */ 1015 static void flush_old_files(struct files_struct * files) 1016 { 1017 long j = -1; 1018 struct fdtable *fdt; 1019 1020 spin_lock(&files->file_lock); 1021 for (;;) { 1022 unsigned long set, i; 1023 1024 j++; 1025 i = j * __NFDBITS; 1026 fdt = files_fdtable(files); 1027 if (i >= fdt->max_fds) 1028 break; 1029 set = fdt->close_on_exec->fds_bits[j]; 1030 if (!set) 1031 continue; 1032 fdt->close_on_exec->fds_bits[j] = 0; 1033 spin_unlock(&files->file_lock); 1034 for ( ; set ; i++,set >>= 1) { 1035 if (set & 1) { 1036 sys_close(i); 1037 } 1038 } 1039 spin_lock(&files->file_lock); 1040 1041 } 1042 spin_unlock(&files->file_lock); 1043 } 1044 1045 char *get_task_comm(char *buf, struct task_struct *tsk) 1046 { 1047 /* buf must be at least sizeof(tsk->comm) in size */ 1048 task_lock(tsk); 1049 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 1050 task_unlock(tsk); 1051 return buf; 1052 } 1053 EXPORT_SYMBOL_GPL(get_task_comm); 1054 1055 void set_task_comm(struct task_struct *tsk, char *buf) 1056 { 1057 task_lock(tsk); 1058 1059 /* 1060 * Threads may access current->comm without holding 1061 * the task lock, so write the string carefully. 1062 * Readers without a lock may see incomplete new 1063 * names but are safe from non-terminating string reads. 1064 */ 1065 memset(tsk->comm, 0, TASK_COMM_LEN); 1066 wmb(); 1067 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1068 task_unlock(tsk); 1069 perf_event_comm(tsk); 1070 } 1071 1072 int flush_old_exec(struct linux_binprm * bprm) 1073 { 1074 int retval; 1075 1076 /* 1077 * Make sure we have a private signal table and that 1078 * we are unassociated from the previous thread group. 1079 */ 1080 retval = de_thread(current); 1081 if (retval) 1082 goto out; 1083 1084 set_mm_exe_file(bprm->mm, bprm->file); 1085 1086 /* 1087 * Release all of the old mmap stuff 1088 */ 1089 acct_arg_size(bprm, 0); 1090 retval = exec_mmap(bprm->mm); 1091 if (retval) 1092 goto out; 1093 1094 bprm->mm = NULL; /* We're using it now */ 1095 1096 current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD); 1097 flush_thread(); 1098 current->personality &= ~bprm->per_clear; 1099 1100 return 0; 1101 1102 out: 1103 return retval; 1104 } 1105 EXPORT_SYMBOL(flush_old_exec); 1106 1107 void setup_new_exec(struct linux_binprm * bprm) 1108 { 1109 int i, ch; 1110 const char *name; 1111 char tcomm[sizeof(current->comm)]; 1112 1113 arch_pick_mmap_layout(current->mm); 1114 1115 /* This is the point of no return */ 1116 current->sas_ss_sp = current->sas_ss_size = 0; 1117 1118 if (current_euid() == current_uid() && current_egid() == current_gid()) 1119 set_dumpable(current->mm, 1); 1120 else 1121 set_dumpable(current->mm, suid_dumpable); 1122 1123 name = bprm->filename; 1124 1125 /* Copies the binary name from after last slash */ 1126 for (i=0; (ch = *(name++)) != '\0';) { 1127 if (ch == '/') 1128 i = 0; /* overwrite what we wrote */ 1129 else 1130 if (i < (sizeof(tcomm) - 1)) 1131 tcomm[i++] = ch; 1132 } 1133 tcomm[i] = '\0'; 1134 set_task_comm(current, tcomm); 1135 1136 /* Set the new mm task size. We have to do that late because it may 1137 * depend on TIF_32BIT which is only updated in flush_thread() on 1138 * some architectures like powerpc 1139 */ 1140 current->mm->task_size = TASK_SIZE; 1141 1142 /* install the new credentials */ 1143 if (bprm->cred->uid != current_euid() || 1144 bprm->cred->gid != current_egid()) { 1145 current->pdeath_signal = 0; 1146 } else if (file_permission(bprm->file, MAY_READ) || 1147 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) { 1148 set_dumpable(current->mm, suid_dumpable); 1149 } 1150 1151 /* 1152 * Flush performance counters when crossing a 1153 * security domain: 1154 */ 1155 if (!get_dumpable(current->mm)) 1156 perf_event_exit_task(current); 1157 1158 /* An exec changes our domain. We are no longer part of the thread 1159 group */ 1160 1161 current->self_exec_id++; 1162 1163 flush_signal_handlers(current, 0); 1164 flush_old_files(current->files); 1165 } 1166 EXPORT_SYMBOL(setup_new_exec); 1167 1168 /* 1169 * Prepare credentials and lock ->cred_guard_mutex. 1170 * install_exec_creds() commits the new creds and drops the lock. 1171 * Or, if exec fails before, free_bprm() should release ->cred and 1172 * and unlock. 1173 */ 1174 int prepare_bprm_creds(struct linux_binprm *bprm) 1175 { 1176 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1177 return -ERESTARTNOINTR; 1178 1179 bprm->cred = prepare_exec_creds(); 1180 if (likely(bprm->cred)) 1181 return 0; 1182 1183 mutex_unlock(¤t->signal->cred_guard_mutex); 1184 return -ENOMEM; 1185 } 1186 1187 void free_bprm(struct linux_binprm *bprm) 1188 { 1189 free_arg_pages(bprm); 1190 if (bprm->cred) { 1191 mutex_unlock(¤t->signal->cred_guard_mutex); 1192 abort_creds(bprm->cred); 1193 } 1194 kfree(bprm); 1195 } 1196 1197 /* 1198 * install the new credentials for this executable 1199 */ 1200 void install_exec_creds(struct linux_binprm *bprm) 1201 { 1202 security_bprm_committing_creds(bprm); 1203 1204 commit_creds(bprm->cred); 1205 bprm->cred = NULL; 1206 /* 1207 * cred_guard_mutex must be held at least to this point to prevent 1208 * ptrace_attach() from altering our determination of the task's 1209 * credentials; any time after this it may be unlocked. 1210 */ 1211 security_bprm_committed_creds(bprm); 1212 mutex_unlock(¤t->signal->cred_guard_mutex); 1213 } 1214 EXPORT_SYMBOL(install_exec_creds); 1215 1216 /* 1217 * determine how safe it is to execute the proposed program 1218 * - the caller must hold ->cred_guard_mutex to protect against 1219 * PTRACE_ATTACH 1220 */ 1221 int check_unsafe_exec(struct linux_binprm *bprm) 1222 { 1223 struct task_struct *p = current, *t; 1224 unsigned n_fs; 1225 int res = 0; 1226 1227 bprm->unsafe = tracehook_unsafe_exec(p); 1228 1229 n_fs = 1; 1230 spin_lock(&p->fs->lock); 1231 rcu_read_lock(); 1232 for (t = next_thread(p); t != p; t = next_thread(t)) { 1233 if (t->fs == p->fs) 1234 n_fs++; 1235 } 1236 rcu_read_unlock(); 1237 1238 if (p->fs->users > n_fs) { 1239 bprm->unsafe |= LSM_UNSAFE_SHARE; 1240 } else { 1241 res = -EAGAIN; 1242 if (!p->fs->in_exec) { 1243 p->fs->in_exec = 1; 1244 res = 1; 1245 } 1246 } 1247 spin_unlock(&p->fs->lock); 1248 1249 return res; 1250 } 1251 1252 /* 1253 * Fill the binprm structure from the inode. 1254 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1255 * 1256 * This may be called multiple times for binary chains (scripts for example). 1257 */ 1258 int prepare_binprm(struct linux_binprm *bprm) 1259 { 1260 umode_t mode; 1261 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1262 int retval; 1263 1264 mode = inode->i_mode; 1265 if (bprm->file->f_op == NULL) 1266 return -EACCES; 1267 1268 /* clear any previous set[ug]id data from a previous binary */ 1269 bprm->cred->euid = current_euid(); 1270 bprm->cred->egid = current_egid(); 1271 1272 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1273 /* Set-uid? */ 1274 if (mode & S_ISUID) { 1275 bprm->per_clear |= PER_CLEAR_ON_SETID; 1276 bprm->cred->euid = inode->i_uid; 1277 } 1278 1279 /* Set-gid? */ 1280 /* 1281 * If setgid is set but no group execute bit then this 1282 * is a candidate for mandatory locking, not a setgid 1283 * executable. 1284 */ 1285 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1286 bprm->per_clear |= PER_CLEAR_ON_SETID; 1287 bprm->cred->egid = inode->i_gid; 1288 } 1289 } 1290 1291 /* fill in binprm security blob */ 1292 retval = security_bprm_set_creds(bprm); 1293 if (retval) 1294 return retval; 1295 bprm->cred_prepared = 1; 1296 1297 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1298 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1299 } 1300 1301 EXPORT_SYMBOL(prepare_binprm); 1302 1303 /* 1304 * Arguments are '\0' separated strings found at the location bprm->p 1305 * points to; chop off the first by relocating brpm->p to right after 1306 * the first '\0' encountered. 1307 */ 1308 int remove_arg_zero(struct linux_binprm *bprm) 1309 { 1310 int ret = 0; 1311 unsigned long offset; 1312 char *kaddr; 1313 struct page *page; 1314 1315 if (!bprm->argc) 1316 return 0; 1317 1318 do { 1319 offset = bprm->p & ~PAGE_MASK; 1320 page = get_arg_page(bprm, bprm->p, 0); 1321 if (!page) { 1322 ret = -EFAULT; 1323 goto out; 1324 } 1325 kaddr = kmap_atomic(page, KM_USER0); 1326 1327 for (; offset < PAGE_SIZE && kaddr[offset]; 1328 offset++, bprm->p++) 1329 ; 1330 1331 kunmap_atomic(kaddr, KM_USER0); 1332 put_arg_page(page); 1333 1334 if (offset == PAGE_SIZE) 1335 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1336 } while (offset == PAGE_SIZE); 1337 1338 bprm->p++; 1339 bprm->argc--; 1340 ret = 0; 1341 1342 out: 1343 return ret; 1344 } 1345 EXPORT_SYMBOL(remove_arg_zero); 1346 1347 /* 1348 * cycle the list of binary formats handler, until one recognizes the image 1349 */ 1350 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1351 { 1352 unsigned int depth = bprm->recursion_depth; 1353 int try,retval; 1354 struct linux_binfmt *fmt; 1355 1356 retval = security_bprm_check(bprm); 1357 if (retval) 1358 return retval; 1359 1360 /* kernel module loader fixup */ 1361 /* so we don't try to load run modprobe in kernel space. */ 1362 set_fs(USER_DS); 1363 1364 retval = audit_bprm(bprm); 1365 if (retval) 1366 return retval; 1367 1368 retval = -ENOENT; 1369 for (try=0; try<2; try++) { 1370 read_lock(&binfmt_lock); 1371 list_for_each_entry(fmt, &formats, lh) { 1372 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1373 if (!fn) 1374 continue; 1375 if (!try_module_get(fmt->module)) 1376 continue; 1377 read_unlock(&binfmt_lock); 1378 retval = fn(bprm, regs); 1379 /* 1380 * Restore the depth counter to its starting value 1381 * in this call, so we don't have to rely on every 1382 * load_binary function to restore it on return. 1383 */ 1384 bprm->recursion_depth = depth; 1385 if (retval >= 0) { 1386 if (depth == 0) 1387 tracehook_report_exec(fmt, bprm, regs); 1388 put_binfmt(fmt); 1389 allow_write_access(bprm->file); 1390 if (bprm->file) 1391 fput(bprm->file); 1392 bprm->file = NULL; 1393 current->did_exec = 1; 1394 proc_exec_connector(current); 1395 return retval; 1396 } 1397 read_lock(&binfmt_lock); 1398 put_binfmt(fmt); 1399 if (retval != -ENOEXEC || bprm->mm == NULL) 1400 break; 1401 if (!bprm->file) { 1402 read_unlock(&binfmt_lock); 1403 return retval; 1404 } 1405 } 1406 read_unlock(&binfmt_lock); 1407 if (retval != -ENOEXEC || bprm->mm == NULL) { 1408 break; 1409 #ifdef CONFIG_MODULES 1410 } else { 1411 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1412 if (printable(bprm->buf[0]) && 1413 printable(bprm->buf[1]) && 1414 printable(bprm->buf[2]) && 1415 printable(bprm->buf[3])) 1416 break; /* -ENOEXEC */ 1417 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1418 #endif 1419 } 1420 } 1421 return retval; 1422 } 1423 1424 EXPORT_SYMBOL(search_binary_handler); 1425 1426 /* 1427 * sys_execve() executes a new program. 1428 */ 1429 static int do_execve_common(const char *filename, 1430 struct user_arg_ptr argv, 1431 struct user_arg_ptr envp, 1432 struct pt_regs *regs) 1433 { 1434 struct linux_binprm *bprm; 1435 struct file *file; 1436 struct files_struct *displaced; 1437 bool clear_in_exec; 1438 int retval; 1439 1440 retval = unshare_files(&displaced); 1441 if (retval) 1442 goto out_ret; 1443 1444 retval = -ENOMEM; 1445 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1446 if (!bprm) 1447 goto out_files; 1448 1449 retval = prepare_bprm_creds(bprm); 1450 if (retval) 1451 goto out_free; 1452 1453 retval = check_unsafe_exec(bprm); 1454 if (retval < 0) 1455 goto out_free; 1456 clear_in_exec = retval; 1457 current->in_execve = 1; 1458 1459 file = open_exec(filename); 1460 retval = PTR_ERR(file); 1461 if (IS_ERR(file)) 1462 goto out_unmark; 1463 1464 sched_exec(); 1465 1466 bprm->file = file; 1467 bprm->filename = filename; 1468 bprm->interp = filename; 1469 1470 retval = bprm_mm_init(bprm); 1471 if (retval) 1472 goto out_file; 1473 1474 bprm->argc = count(argv, MAX_ARG_STRINGS); 1475 if ((retval = bprm->argc) < 0) 1476 goto out; 1477 1478 bprm->envc = count(envp, MAX_ARG_STRINGS); 1479 if ((retval = bprm->envc) < 0) 1480 goto out; 1481 1482 retval = prepare_binprm(bprm); 1483 if (retval < 0) 1484 goto out; 1485 1486 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1487 if (retval < 0) 1488 goto out; 1489 1490 bprm->exec = bprm->p; 1491 retval = copy_strings(bprm->envc, envp, bprm); 1492 if (retval < 0) 1493 goto out; 1494 1495 retval = copy_strings(bprm->argc, argv, bprm); 1496 if (retval < 0) 1497 goto out; 1498 1499 retval = search_binary_handler(bprm,regs); 1500 if (retval < 0) 1501 goto out; 1502 1503 /* execve succeeded */ 1504 current->fs->in_exec = 0; 1505 current->in_execve = 0; 1506 acct_update_integrals(current); 1507 free_bprm(bprm); 1508 if (displaced) 1509 put_files_struct(displaced); 1510 return retval; 1511 1512 out: 1513 if (bprm->mm) { 1514 acct_arg_size(bprm, 0); 1515 mmput(bprm->mm); 1516 } 1517 1518 out_file: 1519 if (bprm->file) { 1520 allow_write_access(bprm->file); 1521 fput(bprm->file); 1522 } 1523 1524 out_unmark: 1525 if (clear_in_exec) 1526 current->fs->in_exec = 0; 1527 current->in_execve = 0; 1528 1529 out_free: 1530 free_bprm(bprm); 1531 1532 out_files: 1533 if (displaced) 1534 reset_files_struct(displaced); 1535 out_ret: 1536 return retval; 1537 } 1538 1539 int do_execve(const char *filename, 1540 const char __user *const __user *__argv, 1541 const char __user *const __user *__envp, 1542 struct pt_regs *regs) 1543 { 1544 struct user_arg_ptr argv = { .ptr.native = __argv }; 1545 struct user_arg_ptr envp = { .ptr.native = __envp }; 1546 return do_execve_common(filename, argv, envp, regs); 1547 } 1548 1549 #ifdef CONFIG_COMPAT 1550 int compat_do_execve(char *filename, 1551 compat_uptr_t __user *__argv, 1552 compat_uptr_t __user *__envp, 1553 struct pt_regs *regs) 1554 { 1555 struct user_arg_ptr argv = { 1556 .is_compat = true, 1557 .ptr.compat = __argv, 1558 }; 1559 struct user_arg_ptr envp = { 1560 .is_compat = true, 1561 .ptr.compat = __envp, 1562 }; 1563 return do_execve_common(filename, argv, envp, regs); 1564 } 1565 #endif 1566 1567 void set_binfmt(struct linux_binfmt *new) 1568 { 1569 struct mm_struct *mm = current->mm; 1570 1571 if (mm->binfmt) 1572 module_put(mm->binfmt->module); 1573 1574 mm->binfmt = new; 1575 if (new) 1576 __module_get(new->module); 1577 } 1578 1579 EXPORT_SYMBOL(set_binfmt); 1580 1581 static int expand_corename(struct core_name *cn) 1582 { 1583 char *old_corename = cn->corename; 1584 1585 cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count); 1586 cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL); 1587 1588 if (!cn->corename) { 1589 kfree(old_corename); 1590 return -ENOMEM; 1591 } 1592 1593 return 0; 1594 } 1595 1596 static int cn_printf(struct core_name *cn, const char *fmt, ...) 1597 { 1598 char *cur; 1599 int need; 1600 int ret; 1601 va_list arg; 1602 1603 va_start(arg, fmt); 1604 need = vsnprintf(NULL, 0, fmt, arg); 1605 va_end(arg); 1606 1607 if (likely(need < cn->size - cn->used - 1)) 1608 goto out_printf; 1609 1610 ret = expand_corename(cn); 1611 if (ret) 1612 goto expand_fail; 1613 1614 out_printf: 1615 cur = cn->corename + cn->used; 1616 va_start(arg, fmt); 1617 vsnprintf(cur, need + 1, fmt, arg); 1618 va_end(arg); 1619 cn->used += need; 1620 return 0; 1621 1622 expand_fail: 1623 return ret; 1624 } 1625 1626 /* format_corename will inspect the pattern parameter, and output a 1627 * name into corename, which must have space for at least 1628 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1629 */ 1630 static int format_corename(struct core_name *cn, long signr) 1631 { 1632 const struct cred *cred = current_cred(); 1633 const char *pat_ptr = core_pattern; 1634 int ispipe = (*pat_ptr == '|'); 1635 int pid_in_pattern = 0; 1636 int err = 0; 1637 1638 cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count); 1639 cn->corename = kmalloc(cn->size, GFP_KERNEL); 1640 cn->used = 0; 1641 1642 if (!cn->corename) 1643 return -ENOMEM; 1644 1645 /* Repeat as long as we have more pattern to process and more output 1646 space */ 1647 while (*pat_ptr) { 1648 if (*pat_ptr != '%') { 1649 if (*pat_ptr == 0) 1650 goto out; 1651 err = cn_printf(cn, "%c", *pat_ptr++); 1652 } else { 1653 switch (*++pat_ptr) { 1654 /* single % at the end, drop that */ 1655 case 0: 1656 goto out; 1657 /* Double percent, output one percent */ 1658 case '%': 1659 err = cn_printf(cn, "%c", '%'); 1660 break; 1661 /* pid */ 1662 case 'p': 1663 pid_in_pattern = 1; 1664 err = cn_printf(cn, "%d", 1665 task_tgid_vnr(current)); 1666 break; 1667 /* uid */ 1668 case 'u': 1669 err = cn_printf(cn, "%d", cred->uid); 1670 break; 1671 /* gid */ 1672 case 'g': 1673 err = cn_printf(cn, "%d", cred->gid); 1674 break; 1675 /* signal that caused the coredump */ 1676 case 's': 1677 err = cn_printf(cn, "%ld", signr); 1678 break; 1679 /* UNIX time of coredump */ 1680 case 't': { 1681 struct timeval tv; 1682 do_gettimeofday(&tv); 1683 err = cn_printf(cn, "%lu", tv.tv_sec); 1684 break; 1685 } 1686 /* hostname */ 1687 case 'h': 1688 down_read(&uts_sem); 1689 err = cn_printf(cn, "%s", 1690 utsname()->nodename); 1691 up_read(&uts_sem); 1692 break; 1693 /* executable */ 1694 case 'e': 1695 err = cn_printf(cn, "%s", current->comm); 1696 break; 1697 /* core limit size */ 1698 case 'c': 1699 err = cn_printf(cn, "%lu", 1700 rlimit(RLIMIT_CORE)); 1701 break; 1702 default: 1703 break; 1704 } 1705 ++pat_ptr; 1706 } 1707 1708 if (err) 1709 return err; 1710 } 1711 1712 /* Backward compatibility with core_uses_pid: 1713 * 1714 * If core_pattern does not include a %p (as is the default) 1715 * and core_uses_pid is set, then .%pid will be appended to 1716 * the filename. Do not do this for piped commands. */ 1717 if (!ispipe && !pid_in_pattern && core_uses_pid) { 1718 err = cn_printf(cn, ".%d", task_tgid_vnr(current)); 1719 if (err) 1720 return err; 1721 } 1722 out: 1723 return ispipe; 1724 } 1725 1726 static int zap_process(struct task_struct *start, int exit_code) 1727 { 1728 struct task_struct *t; 1729 int nr = 0; 1730 1731 start->signal->flags = SIGNAL_GROUP_EXIT; 1732 start->signal->group_exit_code = exit_code; 1733 start->signal->group_stop_count = 0; 1734 1735 t = start; 1736 do { 1737 task_clear_group_stop_pending(t); 1738 if (t != current && t->mm) { 1739 sigaddset(&t->pending.signal, SIGKILL); 1740 signal_wake_up(t, 1); 1741 nr++; 1742 } 1743 } while_each_thread(start, t); 1744 1745 return nr; 1746 } 1747 1748 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1749 struct core_state *core_state, int exit_code) 1750 { 1751 struct task_struct *g, *p; 1752 unsigned long flags; 1753 int nr = -EAGAIN; 1754 1755 spin_lock_irq(&tsk->sighand->siglock); 1756 if (!signal_group_exit(tsk->signal)) { 1757 mm->core_state = core_state; 1758 nr = zap_process(tsk, exit_code); 1759 } 1760 spin_unlock_irq(&tsk->sighand->siglock); 1761 if (unlikely(nr < 0)) 1762 return nr; 1763 1764 if (atomic_read(&mm->mm_users) == nr + 1) 1765 goto done; 1766 /* 1767 * We should find and kill all tasks which use this mm, and we should 1768 * count them correctly into ->nr_threads. We don't take tasklist 1769 * lock, but this is safe wrt: 1770 * 1771 * fork: 1772 * None of sub-threads can fork after zap_process(leader). All 1773 * processes which were created before this point should be 1774 * visible to zap_threads() because copy_process() adds the new 1775 * process to the tail of init_task.tasks list, and lock/unlock 1776 * of ->siglock provides a memory barrier. 1777 * 1778 * do_exit: 1779 * The caller holds mm->mmap_sem. This means that the task which 1780 * uses this mm can't pass exit_mm(), so it can't exit or clear 1781 * its ->mm. 1782 * 1783 * de_thread: 1784 * It does list_replace_rcu(&leader->tasks, ¤t->tasks), 1785 * we must see either old or new leader, this does not matter. 1786 * However, it can change p->sighand, so lock_task_sighand(p) 1787 * must be used. Since p->mm != NULL and we hold ->mmap_sem 1788 * it can't fail. 1789 * 1790 * Note also that "g" can be the old leader with ->mm == NULL 1791 * and already unhashed and thus removed from ->thread_group. 1792 * This is OK, __unhash_process()->list_del_rcu() does not 1793 * clear the ->next pointer, we will find the new leader via 1794 * next_thread(). 1795 */ 1796 rcu_read_lock(); 1797 for_each_process(g) { 1798 if (g == tsk->group_leader) 1799 continue; 1800 if (g->flags & PF_KTHREAD) 1801 continue; 1802 p = g; 1803 do { 1804 if (p->mm) { 1805 if (unlikely(p->mm == mm)) { 1806 lock_task_sighand(p, &flags); 1807 nr += zap_process(p, exit_code); 1808 unlock_task_sighand(p, &flags); 1809 } 1810 break; 1811 } 1812 } while_each_thread(g, p); 1813 } 1814 rcu_read_unlock(); 1815 done: 1816 atomic_set(&core_state->nr_threads, nr); 1817 return nr; 1818 } 1819 1820 static int coredump_wait(int exit_code, struct core_state *core_state) 1821 { 1822 struct task_struct *tsk = current; 1823 struct mm_struct *mm = tsk->mm; 1824 struct completion *vfork_done; 1825 int core_waiters = -EBUSY; 1826 1827 init_completion(&core_state->startup); 1828 core_state->dumper.task = tsk; 1829 core_state->dumper.next = NULL; 1830 1831 down_write(&mm->mmap_sem); 1832 if (!mm->core_state) 1833 core_waiters = zap_threads(tsk, mm, core_state, exit_code); 1834 up_write(&mm->mmap_sem); 1835 1836 if (unlikely(core_waiters < 0)) 1837 goto fail; 1838 1839 /* 1840 * Make sure nobody is waiting for us to release the VM, 1841 * otherwise we can deadlock when we wait on each other 1842 */ 1843 vfork_done = tsk->vfork_done; 1844 if (vfork_done) { 1845 tsk->vfork_done = NULL; 1846 complete(vfork_done); 1847 } 1848 1849 if (core_waiters) 1850 wait_for_completion(&core_state->startup); 1851 fail: 1852 return core_waiters; 1853 } 1854 1855 static void coredump_finish(struct mm_struct *mm) 1856 { 1857 struct core_thread *curr, *next; 1858 struct task_struct *task; 1859 1860 next = mm->core_state->dumper.next; 1861 while ((curr = next) != NULL) { 1862 next = curr->next; 1863 task = curr->task; 1864 /* 1865 * see exit_mm(), curr->task must not see 1866 * ->task == NULL before we read ->next. 1867 */ 1868 smp_mb(); 1869 curr->task = NULL; 1870 wake_up_process(task); 1871 } 1872 1873 mm->core_state = NULL; 1874 } 1875 1876 /* 1877 * set_dumpable converts traditional three-value dumpable to two flags and 1878 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1879 * these bits are not changed atomically. So get_dumpable can observe the 1880 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1881 * return either old dumpable or new one by paying attention to the order of 1882 * modifying the bits. 1883 * 1884 * dumpable | mm->flags (binary) 1885 * old new | initial interim final 1886 * ---------+----------------------- 1887 * 0 1 | 00 01 01 1888 * 0 2 | 00 10(*) 11 1889 * 1 0 | 01 00 00 1890 * 1 2 | 01 11 11 1891 * 2 0 | 11 10(*) 00 1892 * 2 1 | 11 11 01 1893 * 1894 * (*) get_dumpable regards interim value of 10 as 11. 1895 */ 1896 void set_dumpable(struct mm_struct *mm, int value) 1897 { 1898 switch (value) { 1899 case 0: 1900 clear_bit(MMF_DUMPABLE, &mm->flags); 1901 smp_wmb(); 1902 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1903 break; 1904 case 1: 1905 set_bit(MMF_DUMPABLE, &mm->flags); 1906 smp_wmb(); 1907 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1908 break; 1909 case 2: 1910 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1911 smp_wmb(); 1912 set_bit(MMF_DUMPABLE, &mm->flags); 1913 break; 1914 } 1915 } 1916 1917 static int __get_dumpable(unsigned long mm_flags) 1918 { 1919 int ret; 1920 1921 ret = mm_flags & MMF_DUMPABLE_MASK; 1922 return (ret >= 2) ? 2 : ret; 1923 } 1924 1925 int get_dumpable(struct mm_struct *mm) 1926 { 1927 return __get_dumpable(mm->flags); 1928 } 1929 1930 static void wait_for_dump_helpers(struct file *file) 1931 { 1932 struct pipe_inode_info *pipe; 1933 1934 pipe = file->f_path.dentry->d_inode->i_pipe; 1935 1936 pipe_lock(pipe); 1937 pipe->readers++; 1938 pipe->writers--; 1939 1940 while ((pipe->readers > 1) && (!signal_pending(current))) { 1941 wake_up_interruptible_sync(&pipe->wait); 1942 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 1943 pipe_wait(pipe); 1944 } 1945 1946 pipe->readers--; 1947 pipe->writers++; 1948 pipe_unlock(pipe); 1949 1950 } 1951 1952 1953 /* 1954 * umh_pipe_setup 1955 * helper function to customize the process used 1956 * to collect the core in userspace. Specifically 1957 * it sets up a pipe and installs it as fd 0 (stdin) 1958 * for the process. Returns 0 on success, or 1959 * PTR_ERR on failure. 1960 * Note that it also sets the core limit to 1. This 1961 * is a special value that we use to trap recursive 1962 * core dumps 1963 */ 1964 static int umh_pipe_setup(struct subprocess_info *info) 1965 { 1966 struct file *rp, *wp; 1967 struct fdtable *fdt; 1968 struct coredump_params *cp = (struct coredump_params *)info->data; 1969 struct files_struct *cf = current->files; 1970 1971 wp = create_write_pipe(0); 1972 if (IS_ERR(wp)) 1973 return PTR_ERR(wp); 1974 1975 rp = create_read_pipe(wp, 0); 1976 if (IS_ERR(rp)) { 1977 free_write_pipe(wp); 1978 return PTR_ERR(rp); 1979 } 1980 1981 cp->file = wp; 1982 1983 sys_close(0); 1984 fd_install(0, rp); 1985 spin_lock(&cf->file_lock); 1986 fdt = files_fdtable(cf); 1987 FD_SET(0, fdt->open_fds); 1988 FD_CLR(0, fdt->close_on_exec); 1989 spin_unlock(&cf->file_lock); 1990 1991 /* and disallow core files too */ 1992 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; 1993 1994 return 0; 1995 } 1996 1997 void do_coredump(long signr, int exit_code, struct pt_regs *regs) 1998 { 1999 struct core_state core_state; 2000 struct core_name cn; 2001 struct mm_struct *mm = current->mm; 2002 struct linux_binfmt * binfmt; 2003 const struct cred *old_cred; 2004 struct cred *cred; 2005 int retval = 0; 2006 int flag = 0; 2007 int ispipe; 2008 static atomic_t core_dump_count = ATOMIC_INIT(0); 2009 struct coredump_params cprm = { 2010 .signr = signr, 2011 .regs = regs, 2012 .limit = rlimit(RLIMIT_CORE), 2013 /* 2014 * We must use the same mm->flags while dumping core to avoid 2015 * inconsistency of bit flags, since this flag is not protected 2016 * by any locks. 2017 */ 2018 .mm_flags = mm->flags, 2019 }; 2020 2021 audit_core_dumps(signr); 2022 2023 binfmt = mm->binfmt; 2024 if (!binfmt || !binfmt->core_dump) 2025 goto fail; 2026 if (!__get_dumpable(cprm.mm_flags)) 2027 goto fail; 2028 2029 cred = prepare_creds(); 2030 if (!cred) 2031 goto fail; 2032 /* 2033 * We cannot trust fsuid as being the "true" uid of the 2034 * process nor do we know its entire history. We only know it 2035 * was tainted so we dump it as root in mode 2. 2036 */ 2037 if (__get_dumpable(cprm.mm_flags) == 2) { 2038 /* Setuid core dump mode */ 2039 flag = O_EXCL; /* Stop rewrite attacks */ 2040 cred->fsuid = 0; /* Dump root private */ 2041 } 2042 2043 retval = coredump_wait(exit_code, &core_state); 2044 if (retval < 0) 2045 goto fail_creds; 2046 2047 old_cred = override_creds(cred); 2048 2049 /* 2050 * Clear any false indication of pending signals that might 2051 * be seen by the filesystem code called to write the core file. 2052 */ 2053 clear_thread_flag(TIF_SIGPENDING); 2054 2055 ispipe = format_corename(&cn, signr); 2056 2057 if (ispipe == -ENOMEM) { 2058 printk(KERN_WARNING "format_corename failed\n"); 2059 printk(KERN_WARNING "Aborting core\n"); 2060 goto fail_corename; 2061 } 2062 2063 if (ispipe) { 2064 int dump_count; 2065 char **helper_argv; 2066 2067 if (cprm.limit == 1) { 2068 /* 2069 * Normally core limits are irrelevant to pipes, since 2070 * we're not writing to the file system, but we use 2071 * cprm.limit of 1 here as a speacial value. Any 2072 * non-1 limit gets set to RLIM_INFINITY below, but 2073 * a limit of 0 skips the dump. This is a consistent 2074 * way to catch recursive crashes. We can still crash 2075 * if the core_pattern binary sets RLIM_CORE = !1 2076 * but it runs as root, and can do lots of stupid things 2077 * Note that we use task_tgid_vnr here to grab the pid 2078 * of the process group leader. That way we get the 2079 * right pid if a thread in a multi-threaded 2080 * core_pattern process dies. 2081 */ 2082 printk(KERN_WARNING 2083 "Process %d(%s) has RLIMIT_CORE set to 1\n", 2084 task_tgid_vnr(current), current->comm); 2085 printk(KERN_WARNING "Aborting core\n"); 2086 goto fail_unlock; 2087 } 2088 cprm.limit = RLIM_INFINITY; 2089 2090 dump_count = atomic_inc_return(&core_dump_count); 2091 if (core_pipe_limit && (core_pipe_limit < dump_count)) { 2092 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n", 2093 task_tgid_vnr(current), current->comm); 2094 printk(KERN_WARNING "Skipping core dump\n"); 2095 goto fail_dropcount; 2096 } 2097 2098 helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL); 2099 if (!helper_argv) { 2100 printk(KERN_WARNING "%s failed to allocate memory\n", 2101 __func__); 2102 goto fail_dropcount; 2103 } 2104 2105 retval = call_usermodehelper_fns(helper_argv[0], helper_argv, 2106 NULL, UMH_WAIT_EXEC, umh_pipe_setup, 2107 NULL, &cprm); 2108 argv_free(helper_argv); 2109 if (retval) { 2110 printk(KERN_INFO "Core dump to %s pipe failed\n", 2111 cn.corename); 2112 goto close_fail; 2113 } 2114 } else { 2115 struct inode *inode; 2116 2117 if (cprm.limit < binfmt->min_coredump) 2118 goto fail_unlock; 2119 2120 cprm.file = filp_open(cn.corename, 2121 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 2122 0600); 2123 if (IS_ERR(cprm.file)) 2124 goto fail_unlock; 2125 2126 inode = cprm.file->f_path.dentry->d_inode; 2127 if (inode->i_nlink > 1) 2128 goto close_fail; 2129 if (d_unhashed(cprm.file->f_path.dentry)) 2130 goto close_fail; 2131 /* 2132 * AK: actually i see no reason to not allow this for named 2133 * pipes etc, but keep the previous behaviour for now. 2134 */ 2135 if (!S_ISREG(inode->i_mode)) 2136 goto close_fail; 2137 /* 2138 * Dont allow local users get cute and trick others to coredump 2139 * into their pre-created files. 2140 */ 2141 if (inode->i_uid != current_fsuid()) 2142 goto close_fail; 2143 if (!cprm.file->f_op || !cprm.file->f_op->write) 2144 goto close_fail; 2145 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file)) 2146 goto close_fail; 2147 } 2148 2149 retval = binfmt->core_dump(&cprm); 2150 if (retval) 2151 current->signal->group_exit_code |= 0x80; 2152 2153 if (ispipe && core_pipe_limit) 2154 wait_for_dump_helpers(cprm.file); 2155 close_fail: 2156 if (cprm.file) 2157 filp_close(cprm.file, NULL); 2158 fail_dropcount: 2159 if (ispipe) 2160 atomic_dec(&core_dump_count); 2161 fail_unlock: 2162 kfree(cn.corename); 2163 fail_corename: 2164 coredump_finish(mm); 2165 revert_creds(old_cred); 2166 fail_creds: 2167 put_cred(cred); 2168 fail: 2169 return; 2170 } 2171 2172 /* 2173 * Core dumping helper functions. These are the only things you should 2174 * do on a core-file: use only these functions to write out all the 2175 * necessary info. 2176 */ 2177 int dump_write(struct file *file, const void *addr, int nr) 2178 { 2179 return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr; 2180 } 2181 EXPORT_SYMBOL(dump_write); 2182 2183 int dump_seek(struct file *file, loff_t off) 2184 { 2185 int ret = 1; 2186 2187 if (file->f_op->llseek && file->f_op->llseek != no_llseek) { 2188 if (file->f_op->llseek(file, off, SEEK_CUR) < 0) 2189 return 0; 2190 } else { 2191 char *buf = (char *)get_zeroed_page(GFP_KERNEL); 2192 2193 if (!buf) 2194 return 0; 2195 while (off > 0) { 2196 unsigned long n = off; 2197 2198 if (n > PAGE_SIZE) 2199 n = PAGE_SIZE; 2200 if (!dump_write(file, buf, n)) { 2201 ret = 0; 2202 break; 2203 } 2204 off -= n; 2205 } 2206 free_page((unsigned long)buf); 2207 } 2208 return ret; 2209 } 2210 EXPORT_SYMBOL(dump_seek); 2211