xref: /openbmc/linux/fs/exec.c (revision 05e5bd0f3daddb0368a433af5b58be68c62dc365)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58 
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 
63 #include <trace/events/task.h>
64 #include "internal.h"
65 
66 int core_uses_pid;
67 char core_pattern[CORENAME_MAX_SIZE] = "core";
68 unsigned int core_pipe_limit;
69 int suid_dumpable = 0;
70 
71 struct core_name {
72 	char *corename;
73 	int used, size;
74 };
75 static atomic_t call_count = ATOMIC_INIT(1);
76 
77 /* The maximal length of core_pattern is also specified in sysctl.c */
78 
79 static LIST_HEAD(formats);
80 static DEFINE_RWLOCK(binfmt_lock);
81 
82 int __register_binfmt(struct linux_binfmt * fmt, int insert)
83 {
84 	if (!fmt)
85 		return -EINVAL;
86 	write_lock(&binfmt_lock);
87 	insert ? list_add(&fmt->lh, &formats) :
88 		 list_add_tail(&fmt->lh, &formats);
89 	write_unlock(&binfmt_lock);
90 	return 0;
91 }
92 
93 EXPORT_SYMBOL(__register_binfmt);
94 
95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97 	write_lock(&binfmt_lock);
98 	list_del(&fmt->lh);
99 	write_unlock(&binfmt_lock);
100 }
101 
102 EXPORT_SYMBOL(unregister_binfmt);
103 
104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106 	module_put(fmt->module);
107 }
108 
109 /*
110  * Note that a shared library must be both readable and executable due to
111  * security reasons.
112  *
113  * Also note that we take the address to load from from the file itself.
114  */
115 SYSCALL_DEFINE1(uselib, const char __user *, library)
116 {
117 	struct file *file;
118 	char *tmp = getname(library);
119 	int error = PTR_ERR(tmp);
120 	static const struct open_flags uselib_flags = {
121 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
122 		.acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
123 		.intent = LOOKUP_OPEN
124 	};
125 
126 	if (IS_ERR(tmp))
127 		goto out;
128 
129 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
130 	putname(tmp);
131 	error = PTR_ERR(file);
132 	if (IS_ERR(file))
133 		goto out;
134 
135 	error = -EINVAL;
136 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
137 		goto exit;
138 
139 	error = -EACCES;
140 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
141 		goto exit;
142 
143 	fsnotify_open(file);
144 
145 	error = -ENOEXEC;
146 	if(file->f_op) {
147 		struct linux_binfmt * fmt;
148 
149 		read_lock(&binfmt_lock);
150 		list_for_each_entry(fmt, &formats, lh) {
151 			if (!fmt->load_shlib)
152 				continue;
153 			if (!try_module_get(fmt->module))
154 				continue;
155 			read_unlock(&binfmt_lock);
156 			error = fmt->load_shlib(file);
157 			read_lock(&binfmt_lock);
158 			put_binfmt(fmt);
159 			if (error != -ENOEXEC)
160 				break;
161 		}
162 		read_unlock(&binfmt_lock);
163 	}
164 exit:
165 	fput(file);
166 out:
167   	return error;
168 }
169 
170 #ifdef CONFIG_MMU
171 /*
172  * The nascent bprm->mm is not visible until exec_mmap() but it can
173  * use a lot of memory, account these pages in current->mm temporary
174  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175  * change the counter back via acct_arg_size(0).
176  */
177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178 {
179 	struct mm_struct *mm = current->mm;
180 	long diff = (long)(pages - bprm->vma_pages);
181 
182 	if (!mm || !diff)
183 		return;
184 
185 	bprm->vma_pages = pages;
186 	add_mm_counter(mm, MM_ANONPAGES, diff);
187 }
188 
189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190 		int write)
191 {
192 	struct page *page;
193 	int ret;
194 
195 #ifdef CONFIG_STACK_GROWSUP
196 	if (write) {
197 		ret = expand_downwards(bprm->vma, pos);
198 		if (ret < 0)
199 			return NULL;
200 	}
201 #endif
202 	ret = get_user_pages(current, bprm->mm, pos,
203 			1, write, 1, &page, NULL);
204 	if (ret <= 0)
205 		return NULL;
206 
207 	if (write) {
208 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
209 		struct rlimit *rlim;
210 
211 		acct_arg_size(bprm, size / PAGE_SIZE);
212 
213 		/*
214 		 * We've historically supported up to 32 pages (ARG_MAX)
215 		 * of argument strings even with small stacks
216 		 */
217 		if (size <= ARG_MAX)
218 			return page;
219 
220 		/*
221 		 * Limit to 1/4-th the stack size for the argv+env strings.
222 		 * This ensures that:
223 		 *  - the remaining binfmt code will not run out of stack space,
224 		 *  - the program will have a reasonable amount of stack left
225 		 *    to work from.
226 		 */
227 		rlim = current->signal->rlim;
228 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
229 			put_page(page);
230 			return NULL;
231 		}
232 	}
233 
234 	return page;
235 }
236 
237 static void put_arg_page(struct page *page)
238 {
239 	put_page(page);
240 }
241 
242 static void free_arg_page(struct linux_binprm *bprm, int i)
243 {
244 }
245 
246 static void free_arg_pages(struct linux_binprm *bprm)
247 {
248 }
249 
250 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
251 		struct page *page)
252 {
253 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
254 }
255 
256 static int __bprm_mm_init(struct linux_binprm *bprm)
257 {
258 	int err;
259 	struct vm_area_struct *vma = NULL;
260 	struct mm_struct *mm = bprm->mm;
261 
262 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
263 	if (!vma)
264 		return -ENOMEM;
265 
266 	down_write(&mm->mmap_sem);
267 	vma->vm_mm = mm;
268 
269 	/*
270 	 * Place the stack at the largest stack address the architecture
271 	 * supports. Later, we'll move this to an appropriate place. We don't
272 	 * use STACK_TOP because that can depend on attributes which aren't
273 	 * configured yet.
274 	 */
275 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
276 	vma->vm_end = STACK_TOP_MAX;
277 	vma->vm_start = vma->vm_end - PAGE_SIZE;
278 	vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
279 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
280 	INIT_LIST_HEAD(&vma->anon_vma_chain);
281 
282 	err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
283 	if (err)
284 		goto err;
285 
286 	err = insert_vm_struct(mm, vma);
287 	if (err)
288 		goto err;
289 
290 	mm->stack_vm = mm->total_vm = 1;
291 	up_write(&mm->mmap_sem);
292 	bprm->p = vma->vm_end - sizeof(void *);
293 	return 0;
294 err:
295 	up_write(&mm->mmap_sem);
296 	bprm->vma = NULL;
297 	kmem_cache_free(vm_area_cachep, vma);
298 	return err;
299 }
300 
301 static bool valid_arg_len(struct linux_binprm *bprm, long len)
302 {
303 	return len <= MAX_ARG_STRLEN;
304 }
305 
306 #else
307 
308 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
309 {
310 }
311 
312 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
313 		int write)
314 {
315 	struct page *page;
316 
317 	page = bprm->page[pos / PAGE_SIZE];
318 	if (!page && write) {
319 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
320 		if (!page)
321 			return NULL;
322 		bprm->page[pos / PAGE_SIZE] = page;
323 	}
324 
325 	return page;
326 }
327 
328 static void put_arg_page(struct page *page)
329 {
330 }
331 
332 static void free_arg_page(struct linux_binprm *bprm, int i)
333 {
334 	if (bprm->page[i]) {
335 		__free_page(bprm->page[i]);
336 		bprm->page[i] = NULL;
337 	}
338 }
339 
340 static void free_arg_pages(struct linux_binprm *bprm)
341 {
342 	int i;
343 
344 	for (i = 0; i < MAX_ARG_PAGES; i++)
345 		free_arg_page(bprm, i);
346 }
347 
348 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
349 		struct page *page)
350 {
351 }
352 
353 static int __bprm_mm_init(struct linux_binprm *bprm)
354 {
355 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
356 	return 0;
357 }
358 
359 static bool valid_arg_len(struct linux_binprm *bprm, long len)
360 {
361 	return len <= bprm->p;
362 }
363 
364 #endif /* CONFIG_MMU */
365 
366 /*
367  * Create a new mm_struct and populate it with a temporary stack
368  * vm_area_struct.  We don't have enough context at this point to set the stack
369  * flags, permissions, and offset, so we use temporary values.  We'll update
370  * them later in setup_arg_pages().
371  */
372 int bprm_mm_init(struct linux_binprm *bprm)
373 {
374 	int err;
375 	struct mm_struct *mm = NULL;
376 
377 	bprm->mm = mm = mm_alloc();
378 	err = -ENOMEM;
379 	if (!mm)
380 		goto err;
381 
382 	err = init_new_context(current, mm);
383 	if (err)
384 		goto err;
385 
386 	err = __bprm_mm_init(bprm);
387 	if (err)
388 		goto err;
389 
390 	return 0;
391 
392 err:
393 	if (mm) {
394 		bprm->mm = NULL;
395 		mmdrop(mm);
396 	}
397 
398 	return err;
399 }
400 
401 struct user_arg_ptr {
402 #ifdef CONFIG_COMPAT
403 	bool is_compat;
404 #endif
405 	union {
406 		const char __user *const __user *native;
407 #ifdef CONFIG_COMPAT
408 		compat_uptr_t __user *compat;
409 #endif
410 	} ptr;
411 };
412 
413 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
414 {
415 	const char __user *native;
416 
417 #ifdef CONFIG_COMPAT
418 	if (unlikely(argv.is_compat)) {
419 		compat_uptr_t compat;
420 
421 		if (get_user(compat, argv.ptr.compat + nr))
422 			return ERR_PTR(-EFAULT);
423 
424 		return compat_ptr(compat);
425 	}
426 #endif
427 
428 	if (get_user(native, argv.ptr.native + nr))
429 		return ERR_PTR(-EFAULT);
430 
431 	return native;
432 }
433 
434 /*
435  * count() counts the number of strings in array ARGV.
436  */
437 static int count(struct user_arg_ptr argv, int max)
438 {
439 	int i = 0;
440 
441 	if (argv.ptr.native != NULL) {
442 		for (;;) {
443 			const char __user *p = get_user_arg_ptr(argv, i);
444 
445 			if (!p)
446 				break;
447 
448 			if (IS_ERR(p))
449 				return -EFAULT;
450 
451 			if (i++ >= max)
452 				return -E2BIG;
453 
454 			if (fatal_signal_pending(current))
455 				return -ERESTARTNOHAND;
456 			cond_resched();
457 		}
458 	}
459 	return i;
460 }
461 
462 /*
463  * 'copy_strings()' copies argument/environment strings from the old
464  * processes's memory to the new process's stack.  The call to get_user_pages()
465  * ensures the destination page is created and not swapped out.
466  */
467 static int copy_strings(int argc, struct user_arg_ptr argv,
468 			struct linux_binprm *bprm)
469 {
470 	struct page *kmapped_page = NULL;
471 	char *kaddr = NULL;
472 	unsigned long kpos = 0;
473 	int ret;
474 
475 	while (argc-- > 0) {
476 		const char __user *str;
477 		int len;
478 		unsigned long pos;
479 
480 		ret = -EFAULT;
481 		str = get_user_arg_ptr(argv, argc);
482 		if (IS_ERR(str))
483 			goto out;
484 
485 		len = strnlen_user(str, MAX_ARG_STRLEN);
486 		if (!len)
487 			goto out;
488 
489 		ret = -E2BIG;
490 		if (!valid_arg_len(bprm, len))
491 			goto out;
492 
493 		/* We're going to work our way backwords. */
494 		pos = bprm->p;
495 		str += len;
496 		bprm->p -= len;
497 
498 		while (len > 0) {
499 			int offset, bytes_to_copy;
500 
501 			if (fatal_signal_pending(current)) {
502 				ret = -ERESTARTNOHAND;
503 				goto out;
504 			}
505 			cond_resched();
506 
507 			offset = pos % PAGE_SIZE;
508 			if (offset == 0)
509 				offset = PAGE_SIZE;
510 
511 			bytes_to_copy = offset;
512 			if (bytes_to_copy > len)
513 				bytes_to_copy = len;
514 
515 			offset -= bytes_to_copy;
516 			pos -= bytes_to_copy;
517 			str -= bytes_to_copy;
518 			len -= bytes_to_copy;
519 
520 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
521 				struct page *page;
522 
523 				page = get_arg_page(bprm, pos, 1);
524 				if (!page) {
525 					ret = -E2BIG;
526 					goto out;
527 				}
528 
529 				if (kmapped_page) {
530 					flush_kernel_dcache_page(kmapped_page);
531 					kunmap(kmapped_page);
532 					put_arg_page(kmapped_page);
533 				}
534 				kmapped_page = page;
535 				kaddr = kmap(kmapped_page);
536 				kpos = pos & PAGE_MASK;
537 				flush_arg_page(bprm, kpos, kmapped_page);
538 			}
539 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
540 				ret = -EFAULT;
541 				goto out;
542 			}
543 		}
544 	}
545 	ret = 0;
546 out:
547 	if (kmapped_page) {
548 		flush_kernel_dcache_page(kmapped_page);
549 		kunmap(kmapped_page);
550 		put_arg_page(kmapped_page);
551 	}
552 	return ret;
553 }
554 
555 /*
556  * Like copy_strings, but get argv and its values from kernel memory.
557  */
558 int copy_strings_kernel(int argc, const char *const *__argv,
559 			struct linux_binprm *bprm)
560 {
561 	int r;
562 	mm_segment_t oldfs = get_fs();
563 	struct user_arg_ptr argv = {
564 		.ptr.native = (const char __user *const  __user *)__argv,
565 	};
566 
567 	set_fs(KERNEL_DS);
568 	r = copy_strings(argc, argv, bprm);
569 	set_fs(oldfs);
570 
571 	return r;
572 }
573 EXPORT_SYMBOL(copy_strings_kernel);
574 
575 #ifdef CONFIG_MMU
576 
577 /*
578  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
579  * the binfmt code determines where the new stack should reside, we shift it to
580  * its final location.  The process proceeds as follows:
581  *
582  * 1) Use shift to calculate the new vma endpoints.
583  * 2) Extend vma to cover both the old and new ranges.  This ensures the
584  *    arguments passed to subsequent functions are consistent.
585  * 3) Move vma's page tables to the new range.
586  * 4) Free up any cleared pgd range.
587  * 5) Shrink the vma to cover only the new range.
588  */
589 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
590 {
591 	struct mm_struct *mm = vma->vm_mm;
592 	unsigned long old_start = vma->vm_start;
593 	unsigned long old_end = vma->vm_end;
594 	unsigned long length = old_end - old_start;
595 	unsigned long new_start = old_start - shift;
596 	unsigned long new_end = old_end - shift;
597 	struct mmu_gather tlb;
598 
599 	BUG_ON(new_start > new_end);
600 
601 	/*
602 	 * ensure there are no vmas between where we want to go
603 	 * and where we are
604 	 */
605 	if (vma != find_vma(mm, new_start))
606 		return -EFAULT;
607 
608 	/*
609 	 * cover the whole range: [new_start, old_end)
610 	 */
611 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
612 		return -ENOMEM;
613 
614 	/*
615 	 * move the page tables downwards, on failure we rely on
616 	 * process cleanup to remove whatever mess we made.
617 	 */
618 	if (length != move_page_tables(vma, old_start,
619 				       vma, new_start, length))
620 		return -ENOMEM;
621 
622 	lru_add_drain();
623 	tlb_gather_mmu(&tlb, mm, 0);
624 	if (new_end > old_start) {
625 		/*
626 		 * when the old and new regions overlap clear from new_end.
627 		 */
628 		free_pgd_range(&tlb, new_end, old_end, new_end,
629 			vma->vm_next ? vma->vm_next->vm_start : 0);
630 	} else {
631 		/*
632 		 * otherwise, clean from old_start; this is done to not touch
633 		 * the address space in [new_end, old_start) some architectures
634 		 * have constraints on va-space that make this illegal (IA64) -
635 		 * for the others its just a little faster.
636 		 */
637 		free_pgd_range(&tlb, old_start, old_end, new_end,
638 			vma->vm_next ? vma->vm_next->vm_start : 0);
639 	}
640 	tlb_finish_mmu(&tlb, new_end, old_end);
641 
642 	/*
643 	 * Shrink the vma to just the new range.  Always succeeds.
644 	 */
645 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
646 
647 	return 0;
648 }
649 
650 /*
651  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
652  * the stack is optionally relocated, and some extra space is added.
653  */
654 int setup_arg_pages(struct linux_binprm *bprm,
655 		    unsigned long stack_top,
656 		    int executable_stack)
657 {
658 	unsigned long ret;
659 	unsigned long stack_shift;
660 	struct mm_struct *mm = current->mm;
661 	struct vm_area_struct *vma = bprm->vma;
662 	struct vm_area_struct *prev = NULL;
663 	unsigned long vm_flags;
664 	unsigned long stack_base;
665 	unsigned long stack_size;
666 	unsigned long stack_expand;
667 	unsigned long rlim_stack;
668 
669 #ifdef CONFIG_STACK_GROWSUP
670 	/* Limit stack size to 1GB */
671 	stack_base = rlimit_max(RLIMIT_STACK);
672 	if (stack_base > (1 << 30))
673 		stack_base = 1 << 30;
674 
675 	/* Make sure we didn't let the argument array grow too large. */
676 	if (vma->vm_end - vma->vm_start > stack_base)
677 		return -ENOMEM;
678 
679 	stack_base = PAGE_ALIGN(stack_top - stack_base);
680 
681 	stack_shift = vma->vm_start - stack_base;
682 	mm->arg_start = bprm->p - stack_shift;
683 	bprm->p = vma->vm_end - stack_shift;
684 #else
685 	stack_top = arch_align_stack(stack_top);
686 	stack_top = PAGE_ALIGN(stack_top);
687 
688 	if (unlikely(stack_top < mmap_min_addr) ||
689 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
690 		return -ENOMEM;
691 
692 	stack_shift = vma->vm_end - stack_top;
693 
694 	bprm->p -= stack_shift;
695 	mm->arg_start = bprm->p;
696 #endif
697 
698 	if (bprm->loader)
699 		bprm->loader -= stack_shift;
700 	bprm->exec -= stack_shift;
701 
702 	down_write(&mm->mmap_sem);
703 	vm_flags = VM_STACK_FLAGS;
704 
705 	/*
706 	 * Adjust stack execute permissions; explicitly enable for
707 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
708 	 * (arch default) otherwise.
709 	 */
710 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
711 		vm_flags |= VM_EXEC;
712 	else if (executable_stack == EXSTACK_DISABLE_X)
713 		vm_flags &= ~VM_EXEC;
714 	vm_flags |= mm->def_flags;
715 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
716 
717 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
718 			vm_flags);
719 	if (ret)
720 		goto out_unlock;
721 	BUG_ON(prev != vma);
722 
723 	/* Move stack pages down in memory. */
724 	if (stack_shift) {
725 		ret = shift_arg_pages(vma, stack_shift);
726 		if (ret)
727 			goto out_unlock;
728 	}
729 
730 	/* mprotect_fixup is overkill to remove the temporary stack flags */
731 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
732 
733 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
734 	stack_size = vma->vm_end - vma->vm_start;
735 	/*
736 	 * Align this down to a page boundary as expand_stack
737 	 * will align it up.
738 	 */
739 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
740 #ifdef CONFIG_STACK_GROWSUP
741 	if (stack_size + stack_expand > rlim_stack)
742 		stack_base = vma->vm_start + rlim_stack;
743 	else
744 		stack_base = vma->vm_end + stack_expand;
745 #else
746 	if (stack_size + stack_expand > rlim_stack)
747 		stack_base = vma->vm_end - rlim_stack;
748 	else
749 		stack_base = vma->vm_start - stack_expand;
750 #endif
751 	current->mm->start_stack = bprm->p;
752 	ret = expand_stack(vma, stack_base);
753 	if (ret)
754 		ret = -EFAULT;
755 
756 out_unlock:
757 	up_write(&mm->mmap_sem);
758 	return ret;
759 }
760 EXPORT_SYMBOL(setup_arg_pages);
761 
762 #endif /* CONFIG_MMU */
763 
764 struct file *open_exec(const char *name)
765 {
766 	struct file *file;
767 	int err;
768 	static const struct open_flags open_exec_flags = {
769 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
770 		.acc_mode = MAY_EXEC | MAY_OPEN,
771 		.intent = LOOKUP_OPEN
772 	};
773 
774 	file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
775 	if (IS_ERR(file))
776 		goto out;
777 
778 	err = -EACCES;
779 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
780 		goto exit;
781 
782 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
783 		goto exit;
784 
785 	fsnotify_open(file);
786 
787 	err = deny_write_access(file);
788 	if (err)
789 		goto exit;
790 
791 out:
792 	return file;
793 
794 exit:
795 	fput(file);
796 	return ERR_PTR(err);
797 }
798 EXPORT_SYMBOL(open_exec);
799 
800 int kernel_read(struct file *file, loff_t offset,
801 		char *addr, unsigned long count)
802 {
803 	mm_segment_t old_fs;
804 	loff_t pos = offset;
805 	int result;
806 
807 	old_fs = get_fs();
808 	set_fs(get_ds());
809 	/* The cast to a user pointer is valid due to the set_fs() */
810 	result = vfs_read(file, (void __user *)addr, count, &pos);
811 	set_fs(old_fs);
812 	return result;
813 }
814 
815 EXPORT_SYMBOL(kernel_read);
816 
817 static int exec_mmap(struct mm_struct *mm)
818 {
819 	struct task_struct *tsk;
820 	struct mm_struct * old_mm, *active_mm;
821 
822 	/* Notify parent that we're no longer interested in the old VM */
823 	tsk = current;
824 	old_mm = current->mm;
825 	sync_mm_rss(tsk, old_mm);
826 	mm_release(tsk, old_mm);
827 
828 	if (old_mm) {
829 		/*
830 		 * Make sure that if there is a core dump in progress
831 		 * for the old mm, we get out and die instead of going
832 		 * through with the exec.  We must hold mmap_sem around
833 		 * checking core_state and changing tsk->mm.
834 		 */
835 		down_read(&old_mm->mmap_sem);
836 		if (unlikely(old_mm->core_state)) {
837 			up_read(&old_mm->mmap_sem);
838 			return -EINTR;
839 		}
840 	}
841 	task_lock(tsk);
842 	active_mm = tsk->active_mm;
843 	tsk->mm = mm;
844 	tsk->active_mm = mm;
845 	activate_mm(active_mm, mm);
846 	task_unlock(tsk);
847 	arch_pick_mmap_layout(mm);
848 	if (old_mm) {
849 		up_read(&old_mm->mmap_sem);
850 		BUG_ON(active_mm != old_mm);
851 		mm_update_next_owner(old_mm);
852 		mmput(old_mm);
853 		return 0;
854 	}
855 	mmdrop(active_mm);
856 	return 0;
857 }
858 
859 /*
860  * This function makes sure the current process has its own signal table,
861  * so that flush_signal_handlers can later reset the handlers without
862  * disturbing other processes.  (Other processes might share the signal
863  * table via the CLONE_SIGHAND option to clone().)
864  */
865 static int de_thread(struct task_struct *tsk)
866 {
867 	struct signal_struct *sig = tsk->signal;
868 	struct sighand_struct *oldsighand = tsk->sighand;
869 	spinlock_t *lock = &oldsighand->siglock;
870 
871 	if (thread_group_empty(tsk))
872 		goto no_thread_group;
873 
874 	/*
875 	 * Kill all other threads in the thread group.
876 	 */
877 	spin_lock_irq(lock);
878 	if (signal_group_exit(sig)) {
879 		/*
880 		 * Another group action in progress, just
881 		 * return so that the signal is processed.
882 		 */
883 		spin_unlock_irq(lock);
884 		return -EAGAIN;
885 	}
886 
887 	sig->group_exit_task = tsk;
888 	sig->notify_count = zap_other_threads(tsk);
889 	if (!thread_group_leader(tsk))
890 		sig->notify_count--;
891 
892 	while (sig->notify_count) {
893 		__set_current_state(TASK_UNINTERRUPTIBLE);
894 		spin_unlock_irq(lock);
895 		schedule();
896 		spin_lock_irq(lock);
897 	}
898 	spin_unlock_irq(lock);
899 
900 	/*
901 	 * At this point all other threads have exited, all we have to
902 	 * do is to wait for the thread group leader to become inactive,
903 	 * and to assume its PID:
904 	 */
905 	if (!thread_group_leader(tsk)) {
906 		struct task_struct *leader = tsk->group_leader;
907 
908 		sig->notify_count = -1;	/* for exit_notify() */
909 		for (;;) {
910 			write_lock_irq(&tasklist_lock);
911 			if (likely(leader->exit_state))
912 				break;
913 			__set_current_state(TASK_UNINTERRUPTIBLE);
914 			write_unlock_irq(&tasklist_lock);
915 			schedule();
916 		}
917 
918 		/*
919 		 * The only record we have of the real-time age of a
920 		 * process, regardless of execs it's done, is start_time.
921 		 * All the past CPU time is accumulated in signal_struct
922 		 * from sister threads now dead.  But in this non-leader
923 		 * exec, nothing survives from the original leader thread,
924 		 * whose birth marks the true age of this process now.
925 		 * When we take on its identity by switching to its PID, we
926 		 * also take its birthdate (always earlier than our own).
927 		 */
928 		tsk->start_time = leader->start_time;
929 
930 		BUG_ON(!same_thread_group(leader, tsk));
931 		BUG_ON(has_group_leader_pid(tsk));
932 		/*
933 		 * An exec() starts a new thread group with the
934 		 * TGID of the previous thread group. Rehash the
935 		 * two threads with a switched PID, and release
936 		 * the former thread group leader:
937 		 */
938 
939 		/* Become a process group leader with the old leader's pid.
940 		 * The old leader becomes a thread of the this thread group.
941 		 * Note: The old leader also uses this pid until release_task
942 		 *       is called.  Odd but simple and correct.
943 		 */
944 		detach_pid(tsk, PIDTYPE_PID);
945 		tsk->pid = leader->pid;
946 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
947 		transfer_pid(leader, tsk, PIDTYPE_PGID);
948 		transfer_pid(leader, tsk, PIDTYPE_SID);
949 
950 		list_replace_rcu(&leader->tasks, &tsk->tasks);
951 		list_replace_init(&leader->sibling, &tsk->sibling);
952 
953 		tsk->group_leader = tsk;
954 		leader->group_leader = tsk;
955 
956 		tsk->exit_signal = SIGCHLD;
957 		leader->exit_signal = -1;
958 
959 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
960 		leader->exit_state = EXIT_DEAD;
961 
962 		/*
963 		 * We are going to release_task()->ptrace_unlink() silently,
964 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
965 		 * the tracer wont't block again waiting for this thread.
966 		 */
967 		if (unlikely(leader->ptrace))
968 			__wake_up_parent(leader, leader->parent);
969 		write_unlock_irq(&tasklist_lock);
970 
971 		release_task(leader);
972 	}
973 
974 	sig->group_exit_task = NULL;
975 	sig->notify_count = 0;
976 
977 no_thread_group:
978 	if (current->mm)
979 		setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
980 
981 	exit_itimers(sig);
982 	flush_itimer_signals();
983 
984 	if (atomic_read(&oldsighand->count) != 1) {
985 		struct sighand_struct *newsighand;
986 		/*
987 		 * This ->sighand is shared with the CLONE_SIGHAND
988 		 * but not CLONE_THREAD task, switch to the new one.
989 		 */
990 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
991 		if (!newsighand)
992 			return -ENOMEM;
993 
994 		atomic_set(&newsighand->count, 1);
995 		memcpy(newsighand->action, oldsighand->action,
996 		       sizeof(newsighand->action));
997 
998 		write_lock_irq(&tasklist_lock);
999 		spin_lock(&oldsighand->siglock);
1000 		rcu_assign_pointer(tsk->sighand, newsighand);
1001 		spin_unlock(&oldsighand->siglock);
1002 		write_unlock_irq(&tasklist_lock);
1003 
1004 		__cleanup_sighand(oldsighand);
1005 	}
1006 
1007 	BUG_ON(!thread_group_leader(tsk));
1008 	return 0;
1009 }
1010 
1011 /*
1012  * These functions flushes out all traces of the currently running executable
1013  * so that a new one can be started
1014  */
1015 static void flush_old_files(struct files_struct * files)
1016 {
1017 	long j = -1;
1018 	struct fdtable *fdt;
1019 
1020 	spin_lock(&files->file_lock);
1021 	for (;;) {
1022 		unsigned long set, i;
1023 
1024 		j++;
1025 		i = j * __NFDBITS;
1026 		fdt = files_fdtable(files);
1027 		if (i >= fdt->max_fds)
1028 			break;
1029 		set = fdt->close_on_exec->fds_bits[j];
1030 		if (!set)
1031 			continue;
1032 		fdt->close_on_exec->fds_bits[j] = 0;
1033 		spin_unlock(&files->file_lock);
1034 		for ( ; set ; i++,set >>= 1) {
1035 			if (set & 1) {
1036 				sys_close(i);
1037 			}
1038 		}
1039 		spin_lock(&files->file_lock);
1040 
1041 	}
1042 	spin_unlock(&files->file_lock);
1043 }
1044 
1045 char *get_task_comm(char *buf, struct task_struct *tsk)
1046 {
1047 	/* buf must be at least sizeof(tsk->comm) in size */
1048 	task_lock(tsk);
1049 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1050 	task_unlock(tsk);
1051 	return buf;
1052 }
1053 EXPORT_SYMBOL_GPL(get_task_comm);
1054 
1055 void set_task_comm(struct task_struct *tsk, char *buf)
1056 {
1057 	task_lock(tsk);
1058 
1059 	trace_task_rename(tsk, buf);
1060 
1061 	/*
1062 	 * Threads may access current->comm without holding
1063 	 * the task lock, so write the string carefully.
1064 	 * Readers without a lock may see incomplete new
1065 	 * names but are safe from non-terminating string reads.
1066 	 */
1067 	memset(tsk->comm, 0, TASK_COMM_LEN);
1068 	wmb();
1069 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1070 	task_unlock(tsk);
1071 	perf_event_comm(tsk);
1072 }
1073 
1074 int flush_old_exec(struct linux_binprm * bprm)
1075 {
1076 	int retval;
1077 
1078 	/*
1079 	 * Make sure we have a private signal table and that
1080 	 * we are unassociated from the previous thread group.
1081 	 */
1082 	retval = de_thread(current);
1083 	if (retval)
1084 		goto out;
1085 
1086 	set_mm_exe_file(bprm->mm, bprm->file);
1087 
1088 	/*
1089 	 * Release all of the old mmap stuff
1090 	 */
1091 	acct_arg_size(bprm, 0);
1092 	retval = exec_mmap(bprm->mm);
1093 	if (retval)
1094 		goto out;
1095 
1096 	bprm->mm = NULL;		/* We're using it now */
1097 
1098 	set_fs(USER_DS);
1099 	current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD);
1100 	flush_thread();
1101 	current->personality &= ~bprm->per_clear;
1102 
1103 	return 0;
1104 
1105 out:
1106 	return retval;
1107 }
1108 EXPORT_SYMBOL(flush_old_exec);
1109 
1110 void would_dump(struct linux_binprm *bprm, struct file *file)
1111 {
1112 	if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0)
1113 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1114 }
1115 EXPORT_SYMBOL(would_dump);
1116 
1117 void setup_new_exec(struct linux_binprm * bprm)
1118 {
1119 	int i, ch;
1120 	const char *name;
1121 	char tcomm[sizeof(current->comm)];
1122 
1123 	arch_pick_mmap_layout(current->mm);
1124 
1125 	/* This is the point of no return */
1126 	current->sas_ss_sp = current->sas_ss_size = 0;
1127 
1128 	if (current_euid() == current_uid() && current_egid() == current_gid())
1129 		set_dumpable(current->mm, 1);
1130 	else
1131 		set_dumpable(current->mm, suid_dumpable);
1132 
1133 	name = bprm->filename;
1134 
1135 	/* Copies the binary name from after last slash */
1136 	for (i=0; (ch = *(name++)) != '\0';) {
1137 		if (ch == '/')
1138 			i = 0; /* overwrite what we wrote */
1139 		else
1140 			if (i < (sizeof(tcomm) - 1))
1141 				tcomm[i++] = ch;
1142 	}
1143 	tcomm[i] = '\0';
1144 	set_task_comm(current, tcomm);
1145 
1146 	/* Set the new mm task size. We have to do that late because it may
1147 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1148 	 * some architectures like powerpc
1149 	 */
1150 	current->mm->task_size = TASK_SIZE;
1151 
1152 	/* install the new credentials */
1153 	if (bprm->cred->uid != current_euid() ||
1154 	    bprm->cred->gid != current_egid()) {
1155 		current->pdeath_signal = 0;
1156 	} else {
1157 		would_dump(bprm, bprm->file);
1158 		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1159 			set_dumpable(current->mm, suid_dumpable);
1160 	}
1161 
1162 	/*
1163 	 * Flush performance counters when crossing a
1164 	 * security domain:
1165 	 */
1166 	if (!get_dumpable(current->mm))
1167 		perf_event_exit_task(current);
1168 
1169 	/* An exec changes our domain. We are no longer part of the thread
1170 	   group */
1171 
1172 	current->self_exec_id++;
1173 
1174 	flush_signal_handlers(current, 0);
1175 	flush_old_files(current->files);
1176 }
1177 EXPORT_SYMBOL(setup_new_exec);
1178 
1179 /*
1180  * Prepare credentials and lock ->cred_guard_mutex.
1181  * install_exec_creds() commits the new creds and drops the lock.
1182  * Or, if exec fails before, free_bprm() should release ->cred and
1183  * and unlock.
1184  */
1185 int prepare_bprm_creds(struct linux_binprm *bprm)
1186 {
1187 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1188 		return -ERESTARTNOINTR;
1189 
1190 	bprm->cred = prepare_exec_creds();
1191 	if (likely(bprm->cred))
1192 		return 0;
1193 
1194 	mutex_unlock(&current->signal->cred_guard_mutex);
1195 	return -ENOMEM;
1196 }
1197 
1198 void free_bprm(struct linux_binprm *bprm)
1199 {
1200 	free_arg_pages(bprm);
1201 	if (bprm->cred) {
1202 		mutex_unlock(&current->signal->cred_guard_mutex);
1203 		abort_creds(bprm->cred);
1204 	}
1205 	kfree(bprm);
1206 }
1207 
1208 /*
1209  * install the new credentials for this executable
1210  */
1211 void install_exec_creds(struct linux_binprm *bprm)
1212 {
1213 	security_bprm_committing_creds(bprm);
1214 
1215 	commit_creds(bprm->cred);
1216 	bprm->cred = NULL;
1217 	/*
1218 	 * cred_guard_mutex must be held at least to this point to prevent
1219 	 * ptrace_attach() from altering our determination of the task's
1220 	 * credentials; any time after this it may be unlocked.
1221 	 */
1222 	security_bprm_committed_creds(bprm);
1223 	mutex_unlock(&current->signal->cred_guard_mutex);
1224 }
1225 EXPORT_SYMBOL(install_exec_creds);
1226 
1227 /*
1228  * determine how safe it is to execute the proposed program
1229  * - the caller must hold ->cred_guard_mutex to protect against
1230  *   PTRACE_ATTACH
1231  */
1232 static int check_unsafe_exec(struct linux_binprm *bprm)
1233 {
1234 	struct task_struct *p = current, *t;
1235 	unsigned n_fs;
1236 	int res = 0;
1237 
1238 	if (p->ptrace) {
1239 		if (p->ptrace & PT_PTRACE_CAP)
1240 			bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1241 		else
1242 			bprm->unsafe |= LSM_UNSAFE_PTRACE;
1243 	}
1244 
1245 	n_fs = 1;
1246 	spin_lock(&p->fs->lock);
1247 	rcu_read_lock();
1248 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1249 		if (t->fs == p->fs)
1250 			n_fs++;
1251 	}
1252 	rcu_read_unlock();
1253 
1254 	if (p->fs->users > n_fs) {
1255 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1256 	} else {
1257 		res = -EAGAIN;
1258 		if (!p->fs->in_exec) {
1259 			p->fs->in_exec = 1;
1260 			res = 1;
1261 		}
1262 	}
1263 	spin_unlock(&p->fs->lock);
1264 
1265 	return res;
1266 }
1267 
1268 /*
1269  * Fill the binprm structure from the inode.
1270  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1271  *
1272  * This may be called multiple times for binary chains (scripts for example).
1273  */
1274 int prepare_binprm(struct linux_binprm *bprm)
1275 {
1276 	umode_t mode;
1277 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1278 	int retval;
1279 
1280 	mode = inode->i_mode;
1281 	if (bprm->file->f_op == NULL)
1282 		return -EACCES;
1283 
1284 	/* clear any previous set[ug]id data from a previous binary */
1285 	bprm->cred->euid = current_euid();
1286 	bprm->cred->egid = current_egid();
1287 
1288 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1289 		/* Set-uid? */
1290 		if (mode & S_ISUID) {
1291 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1292 			bprm->cred->euid = inode->i_uid;
1293 		}
1294 
1295 		/* Set-gid? */
1296 		/*
1297 		 * If setgid is set but no group execute bit then this
1298 		 * is a candidate for mandatory locking, not a setgid
1299 		 * executable.
1300 		 */
1301 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1302 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1303 			bprm->cred->egid = inode->i_gid;
1304 		}
1305 	}
1306 
1307 	/* fill in binprm security blob */
1308 	retval = security_bprm_set_creds(bprm);
1309 	if (retval)
1310 		return retval;
1311 	bprm->cred_prepared = 1;
1312 
1313 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1314 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1315 }
1316 
1317 EXPORT_SYMBOL(prepare_binprm);
1318 
1319 /*
1320  * Arguments are '\0' separated strings found at the location bprm->p
1321  * points to; chop off the first by relocating brpm->p to right after
1322  * the first '\0' encountered.
1323  */
1324 int remove_arg_zero(struct linux_binprm *bprm)
1325 {
1326 	int ret = 0;
1327 	unsigned long offset;
1328 	char *kaddr;
1329 	struct page *page;
1330 
1331 	if (!bprm->argc)
1332 		return 0;
1333 
1334 	do {
1335 		offset = bprm->p & ~PAGE_MASK;
1336 		page = get_arg_page(bprm, bprm->p, 0);
1337 		if (!page) {
1338 			ret = -EFAULT;
1339 			goto out;
1340 		}
1341 		kaddr = kmap_atomic(page, KM_USER0);
1342 
1343 		for (; offset < PAGE_SIZE && kaddr[offset];
1344 				offset++, bprm->p++)
1345 			;
1346 
1347 		kunmap_atomic(kaddr, KM_USER0);
1348 		put_arg_page(page);
1349 
1350 		if (offset == PAGE_SIZE)
1351 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1352 	} while (offset == PAGE_SIZE);
1353 
1354 	bprm->p++;
1355 	bprm->argc--;
1356 	ret = 0;
1357 
1358 out:
1359 	return ret;
1360 }
1361 EXPORT_SYMBOL(remove_arg_zero);
1362 
1363 /*
1364  * cycle the list of binary formats handler, until one recognizes the image
1365  */
1366 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1367 {
1368 	unsigned int depth = bprm->recursion_depth;
1369 	int try,retval;
1370 	struct linux_binfmt *fmt;
1371 	pid_t old_pid;
1372 
1373 	retval = security_bprm_check(bprm);
1374 	if (retval)
1375 		return retval;
1376 
1377 	retval = audit_bprm(bprm);
1378 	if (retval)
1379 		return retval;
1380 
1381 	/* Need to fetch pid before load_binary changes it */
1382 	rcu_read_lock();
1383 	old_pid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1384 	rcu_read_unlock();
1385 
1386 	retval = -ENOENT;
1387 	for (try=0; try<2; try++) {
1388 		read_lock(&binfmt_lock);
1389 		list_for_each_entry(fmt, &formats, lh) {
1390 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1391 			if (!fn)
1392 				continue;
1393 			if (!try_module_get(fmt->module))
1394 				continue;
1395 			read_unlock(&binfmt_lock);
1396 			retval = fn(bprm, regs);
1397 			/*
1398 			 * Restore the depth counter to its starting value
1399 			 * in this call, so we don't have to rely on every
1400 			 * load_binary function to restore it on return.
1401 			 */
1402 			bprm->recursion_depth = depth;
1403 			if (retval >= 0) {
1404 				if (depth == 0)
1405 					ptrace_event(PTRACE_EVENT_EXEC,
1406 							old_pid);
1407 				put_binfmt(fmt);
1408 				allow_write_access(bprm->file);
1409 				if (bprm->file)
1410 					fput(bprm->file);
1411 				bprm->file = NULL;
1412 				current->did_exec = 1;
1413 				proc_exec_connector(current);
1414 				return retval;
1415 			}
1416 			read_lock(&binfmt_lock);
1417 			put_binfmt(fmt);
1418 			if (retval != -ENOEXEC || bprm->mm == NULL)
1419 				break;
1420 			if (!bprm->file) {
1421 				read_unlock(&binfmt_lock);
1422 				return retval;
1423 			}
1424 		}
1425 		read_unlock(&binfmt_lock);
1426 #ifdef CONFIG_MODULES
1427 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1428 			break;
1429 		} else {
1430 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1431 			if (printable(bprm->buf[0]) &&
1432 			    printable(bprm->buf[1]) &&
1433 			    printable(bprm->buf[2]) &&
1434 			    printable(bprm->buf[3]))
1435 				break; /* -ENOEXEC */
1436 			if (try)
1437 				break; /* -ENOEXEC */
1438 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1439 		}
1440 #else
1441 		break;
1442 #endif
1443 	}
1444 	return retval;
1445 }
1446 
1447 EXPORT_SYMBOL(search_binary_handler);
1448 
1449 /*
1450  * sys_execve() executes a new program.
1451  */
1452 static int do_execve_common(const char *filename,
1453 				struct user_arg_ptr argv,
1454 				struct user_arg_ptr envp,
1455 				struct pt_regs *regs)
1456 {
1457 	struct linux_binprm *bprm;
1458 	struct file *file;
1459 	struct files_struct *displaced;
1460 	bool clear_in_exec;
1461 	int retval;
1462 	const struct cred *cred = current_cred();
1463 
1464 	/*
1465 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1466 	 * set*uid() to execve() because too many poorly written programs
1467 	 * don't check setuid() return code.  Here we additionally recheck
1468 	 * whether NPROC limit is still exceeded.
1469 	 */
1470 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1471 	    atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {
1472 		retval = -EAGAIN;
1473 		goto out_ret;
1474 	}
1475 
1476 	/* We're below the limit (still or again), so we don't want to make
1477 	 * further execve() calls fail. */
1478 	current->flags &= ~PF_NPROC_EXCEEDED;
1479 
1480 	retval = unshare_files(&displaced);
1481 	if (retval)
1482 		goto out_ret;
1483 
1484 	retval = -ENOMEM;
1485 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1486 	if (!bprm)
1487 		goto out_files;
1488 
1489 	retval = prepare_bprm_creds(bprm);
1490 	if (retval)
1491 		goto out_free;
1492 
1493 	retval = check_unsafe_exec(bprm);
1494 	if (retval < 0)
1495 		goto out_free;
1496 	clear_in_exec = retval;
1497 	current->in_execve = 1;
1498 
1499 	file = open_exec(filename);
1500 	retval = PTR_ERR(file);
1501 	if (IS_ERR(file))
1502 		goto out_unmark;
1503 
1504 	sched_exec();
1505 
1506 	bprm->file = file;
1507 	bprm->filename = filename;
1508 	bprm->interp = filename;
1509 
1510 	retval = bprm_mm_init(bprm);
1511 	if (retval)
1512 		goto out_file;
1513 
1514 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1515 	if ((retval = bprm->argc) < 0)
1516 		goto out;
1517 
1518 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1519 	if ((retval = bprm->envc) < 0)
1520 		goto out;
1521 
1522 	retval = prepare_binprm(bprm);
1523 	if (retval < 0)
1524 		goto out;
1525 
1526 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1527 	if (retval < 0)
1528 		goto out;
1529 
1530 	bprm->exec = bprm->p;
1531 	retval = copy_strings(bprm->envc, envp, bprm);
1532 	if (retval < 0)
1533 		goto out;
1534 
1535 	retval = copy_strings(bprm->argc, argv, bprm);
1536 	if (retval < 0)
1537 		goto out;
1538 
1539 	retval = search_binary_handler(bprm,regs);
1540 	if (retval < 0)
1541 		goto out;
1542 
1543 	/* execve succeeded */
1544 	current->fs->in_exec = 0;
1545 	current->in_execve = 0;
1546 	acct_update_integrals(current);
1547 	free_bprm(bprm);
1548 	if (displaced)
1549 		put_files_struct(displaced);
1550 	return retval;
1551 
1552 out:
1553 	if (bprm->mm) {
1554 		acct_arg_size(bprm, 0);
1555 		mmput(bprm->mm);
1556 	}
1557 
1558 out_file:
1559 	if (bprm->file) {
1560 		allow_write_access(bprm->file);
1561 		fput(bprm->file);
1562 	}
1563 
1564 out_unmark:
1565 	if (clear_in_exec)
1566 		current->fs->in_exec = 0;
1567 	current->in_execve = 0;
1568 
1569 out_free:
1570 	free_bprm(bprm);
1571 
1572 out_files:
1573 	if (displaced)
1574 		reset_files_struct(displaced);
1575 out_ret:
1576 	return retval;
1577 }
1578 
1579 int do_execve(const char *filename,
1580 	const char __user *const __user *__argv,
1581 	const char __user *const __user *__envp,
1582 	struct pt_regs *regs)
1583 {
1584 	struct user_arg_ptr argv = { .ptr.native = __argv };
1585 	struct user_arg_ptr envp = { .ptr.native = __envp };
1586 	return do_execve_common(filename, argv, envp, regs);
1587 }
1588 
1589 #ifdef CONFIG_COMPAT
1590 int compat_do_execve(char *filename,
1591 	compat_uptr_t __user *__argv,
1592 	compat_uptr_t __user *__envp,
1593 	struct pt_regs *regs)
1594 {
1595 	struct user_arg_ptr argv = {
1596 		.is_compat = true,
1597 		.ptr.compat = __argv,
1598 	};
1599 	struct user_arg_ptr envp = {
1600 		.is_compat = true,
1601 		.ptr.compat = __envp,
1602 	};
1603 	return do_execve_common(filename, argv, envp, regs);
1604 }
1605 #endif
1606 
1607 void set_binfmt(struct linux_binfmt *new)
1608 {
1609 	struct mm_struct *mm = current->mm;
1610 
1611 	if (mm->binfmt)
1612 		module_put(mm->binfmt->module);
1613 
1614 	mm->binfmt = new;
1615 	if (new)
1616 		__module_get(new->module);
1617 }
1618 
1619 EXPORT_SYMBOL(set_binfmt);
1620 
1621 static int expand_corename(struct core_name *cn)
1622 {
1623 	char *old_corename = cn->corename;
1624 
1625 	cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1626 	cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1627 
1628 	if (!cn->corename) {
1629 		kfree(old_corename);
1630 		return -ENOMEM;
1631 	}
1632 
1633 	return 0;
1634 }
1635 
1636 static int cn_printf(struct core_name *cn, const char *fmt, ...)
1637 {
1638 	char *cur;
1639 	int need;
1640 	int ret;
1641 	va_list arg;
1642 
1643 	va_start(arg, fmt);
1644 	need = vsnprintf(NULL, 0, fmt, arg);
1645 	va_end(arg);
1646 
1647 	if (likely(need < cn->size - cn->used - 1))
1648 		goto out_printf;
1649 
1650 	ret = expand_corename(cn);
1651 	if (ret)
1652 		goto expand_fail;
1653 
1654 out_printf:
1655 	cur = cn->corename + cn->used;
1656 	va_start(arg, fmt);
1657 	vsnprintf(cur, need + 1, fmt, arg);
1658 	va_end(arg);
1659 	cn->used += need;
1660 	return 0;
1661 
1662 expand_fail:
1663 	return ret;
1664 }
1665 
1666 static void cn_escape(char *str)
1667 {
1668 	for (; *str; str++)
1669 		if (*str == '/')
1670 			*str = '!';
1671 }
1672 
1673 static int cn_print_exe_file(struct core_name *cn)
1674 {
1675 	struct file *exe_file;
1676 	char *pathbuf, *path;
1677 	int ret;
1678 
1679 	exe_file = get_mm_exe_file(current->mm);
1680 	if (!exe_file) {
1681 		char *commstart = cn->corename + cn->used;
1682 		ret = cn_printf(cn, "%s (path unknown)", current->comm);
1683 		cn_escape(commstart);
1684 		return ret;
1685 	}
1686 
1687 	pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
1688 	if (!pathbuf) {
1689 		ret = -ENOMEM;
1690 		goto put_exe_file;
1691 	}
1692 
1693 	path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
1694 	if (IS_ERR(path)) {
1695 		ret = PTR_ERR(path);
1696 		goto free_buf;
1697 	}
1698 
1699 	cn_escape(path);
1700 
1701 	ret = cn_printf(cn, "%s", path);
1702 
1703 free_buf:
1704 	kfree(pathbuf);
1705 put_exe_file:
1706 	fput(exe_file);
1707 	return ret;
1708 }
1709 
1710 /* format_corename will inspect the pattern parameter, and output a
1711  * name into corename, which must have space for at least
1712  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1713  */
1714 static int format_corename(struct core_name *cn, long signr)
1715 {
1716 	const struct cred *cred = current_cred();
1717 	const char *pat_ptr = core_pattern;
1718 	int ispipe = (*pat_ptr == '|');
1719 	int pid_in_pattern = 0;
1720 	int err = 0;
1721 
1722 	cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1723 	cn->corename = kmalloc(cn->size, GFP_KERNEL);
1724 	cn->used = 0;
1725 
1726 	if (!cn->corename)
1727 		return -ENOMEM;
1728 
1729 	/* Repeat as long as we have more pattern to process and more output
1730 	   space */
1731 	while (*pat_ptr) {
1732 		if (*pat_ptr != '%') {
1733 			if (*pat_ptr == 0)
1734 				goto out;
1735 			err = cn_printf(cn, "%c", *pat_ptr++);
1736 		} else {
1737 			switch (*++pat_ptr) {
1738 			/* single % at the end, drop that */
1739 			case 0:
1740 				goto out;
1741 			/* Double percent, output one percent */
1742 			case '%':
1743 				err = cn_printf(cn, "%c", '%');
1744 				break;
1745 			/* pid */
1746 			case 'p':
1747 				pid_in_pattern = 1;
1748 				err = cn_printf(cn, "%d",
1749 					      task_tgid_vnr(current));
1750 				break;
1751 			/* uid */
1752 			case 'u':
1753 				err = cn_printf(cn, "%d", cred->uid);
1754 				break;
1755 			/* gid */
1756 			case 'g':
1757 				err = cn_printf(cn, "%d", cred->gid);
1758 				break;
1759 			/* signal that caused the coredump */
1760 			case 's':
1761 				err = cn_printf(cn, "%ld", signr);
1762 				break;
1763 			/* UNIX time of coredump */
1764 			case 't': {
1765 				struct timeval tv;
1766 				do_gettimeofday(&tv);
1767 				err = cn_printf(cn, "%lu", tv.tv_sec);
1768 				break;
1769 			}
1770 			/* hostname */
1771 			case 'h': {
1772 				char *namestart = cn->corename + cn->used;
1773 				down_read(&uts_sem);
1774 				err = cn_printf(cn, "%s",
1775 					      utsname()->nodename);
1776 				up_read(&uts_sem);
1777 				cn_escape(namestart);
1778 				break;
1779 			}
1780 			/* executable */
1781 			case 'e': {
1782 				char *commstart = cn->corename + cn->used;
1783 				err = cn_printf(cn, "%s", current->comm);
1784 				cn_escape(commstart);
1785 				break;
1786 			}
1787 			case 'E':
1788 				err = cn_print_exe_file(cn);
1789 				break;
1790 			/* core limit size */
1791 			case 'c':
1792 				err = cn_printf(cn, "%lu",
1793 					      rlimit(RLIMIT_CORE));
1794 				break;
1795 			default:
1796 				break;
1797 			}
1798 			++pat_ptr;
1799 		}
1800 
1801 		if (err)
1802 			return err;
1803 	}
1804 
1805 	/* Backward compatibility with core_uses_pid:
1806 	 *
1807 	 * If core_pattern does not include a %p (as is the default)
1808 	 * and core_uses_pid is set, then .%pid will be appended to
1809 	 * the filename. Do not do this for piped commands. */
1810 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1811 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1812 		if (err)
1813 			return err;
1814 	}
1815 out:
1816 	return ispipe;
1817 }
1818 
1819 static int zap_process(struct task_struct *start, int exit_code)
1820 {
1821 	struct task_struct *t;
1822 	int nr = 0;
1823 
1824 	start->signal->flags = SIGNAL_GROUP_EXIT;
1825 	start->signal->group_exit_code = exit_code;
1826 	start->signal->group_stop_count = 0;
1827 
1828 	t = start;
1829 	do {
1830 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1831 		if (t != current && t->mm) {
1832 			sigaddset(&t->pending.signal, SIGKILL);
1833 			signal_wake_up(t, 1);
1834 			nr++;
1835 		}
1836 	} while_each_thread(start, t);
1837 
1838 	return nr;
1839 }
1840 
1841 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1842 				struct core_state *core_state, int exit_code)
1843 {
1844 	struct task_struct *g, *p;
1845 	unsigned long flags;
1846 	int nr = -EAGAIN;
1847 
1848 	spin_lock_irq(&tsk->sighand->siglock);
1849 	if (!signal_group_exit(tsk->signal)) {
1850 		mm->core_state = core_state;
1851 		nr = zap_process(tsk, exit_code);
1852 	}
1853 	spin_unlock_irq(&tsk->sighand->siglock);
1854 	if (unlikely(nr < 0))
1855 		return nr;
1856 
1857 	if (atomic_read(&mm->mm_users) == nr + 1)
1858 		goto done;
1859 	/*
1860 	 * We should find and kill all tasks which use this mm, and we should
1861 	 * count them correctly into ->nr_threads. We don't take tasklist
1862 	 * lock, but this is safe wrt:
1863 	 *
1864 	 * fork:
1865 	 *	None of sub-threads can fork after zap_process(leader). All
1866 	 *	processes which were created before this point should be
1867 	 *	visible to zap_threads() because copy_process() adds the new
1868 	 *	process to the tail of init_task.tasks list, and lock/unlock
1869 	 *	of ->siglock provides a memory barrier.
1870 	 *
1871 	 * do_exit:
1872 	 *	The caller holds mm->mmap_sem. This means that the task which
1873 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1874 	 *	its ->mm.
1875 	 *
1876 	 * de_thread:
1877 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1878 	 *	we must see either old or new leader, this does not matter.
1879 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1880 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1881 	 *	it can't fail.
1882 	 *
1883 	 *	Note also that "g" can be the old leader with ->mm == NULL
1884 	 *	and already unhashed and thus removed from ->thread_group.
1885 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1886 	 *	clear the ->next pointer, we will find the new leader via
1887 	 *	next_thread().
1888 	 */
1889 	rcu_read_lock();
1890 	for_each_process(g) {
1891 		if (g == tsk->group_leader)
1892 			continue;
1893 		if (g->flags & PF_KTHREAD)
1894 			continue;
1895 		p = g;
1896 		do {
1897 			if (p->mm) {
1898 				if (unlikely(p->mm == mm)) {
1899 					lock_task_sighand(p, &flags);
1900 					nr += zap_process(p, exit_code);
1901 					unlock_task_sighand(p, &flags);
1902 				}
1903 				break;
1904 			}
1905 		} while_each_thread(g, p);
1906 	}
1907 	rcu_read_unlock();
1908 done:
1909 	atomic_set(&core_state->nr_threads, nr);
1910 	return nr;
1911 }
1912 
1913 static int coredump_wait(int exit_code, struct core_state *core_state)
1914 {
1915 	struct task_struct *tsk = current;
1916 	struct mm_struct *mm = tsk->mm;
1917 	struct completion *vfork_done;
1918 	int core_waiters = -EBUSY;
1919 
1920 	init_completion(&core_state->startup);
1921 	core_state->dumper.task = tsk;
1922 	core_state->dumper.next = NULL;
1923 
1924 	down_write(&mm->mmap_sem);
1925 	if (!mm->core_state)
1926 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1927 	up_write(&mm->mmap_sem);
1928 
1929 	if (unlikely(core_waiters < 0))
1930 		goto fail;
1931 
1932 	/*
1933 	 * Make sure nobody is waiting for us to release the VM,
1934 	 * otherwise we can deadlock when we wait on each other
1935 	 */
1936 	vfork_done = tsk->vfork_done;
1937 	if (vfork_done) {
1938 		tsk->vfork_done = NULL;
1939 		complete(vfork_done);
1940 	}
1941 
1942 	if (core_waiters)
1943 		wait_for_completion(&core_state->startup);
1944 fail:
1945 	return core_waiters;
1946 }
1947 
1948 static void coredump_finish(struct mm_struct *mm)
1949 {
1950 	struct core_thread *curr, *next;
1951 	struct task_struct *task;
1952 
1953 	next = mm->core_state->dumper.next;
1954 	while ((curr = next) != NULL) {
1955 		next = curr->next;
1956 		task = curr->task;
1957 		/*
1958 		 * see exit_mm(), curr->task must not see
1959 		 * ->task == NULL before we read ->next.
1960 		 */
1961 		smp_mb();
1962 		curr->task = NULL;
1963 		wake_up_process(task);
1964 	}
1965 
1966 	mm->core_state = NULL;
1967 }
1968 
1969 /*
1970  * set_dumpable converts traditional three-value dumpable to two flags and
1971  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1972  * these bits are not changed atomically.  So get_dumpable can observe the
1973  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1974  * return either old dumpable or new one by paying attention to the order of
1975  * modifying the bits.
1976  *
1977  * dumpable |   mm->flags (binary)
1978  * old  new | initial interim  final
1979  * ---------+-----------------------
1980  *  0    1  |   00      01      01
1981  *  0    2  |   00      10(*)   11
1982  *  1    0  |   01      00      00
1983  *  1    2  |   01      11      11
1984  *  2    0  |   11      10(*)   00
1985  *  2    1  |   11      11      01
1986  *
1987  * (*) get_dumpable regards interim value of 10 as 11.
1988  */
1989 void set_dumpable(struct mm_struct *mm, int value)
1990 {
1991 	switch (value) {
1992 	case 0:
1993 		clear_bit(MMF_DUMPABLE, &mm->flags);
1994 		smp_wmb();
1995 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1996 		break;
1997 	case 1:
1998 		set_bit(MMF_DUMPABLE, &mm->flags);
1999 		smp_wmb();
2000 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
2001 		break;
2002 	case 2:
2003 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
2004 		smp_wmb();
2005 		set_bit(MMF_DUMPABLE, &mm->flags);
2006 		break;
2007 	}
2008 }
2009 
2010 static int __get_dumpable(unsigned long mm_flags)
2011 {
2012 	int ret;
2013 
2014 	ret = mm_flags & MMF_DUMPABLE_MASK;
2015 	return (ret >= 2) ? 2 : ret;
2016 }
2017 
2018 int get_dumpable(struct mm_struct *mm)
2019 {
2020 	return __get_dumpable(mm->flags);
2021 }
2022 
2023 static void wait_for_dump_helpers(struct file *file)
2024 {
2025 	struct pipe_inode_info *pipe;
2026 
2027 	pipe = file->f_path.dentry->d_inode->i_pipe;
2028 
2029 	pipe_lock(pipe);
2030 	pipe->readers++;
2031 	pipe->writers--;
2032 
2033 	while ((pipe->readers > 1) && (!signal_pending(current))) {
2034 		wake_up_interruptible_sync(&pipe->wait);
2035 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
2036 		pipe_wait(pipe);
2037 	}
2038 
2039 	pipe->readers--;
2040 	pipe->writers++;
2041 	pipe_unlock(pipe);
2042 
2043 }
2044 
2045 
2046 /*
2047  * umh_pipe_setup
2048  * helper function to customize the process used
2049  * to collect the core in userspace.  Specifically
2050  * it sets up a pipe and installs it as fd 0 (stdin)
2051  * for the process.  Returns 0 on success, or
2052  * PTR_ERR on failure.
2053  * Note that it also sets the core limit to 1.  This
2054  * is a special value that we use to trap recursive
2055  * core dumps
2056  */
2057 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
2058 {
2059 	struct file *rp, *wp;
2060 	struct fdtable *fdt;
2061 	struct coredump_params *cp = (struct coredump_params *)info->data;
2062 	struct files_struct *cf = current->files;
2063 
2064 	wp = create_write_pipe(0);
2065 	if (IS_ERR(wp))
2066 		return PTR_ERR(wp);
2067 
2068 	rp = create_read_pipe(wp, 0);
2069 	if (IS_ERR(rp)) {
2070 		free_write_pipe(wp);
2071 		return PTR_ERR(rp);
2072 	}
2073 
2074 	cp->file = wp;
2075 
2076 	sys_close(0);
2077 	fd_install(0, rp);
2078 	spin_lock(&cf->file_lock);
2079 	fdt = files_fdtable(cf);
2080 	FD_SET(0, fdt->open_fds);
2081 	FD_CLR(0, fdt->close_on_exec);
2082 	spin_unlock(&cf->file_lock);
2083 
2084 	/* and disallow core files too */
2085 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
2086 
2087 	return 0;
2088 }
2089 
2090 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
2091 {
2092 	struct core_state core_state;
2093 	struct core_name cn;
2094 	struct mm_struct *mm = current->mm;
2095 	struct linux_binfmt * binfmt;
2096 	const struct cred *old_cred;
2097 	struct cred *cred;
2098 	int retval = 0;
2099 	int flag = 0;
2100 	int ispipe;
2101 	static atomic_t core_dump_count = ATOMIC_INIT(0);
2102 	struct coredump_params cprm = {
2103 		.signr = signr,
2104 		.regs = regs,
2105 		.limit = rlimit(RLIMIT_CORE),
2106 		/*
2107 		 * We must use the same mm->flags while dumping core to avoid
2108 		 * inconsistency of bit flags, since this flag is not protected
2109 		 * by any locks.
2110 		 */
2111 		.mm_flags = mm->flags,
2112 	};
2113 
2114 	audit_core_dumps(signr);
2115 
2116 	binfmt = mm->binfmt;
2117 	if (!binfmt || !binfmt->core_dump)
2118 		goto fail;
2119 	if (!__get_dumpable(cprm.mm_flags))
2120 		goto fail;
2121 
2122 	cred = prepare_creds();
2123 	if (!cred)
2124 		goto fail;
2125 	/*
2126 	 *	We cannot trust fsuid as being the "true" uid of the
2127 	 *	process nor do we know its entire history. We only know it
2128 	 *	was tainted so we dump it as root in mode 2.
2129 	 */
2130 	if (__get_dumpable(cprm.mm_flags) == 2) {
2131 		/* Setuid core dump mode */
2132 		flag = O_EXCL;		/* Stop rewrite attacks */
2133 		cred->fsuid = 0;	/* Dump root private */
2134 	}
2135 
2136 	retval = coredump_wait(exit_code, &core_state);
2137 	if (retval < 0)
2138 		goto fail_creds;
2139 
2140 	old_cred = override_creds(cred);
2141 
2142 	/*
2143 	 * Clear any false indication of pending signals that might
2144 	 * be seen by the filesystem code called to write the core file.
2145 	 */
2146 	clear_thread_flag(TIF_SIGPENDING);
2147 
2148 	ispipe = format_corename(&cn, signr);
2149 
2150  	if (ispipe) {
2151 		int dump_count;
2152 		char **helper_argv;
2153 
2154 		if (ispipe < 0) {
2155 			printk(KERN_WARNING "format_corename failed\n");
2156 			printk(KERN_WARNING "Aborting core\n");
2157 			goto fail_corename;
2158 		}
2159 
2160 		if (cprm.limit == 1) {
2161 			/*
2162 			 * Normally core limits are irrelevant to pipes, since
2163 			 * we're not writing to the file system, but we use
2164 			 * cprm.limit of 1 here as a speacial value. Any
2165 			 * non-1 limit gets set to RLIM_INFINITY below, but
2166 			 * a limit of 0 skips the dump.  This is a consistent
2167 			 * way to catch recursive crashes.  We can still crash
2168 			 * if the core_pattern binary sets RLIM_CORE =  !1
2169 			 * but it runs as root, and can do lots of stupid things
2170 			 * Note that we use task_tgid_vnr here to grab the pid
2171 			 * of the process group leader.  That way we get the
2172 			 * right pid if a thread in a multi-threaded
2173 			 * core_pattern process dies.
2174 			 */
2175 			printk(KERN_WARNING
2176 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
2177 				task_tgid_vnr(current), current->comm);
2178 			printk(KERN_WARNING "Aborting core\n");
2179 			goto fail_unlock;
2180 		}
2181 		cprm.limit = RLIM_INFINITY;
2182 
2183 		dump_count = atomic_inc_return(&core_dump_count);
2184 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2185 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2186 			       task_tgid_vnr(current), current->comm);
2187 			printk(KERN_WARNING "Skipping core dump\n");
2188 			goto fail_dropcount;
2189 		}
2190 
2191 		helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
2192 		if (!helper_argv) {
2193 			printk(KERN_WARNING "%s failed to allocate memory\n",
2194 			       __func__);
2195 			goto fail_dropcount;
2196 		}
2197 
2198 		retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2199 					NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2200 					NULL, &cprm);
2201 		argv_free(helper_argv);
2202 		if (retval) {
2203  			printk(KERN_INFO "Core dump to %s pipe failed\n",
2204 			       cn.corename);
2205 			goto close_fail;
2206  		}
2207 	} else {
2208 		struct inode *inode;
2209 
2210 		if (cprm.limit < binfmt->min_coredump)
2211 			goto fail_unlock;
2212 
2213 		cprm.file = filp_open(cn.corename,
2214 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2215 				 0600);
2216 		if (IS_ERR(cprm.file))
2217 			goto fail_unlock;
2218 
2219 		inode = cprm.file->f_path.dentry->d_inode;
2220 		if (inode->i_nlink > 1)
2221 			goto close_fail;
2222 		if (d_unhashed(cprm.file->f_path.dentry))
2223 			goto close_fail;
2224 		/*
2225 		 * AK: actually i see no reason to not allow this for named
2226 		 * pipes etc, but keep the previous behaviour for now.
2227 		 */
2228 		if (!S_ISREG(inode->i_mode))
2229 			goto close_fail;
2230 		/*
2231 		 * Dont allow local users get cute and trick others to coredump
2232 		 * into their pre-created files.
2233 		 */
2234 		if (inode->i_uid != current_fsuid())
2235 			goto close_fail;
2236 		if (!cprm.file->f_op || !cprm.file->f_op->write)
2237 			goto close_fail;
2238 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2239 			goto close_fail;
2240 	}
2241 
2242 	retval = binfmt->core_dump(&cprm);
2243 	if (retval)
2244 		current->signal->group_exit_code |= 0x80;
2245 
2246 	if (ispipe && core_pipe_limit)
2247 		wait_for_dump_helpers(cprm.file);
2248 close_fail:
2249 	if (cprm.file)
2250 		filp_close(cprm.file, NULL);
2251 fail_dropcount:
2252 	if (ispipe)
2253 		atomic_dec(&core_dump_count);
2254 fail_unlock:
2255 	kfree(cn.corename);
2256 fail_corename:
2257 	coredump_finish(mm);
2258 	revert_creds(old_cred);
2259 fail_creds:
2260 	put_cred(cred);
2261 fail:
2262 	return;
2263 }
2264 
2265 /*
2266  * Core dumping helper functions.  These are the only things you should
2267  * do on a core-file: use only these functions to write out all the
2268  * necessary info.
2269  */
2270 int dump_write(struct file *file, const void *addr, int nr)
2271 {
2272 	return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2273 }
2274 EXPORT_SYMBOL(dump_write);
2275 
2276 int dump_seek(struct file *file, loff_t off)
2277 {
2278 	int ret = 1;
2279 
2280 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2281 		if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2282 			return 0;
2283 	} else {
2284 		char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2285 
2286 		if (!buf)
2287 			return 0;
2288 		while (off > 0) {
2289 			unsigned long n = off;
2290 
2291 			if (n > PAGE_SIZE)
2292 				n = PAGE_SIZE;
2293 			if (!dump_write(file, buf, n)) {
2294 				ret = 0;
2295 				break;
2296 			}
2297 			off -= n;
2298 		}
2299 		free_page((unsigned long)buf);
2300 	}
2301 	return ret;
2302 }
2303 EXPORT_SYMBOL(dump_seek);
2304