1 /* 2 * fs/eventpoll.c ( Efficent event polling implementation ) 3 * Copyright (C) 2001,...,2003 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/kernel.h> 17 #include <linux/sched.h> 18 #include <linux/fs.h> 19 #include <linux/file.h> 20 #include <linux/signal.h> 21 #include <linux/errno.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/poll.h> 25 #include <linux/smp_lock.h> 26 #include <linux/string.h> 27 #include <linux/list.h> 28 #include <linux/hash.h> 29 #include <linux/spinlock.h> 30 #include <linux/syscalls.h> 31 #include <linux/rwsem.h> 32 #include <linux/rbtree.h> 33 #include <linux/wait.h> 34 #include <linux/eventpoll.h> 35 #include <linux/mount.h> 36 #include <linux/bitops.h> 37 #include <linux/mutex.h> 38 #include <asm/uaccess.h> 39 #include <asm/system.h> 40 #include <asm/io.h> 41 #include <asm/mman.h> 42 #include <asm/atomic.h> 43 #include <asm/semaphore.h> 44 45 46 /* 47 * LOCKING: 48 * There are three level of locking required by epoll : 49 * 50 * 1) epmutex (mutex) 51 * 2) ep->sem (rw_semaphore) 52 * 3) ep->lock (rw_lock) 53 * 54 * The acquire order is the one listed above, from 1 to 3. 55 * We need a spinlock (ep->lock) because we manipulate objects 56 * from inside the poll callback, that might be triggered from 57 * a wake_up() that in turn might be called from IRQ context. 58 * So we can't sleep inside the poll callback and hence we need 59 * a spinlock. During the event transfer loop (from kernel to 60 * user space) we could end up sleeping due a copy_to_user(), so 61 * we need a lock that will allow us to sleep. This lock is a 62 * read-write semaphore (ep->sem). It is acquired on read during 63 * the event transfer loop and in write during epoll_ctl(EPOLL_CTL_DEL) 64 * and during eventpoll_release_file(). Then we also need a global 65 * semaphore to serialize eventpoll_release_file() and ep_free(). 66 * This semaphore is acquired by ep_free() during the epoll file 67 * cleanup path and it is also acquired by eventpoll_release_file() 68 * if a file has been pushed inside an epoll set and it is then 69 * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL). 70 * It is possible to drop the "ep->sem" and to use the global 71 * semaphore "epmutex" (together with "ep->lock") to have it working, 72 * but having "ep->sem" will make the interface more scalable. 73 * Events that require holding "epmutex" are very rare, while for 74 * normal operations the epoll private "ep->sem" will guarantee 75 * a greater scalability. 76 */ 77 78 79 #define EVENTPOLLFS_MAGIC 0x03111965 /* My birthday should work for this :) */ 80 81 #define DEBUG_EPOLL 0 82 83 #if DEBUG_EPOLL > 0 84 #define DPRINTK(x) printk x 85 #define DNPRINTK(n, x) do { if ((n) <= DEBUG_EPOLL) printk x; } while (0) 86 #else /* #if DEBUG_EPOLL > 0 */ 87 #define DPRINTK(x) (void) 0 88 #define DNPRINTK(n, x) (void) 0 89 #endif /* #if DEBUG_EPOLL > 0 */ 90 91 #define DEBUG_EPI 0 92 93 #if DEBUG_EPI != 0 94 #define EPI_SLAB_DEBUG (SLAB_DEBUG_FREE | SLAB_RED_ZONE /* | SLAB_POISON */) 95 #else /* #if DEBUG_EPI != 0 */ 96 #define EPI_SLAB_DEBUG 0 97 #endif /* #if DEBUG_EPI != 0 */ 98 99 /* Epoll private bits inside the event mask */ 100 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET) 101 102 /* Maximum number of poll wake up nests we are allowing */ 103 #define EP_MAX_POLLWAKE_NESTS 4 104 105 /* Maximum msec timeout value storeable in a long int */ 106 #define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ) 107 108 109 struct epoll_filefd { 110 struct file *file; 111 int fd; 112 }; 113 114 /* 115 * Node that is linked into the "wake_task_list" member of the "struct poll_safewake". 116 * It is used to keep track on all tasks that are currently inside the wake_up() code 117 * to 1) short-circuit the one coming from the same task and same wait queue head 118 * ( loop ) 2) allow a maximum number of epoll descriptors inclusion nesting 119 * 3) let go the ones coming from other tasks. 120 */ 121 struct wake_task_node { 122 struct list_head llink; 123 task_t *task; 124 wait_queue_head_t *wq; 125 }; 126 127 /* 128 * This is used to implement the safe poll wake up avoiding to reenter 129 * the poll callback from inside wake_up(). 130 */ 131 struct poll_safewake { 132 struct list_head wake_task_list; 133 spinlock_t lock; 134 }; 135 136 /* 137 * This structure is stored inside the "private_data" member of the file 138 * structure and rapresent the main data sructure for the eventpoll 139 * interface. 140 */ 141 struct eventpoll { 142 /* Protect the this structure access */ 143 rwlock_t lock; 144 145 /* 146 * This semaphore is used to ensure that files are not removed 147 * while epoll is using them. This is read-held during the event 148 * collection loop and it is write-held during the file cleanup 149 * path, the epoll file exit code and the ctl operations. 150 */ 151 struct rw_semaphore sem; 152 153 /* Wait queue used by sys_epoll_wait() */ 154 wait_queue_head_t wq; 155 156 /* Wait queue used by file->poll() */ 157 wait_queue_head_t poll_wait; 158 159 /* List of ready file descriptors */ 160 struct list_head rdllist; 161 162 /* RB-Tree root used to store monitored fd structs */ 163 struct rb_root rbr; 164 }; 165 166 /* Wait structure used by the poll hooks */ 167 struct eppoll_entry { 168 /* List header used to link this structure to the "struct epitem" */ 169 struct list_head llink; 170 171 /* The "base" pointer is set to the container "struct epitem" */ 172 void *base; 173 174 /* 175 * Wait queue item that will be linked to the target file wait 176 * queue head. 177 */ 178 wait_queue_t wait; 179 180 /* The wait queue head that linked the "wait" wait queue item */ 181 wait_queue_head_t *whead; 182 }; 183 184 /* 185 * Each file descriptor added to the eventpoll interface will 186 * have an entry of this type linked to the hash. 187 */ 188 struct epitem { 189 /* RB-Tree node used to link this structure to the eventpoll rb-tree */ 190 struct rb_node rbn; 191 192 /* List header used to link this structure to the eventpoll ready list */ 193 struct list_head rdllink; 194 195 /* The file descriptor information this item refers to */ 196 struct epoll_filefd ffd; 197 198 /* Number of active wait queue attached to poll operations */ 199 int nwait; 200 201 /* List containing poll wait queues */ 202 struct list_head pwqlist; 203 204 /* The "container" of this item */ 205 struct eventpoll *ep; 206 207 /* The structure that describe the interested events and the source fd */ 208 struct epoll_event event; 209 210 /* 211 * Used to keep track of the usage count of the structure. This avoids 212 * that the structure will desappear from underneath our processing. 213 */ 214 atomic_t usecnt; 215 216 /* List header used to link this item to the "struct file" items list */ 217 struct list_head fllink; 218 219 /* List header used to link the item to the transfer list */ 220 struct list_head txlink; 221 222 /* 223 * This is used during the collection/transfer of events to userspace 224 * to pin items empty events set. 225 */ 226 unsigned int revents; 227 }; 228 229 /* Wrapper struct used by poll queueing */ 230 struct ep_pqueue { 231 poll_table pt; 232 struct epitem *epi; 233 }; 234 235 236 237 static void ep_poll_safewake_init(struct poll_safewake *psw); 238 static void ep_poll_safewake(struct poll_safewake *psw, wait_queue_head_t *wq); 239 static int ep_getfd(int *efd, struct inode **einode, struct file **efile, 240 struct eventpoll *ep); 241 static int ep_alloc(struct eventpoll **pep); 242 static void ep_free(struct eventpoll *ep); 243 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd); 244 static void ep_use_epitem(struct epitem *epi); 245 static void ep_release_epitem(struct epitem *epi); 246 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 247 poll_table *pt); 248 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi); 249 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 250 struct file *tfile, int fd); 251 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 252 struct epoll_event *event); 253 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi); 254 static int ep_unlink(struct eventpoll *ep, struct epitem *epi); 255 static int ep_remove(struct eventpoll *ep, struct epitem *epi); 256 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key); 257 static int ep_eventpoll_close(struct inode *inode, struct file *file); 258 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait); 259 static int ep_collect_ready_items(struct eventpoll *ep, 260 struct list_head *txlist, int maxevents); 261 static int ep_send_events(struct eventpoll *ep, struct list_head *txlist, 262 struct epoll_event __user *events); 263 static void ep_reinject_items(struct eventpoll *ep, struct list_head *txlist); 264 static int ep_events_transfer(struct eventpoll *ep, 265 struct epoll_event __user *events, 266 int maxevents); 267 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 268 int maxevents, long timeout); 269 static int eventpollfs_delete_dentry(struct dentry *dentry); 270 static struct inode *ep_eventpoll_inode(void); 271 static struct super_block *eventpollfs_get_sb(struct file_system_type *fs_type, 272 int flags, const char *dev_name, 273 void *data); 274 275 /* 276 * This semaphore is used to serialize ep_free() and eventpoll_release_file(). 277 */ 278 static struct mutex epmutex; 279 280 /* Safe wake up implementation */ 281 static struct poll_safewake psw; 282 283 /* Slab cache used to allocate "struct epitem" */ 284 static kmem_cache_t *epi_cache __read_mostly; 285 286 /* Slab cache used to allocate "struct eppoll_entry" */ 287 static kmem_cache_t *pwq_cache __read_mostly; 288 289 /* Virtual fs used to allocate inodes for eventpoll files */ 290 static struct vfsmount *eventpoll_mnt __read_mostly; 291 292 /* File callbacks that implement the eventpoll file behaviour */ 293 static struct file_operations eventpoll_fops = { 294 .release = ep_eventpoll_close, 295 .poll = ep_eventpoll_poll 296 }; 297 298 /* 299 * This is used to register the virtual file system from where 300 * eventpoll inodes are allocated. 301 */ 302 static struct file_system_type eventpoll_fs_type = { 303 .name = "eventpollfs", 304 .get_sb = eventpollfs_get_sb, 305 .kill_sb = kill_anon_super, 306 }; 307 308 /* Very basic directory entry operations for the eventpoll virtual file system */ 309 static struct dentry_operations eventpollfs_dentry_operations = { 310 .d_delete = eventpollfs_delete_dentry, 311 }; 312 313 314 315 /* Fast test to see if the file is an evenpoll file */ 316 static inline int is_file_epoll(struct file *f) 317 { 318 return f->f_op == &eventpoll_fops; 319 } 320 321 /* Setup the structure that is used as key for the rb-tree */ 322 static inline void ep_set_ffd(struct epoll_filefd *ffd, 323 struct file *file, int fd) 324 { 325 ffd->file = file; 326 ffd->fd = fd; 327 } 328 329 /* Compare rb-tree keys */ 330 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 331 struct epoll_filefd *p2) 332 { 333 return (p1->file > p2->file ? +1: 334 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 335 } 336 337 /* Special initialization for the rb-tree node to detect linkage */ 338 static inline void ep_rb_initnode(struct rb_node *n) 339 { 340 n->rb_parent = n; 341 } 342 343 /* Removes a node from the rb-tree and marks it for a fast is-linked check */ 344 static inline void ep_rb_erase(struct rb_node *n, struct rb_root *r) 345 { 346 rb_erase(n, r); 347 n->rb_parent = n; 348 } 349 350 /* Fast check to verify that the item is linked to the main rb-tree */ 351 static inline int ep_rb_linked(struct rb_node *n) 352 { 353 return n->rb_parent != n; 354 } 355 356 /* 357 * Remove the item from the list and perform its initialization. 358 * This is useful for us because we can test if the item is linked 359 * using "ep_is_linked(p)". 360 */ 361 static inline void ep_list_del(struct list_head *p) 362 { 363 list_del(p); 364 INIT_LIST_HEAD(p); 365 } 366 367 /* Tells us if the item is currently linked */ 368 static inline int ep_is_linked(struct list_head *p) 369 { 370 return !list_empty(p); 371 } 372 373 /* Get the "struct epitem" from a wait queue pointer */ 374 static inline struct epitem * ep_item_from_wait(wait_queue_t *p) 375 { 376 return container_of(p, struct eppoll_entry, wait)->base; 377 } 378 379 /* Get the "struct epitem" from an epoll queue wrapper */ 380 static inline struct epitem * ep_item_from_epqueue(poll_table *p) 381 { 382 return container_of(p, struct ep_pqueue, pt)->epi; 383 } 384 385 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 386 static inline int ep_op_hash_event(int op) 387 { 388 return op != EPOLL_CTL_DEL; 389 } 390 391 /* Initialize the poll safe wake up structure */ 392 static void ep_poll_safewake_init(struct poll_safewake *psw) 393 { 394 395 INIT_LIST_HEAD(&psw->wake_task_list); 396 spin_lock_init(&psw->lock); 397 } 398 399 400 /* 401 * Perform a safe wake up of the poll wait list. The problem is that 402 * with the new callback'd wake up system, it is possible that the 403 * poll callback is reentered from inside the call to wake_up() done 404 * on the poll wait queue head. The rule is that we cannot reenter the 405 * wake up code from the same task more than EP_MAX_POLLWAKE_NESTS times, 406 * and we cannot reenter the same wait queue head at all. This will 407 * enable to have a hierarchy of epoll file descriptor of no more than 408 * EP_MAX_POLLWAKE_NESTS deep. We need the irq version of the spin lock 409 * because this one gets called by the poll callback, that in turn is called 410 * from inside a wake_up(), that might be called from irq context. 411 */ 412 static void ep_poll_safewake(struct poll_safewake *psw, wait_queue_head_t *wq) 413 { 414 int wake_nests = 0; 415 unsigned long flags; 416 task_t *this_task = current; 417 struct list_head *lsthead = &psw->wake_task_list, *lnk; 418 struct wake_task_node *tncur; 419 struct wake_task_node tnode; 420 421 spin_lock_irqsave(&psw->lock, flags); 422 423 /* Try to see if the current task is already inside this wakeup call */ 424 list_for_each(lnk, lsthead) { 425 tncur = list_entry(lnk, struct wake_task_node, llink); 426 427 if (tncur->wq == wq || 428 (tncur->task == this_task && ++wake_nests > EP_MAX_POLLWAKE_NESTS)) { 429 /* 430 * Ops ... loop detected or maximum nest level reached. 431 * We abort this wake by breaking the cycle itself. 432 */ 433 spin_unlock_irqrestore(&psw->lock, flags); 434 return; 435 } 436 } 437 438 /* Add the current task to the list */ 439 tnode.task = this_task; 440 tnode.wq = wq; 441 list_add(&tnode.llink, lsthead); 442 443 spin_unlock_irqrestore(&psw->lock, flags); 444 445 /* Do really wake up now */ 446 wake_up(wq); 447 448 /* Remove the current task from the list */ 449 spin_lock_irqsave(&psw->lock, flags); 450 list_del(&tnode.llink); 451 spin_unlock_irqrestore(&psw->lock, flags); 452 } 453 454 455 /* 456 * This is called from eventpoll_release() to unlink files from the eventpoll 457 * interface. We need to have this facility to cleanup correctly files that are 458 * closed without being removed from the eventpoll interface. 459 */ 460 void eventpoll_release_file(struct file *file) 461 { 462 struct list_head *lsthead = &file->f_ep_links; 463 struct eventpoll *ep; 464 struct epitem *epi; 465 466 /* 467 * We don't want to get "file->f_ep_lock" because it is not 468 * necessary. It is not necessary because we're in the "struct file" 469 * cleanup path, and this means that noone is using this file anymore. 470 * The only hit might come from ep_free() but by holding the semaphore 471 * will correctly serialize the operation. We do need to acquire 472 * "ep->sem" after "epmutex" because ep_remove() requires it when called 473 * from anywhere but ep_free(). 474 */ 475 mutex_lock(&epmutex); 476 477 while (!list_empty(lsthead)) { 478 epi = list_entry(lsthead->next, struct epitem, fllink); 479 480 ep = epi->ep; 481 ep_list_del(&epi->fllink); 482 down_write(&ep->sem); 483 ep_remove(ep, epi); 484 up_write(&ep->sem); 485 } 486 487 mutex_unlock(&epmutex); 488 } 489 490 491 /* 492 * It opens an eventpoll file descriptor by suggesting a storage of "size" 493 * file descriptors. The size parameter is just an hint about how to size 494 * data structures. It won't prevent the user to store more than "size" 495 * file descriptors inside the epoll interface. It is the kernel part of 496 * the userspace epoll_create(2). 497 */ 498 asmlinkage long sys_epoll_create(int size) 499 { 500 int error, fd; 501 struct eventpoll *ep; 502 struct inode *inode; 503 struct file *file; 504 505 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d)\n", 506 current, size)); 507 508 /* 509 * Sanity check on the size parameter, and create the internal data 510 * structure ( "struct eventpoll" ). 511 */ 512 error = -EINVAL; 513 if (size <= 0 || (error = ep_alloc(&ep)) != 0) 514 goto eexit_1; 515 516 /* 517 * Creates all the items needed to setup an eventpoll file. That is, 518 * a file structure, and inode and a free file descriptor. 519 */ 520 error = ep_getfd(&fd, &inode, &file, ep); 521 if (error) 522 goto eexit_2; 523 524 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n", 525 current, size, fd)); 526 527 return fd; 528 529 eexit_2: 530 ep_free(ep); 531 kfree(ep); 532 eexit_1: 533 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n", 534 current, size, error)); 535 return error; 536 } 537 538 539 /* 540 * The following function implements the controller interface for 541 * the eventpoll file that enables the insertion/removal/change of 542 * file descriptors inside the interest set. It represents 543 * the kernel part of the user space epoll_ctl(2). 544 */ 545 asmlinkage long 546 sys_epoll_ctl(int epfd, int op, int fd, struct epoll_event __user *event) 547 { 548 int error; 549 struct file *file, *tfile; 550 struct eventpoll *ep; 551 struct epitem *epi; 552 struct epoll_event epds; 553 554 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p)\n", 555 current, epfd, op, fd, event)); 556 557 error = -EFAULT; 558 if (ep_op_hash_event(op) && 559 copy_from_user(&epds, event, sizeof(struct epoll_event))) 560 goto eexit_1; 561 562 /* Get the "struct file *" for the eventpoll file */ 563 error = -EBADF; 564 file = fget(epfd); 565 if (!file) 566 goto eexit_1; 567 568 /* Get the "struct file *" for the target file */ 569 tfile = fget(fd); 570 if (!tfile) 571 goto eexit_2; 572 573 /* The target file descriptor must support poll */ 574 error = -EPERM; 575 if (!tfile->f_op || !tfile->f_op->poll) 576 goto eexit_3; 577 578 /* 579 * We have to check that the file structure underneath the file descriptor 580 * the user passed to us _is_ an eventpoll file. And also we do not permit 581 * adding an epoll file descriptor inside itself. 582 */ 583 error = -EINVAL; 584 if (file == tfile || !is_file_epoll(file)) 585 goto eexit_3; 586 587 /* 588 * At this point it is safe to assume that the "private_data" contains 589 * our own data structure. 590 */ 591 ep = file->private_data; 592 593 down_write(&ep->sem); 594 595 /* Try to lookup the file inside our hash table */ 596 epi = ep_find(ep, tfile, fd); 597 598 error = -EINVAL; 599 switch (op) { 600 case EPOLL_CTL_ADD: 601 if (!epi) { 602 epds.events |= POLLERR | POLLHUP | POLLRDHUP; 603 604 error = ep_insert(ep, &epds, tfile, fd); 605 } else 606 error = -EEXIST; 607 break; 608 case EPOLL_CTL_DEL: 609 if (epi) 610 error = ep_remove(ep, epi); 611 else 612 error = -ENOENT; 613 break; 614 case EPOLL_CTL_MOD: 615 if (epi) { 616 epds.events |= POLLERR | POLLHUP | POLLRDHUP; 617 error = ep_modify(ep, epi, &epds); 618 } else 619 error = -ENOENT; 620 break; 621 } 622 623 /* 624 * The function ep_find() increments the usage count of the structure 625 * so, if this is not NULL, we need to release it. 626 */ 627 if (epi) 628 ep_release_epitem(epi); 629 630 up_write(&ep->sem); 631 632 eexit_3: 633 fput(tfile); 634 eexit_2: 635 fput(file); 636 eexit_1: 637 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p) = %d\n", 638 current, epfd, op, fd, event, error)); 639 640 return error; 641 } 642 643 #define MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 644 645 /* 646 * Implement the event wait interface for the eventpoll file. It is the kernel 647 * part of the user space epoll_wait(2). 648 */ 649 asmlinkage long sys_epoll_wait(int epfd, struct epoll_event __user *events, 650 int maxevents, int timeout) 651 { 652 int error; 653 struct file *file; 654 struct eventpoll *ep; 655 656 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d)\n", 657 current, epfd, events, maxevents, timeout)); 658 659 /* The maximum number of event must be greater than zero */ 660 if (maxevents <= 0 || maxevents > MAX_EVENTS) 661 return -EINVAL; 662 663 /* Verify that the area passed by the user is writeable */ 664 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) { 665 error = -EFAULT; 666 goto eexit_1; 667 } 668 669 /* Get the "struct file *" for the eventpoll file */ 670 error = -EBADF; 671 file = fget(epfd); 672 if (!file) 673 goto eexit_1; 674 675 /* 676 * We have to check that the file structure underneath the fd 677 * the user passed to us _is_ an eventpoll file. 678 */ 679 error = -EINVAL; 680 if (!is_file_epoll(file)) 681 goto eexit_2; 682 683 /* 684 * At this point it is safe to assume that the "private_data" contains 685 * our own data structure. 686 */ 687 ep = file->private_data; 688 689 /* Time to fish for events ... */ 690 error = ep_poll(ep, events, maxevents, timeout); 691 692 eexit_2: 693 fput(file); 694 eexit_1: 695 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d) = %d\n", 696 current, epfd, events, maxevents, timeout, error)); 697 698 return error; 699 } 700 701 702 /* 703 * Creates the file descriptor to be used by the epoll interface. 704 */ 705 static int ep_getfd(int *efd, struct inode **einode, struct file **efile, 706 struct eventpoll *ep) 707 { 708 struct qstr this; 709 char name[32]; 710 struct dentry *dentry; 711 struct inode *inode; 712 struct file *file; 713 int error, fd; 714 715 /* Get an ready to use file */ 716 error = -ENFILE; 717 file = get_empty_filp(); 718 if (!file) 719 goto eexit_1; 720 721 /* Allocates an inode from the eventpoll file system */ 722 inode = ep_eventpoll_inode(); 723 error = PTR_ERR(inode); 724 if (IS_ERR(inode)) 725 goto eexit_2; 726 727 /* Allocates a free descriptor to plug the file onto */ 728 error = get_unused_fd(); 729 if (error < 0) 730 goto eexit_3; 731 fd = error; 732 733 /* 734 * Link the inode to a directory entry by creating a unique name 735 * using the inode number. 736 */ 737 error = -ENOMEM; 738 sprintf(name, "[%lu]", inode->i_ino); 739 this.name = name; 740 this.len = strlen(name); 741 this.hash = inode->i_ino; 742 dentry = d_alloc(eventpoll_mnt->mnt_sb->s_root, &this); 743 if (!dentry) 744 goto eexit_4; 745 dentry->d_op = &eventpollfs_dentry_operations; 746 d_add(dentry, inode); 747 file->f_vfsmnt = mntget(eventpoll_mnt); 748 file->f_dentry = dentry; 749 file->f_mapping = inode->i_mapping; 750 751 file->f_pos = 0; 752 file->f_flags = O_RDONLY; 753 file->f_op = &eventpoll_fops; 754 file->f_mode = FMODE_READ; 755 file->f_version = 0; 756 file->private_data = ep; 757 758 /* Install the new setup file into the allocated fd. */ 759 fd_install(fd, file); 760 761 *efd = fd; 762 *einode = inode; 763 *efile = file; 764 return 0; 765 766 eexit_4: 767 put_unused_fd(fd); 768 eexit_3: 769 iput(inode); 770 eexit_2: 771 put_filp(file); 772 eexit_1: 773 return error; 774 } 775 776 777 static int ep_alloc(struct eventpoll **pep) 778 { 779 struct eventpoll *ep = kzalloc(sizeof(*ep), GFP_KERNEL); 780 781 if (!ep) 782 return -ENOMEM; 783 784 rwlock_init(&ep->lock); 785 init_rwsem(&ep->sem); 786 init_waitqueue_head(&ep->wq); 787 init_waitqueue_head(&ep->poll_wait); 788 INIT_LIST_HEAD(&ep->rdllist); 789 ep->rbr = RB_ROOT; 790 791 *pep = ep; 792 793 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_alloc() ep=%p\n", 794 current, ep)); 795 return 0; 796 } 797 798 799 static void ep_free(struct eventpoll *ep) 800 { 801 struct rb_node *rbp; 802 struct epitem *epi; 803 804 /* We need to release all tasks waiting for these file */ 805 if (waitqueue_active(&ep->poll_wait)) 806 ep_poll_safewake(&psw, &ep->poll_wait); 807 808 /* 809 * We need to lock this because we could be hit by 810 * eventpoll_release_file() while we're freeing the "struct eventpoll". 811 * We do not need to hold "ep->sem" here because the epoll file 812 * is on the way to be removed and no one has references to it 813 * anymore. The only hit might come from eventpoll_release_file() but 814 * holding "epmutex" is sufficent here. 815 */ 816 mutex_lock(&epmutex); 817 818 /* 819 * Walks through the whole tree by unregistering poll callbacks. 820 */ 821 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 822 epi = rb_entry(rbp, struct epitem, rbn); 823 824 ep_unregister_pollwait(ep, epi); 825 } 826 827 /* 828 * Walks through the whole hash by freeing each "struct epitem". At this 829 * point we are sure no poll callbacks will be lingering around, and also by 830 * write-holding "sem" we can be sure that no file cleanup code will hit 831 * us during this operation. So we can avoid the lock on "ep->lock". 832 */ 833 while ((rbp = rb_first(&ep->rbr)) != 0) { 834 epi = rb_entry(rbp, struct epitem, rbn); 835 ep_remove(ep, epi); 836 } 837 838 mutex_unlock(&epmutex); 839 } 840 841 842 /* 843 * Search the file inside the eventpoll hash. It add usage count to 844 * the returned item, so the caller must call ep_release_epitem() 845 * after finished using the "struct epitem". 846 */ 847 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 848 { 849 int kcmp; 850 unsigned long flags; 851 struct rb_node *rbp; 852 struct epitem *epi, *epir = NULL; 853 struct epoll_filefd ffd; 854 855 ep_set_ffd(&ffd, file, fd); 856 read_lock_irqsave(&ep->lock, flags); 857 for (rbp = ep->rbr.rb_node; rbp; ) { 858 epi = rb_entry(rbp, struct epitem, rbn); 859 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 860 if (kcmp > 0) 861 rbp = rbp->rb_right; 862 else if (kcmp < 0) 863 rbp = rbp->rb_left; 864 else { 865 ep_use_epitem(epi); 866 epir = epi; 867 break; 868 } 869 } 870 read_unlock_irqrestore(&ep->lock, flags); 871 872 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_find(%p) -> %p\n", 873 current, file, epir)); 874 875 return epir; 876 } 877 878 879 /* 880 * Increment the usage count of the "struct epitem" making it sure 881 * that the user will have a valid pointer to reference. 882 */ 883 static void ep_use_epitem(struct epitem *epi) 884 { 885 886 atomic_inc(&epi->usecnt); 887 } 888 889 890 /* 891 * Decrement ( release ) the usage count by signaling that the user 892 * has finished using the structure. It might lead to freeing the 893 * structure itself if the count goes to zero. 894 */ 895 static void ep_release_epitem(struct epitem *epi) 896 { 897 898 if (atomic_dec_and_test(&epi->usecnt)) 899 kmem_cache_free(epi_cache, epi); 900 } 901 902 903 /* 904 * This is the callback that is used to add our wait queue to the 905 * target file wakeup lists. 906 */ 907 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 908 poll_table *pt) 909 { 910 struct epitem *epi = ep_item_from_epqueue(pt); 911 struct eppoll_entry *pwq; 912 913 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, SLAB_KERNEL))) { 914 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 915 pwq->whead = whead; 916 pwq->base = epi; 917 add_wait_queue(whead, &pwq->wait); 918 list_add_tail(&pwq->llink, &epi->pwqlist); 919 epi->nwait++; 920 } else { 921 /* We have to signal that an error occurred */ 922 epi->nwait = -1; 923 } 924 } 925 926 927 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 928 { 929 int kcmp; 930 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 931 struct epitem *epic; 932 933 while (*p) { 934 parent = *p; 935 epic = rb_entry(parent, struct epitem, rbn); 936 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 937 if (kcmp > 0) 938 p = &parent->rb_right; 939 else 940 p = &parent->rb_left; 941 } 942 rb_link_node(&epi->rbn, parent, p); 943 rb_insert_color(&epi->rbn, &ep->rbr); 944 } 945 946 947 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 948 struct file *tfile, int fd) 949 { 950 int error, revents, pwake = 0; 951 unsigned long flags; 952 struct epitem *epi; 953 struct ep_pqueue epq; 954 955 error = -ENOMEM; 956 if (!(epi = kmem_cache_alloc(epi_cache, SLAB_KERNEL))) 957 goto eexit_1; 958 959 /* Item initialization follow here ... */ 960 ep_rb_initnode(&epi->rbn); 961 INIT_LIST_HEAD(&epi->rdllink); 962 INIT_LIST_HEAD(&epi->fllink); 963 INIT_LIST_HEAD(&epi->txlink); 964 INIT_LIST_HEAD(&epi->pwqlist); 965 epi->ep = ep; 966 ep_set_ffd(&epi->ffd, tfile, fd); 967 epi->event = *event; 968 atomic_set(&epi->usecnt, 1); 969 epi->nwait = 0; 970 971 /* Initialize the poll table using the queue callback */ 972 epq.epi = epi; 973 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 974 975 /* 976 * Attach the item to the poll hooks and get current event bits. 977 * We can safely use the file* here because its usage count has 978 * been increased by the caller of this function. 979 */ 980 revents = tfile->f_op->poll(tfile, &epq.pt); 981 982 /* 983 * We have to check if something went wrong during the poll wait queue 984 * install process. Namely an allocation for a wait queue failed due 985 * high memory pressure. 986 */ 987 if (epi->nwait < 0) 988 goto eexit_2; 989 990 /* Add the current item to the list of active epoll hook for this file */ 991 spin_lock(&tfile->f_ep_lock); 992 list_add_tail(&epi->fllink, &tfile->f_ep_links); 993 spin_unlock(&tfile->f_ep_lock); 994 995 /* We have to drop the new item inside our item list to keep track of it */ 996 write_lock_irqsave(&ep->lock, flags); 997 998 /* Add the current item to the rb-tree */ 999 ep_rbtree_insert(ep, epi); 1000 1001 /* If the file is already "ready" we drop it inside the ready list */ 1002 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 1003 list_add_tail(&epi->rdllink, &ep->rdllist); 1004 1005 /* Notify waiting tasks that events are available */ 1006 if (waitqueue_active(&ep->wq)) 1007 wake_up(&ep->wq); 1008 if (waitqueue_active(&ep->poll_wait)) 1009 pwake++; 1010 } 1011 1012 write_unlock_irqrestore(&ep->lock, flags); 1013 1014 /* We have to call this outside the lock */ 1015 if (pwake) 1016 ep_poll_safewake(&psw, &ep->poll_wait); 1017 1018 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_insert(%p, %p, %d)\n", 1019 current, ep, tfile, fd)); 1020 1021 return 0; 1022 1023 eexit_2: 1024 ep_unregister_pollwait(ep, epi); 1025 1026 /* 1027 * We need to do this because an event could have been arrived on some 1028 * allocated wait queue. 1029 */ 1030 write_lock_irqsave(&ep->lock, flags); 1031 if (ep_is_linked(&epi->rdllink)) 1032 ep_list_del(&epi->rdllink); 1033 write_unlock_irqrestore(&ep->lock, flags); 1034 1035 kmem_cache_free(epi_cache, epi); 1036 eexit_1: 1037 return error; 1038 } 1039 1040 1041 /* 1042 * Modify the interest event mask by dropping an event if the new mask 1043 * has a match in the current file status. 1044 */ 1045 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1046 { 1047 int pwake = 0; 1048 unsigned int revents; 1049 unsigned long flags; 1050 1051 /* 1052 * Set the new event interest mask before calling f_op->poll(), otherwise 1053 * a potential race might occur. In fact if we do this operation inside 1054 * the lock, an event might happen between the f_op->poll() call and the 1055 * new event set registering. 1056 */ 1057 epi->event.events = event->events; 1058 1059 /* 1060 * Get current event bits. We can safely use the file* here because 1061 * its usage count has been increased by the caller of this function. 1062 */ 1063 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL); 1064 1065 write_lock_irqsave(&ep->lock, flags); 1066 1067 /* Copy the data member from inside the lock */ 1068 epi->event.data = event->data; 1069 1070 /* 1071 * If the item is not linked to the hash it means that it's on its 1072 * way toward the removal. Do nothing in this case. 1073 */ 1074 if (ep_rb_linked(&epi->rbn)) { 1075 /* 1076 * If the item is "hot" and it is not registered inside the ready 1077 * list, push it inside. If the item is not "hot" and it is currently 1078 * registered inside the ready list, unlink it. 1079 */ 1080 if (revents & event->events) { 1081 if (!ep_is_linked(&epi->rdllink)) { 1082 list_add_tail(&epi->rdllink, &ep->rdllist); 1083 1084 /* Notify waiting tasks that events are available */ 1085 if (waitqueue_active(&ep->wq)) 1086 wake_up(&ep->wq); 1087 if (waitqueue_active(&ep->poll_wait)) 1088 pwake++; 1089 } 1090 } 1091 } 1092 1093 write_unlock_irqrestore(&ep->lock, flags); 1094 1095 /* We have to call this outside the lock */ 1096 if (pwake) 1097 ep_poll_safewake(&psw, &ep->poll_wait); 1098 1099 return 0; 1100 } 1101 1102 1103 /* 1104 * This function unregister poll callbacks from the associated file descriptor. 1105 * Since this must be called without holding "ep->lock" the atomic exchange trick 1106 * will protect us from multiple unregister. 1107 */ 1108 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 1109 { 1110 int nwait; 1111 struct list_head *lsthead = &epi->pwqlist; 1112 struct eppoll_entry *pwq; 1113 1114 /* This is called without locks, so we need the atomic exchange */ 1115 nwait = xchg(&epi->nwait, 0); 1116 1117 if (nwait) { 1118 while (!list_empty(lsthead)) { 1119 pwq = list_entry(lsthead->next, struct eppoll_entry, llink); 1120 1121 ep_list_del(&pwq->llink); 1122 remove_wait_queue(pwq->whead, &pwq->wait); 1123 kmem_cache_free(pwq_cache, pwq); 1124 } 1125 } 1126 } 1127 1128 1129 /* 1130 * Unlink the "struct epitem" from all places it might have been hooked up. 1131 * This function must be called with write IRQ lock on "ep->lock". 1132 */ 1133 static int ep_unlink(struct eventpoll *ep, struct epitem *epi) 1134 { 1135 int error; 1136 1137 /* 1138 * It can happen that this one is called for an item already unlinked. 1139 * The check protect us from doing a double unlink ( crash ). 1140 */ 1141 error = -ENOENT; 1142 if (!ep_rb_linked(&epi->rbn)) 1143 goto eexit_1; 1144 1145 /* 1146 * Clear the event mask for the unlinked item. This will avoid item 1147 * notifications to be sent after the unlink operation from inside 1148 * the kernel->userspace event transfer loop. 1149 */ 1150 epi->event.events = 0; 1151 1152 /* 1153 * At this point is safe to do the job, unlink the item from our rb-tree. 1154 * This operation togheter with the above check closes the door to 1155 * double unlinks. 1156 */ 1157 ep_rb_erase(&epi->rbn, &ep->rbr); 1158 1159 /* 1160 * If the item we are going to remove is inside the ready file descriptors 1161 * we want to remove it from this list to avoid stale events. 1162 */ 1163 if (ep_is_linked(&epi->rdllink)) 1164 ep_list_del(&epi->rdllink); 1165 1166 error = 0; 1167 eexit_1: 1168 1169 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_unlink(%p, %p) = %d\n", 1170 current, ep, epi->file, error)); 1171 1172 return error; 1173 } 1174 1175 1176 /* 1177 * Removes a "struct epitem" from the eventpoll hash and deallocates 1178 * all the associated resources. 1179 */ 1180 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 1181 { 1182 int error; 1183 unsigned long flags; 1184 struct file *file = epi->ffd.file; 1185 1186 /* 1187 * Removes poll wait queue hooks. We _have_ to do this without holding 1188 * the "ep->lock" otherwise a deadlock might occur. This because of the 1189 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 1190 * queue head lock when unregistering the wait queue. The wakeup callback 1191 * will run by holding the wait queue head lock and will call our callback 1192 * that will try to get "ep->lock". 1193 */ 1194 ep_unregister_pollwait(ep, epi); 1195 1196 /* Remove the current item from the list of epoll hooks */ 1197 spin_lock(&file->f_ep_lock); 1198 if (ep_is_linked(&epi->fllink)) 1199 ep_list_del(&epi->fllink); 1200 spin_unlock(&file->f_ep_lock); 1201 1202 /* We need to acquire the write IRQ lock before calling ep_unlink() */ 1203 write_lock_irqsave(&ep->lock, flags); 1204 1205 /* Really unlink the item from the hash */ 1206 error = ep_unlink(ep, epi); 1207 1208 write_unlock_irqrestore(&ep->lock, flags); 1209 1210 if (error) 1211 goto eexit_1; 1212 1213 /* At this point it is safe to free the eventpoll item */ 1214 ep_release_epitem(epi); 1215 1216 error = 0; 1217 eexit_1: 1218 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_remove(%p, %p) = %d\n", 1219 current, ep, file, error)); 1220 1221 return error; 1222 } 1223 1224 1225 /* 1226 * This is the callback that is passed to the wait queue wakeup 1227 * machanism. It is called by the stored file descriptors when they 1228 * have events to report. 1229 */ 1230 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) 1231 { 1232 int pwake = 0; 1233 unsigned long flags; 1234 struct epitem *epi = ep_item_from_wait(wait); 1235 struct eventpoll *ep = epi->ep; 1236 1237 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: poll_callback(%p) epi=%p ep=%p\n", 1238 current, epi->file, epi, ep)); 1239 1240 write_lock_irqsave(&ep->lock, flags); 1241 1242 /* 1243 * If the event mask does not contain any poll(2) event, we consider the 1244 * descriptor to be disabled. This condition is likely the effect of the 1245 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1246 * until the next EPOLL_CTL_MOD will be issued. 1247 */ 1248 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1249 goto is_disabled; 1250 1251 /* If this file is already in the ready list we exit soon */ 1252 if (ep_is_linked(&epi->rdllink)) 1253 goto is_linked; 1254 1255 list_add_tail(&epi->rdllink, &ep->rdllist); 1256 1257 is_linked: 1258 /* 1259 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1260 * wait list. 1261 */ 1262 if (waitqueue_active(&ep->wq)) 1263 wake_up(&ep->wq); 1264 if (waitqueue_active(&ep->poll_wait)) 1265 pwake++; 1266 1267 is_disabled: 1268 write_unlock_irqrestore(&ep->lock, flags); 1269 1270 /* We have to call this outside the lock */ 1271 if (pwake) 1272 ep_poll_safewake(&psw, &ep->poll_wait); 1273 1274 return 1; 1275 } 1276 1277 1278 static int ep_eventpoll_close(struct inode *inode, struct file *file) 1279 { 1280 struct eventpoll *ep = file->private_data; 1281 1282 if (ep) { 1283 ep_free(ep); 1284 kfree(ep); 1285 } 1286 1287 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: close() ep=%p\n", current, ep)); 1288 return 0; 1289 } 1290 1291 1292 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 1293 { 1294 unsigned int pollflags = 0; 1295 unsigned long flags; 1296 struct eventpoll *ep = file->private_data; 1297 1298 /* Insert inside our poll wait queue */ 1299 poll_wait(file, &ep->poll_wait, wait); 1300 1301 /* Check our condition */ 1302 read_lock_irqsave(&ep->lock, flags); 1303 if (!list_empty(&ep->rdllist)) 1304 pollflags = POLLIN | POLLRDNORM; 1305 read_unlock_irqrestore(&ep->lock, flags); 1306 1307 return pollflags; 1308 } 1309 1310 1311 /* 1312 * Since we have to release the lock during the __copy_to_user() operation and 1313 * during the f_op->poll() call, we try to collect the maximum number of items 1314 * by reducing the irqlock/irqunlock switching rate. 1315 */ 1316 static int ep_collect_ready_items(struct eventpoll *ep, struct list_head *txlist, int maxevents) 1317 { 1318 int nepi; 1319 unsigned long flags; 1320 struct list_head *lsthead = &ep->rdllist, *lnk; 1321 struct epitem *epi; 1322 1323 write_lock_irqsave(&ep->lock, flags); 1324 1325 for (nepi = 0, lnk = lsthead->next; lnk != lsthead && nepi < maxevents;) { 1326 epi = list_entry(lnk, struct epitem, rdllink); 1327 1328 lnk = lnk->next; 1329 1330 /* If this file is already in the ready list we exit soon */ 1331 if (!ep_is_linked(&epi->txlink)) { 1332 /* 1333 * This is initialized in this way so that the default 1334 * behaviour of the reinjecting code will be to push back 1335 * the item inside the ready list. 1336 */ 1337 epi->revents = epi->event.events; 1338 1339 /* Link the ready item into the transfer list */ 1340 list_add(&epi->txlink, txlist); 1341 nepi++; 1342 1343 /* 1344 * Unlink the item from the ready list. 1345 */ 1346 ep_list_del(&epi->rdllink); 1347 } 1348 } 1349 1350 write_unlock_irqrestore(&ep->lock, flags); 1351 1352 return nepi; 1353 } 1354 1355 1356 /* 1357 * This function is called without holding the "ep->lock" since the call to 1358 * __copy_to_user() might sleep, and also f_op->poll() might reenable the IRQ 1359 * because of the way poll() is traditionally implemented in Linux. 1360 */ 1361 static int ep_send_events(struct eventpoll *ep, struct list_head *txlist, 1362 struct epoll_event __user *events) 1363 { 1364 int eventcnt = 0; 1365 unsigned int revents; 1366 struct list_head *lnk; 1367 struct epitem *epi; 1368 1369 /* 1370 * We can loop without lock because this is a task private list. 1371 * The test done during the collection loop will guarantee us that 1372 * another task will not try to collect this file. Also, items 1373 * cannot vanish during the loop because we are holding "sem". 1374 */ 1375 list_for_each(lnk, txlist) { 1376 epi = list_entry(lnk, struct epitem, txlink); 1377 1378 /* 1379 * Get the ready file event set. We can safely use the file 1380 * because we are holding the "sem" in read and this will 1381 * guarantee that both the file and the item will not vanish. 1382 */ 1383 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL); 1384 1385 /* 1386 * Set the return event set for the current file descriptor. 1387 * Note that only the task task was successfully able to link 1388 * the item to its "txlist" will write this field. 1389 */ 1390 epi->revents = revents & epi->event.events; 1391 1392 if (epi->revents) { 1393 if (__put_user(epi->revents, 1394 &events[eventcnt].events) || 1395 __put_user(epi->event.data, 1396 &events[eventcnt].data)) 1397 return -EFAULT; 1398 if (epi->event.events & EPOLLONESHOT) 1399 epi->event.events &= EP_PRIVATE_BITS; 1400 eventcnt++; 1401 } 1402 } 1403 return eventcnt; 1404 } 1405 1406 1407 /* 1408 * Walk through the transfer list we collected with ep_collect_ready_items() 1409 * and, if 1) the item is still "alive" 2) its event set is not empty 3) it's 1410 * not already linked, links it to the ready list. Same as above, we are holding 1411 * "sem" so items cannot vanish underneath our nose. 1412 */ 1413 static void ep_reinject_items(struct eventpoll *ep, struct list_head *txlist) 1414 { 1415 int ricnt = 0, pwake = 0; 1416 unsigned long flags; 1417 struct epitem *epi; 1418 1419 write_lock_irqsave(&ep->lock, flags); 1420 1421 while (!list_empty(txlist)) { 1422 epi = list_entry(txlist->next, struct epitem, txlink); 1423 1424 /* Unlink the current item from the transfer list */ 1425 ep_list_del(&epi->txlink); 1426 1427 /* 1428 * If the item is no more linked to the interest set, we don't 1429 * have to push it inside the ready list because the following 1430 * ep_release_epitem() is going to drop it. Also, if the current 1431 * item is set to have an Edge Triggered behaviour, we don't have 1432 * to push it back either. 1433 */ 1434 if (ep_rb_linked(&epi->rbn) && !(epi->event.events & EPOLLET) && 1435 (epi->revents & epi->event.events) && !ep_is_linked(&epi->rdllink)) { 1436 list_add_tail(&epi->rdllink, &ep->rdllist); 1437 ricnt++; 1438 } 1439 } 1440 1441 if (ricnt) { 1442 /* 1443 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1444 * wait list. 1445 */ 1446 if (waitqueue_active(&ep->wq)) 1447 wake_up(&ep->wq); 1448 if (waitqueue_active(&ep->poll_wait)) 1449 pwake++; 1450 } 1451 1452 write_unlock_irqrestore(&ep->lock, flags); 1453 1454 /* We have to call this outside the lock */ 1455 if (pwake) 1456 ep_poll_safewake(&psw, &ep->poll_wait); 1457 } 1458 1459 1460 /* 1461 * Perform the transfer of events to user space. 1462 */ 1463 static int ep_events_transfer(struct eventpoll *ep, 1464 struct epoll_event __user *events, int maxevents) 1465 { 1466 int eventcnt = 0; 1467 struct list_head txlist; 1468 1469 INIT_LIST_HEAD(&txlist); 1470 1471 /* 1472 * We need to lock this because we could be hit by 1473 * eventpoll_release_file() and epoll_ctl(EPOLL_CTL_DEL). 1474 */ 1475 down_read(&ep->sem); 1476 1477 /* Collect/extract ready items */ 1478 if (ep_collect_ready_items(ep, &txlist, maxevents) > 0) { 1479 /* Build result set in userspace */ 1480 eventcnt = ep_send_events(ep, &txlist, events); 1481 1482 /* Reinject ready items into the ready list */ 1483 ep_reinject_items(ep, &txlist); 1484 } 1485 1486 up_read(&ep->sem); 1487 1488 return eventcnt; 1489 } 1490 1491 1492 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1493 int maxevents, long timeout) 1494 { 1495 int res, eavail; 1496 unsigned long flags; 1497 long jtimeout; 1498 wait_queue_t wait; 1499 1500 /* 1501 * Calculate the timeout by checking for the "infinite" value ( -1 ) 1502 * and the overflow condition. The passed timeout is in milliseconds, 1503 * that why (t * HZ) / 1000. 1504 */ 1505 jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ? 1506 MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000; 1507 1508 retry: 1509 write_lock_irqsave(&ep->lock, flags); 1510 1511 res = 0; 1512 if (list_empty(&ep->rdllist)) { 1513 /* 1514 * We don't have any available event to return to the caller. 1515 * We need to sleep here, and we will be wake up by 1516 * ep_poll_callback() when events will become available. 1517 */ 1518 init_waitqueue_entry(&wait, current); 1519 add_wait_queue(&ep->wq, &wait); 1520 1521 for (;;) { 1522 /* 1523 * We don't want to sleep if the ep_poll_callback() sends us 1524 * a wakeup in between. That's why we set the task state 1525 * to TASK_INTERRUPTIBLE before doing the checks. 1526 */ 1527 set_current_state(TASK_INTERRUPTIBLE); 1528 if (!list_empty(&ep->rdllist) || !jtimeout) 1529 break; 1530 if (signal_pending(current)) { 1531 res = -EINTR; 1532 break; 1533 } 1534 1535 write_unlock_irqrestore(&ep->lock, flags); 1536 jtimeout = schedule_timeout(jtimeout); 1537 write_lock_irqsave(&ep->lock, flags); 1538 } 1539 remove_wait_queue(&ep->wq, &wait); 1540 1541 set_current_state(TASK_RUNNING); 1542 } 1543 1544 /* Is it worth to try to dig for events ? */ 1545 eavail = !list_empty(&ep->rdllist); 1546 1547 write_unlock_irqrestore(&ep->lock, flags); 1548 1549 /* 1550 * Try to transfer events to user space. In case we get 0 events and 1551 * there's still timeout left over, we go trying again in search of 1552 * more luck. 1553 */ 1554 if (!res && eavail && 1555 !(res = ep_events_transfer(ep, events, maxevents)) && jtimeout) 1556 goto retry; 1557 1558 return res; 1559 } 1560 1561 1562 static int eventpollfs_delete_dentry(struct dentry *dentry) 1563 { 1564 1565 return 1; 1566 } 1567 1568 1569 static struct inode *ep_eventpoll_inode(void) 1570 { 1571 int error = -ENOMEM; 1572 struct inode *inode = new_inode(eventpoll_mnt->mnt_sb); 1573 1574 if (!inode) 1575 goto eexit_1; 1576 1577 inode->i_fop = &eventpoll_fops; 1578 1579 /* 1580 * Mark the inode dirty from the very beginning, 1581 * that way it will never be moved to the dirty 1582 * list because mark_inode_dirty() will think 1583 * that it already _is_ on the dirty list. 1584 */ 1585 inode->i_state = I_DIRTY; 1586 inode->i_mode = S_IRUSR | S_IWUSR; 1587 inode->i_uid = current->fsuid; 1588 inode->i_gid = current->fsgid; 1589 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1590 inode->i_blksize = PAGE_SIZE; 1591 return inode; 1592 1593 eexit_1: 1594 return ERR_PTR(error); 1595 } 1596 1597 1598 static struct super_block * 1599 eventpollfs_get_sb(struct file_system_type *fs_type, int flags, 1600 const char *dev_name, void *data) 1601 { 1602 return get_sb_pseudo(fs_type, "eventpoll:", NULL, EVENTPOLLFS_MAGIC); 1603 } 1604 1605 1606 static int __init eventpoll_init(void) 1607 { 1608 int error; 1609 1610 mutex_init(&epmutex); 1611 1612 /* Initialize the structure used to perform safe poll wait head wake ups */ 1613 ep_poll_safewake_init(&psw); 1614 1615 /* Allocates slab cache used to allocate "struct epitem" items */ 1616 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 1617 0, SLAB_HWCACHE_ALIGN|EPI_SLAB_DEBUG|SLAB_PANIC, 1618 NULL, NULL); 1619 1620 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 1621 pwq_cache = kmem_cache_create("eventpoll_pwq", 1622 sizeof(struct eppoll_entry), 0, 1623 EPI_SLAB_DEBUG|SLAB_PANIC, NULL, NULL); 1624 1625 /* 1626 * Register the virtual file system that will be the source of inodes 1627 * for the eventpoll files 1628 */ 1629 error = register_filesystem(&eventpoll_fs_type); 1630 if (error) 1631 goto epanic; 1632 1633 /* Mount the above commented virtual file system */ 1634 eventpoll_mnt = kern_mount(&eventpoll_fs_type); 1635 error = PTR_ERR(eventpoll_mnt); 1636 if (IS_ERR(eventpoll_mnt)) 1637 goto epanic; 1638 1639 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: successfully initialized.\n", 1640 current)); 1641 return 0; 1642 1643 epanic: 1644 panic("eventpoll_init() failed\n"); 1645 } 1646 1647 1648 static void __exit eventpoll_exit(void) 1649 { 1650 /* Undo all operations done inside eventpoll_init() */ 1651 unregister_filesystem(&eventpoll_fs_type); 1652 mntput(eventpoll_mnt); 1653 kmem_cache_destroy(pwq_cache); 1654 kmem_cache_destroy(epi_cache); 1655 } 1656 1657 module_init(eventpoll_init); 1658 module_exit(eventpoll_exit); 1659 1660 MODULE_LICENSE("GPL"); 1661