xref: /openbmc/linux/fs/eventpoll.c (revision fa3536cc144c1298f2ed9416c33f3b77fa2cd37a)
1 /*
2  *  fs/eventpoll.c ( Efficent event polling implementation )
3  *  Copyright (C) 2001,...,2003	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/sched.h>
18 #include <linux/fs.h>
19 #include <linux/file.h>
20 #include <linux/signal.h>
21 #include <linux/errno.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/poll.h>
25 #include <linux/smp_lock.h>
26 #include <linux/string.h>
27 #include <linux/list.h>
28 #include <linux/hash.h>
29 #include <linux/spinlock.h>
30 #include <linux/syscalls.h>
31 #include <linux/rwsem.h>
32 #include <linux/rbtree.h>
33 #include <linux/wait.h>
34 #include <linux/eventpoll.h>
35 #include <linux/mount.h>
36 #include <linux/bitops.h>
37 #include <linux/mutex.h>
38 #include <asm/uaccess.h>
39 #include <asm/system.h>
40 #include <asm/io.h>
41 #include <asm/mman.h>
42 #include <asm/atomic.h>
43 #include <asm/semaphore.h>
44 
45 
46 /*
47  * LOCKING:
48  * There are three level of locking required by epoll :
49  *
50  * 1) epmutex (mutex)
51  * 2) ep->sem (rw_semaphore)
52  * 3) ep->lock (rw_lock)
53  *
54  * The acquire order is the one listed above, from 1 to 3.
55  * We need a spinlock (ep->lock) because we manipulate objects
56  * from inside the poll callback, that might be triggered from
57  * a wake_up() that in turn might be called from IRQ context.
58  * So we can't sleep inside the poll callback and hence we need
59  * a spinlock. During the event transfer loop (from kernel to
60  * user space) we could end up sleeping due a copy_to_user(), so
61  * we need a lock that will allow us to sleep. This lock is a
62  * read-write semaphore (ep->sem). It is acquired on read during
63  * the event transfer loop and in write during epoll_ctl(EPOLL_CTL_DEL)
64  * and during eventpoll_release_file(). Then we also need a global
65  * semaphore to serialize eventpoll_release_file() and ep_free().
66  * This semaphore is acquired by ep_free() during the epoll file
67  * cleanup path and it is also acquired by eventpoll_release_file()
68  * if a file has been pushed inside an epoll set and it is then
69  * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL).
70  * It is possible to drop the "ep->sem" and to use the global
71  * semaphore "epmutex" (together with "ep->lock") to have it working,
72  * but having "ep->sem" will make the interface more scalable.
73  * Events that require holding "epmutex" are very rare, while for
74  * normal operations the epoll private "ep->sem" will guarantee
75  * a greater scalability.
76  */
77 
78 
79 #define EVENTPOLLFS_MAGIC 0x03111965 /* My birthday should work for this :) */
80 
81 #define DEBUG_EPOLL 0
82 
83 #if DEBUG_EPOLL > 0
84 #define DPRINTK(x) printk x
85 #define DNPRINTK(n, x) do { if ((n) <= DEBUG_EPOLL) printk x; } while (0)
86 #else /* #if DEBUG_EPOLL > 0 */
87 #define DPRINTK(x) (void) 0
88 #define DNPRINTK(n, x) (void) 0
89 #endif /* #if DEBUG_EPOLL > 0 */
90 
91 #define DEBUG_EPI 0
92 
93 #if DEBUG_EPI != 0
94 #define EPI_SLAB_DEBUG (SLAB_DEBUG_FREE | SLAB_RED_ZONE /* | SLAB_POISON */)
95 #else /* #if DEBUG_EPI != 0 */
96 #define EPI_SLAB_DEBUG 0
97 #endif /* #if DEBUG_EPI != 0 */
98 
99 /* Epoll private bits inside the event mask */
100 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
101 
102 /* Maximum number of poll wake up nests we are allowing */
103 #define EP_MAX_POLLWAKE_NESTS 4
104 
105 /* Maximum msec timeout value storeable in a long int */
106 #define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ)
107 
108 
109 struct epoll_filefd {
110 	struct file *file;
111 	int fd;
112 };
113 
114 /*
115  * Node that is linked into the "wake_task_list" member of the "struct poll_safewake".
116  * It is used to keep track on all tasks that are currently inside the wake_up() code
117  * to 1) short-circuit the one coming from the same task and same wait queue head
118  * ( loop ) 2) allow a maximum number of epoll descriptors inclusion nesting
119  * 3) let go the ones coming from other tasks.
120  */
121 struct wake_task_node {
122 	struct list_head llink;
123 	task_t *task;
124 	wait_queue_head_t *wq;
125 };
126 
127 /*
128  * This is used to implement the safe poll wake up avoiding to reenter
129  * the poll callback from inside wake_up().
130  */
131 struct poll_safewake {
132 	struct list_head wake_task_list;
133 	spinlock_t lock;
134 };
135 
136 /*
137  * This structure is stored inside the "private_data" member of the file
138  * structure and rapresent the main data sructure for the eventpoll
139  * interface.
140  */
141 struct eventpoll {
142 	/* Protect the this structure access */
143 	rwlock_t lock;
144 
145 	/*
146 	 * This semaphore is used to ensure that files are not removed
147 	 * while epoll is using them. This is read-held during the event
148 	 * collection loop and it is write-held during the file cleanup
149 	 * path, the epoll file exit code and the ctl operations.
150 	 */
151 	struct rw_semaphore sem;
152 
153 	/* Wait queue used by sys_epoll_wait() */
154 	wait_queue_head_t wq;
155 
156 	/* Wait queue used by file->poll() */
157 	wait_queue_head_t poll_wait;
158 
159 	/* List of ready file descriptors */
160 	struct list_head rdllist;
161 
162 	/* RB-Tree root used to store monitored fd structs */
163 	struct rb_root rbr;
164 };
165 
166 /* Wait structure used by the poll hooks */
167 struct eppoll_entry {
168 	/* List header used to link this structure to the "struct epitem" */
169 	struct list_head llink;
170 
171 	/* The "base" pointer is set to the container "struct epitem" */
172 	void *base;
173 
174 	/*
175 	 * Wait queue item that will be linked to the target file wait
176 	 * queue head.
177 	 */
178 	wait_queue_t wait;
179 
180 	/* The wait queue head that linked the "wait" wait queue item */
181 	wait_queue_head_t *whead;
182 };
183 
184 /*
185  * Each file descriptor added to the eventpoll interface will
186  * have an entry of this type linked to the hash.
187  */
188 struct epitem {
189 	/* RB-Tree node used to link this structure to the eventpoll rb-tree */
190 	struct rb_node rbn;
191 
192 	/* List header used to link this structure to the eventpoll ready list */
193 	struct list_head rdllink;
194 
195 	/* The file descriptor information this item refers to */
196 	struct epoll_filefd ffd;
197 
198 	/* Number of active wait queue attached to poll operations */
199 	int nwait;
200 
201 	/* List containing poll wait queues */
202 	struct list_head pwqlist;
203 
204 	/* The "container" of this item */
205 	struct eventpoll *ep;
206 
207 	/* The structure that describe the interested events and the source fd */
208 	struct epoll_event event;
209 
210 	/*
211 	 * Used to keep track of the usage count of the structure. This avoids
212 	 * that the structure will desappear from underneath our processing.
213 	 */
214 	atomic_t usecnt;
215 
216 	/* List header used to link this item to the "struct file" items list */
217 	struct list_head fllink;
218 
219 	/* List header used to link the item to the transfer list */
220 	struct list_head txlink;
221 
222 	/*
223 	 * This is used during the collection/transfer of events to userspace
224 	 * to pin items empty events set.
225 	 */
226 	unsigned int revents;
227 };
228 
229 /* Wrapper struct used by poll queueing */
230 struct ep_pqueue {
231 	poll_table pt;
232 	struct epitem *epi;
233 };
234 
235 
236 
237 static void ep_poll_safewake_init(struct poll_safewake *psw);
238 static void ep_poll_safewake(struct poll_safewake *psw, wait_queue_head_t *wq);
239 static int ep_getfd(int *efd, struct inode **einode, struct file **efile,
240 		    struct eventpoll *ep);
241 static int ep_alloc(struct eventpoll **pep);
242 static void ep_free(struct eventpoll *ep);
243 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd);
244 static void ep_use_epitem(struct epitem *epi);
245 static void ep_release_epitem(struct epitem *epi);
246 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
247 				 poll_table *pt);
248 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi);
249 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
250 		     struct file *tfile, int fd);
251 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
252 		     struct epoll_event *event);
253 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi);
254 static int ep_unlink(struct eventpoll *ep, struct epitem *epi);
255 static int ep_remove(struct eventpoll *ep, struct epitem *epi);
256 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key);
257 static int ep_eventpoll_close(struct inode *inode, struct file *file);
258 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait);
259 static int ep_collect_ready_items(struct eventpoll *ep,
260 				  struct list_head *txlist, int maxevents);
261 static int ep_send_events(struct eventpoll *ep, struct list_head *txlist,
262 			  struct epoll_event __user *events);
263 static void ep_reinject_items(struct eventpoll *ep, struct list_head *txlist);
264 static int ep_events_transfer(struct eventpoll *ep,
265 			      struct epoll_event __user *events,
266 			      int maxevents);
267 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
268 		   int maxevents, long timeout);
269 static int eventpollfs_delete_dentry(struct dentry *dentry);
270 static struct inode *ep_eventpoll_inode(void);
271 static struct super_block *eventpollfs_get_sb(struct file_system_type *fs_type,
272 					      int flags, const char *dev_name,
273 					      void *data);
274 
275 /*
276  * This semaphore is used to serialize ep_free() and eventpoll_release_file().
277  */
278 static struct mutex epmutex;
279 
280 /* Safe wake up implementation */
281 static struct poll_safewake psw;
282 
283 /* Slab cache used to allocate "struct epitem" */
284 static kmem_cache_t *epi_cache __read_mostly;
285 
286 /* Slab cache used to allocate "struct eppoll_entry" */
287 static kmem_cache_t *pwq_cache __read_mostly;
288 
289 /* Virtual fs used to allocate inodes for eventpoll files */
290 static struct vfsmount *eventpoll_mnt __read_mostly;
291 
292 /* File callbacks that implement the eventpoll file behaviour */
293 static struct file_operations eventpoll_fops = {
294 	.release	= ep_eventpoll_close,
295 	.poll		= ep_eventpoll_poll
296 };
297 
298 /*
299  * This is used to register the virtual file system from where
300  * eventpoll inodes are allocated.
301  */
302 static struct file_system_type eventpoll_fs_type = {
303 	.name		= "eventpollfs",
304 	.get_sb		= eventpollfs_get_sb,
305 	.kill_sb	= kill_anon_super,
306 };
307 
308 /* Very basic directory entry operations for the eventpoll virtual file system */
309 static struct dentry_operations eventpollfs_dentry_operations = {
310 	.d_delete	= eventpollfs_delete_dentry,
311 };
312 
313 
314 
315 /* Fast test to see if the file is an evenpoll file */
316 static inline int is_file_epoll(struct file *f)
317 {
318 	return f->f_op == &eventpoll_fops;
319 }
320 
321 /* Setup the structure that is used as key for the rb-tree */
322 static inline void ep_set_ffd(struct epoll_filefd *ffd,
323 			      struct file *file, int fd)
324 {
325 	ffd->file = file;
326 	ffd->fd = fd;
327 }
328 
329 /* Compare rb-tree keys */
330 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
331 			     struct epoll_filefd *p2)
332 {
333 	return (p1->file > p2->file ? +1:
334 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
335 }
336 
337 /* Special initialization for the rb-tree node to detect linkage */
338 static inline void ep_rb_initnode(struct rb_node *n)
339 {
340 	n->rb_parent = n;
341 }
342 
343 /* Removes a node from the rb-tree and marks it for a fast is-linked check */
344 static inline void ep_rb_erase(struct rb_node *n, struct rb_root *r)
345 {
346 	rb_erase(n, r);
347 	n->rb_parent = n;
348 }
349 
350 /* Fast check to verify that the item is linked to the main rb-tree */
351 static inline int ep_rb_linked(struct rb_node *n)
352 {
353 	return n->rb_parent != n;
354 }
355 
356 /*
357  * Remove the item from the list and perform its initialization.
358  * This is useful for us because we can test if the item is linked
359  * using "ep_is_linked(p)".
360  */
361 static inline void ep_list_del(struct list_head *p)
362 {
363 	list_del(p);
364 	INIT_LIST_HEAD(p);
365 }
366 
367 /* Tells us if the item is currently linked */
368 static inline int ep_is_linked(struct list_head *p)
369 {
370 	return !list_empty(p);
371 }
372 
373 /* Get the "struct epitem" from a wait queue pointer */
374 static inline struct epitem * ep_item_from_wait(wait_queue_t *p)
375 {
376 	return container_of(p, struct eppoll_entry, wait)->base;
377 }
378 
379 /* Get the "struct epitem" from an epoll queue wrapper */
380 static inline struct epitem * ep_item_from_epqueue(poll_table *p)
381 {
382 	return container_of(p, struct ep_pqueue, pt)->epi;
383 }
384 
385 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
386 static inline int ep_op_hash_event(int op)
387 {
388 	return op != EPOLL_CTL_DEL;
389 }
390 
391 /* Initialize the poll safe wake up structure */
392 static void ep_poll_safewake_init(struct poll_safewake *psw)
393 {
394 
395 	INIT_LIST_HEAD(&psw->wake_task_list);
396 	spin_lock_init(&psw->lock);
397 }
398 
399 
400 /*
401  * Perform a safe wake up of the poll wait list. The problem is that
402  * with the new callback'd wake up system, it is possible that the
403  * poll callback is reentered from inside the call to wake_up() done
404  * on the poll wait queue head. The rule is that we cannot reenter the
405  * wake up code from the same task more than EP_MAX_POLLWAKE_NESTS times,
406  * and we cannot reenter the same wait queue head at all. This will
407  * enable to have a hierarchy of epoll file descriptor of no more than
408  * EP_MAX_POLLWAKE_NESTS deep. We need the irq version of the spin lock
409  * because this one gets called by the poll callback, that in turn is called
410  * from inside a wake_up(), that might be called from irq context.
411  */
412 static void ep_poll_safewake(struct poll_safewake *psw, wait_queue_head_t *wq)
413 {
414 	int wake_nests = 0;
415 	unsigned long flags;
416 	task_t *this_task = current;
417 	struct list_head *lsthead = &psw->wake_task_list, *lnk;
418 	struct wake_task_node *tncur;
419 	struct wake_task_node tnode;
420 
421 	spin_lock_irqsave(&psw->lock, flags);
422 
423 	/* Try to see if the current task is already inside this wakeup call */
424 	list_for_each(lnk, lsthead) {
425 		tncur = list_entry(lnk, struct wake_task_node, llink);
426 
427 		if (tncur->wq == wq ||
428 		    (tncur->task == this_task && ++wake_nests > EP_MAX_POLLWAKE_NESTS)) {
429 			/*
430 			 * Ops ... loop detected or maximum nest level reached.
431 			 * We abort this wake by breaking the cycle itself.
432 			 */
433 			spin_unlock_irqrestore(&psw->lock, flags);
434 			return;
435 		}
436 	}
437 
438 	/* Add the current task to the list */
439 	tnode.task = this_task;
440 	tnode.wq = wq;
441 	list_add(&tnode.llink, lsthead);
442 
443 	spin_unlock_irqrestore(&psw->lock, flags);
444 
445 	/* Do really wake up now */
446 	wake_up(wq);
447 
448 	/* Remove the current task from the list */
449 	spin_lock_irqsave(&psw->lock, flags);
450 	list_del(&tnode.llink);
451 	spin_unlock_irqrestore(&psw->lock, flags);
452 }
453 
454 
455 /*
456  * This is called from eventpoll_release() to unlink files from the eventpoll
457  * interface. We need to have this facility to cleanup correctly files that are
458  * closed without being removed from the eventpoll interface.
459  */
460 void eventpoll_release_file(struct file *file)
461 {
462 	struct list_head *lsthead = &file->f_ep_links;
463 	struct eventpoll *ep;
464 	struct epitem *epi;
465 
466 	/*
467 	 * We don't want to get "file->f_ep_lock" because it is not
468 	 * necessary. It is not necessary because we're in the "struct file"
469 	 * cleanup path, and this means that noone is using this file anymore.
470 	 * The only hit might come from ep_free() but by holding the semaphore
471 	 * will correctly serialize the operation. We do need to acquire
472 	 * "ep->sem" after "epmutex" because ep_remove() requires it when called
473 	 * from anywhere but ep_free().
474 	 */
475 	mutex_lock(&epmutex);
476 
477 	while (!list_empty(lsthead)) {
478 		epi = list_entry(lsthead->next, struct epitem, fllink);
479 
480 		ep = epi->ep;
481 		ep_list_del(&epi->fllink);
482 		down_write(&ep->sem);
483 		ep_remove(ep, epi);
484 		up_write(&ep->sem);
485 	}
486 
487 	mutex_unlock(&epmutex);
488 }
489 
490 
491 /*
492  * It opens an eventpoll file descriptor by suggesting a storage of "size"
493  * file descriptors. The size parameter is just an hint about how to size
494  * data structures. It won't prevent the user to store more than "size"
495  * file descriptors inside the epoll interface. It is the kernel part of
496  * the userspace epoll_create(2).
497  */
498 asmlinkage long sys_epoll_create(int size)
499 {
500 	int error, fd;
501 	struct eventpoll *ep;
502 	struct inode *inode;
503 	struct file *file;
504 
505 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d)\n",
506 		     current, size));
507 
508 	/*
509 	 * Sanity check on the size parameter, and create the internal data
510 	 * structure ( "struct eventpoll" ).
511 	 */
512 	error = -EINVAL;
513 	if (size <= 0 || (error = ep_alloc(&ep)) != 0)
514 		goto eexit_1;
515 
516 	/*
517 	 * Creates all the items needed to setup an eventpoll file. That is,
518 	 * a file structure, and inode and a free file descriptor.
519 	 */
520 	error = ep_getfd(&fd, &inode, &file, ep);
521 	if (error)
522 		goto eexit_2;
523 
524 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n",
525 		     current, size, fd));
526 
527 	return fd;
528 
529 eexit_2:
530 	ep_free(ep);
531 	kfree(ep);
532 eexit_1:
533 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n",
534 		     current, size, error));
535 	return error;
536 }
537 
538 
539 /*
540  * The following function implements the controller interface for
541  * the eventpoll file that enables the insertion/removal/change of
542  * file descriptors inside the interest set.  It represents
543  * the kernel part of the user space epoll_ctl(2).
544  */
545 asmlinkage long
546 sys_epoll_ctl(int epfd, int op, int fd, struct epoll_event __user *event)
547 {
548 	int error;
549 	struct file *file, *tfile;
550 	struct eventpoll *ep;
551 	struct epitem *epi;
552 	struct epoll_event epds;
553 
554 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p)\n",
555 		     current, epfd, op, fd, event));
556 
557 	error = -EFAULT;
558 	if (ep_op_hash_event(op) &&
559 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
560 		goto eexit_1;
561 
562 	/* Get the "struct file *" for the eventpoll file */
563 	error = -EBADF;
564 	file = fget(epfd);
565 	if (!file)
566 		goto eexit_1;
567 
568 	/* Get the "struct file *" for the target file */
569 	tfile = fget(fd);
570 	if (!tfile)
571 		goto eexit_2;
572 
573 	/* The target file descriptor must support poll */
574 	error = -EPERM;
575 	if (!tfile->f_op || !tfile->f_op->poll)
576 		goto eexit_3;
577 
578 	/*
579 	 * We have to check that the file structure underneath the file descriptor
580 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
581 	 * adding an epoll file descriptor inside itself.
582 	 */
583 	error = -EINVAL;
584 	if (file == tfile || !is_file_epoll(file))
585 		goto eexit_3;
586 
587 	/*
588 	 * At this point it is safe to assume that the "private_data" contains
589 	 * our own data structure.
590 	 */
591 	ep = file->private_data;
592 
593 	down_write(&ep->sem);
594 
595 	/* Try to lookup the file inside our hash table */
596 	epi = ep_find(ep, tfile, fd);
597 
598 	error = -EINVAL;
599 	switch (op) {
600 	case EPOLL_CTL_ADD:
601 		if (!epi) {
602 			epds.events |= POLLERR | POLLHUP | POLLRDHUP;
603 
604 			error = ep_insert(ep, &epds, tfile, fd);
605 		} else
606 			error = -EEXIST;
607 		break;
608 	case EPOLL_CTL_DEL:
609 		if (epi)
610 			error = ep_remove(ep, epi);
611 		else
612 			error = -ENOENT;
613 		break;
614 	case EPOLL_CTL_MOD:
615 		if (epi) {
616 			epds.events |= POLLERR | POLLHUP | POLLRDHUP;
617 			error = ep_modify(ep, epi, &epds);
618 		} else
619 			error = -ENOENT;
620 		break;
621 	}
622 
623 	/*
624 	 * The function ep_find() increments the usage count of the structure
625 	 * so, if this is not NULL, we need to release it.
626 	 */
627 	if (epi)
628 		ep_release_epitem(epi);
629 
630 	up_write(&ep->sem);
631 
632 eexit_3:
633 	fput(tfile);
634 eexit_2:
635 	fput(file);
636 eexit_1:
637 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p) = %d\n",
638 		     current, epfd, op, fd, event, error));
639 
640 	return error;
641 }
642 
643 #define MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
644 
645 /*
646  * Implement the event wait interface for the eventpoll file. It is the kernel
647  * part of the user space epoll_wait(2).
648  */
649 asmlinkage long sys_epoll_wait(int epfd, struct epoll_event __user *events,
650 			       int maxevents, int timeout)
651 {
652 	int error;
653 	struct file *file;
654 	struct eventpoll *ep;
655 
656 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d)\n",
657 		     current, epfd, events, maxevents, timeout));
658 
659 	/* The maximum number of event must be greater than zero */
660 	if (maxevents <= 0 || maxevents > MAX_EVENTS)
661 		return -EINVAL;
662 
663 	/* Verify that the area passed by the user is writeable */
664 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
665 		error = -EFAULT;
666 		goto eexit_1;
667 	}
668 
669 	/* Get the "struct file *" for the eventpoll file */
670 	error = -EBADF;
671 	file = fget(epfd);
672 	if (!file)
673 		goto eexit_1;
674 
675 	/*
676 	 * We have to check that the file structure underneath the fd
677 	 * the user passed to us _is_ an eventpoll file.
678 	 */
679 	error = -EINVAL;
680 	if (!is_file_epoll(file))
681 		goto eexit_2;
682 
683 	/*
684 	 * At this point it is safe to assume that the "private_data" contains
685 	 * our own data structure.
686 	 */
687 	ep = file->private_data;
688 
689 	/* Time to fish for events ... */
690 	error = ep_poll(ep, events, maxevents, timeout);
691 
692 eexit_2:
693 	fput(file);
694 eexit_1:
695 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d) = %d\n",
696 		     current, epfd, events, maxevents, timeout, error));
697 
698 	return error;
699 }
700 
701 
702 /*
703  * Creates the file descriptor to be used by the epoll interface.
704  */
705 static int ep_getfd(int *efd, struct inode **einode, struct file **efile,
706 		    struct eventpoll *ep)
707 {
708 	struct qstr this;
709 	char name[32];
710 	struct dentry *dentry;
711 	struct inode *inode;
712 	struct file *file;
713 	int error, fd;
714 
715 	/* Get an ready to use file */
716 	error = -ENFILE;
717 	file = get_empty_filp();
718 	if (!file)
719 		goto eexit_1;
720 
721 	/* Allocates an inode from the eventpoll file system */
722 	inode = ep_eventpoll_inode();
723 	error = PTR_ERR(inode);
724 	if (IS_ERR(inode))
725 		goto eexit_2;
726 
727 	/* Allocates a free descriptor to plug the file onto */
728 	error = get_unused_fd();
729 	if (error < 0)
730 		goto eexit_3;
731 	fd = error;
732 
733 	/*
734 	 * Link the inode to a directory entry by creating a unique name
735 	 * using the inode number.
736 	 */
737 	error = -ENOMEM;
738 	sprintf(name, "[%lu]", inode->i_ino);
739 	this.name = name;
740 	this.len = strlen(name);
741 	this.hash = inode->i_ino;
742 	dentry = d_alloc(eventpoll_mnt->mnt_sb->s_root, &this);
743 	if (!dentry)
744 		goto eexit_4;
745 	dentry->d_op = &eventpollfs_dentry_operations;
746 	d_add(dentry, inode);
747 	file->f_vfsmnt = mntget(eventpoll_mnt);
748 	file->f_dentry = dentry;
749 	file->f_mapping = inode->i_mapping;
750 
751 	file->f_pos = 0;
752 	file->f_flags = O_RDONLY;
753 	file->f_op = &eventpoll_fops;
754 	file->f_mode = FMODE_READ;
755 	file->f_version = 0;
756 	file->private_data = ep;
757 
758 	/* Install the new setup file into the allocated fd. */
759 	fd_install(fd, file);
760 
761 	*efd = fd;
762 	*einode = inode;
763 	*efile = file;
764 	return 0;
765 
766 eexit_4:
767 	put_unused_fd(fd);
768 eexit_3:
769 	iput(inode);
770 eexit_2:
771 	put_filp(file);
772 eexit_1:
773 	return error;
774 }
775 
776 
777 static int ep_alloc(struct eventpoll **pep)
778 {
779 	struct eventpoll *ep = kzalloc(sizeof(*ep), GFP_KERNEL);
780 
781 	if (!ep)
782 		return -ENOMEM;
783 
784 	rwlock_init(&ep->lock);
785 	init_rwsem(&ep->sem);
786 	init_waitqueue_head(&ep->wq);
787 	init_waitqueue_head(&ep->poll_wait);
788 	INIT_LIST_HEAD(&ep->rdllist);
789 	ep->rbr = RB_ROOT;
790 
791 	*pep = ep;
792 
793 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_alloc() ep=%p\n",
794 		     current, ep));
795 	return 0;
796 }
797 
798 
799 static void ep_free(struct eventpoll *ep)
800 {
801 	struct rb_node *rbp;
802 	struct epitem *epi;
803 
804 	/* We need to release all tasks waiting for these file */
805 	if (waitqueue_active(&ep->poll_wait))
806 		ep_poll_safewake(&psw, &ep->poll_wait);
807 
808 	/*
809 	 * We need to lock this because we could be hit by
810 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
811 	 * We do not need to hold "ep->sem" here because the epoll file
812 	 * is on the way to be removed and no one has references to it
813 	 * anymore. The only hit might come from eventpoll_release_file() but
814 	 * holding "epmutex" is sufficent here.
815 	 */
816 	mutex_lock(&epmutex);
817 
818 	/*
819 	 * Walks through the whole tree by unregistering poll callbacks.
820 	 */
821 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
822 		epi = rb_entry(rbp, struct epitem, rbn);
823 
824 		ep_unregister_pollwait(ep, epi);
825 	}
826 
827 	/*
828 	 * Walks through the whole hash by freeing each "struct epitem". At this
829 	 * point we are sure no poll callbacks will be lingering around, and also by
830 	 * write-holding "sem" we can be sure that no file cleanup code will hit
831 	 * us during this operation. So we can avoid the lock on "ep->lock".
832 	 */
833 	while ((rbp = rb_first(&ep->rbr)) != 0) {
834 		epi = rb_entry(rbp, struct epitem, rbn);
835 		ep_remove(ep, epi);
836 	}
837 
838 	mutex_unlock(&epmutex);
839 }
840 
841 
842 /*
843  * Search the file inside the eventpoll hash. It add usage count to
844  * the returned item, so the caller must call ep_release_epitem()
845  * after finished using the "struct epitem".
846  */
847 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
848 {
849 	int kcmp;
850 	unsigned long flags;
851 	struct rb_node *rbp;
852 	struct epitem *epi, *epir = NULL;
853 	struct epoll_filefd ffd;
854 
855 	ep_set_ffd(&ffd, file, fd);
856 	read_lock_irqsave(&ep->lock, flags);
857 	for (rbp = ep->rbr.rb_node; rbp; ) {
858 		epi = rb_entry(rbp, struct epitem, rbn);
859 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
860 		if (kcmp > 0)
861 			rbp = rbp->rb_right;
862 		else if (kcmp < 0)
863 			rbp = rbp->rb_left;
864 		else {
865 			ep_use_epitem(epi);
866 			epir = epi;
867 			break;
868 		}
869 	}
870 	read_unlock_irqrestore(&ep->lock, flags);
871 
872 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_find(%p) -> %p\n",
873 		     current, file, epir));
874 
875 	return epir;
876 }
877 
878 
879 /*
880  * Increment the usage count of the "struct epitem" making it sure
881  * that the user will have a valid pointer to reference.
882  */
883 static void ep_use_epitem(struct epitem *epi)
884 {
885 
886 	atomic_inc(&epi->usecnt);
887 }
888 
889 
890 /*
891  * Decrement ( release ) the usage count by signaling that the user
892  * has finished using the structure. It might lead to freeing the
893  * structure itself if the count goes to zero.
894  */
895 static void ep_release_epitem(struct epitem *epi)
896 {
897 
898 	if (atomic_dec_and_test(&epi->usecnt))
899 		kmem_cache_free(epi_cache, epi);
900 }
901 
902 
903 /*
904  * This is the callback that is used to add our wait queue to the
905  * target file wakeup lists.
906  */
907 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
908 				 poll_table *pt)
909 {
910 	struct epitem *epi = ep_item_from_epqueue(pt);
911 	struct eppoll_entry *pwq;
912 
913 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, SLAB_KERNEL))) {
914 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
915 		pwq->whead = whead;
916 		pwq->base = epi;
917 		add_wait_queue(whead, &pwq->wait);
918 		list_add_tail(&pwq->llink, &epi->pwqlist);
919 		epi->nwait++;
920 	} else {
921 		/* We have to signal that an error occurred */
922 		epi->nwait = -1;
923 	}
924 }
925 
926 
927 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
928 {
929 	int kcmp;
930 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
931 	struct epitem *epic;
932 
933 	while (*p) {
934 		parent = *p;
935 		epic = rb_entry(parent, struct epitem, rbn);
936 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
937 		if (kcmp > 0)
938 			p = &parent->rb_right;
939 		else
940 			p = &parent->rb_left;
941 	}
942 	rb_link_node(&epi->rbn, parent, p);
943 	rb_insert_color(&epi->rbn, &ep->rbr);
944 }
945 
946 
947 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
948 		     struct file *tfile, int fd)
949 {
950 	int error, revents, pwake = 0;
951 	unsigned long flags;
952 	struct epitem *epi;
953 	struct ep_pqueue epq;
954 
955 	error = -ENOMEM;
956 	if (!(epi = kmem_cache_alloc(epi_cache, SLAB_KERNEL)))
957 		goto eexit_1;
958 
959 	/* Item initialization follow here ... */
960 	ep_rb_initnode(&epi->rbn);
961 	INIT_LIST_HEAD(&epi->rdllink);
962 	INIT_LIST_HEAD(&epi->fllink);
963 	INIT_LIST_HEAD(&epi->txlink);
964 	INIT_LIST_HEAD(&epi->pwqlist);
965 	epi->ep = ep;
966 	ep_set_ffd(&epi->ffd, tfile, fd);
967 	epi->event = *event;
968 	atomic_set(&epi->usecnt, 1);
969 	epi->nwait = 0;
970 
971 	/* Initialize the poll table using the queue callback */
972 	epq.epi = epi;
973 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
974 
975 	/*
976 	 * Attach the item to the poll hooks and get current event bits.
977 	 * We can safely use the file* here because its usage count has
978 	 * been increased by the caller of this function.
979 	 */
980 	revents = tfile->f_op->poll(tfile, &epq.pt);
981 
982 	/*
983 	 * We have to check if something went wrong during the poll wait queue
984 	 * install process. Namely an allocation for a wait queue failed due
985 	 * high memory pressure.
986 	 */
987 	if (epi->nwait < 0)
988 		goto eexit_2;
989 
990 	/* Add the current item to the list of active epoll hook for this file */
991 	spin_lock(&tfile->f_ep_lock);
992 	list_add_tail(&epi->fllink, &tfile->f_ep_links);
993 	spin_unlock(&tfile->f_ep_lock);
994 
995 	/* We have to drop the new item inside our item list to keep track of it */
996 	write_lock_irqsave(&ep->lock, flags);
997 
998 	/* Add the current item to the rb-tree */
999 	ep_rbtree_insert(ep, epi);
1000 
1001 	/* If the file is already "ready" we drop it inside the ready list */
1002 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1003 		list_add_tail(&epi->rdllink, &ep->rdllist);
1004 
1005 		/* Notify waiting tasks that events are available */
1006 		if (waitqueue_active(&ep->wq))
1007 			wake_up(&ep->wq);
1008 		if (waitqueue_active(&ep->poll_wait))
1009 			pwake++;
1010 	}
1011 
1012 	write_unlock_irqrestore(&ep->lock, flags);
1013 
1014 	/* We have to call this outside the lock */
1015 	if (pwake)
1016 		ep_poll_safewake(&psw, &ep->poll_wait);
1017 
1018 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_insert(%p, %p, %d)\n",
1019 		     current, ep, tfile, fd));
1020 
1021 	return 0;
1022 
1023 eexit_2:
1024 	ep_unregister_pollwait(ep, epi);
1025 
1026 	/*
1027 	 * We need to do this because an event could have been arrived on some
1028 	 * allocated wait queue.
1029 	 */
1030 	write_lock_irqsave(&ep->lock, flags);
1031 	if (ep_is_linked(&epi->rdllink))
1032 		ep_list_del(&epi->rdllink);
1033 	write_unlock_irqrestore(&ep->lock, flags);
1034 
1035 	kmem_cache_free(epi_cache, epi);
1036 eexit_1:
1037 	return error;
1038 }
1039 
1040 
1041 /*
1042  * Modify the interest event mask by dropping an event if the new mask
1043  * has a match in the current file status.
1044  */
1045 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1046 {
1047 	int pwake = 0;
1048 	unsigned int revents;
1049 	unsigned long flags;
1050 
1051 	/*
1052 	 * Set the new event interest mask before calling f_op->poll(), otherwise
1053 	 * a potential race might occur. In fact if we do this operation inside
1054 	 * the lock, an event might happen between the f_op->poll() call and the
1055 	 * new event set registering.
1056 	 */
1057 	epi->event.events = event->events;
1058 
1059 	/*
1060 	 * Get current event bits. We can safely use the file* here because
1061 	 * its usage count has been increased by the caller of this function.
1062 	 */
1063 	revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1064 
1065 	write_lock_irqsave(&ep->lock, flags);
1066 
1067 	/* Copy the data member from inside the lock */
1068 	epi->event.data = event->data;
1069 
1070 	/*
1071 	 * If the item is not linked to the hash it means that it's on its
1072 	 * way toward the removal. Do nothing in this case.
1073 	 */
1074 	if (ep_rb_linked(&epi->rbn)) {
1075 		/*
1076 		 * If the item is "hot" and it is not registered inside the ready
1077 		 * list, push it inside. If the item is not "hot" and it is currently
1078 		 * registered inside the ready list, unlink it.
1079 		 */
1080 		if (revents & event->events) {
1081 			if (!ep_is_linked(&epi->rdllink)) {
1082 				list_add_tail(&epi->rdllink, &ep->rdllist);
1083 
1084 				/* Notify waiting tasks that events are available */
1085 				if (waitqueue_active(&ep->wq))
1086 					wake_up(&ep->wq);
1087 				if (waitqueue_active(&ep->poll_wait))
1088 					pwake++;
1089 			}
1090 		}
1091 	}
1092 
1093 	write_unlock_irqrestore(&ep->lock, flags);
1094 
1095 	/* We have to call this outside the lock */
1096 	if (pwake)
1097 		ep_poll_safewake(&psw, &ep->poll_wait);
1098 
1099 	return 0;
1100 }
1101 
1102 
1103 /*
1104  * This function unregister poll callbacks from the associated file descriptor.
1105  * Since this must be called without holding "ep->lock" the atomic exchange trick
1106  * will protect us from multiple unregister.
1107  */
1108 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
1109 {
1110 	int nwait;
1111 	struct list_head *lsthead = &epi->pwqlist;
1112 	struct eppoll_entry *pwq;
1113 
1114 	/* This is called without locks, so we need the atomic exchange */
1115 	nwait = xchg(&epi->nwait, 0);
1116 
1117 	if (nwait) {
1118 		while (!list_empty(lsthead)) {
1119 			pwq = list_entry(lsthead->next, struct eppoll_entry, llink);
1120 
1121 			ep_list_del(&pwq->llink);
1122 			remove_wait_queue(pwq->whead, &pwq->wait);
1123 			kmem_cache_free(pwq_cache, pwq);
1124 		}
1125 	}
1126 }
1127 
1128 
1129 /*
1130  * Unlink the "struct epitem" from all places it might have been hooked up.
1131  * This function must be called with write IRQ lock on "ep->lock".
1132  */
1133 static int ep_unlink(struct eventpoll *ep, struct epitem *epi)
1134 {
1135 	int error;
1136 
1137 	/*
1138 	 * It can happen that this one is called for an item already unlinked.
1139 	 * The check protect us from doing a double unlink ( crash ).
1140 	 */
1141 	error = -ENOENT;
1142 	if (!ep_rb_linked(&epi->rbn))
1143 		goto eexit_1;
1144 
1145 	/*
1146 	 * Clear the event mask for the unlinked item. This will avoid item
1147 	 * notifications to be sent after the unlink operation from inside
1148 	 * the kernel->userspace event transfer loop.
1149 	 */
1150 	epi->event.events = 0;
1151 
1152 	/*
1153 	 * At this point is safe to do the job, unlink the item from our rb-tree.
1154 	 * This operation togheter with the above check closes the door to
1155 	 * double unlinks.
1156 	 */
1157 	ep_rb_erase(&epi->rbn, &ep->rbr);
1158 
1159 	/*
1160 	 * If the item we are going to remove is inside the ready file descriptors
1161 	 * we want to remove it from this list to avoid stale events.
1162 	 */
1163 	if (ep_is_linked(&epi->rdllink))
1164 		ep_list_del(&epi->rdllink);
1165 
1166 	error = 0;
1167 eexit_1:
1168 
1169 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_unlink(%p, %p) = %d\n",
1170 		     current, ep, epi->file, error));
1171 
1172 	return error;
1173 }
1174 
1175 
1176 /*
1177  * Removes a "struct epitem" from the eventpoll hash and deallocates
1178  * all the associated resources.
1179  */
1180 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
1181 {
1182 	int error;
1183 	unsigned long flags;
1184 	struct file *file = epi->ffd.file;
1185 
1186 	/*
1187 	 * Removes poll wait queue hooks. We _have_ to do this without holding
1188 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
1189 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
1190 	 * queue head lock when unregistering the wait queue. The wakeup callback
1191 	 * will run by holding the wait queue head lock and will call our callback
1192 	 * that will try to get "ep->lock".
1193 	 */
1194 	ep_unregister_pollwait(ep, epi);
1195 
1196 	/* Remove the current item from the list of epoll hooks */
1197 	spin_lock(&file->f_ep_lock);
1198 	if (ep_is_linked(&epi->fllink))
1199 		ep_list_del(&epi->fllink);
1200 	spin_unlock(&file->f_ep_lock);
1201 
1202 	/* We need to acquire the write IRQ lock before calling ep_unlink() */
1203 	write_lock_irqsave(&ep->lock, flags);
1204 
1205 	/* Really unlink the item from the hash */
1206 	error = ep_unlink(ep, epi);
1207 
1208 	write_unlock_irqrestore(&ep->lock, flags);
1209 
1210 	if (error)
1211 		goto eexit_1;
1212 
1213 	/* At this point it is safe to free the eventpoll item */
1214 	ep_release_epitem(epi);
1215 
1216 	error = 0;
1217 eexit_1:
1218 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_remove(%p, %p) = %d\n",
1219 		     current, ep, file, error));
1220 
1221 	return error;
1222 }
1223 
1224 
1225 /*
1226  * This is the callback that is passed to the wait queue wakeup
1227  * machanism. It is called by the stored file descriptors when they
1228  * have events to report.
1229  */
1230 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
1231 {
1232 	int pwake = 0;
1233 	unsigned long flags;
1234 	struct epitem *epi = ep_item_from_wait(wait);
1235 	struct eventpoll *ep = epi->ep;
1236 
1237 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: poll_callback(%p) epi=%p ep=%p\n",
1238 		     current, epi->file, epi, ep));
1239 
1240 	write_lock_irqsave(&ep->lock, flags);
1241 
1242 	/*
1243 	 * If the event mask does not contain any poll(2) event, we consider the
1244 	 * descriptor to be disabled. This condition is likely the effect of the
1245 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1246 	 * until the next EPOLL_CTL_MOD will be issued.
1247 	 */
1248 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1249 		goto is_disabled;
1250 
1251 	/* If this file is already in the ready list we exit soon */
1252 	if (ep_is_linked(&epi->rdllink))
1253 		goto is_linked;
1254 
1255 	list_add_tail(&epi->rdllink, &ep->rdllist);
1256 
1257 is_linked:
1258 	/*
1259 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1260 	 * wait list.
1261 	 */
1262 	if (waitqueue_active(&ep->wq))
1263 		wake_up(&ep->wq);
1264 	if (waitqueue_active(&ep->poll_wait))
1265 		pwake++;
1266 
1267 is_disabled:
1268 	write_unlock_irqrestore(&ep->lock, flags);
1269 
1270 	/* We have to call this outside the lock */
1271 	if (pwake)
1272 		ep_poll_safewake(&psw, &ep->poll_wait);
1273 
1274 	return 1;
1275 }
1276 
1277 
1278 static int ep_eventpoll_close(struct inode *inode, struct file *file)
1279 {
1280 	struct eventpoll *ep = file->private_data;
1281 
1282 	if (ep) {
1283 		ep_free(ep);
1284 		kfree(ep);
1285 	}
1286 
1287 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: close() ep=%p\n", current, ep));
1288 	return 0;
1289 }
1290 
1291 
1292 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
1293 {
1294 	unsigned int pollflags = 0;
1295 	unsigned long flags;
1296 	struct eventpoll *ep = file->private_data;
1297 
1298 	/* Insert inside our poll wait queue */
1299 	poll_wait(file, &ep->poll_wait, wait);
1300 
1301 	/* Check our condition */
1302 	read_lock_irqsave(&ep->lock, flags);
1303 	if (!list_empty(&ep->rdllist))
1304 		pollflags = POLLIN | POLLRDNORM;
1305 	read_unlock_irqrestore(&ep->lock, flags);
1306 
1307 	return pollflags;
1308 }
1309 
1310 
1311 /*
1312  * Since we have to release the lock during the __copy_to_user() operation and
1313  * during the f_op->poll() call, we try to collect the maximum number of items
1314  * by reducing the irqlock/irqunlock switching rate.
1315  */
1316 static int ep_collect_ready_items(struct eventpoll *ep, struct list_head *txlist, int maxevents)
1317 {
1318 	int nepi;
1319 	unsigned long flags;
1320 	struct list_head *lsthead = &ep->rdllist, *lnk;
1321 	struct epitem *epi;
1322 
1323 	write_lock_irqsave(&ep->lock, flags);
1324 
1325 	for (nepi = 0, lnk = lsthead->next; lnk != lsthead && nepi < maxevents;) {
1326 		epi = list_entry(lnk, struct epitem, rdllink);
1327 
1328 		lnk = lnk->next;
1329 
1330 		/* If this file is already in the ready list we exit soon */
1331 		if (!ep_is_linked(&epi->txlink)) {
1332 			/*
1333 			 * This is initialized in this way so that the default
1334 			 * behaviour of the reinjecting code will be to push back
1335 			 * the item inside the ready list.
1336 			 */
1337 			epi->revents = epi->event.events;
1338 
1339 			/* Link the ready item into the transfer list */
1340 			list_add(&epi->txlink, txlist);
1341 			nepi++;
1342 
1343 			/*
1344 			 * Unlink the item from the ready list.
1345 			 */
1346 			ep_list_del(&epi->rdllink);
1347 		}
1348 	}
1349 
1350 	write_unlock_irqrestore(&ep->lock, flags);
1351 
1352 	return nepi;
1353 }
1354 
1355 
1356 /*
1357  * This function is called without holding the "ep->lock" since the call to
1358  * __copy_to_user() might sleep, and also f_op->poll() might reenable the IRQ
1359  * because of the way poll() is traditionally implemented in Linux.
1360  */
1361 static int ep_send_events(struct eventpoll *ep, struct list_head *txlist,
1362 			  struct epoll_event __user *events)
1363 {
1364 	int eventcnt = 0;
1365 	unsigned int revents;
1366 	struct list_head *lnk;
1367 	struct epitem *epi;
1368 
1369 	/*
1370 	 * We can loop without lock because this is a task private list.
1371 	 * The test done during the collection loop will guarantee us that
1372 	 * another task will not try to collect this file. Also, items
1373 	 * cannot vanish during the loop because we are holding "sem".
1374 	 */
1375 	list_for_each(lnk, txlist) {
1376 		epi = list_entry(lnk, struct epitem, txlink);
1377 
1378 		/*
1379 		 * Get the ready file event set. We can safely use the file
1380 		 * because we are holding the "sem" in read and this will
1381 		 * guarantee that both the file and the item will not vanish.
1382 		 */
1383 		revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1384 
1385 		/*
1386 		 * Set the return event set for the current file descriptor.
1387 		 * Note that only the task task was successfully able to link
1388 		 * the item to its "txlist" will write this field.
1389 		 */
1390 		epi->revents = revents & epi->event.events;
1391 
1392 		if (epi->revents) {
1393 			if (__put_user(epi->revents,
1394 				       &events[eventcnt].events) ||
1395 			    __put_user(epi->event.data,
1396 				       &events[eventcnt].data))
1397 				return -EFAULT;
1398 			if (epi->event.events & EPOLLONESHOT)
1399 				epi->event.events &= EP_PRIVATE_BITS;
1400 			eventcnt++;
1401 		}
1402 	}
1403 	return eventcnt;
1404 }
1405 
1406 
1407 /*
1408  * Walk through the transfer list we collected with ep_collect_ready_items()
1409  * and, if 1) the item is still "alive" 2) its event set is not empty 3) it's
1410  * not already linked, links it to the ready list. Same as above, we are holding
1411  * "sem" so items cannot vanish underneath our nose.
1412  */
1413 static void ep_reinject_items(struct eventpoll *ep, struct list_head *txlist)
1414 {
1415 	int ricnt = 0, pwake = 0;
1416 	unsigned long flags;
1417 	struct epitem *epi;
1418 
1419 	write_lock_irqsave(&ep->lock, flags);
1420 
1421 	while (!list_empty(txlist)) {
1422 		epi = list_entry(txlist->next, struct epitem, txlink);
1423 
1424 		/* Unlink the current item from the transfer list */
1425 		ep_list_del(&epi->txlink);
1426 
1427 		/*
1428 		 * If the item is no more linked to the interest set, we don't
1429 		 * have to push it inside the ready list because the following
1430 		 * ep_release_epitem() is going to drop it. Also, if the current
1431 		 * item is set to have an Edge Triggered behaviour, we don't have
1432 		 * to push it back either.
1433 		 */
1434 		if (ep_rb_linked(&epi->rbn) && !(epi->event.events & EPOLLET) &&
1435 		    (epi->revents & epi->event.events) && !ep_is_linked(&epi->rdllink)) {
1436 			list_add_tail(&epi->rdllink, &ep->rdllist);
1437 			ricnt++;
1438 		}
1439 	}
1440 
1441 	if (ricnt) {
1442 		/*
1443 		 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1444 		 * wait list.
1445 		 */
1446 		if (waitqueue_active(&ep->wq))
1447 			wake_up(&ep->wq);
1448 		if (waitqueue_active(&ep->poll_wait))
1449 			pwake++;
1450 	}
1451 
1452 	write_unlock_irqrestore(&ep->lock, flags);
1453 
1454 	/* We have to call this outside the lock */
1455 	if (pwake)
1456 		ep_poll_safewake(&psw, &ep->poll_wait);
1457 }
1458 
1459 
1460 /*
1461  * Perform the transfer of events to user space.
1462  */
1463 static int ep_events_transfer(struct eventpoll *ep,
1464 			      struct epoll_event __user *events, int maxevents)
1465 {
1466 	int eventcnt = 0;
1467 	struct list_head txlist;
1468 
1469 	INIT_LIST_HEAD(&txlist);
1470 
1471 	/*
1472 	 * We need to lock this because we could be hit by
1473 	 * eventpoll_release_file() and epoll_ctl(EPOLL_CTL_DEL).
1474 	 */
1475 	down_read(&ep->sem);
1476 
1477 	/* Collect/extract ready items */
1478 	if (ep_collect_ready_items(ep, &txlist, maxevents) > 0) {
1479 		/* Build result set in userspace */
1480 		eventcnt = ep_send_events(ep, &txlist, events);
1481 
1482 		/* Reinject ready items into the ready list */
1483 		ep_reinject_items(ep, &txlist);
1484 	}
1485 
1486 	up_read(&ep->sem);
1487 
1488 	return eventcnt;
1489 }
1490 
1491 
1492 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1493 		   int maxevents, long timeout)
1494 {
1495 	int res, eavail;
1496 	unsigned long flags;
1497 	long jtimeout;
1498 	wait_queue_t wait;
1499 
1500 	/*
1501 	 * Calculate the timeout by checking for the "infinite" value ( -1 )
1502 	 * and the overflow condition. The passed timeout is in milliseconds,
1503 	 * that why (t * HZ) / 1000.
1504 	 */
1505 	jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ?
1506 		MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000;
1507 
1508 retry:
1509 	write_lock_irqsave(&ep->lock, flags);
1510 
1511 	res = 0;
1512 	if (list_empty(&ep->rdllist)) {
1513 		/*
1514 		 * We don't have any available event to return to the caller.
1515 		 * We need to sleep here, and we will be wake up by
1516 		 * ep_poll_callback() when events will become available.
1517 		 */
1518 		init_waitqueue_entry(&wait, current);
1519 		add_wait_queue(&ep->wq, &wait);
1520 
1521 		for (;;) {
1522 			/*
1523 			 * We don't want to sleep if the ep_poll_callback() sends us
1524 			 * a wakeup in between. That's why we set the task state
1525 			 * to TASK_INTERRUPTIBLE before doing the checks.
1526 			 */
1527 			set_current_state(TASK_INTERRUPTIBLE);
1528 			if (!list_empty(&ep->rdllist) || !jtimeout)
1529 				break;
1530 			if (signal_pending(current)) {
1531 				res = -EINTR;
1532 				break;
1533 			}
1534 
1535 			write_unlock_irqrestore(&ep->lock, flags);
1536 			jtimeout = schedule_timeout(jtimeout);
1537 			write_lock_irqsave(&ep->lock, flags);
1538 		}
1539 		remove_wait_queue(&ep->wq, &wait);
1540 
1541 		set_current_state(TASK_RUNNING);
1542 	}
1543 
1544 	/* Is it worth to try to dig for events ? */
1545 	eavail = !list_empty(&ep->rdllist);
1546 
1547 	write_unlock_irqrestore(&ep->lock, flags);
1548 
1549 	/*
1550 	 * Try to transfer events to user space. In case we get 0 events and
1551 	 * there's still timeout left over, we go trying again in search of
1552 	 * more luck.
1553 	 */
1554 	if (!res && eavail &&
1555 	    !(res = ep_events_transfer(ep, events, maxevents)) && jtimeout)
1556 		goto retry;
1557 
1558 	return res;
1559 }
1560 
1561 
1562 static int eventpollfs_delete_dentry(struct dentry *dentry)
1563 {
1564 
1565 	return 1;
1566 }
1567 
1568 
1569 static struct inode *ep_eventpoll_inode(void)
1570 {
1571 	int error = -ENOMEM;
1572 	struct inode *inode = new_inode(eventpoll_mnt->mnt_sb);
1573 
1574 	if (!inode)
1575 		goto eexit_1;
1576 
1577 	inode->i_fop = &eventpoll_fops;
1578 
1579 	/*
1580 	 * Mark the inode dirty from the very beginning,
1581 	 * that way it will never be moved to the dirty
1582 	 * list because mark_inode_dirty() will think
1583 	 * that it already _is_ on the dirty list.
1584 	 */
1585 	inode->i_state = I_DIRTY;
1586 	inode->i_mode = S_IRUSR | S_IWUSR;
1587 	inode->i_uid = current->fsuid;
1588 	inode->i_gid = current->fsgid;
1589 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1590 	inode->i_blksize = PAGE_SIZE;
1591 	return inode;
1592 
1593 eexit_1:
1594 	return ERR_PTR(error);
1595 }
1596 
1597 
1598 static struct super_block *
1599 eventpollfs_get_sb(struct file_system_type *fs_type, int flags,
1600 		   const char *dev_name, void *data)
1601 {
1602 	return get_sb_pseudo(fs_type, "eventpoll:", NULL, EVENTPOLLFS_MAGIC);
1603 }
1604 
1605 
1606 static int __init eventpoll_init(void)
1607 {
1608 	int error;
1609 
1610 	mutex_init(&epmutex);
1611 
1612 	/* Initialize the structure used to perform safe poll wait head wake ups */
1613 	ep_poll_safewake_init(&psw);
1614 
1615 	/* Allocates slab cache used to allocate "struct epitem" items */
1616 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1617 			0, SLAB_HWCACHE_ALIGN|EPI_SLAB_DEBUG|SLAB_PANIC,
1618 			NULL, NULL);
1619 
1620 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
1621 	pwq_cache = kmem_cache_create("eventpoll_pwq",
1622 			sizeof(struct eppoll_entry), 0,
1623 			EPI_SLAB_DEBUG|SLAB_PANIC, NULL, NULL);
1624 
1625 	/*
1626 	 * Register the virtual file system that will be the source of inodes
1627 	 * for the eventpoll files
1628 	 */
1629 	error = register_filesystem(&eventpoll_fs_type);
1630 	if (error)
1631 		goto epanic;
1632 
1633 	/* Mount the above commented virtual file system */
1634 	eventpoll_mnt = kern_mount(&eventpoll_fs_type);
1635 	error = PTR_ERR(eventpoll_mnt);
1636 	if (IS_ERR(eventpoll_mnt))
1637 		goto epanic;
1638 
1639 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: successfully initialized.\n",
1640 			current));
1641 	return 0;
1642 
1643 epanic:
1644 	panic("eventpoll_init() failed\n");
1645 }
1646 
1647 
1648 static void __exit eventpoll_exit(void)
1649 {
1650 	/* Undo all operations done inside eventpoll_init() */
1651 	unregister_filesystem(&eventpoll_fs_type);
1652 	mntput(eventpoll_mnt);
1653 	kmem_cache_destroy(pwq_cache);
1654 	kmem_cache_destroy(epi_cache);
1655 }
1656 
1657 module_init(eventpoll_init);
1658 module_exit(eventpoll_exit);
1659 
1660 MODULE_LICENSE("GPL");
1661