1 /* 2 * fs/eventpoll.c ( Efficent event polling implementation ) 3 * Copyright (C) 2001,...,2003 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/kernel.h> 17 #include <linux/sched.h> 18 #include <linux/fs.h> 19 #include <linux/file.h> 20 #include <linux/signal.h> 21 #include <linux/errno.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/poll.h> 25 #include <linux/smp_lock.h> 26 #include <linux/string.h> 27 #include <linux/list.h> 28 #include <linux/hash.h> 29 #include <linux/spinlock.h> 30 #include <linux/syscalls.h> 31 #include <linux/rwsem.h> 32 #include <linux/rbtree.h> 33 #include <linux/wait.h> 34 #include <linux/eventpoll.h> 35 #include <linux/mount.h> 36 #include <linux/bitops.h> 37 #include <asm/uaccess.h> 38 #include <asm/system.h> 39 #include <asm/io.h> 40 #include <asm/mman.h> 41 #include <asm/atomic.h> 42 #include <asm/semaphore.h> 43 44 45 /* 46 * LOCKING: 47 * There are three level of locking required by epoll : 48 * 49 * 1) epsem (semaphore) 50 * 2) ep->sem (rw_semaphore) 51 * 3) ep->lock (rw_lock) 52 * 53 * The acquire order is the one listed above, from 1 to 3. 54 * We need a spinlock (ep->lock) because we manipulate objects 55 * from inside the poll callback, that might be triggered from 56 * a wake_up() that in turn might be called from IRQ context. 57 * So we can't sleep inside the poll callback and hence we need 58 * a spinlock. During the event transfer loop (from kernel to 59 * user space) we could end up sleeping due a copy_to_user(), so 60 * we need a lock that will allow us to sleep. This lock is a 61 * read-write semaphore (ep->sem). It is acquired on read during 62 * the event transfer loop and in write during epoll_ctl(EPOLL_CTL_DEL) 63 * and during eventpoll_release_file(). Then we also need a global 64 * semaphore to serialize eventpoll_release_file() and ep_free(). 65 * This semaphore is acquired by ep_free() during the epoll file 66 * cleanup path and it is also acquired by eventpoll_release_file() 67 * if a file has been pushed inside an epoll set and it is then 68 * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL). 69 * It is possible to drop the "ep->sem" and to use the global 70 * semaphore "epsem" (together with "ep->lock") to have it working, 71 * but having "ep->sem" will make the interface more scalable. 72 * Events that require holding "epsem" are very rare, while for 73 * normal operations the epoll private "ep->sem" will guarantee 74 * a greater scalability. 75 */ 76 77 78 #define EVENTPOLLFS_MAGIC 0x03111965 /* My birthday should work for this :) */ 79 80 #define DEBUG_EPOLL 0 81 82 #if DEBUG_EPOLL > 0 83 #define DPRINTK(x) printk x 84 #define DNPRINTK(n, x) do { if ((n) <= DEBUG_EPOLL) printk x; } while (0) 85 #else /* #if DEBUG_EPOLL > 0 */ 86 #define DPRINTK(x) (void) 0 87 #define DNPRINTK(n, x) (void) 0 88 #endif /* #if DEBUG_EPOLL > 0 */ 89 90 #define DEBUG_EPI 0 91 92 #if DEBUG_EPI != 0 93 #define EPI_SLAB_DEBUG (SLAB_DEBUG_FREE | SLAB_RED_ZONE /* | SLAB_POISON */) 94 #else /* #if DEBUG_EPI != 0 */ 95 #define EPI_SLAB_DEBUG 0 96 #endif /* #if DEBUG_EPI != 0 */ 97 98 /* Epoll private bits inside the event mask */ 99 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET) 100 101 /* Maximum number of poll wake up nests we are allowing */ 102 #define EP_MAX_POLLWAKE_NESTS 4 103 104 struct epoll_filefd { 105 struct file *file; 106 int fd; 107 }; 108 109 /* 110 * Node that is linked into the "wake_task_list" member of the "struct poll_safewake". 111 * It is used to keep track on all tasks that are currently inside the wake_up() code 112 * to 1) short-circuit the one coming from the same task and same wait queue head 113 * ( loop ) 2) allow a maximum number of epoll descriptors inclusion nesting 114 * 3) let go the ones coming from other tasks. 115 */ 116 struct wake_task_node { 117 struct list_head llink; 118 task_t *task; 119 wait_queue_head_t *wq; 120 }; 121 122 /* 123 * This is used to implement the safe poll wake up avoiding to reenter 124 * the poll callback from inside wake_up(). 125 */ 126 struct poll_safewake { 127 struct list_head wake_task_list; 128 spinlock_t lock; 129 }; 130 131 /* 132 * This structure is stored inside the "private_data" member of the file 133 * structure and rapresent the main data sructure for the eventpoll 134 * interface. 135 */ 136 struct eventpoll { 137 /* Protect the this structure access */ 138 rwlock_t lock; 139 140 /* 141 * This semaphore is used to ensure that files are not removed 142 * while epoll is using them. This is read-held during the event 143 * collection loop and it is write-held during the file cleanup 144 * path, the epoll file exit code and the ctl operations. 145 */ 146 struct rw_semaphore sem; 147 148 /* Wait queue used by sys_epoll_wait() */ 149 wait_queue_head_t wq; 150 151 /* Wait queue used by file->poll() */ 152 wait_queue_head_t poll_wait; 153 154 /* List of ready file descriptors */ 155 struct list_head rdllist; 156 157 /* RB-Tree root used to store monitored fd structs */ 158 struct rb_root rbr; 159 }; 160 161 /* Wait structure used by the poll hooks */ 162 struct eppoll_entry { 163 /* List header used to link this structure to the "struct epitem" */ 164 struct list_head llink; 165 166 /* The "base" pointer is set to the container "struct epitem" */ 167 void *base; 168 169 /* 170 * Wait queue item that will be linked to the target file wait 171 * queue head. 172 */ 173 wait_queue_t wait; 174 175 /* The wait queue head that linked the "wait" wait queue item */ 176 wait_queue_head_t *whead; 177 }; 178 179 /* 180 * Each file descriptor added to the eventpoll interface will 181 * have an entry of this type linked to the hash. 182 */ 183 struct epitem { 184 /* RB-Tree node used to link this structure to the eventpoll rb-tree */ 185 struct rb_node rbn; 186 187 /* List header used to link this structure to the eventpoll ready list */ 188 struct list_head rdllink; 189 190 /* The file descriptor information this item refers to */ 191 struct epoll_filefd ffd; 192 193 /* Number of active wait queue attached to poll operations */ 194 int nwait; 195 196 /* List containing poll wait queues */ 197 struct list_head pwqlist; 198 199 /* The "container" of this item */ 200 struct eventpoll *ep; 201 202 /* The structure that describe the interested events and the source fd */ 203 struct epoll_event event; 204 205 /* 206 * Used to keep track of the usage count of the structure. This avoids 207 * that the structure will desappear from underneath our processing. 208 */ 209 atomic_t usecnt; 210 211 /* List header used to link this item to the "struct file" items list */ 212 struct list_head fllink; 213 214 /* List header used to link the item to the transfer list */ 215 struct list_head txlink; 216 217 /* 218 * This is used during the collection/transfer of events to userspace 219 * to pin items empty events set. 220 */ 221 unsigned int revents; 222 }; 223 224 /* Wrapper struct used by poll queueing */ 225 struct ep_pqueue { 226 poll_table pt; 227 struct epitem *epi; 228 }; 229 230 231 232 static void ep_poll_safewake_init(struct poll_safewake *psw); 233 static void ep_poll_safewake(struct poll_safewake *psw, wait_queue_head_t *wq); 234 static int ep_getfd(int *efd, struct inode **einode, struct file **efile); 235 static int ep_file_init(struct file *file); 236 static void ep_free(struct eventpoll *ep); 237 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd); 238 static void ep_use_epitem(struct epitem *epi); 239 static void ep_release_epitem(struct epitem *epi); 240 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 241 poll_table *pt); 242 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi); 243 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 244 struct file *tfile, int fd); 245 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 246 struct epoll_event *event); 247 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi); 248 static int ep_unlink(struct eventpoll *ep, struct epitem *epi); 249 static int ep_remove(struct eventpoll *ep, struct epitem *epi); 250 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key); 251 static int ep_eventpoll_close(struct inode *inode, struct file *file); 252 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait); 253 static int ep_collect_ready_items(struct eventpoll *ep, 254 struct list_head *txlist, int maxevents); 255 static int ep_send_events(struct eventpoll *ep, struct list_head *txlist, 256 struct epoll_event __user *events); 257 static void ep_reinject_items(struct eventpoll *ep, struct list_head *txlist); 258 static int ep_events_transfer(struct eventpoll *ep, 259 struct epoll_event __user *events, 260 int maxevents); 261 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 262 int maxevents, long timeout); 263 static int eventpollfs_delete_dentry(struct dentry *dentry); 264 static struct inode *ep_eventpoll_inode(void); 265 static struct super_block *eventpollfs_get_sb(struct file_system_type *fs_type, 266 int flags, const char *dev_name, 267 void *data); 268 269 /* 270 * This semaphore is used to serialize ep_free() and eventpoll_release_file(). 271 */ 272 static struct semaphore epsem; 273 274 /* Safe wake up implementation */ 275 static struct poll_safewake psw; 276 277 /* Slab cache used to allocate "struct epitem" */ 278 static kmem_cache_t *epi_cache; 279 280 /* Slab cache used to allocate "struct eppoll_entry" */ 281 static kmem_cache_t *pwq_cache; 282 283 /* Virtual fs used to allocate inodes for eventpoll files */ 284 static struct vfsmount *eventpoll_mnt; 285 286 /* File callbacks that implement the eventpoll file behaviour */ 287 static struct file_operations eventpoll_fops = { 288 .release = ep_eventpoll_close, 289 .poll = ep_eventpoll_poll 290 }; 291 292 /* 293 * This is used to register the virtual file system from where 294 * eventpoll inodes are allocated. 295 */ 296 static struct file_system_type eventpoll_fs_type = { 297 .name = "eventpollfs", 298 .get_sb = eventpollfs_get_sb, 299 .kill_sb = kill_anon_super, 300 }; 301 302 /* Very basic directory entry operations for the eventpoll virtual file system */ 303 static struct dentry_operations eventpollfs_dentry_operations = { 304 .d_delete = eventpollfs_delete_dentry, 305 }; 306 307 308 309 /* Fast test to see if the file is an evenpoll file */ 310 static inline int is_file_epoll(struct file *f) 311 { 312 return f->f_op == &eventpoll_fops; 313 } 314 315 /* Setup the structure that is used as key for the rb-tree */ 316 static inline void ep_set_ffd(struct epoll_filefd *ffd, 317 struct file *file, int fd) 318 { 319 ffd->file = file; 320 ffd->fd = fd; 321 } 322 323 /* Compare rb-tree keys */ 324 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 325 struct epoll_filefd *p2) 326 { 327 return (p1->file > p2->file ? +1: 328 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 329 } 330 331 /* Special initialization for the rb-tree node to detect linkage */ 332 static inline void ep_rb_initnode(struct rb_node *n) 333 { 334 n->rb_parent = n; 335 } 336 337 /* Removes a node from the rb-tree and marks it for a fast is-linked check */ 338 static inline void ep_rb_erase(struct rb_node *n, struct rb_root *r) 339 { 340 rb_erase(n, r); 341 n->rb_parent = n; 342 } 343 344 /* Fast check to verify that the item is linked to the main rb-tree */ 345 static inline int ep_rb_linked(struct rb_node *n) 346 { 347 return n->rb_parent != n; 348 } 349 350 /* 351 * Remove the item from the list and perform its initialization. 352 * This is useful for us because we can test if the item is linked 353 * using "ep_is_linked(p)". 354 */ 355 static inline void ep_list_del(struct list_head *p) 356 { 357 list_del(p); 358 INIT_LIST_HEAD(p); 359 } 360 361 /* Tells us if the item is currently linked */ 362 static inline int ep_is_linked(struct list_head *p) 363 { 364 return !list_empty(p); 365 } 366 367 /* Get the "struct epitem" from a wait queue pointer */ 368 static inline struct epitem * ep_item_from_wait(wait_queue_t *p) 369 { 370 return container_of(p, struct eppoll_entry, wait)->base; 371 } 372 373 /* Get the "struct epitem" from an epoll queue wrapper */ 374 static inline struct epitem * ep_item_from_epqueue(poll_table *p) 375 { 376 return container_of(p, struct ep_pqueue, pt)->epi; 377 } 378 379 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 380 static inline int ep_op_hash_event(int op) 381 { 382 return op != EPOLL_CTL_DEL; 383 } 384 385 /* Initialize the poll safe wake up structure */ 386 static void ep_poll_safewake_init(struct poll_safewake *psw) 387 { 388 389 INIT_LIST_HEAD(&psw->wake_task_list); 390 spin_lock_init(&psw->lock); 391 } 392 393 394 /* 395 * Perform a safe wake up of the poll wait list. The problem is that 396 * with the new callback'd wake up system, it is possible that the 397 * poll callback is reentered from inside the call to wake_up() done 398 * on the poll wait queue head. The rule is that we cannot reenter the 399 * wake up code from the same task more than EP_MAX_POLLWAKE_NESTS times, 400 * and we cannot reenter the same wait queue head at all. This will 401 * enable to have a hierarchy of epoll file descriptor of no more than 402 * EP_MAX_POLLWAKE_NESTS deep. We need the irq version of the spin lock 403 * because this one gets called by the poll callback, that in turn is called 404 * from inside a wake_up(), that might be called from irq context. 405 */ 406 static void ep_poll_safewake(struct poll_safewake *psw, wait_queue_head_t *wq) 407 { 408 int wake_nests = 0; 409 unsigned long flags; 410 task_t *this_task = current; 411 struct list_head *lsthead = &psw->wake_task_list, *lnk; 412 struct wake_task_node *tncur; 413 struct wake_task_node tnode; 414 415 spin_lock_irqsave(&psw->lock, flags); 416 417 /* Try to see if the current task is already inside this wakeup call */ 418 list_for_each(lnk, lsthead) { 419 tncur = list_entry(lnk, struct wake_task_node, llink); 420 421 if (tncur->wq == wq || 422 (tncur->task == this_task && ++wake_nests > EP_MAX_POLLWAKE_NESTS)) { 423 /* 424 * Ops ... loop detected or maximum nest level reached. 425 * We abort this wake by breaking the cycle itself. 426 */ 427 spin_unlock_irqrestore(&psw->lock, flags); 428 return; 429 } 430 } 431 432 /* Add the current task to the list */ 433 tnode.task = this_task; 434 tnode.wq = wq; 435 list_add(&tnode.llink, lsthead); 436 437 spin_unlock_irqrestore(&psw->lock, flags); 438 439 /* Do really wake up now */ 440 wake_up(wq); 441 442 /* Remove the current task from the list */ 443 spin_lock_irqsave(&psw->lock, flags); 444 list_del(&tnode.llink); 445 spin_unlock_irqrestore(&psw->lock, flags); 446 } 447 448 449 /* Used to initialize the epoll bits inside the "struct file" */ 450 void eventpoll_init_file(struct file *file) 451 { 452 453 INIT_LIST_HEAD(&file->f_ep_links); 454 spin_lock_init(&file->f_ep_lock); 455 } 456 457 458 /* 459 * This is called from eventpoll_release() to unlink files from the eventpoll 460 * interface. We need to have this facility to cleanup correctly files that are 461 * closed without being removed from the eventpoll interface. 462 */ 463 void eventpoll_release_file(struct file *file) 464 { 465 struct list_head *lsthead = &file->f_ep_links; 466 struct eventpoll *ep; 467 struct epitem *epi; 468 469 /* 470 * We don't want to get "file->f_ep_lock" because it is not 471 * necessary. It is not necessary because we're in the "struct file" 472 * cleanup path, and this means that noone is using this file anymore. 473 * The only hit might come from ep_free() but by holding the semaphore 474 * will correctly serialize the operation. We do need to acquire 475 * "ep->sem" after "epsem" because ep_remove() requires it when called 476 * from anywhere but ep_free(). 477 */ 478 down(&epsem); 479 480 while (!list_empty(lsthead)) { 481 epi = list_entry(lsthead->next, struct epitem, fllink); 482 483 ep = epi->ep; 484 ep_list_del(&epi->fllink); 485 down_write(&ep->sem); 486 ep_remove(ep, epi); 487 up_write(&ep->sem); 488 } 489 490 up(&epsem); 491 } 492 493 494 /* 495 * It opens an eventpoll file descriptor by suggesting a storage of "size" 496 * file descriptors. The size parameter is just an hint about how to size 497 * data structures. It won't prevent the user to store more than "size" 498 * file descriptors inside the epoll interface. It is the kernel part of 499 * the userspace epoll_create(2). 500 */ 501 asmlinkage long sys_epoll_create(int size) 502 { 503 int error, fd; 504 struct inode *inode; 505 struct file *file; 506 507 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d)\n", 508 current, size)); 509 510 /* Sanity check on the size parameter */ 511 error = -EINVAL; 512 if (size <= 0) 513 goto eexit_1; 514 515 /* 516 * Creates all the items needed to setup an eventpoll file. That is, 517 * a file structure, and inode and a free file descriptor. 518 */ 519 error = ep_getfd(&fd, &inode, &file); 520 if (error) 521 goto eexit_1; 522 523 /* Setup the file internal data structure ( "struct eventpoll" ) */ 524 error = ep_file_init(file); 525 if (error) 526 goto eexit_2; 527 528 529 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n", 530 current, size, fd)); 531 532 return fd; 533 534 eexit_2: 535 sys_close(fd); 536 eexit_1: 537 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n", 538 current, size, error)); 539 return error; 540 } 541 542 543 /* 544 * The following function implements the controller interface for 545 * the eventpoll file that enables the insertion/removal/change of 546 * file descriptors inside the interest set. It represents 547 * the kernel part of the user space epoll_ctl(2). 548 */ 549 asmlinkage long 550 sys_epoll_ctl(int epfd, int op, int fd, struct epoll_event __user *event) 551 { 552 int error; 553 struct file *file, *tfile; 554 struct eventpoll *ep; 555 struct epitem *epi; 556 struct epoll_event epds; 557 558 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p)\n", 559 current, epfd, op, fd, event)); 560 561 error = -EFAULT; 562 if (ep_op_hash_event(op) && 563 copy_from_user(&epds, event, sizeof(struct epoll_event))) 564 goto eexit_1; 565 566 /* Get the "struct file *" for the eventpoll file */ 567 error = -EBADF; 568 file = fget(epfd); 569 if (!file) 570 goto eexit_1; 571 572 /* Get the "struct file *" for the target file */ 573 tfile = fget(fd); 574 if (!tfile) 575 goto eexit_2; 576 577 /* The target file descriptor must support poll */ 578 error = -EPERM; 579 if (!tfile->f_op || !tfile->f_op->poll) 580 goto eexit_3; 581 582 /* 583 * We have to check that the file structure underneath the file descriptor 584 * the user passed to us _is_ an eventpoll file. And also we do not permit 585 * adding an epoll file descriptor inside itself. 586 */ 587 error = -EINVAL; 588 if (file == tfile || !is_file_epoll(file)) 589 goto eexit_3; 590 591 /* 592 * At this point it is safe to assume that the "private_data" contains 593 * our own data structure. 594 */ 595 ep = file->private_data; 596 597 down_write(&ep->sem); 598 599 /* Try to lookup the file inside our hash table */ 600 epi = ep_find(ep, tfile, fd); 601 602 error = -EINVAL; 603 switch (op) { 604 case EPOLL_CTL_ADD: 605 if (!epi) { 606 epds.events |= POLLERR | POLLHUP; 607 608 error = ep_insert(ep, &epds, tfile, fd); 609 } else 610 error = -EEXIST; 611 break; 612 case EPOLL_CTL_DEL: 613 if (epi) 614 error = ep_remove(ep, epi); 615 else 616 error = -ENOENT; 617 break; 618 case EPOLL_CTL_MOD: 619 if (epi) { 620 epds.events |= POLLERR | POLLHUP; 621 error = ep_modify(ep, epi, &epds); 622 } else 623 error = -ENOENT; 624 break; 625 } 626 627 /* 628 * The function ep_find() increments the usage count of the structure 629 * so, if this is not NULL, we need to release it. 630 */ 631 if (epi) 632 ep_release_epitem(epi); 633 634 up_write(&ep->sem); 635 636 eexit_3: 637 fput(tfile); 638 eexit_2: 639 fput(file); 640 eexit_1: 641 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p) = %d\n", 642 current, epfd, op, fd, event, error)); 643 644 return error; 645 } 646 647 #define MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 648 649 /* 650 * Implement the event wait interface for the eventpoll file. It is the kernel 651 * part of the user space epoll_wait(2). 652 */ 653 asmlinkage long sys_epoll_wait(int epfd, struct epoll_event __user *events, 654 int maxevents, int timeout) 655 { 656 int error; 657 struct file *file; 658 struct eventpoll *ep; 659 660 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d)\n", 661 current, epfd, events, maxevents, timeout)); 662 663 /* The maximum number of event must be greater than zero */ 664 if (maxevents <= 0 || maxevents > MAX_EVENTS) 665 return -EINVAL; 666 667 /* Verify that the area passed by the user is writeable */ 668 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) { 669 error = -EFAULT; 670 goto eexit_1; 671 } 672 673 /* Get the "struct file *" for the eventpoll file */ 674 error = -EBADF; 675 file = fget(epfd); 676 if (!file) 677 goto eexit_1; 678 679 /* 680 * We have to check that the file structure underneath the fd 681 * the user passed to us _is_ an eventpoll file. 682 */ 683 error = -EINVAL; 684 if (!is_file_epoll(file)) 685 goto eexit_2; 686 687 /* 688 * At this point it is safe to assume that the "private_data" contains 689 * our own data structure. 690 */ 691 ep = file->private_data; 692 693 /* Time to fish for events ... */ 694 error = ep_poll(ep, events, maxevents, timeout); 695 696 eexit_2: 697 fput(file); 698 eexit_1: 699 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d) = %d\n", 700 current, epfd, events, maxevents, timeout, error)); 701 702 return error; 703 } 704 705 706 /* 707 * Creates the file descriptor to be used by the epoll interface. 708 */ 709 static int ep_getfd(int *efd, struct inode **einode, struct file **efile) 710 { 711 struct qstr this; 712 char name[32]; 713 struct dentry *dentry; 714 struct inode *inode; 715 struct file *file; 716 int error, fd; 717 718 /* Get an ready to use file */ 719 error = -ENFILE; 720 file = get_empty_filp(); 721 if (!file) 722 goto eexit_1; 723 724 /* Allocates an inode from the eventpoll file system */ 725 inode = ep_eventpoll_inode(); 726 error = PTR_ERR(inode); 727 if (IS_ERR(inode)) 728 goto eexit_2; 729 730 /* Allocates a free descriptor to plug the file onto */ 731 error = get_unused_fd(); 732 if (error < 0) 733 goto eexit_3; 734 fd = error; 735 736 /* 737 * Link the inode to a directory entry by creating a unique name 738 * using the inode number. 739 */ 740 error = -ENOMEM; 741 sprintf(name, "[%lu]", inode->i_ino); 742 this.name = name; 743 this.len = strlen(name); 744 this.hash = inode->i_ino; 745 dentry = d_alloc(eventpoll_mnt->mnt_sb->s_root, &this); 746 if (!dentry) 747 goto eexit_4; 748 dentry->d_op = &eventpollfs_dentry_operations; 749 d_add(dentry, inode); 750 file->f_vfsmnt = mntget(eventpoll_mnt); 751 file->f_dentry = dentry; 752 file->f_mapping = inode->i_mapping; 753 754 file->f_pos = 0; 755 file->f_flags = O_RDONLY; 756 file->f_op = &eventpoll_fops; 757 file->f_mode = FMODE_READ; 758 file->f_version = 0; 759 file->private_data = NULL; 760 761 /* Install the new setup file into the allocated fd. */ 762 fd_install(fd, file); 763 764 *efd = fd; 765 *einode = inode; 766 *efile = file; 767 return 0; 768 769 eexit_4: 770 put_unused_fd(fd); 771 eexit_3: 772 iput(inode); 773 eexit_2: 774 put_filp(file); 775 eexit_1: 776 return error; 777 } 778 779 780 static int ep_file_init(struct file *file) 781 { 782 struct eventpoll *ep; 783 784 if (!(ep = kmalloc(sizeof(struct eventpoll), GFP_KERNEL))) 785 return -ENOMEM; 786 787 memset(ep, 0, sizeof(*ep)); 788 rwlock_init(&ep->lock); 789 init_rwsem(&ep->sem); 790 init_waitqueue_head(&ep->wq); 791 init_waitqueue_head(&ep->poll_wait); 792 INIT_LIST_HEAD(&ep->rdllist); 793 ep->rbr = RB_ROOT; 794 795 file->private_data = ep; 796 797 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_file_init() ep=%p\n", 798 current, ep)); 799 return 0; 800 } 801 802 803 static void ep_free(struct eventpoll *ep) 804 { 805 struct rb_node *rbp; 806 struct epitem *epi; 807 808 /* We need to release all tasks waiting for these file */ 809 if (waitqueue_active(&ep->poll_wait)) 810 ep_poll_safewake(&psw, &ep->poll_wait); 811 812 /* 813 * We need to lock this because we could be hit by 814 * eventpoll_release_file() while we're freeing the "struct eventpoll". 815 * We do not need to hold "ep->sem" here because the epoll file 816 * is on the way to be removed and no one has references to it 817 * anymore. The only hit might come from eventpoll_release_file() but 818 * holding "epsem" is sufficent here. 819 */ 820 down(&epsem); 821 822 /* 823 * Walks through the whole tree by unregistering poll callbacks. 824 */ 825 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 826 epi = rb_entry(rbp, struct epitem, rbn); 827 828 ep_unregister_pollwait(ep, epi); 829 } 830 831 /* 832 * Walks through the whole hash by freeing each "struct epitem". At this 833 * point we are sure no poll callbacks will be lingering around, and also by 834 * write-holding "sem" we can be sure that no file cleanup code will hit 835 * us during this operation. So we can avoid the lock on "ep->lock". 836 */ 837 while ((rbp = rb_first(&ep->rbr)) != 0) { 838 epi = rb_entry(rbp, struct epitem, rbn); 839 ep_remove(ep, epi); 840 } 841 842 up(&epsem); 843 } 844 845 846 /* 847 * Search the file inside the eventpoll hash. It add usage count to 848 * the returned item, so the caller must call ep_release_epitem() 849 * after finished using the "struct epitem". 850 */ 851 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 852 { 853 int kcmp; 854 unsigned long flags; 855 struct rb_node *rbp; 856 struct epitem *epi, *epir = NULL; 857 struct epoll_filefd ffd; 858 859 ep_set_ffd(&ffd, file, fd); 860 read_lock_irqsave(&ep->lock, flags); 861 for (rbp = ep->rbr.rb_node; rbp; ) { 862 epi = rb_entry(rbp, struct epitem, rbn); 863 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 864 if (kcmp > 0) 865 rbp = rbp->rb_right; 866 else if (kcmp < 0) 867 rbp = rbp->rb_left; 868 else { 869 ep_use_epitem(epi); 870 epir = epi; 871 break; 872 } 873 } 874 read_unlock_irqrestore(&ep->lock, flags); 875 876 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_find(%p) -> %p\n", 877 current, file, epir)); 878 879 return epir; 880 } 881 882 883 /* 884 * Increment the usage count of the "struct epitem" making it sure 885 * that the user will have a valid pointer to reference. 886 */ 887 static void ep_use_epitem(struct epitem *epi) 888 { 889 890 atomic_inc(&epi->usecnt); 891 } 892 893 894 /* 895 * Decrement ( release ) the usage count by signaling that the user 896 * has finished using the structure. It might lead to freeing the 897 * structure itself if the count goes to zero. 898 */ 899 static void ep_release_epitem(struct epitem *epi) 900 { 901 902 if (atomic_dec_and_test(&epi->usecnt)) 903 kmem_cache_free(epi_cache, epi); 904 } 905 906 907 /* 908 * This is the callback that is used to add our wait queue to the 909 * target file wakeup lists. 910 */ 911 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 912 poll_table *pt) 913 { 914 struct epitem *epi = ep_item_from_epqueue(pt); 915 struct eppoll_entry *pwq; 916 917 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, SLAB_KERNEL))) { 918 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 919 pwq->whead = whead; 920 pwq->base = epi; 921 add_wait_queue(whead, &pwq->wait); 922 list_add_tail(&pwq->llink, &epi->pwqlist); 923 epi->nwait++; 924 } else { 925 /* We have to signal that an error occurred */ 926 epi->nwait = -1; 927 } 928 } 929 930 931 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 932 { 933 int kcmp; 934 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 935 struct epitem *epic; 936 937 while (*p) { 938 parent = *p; 939 epic = rb_entry(parent, struct epitem, rbn); 940 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 941 if (kcmp > 0) 942 p = &parent->rb_right; 943 else 944 p = &parent->rb_left; 945 } 946 rb_link_node(&epi->rbn, parent, p); 947 rb_insert_color(&epi->rbn, &ep->rbr); 948 } 949 950 951 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 952 struct file *tfile, int fd) 953 { 954 int error, revents, pwake = 0; 955 unsigned long flags; 956 struct epitem *epi; 957 struct ep_pqueue epq; 958 959 error = -ENOMEM; 960 if (!(epi = kmem_cache_alloc(epi_cache, SLAB_KERNEL))) 961 goto eexit_1; 962 963 /* Item initialization follow here ... */ 964 ep_rb_initnode(&epi->rbn); 965 INIT_LIST_HEAD(&epi->rdllink); 966 INIT_LIST_HEAD(&epi->fllink); 967 INIT_LIST_HEAD(&epi->txlink); 968 INIT_LIST_HEAD(&epi->pwqlist); 969 epi->ep = ep; 970 ep_set_ffd(&epi->ffd, tfile, fd); 971 epi->event = *event; 972 atomic_set(&epi->usecnt, 1); 973 epi->nwait = 0; 974 975 /* Initialize the poll table using the queue callback */ 976 epq.epi = epi; 977 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 978 979 /* 980 * Attach the item to the poll hooks and get current event bits. 981 * We can safely use the file* here because its usage count has 982 * been increased by the caller of this function. 983 */ 984 revents = tfile->f_op->poll(tfile, &epq.pt); 985 986 /* 987 * We have to check if something went wrong during the poll wait queue 988 * install process. Namely an allocation for a wait queue failed due 989 * high memory pressure. 990 */ 991 if (epi->nwait < 0) 992 goto eexit_2; 993 994 /* Add the current item to the list of active epoll hook for this file */ 995 spin_lock(&tfile->f_ep_lock); 996 list_add_tail(&epi->fllink, &tfile->f_ep_links); 997 spin_unlock(&tfile->f_ep_lock); 998 999 /* We have to drop the new item inside our item list to keep track of it */ 1000 write_lock_irqsave(&ep->lock, flags); 1001 1002 /* Add the current item to the rb-tree */ 1003 ep_rbtree_insert(ep, epi); 1004 1005 /* If the file is already "ready" we drop it inside the ready list */ 1006 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 1007 list_add_tail(&epi->rdllink, &ep->rdllist); 1008 1009 /* Notify waiting tasks that events are available */ 1010 if (waitqueue_active(&ep->wq)) 1011 wake_up(&ep->wq); 1012 if (waitqueue_active(&ep->poll_wait)) 1013 pwake++; 1014 } 1015 1016 write_unlock_irqrestore(&ep->lock, flags); 1017 1018 /* We have to call this outside the lock */ 1019 if (pwake) 1020 ep_poll_safewake(&psw, &ep->poll_wait); 1021 1022 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_insert(%p, %p, %d)\n", 1023 current, ep, tfile, fd)); 1024 1025 return 0; 1026 1027 eexit_2: 1028 ep_unregister_pollwait(ep, epi); 1029 1030 /* 1031 * We need to do this because an event could have been arrived on some 1032 * allocated wait queue. 1033 */ 1034 write_lock_irqsave(&ep->lock, flags); 1035 if (ep_is_linked(&epi->rdllink)) 1036 ep_list_del(&epi->rdllink); 1037 write_unlock_irqrestore(&ep->lock, flags); 1038 1039 kmem_cache_free(epi_cache, epi); 1040 eexit_1: 1041 return error; 1042 } 1043 1044 1045 /* 1046 * Modify the interest event mask by dropping an event if the new mask 1047 * has a match in the current file status. 1048 */ 1049 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1050 { 1051 int pwake = 0; 1052 unsigned int revents; 1053 unsigned long flags; 1054 1055 /* 1056 * Set the new event interest mask before calling f_op->poll(), otherwise 1057 * a potential race might occur. In fact if we do this operation inside 1058 * the lock, an event might happen between the f_op->poll() call and the 1059 * new event set registering. 1060 */ 1061 epi->event.events = event->events; 1062 1063 /* 1064 * Get current event bits. We can safely use the file* here because 1065 * its usage count has been increased by the caller of this function. 1066 */ 1067 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL); 1068 1069 write_lock_irqsave(&ep->lock, flags); 1070 1071 /* Copy the data member from inside the lock */ 1072 epi->event.data = event->data; 1073 1074 /* 1075 * If the item is not linked to the hash it means that it's on its 1076 * way toward the removal. Do nothing in this case. 1077 */ 1078 if (ep_rb_linked(&epi->rbn)) { 1079 /* 1080 * If the item is "hot" and it is not registered inside the ready 1081 * list, push it inside. If the item is not "hot" and it is currently 1082 * registered inside the ready list, unlink it. 1083 */ 1084 if (revents & event->events) { 1085 if (!ep_is_linked(&epi->rdllink)) { 1086 list_add_tail(&epi->rdllink, &ep->rdllist); 1087 1088 /* Notify waiting tasks that events are available */ 1089 if (waitqueue_active(&ep->wq)) 1090 wake_up(&ep->wq); 1091 if (waitqueue_active(&ep->poll_wait)) 1092 pwake++; 1093 } 1094 } 1095 } 1096 1097 write_unlock_irqrestore(&ep->lock, flags); 1098 1099 /* We have to call this outside the lock */ 1100 if (pwake) 1101 ep_poll_safewake(&psw, &ep->poll_wait); 1102 1103 return 0; 1104 } 1105 1106 1107 /* 1108 * This function unregister poll callbacks from the associated file descriptor. 1109 * Since this must be called without holding "ep->lock" the atomic exchange trick 1110 * will protect us from multiple unregister. 1111 */ 1112 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 1113 { 1114 int nwait; 1115 struct list_head *lsthead = &epi->pwqlist; 1116 struct eppoll_entry *pwq; 1117 1118 /* This is called without locks, so we need the atomic exchange */ 1119 nwait = xchg(&epi->nwait, 0); 1120 1121 if (nwait) { 1122 while (!list_empty(lsthead)) { 1123 pwq = list_entry(lsthead->next, struct eppoll_entry, llink); 1124 1125 ep_list_del(&pwq->llink); 1126 remove_wait_queue(pwq->whead, &pwq->wait); 1127 kmem_cache_free(pwq_cache, pwq); 1128 } 1129 } 1130 } 1131 1132 1133 /* 1134 * Unlink the "struct epitem" from all places it might have been hooked up. 1135 * This function must be called with write IRQ lock on "ep->lock". 1136 */ 1137 static int ep_unlink(struct eventpoll *ep, struct epitem *epi) 1138 { 1139 int error; 1140 1141 /* 1142 * It can happen that this one is called for an item already unlinked. 1143 * The check protect us from doing a double unlink ( crash ). 1144 */ 1145 error = -ENOENT; 1146 if (!ep_rb_linked(&epi->rbn)) 1147 goto eexit_1; 1148 1149 /* 1150 * Clear the event mask for the unlinked item. This will avoid item 1151 * notifications to be sent after the unlink operation from inside 1152 * the kernel->userspace event transfer loop. 1153 */ 1154 epi->event.events = 0; 1155 1156 /* 1157 * At this point is safe to do the job, unlink the item from our rb-tree. 1158 * This operation togheter with the above check closes the door to 1159 * double unlinks. 1160 */ 1161 ep_rb_erase(&epi->rbn, &ep->rbr); 1162 1163 /* 1164 * If the item we are going to remove is inside the ready file descriptors 1165 * we want to remove it from this list to avoid stale events. 1166 */ 1167 if (ep_is_linked(&epi->rdllink)) 1168 ep_list_del(&epi->rdllink); 1169 1170 error = 0; 1171 eexit_1: 1172 1173 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_unlink(%p, %p) = %d\n", 1174 current, ep, epi->file, error)); 1175 1176 return error; 1177 } 1178 1179 1180 /* 1181 * Removes a "struct epitem" from the eventpoll hash and deallocates 1182 * all the associated resources. 1183 */ 1184 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 1185 { 1186 int error; 1187 unsigned long flags; 1188 struct file *file = epi->ffd.file; 1189 1190 /* 1191 * Removes poll wait queue hooks. We _have_ to do this without holding 1192 * the "ep->lock" otherwise a deadlock might occur. This because of the 1193 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 1194 * queue head lock when unregistering the wait queue. The wakeup callback 1195 * will run by holding the wait queue head lock and will call our callback 1196 * that will try to get "ep->lock". 1197 */ 1198 ep_unregister_pollwait(ep, epi); 1199 1200 /* Remove the current item from the list of epoll hooks */ 1201 spin_lock(&file->f_ep_lock); 1202 if (ep_is_linked(&epi->fllink)) 1203 ep_list_del(&epi->fllink); 1204 spin_unlock(&file->f_ep_lock); 1205 1206 /* We need to acquire the write IRQ lock before calling ep_unlink() */ 1207 write_lock_irqsave(&ep->lock, flags); 1208 1209 /* Really unlink the item from the hash */ 1210 error = ep_unlink(ep, epi); 1211 1212 write_unlock_irqrestore(&ep->lock, flags); 1213 1214 if (error) 1215 goto eexit_1; 1216 1217 /* At this point it is safe to free the eventpoll item */ 1218 ep_release_epitem(epi); 1219 1220 error = 0; 1221 eexit_1: 1222 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_remove(%p, %p) = %d\n", 1223 current, ep, file, error)); 1224 1225 return error; 1226 } 1227 1228 1229 /* 1230 * This is the callback that is passed to the wait queue wakeup 1231 * machanism. It is called by the stored file descriptors when they 1232 * have events to report. 1233 */ 1234 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) 1235 { 1236 int pwake = 0; 1237 unsigned long flags; 1238 struct epitem *epi = ep_item_from_wait(wait); 1239 struct eventpoll *ep = epi->ep; 1240 1241 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: poll_callback(%p) epi=%p ep=%p\n", 1242 current, epi->file, epi, ep)); 1243 1244 write_lock_irqsave(&ep->lock, flags); 1245 1246 /* 1247 * If the event mask does not contain any poll(2) event, we consider the 1248 * descriptor to be disabled. This condition is likely the effect of the 1249 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1250 * until the next EPOLL_CTL_MOD will be issued. 1251 */ 1252 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1253 goto is_disabled; 1254 1255 /* If this file is already in the ready list we exit soon */ 1256 if (ep_is_linked(&epi->rdllink)) 1257 goto is_linked; 1258 1259 list_add_tail(&epi->rdllink, &ep->rdllist); 1260 1261 is_linked: 1262 /* 1263 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1264 * wait list. 1265 */ 1266 if (waitqueue_active(&ep->wq)) 1267 wake_up(&ep->wq); 1268 if (waitqueue_active(&ep->poll_wait)) 1269 pwake++; 1270 1271 is_disabled: 1272 write_unlock_irqrestore(&ep->lock, flags); 1273 1274 /* We have to call this outside the lock */ 1275 if (pwake) 1276 ep_poll_safewake(&psw, &ep->poll_wait); 1277 1278 return 1; 1279 } 1280 1281 1282 static int ep_eventpoll_close(struct inode *inode, struct file *file) 1283 { 1284 struct eventpoll *ep = file->private_data; 1285 1286 if (ep) { 1287 ep_free(ep); 1288 kfree(ep); 1289 } 1290 1291 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: close() ep=%p\n", current, ep)); 1292 return 0; 1293 } 1294 1295 1296 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 1297 { 1298 unsigned int pollflags = 0; 1299 unsigned long flags; 1300 struct eventpoll *ep = file->private_data; 1301 1302 /* Insert inside our poll wait queue */ 1303 poll_wait(file, &ep->poll_wait, wait); 1304 1305 /* Check our condition */ 1306 read_lock_irqsave(&ep->lock, flags); 1307 if (!list_empty(&ep->rdllist)) 1308 pollflags = POLLIN | POLLRDNORM; 1309 read_unlock_irqrestore(&ep->lock, flags); 1310 1311 return pollflags; 1312 } 1313 1314 1315 /* 1316 * Since we have to release the lock during the __copy_to_user() operation and 1317 * during the f_op->poll() call, we try to collect the maximum number of items 1318 * by reducing the irqlock/irqunlock switching rate. 1319 */ 1320 static int ep_collect_ready_items(struct eventpoll *ep, struct list_head *txlist, int maxevents) 1321 { 1322 int nepi; 1323 unsigned long flags; 1324 struct list_head *lsthead = &ep->rdllist, *lnk; 1325 struct epitem *epi; 1326 1327 write_lock_irqsave(&ep->lock, flags); 1328 1329 for (nepi = 0, lnk = lsthead->next; lnk != lsthead && nepi < maxevents;) { 1330 epi = list_entry(lnk, struct epitem, rdllink); 1331 1332 lnk = lnk->next; 1333 1334 /* If this file is already in the ready list we exit soon */ 1335 if (!ep_is_linked(&epi->txlink)) { 1336 /* 1337 * This is initialized in this way so that the default 1338 * behaviour of the reinjecting code will be to push back 1339 * the item inside the ready list. 1340 */ 1341 epi->revents = epi->event.events; 1342 1343 /* Link the ready item into the transfer list */ 1344 list_add(&epi->txlink, txlist); 1345 nepi++; 1346 1347 /* 1348 * Unlink the item from the ready list. 1349 */ 1350 ep_list_del(&epi->rdllink); 1351 } 1352 } 1353 1354 write_unlock_irqrestore(&ep->lock, flags); 1355 1356 return nepi; 1357 } 1358 1359 1360 /* 1361 * This function is called without holding the "ep->lock" since the call to 1362 * __copy_to_user() might sleep, and also f_op->poll() might reenable the IRQ 1363 * because of the way poll() is traditionally implemented in Linux. 1364 */ 1365 static int ep_send_events(struct eventpoll *ep, struct list_head *txlist, 1366 struct epoll_event __user *events) 1367 { 1368 int eventcnt = 0; 1369 unsigned int revents; 1370 struct list_head *lnk; 1371 struct epitem *epi; 1372 1373 /* 1374 * We can loop without lock because this is a task private list. 1375 * The test done during the collection loop will guarantee us that 1376 * another task will not try to collect this file. Also, items 1377 * cannot vanish during the loop because we are holding "sem". 1378 */ 1379 list_for_each(lnk, txlist) { 1380 epi = list_entry(lnk, struct epitem, txlink); 1381 1382 /* 1383 * Get the ready file event set. We can safely use the file 1384 * because we are holding the "sem" in read and this will 1385 * guarantee that both the file and the item will not vanish. 1386 */ 1387 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL); 1388 1389 /* 1390 * Set the return event set for the current file descriptor. 1391 * Note that only the task task was successfully able to link 1392 * the item to its "txlist" will write this field. 1393 */ 1394 epi->revents = revents & epi->event.events; 1395 1396 if (epi->revents) { 1397 if (__put_user(epi->revents, 1398 &events[eventcnt].events) || 1399 __put_user(epi->event.data, 1400 &events[eventcnt].data)) 1401 return -EFAULT; 1402 if (epi->event.events & EPOLLONESHOT) 1403 epi->event.events &= EP_PRIVATE_BITS; 1404 eventcnt++; 1405 } 1406 } 1407 return eventcnt; 1408 } 1409 1410 1411 /* 1412 * Walk through the transfer list we collected with ep_collect_ready_items() 1413 * and, if 1) the item is still "alive" 2) its event set is not empty 3) it's 1414 * not already linked, links it to the ready list. Same as above, we are holding 1415 * "sem" so items cannot vanish underneath our nose. 1416 */ 1417 static void ep_reinject_items(struct eventpoll *ep, struct list_head *txlist) 1418 { 1419 int ricnt = 0, pwake = 0; 1420 unsigned long flags; 1421 struct epitem *epi; 1422 1423 write_lock_irqsave(&ep->lock, flags); 1424 1425 while (!list_empty(txlist)) { 1426 epi = list_entry(txlist->next, struct epitem, txlink); 1427 1428 /* Unlink the current item from the transfer list */ 1429 ep_list_del(&epi->txlink); 1430 1431 /* 1432 * If the item is no more linked to the interest set, we don't 1433 * have to push it inside the ready list because the following 1434 * ep_release_epitem() is going to drop it. Also, if the current 1435 * item is set to have an Edge Triggered behaviour, we don't have 1436 * to push it back either. 1437 */ 1438 if (ep_rb_linked(&epi->rbn) && !(epi->event.events & EPOLLET) && 1439 (epi->revents & epi->event.events) && !ep_is_linked(&epi->rdllink)) { 1440 list_add_tail(&epi->rdllink, &ep->rdllist); 1441 ricnt++; 1442 } 1443 } 1444 1445 if (ricnt) { 1446 /* 1447 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1448 * wait list. 1449 */ 1450 if (waitqueue_active(&ep->wq)) 1451 wake_up(&ep->wq); 1452 if (waitqueue_active(&ep->poll_wait)) 1453 pwake++; 1454 } 1455 1456 write_unlock_irqrestore(&ep->lock, flags); 1457 1458 /* We have to call this outside the lock */ 1459 if (pwake) 1460 ep_poll_safewake(&psw, &ep->poll_wait); 1461 } 1462 1463 1464 /* 1465 * Perform the transfer of events to user space. 1466 */ 1467 static int ep_events_transfer(struct eventpoll *ep, 1468 struct epoll_event __user *events, int maxevents) 1469 { 1470 int eventcnt = 0; 1471 struct list_head txlist; 1472 1473 INIT_LIST_HEAD(&txlist); 1474 1475 /* 1476 * We need to lock this because we could be hit by 1477 * eventpoll_release_file() and epoll_ctl(EPOLL_CTL_DEL). 1478 */ 1479 down_read(&ep->sem); 1480 1481 /* Collect/extract ready items */ 1482 if (ep_collect_ready_items(ep, &txlist, maxevents) > 0) { 1483 /* Build result set in userspace */ 1484 eventcnt = ep_send_events(ep, &txlist, events); 1485 1486 /* Reinject ready items into the ready list */ 1487 ep_reinject_items(ep, &txlist); 1488 } 1489 1490 up_read(&ep->sem); 1491 1492 return eventcnt; 1493 } 1494 1495 1496 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1497 int maxevents, long timeout) 1498 { 1499 int res, eavail; 1500 unsigned long flags; 1501 long jtimeout; 1502 wait_queue_t wait; 1503 1504 /* 1505 * Calculate the timeout by checking for the "infinite" value ( -1 ) 1506 * and the overflow condition. The passed timeout is in milliseconds, 1507 * that why (t * HZ) / 1000. 1508 */ 1509 jtimeout = timeout == -1 || timeout > (MAX_SCHEDULE_TIMEOUT - 1000) / HZ ? 1510 MAX_SCHEDULE_TIMEOUT: (timeout * HZ + 999) / 1000; 1511 1512 retry: 1513 write_lock_irqsave(&ep->lock, flags); 1514 1515 res = 0; 1516 if (list_empty(&ep->rdllist)) { 1517 /* 1518 * We don't have any available event to return to the caller. 1519 * We need to sleep here, and we will be wake up by 1520 * ep_poll_callback() when events will become available. 1521 */ 1522 init_waitqueue_entry(&wait, current); 1523 add_wait_queue(&ep->wq, &wait); 1524 1525 for (;;) { 1526 /* 1527 * We don't want to sleep if the ep_poll_callback() sends us 1528 * a wakeup in between. That's why we set the task state 1529 * to TASK_INTERRUPTIBLE before doing the checks. 1530 */ 1531 set_current_state(TASK_INTERRUPTIBLE); 1532 if (!list_empty(&ep->rdllist) || !jtimeout) 1533 break; 1534 if (signal_pending(current)) { 1535 res = -EINTR; 1536 break; 1537 } 1538 1539 write_unlock_irqrestore(&ep->lock, flags); 1540 jtimeout = schedule_timeout(jtimeout); 1541 write_lock_irqsave(&ep->lock, flags); 1542 } 1543 remove_wait_queue(&ep->wq, &wait); 1544 1545 set_current_state(TASK_RUNNING); 1546 } 1547 1548 /* Is it worth to try to dig for events ? */ 1549 eavail = !list_empty(&ep->rdllist); 1550 1551 write_unlock_irqrestore(&ep->lock, flags); 1552 1553 /* 1554 * Try to transfer events to user space. In case we get 0 events and 1555 * there's still timeout left over, we go trying again in search of 1556 * more luck. 1557 */ 1558 if (!res && eavail && 1559 !(res = ep_events_transfer(ep, events, maxevents)) && jtimeout) 1560 goto retry; 1561 1562 return res; 1563 } 1564 1565 1566 static int eventpollfs_delete_dentry(struct dentry *dentry) 1567 { 1568 1569 return 1; 1570 } 1571 1572 1573 static struct inode *ep_eventpoll_inode(void) 1574 { 1575 int error = -ENOMEM; 1576 struct inode *inode = new_inode(eventpoll_mnt->mnt_sb); 1577 1578 if (!inode) 1579 goto eexit_1; 1580 1581 inode->i_fop = &eventpoll_fops; 1582 1583 /* 1584 * Mark the inode dirty from the very beginning, 1585 * that way it will never be moved to the dirty 1586 * list because mark_inode_dirty() will think 1587 * that it already _is_ on the dirty list. 1588 */ 1589 inode->i_state = I_DIRTY; 1590 inode->i_mode = S_IRUSR | S_IWUSR; 1591 inode->i_uid = current->fsuid; 1592 inode->i_gid = current->fsgid; 1593 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1594 inode->i_blksize = PAGE_SIZE; 1595 return inode; 1596 1597 eexit_1: 1598 return ERR_PTR(error); 1599 } 1600 1601 1602 static struct super_block * 1603 eventpollfs_get_sb(struct file_system_type *fs_type, int flags, 1604 const char *dev_name, void *data) 1605 { 1606 return get_sb_pseudo(fs_type, "eventpoll:", NULL, EVENTPOLLFS_MAGIC); 1607 } 1608 1609 1610 static int __init eventpoll_init(void) 1611 { 1612 int error; 1613 1614 init_MUTEX(&epsem); 1615 1616 /* Initialize the structure used to perform safe poll wait head wake ups */ 1617 ep_poll_safewake_init(&psw); 1618 1619 /* Allocates slab cache used to allocate "struct epitem" items */ 1620 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 1621 0, SLAB_HWCACHE_ALIGN|EPI_SLAB_DEBUG|SLAB_PANIC, 1622 NULL, NULL); 1623 1624 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 1625 pwq_cache = kmem_cache_create("eventpoll_pwq", 1626 sizeof(struct eppoll_entry), 0, 1627 EPI_SLAB_DEBUG|SLAB_PANIC, NULL, NULL); 1628 1629 /* 1630 * Register the virtual file system that will be the source of inodes 1631 * for the eventpoll files 1632 */ 1633 error = register_filesystem(&eventpoll_fs_type); 1634 if (error) 1635 goto epanic; 1636 1637 /* Mount the above commented virtual file system */ 1638 eventpoll_mnt = kern_mount(&eventpoll_fs_type); 1639 error = PTR_ERR(eventpoll_mnt); 1640 if (IS_ERR(eventpoll_mnt)) 1641 goto epanic; 1642 1643 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: successfully initialized.\n", 1644 current)); 1645 return 0; 1646 1647 epanic: 1648 panic("eventpoll_init() failed\n"); 1649 } 1650 1651 1652 static void __exit eventpoll_exit(void) 1653 { 1654 /* Undo all operations done inside eventpoll_init() */ 1655 unregister_filesystem(&eventpoll_fs_type); 1656 mntput(eventpoll_mnt); 1657 kmem_cache_destroy(pwq_cache); 1658 kmem_cache_destroy(epi_cache); 1659 } 1660 1661 module_init(eventpoll_init); 1662 module_exit(eventpoll_exit); 1663 1664 MODULE_LICENSE("GPL"); 1665