1 /* 2 * fs/eventfd.c 3 * 4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 5 * 6 */ 7 8 #include <linux/file.h> 9 #include <linux/poll.h> 10 #include <linux/init.h> 11 #include <linux/fs.h> 12 #include <linux/sched.h> 13 #include <linux/kernel.h> 14 #include <linux/list.h> 15 #include <linux/spinlock.h> 16 #include <linux/anon_inodes.h> 17 #include <linux/eventfd.h> 18 19 struct eventfd_ctx { 20 wait_queue_head_t wqh; 21 /* 22 * Every time that a write(2) is performed on an eventfd, the 23 * value of the __u64 being written is added to "count" and a 24 * wakeup is performed on "wqh". A read(2) will return the "count" 25 * value to userspace, and will reset "count" to zero. The kernel 26 * size eventfd_signal() also, adds to the "count" counter and 27 * issue a wakeup. 28 */ 29 __u64 count; 30 }; 31 32 /* 33 * Adds "n" to the eventfd counter "count". Returns "n" in case of 34 * success, or a value lower then "n" in case of coutner overflow. 35 * This function is supposed to be called by the kernel in paths 36 * that do not allow sleeping. In this function we allow the counter 37 * to reach the ULLONG_MAX value, and we signal this as overflow 38 * condition by returining a POLLERR to poll(2). 39 */ 40 int eventfd_signal(struct file *file, int n) 41 { 42 struct eventfd_ctx *ctx = file->private_data; 43 unsigned long flags; 44 45 if (n < 0) 46 return -EINVAL; 47 spin_lock_irqsave(&ctx->wqh.lock, flags); 48 if (ULLONG_MAX - ctx->count < n) 49 n = (int) (ULLONG_MAX - ctx->count); 50 ctx->count += n; 51 if (waitqueue_active(&ctx->wqh)) 52 wake_up_locked(&ctx->wqh); 53 spin_unlock_irqrestore(&ctx->wqh.lock, flags); 54 55 return n; 56 } 57 58 static int eventfd_release(struct inode *inode, struct file *file) 59 { 60 kfree(file->private_data); 61 return 0; 62 } 63 64 static unsigned int eventfd_poll(struct file *file, poll_table *wait) 65 { 66 struct eventfd_ctx *ctx = file->private_data; 67 unsigned int events = 0; 68 unsigned long flags; 69 70 poll_wait(file, &ctx->wqh, wait); 71 72 spin_lock_irqsave(&ctx->wqh.lock, flags); 73 if (ctx->count > 0) 74 events |= POLLIN; 75 if (ctx->count == ULLONG_MAX) 76 events |= POLLERR; 77 if (ULLONG_MAX - 1 > ctx->count) 78 events |= POLLOUT; 79 spin_unlock_irqrestore(&ctx->wqh.lock, flags); 80 81 return events; 82 } 83 84 static ssize_t eventfd_read(struct file *file, char __user *buf, size_t count, 85 loff_t *ppos) 86 { 87 struct eventfd_ctx *ctx = file->private_data; 88 ssize_t res; 89 __u64 ucnt; 90 DECLARE_WAITQUEUE(wait, current); 91 92 if (count < sizeof(ucnt)) 93 return -EINVAL; 94 spin_lock_irq(&ctx->wqh.lock); 95 res = -EAGAIN; 96 ucnt = ctx->count; 97 if (ucnt > 0) 98 res = sizeof(ucnt); 99 else if (!(file->f_flags & O_NONBLOCK)) { 100 __add_wait_queue(&ctx->wqh, &wait); 101 for (res = 0;;) { 102 set_current_state(TASK_INTERRUPTIBLE); 103 if (ctx->count > 0) { 104 ucnt = ctx->count; 105 res = sizeof(ucnt); 106 break; 107 } 108 if (signal_pending(current)) { 109 res = -ERESTARTSYS; 110 break; 111 } 112 spin_unlock_irq(&ctx->wqh.lock); 113 schedule(); 114 spin_lock_irq(&ctx->wqh.lock); 115 } 116 __remove_wait_queue(&ctx->wqh, &wait); 117 __set_current_state(TASK_RUNNING); 118 } 119 if (res > 0) { 120 ctx->count = 0; 121 if (waitqueue_active(&ctx->wqh)) 122 wake_up_locked(&ctx->wqh); 123 } 124 spin_unlock_irq(&ctx->wqh.lock); 125 if (res > 0 && put_user(ucnt, (__u64 __user *) buf)) 126 return -EFAULT; 127 128 return res; 129 } 130 131 static ssize_t eventfd_write(struct file *file, const char __user *buf, size_t count, 132 loff_t *ppos) 133 { 134 struct eventfd_ctx *ctx = file->private_data; 135 ssize_t res; 136 __u64 ucnt; 137 DECLARE_WAITQUEUE(wait, current); 138 139 if (count < sizeof(ucnt)) 140 return -EINVAL; 141 if (copy_from_user(&ucnt, buf, sizeof(ucnt))) 142 return -EFAULT; 143 if (ucnt == ULLONG_MAX) 144 return -EINVAL; 145 spin_lock_irq(&ctx->wqh.lock); 146 res = -EAGAIN; 147 if (ULLONG_MAX - ctx->count > ucnt) 148 res = sizeof(ucnt); 149 else if (!(file->f_flags & O_NONBLOCK)) { 150 __add_wait_queue(&ctx->wqh, &wait); 151 for (res = 0;;) { 152 set_current_state(TASK_INTERRUPTIBLE); 153 if (ULLONG_MAX - ctx->count > ucnt) { 154 res = sizeof(ucnt); 155 break; 156 } 157 if (signal_pending(current)) { 158 res = -ERESTARTSYS; 159 break; 160 } 161 spin_unlock_irq(&ctx->wqh.lock); 162 schedule(); 163 spin_lock_irq(&ctx->wqh.lock); 164 } 165 __remove_wait_queue(&ctx->wqh, &wait); 166 __set_current_state(TASK_RUNNING); 167 } 168 if (res > 0) { 169 ctx->count += ucnt; 170 if (waitqueue_active(&ctx->wqh)) 171 wake_up_locked(&ctx->wqh); 172 } 173 spin_unlock_irq(&ctx->wqh.lock); 174 175 return res; 176 } 177 178 static const struct file_operations eventfd_fops = { 179 .release = eventfd_release, 180 .poll = eventfd_poll, 181 .read = eventfd_read, 182 .write = eventfd_write, 183 }; 184 185 struct file *eventfd_fget(int fd) 186 { 187 struct file *file; 188 189 file = fget(fd); 190 if (!file) 191 return ERR_PTR(-EBADF); 192 if (file->f_op != &eventfd_fops) { 193 fput(file); 194 return ERR_PTR(-EINVAL); 195 } 196 197 return file; 198 } 199 200 asmlinkage long sys_eventfd(unsigned int count) 201 { 202 int error, fd; 203 struct eventfd_ctx *ctx; 204 struct file *file; 205 struct inode *inode; 206 207 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 208 if (!ctx) 209 return -ENOMEM; 210 211 init_waitqueue_head(&ctx->wqh); 212 ctx->count = count; 213 214 /* 215 * When we call this, the initialization must be complete, since 216 * anon_inode_getfd() will install the fd. 217 */ 218 error = anon_inode_getfd(&fd, &inode, &file, "[eventfd]", 219 &eventfd_fops, ctx); 220 if (!error) 221 return fd; 222 223 kfree(ctx); 224 return error; 225 } 226 227