1 /** 2 * eCryptfs: Linux filesystem encryption layer 3 * This is where eCryptfs coordinates the symmetric encryption and 4 * decryption of the file data as it passes between the lower 5 * encrypted file and the upper decrypted file. 6 * 7 * Copyright (C) 1997-2003 Erez Zadok 8 * Copyright (C) 2001-2003 Stony Brook University 9 * Copyright (C) 2004-2006 International Business Machines Corp. 10 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License as 14 * published by the Free Software Foundation; either version 2 of the 15 * License, or (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, but 18 * WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 20 * General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 25 * 02111-1307, USA. 26 */ 27 28 #include <linux/pagemap.h> 29 #include <linux/writeback.h> 30 #include <linux/page-flags.h> 31 #include <linux/mount.h> 32 #include <linux/file.h> 33 #include <linux/crypto.h> 34 #include <linux/scatterlist.h> 35 #include "ecryptfs_kernel.h" 36 37 struct kmem_cache *ecryptfs_lower_page_cache; 38 39 /** 40 * ecryptfs_get1page 41 * 42 * Get one page from cache or lower f/s, return error otherwise. 43 * 44 * Returns unlocked and up-to-date page (if ok), with increased 45 * refcnt. 46 */ 47 static struct page *ecryptfs_get1page(struct file *file, int index) 48 { 49 struct page *page; 50 struct dentry *dentry; 51 struct inode *inode; 52 struct address_space *mapping; 53 54 dentry = file->f_path.dentry; 55 inode = dentry->d_inode; 56 mapping = inode->i_mapping; 57 page = read_cache_page(mapping, index, 58 (filler_t *)mapping->a_ops->readpage, 59 (void *)file); 60 if (IS_ERR(page)) 61 goto out; 62 wait_on_page_locked(page); 63 out: 64 return page; 65 } 66 67 static 68 int write_zeros(struct file *file, pgoff_t index, int start, int num_zeros); 69 70 /** 71 * ecryptfs_fill_zeros 72 * @file: The ecryptfs file 73 * @new_length: The new length of the data in the underlying file; 74 * everything between the prior end of the file and the 75 * new end of the file will be filled with zero's. 76 * new_length must be greater than current length 77 * 78 * Function for handling lseek-ing past the end of the file. 79 * 80 * This function does not support shrinking, only growing a file. 81 * 82 * Returns zero on success; non-zero otherwise. 83 */ 84 int ecryptfs_fill_zeros(struct file *file, loff_t new_length) 85 { 86 int rc = 0; 87 struct dentry *dentry = file->f_path.dentry; 88 struct inode *inode = dentry->d_inode; 89 pgoff_t old_end_page_index = 0; 90 pgoff_t index = old_end_page_index; 91 int old_end_pos_in_page = -1; 92 pgoff_t new_end_page_index; 93 int new_end_pos_in_page; 94 loff_t cur_length = i_size_read(inode); 95 96 if (cur_length != 0) { 97 index = old_end_page_index = 98 ((cur_length - 1) >> PAGE_CACHE_SHIFT); 99 old_end_pos_in_page = ((cur_length - 1) & ~PAGE_CACHE_MASK); 100 } 101 new_end_page_index = ((new_length - 1) >> PAGE_CACHE_SHIFT); 102 new_end_pos_in_page = ((new_length - 1) & ~PAGE_CACHE_MASK); 103 ecryptfs_printk(KERN_DEBUG, "old_end_page_index = [0x%.16x]; " 104 "old_end_pos_in_page = [%d]; " 105 "new_end_page_index = [0x%.16x]; " 106 "new_end_pos_in_page = [%d]\n", 107 old_end_page_index, old_end_pos_in_page, 108 new_end_page_index, new_end_pos_in_page); 109 if (old_end_page_index == new_end_page_index) { 110 /* Start and end are in the same page; we just need to 111 * set a portion of the existing page to zero's */ 112 rc = write_zeros(file, index, (old_end_pos_in_page + 1), 113 (new_end_pos_in_page - old_end_pos_in_page)); 114 if (rc) 115 ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], " 116 "index=[0x%.16x], " 117 "old_end_pos_in_page=[d], " 118 "(PAGE_CACHE_SIZE - new_end_pos_in_page" 119 "=[%d]" 120 ")=[d]) returned [%d]\n", file, index, 121 old_end_pos_in_page, 122 new_end_pos_in_page, 123 (PAGE_CACHE_SIZE - new_end_pos_in_page), 124 rc); 125 goto out; 126 } 127 /* Fill the remainder of the previous last page with zeros */ 128 rc = write_zeros(file, index, (old_end_pos_in_page + 1), 129 ((PAGE_CACHE_SIZE - 1) - old_end_pos_in_page)); 130 if (rc) { 131 ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], " 132 "index=[0x%.16x], old_end_pos_in_page=[d], " 133 "(PAGE_CACHE_SIZE - old_end_pos_in_page)=[d]) " 134 "returned [%d]\n", file, index, 135 old_end_pos_in_page, 136 (PAGE_CACHE_SIZE - old_end_pos_in_page), rc); 137 goto out; 138 } 139 index++; 140 while (index < new_end_page_index) { 141 /* Fill all intermediate pages with zeros */ 142 rc = write_zeros(file, index, 0, PAGE_CACHE_SIZE); 143 if (rc) { 144 ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], " 145 "index=[0x%.16x], " 146 "old_end_pos_in_page=[d], " 147 "(PAGE_CACHE_SIZE - new_end_pos_in_page" 148 "=[%d]" 149 ")=[d]) returned [%d]\n", file, index, 150 old_end_pos_in_page, 151 new_end_pos_in_page, 152 (PAGE_CACHE_SIZE - new_end_pos_in_page), 153 rc); 154 goto out; 155 } 156 index++; 157 } 158 /* Fill the portion at the beginning of the last new page with 159 * zero's */ 160 rc = write_zeros(file, index, 0, (new_end_pos_in_page + 1)); 161 if (rc) { 162 ecryptfs_printk(KERN_ERR, "write_zeros(file=" 163 "[%p], index=[0x%.16x], 0, " 164 "new_end_pos_in_page=[%d]" 165 "returned [%d]\n", file, index, 166 new_end_pos_in_page, rc); 167 goto out; 168 } 169 out: 170 return rc; 171 } 172 173 /** 174 * ecryptfs_writepage 175 * @page: Page that is locked before this call is made 176 * 177 * Returns zero on success; non-zero otherwise 178 */ 179 static int ecryptfs_writepage(struct page *page, struct writeback_control *wbc) 180 { 181 struct ecryptfs_page_crypt_context ctx; 182 int rc; 183 184 ctx.page = page; 185 ctx.mode = ECRYPTFS_WRITEPAGE_MODE; 186 ctx.param.wbc = wbc; 187 rc = ecryptfs_encrypt_page(&ctx); 188 if (rc) { 189 ecryptfs_printk(KERN_WARNING, "Error encrypting " 190 "page (upper index [0x%.16x])\n", page->index); 191 ClearPageUptodate(page); 192 goto out; 193 } 194 SetPageUptodate(page); 195 unlock_page(page); 196 out: 197 return rc; 198 } 199 200 /** 201 * Reads the data from the lower file file at index lower_page_index 202 * and copies that data into page. 203 * 204 * @param page Page to fill 205 * @param lower_page_index Index of the page in the lower file to get 206 */ 207 int ecryptfs_do_readpage(struct file *file, struct page *page, 208 pgoff_t lower_page_index) 209 { 210 int rc; 211 struct dentry *dentry; 212 struct file *lower_file; 213 struct dentry *lower_dentry; 214 struct inode *inode; 215 struct inode *lower_inode; 216 char *page_data; 217 struct page *lower_page = NULL; 218 char *lower_page_data; 219 const struct address_space_operations *lower_a_ops; 220 221 dentry = file->f_path.dentry; 222 lower_file = ecryptfs_file_to_lower(file); 223 lower_dentry = ecryptfs_dentry_to_lower(dentry); 224 inode = dentry->d_inode; 225 lower_inode = ecryptfs_inode_to_lower(inode); 226 lower_a_ops = lower_inode->i_mapping->a_ops; 227 lower_page = read_cache_page(lower_inode->i_mapping, lower_page_index, 228 (filler_t *)lower_a_ops->readpage, 229 (void *)lower_file); 230 if (IS_ERR(lower_page)) { 231 rc = PTR_ERR(lower_page); 232 lower_page = NULL; 233 ecryptfs_printk(KERN_ERR, "Error reading from page cache\n"); 234 goto out; 235 } 236 wait_on_page_locked(lower_page); 237 page_data = (char *)kmap(page); 238 if (!page_data) { 239 rc = -ENOMEM; 240 ecryptfs_printk(KERN_ERR, "Error mapping page\n"); 241 goto out; 242 } 243 lower_page_data = (char *)kmap(lower_page); 244 if (!lower_page_data) { 245 rc = -ENOMEM; 246 ecryptfs_printk(KERN_ERR, "Error mapping page\n"); 247 kunmap(page); 248 goto out; 249 } 250 memcpy(page_data, lower_page_data, PAGE_CACHE_SIZE); 251 kunmap(lower_page); 252 kunmap(page); 253 rc = 0; 254 out: 255 if (likely(lower_page)) 256 page_cache_release(lower_page); 257 if (rc == 0) 258 SetPageUptodate(page); 259 else 260 ClearPageUptodate(page); 261 return rc; 262 } 263 264 /** 265 * ecryptfs_readpage 266 * @file: This is an ecryptfs file 267 * @page: ecryptfs associated page to stick the read data into 268 * 269 * Read in a page, decrypting if necessary. 270 * 271 * Returns zero on success; non-zero on error. 272 */ 273 static int ecryptfs_readpage(struct file *file, struct page *page) 274 { 275 int rc = 0; 276 struct ecryptfs_crypt_stat *crypt_stat; 277 278 BUG_ON(!(file && file->f_path.dentry && file->f_path.dentry->d_inode)); 279 crypt_stat = &ecryptfs_inode_to_private(file->f_path.dentry->d_inode) 280 ->crypt_stat; 281 if (!crypt_stat 282 || !ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED) 283 || ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_NEW_FILE)) { 284 ecryptfs_printk(KERN_DEBUG, 285 "Passing through unencrypted page\n"); 286 rc = ecryptfs_do_readpage(file, page, page->index); 287 if (rc) { 288 ecryptfs_printk(KERN_ERR, "Error reading page; rc = " 289 "[%d]\n", rc); 290 goto out; 291 } 292 } else { 293 rc = ecryptfs_decrypt_page(file, page); 294 if (rc) { 295 296 ecryptfs_printk(KERN_ERR, "Error decrypting page; " 297 "rc = [%d]\n", rc); 298 goto out; 299 } 300 } 301 SetPageUptodate(page); 302 out: 303 if (rc) 304 ClearPageUptodate(page); 305 ecryptfs_printk(KERN_DEBUG, "Unlocking page with index = [0x%.16x]\n", 306 page->index); 307 unlock_page(page); 308 return rc; 309 } 310 311 static int fill_zeros_to_end_of_page(struct page *page, unsigned int to) 312 { 313 struct inode *inode = page->mapping->host; 314 int end_byte_in_page; 315 int rc = 0; 316 char *page_virt; 317 318 if ((i_size_read(inode) / PAGE_CACHE_SIZE) == page->index) { 319 end_byte_in_page = i_size_read(inode) % PAGE_CACHE_SIZE; 320 if (to > end_byte_in_page) 321 end_byte_in_page = to; 322 page_virt = kmap(page); 323 if (!page_virt) { 324 rc = -ENOMEM; 325 ecryptfs_printk(KERN_WARNING, 326 "Could not map page\n"); 327 goto out; 328 } 329 memset((page_virt + end_byte_in_page), 0, 330 (PAGE_CACHE_SIZE - end_byte_in_page)); 331 kunmap(page); 332 } 333 out: 334 return rc; 335 } 336 337 static int ecryptfs_prepare_write(struct file *file, struct page *page, 338 unsigned from, unsigned to) 339 { 340 int rc = 0; 341 342 kmap(page); 343 if (from == 0 && to == PAGE_CACHE_SIZE) 344 goto out; /* If we are writing a full page, it will be 345 up to date. */ 346 if (!PageUptodate(page)) 347 rc = ecryptfs_do_readpage(file, page, page->index); 348 out: 349 return rc; 350 } 351 352 int ecryptfs_grab_and_map_lower_page(struct page **lower_page, 353 char **lower_virt, 354 struct inode *lower_inode, 355 unsigned long lower_page_index) 356 { 357 int rc = 0; 358 359 (*lower_page) = grab_cache_page(lower_inode->i_mapping, 360 lower_page_index); 361 if (!(*lower_page)) { 362 ecryptfs_printk(KERN_ERR, "grab_cache_page for " 363 "lower_page_index = [0x%.16x] failed\n", 364 lower_page_index); 365 rc = -EINVAL; 366 goto out; 367 } 368 if (lower_virt) 369 (*lower_virt) = kmap((*lower_page)); 370 else 371 kmap((*lower_page)); 372 out: 373 return rc; 374 } 375 376 int ecryptfs_writepage_and_release_lower_page(struct page *lower_page, 377 struct inode *lower_inode, 378 struct writeback_control *wbc) 379 { 380 int rc = 0; 381 382 rc = lower_inode->i_mapping->a_ops->writepage(lower_page, wbc); 383 if (rc) { 384 ecryptfs_printk(KERN_ERR, "Error calling lower writepage(); " 385 "rc = [%d]\n", rc); 386 goto out; 387 } 388 lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME; 389 page_cache_release(lower_page); 390 out: 391 return rc; 392 } 393 394 static void ecryptfs_unmap_and_release_lower_page(struct page *lower_page) 395 { 396 kunmap(lower_page); 397 ecryptfs_printk(KERN_DEBUG, "Unlocking lower page with index = " 398 "[0x%.16x]\n", lower_page->index); 399 unlock_page(lower_page); 400 page_cache_release(lower_page); 401 } 402 403 /** 404 * ecryptfs_write_inode_size_to_header 405 * 406 * Writes the lower file size to the first 8 bytes of the header. 407 * 408 * Returns zero on success; non-zero on error. 409 */ 410 int 411 ecryptfs_write_inode_size_to_header(struct file *lower_file, 412 struct inode *lower_inode, 413 struct inode *inode) 414 { 415 int rc = 0; 416 struct page *header_page; 417 char *header_virt; 418 const struct address_space_operations *lower_a_ops; 419 u64 file_size; 420 421 rc = ecryptfs_grab_and_map_lower_page(&header_page, &header_virt, 422 lower_inode, 0); 423 if (rc) { 424 ecryptfs_printk(KERN_ERR, "grab_cache_page for header page " 425 "failed\n"); 426 goto out; 427 } 428 lower_a_ops = lower_inode->i_mapping->a_ops; 429 rc = lower_a_ops->prepare_write(lower_file, header_page, 0, 8); 430 file_size = (u64)i_size_read(inode); 431 ecryptfs_printk(KERN_DEBUG, "Writing size: [0x%.16x]\n", file_size); 432 file_size = cpu_to_be64(file_size); 433 memcpy(header_virt, &file_size, sizeof(u64)); 434 rc = lower_a_ops->commit_write(lower_file, header_page, 0, 8); 435 if (rc < 0) 436 ecryptfs_printk(KERN_ERR, "Error commiting header page " 437 "write\n"); 438 ecryptfs_unmap_and_release_lower_page(header_page); 439 lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME; 440 mark_inode_dirty_sync(inode); 441 out: 442 return rc; 443 } 444 445 int ecryptfs_get_lower_page(struct page **lower_page, struct inode *lower_inode, 446 struct file *lower_file, 447 unsigned long lower_page_index, int byte_offset, 448 int region_bytes) 449 { 450 int rc = 0; 451 452 rc = ecryptfs_grab_and_map_lower_page(lower_page, NULL, lower_inode, 453 lower_page_index); 454 if (rc) { 455 ecryptfs_printk(KERN_ERR, "Error attempting to grab and map " 456 "lower page with index [0x%.16x]\n", 457 lower_page_index); 458 goto out; 459 } 460 rc = lower_inode->i_mapping->a_ops->prepare_write(lower_file, 461 (*lower_page), 462 byte_offset, 463 region_bytes); 464 if (rc) { 465 ecryptfs_printk(KERN_ERR, "prepare_write for " 466 "lower_page_index = [0x%.16x] failed; rc = " 467 "[%d]\n", lower_page_index, rc); 468 } 469 out: 470 if (rc && (*lower_page)) { 471 ecryptfs_unmap_and_release_lower_page(*lower_page); 472 (*lower_page) = NULL; 473 } 474 return rc; 475 } 476 477 /** 478 * ecryptfs_commit_lower_page 479 * 480 * Returns zero on success; non-zero on error 481 */ 482 int 483 ecryptfs_commit_lower_page(struct page *lower_page, struct inode *lower_inode, 484 struct file *lower_file, int byte_offset, 485 int region_size) 486 { 487 int rc = 0; 488 489 rc = lower_inode->i_mapping->a_ops->commit_write( 490 lower_file, lower_page, byte_offset, region_size); 491 if (rc < 0) { 492 ecryptfs_printk(KERN_ERR, 493 "Error committing write; rc = [%d]\n", rc); 494 } else 495 rc = 0; 496 ecryptfs_unmap_and_release_lower_page(lower_page); 497 return rc; 498 } 499 500 /** 501 * ecryptfs_copy_page_to_lower 502 * 503 * Used for plaintext pass-through; no page index interpolation 504 * required. 505 */ 506 int ecryptfs_copy_page_to_lower(struct page *page, struct inode *lower_inode, 507 struct file *lower_file) 508 { 509 int rc = 0; 510 struct page *lower_page; 511 512 rc = ecryptfs_get_lower_page(&lower_page, lower_inode, lower_file, 513 page->index, 0, PAGE_CACHE_SIZE); 514 if (rc) { 515 ecryptfs_printk(KERN_ERR, "Error attempting to get page " 516 "at index [0x%.16x]\n", page->index); 517 goto out; 518 } 519 /* TODO: aops */ 520 memcpy((char *)page_address(lower_page), page_address(page), 521 PAGE_CACHE_SIZE); 522 rc = ecryptfs_commit_lower_page(lower_page, lower_inode, lower_file, 523 0, PAGE_CACHE_SIZE); 524 if (rc) 525 ecryptfs_printk(KERN_ERR, "Error attempting to commit page " 526 "at index [0x%.16x]\n", page->index); 527 out: 528 return rc; 529 } 530 531 /** 532 * ecryptfs_commit_write 533 * @file: The eCryptfs file object 534 * @page: The eCryptfs page 535 * @from: Ignored (we rotate the page IV on each write) 536 * @to: Ignored 537 * 538 * This is where we encrypt the data and pass the encrypted data to 539 * the lower filesystem. In OpenPGP-compatible mode, we operate on 540 * entire underlying packets. 541 */ 542 static int ecryptfs_commit_write(struct file *file, struct page *page, 543 unsigned from, unsigned to) 544 { 545 struct ecryptfs_page_crypt_context ctx; 546 loff_t pos; 547 struct inode *inode; 548 struct inode *lower_inode; 549 struct file *lower_file; 550 struct ecryptfs_crypt_stat *crypt_stat; 551 int rc; 552 553 inode = page->mapping->host; 554 lower_inode = ecryptfs_inode_to_lower(inode); 555 lower_file = ecryptfs_file_to_lower(file); 556 mutex_lock(&lower_inode->i_mutex); 557 crypt_stat = &ecryptfs_inode_to_private(file->f_path.dentry->d_inode) 558 ->crypt_stat; 559 if (ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_NEW_FILE)) { 560 ecryptfs_printk(KERN_DEBUG, "ECRYPTFS_NEW_FILE flag set in " 561 "crypt_stat at memory location [%p]\n", crypt_stat); 562 ECRYPTFS_CLEAR_FLAG(crypt_stat->flags, ECRYPTFS_NEW_FILE); 563 } else 564 ecryptfs_printk(KERN_DEBUG, "Not a new file\n"); 565 ecryptfs_printk(KERN_DEBUG, "Calling fill_zeros_to_end_of_page" 566 "(page w/ index = [0x%.16x], to = [%d])\n", page->index, 567 to); 568 rc = fill_zeros_to_end_of_page(page, to); 569 if (rc) { 570 ecryptfs_printk(KERN_WARNING, "Error attempting to fill " 571 "zeros in page with index = [0x%.16x]\n", 572 page->index); 573 goto out; 574 } 575 ctx.page = page; 576 ctx.mode = ECRYPTFS_PREPARE_COMMIT_MODE; 577 ctx.param.lower_file = lower_file; 578 rc = ecryptfs_encrypt_page(&ctx); 579 if (rc) { 580 ecryptfs_printk(KERN_WARNING, "Error encrypting page (upper " 581 "index [0x%.16x])\n", page->index); 582 goto out; 583 } 584 rc = 0; 585 inode->i_blocks = lower_inode->i_blocks; 586 pos = (page->index << PAGE_CACHE_SHIFT) + to; 587 if (pos > i_size_read(inode)) { 588 i_size_write(inode, pos); 589 ecryptfs_printk(KERN_DEBUG, "Expanded file size to " 590 "[0x%.16x]\n", i_size_read(inode)); 591 } 592 ecryptfs_write_inode_size_to_header(lower_file, lower_inode, inode); 593 lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME; 594 mark_inode_dirty_sync(inode); 595 out: 596 kunmap(page); /* mapped in prior call (prepare_write) */ 597 if (rc < 0) 598 ClearPageUptodate(page); 599 else 600 SetPageUptodate(page); 601 mutex_unlock(&lower_inode->i_mutex); 602 return rc; 603 } 604 605 /** 606 * write_zeros 607 * @file: The ecryptfs file 608 * @index: The index in which we are writing 609 * @start: The position after the last block of data 610 * @num_zeros: The number of zeros to write 611 * 612 * Write a specified number of zero's to a page. 613 * 614 * (start + num_zeros) must be less than or equal to PAGE_CACHE_SIZE 615 */ 616 static 617 int write_zeros(struct file *file, pgoff_t index, int start, int num_zeros) 618 { 619 int rc = 0; 620 struct page *tmp_page; 621 622 tmp_page = ecryptfs_get1page(file, index); 623 if (IS_ERR(tmp_page)) { 624 ecryptfs_printk(KERN_ERR, "Error getting page at index " 625 "[0x%.16x]\n", index); 626 rc = PTR_ERR(tmp_page); 627 goto out; 628 } 629 kmap(tmp_page); 630 rc = ecryptfs_prepare_write(file, tmp_page, start, start + num_zeros); 631 if (rc) { 632 ecryptfs_printk(KERN_ERR, "Error preparing to write zero's " 633 "to remainder of page at index [0x%.16x]\n", 634 index); 635 kunmap(tmp_page); 636 page_cache_release(tmp_page); 637 goto out; 638 } 639 memset(((char *)page_address(tmp_page) + start), 0, num_zeros); 640 rc = ecryptfs_commit_write(file, tmp_page, start, start + num_zeros); 641 if (rc < 0) { 642 ecryptfs_printk(KERN_ERR, "Error attempting to write zero's " 643 "to remainder of page at index [0x%.16x]\n", 644 index); 645 kunmap(tmp_page); 646 page_cache_release(tmp_page); 647 goto out; 648 } 649 rc = 0; 650 kunmap(tmp_page); 651 page_cache_release(tmp_page); 652 out: 653 return rc; 654 } 655 656 static sector_t ecryptfs_bmap(struct address_space *mapping, sector_t block) 657 { 658 int rc = 0; 659 struct inode *inode; 660 struct inode *lower_inode; 661 662 inode = (struct inode *)mapping->host; 663 lower_inode = ecryptfs_inode_to_lower(inode); 664 if (lower_inode->i_mapping->a_ops->bmap) 665 rc = lower_inode->i_mapping->a_ops->bmap(lower_inode->i_mapping, 666 block); 667 return rc; 668 } 669 670 static void ecryptfs_sync_page(struct page *page) 671 { 672 struct inode *inode; 673 struct inode *lower_inode; 674 struct page *lower_page; 675 676 inode = page->mapping->host; 677 lower_inode = ecryptfs_inode_to_lower(inode); 678 /* NOTE: Recently swapped with grab_cache_page(), since 679 * sync_page() just makes sure that pending I/O gets done. */ 680 lower_page = find_lock_page(lower_inode->i_mapping, page->index); 681 if (!lower_page) { 682 ecryptfs_printk(KERN_DEBUG, "find_lock_page failed\n"); 683 return; 684 } 685 lower_page->mapping->a_ops->sync_page(lower_page); 686 ecryptfs_printk(KERN_DEBUG, "Unlocking page with index = [0x%.16x]\n", 687 lower_page->index); 688 unlock_page(lower_page); 689 page_cache_release(lower_page); 690 } 691 692 struct address_space_operations ecryptfs_aops = { 693 .writepage = ecryptfs_writepage, 694 .readpage = ecryptfs_readpage, 695 .prepare_write = ecryptfs_prepare_write, 696 .commit_write = ecryptfs_commit_write, 697 .bmap = ecryptfs_bmap, 698 .sync_page = ecryptfs_sync_page, 699 }; 700