xref: /openbmc/linux/fs/ecryptfs/messaging.c (revision dddfa461fc8951f9b5f951c13565b6cac678635a)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 2004-2006 International Business Machines Corp.
5  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
6  *		Tyler Hicks <tyhicks@ou.edu>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License version
10  * 2 as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20  * 02111-1307, USA.
21  */
22 
23 #include "ecryptfs_kernel.h"
24 
25 LIST_HEAD(ecryptfs_msg_ctx_free_list);
26 LIST_HEAD(ecryptfs_msg_ctx_alloc_list);
27 struct mutex ecryptfs_msg_ctx_lists_mux;
28 
29 struct hlist_head *ecryptfs_daemon_id_hash;
30 struct mutex ecryptfs_daemon_id_hash_mux;
31 int ecryptfs_hash_buckets;
32 
33 unsigned int ecryptfs_msg_counter;
34 struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr;
35 
36 /**
37  * ecryptfs_acquire_free_msg_ctx
38  * @msg_ctx: The context that was acquired from the free list
39  *
40  * Acquires a context element from the free list and locks the mutex
41  * on the context.  Returns zero on success; non-zero on error or upon
42  * failure to acquire a free context element.  Be sure to lock the
43  * list mutex before calling.
44  */
45 static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx)
46 {
47 	struct list_head *p;
48 	int rc;
49 
50 	if (list_empty(&ecryptfs_msg_ctx_free_list)) {
51 		ecryptfs_printk(KERN_WARNING, "The eCryptfs free "
52 				"context list is empty.  It may be helpful to "
53 				"specify the ecryptfs_message_buf_len "
54 				"parameter to be greater than the current "
55 				"value of [%d]\n", ecryptfs_message_buf_len);
56 		rc = -ENOMEM;
57 		goto out;
58 	}
59 	list_for_each(p, &ecryptfs_msg_ctx_free_list) {
60 		*msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node);
61 		if (mutex_trylock(&(*msg_ctx)->mux)) {
62 			(*msg_ctx)->task = current;
63 			rc = 0;
64 			goto out;
65 		}
66 	}
67 	rc = -ENOMEM;
68 out:
69 	return rc;
70 }
71 
72 /**
73  * ecryptfs_msg_ctx_free_to_alloc
74  * @msg_ctx: The context to move from the free list to the alloc list
75  *
76  * Be sure to lock the list mutex and the context mutex before
77  * calling.
78  */
79 static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx)
80 {
81 	list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list);
82 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING;
83 	msg_ctx->counter = ++ecryptfs_msg_counter;
84 }
85 
86 /**
87  * ecryptfs_msg_ctx_alloc_to_free
88  * @msg_ctx: The context to move from the alloc list to the free list
89  *
90  * Be sure to lock the list mutex and the context mutex before
91  * calling.
92  */
93 static void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx)
94 {
95 	list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list);
96 	if (msg_ctx->msg)
97 		kfree(msg_ctx->msg);
98 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE;
99 }
100 
101 /**
102  * ecryptfs_find_daemon_id
103  * @uid: The user id which maps to the desired daemon id
104  * @id: If return value is zero, points to the desired daemon id
105  *      pointer
106  *
107  * Search the hash list for the given user id.  Returns zero if the
108  * user id exists in the list; non-zero otherwise.  The daemon id hash
109  * mutex should be held before calling this function.
110  */
111 static int ecryptfs_find_daemon_id(uid_t uid, struct ecryptfs_daemon_id **id)
112 {
113 	struct hlist_node *elem;
114 	int rc;
115 
116 	hlist_for_each_entry(*id, elem,
117 			     &ecryptfs_daemon_id_hash[ecryptfs_uid_hash(uid)],
118 			     id_chain) {
119 		if ((*id)->uid == uid) {
120 			rc = 0;
121 			goto out;
122 		}
123 	}
124 	rc = -EINVAL;
125 out:
126 	return rc;
127 }
128 
129 static int ecryptfs_send_raw_message(unsigned int transport, u16 msg_type,
130 				     pid_t pid)
131 {
132 	int rc;
133 
134 	switch(transport) {
135 	case ECRYPTFS_TRANSPORT_NETLINK:
136 		rc = ecryptfs_send_netlink(NULL, 0, NULL, msg_type, 0, pid);
137 		break;
138 	case ECRYPTFS_TRANSPORT_CONNECTOR:
139 	case ECRYPTFS_TRANSPORT_RELAYFS:
140 	default:
141 		rc = -ENOSYS;
142 	}
143 	return rc;
144 }
145 
146 /**
147  * ecryptfs_process_helo
148  * @transport: The underlying transport (netlink, etc.)
149  * @uid: The user ID owner of the message
150  * @pid: The process ID for the userspace program that sent the
151  *       message
152  *
153  * Adds the uid and pid values to the daemon id hash.  If a uid
154  * already has a daemon pid registered, the daemon will be
155  * unregistered before the new daemon id is put into the hash list.
156  * Returns zero after adding a new daemon id to the hash list;
157  * non-zero otherwise.
158  */
159 int ecryptfs_process_helo(unsigned int transport, uid_t uid, pid_t pid)
160 {
161 	struct ecryptfs_daemon_id *new_id;
162 	struct ecryptfs_daemon_id *old_id;
163 	int rc;
164 
165 	mutex_lock(&ecryptfs_daemon_id_hash_mux);
166 	new_id = kmalloc(sizeof(*new_id), GFP_KERNEL);
167 	if (!new_id) {
168 		rc = -ENOMEM;
169 		ecryptfs_printk(KERN_ERR, "Failed to allocate memory; unable "
170 				"to register daemon [%d] for user\n", pid, uid);
171 		goto unlock;
172 	}
173 	if (!ecryptfs_find_daemon_id(uid, &old_id)) {
174 		printk(KERN_WARNING "Received request from user [%d] "
175 		       "to register daemon [%d]; unregistering daemon "
176 		       "[%d]\n", uid, pid, old_id->pid);
177 		hlist_del(&old_id->id_chain);
178 		rc = ecryptfs_send_raw_message(transport, ECRYPTFS_NLMSG_QUIT,
179 					       old_id->pid);
180 		if (rc)
181 			printk(KERN_WARNING "Failed to send QUIT "
182 			       "message to daemon [%d]; rc = [%d]\n",
183 			       old_id->pid, rc);
184 		kfree(old_id);
185 	}
186 	new_id->uid = uid;
187 	new_id->pid = pid;
188 	hlist_add_head(&new_id->id_chain,
189 		       &ecryptfs_daemon_id_hash[ecryptfs_uid_hash(uid)]);
190 	rc = 0;
191 unlock:
192 	mutex_unlock(&ecryptfs_daemon_id_hash_mux);
193 	return rc;
194 }
195 
196 /**
197  * ecryptfs_process_quit
198  * @uid: The user ID owner of the message
199  * @pid: The process ID for the userspace program that sent the
200  *       message
201  *
202  * Deletes the corresponding daemon id for the given uid and pid, if
203  * it is the registered that is requesting the deletion. Returns zero
204  * after deleting the desired daemon id; non-zero otherwise.
205  */
206 int ecryptfs_process_quit(uid_t uid, pid_t pid)
207 {
208 	struct ecryptfs_daemon_id *id;
209 	int rc;
210 
211 	mutex_lock(&ecryptfs_daemon_id_hash_mux);
212 	if (ecryptfs_find_daemon_id(uid, &id)) {
213 		rc = -EINVAL;
214 		ecryptfs_printk(KERN_ERR, "Received request from user [%d] to "
215 				"unregister unrecognized daemon [%d]\n", uid,
216 				pid);
217 		goto unlock;
218 	}
219 	if (id->pid != pid) {
220 		rc = -EINVAL;
221 		ecryptfs_printk(KERN_WARNING, "Received request from user [%d] "
222 				"with pid [%d] to unregister daemon [%d]\n",
223 				uid, pid, id->pid);
224 		goto unlock;
225 	}
226 	hlist_del(&id->id_chain);
227 	kfree(id);
228 	rc = 0;
229 unlock:
230 	mutex_unlock(&ecryptfs_daemon_id_hash_mux);
231 	return rc;
232 }
233 
234 /**
235  * ecryptfs_process_reponse
236  * @msg: The ecryptfs message received; the caller should sanity check
237  *       msg->data_len
238  * @pid: The process ID of the userspace application that sent the
239  *       message
240  * @seq: The sequence number of the message
241  *
242  * Processes a response message after sending a operation request to
243  * userspace. Returns zero upon delivery to desired context element;
244  * non-zero upon delivery failure or error.
245  */
246 int ecryptfs_process_response(struct ecryptfs_message *msg, uid_t uid,
247 			      pid_t pid, u32 seq)
248 {
249 	struct ecryptfs_daemon_id *id;
250 	struct ecryptfs_msg_ctx *msg_ctx;
251 	int msg_size;
252 	int rc;
253 
254 	if (msg->index >= ecryptfs_message_buf_len) {
255 		rc = -EINVAL;
256 		ecryptfs_printk(KERN_ERR, "Attempt to reference "
257 				"context buffer at index [%d]; maximum "
258 				"allowable is [%d]\n", msg->index,
259 				(ecryptfs_message_buf_len - 1));
260 		goto out;
261 	}
262 	msg_ctx = &ecryptfs_msg_ctx_arr[msg->index];
263 	mutex_lock(&msg_ctx->mux);
264 	if (ecryptfs_find_daemon_id(msg_ctx->task->euid, &id)) {
265 		rc = -EBADMSG;
266 		ecryptfs_printk(KERN_WARNING, "User [%d] received a "
267 				"message response from process [%d] but does "
268 				"not have a registered daemon\n",
269 				msg_ctx->task->euid, pid);
270 		goto wake_up;
271 	}
272 	if (msg_ctx->task->euid != uid) {
273 		rc = -EBADMSG;
274 		ecryptfs_printk(KERN_WARNING, "Received message from user "
275 				"[%d]; expected message from user [%d]\n",
276 				uid, msg_ctx->task->euid);
277 		goto unlock;
278 	}
279 	if (id->pid != pid) {
280 		rc = -EBADMSG;
281 		ecryptfs_printk(KERN_ERR, "User [%d] received a "
282 				"message response from an unrecognized "
283 				"process [%d]\n", msg_ctx->task->euid, pid);
284 		goto unlock;
285 	}
286 	if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) {
287 		rc = -EINVAL;
288 		ecryptfs_printk(KERN_WARNING, "Desired context element is not "
289 				"pending a response\n");
290 		goto unlock;
291 	} else if (msg_ctx->counter != seq) {
292 		rc = -EINVAL;
293 		ecryptfs_printk(KERN_WARNING, "Invalid message sequence; "
294 				"expected [%d]; received [%d]\n",
295 				msg_ctx->counter, seq);
296 		goto unlock;
297 	}
298 	msg_size = sizeof(*msg) + msg->data_len;
299 	msg_ctx->msg = kmalloc(msg_size, GFP_KERNEL);
300 	if (!msg_ctx->msg) {
301 		rc = -ENOMEM;
302 		ecryptfs_printk(KERN_ERR, "Failed to allocate memory\n");
303 		goto unlock;
304 	}
305 	memcpy(msg_ctx->msg, msg, msg_size);
306 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE;
307 	rc = 0;
308 wake_up:
309 	wake_up_process(msg_ctx->task);
310 unlock:
311 	mutex_unlock(&msg_ctx->mux);
312 out:
313 	return rc;
314 }
315 
316 /**
317  * ecryptfs_send_message
318  * @transport: The transport over which to send the message (i.e.,
319  *             netlink)
320  * @data: The data to send
321  * @data_len: The length of data
322  * @msg_ctx: The message context allocated for the send
323  */
324 int ecryptfs_send_message(unsigned int transport, char *data, int data_len,
325 			  struct ecryptfs_msg_ctx **msg_ctx)
326 {
327 	struct ecryptfs_daemon_id *id;
328 	int rc;
329 
330 	mutex_lock(&ecryptfs_daemon_id_hash_mux);
331 	if (ecryptfs_find_daemon_id(current->euid, &id)) {
332 		mutex_unlock(&ecryptfs_daemon_id_hash_mux);
333 		rc = -ENOTCONN;
334 		ecryptfs_printk(KERN_ERR, "User [%d] does not have a daemon "
335 				"registered\n", current->euid);
336 		goto out;
337 	}
338 	mutex_unlock(&ecryptfs_daemon_id_hash_mux);
339 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
340 	rc = ecryptfs_acquire_free_msg_ctx(msg_ctx);
341 	if (rc) {
342 		mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
343 		ecryptfs_printk(KERN_WARNING, "Could not claim a free "
344 				"context element\n");
345 		goto out;
346 	}
347 	ecryptfs_msg_ctx_free_to_alloc(*msg_ctx);
348 	mutex_unlock(&(*msg_ctx)->mux);
349 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
350 	switch (transport) {
351 	case ECRYPTFS_TRANSPORT_NETLINK:
352 		rc = ecryptfs_send_netlink(data, data_len, *msg_ctx,
353 					   ECRYPTFS_NLMSG_REQUEST, 0, id->pid);
354 		break;
355 	case ECRYPTFS_TRANSPORT_CONNECTOR:
356 	case ECRYPTFS_TRANSPORT_RELAYFS:
357 	default:
358 		rc = -ENOSYS;
359 	}
360 	if (rc) {
361 		printk(KERN_ERR "Error attempting to send message to userspace "
362 		       "daemon; rc = [%d]\n", rc);
363 	}
364 out:
365 	return rc;
366 }
367 
368 /**
369  * ecryptfs_wait_for_response
370  * @msg_ctx: The context that was assigned when sending a message
371  * @msg: The incoming message from userspace; not set if rc != 0
372  *
373  * Sleeps until awaken by ecryptfs_receive_message or until the amount
374  * of time exceeds ecryptfs_message_wait_timeout.  If zero is
375  * returned, msg will point to a valid message from userspace; a
376  * non-zero value is returned upon failure to receive a message or an
377  * error occurs.
378  */
379 int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx,
380 			       struct ecryptfs_message **msg)
381 {
382 	signed long timeout = ecryptfs_message_wait_timeout * HZ;
383 	int rc = 0;
384 
385 sleep:
386 	timeout = schedule_timeout_interruptible(timeout);
387 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
388 	mutex_lock(&msg_ctx->mux);
389 	if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) {
390 		if (timeout) {
391 			mutex_unlock(&msg_ctx->mux);
392 			mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
393 			goto sleep;
394 		}
395 		rc = -ENOMSG;
396 	} else {
397 		*msg = msg_ctx->msg;
398 		msg_ctx->msg = NULL;
399 	}
400 	ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
401 	mutex_unlock(&msg_ctx->mux);
402 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
403 	return rc;
404 }
405 
406 int ecryptfs_init_messaging(unsigned int transport)
407 {
408 	int i;
409 	int rc = 0;
410 
411 	if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) {
412 		ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS;
413 		ecryptfs_printk(KERN_WARNING, "Specified number of users is "
414 				"too large, defaulting to [%d] users\n",
415 				ecryptfs_number_of_users);
416 	}
417 	mutex_init(&ecryptfs_daemon_id_hash_mux);
418 	mutex_lock(&ecryptfs_daemon_id_hash_mux);
419 	ecryptfs_hash_buckets = 0;
420 	while (ecryptfs_number_of_users >> ++ecryptfs_hash_buckets);
421 	ecryptfs_daemon_id_hash = kmalloc(sizeof(struct hlist_head)
422 					  * ecryptfs_hash_buckets, GFP_KERNEL);
423 	if (!ecryptfs_daemon_id_hash) {
424 		rc = -ENOMEM;
425 		ecryptfs_printk(KERN_ERR, "Failed to allocate memory\n");
426 		goto out;
427 	}
428 	for (i = 0; i < ecryptfs_hash_buckets; i++)
429 		INIT_HLIST_HEAD(&ecryptfs_daemon_id_hash[i]);
430 	mutex_unlock(&ecryptfs_daemon_id_hash_mux);
431 
432 	ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx)
433 				      * ecryptfs_message_buf_len), GFP_KERNEL);
434 	if (!ecryptfs_msg_ctx_arr) {
435 		rc = -ENOMEM;
436 		ecryptfs_printk(KERN_ERR, "Failed to allocate memory\n");
437 		goto out;
438 	}
439 	mutex_init(&ecryptfs_msg_ctx_lists_mux);
440 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
441 	ecryptfs_msg_counter = 0;
442 	for (i = 0; i < ecryptfs_message_buf_len; i++) {
443 		INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node);
444 		mutex_init(&ecryptfs_msg_ctx_arr[i].mux);
445 		mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
446 		ecryptfs_msg_ctx_arr[i].index = i;
447 		ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE;
448 		ecryptfs_msg_ctx_arr[i].counter = 0;
449 		ecryptfs_msg_ctx_arr[i].task = NULL;
450 		ecryptfs_msg_ctx_arr[i].msg = NULL;
451 		list_add_tail(&ecryptfs_msg_ctx_arr[i].node,
452 			      &ecryptfs_msg_ctx_free_list);
453 		mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
454 	}
455 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
456 	switch(transport) {
457 	case ECRYPTFS_TRANSPORT_NETLINK:
458 		rc = ecryptfs_init_netlink();
459 		if (rc)
460 			ecryptfs_release_messaging(transport);
461 		break;
462 	case ECRYPTFS_TRANSPORT_CONNECTOR:
463 	case ECRYPTFS_TRANSPORT_RELAYFS:
464 	default:
465 		rc = -ENOSYS;
466 	}
467 out:
468 	return rc;
469 }
470 
471 void ecryptfs_release_messaging(unsigned int transport)
472 {
473 	if (ecryptfs_msg_ctx_arr) {
474 		int i;
475 
476 		mutex_lock(&ecryptfs_msg_ctx_lists_mux);
477 		for (i = 0; i < ecryptfs_message_buf_len; i++) {
478 			mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
479 			if (ecryptfs_msg_ctx_arr[i].msg)
480 				kfree(ecryptfs_msg_ctx_arr[i].msg);
481 			mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
482 		}
483 		kfree(ecryptfs_msg_ctx_arr);
484 		mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
485 	}
486 	if (ecryptfs_daemon_id_hash) {
487 		struct hlist_node *elem;
488 		struct ecryptfs_daemon_id *id;
489 		int i;
490 
491 		mutex_lock(&ecryptfs_daemon_id_hash_mux);
492 		for (i = 0; i < ecryptfs_hash_buckets; i++) {
493 			hlist_for_each_entry(id, elem,
494 					     &ecryptfs_daemon_id_hash[i],
495 					     id_chain) {
496 				hlist_del(elem);
497 				kfree(id);
498 			}
499 		}
500 		kfree(ecryptfs_daemon_id_hash);
501 		mutex_unlock(&ecryptfs_daemon_id_hash_mux);
502 	}
503 	switch(transport) {
504 	case ECRYPTFS_TRANSPORT_NETLINK:
505 		ecryptfs_release_netlink();
506 		break;
507 	case ECRYPTFS_TRANSPORT_CONNECTOR:
508 	case ECRYPTFS_TRANSPORT_RELAYFS:
509 	default:
510 		break;
511 	}
512 	return;
513 }
514