xref: /openbmc/linux/fs/ecryptfs/messaging.c (revision dd2a3b7ad98f8482cae481cad89dfed5eee48365)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 2004-2006 International Business Machines Corp.
5  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
6  *		Tyler Hicks <tyhicks@ou.edu>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License version
10  * 2 as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20  * 02111-1307, USA.
21  */
22 
23 #include "ecryptfs_kernel.h"
24 
25 static LIST_HEAD(ecryptfs_msg_ctx_free_list);
26 static LIST_HEAD(ecryptfs_msg_ctx_alloc_list);
27 static struct mutex ecryptfs_msg_ctx_lists_mux;
28 
29 static struct hlist_head *ecryptfs_daemon_id_hash;
30 static struct mutex ecryptfs_daemon_id_hash_mux;
31 static int ecryptfs_hash_buckets;
32 #define ecryptfs_uid_hash(uid) \
33         hash_long((unsigned long)uid, ecryptfs_hash_buckets)
34 
35 static unsigned int ecryptfs_msg_counter;
36 static struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr;
37 
38 /**
39  * ecryptfs_acquire_free_msg_ctx
40  * @msg_ctx: The context that was acquired from the free list
41  *
42  * Acquires a context element from the free list and locks the mutex
43  * on the context.  Returns zero on success; non-zero on error or upon
44  * failure to acquire a free context element.  Be sure to lock the
45  * list mutex before calling.
46  */
47 static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx)
48 {
49 	struct list_head *p;
50 	int rc;
51 
52 	if (list_empty(&ecryptfs_msg_ctx_free_list)) {
53 		ecryptfs_printk(KERN_WARNING, "The eCryptfs free "
54 				"context list is empty.  It may be helpful to "
55 				"specify the ecryptfs_message_buf_len "
56 				"parameter to be greater than the current "
57 				"value of [%d]\n", ecryptfs_message_buf_len);
58 		rc = -ENOMEM;
59 		goto out;
60 	}
61 	list_for_each(p, &ecryptfs_msg_ctx_free_list) {
62 		*msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node);
63 		if (mutex_trylock(&(*msg_ctx)->mux)) {
64 			(*msg_ctx)->task = current;
65 			rc = 0;
66 			goto out;
67 		}
68 	}
69 	rc = -ENOMEM;
70 out:
71 	return rc;
72 }
73 
74 /**
75  * ecryptfs_msg_ctx_free_to_alloc
76  * @msg_ctx: The context to move from the free list to the alloc list
77  *
78  * Be sure to lock the list mutex and the context mutex before
79  * calling.
80  */
81 static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx)
82 {
83 	list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list);
84 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING;
85 	msg_ctx->counter = ++ecryptfs_msg_counter;
86 }
87 
88 /**
89  * ecryptfs_msg_ctx_alloc_to_free
90  * @msg_ctx: The context to move from the alloc list to the free list
91  *
92  * Be sure to lock the list mutex and the context mutex before
93  * calling.
94  */
95 static void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx)
96 {
97 	list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list);
98 	if (msg_ctx->msg)
99 		kfree(msg_ctx->msg);
100 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE;
101 }
102 
103 /**
104  * ecryptfs_find_daemon_id
105  * @uid: The user id which maps to the desired daemon id
106  * @id: If return value is zero, points to the desired daemon id
107  *      pointer
108  *
109  * Search the hash list for the given user id.  Returns zero if the
110  * user id exists in the list; non-zero otherwise.  The daemon id hash
111  * mutex should be held before calling this function.
112  */
113 static int ecryptfs_find_daemon_id(uid_t uid, struct ecryptfs_daemon_id **id)
114 {
115 	struct hlist_node *elem;
116 	int rc;
117 
118 	hlist_for_each_entry(*id, elem,
119 			     &ecryptfs_daemon_id_hash[ecryptfs_uid_hash(uid)],
120 			     id_chain) {
121 		if ((*id)->uid == uid) {
122 			rc = 0;
123 			goto out;
124 		}
125 	}
126 	rc = -EINVAL;
127 out:
128 	return rc;
129 }
130 
131 static int ecryptfs_send_raw_message(unsigned int transport, u16 msg_type,
132 				     pid_t pid)
133 {
134 	int rc;
135 
136 	switch(transport) {
137 	case ECRYPTFS_TRANSPORT_NETLINK:
138 		rc = ecryptfs_send_netlink(NULL, 0, NULL, msg_type, 0, pid);
139 		break;
140 	case ECRYPTFS_TRANSPORT_CONNECTOR:
141 	case ECRYPTFS_TRANSPORT_RELAYFS:
142 	default:
143 		rc = -ENOSYS;
144 	}
145 	return rc;
146 }
147 
148 /**
149  * ecryptfs_process_helo
150  * @transport: The underlying transport (netlink, etc.)
151  * @uid: The user ID owner of the message
152  * @pid: The process ID for the userspace program that sent the
153  *       message
154  *
155  * Adds the uid and pid values to the daemon id hash.  If a uid
156  * already has a daemon pid registered, the daemon will be
157  * unregistered before the new daemon id is put into the hash list.
158  * Returns zero after adding a new daemon id to the hash list;
159  * non-zero otherwise.
160  */
161 int ecryptfs_process_helo(unsigned int transport, uid_t uid, pid_t pid)
162 {
163 	struct ecryptfs_daemon_id *new_id;
164 	struct ecryptfs_daemon_id *old_id;
165 	int rc;
166 
167 	mutex_lock(&ecryptfs_daemon_id_hash_mux);
168 	new_id = kmalloc(sizeof(*new_id), GFP_KERNEL);
169 	if (!new_id) {
170 		rc = -ENOMEM;
171 		ecryptfs_printk(KERN_ERR, "Failed to allocate memory; unable "
172 				"to register daemon [%d] for user\n", pid, uid);
173 		goto unlock;
174 	}
175 	if (!ecryptfs_find_daemon_id(uid, &old_id)) {
176 		printk(KERN_WARNING "Received request from user [%d] "
177 		       "to register daemon [%d]; unregistering daemon "
178 		       "[%d]\n", uid, pid, old_id->pid);
179 		hlist_del(&old_id->id_chain);
180 		rc = ecryptfs_send_raw_message(transport, ECRYPTFS_NLMSG_QUIT,
181 					       old_id->pid);
182 		if (rc)
183 			printk(KERN_WARNING "Failed to send QUIT "
184 			       "message to daemon [%d]; rc = [%d]\n",
185 			       old_id->pid, rc);
186 		kfree(old_id);
187 	}
188 	new_id->uid = uid;
189 	new_id->pid = pid;
190 	hlist_add_head(&new_id->id_chain,
191 		       &ecryptfs_daemon_id_hash[ecryptfs_uid_hash(uid)]);
192 	rc = 0;
193 unlock:
194 	mutex_unlock(&ecryptfs_daemon_id_hash_mux);
195 	return rc;
196 }
197 
198 /**
199  * ecryptfs_process_quit
200  * @uid: The user ID owner of the message
201  * @pid: The process ID for the userspace program that sent the
202  *       message
203  *
204  * Deletes the corresponding daemon id for the given uid and pid, if
205  * it is the registered that is requesting the deletion. Returns zero
206  * after deleting the desired daemon id; non-zero otherwise.
207  */
208 int ecryptfs_process_quit(uid_t uid, pid_t pid)
209 {
210 	struct ecryptfs_daemon_id *id;
211 	int rc;
212 
213 	mutex_lock(&ecryptfs_daemon_id_hash_mux);
214 	if (ecryptfs_find_daemon_id(uid, &id)) {
215 		rc = -EINVAL;
216 		ecryptfs_printk(KERN_ERR, "Received request from user [%d] to "
217 				"unregister unrecognized daemon [%d]\n", uid,
218 				pid);
219 		goto unlock;
220 	}
221 	if (id->pid != pid) {
222 		rc = -EINVAL;
223 		ecryptfs_printk(KERN_WARNING, "Received request from user [%d] "
224 				"with pid [%d] to unregister daemon [%d]\n",
225 				uid, pid, id->pid);
226 		goto unlock;
227 	}
228 	hlist_del(&id->id_chain);
229 	kfree(id);
230 	rc = 0;
231 unlock:
232 	mutex_unlock(&ecryptfs_daemon_id_hash_mux);
233 	return rc;
234 }
235 
236 /**
237  * ecryptfs_process_reponse
238  * @msg: The ecryptfs message received; the caller should sanity check
239  *       msg->data_len
240  * @pid: The process ID of the userspace application that sent the
241  *       message
242  * @seq: The sequence number of the message
243  *
244  * Processes a response message after sending a operation request to
245  * userspace. Returns zero upon delivery to desired context element;
246  * non-zero upon delivery failure or error.
247  */
248 int ecryptfs_process_response(struct ecryptfs_message *msg, uid_t uid,
249 			      pid_t pid, u32 seq)
250 {
251 	struct ecryptfs_daemon_id *id;
252 	struct ecryptfs_msg_ctx *msg_ctx;
253 	int msg_size;
254 	int rc;
255 
256 	if (msg->index >= ecryptfs_message_buf_len) {
257 		rc = -EINVAL;
258 		ecryptfs_printk(KERN_ERR, "Attempt to reference "
259 				"context buffer at index [%d]; maximum "
260 				"allowable is [%d]\n", msg->index,
261 				(ecryptfs_message_buf_len - 1));
262 		goto out;
263 	}
264 	msg_ctx = &ecryptfs_msg_ctx_arr[msg->index];
265 	mutex_lock(&msg_ctx->mux);
266 	if (ecryptfs_find_daemon_id(msg_ctx->task->euid, &id)) {
267 		rc = -EBADMSG;
268 		ecryptfs_printk(KERN_WARNING, "User [%d] received a "
269 				"message response from process [%d] but does "
270 				"not have a registered daemon\n",
271 				msg_ctx->task->euid, pid);
272 		goto wake_up;
273 	}
274 	if (msg_ctx->task->euid != uid) {
275 		rc = -EBADMSG;
276 		ecryptfs_printk(KERN_WARNING, "Received message from user "
277 				"[%d]; expected message from user [%d]\n",
278 				uid, msg_ctx->task->euid);
279 		goto unlock;
280 	}
281 	if (id->pid != pid) {
282 		rc = -EBADMSG;
283 		ecryptfs_printk(KERN_ERR, "User [%d] received a "
284 				"message response from an unrecognized "
285 				"process [%d]\n", msg_ctx->task->euid, pid);
286 		goto unlock;
287 	}
288 	if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) {
289 		rc = -EINVAL;
290 		ecryptfs_printk(KERN_WARNING, "Desired context element is not "
291 				"pending a response\n");
292 		goto unlock;
293 	} else if (msg_ctx->counter != seq) {
294 		rc = -EINVAL;
295 		ecryptfs_printk(KERN_WARNING, "Invalid message sequence; "
296 				"expected [%d]; received [%d]\n",
297 				msg_ctx->counter, seq);
298 		goto unlock;
299 	}
300 	msg_size = sizeof(*msg) + msg->data_len;
301 	msg_ctx->msg = kmalloc(msg_size, GFP_KERNEL);
302 	if (!msg_ctx->msg) {
303 		rc = -ENOMEM;
304 		ecryptfs_printk(KERN_ERR, "Failed to allocate memory\n");
305 		goto unlock;
306 	}
307 	memcpy(msg_ctx->msg, msg, msg_size);
308 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE;
309 	rc = 0;
310 wake_up:
311 	wake_up_process(msg_ctx->task);
312 unlock:
313 	mutex_unlock(&msg_ctx->mux);
314 out:
315 	return rc;
316 }
317 
318 /**
319  * ecryptfs_send_message
320  * @transport: The transport over which to send the message (i.e.,
321  *             netlink)
322  * @data: The data to send
323  * @data_len: The length of data
324  * @msg_ctx: The message context allocated for the send
325  */
326 int ecryptfs_send_message(unsigned int transport, char *data, int data_len,
327 			  struct ecryptfs_msg_ctx **msg_ctx)
328 {
329 	struct ecryptfs_daemon_id *id;
330 	int rc;
331 
332 	mutex_lock(&ecryptfs_daemon_id_hash_mux);
333 	if (ecryptfs_find_daemon_id(current->euid, &id)) {
334 		mutex_unlock(&ecryptfs_daemon_id_hash_mux);
335 		rc = -ENOTCONN;
336 		ecryptfs_printk(KERN_ERR, "User [%d] does not have a daemon "
337 				"registered\n", current->euid);
338 		goto out;
339 	}
340 	mutex_unlock(&ecryptfs_daemon_id_hash_mux);
341 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
342 	rc = ecryptfs_acquire_free_msg_ctx(msg_ctx);
343 	if (rc) {
344 		mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
345 		ecryptfs_printk(KERN_WARNING, "Could not claim a free "
346 				"context element\n");
347 		goto out;
348 	}
349 	ecryptfs_msg_ctx_free_to_alloc(*msg_ctx);
350 	mutex_unlock(&(*msg_ctx)->mux);
351 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
352 	switch (transport) {
353 	case ECRYPTFS_TRANSPORT_NETLINK:
354 		rc = ecryptfs_send_netlink(data, data_len, *msg_ctx,
355 					   ECRYPTFS_NLMSG_REQUEST, 0, id->pid);
356 		break;
357 	case ECRYPTFS_TRANSPORT_CONNECTOR:
358 	case ECRYPTFS_TRANSPORT_RELAYFS:
359 	default:
360 		rc = -ENOSYS;
361 	}
362 	if (rc) {
363 		printk(KERN_ERR "Error attempting to send message to userspace "
364 		       "daemon; rc = [%d]\n", rc);
365 	}
366 out:
367 	return rc;
368 }
369 
370 /**
371  * ecryptfs_wait_for_response
372  * @msg_ctx: The context that was assigned when sending a message
373  * @msg: The incoming message from userspace; not set if rc != 0
374  *
375  * Sleeps until awaken by ecryptfs_receive_message or until the amount
376  * of time exceeds ecryptfs_message_wait_timeout.  If zero is
377  * returned, msg will point to a valid message from userspace; a
378  * non-zero value is returned upon failure to receive a message or an
379  * error occurs.
380  */
381 int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx,
382 			       struct ecryptfs_message **msg)
383 {
384 	signed long timeout = ecryptfs_message_wait_timeout * HZ;
385 	int rc = 0;
386 
387 sleep:
388 	timeout = schedule_timeout_interruptible(timeout);
389 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
390 	mutex_lock(&msg_ctx->mux);
391 	if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) {
392 		if (timeout) {
393 			mutex_unlock(&msg_ctx->mux);
394 			mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
395 			goto sleep;
396 		}
397 		rc = -ENOMSG;
398 	} else {
399 		*msg = msg_ctx->msg;
400 		msg_ctx->msg = NULL;
401 	}
402 	ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
403 	mutex_unlock(&msg_ctx->mux);
404 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
405 	return rc;
406 }
407 
408 int ecryptfs_init_messaging(unsigned int transport)
409 {
410 	int i;
411 	int rc = 0;
412 
413 	if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) {
414 		ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS;
415 		ecryptfs_printk(KERN_WARNING, "Specified number of users is "
416 				"too large, defaulting to [%d] users\n",
417 				ecryptfs_number_of_users);
418 	}
419 	mutex_init(&ecryptfs_daemon_id_hash_mux);
420 	mutex_lock(&ecryptfs_daemon_id_hash_mux);
421 	ecryptfs_hash_buckets = 0;
422 	while (ecryptfs_number_of_users >> ++ecryptfs_hash_buckets);
423 	ecryptfs_daemon_id_hash = kmalloc(sizeof(struct hlist_head)
424 					  * ecryptfs_hash_buckets, GFP_KERNEL);
425 	if (!ecryptfs_daemon_id_hash) {
426 		rc = -ENOMEM;
427 		ecryptfs_printk(KERN_ERR, "Failed to allocate memory\n");
428 		goto out;
429 	}
430 	for (i = 0; i < ecryptfs_hash_buckets; i++)
431 		INIT_HLIST_HEAD(&ecryptfs_daemon_id_hash[i]);
432 	mutex_unlock(&ecryptfs_daemon_id_hash_mux);
433 
434 	ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx)
435 				      * ecryptfs_message_buf_len), GFP_KERNEL);
436 	if (!ecryptfs_msg_ctx_arr) {
437 		rc = -ENOMEM;
438 		ecryptfs_printk(KERN_ERR, "Failed to allocate memory\n");
439 		goto out;
440 	}
441 	mutex_init(&ecryptfs_msg_ctx_lists_mux);
442 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
443 	ecryptfs_msg_counter = 0;
444 	for (i = 0; i < ecryptfs_message_buf_len; i++) {
445 		INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node);
446 		mutex_init(&ecryptfs_msg_ctx_arr[i].mux);
447 		mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
448 		ecryptfs_msg_ctx_arr[i].index = i;
449 		ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE;
450 		ecryptfs_msg_ctx_arr[i].counter = 0;
451 		ecryptfs_msg_ctx_arr[i].task = NULL;
452 		ecryptfs_msg_ctx_arr[i].msg = NULL;
453 		list_add_tail(&ecryptfs_msg_ctx_arr[i].node,
454 			      &ecryptfs_msg_ctx_free_list);
455 		mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
456 	}
457 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
458 	switch(transport) {
459 	case ECRYPTFS_TRANSPORT_NETLINK:
460 		rc = ecryptfs_init_netlink();
461 		if (rc)
462 			ecryptfs_release_messaging(transport);
463 		break;
464 	case ECRYPTFS_TRANSPORT_CONNECTOR:
465 	case ECRYPTFS_TRANSPORT_RELAYFS:
466 	default:
467 		rc = -ENOSYS;
468 	}
469 out:
470 	return rc;
471 }
472 
473 void ecryptfs_release_messaging(unsigned int transport)
474 {
475 	if (ecryptfs_msg_ctx_arr) {
476 		int i;
477 
478 		mutex_lock(&ecryptfs_msg_ctx_lists_mux);
479 		for (i = 0; i < ecryptfs_message_buf_len; i++) {
480 			mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
481 			if (ecryptfs_msg_ctx_arr[i].msg)
482 				kfree(ecryptfs_msg_ctx_arr[i].msg);
483 			mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
484 		}
485 		kfree(ecryptfs_msg_ctx_arr);
486 		mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
487 	}
488 	if (ecryptfs_daemon_id_hash) {
489 		struct hlist_node *elem;
490 		struct ecryptfs_daemon_id *id;
491 		int i;
492 
493 		mutex_lock(&ecryptfs_daemon_id_hash_mux);
494 		for (i = 0; i < ecryptfs_hash_buckets; i++) {
495 			hlist_for_each_entry(id, elem,
496 					     &ecryptfs_daemon_id_hash[i],
497 					     id_chain) {
498 				hlist_del(elem);
499 				kfree(id);
500 			}
501 		}
502 		kfree(ecryptfs_daemon_id_hash);
503 		mutex_unlock(&ecryptfs_daemon_id_hash_mux);
504 	}
505 	switch(transport) {
506 	case ECRYPTFS_TRANSPORT_NETLINK:
507 		ecryptfs_release_netlink();
508 		break;
509 	case ECRYPTFS_TRANSPORT_CONNECTOR:
510 	case ECRYPTFS_TRANSPORT_RELAYFS:
511 	default:
512 		break;
513 	}
514 	return;
515 }
516