xref: /openbmc/linux/fs/ecryptfs/messaging.c (revision 791d3ef2e11100449837dc0b6fe884e60ca3a484)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 2004-2008 International Business Machines Corp.
5  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
6  *		Tyler Hicks <tyhicks@ou.edu>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License version
10  * 2 as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20  * 02111-1307, USA.
21  */
22 #include <linux/sched.h>
23 #include <linux/slab.h>
24 #include <linux/user_namespace.h>
25 #include <linux/nsproxy.h>
26 #include "ecryptfs_kernel.h"
27 
28 static LIST_HEAD(ecryptfs_msg_ctx_free_list);
29 static LIST_HEAD(ecryptfs_msg_ctx_alloc_list);
30 static struct mutex ecryptfs_msg_ctx_lists_mux;
31 
32 static struct hlist_head *ecryptfs_daemon_hash;
33 struct mutex ecryptfs_daemon_hash_mux;
34 static int ecryptfs_hash_bits;
35 #define ecryptfs_current_euid_hash(uid) \
36 	hash_long((unsigned long)from_kuid(&init_user_ns, current_euid()), ecryptfs_hash_bits)
37 
38 static u32 ecryptfs_msg_counter;
39 static struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr;
40 
41 /**
42  * ecryptfs_acquire_free_msg_ctx
43  * @msg_ctx: The context that was acquired from the free list
44  *
45  * Acquires a context element from the free list and locks the mutex
46  * on the context.  Sets the msg_ctx task to current.  Returns zero on
47  * success; non-zero on error or upon failure to acquire a free
48  * context element.  Must be called with ecryptfs_msg_ctx_lists_mux
49  * held.
50  */
51 static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx)
52 {
53 	struct list_head *p;
54 	int rc;
55 
56 	if (list_empty(&ecryptfs_msg_ctx_free_list)) {
57 		printk(KERN_WARNING "%s: The eCryptfs free "
58 		       "context list is empty.  It may be helpful to "
59 		       "specify the ecryptfs_message_buf_len "
60 		       "parameter to be greater than the current "
61 		       "value of [%d]\n", __func__, ecryptfs_message_buf_len);
62 		rc = -ENOMEM;
63 		goto out;
64 	}
65 	list_for_each(p, &ecryptfs_msg_ctx_free_list) {
66 		*msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node);
67 		if (mutex_trylock(&(*msg_ctx)->mux)) {
68 			(*msg_ctx)->task = current;
69 			rc = 0;
70 			goto out;
71 		}
72 	}
73 	rc = -ENOMEM;
74 out:
75 	return rc;
76 }
77 
78 /**
79  * ecryptfs_msg_ctx_free_to_alloc
80  * @msg_ctx: The context to move from the free list to the alloc list
81  *
82  * Must be called with ecryptfs_msg_ctx_lists_mux held.
83  */
84 static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx)
85 {
86 	list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list);
87 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING;
88 	msg_ctx->counter = ++ecryptfs_msg_counter;
89 }
90 
91 /**
92  * ecryptfs_msg_ctx_alloc_to_free
93  * @msg_ctx: The context to move from the alloc list to the free list
94  *
95  * Must be called with ecryptfs_msg_ctx_lists_mux held.
96  */
97 void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx)
98 {
99 	list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list);
100 	kfree(msg_ctx->msg);
101 	msg_ctx->msg = NULL;
102 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE;
103 }
104 
105 /**
106  * ecryptfs_find_daemon_by_euid
107  * @daemon: If return value is zero, points to the desired daemon pointer
108  *
109  * Must be called with ecryptfs_daemon_hash_mux held.
110  *
111  * Search the hash list for the current effective user id.
112  *
113  * Returns zero if the user id exists in the list; non-zero otherwise.
114  */
115 int ecryptfs_find_daemon_by_euid(struct ecryptfs_daemon **daemon)
116 {
117 	int rc;
118 
119 	hlist_for_each_entry(*daemon,
120 			    &ecryptfs_daemon_hash[ecryptfs_current_euid_hash()],
121 			    euid_chain) {
122 		if (uid_eq((*daemon)->file->f_cred->euid, current_euid())) {
123 			rc = 0;
124 			goto out;
125 		}
126 	}
127 	rc = -EINVAL;
128 out:
129 	return rc;
130 }
131 
132 /**
133  * ecryptfs_spawn_daemon - Create and initialize a new daemon struct
134  * @daemon: Pointer to set to newly allocated daemon struct
135  * @file: File used when opening /dev/ecryptfs
136  *
137  * Must be called ceremoniously while in possession of
138  * ecryptfs_sacred_daemon_hash_mux
139  *
140  * Returns zero on success; non-zero otherwise
141  */
142 int
143 ecryptfs_spawn_daemon(struct ecryptfs_daemon **daemon, struct file *file)
144 {
145 	int rc = 0;
146 
147 	(*daemon) = kzalloc(sizeof(**daemon), GFP_KERNEL);
148 	if (!(*daemon)) {
149 		rc = -ENOMEM;
150 		goto out;
151 	}
152 	(*daemon)->file = file;
153 	mutex_init(&(*daemon)->mux);
154 	INIT_LIST_HEAD(&(*daemon)->msg_ctx_out_queue);
155 	init_waitqueue_head(&(*daemon)->wait);
156 	(*daemon)->num_queued_msg_ctx = 0;
157 	hlist_add_head(&(*daemon)->euid_chain,
158 		       &ecryptfs_daemon_hash[ecryptfs_current_euid_hash()]);
159 out:
160 	return rc;
161 }
162 
163 /**
164  * ecryptfs_exorcise_daemon - Destroy the daemon struct
165  *
166  * Must be called ceremoniously while in possession of
167  * ecryptfs_daemon_hash_mux and the daemon's own mux.
168  */
169 int ecryptfs_exorcise_daemon(struct ecryptfs_daemon *daemon)
170 {
171 	struct ecryptfs_msg_ctx *msg_ctx, *msg_ctx_tmp;
172 	int rc = 0;
173 
174 	mutex_lock(&daemon->mux);
175 	if ((daemon->flags & ECRYPTFS_DAEMON_IN_READ)
176 	    || (daemon->flags & ECRYPTFS_DAEMON_IN_POLL)) {
177 		rc = -EBUSY;
178 		mutex_unlock(&daemon->mux);
179 		goto out;
180 	}
181 	list_for_each_entry_safe(msg_ctx, msg_ctx_tmp,
182 				 &daemon->msg_ctx_out_queue, daemon_out_list) {
183 		list_del(&msg_ctx->daemon_out_list);
184 		daemon->num_queued_msg_ctx--;
185 		printk(KERN_WARNING "%s: Warning: dropping message that is in "
186 		       "the out queue of a dying daemon\n", __func__);
187 		ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
188 	}
189 	hlist_del(&daemon->euid_chain);
190 	mutex_unlock(&daemon->mux);
191 	kzfree(daemon);
192 out:
193 	return rc;
194 }
195 
196 /**
197  * ecryptfs_process_reponse
198  * @msg: The ecryptfs message received; the caller should sanity check
199  *       msg->data_len and free the memory
200  * @seq: The sequence number of the message; must match the sequence
201  *       number for the existing message context waiting for this
202  *       response
203  *
204  * Processes a response message after sending an operation request to
205  * userspace. Some other process is awaiting this response. Before
206  * sending out its first communications, the other process allocated a
207  * msg_ctx from the ecryptfs_msg_ctx_arr at a particular index. The
208  * response message contains this index so that we can copy over the
209  * response message into the msg_ctx that the process holds a
210  * reference to. The other process is going to wake up, check to see
211  * that msg_ctx->state == ECRYPTFS_MSG_CTX_STATE_DONE, and then
212  * proceed to read off and process the response message. Returns zero
213  * upon delivery to desired context element; non-zero upon delivery
214  * failure or error.
215  *
216  * Returns zero on success; non-zero otherwise
217  */
218 int ecryptfs_process_response(struct ecryptfs_daemon *daemon,
219 			      struct ecryptfs_message *msg, u32 seq)
220 {
221 	struct ecryptfs_msg_ctx *msg_ctx;
222 	size_t msg_size;
223 	int rc;
224 
225 	if (msg->index >= ecryptfs_message_buf_len) {
226 		rc = -EINVAL;
227 		printk(KERN_ERR "%s: Attempt to reference "
228 		       "context buffer at index [%d]; maximum "
229 		       "allowable is [%d]\n", __func__, msg->index,
230 		       (ecryptfs_message_buf_len - 1));
231 		goto out;
232 	}
233 	msg_ctx = &ecryptfs_msg_ctx_arr[msg->index];
234 	mutex_lock(&msg_ctx->mux);
235 	if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) {
236 		rc = -EINVAL;
237 		printk(KERN_WARNING "%s: Desired context element is not "
238 		       "pending a response\n", __func__);
239 		goto unlock;
240 	} else if (msg_ctx->counter != seq) {
241 		rc = -EINVAL;
242 		printk(KERN_WARNING "%s: Invalid message sequence; "
243 		       "expected [%d]; received [%d]\n", __func__,
244 		       msg_ctx->counter, seq);
245 		goto unlock;
246 	}
247 	msg_size = (sizeof(*msg) + msg->data_len);
248 	msg_ctx->msg = kmemdup(msg, msg_size, GFP_KERNEL);
249 	if (!msg_ctx->msg) {
250 		rc = -ENOMEM;
251 		goto unlock;
252 	}
253 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE;
254 	wake_up_process(msg_ctx->task);
255 	rc = 0;
256 unlock:
257 	mutex_unlock(&msg_ctx->mux);
258 out:
259 	return rc;
260 }
261 
262 /**
263  * ecryptfs_send_message_locked
264  * @data: The data to send
265  * @data_len: The length of data
266  * @msg_ctx: The message context allocated for the send
267  *
268  * Must be called with ecryptfs_daemon_hash_mux held.
269  *
270  * Returns zero on success; non-zero otherwise
271  */
272 static int
273 ecryptfs_send_message_locked(char *data, int data_len, u8 msg_type,
274 			     struct ecryptfs_msg_ctx **msg_ctx)
275 {
276 	struct ecryptfs_daemon *daemon;
277 	int rc;
278 
279 	rc = ecryptfs_find_daemon_by_euid(&daemon);
280 	if (rc) {
281 		rc = -ENOTCONN;
282 		goto out;
283 	}
284 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
285 	rc = ecryptfs_acquire_free_msg_ctx(msg_ctx);
286 	if (rc) {
287 		mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
288 		printk(KERN_WARNING "%s: Could not claim a free "
289 		       "context element\n", __func__);
290 		goto out;
291 	}
292 	ecryptfs_msg_ctx_free_to_alloc(*msg_ctx);
293 	mutex_unlock(&(*msg_ctx)->mux);
294 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
295 	rc = ecryptfs_send_miscdev(data, data_len, *msg_ctx, msg_type, 0,
296 				   daemon);
297 	if (rc)
298 		printk(KERN_ERR "%s: Error attempting to send message to "
299 		       "userspace daemon; rc = [%d]\n", __func__, rc);
300 out:
301 	return rc;
302 }
303 
304 /**
305  * ecryptfs_send_message
306  * @data: The data to send
307  * @data_len: The length of data
308  * @msg_ctx: The message context allocated for the send
309  *
310  * Grabs ecryptfs_daemon_hash_mux.
311  *
312  * Returns zero on success; non-zero otherwise
313  */
314 int ecryptfs_send_message(char *data, int data_len,
315 			  struct ecryptfs_msg_ctx **msg_ctx)
316 {
317 	int rc;
318 
319 	mutex_lock(&ecryptfs_daemon_hash_mux);
320 	rc = ecryptfs_send_message_locked(data, data_len, ECRYPTFS_MSG_REQUEST,
321 					  msg_ctx);
322 	mutex_unlock(&ecryptfs_daemon_hash_mux);
323 	return rc;
324 }
325 
326 /**
327  * ecryptfs_wait_for_response
328  * @msg_ctx: The context that was assigned when sending a message
329  * @msg: The incoming message from userspace; not set if rc != 0
330  *
331  * Sleeps until awaken by ecryptfs_receive_message or until the amount
332  * of time exceeds ecryptfs_message_wait_timeout.  If zero is
333  * returned, msg will point to a valid message from userspace; a
334  * non-zero value is returned upon failure to receive a message or an
335  * error occurs. Callee must free @msg on success.
336  */
337 int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx,
338 			       struct ecryptfs_message **msg)
339 {
340 	signed long timeout = ecryptfs_message_wait_timeout * HZ;
341 	int rc = 0;
342 
343 sleep:
344 	timeout = schedule_timeout_interruptible(timeout);
345 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
346 	mutex_lock(&msg_ctx->mux);
347 	if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) {
348 		if (timeout) {
349 			mutex_unlock(&msg_ctx->mux);
350 			mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
351 			goto sleep;
352 		}
353 		rc = -ENOMSG;
354 	} else {
355 		*msg = msg_ctx->msg;
356 		msg_ctx->msg = NULL;
357 	}
358 	ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
359 	mutex_unlock(&msg_ctx->mux);
360 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
361 	return rc;
362 }
363 
364 int __init ecryptfs_init_messaging(void)
365 {
366 	int i;
367 	int rc = 0;
368 
369 	if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) {
370 		ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS;
371 		printk(KERN_WARNING "%s: Specified number of users is "
372 		       "too large, defaulting to [%d] users\n", __func__,
373 		       ecryptfs_number_of_users);
374 	}
375 	mutex_init(&ecryptfs_daemon_hash_mux);
376 	mutex_lock(&ecryptfs_daemon_hash_mux);
377 	ecryptfs_hash_bits = 1;
378 	while (ecryptfs_number_of_users >> ecryptfs_hash_bits)
379 		ecryptfs_hash_bits++;
380 	ecryptfs_daemon_hash = kmalloc((sizeof(struct hlist_head)
381 					* (1 << ecryptfs_hash_bits)),
382 				       GFP_KERNEL);
383 	if (!ecryptfs_daemon_hash) {
384 		rc = -ENOMEM;
385 		mutex_unlock(&ecryptfs_daemon_hash_mux);
386 		goto out;
387 	}
388 	for (i = 0; i < (1 << ecryptfs_hash_bits); i++)
389 		INIT_HLIST_HEAD(&ecryptfs_daemon_hash[i]);
390 	mutex_unlock(&ecryptfs_daemon_hash_mux);
391 	ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx)
392 					* ecryptfs_message_buf_len),
393 				       GFP_KERNEL);
394 	if (!ecryptfs_msg_ctx_arr) {
395 		rc = -ENOMEM;
396 		goto out;
397 	}
398 	mutex_init(&ecryptfs_msg_ctx_lists_mux);
399 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
400 	ecryptfs_msg_counter = 0;
401 	for (i = 0; i < ecryptfs_message_buf_len; i++) {
402 		INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node);
403 		INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].daemon_out_list);
404 		mutex_init(&ecryptfs_msg_ctx_arr[i].mux);
405 		mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
406 		ecryptfs_msg_ctx_arr[i].index = i;
407 		ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE;
408 		ecryptfs_msg_ctx_arr[i].counter = 0;
409 		ecryptfs_msg_ctx_arr[i].task = NULL;
410 		ecryptfs_msg_ctx_arr[i].msg = NULL;
411 		list_add_tail(&ecryptfs_msg_ctx_arr[i].node,
412 			      &ecryptfs_msg_ctx_free_list);
413 		mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
414 	}
415 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
416 	rc = ecryptfs_init_ecryptfs_miscdev();
417 	if (rc)
418 		ecryptfs_release_messaging();
419 out:
420 	return rc;
421 }
422 
423 void ecryptfs_release_messaging(void)
424 {
425 	if (ecryptfs_msg_ctx_arr) {
426 		int i;
427 
428 		mutex_lock(&ecryptfs_msg_ctx_lists_mux);
429 		for (i = 0; i < ecryptfs_message_buf_len; i++) {
430 			mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
431 			kfree(ecryptfs_msg_ctx_arr[i].msg);
432 			mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
433 		}
434 		kfree(ecryptfs_msg_ctx_arr);
435 		mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
436 	}
437 	if (ecryptfs_daemon_hash) {
438 		struct ecryptfs_daemon *daemon;
439 		struct hlist_node *n;
440 		int i;
441 
442 		mutex_lock(&ecryptfs_daemon_hash_mux);
443 		for (i = 0; i < (1 << ecryptfs_hash_bits); i++) {
444 			int rc;
445 
446 			hlist_for_each_entry_safe(daemon, n,
447 						  &ecryptfs_daemon_hash[i],
448 						  euid_chain) {
449 				rc = ecryptfs_exorcise_daemon(daemon);
450 				if (rc)
451 					printk(KERN_ERR "%s: Error whilst "
452 					       "attempting to destroy daemon; "
453 					       "rc = [%d]. Dazed and confused, "
454 					       "but trying to continue.\n",
455 					       __func__, rc);
456 			}
457 		}
458 		kfree(ecryptfs_daemon_hash);
459 		mutex_unlock(&ecryptfs_daemon_hash_mux);
460 	}
461 	ecryptfs_destroy_ecryptfs_miscdev();
462 	return;
463 }
464