xref: /openbmc/linux/fs/ecryptfs/main.c (revision c376222960ae91d5ffb9197ee36771aaed1d9f90)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2003 Erez Zadok
5  * Copyright (C) 2001-2003 Stony Brook University
6  * Copyright (C) 2004-2006 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *              Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25 
26 #include <linux/dcache.h>
27 #include <linux/file.h>
28 #include <linux/module.h>
29 #include <linux/namei.h>
30 #include <linux/skbuff.h>
31 #include <linux/crypto.h>
32 #include <linux/netlink.h>
33 #include <linux/mount.h>
34 #include <linux/dcache.h>
35 #include <linux/pagemap.h>
36 #include <linux/key.h>
37 #include <linux/parser.h>
38 #include <linux/fs_stack.h>
39 #include "ecryptfs_kernel.h"
40 
41 /**
42  * Module parameter that defines the ecryptfs_verbosity level.
43  */
44 int ecryptfs_verbosity = 0;
45 
46 module_param(ecryptfs_verbosity, int, 0);
47 MODULE_PARM_DESC(ecryptfs_verbosity,
48 		 "Initial verbosity level (0 or 1; defaults to "
49 		 "0, which is Quiet)");
50 
51 void __ecryptfs_printk(const char *fmt, ...)
52 {
53 	va_list args;
54 	va_start(args, fmt);
55 	if (fmt[1] == '7') { /* KERN_DEBUG */
56 		if (ecryptfs_verbosity >= 1)
57 			vprintk(fmt, args);
58 	} else
59 		vprintk(fmt, args);
60 	va_end(args);
61 }
62 
63 /**
64  * ecryptfs_interpose
65  * @lower_dentry: Existing dentry in the lower filesystem
66  * @dentry: ecryptfs' dentry
67  * @sb: ecryptfs's super_block
68  * @flag: If set to true, then d_add is called, else d_instantiate is called
69  *
70  * Interposes upper and lower dentries.
71  *
72  * Returns zero on success; non-zero otherwise
73  */
74 int ecryptfs_interpose(struct dentry *lower_dentry, struct dentry *dentry,
75 		       struct super_block *sb, int flag)
76 {
77 	struct inode *lower_inode;
78 	struct inode *inode;
79 	int rc = 0;
80 
81 	lower_inode = lower_dentry->d_inode;
82 	if (lower_inode->i_sb != ecryptfs_superblock_to_lower(sb)) {
83 		rc = -EXDEV;
84 		goto out;
85 	}
86 	if (!igrab(lower_inode)) {
87 		rc = -ESTALE;
88 		goto out;
89 	}
90 	inode = iget5_locked(sb, (unsigned long)lower_inode,
91 			     ecryptfs_inode_test, ecryptfs_inode_set,
92 			     lower_inode);
93 	if (!inode) {
94 		rc = -EACCES;
95 		iput(lower_inode);
96 		goto out;
97 	}
98 	if (inode->i_state & I_NEW)
99 		unlock_new_inode(inode);
100 	else
101 		iput(lower_inode);
102 	if (S_ISLNK(lower_inode->i_mode))
103 		inode->i_op = &ecryptfs_symlink_iops;
104 	else if (S_ISDIR(lower_inode->i_mode))
105 		inode->i_op = &ecryptfs_dir_iops;
106 	if (S_ISDIR(lower_inode->i_mode))
107 		inode->i_fop = &ecryptfs_dir_fops;
108 	if (special_file(lower_inode->i_mode))
109 		init_special_inode(inode, lower_inode->i_mode,
110 				   lower_inode->i_rdev);
111 	dentry->d_op = &ecryptfs_dops;
112 	if (flag)
113 		d_add(dentry, inode);
114 	else
115 		d_instantiate(dentry, inode);
116 	fsstack_copy_attr_all(inode, lower_inode, NULL);
117 	/* This size will be overwritten for real files w/ headers and
118 	 * other metadata */
119 	fsstack_copy_inode_size(inode, lower_inode);
120 out:
121 	return rc;
122 }
123 
124 enum { ecryptfs_opt_sig, ecryptfs_opt_ecryptfs_sig, ecryptfs_opt_debug,
125        ecryptfs_opt_ecryptfs_debug, ecryptfs_opt_cipher,
126        ecryptfs_opt_ecryptfs_cipher, ecryptfs_opt_ecryptfs_key_bytes,
127        ecryptfs_opt_passthrough, ecryptfs_opt_err };
128 
129 static match_table_t tokens = {
130 	{ecryptfs_opt_sig, "sig=%s"},
131 	{ecryptfs_opt_ecryptfs_sig, "ecryptfs_sig=%s"},
132 	{ecryptfs_opt_debug, "debug=%u"},
133 	{ecryptfs_opt_ecryptfs_debug, "ecryptfs_debug=%u"},
134 	{ecryptfs_opt_cipher, "cipher=%s"},
135 	{ecryptfs_opt_ecryptfs_cipher, "ecryptfs_cipher=%s"},
136 	{ecryptfs_opt_ecryptfs_key_bytes, "ecryptfs_key_bytes=%u"},
137 	{ecryptfs_opt_passthrough, "ecryptfs_passthrough"},
138 	{ecryptfs_opt_err, NULL}
139 };
140 
141 /**
142  * ecryptfs_verify_version
143  * @version: The version number to confirm
144  *
145  * Returns zero on good version; non-zero otherwise
146  */
147 static int ecryptfs_verify_version(u16 version)
148 {
149 	int rc = 0;
150 	unsigned char major;
151 	unsigned char minor;
152 
153 	major = ((version >> 8) & 0xFF);
154 	minor = (version & 0xFF);
155 	if (major != ECRYPTFS_VERSION_MAJOR) {
156 		ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
157 				"Expected [%d]; got [%d]\n",
158 				ECRYPTFS_VERSION_MAJOR, major);
159 		rc = -EINVAL;
160 		goto out;
161 	}
162 	if (minor != ECRYPTFS_VERSION_MINOR) {
163 		ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
164 				"Expected [%d]; got [%d]\n",
165 				ECRYPTFS_VERSION_MINOR, minor);
166 		rc = -EINVAL;
167 		goto out;
168 	}
169 out:
170 	return rc;
171 }
172 
173 /**
174  * ecryptfs_parse_options
175  * @sb: The ecryptfs super block
176  * @options: The options pased to the kernel
177  *
178  * Parse mount options:
179  * debug=N 	   - ecryptfs_verbosity level for debug output
180  * sig=XXX	   - description(signature) of the key to use
181  *
182  * Returns the dentry object of the lower-level (lower/interposed)
183  * directory; We want to mount our stackable file system on top of
184  * that lower directory.
185  *
186  * The signature of the key to use must be the description of a key
187  * already in the keyring. Mounting will fail if the key can not be
188  * found.
189  *
190  * Returns zero on success; non-zero on error
191  */
192 static int ecryptfs_parse_options(struct super_block *sb, char *options)
193 {
194 	char *p;
195 	int rc = 0;
196 	int sig_set = 0;
197 	int cipher_name_set = 0;
198 	int cipher_key_bytes;
199 	int cipher_key_bytes_set = 0;
200 	struct key *auth_tok_key = NULL;
201 	struct ecryptfs_auth_tok *auth_tok = NULL;
202 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
203 		&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
204 	substring_t args[MAX_OPT_ARGS];
205 	int token;
206 	char *sig_src;
207 	char *sig_dst;
208 	char *debug_src;
209 	char *cipher_name_dst;
210 	char *cipher_name_src;
211 	char *cipher_key_bytes_src;
212 	int cipher_name_len;
213 
214 	if (!options) {
215 		rc = -EINVAL;
216 		goto out;
217 	}
218 	while ((p = strsep(&options, ",")) != NULL) {
219 		if (!*p)
220 			continue;
221 		token = match_token(p, tokens, args);
222 		switch (token) {
223 		case ecryptfs_opt_sig:
224 		case ecryptfs_opt_ecryptfs_sig:
225 			sig_src = args[0].from;
226 			sig_dst =
227 				mount_crypt_stat->global_auth_tok_sig;
228 			memcpy(sig_dst, sig_src, ECRYPTFS_SIG_SIZE_HEX);
229 			sig_dst[ECRYPTFS_SIG_SIZE_HEX] = '\0';
230 			ecryptfs_printk(KERN_DEBUG,
231 					"The mount_crypt_stat "
232 					"global_auth_tok_sig set to: "
233 					"[%s]\n", sig_dst);
234 			sig_set = 1;
235 			break;
236 		case ecryptfs_opt_debug:
237 		case ecryptfs_opt_ecryptfs_debug:
238 			debug_src = args[0].from;
239 			ecryptfs_verbosity =
240 				(int)simple_strtol(debug_src, &debug_src,
241 						   0);
242 			ecryptfs_printk(KERN_DEBUG,
243 					"Verbosity set to [%d]" "\n",
244 					ecryptfs_verbosity);
245 			break;
246 		case ecryptfs_opt_cipher:
247 		case ecryptfs_opt_ecryptfs_cipher:
248 			cipher_name_src = args[0].from;
249 			cipher_name_dst =
250 				mount_crypt_stat->
251 				global_default_cipher_name;
252 			strncpy(cipher_name_dst, cipher_name_src,
253 				ECRYPTFS_MAX_CIPHER_NAME_SIZE);
254 			ecryptfs_printk(KERN_DEBUG,
255 					"The mount_crypt_stat "
256 					"global_default_cipher_name set to: "
257 					"[%s]\n", cipher_name_dst);
258 			cipher_name_set = 1;
259 			break;
260 		case ecryptfs_opt_ecryptfs_key_bytes:
261 			cipher_key_bytes_src = args[0].from;
262 			cipher_key_bytes =
263 				(int)simple_strtol(cipher_key_bytes_src,
264 						   &cipher_key_bytes_src, 0);
265 			mount_crypt_stat->global_default_cipher_key_size =
266 				cipher_key_bytes;
267 			ecryptfs_printk(KERN_DEBUG,
268 					"The mount_crypt_stat "
269 					"global_default_cipher_key_size "
270 					"set to: [%d]\n", mount_crypt_stat->
271 					global_default_cipher_key_size);
272 			cipher_key_bytes_set = 1;
273 			break;
274 		case ecryptfs_opt_passthrough:
275 			mount_crypt_stat->flags |=
276 				ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED;
277 			break;
278 		case ecryptfs_opt_err:
279 		default:
280 			ecryptfs_printk(KERN_WARNING,
281 					"eCryptfs: unrecognized option '%s'\n",
282 					p);
283 		}
284 	}
285 	/* Do not support lack of mount-wide signature in 0.1
286 	 * release */
287 	if (!sig_set) {
288 		rc = -EINVAL;
289 		ecryptfs_printk(KERN_ERR, "You must supply a valid "
290 				"passphrase auth tok signature as a mount "
291 				"parameter; see the eCryptfs README\n");
292 		goto out;
293 	}
294 	if (!cipher_name_set) {
295 		cipher_name_len = strlen(ECRYPTFS_DEFAULT_CIPHER);
296 		if (unlikely(cipher_name_len
297 			     >= ECRYPTFS_MAX_CIPHER_NAME_SIZE)) {
298 			rc = -EINVAL;
299 			BUG();
300 			goto out;
301 		}
302 		memcpy(mount_crypt_stat->global_default_cipher_name,
303 		       ECRYPTFS_DEFAULT_CIPHER, cipher_name_len);
304 		mount_crypt_stat->global_default_cipher_name[cipher_name_len]
305 		    = '\0';
306 	}
307 	if (!cipher_key_bytes_set) {
308 		mount_crypt_stat->global_default_cipher_key_size = 0;
309 	}
310 	rc = ecryptfs_process_cipher(
311 		&mount_crypt_stat->global_key_tfm,
312 		mount_crypt_stat->global_default_cipher_name,
313 		&mount_crypt_stat->global_default_cipher_key_size);
314 	if (rc) {
315 		printk(KERN_ERR "Error attempting to initialize cipher [%s] "
316 		       "with key size [%Zd] bytes; rc = [%d]\n",
317 		       mount_crypt_stat->global_default_cipher_name,
318 		       mount_crypt_stat->global_default_cipher_key_size, rc);
319 		mount_crypt_stat->global_key_tfm = NULL;
320 		mount_crypt_stat->global_auth_tok_key = NULL;
321 		rc = -EINVAL;
322 		goto out;
323 	}
324 	mutex_init(&mount_crypt_stat->global_key_tfm_mutex);
325 	ecryptfs_printk(KERN_DEBUG, "Requesting the key with description: "
326 			"[%s]\n", mount_crypt_stat->global_auth_tok_sig);
327 	/* The reference to this key is held until umount is done The
328 	 * call to key_put is done in ecryptfs_put_super() */
329 	auth_tok_key = request_key(&key_type_user,
330 				   mount_crypt_stat->global_auth_tok_sig,
331 				   NULL);
332 	if (!auth_tok_key || IS_ERR(auth_tok_key)) {
333 		ecryptfs_printk(KERN_ERR, "Could not find key with "
334 				"description: [%s]\n",
335 				mount_crypt_stat->global_auth_tok_sig);
336 		process_request_key_err(PTR_ERR(auth_tok_key));
337 		rc = -EINVAL;
338 		goto out;
339 	}
340 	auth_tok = ecryptfs_get_key_payload_data(auth_tok_key);
341 	if (ecryptfs_verify_version(auth_tok->version)) {
342 		ecryptfs_printk(KERN_ERR, "Data structure version mismatch. "
343 				"Userspace tools must match eCryptfs kernel "
344 				"module with major version [%d] and minor "
345 				"version [%d]\n", ECRYPTFS_VERSION_MAJOR,
346 				ECRYPTFS_VERSION_MINOR);
347 		rc = -EINVAL;
348 		goto out;
349 	}
350 	if (auth_tok->token_type != ECRYPTFS_PASSWORD) {
351 		ecryptfs_printk(KERN_ERR, "Invalid auth_tok structure "
352 				"returned from key\n");
353 		rc = -EINVAL;
354 		goto out;
355 	}
356 	mount_crypt_stat->global_auth_tok_key = auth_tok_key;
357 	mount_crypt_stat->global_auth_tok = auth_tok;
358 out:
359 	return rc;
360 }
361 
362 struct kmem_cache *ecryptfs_sb_info_cache;
363 
364 /**
365  * ecryptfs_fill_super
366  * @sb: The ecryptfs super block
367  * @raw_data: The options passed to mount
368  * @silent: Not used but required by function prototype
369  *
370  * Sets up what we can of the sb, rest is done in ecryptfs_read_super
371  *
372  * Returns zero on success; non-zero otherwise
373  */
374 static int
375 ecryptfs_fill_super(struct super_block *sb, void *raw_data, int silent)
376 {
377 	int rc = 0;
378 
379 	/* Released in ecryptfs_put_super() */
380 	ecryptfs_set_superblock_private(sb,
381 					kmem_cache_zalloc(ecryptfs_sb_info_cache,
382 							 GFP_KERNEL));
383 	if (!ecryptfs_superblock_to_private(sb)) {
384 		ecryptfs_printk(KERN_WARNING, "Out of memory\n");
385 		rc = -ENOMEM;
386 		goto out;
387 	}
388 	sb->s_op = &ecryptfs_sops;
389 	/* Released through deactivate_super(sb) from get_sb_nodev */
390 	sb->s_root = d_alloc(NULL, &(const struct qstr) {
391 			     .hash = 0,.name = "/",.len = 1});
392 	if (!sb->s_root) {
393 		ecryptfs_printk(KERN_ERR, "d_alloc failed\n");
394 		rc = -ENOMEM;
395 		goto out;
396 	}
397 	sb->s_root->d_op = &ecryptfs_dops;
398 	sb->s_root->d_sb = sb;
399 	sb->s_root->d_parent = sb->s_root;
400 	/* Released in d_release when dput(sb->s_root) is called */
401 	/* through deactivate_super(sb) from get_sb_nodev() */
402 	ecryptfs_set_dentry_private(sb->s_root,
403 				    kmem_cache_zalloc(ecryptfs_dentry_info_cache,
404 						     GFP_KERNEL));
405 	if (!ecryptfs_dentry_to_private(sb->s_root)) {
406 		ecryptfs_printk(KERN_ERR,
407 				"dentry_info_cache alloc failed\n");
408 		rc = -ENOMEM;
409 		goto out;
410 	}
411 	rc = 0;
412 out:
413 	/* Should be able to rely on deactivate_super called from
414 	 * get_sb_nodev */
415 	return rc;
416 }
417 
418 /**
419  * ecryptfs_read_super
420  * @sb: The ecryptfs super block
421  * @dev_name: The path to mount over
422  *
423  * Read the super block of the lower filesystem, and use
424  * ecryptfs_interpose to create our initial inode and super block
425  * struct.
426  */
427 static int ecryptfs_read_super(struct super_block *sb, const char *dev_name)
428 {
429 	int rc;
430 	struct nameidata nd;
431 	struct dentry *lower_root;
432 	struct vfsmount *lower_mnt;
433 
434 	memset(&nd, 0, sizeof(struct nameidata));
435 	rc = path_lookup(dev_name, LOOKUP_FOLLOW, &nd);
436 	if (rc) {
437 		ecryptfs_printk(KERN_WARNING, "path_lookup() failed\n");
438 		goto out_free;
439 	}
440 	lower_root = nd.dentry;
441 	if (!lower_root->d_inode) {
442 		ecryptfs_printk(KERN_WARNING,
443 				"No directory to interpose on\n");
444 		rc = -ENOENT;
445 		goto out_free;
446 	}
447 	lower_mnt = nd.mnt;
448 	ecryptfs_set_superblock_lower(sb, lower_root->d_sb);
449 	sb->s_maxbytes = lower_root->d_sb->s_maxbytes;
450 	ecryptfs_set_dentry_lower(sb->s_root, lower_root);
451 	ecryptfs_set_dentry_lower_mnt(sb->s_root, lower_mnt);
452 	if ((rc = ecryptfs_interpose(lower_root, sb->s_root, sb, 0)))
453 		goto out_free;
454 	rc = 0;
455 	goto out;
456 out_free:
457 	path_release(&nd);
458 out:
459 	return rc;
460 }
461 
462 /**
463  * ecryptfs_get_sb
464  * @fs_type
465  * @flags
466  * @dev_name: The path to mount over
467  * @raw_data: The options passed into the kernel
468  *
469  * The whole ecryptfs_get_sb process is broken into 4 functions:
470  * ecryptfs_parse_options(): handle options passed to ecryptfs, if any
471  * ecryptfs_fill_super(): used by get_sb_nodev, fills out the super_block
472  *                        with as much information as it can before needing
473  *                        the lower filesystem.
474  * ecryptfs_read_super(): this accesses the lower filesystem and uses
475  *                        ecryptfs_interpolate to perform most of the linking
476  * ecryptfs_interpolate(): links the lower filesystem into ecryptfs
477  */
478 static int ecryptfs_get_sb(struct file_system_type *fs_type, int flags,
479 			const char *dev_name, void *raw_data,
480 			struct vfsmount *mnt)
481 {
482 	int rc;
483 	struct super_block *sb;
484 
485 	rc = get_sb_nodev(fs_type, flags, raw_data, ecryptfs_fill_super, mnt);
486 	if (rc < 0) {
487 		printk(KERN_ERR "Getting sb failed; rc = [%d]\n", rc);
488 		goto out;
489 	}
490 	sb = mnt->mnt_sb;
491 	rc = ecryptfs_parse_options(sb, raw_data);
492 	if (rc) {
493 		printk(KERN_ERR "Error parsing options; rc = [%d]\n", rc);
494 		goto out_abort;
495 	}
496 	rc = ecryptfs_read_super(sb, dev_name);
497 	if (rc) {
498 		printk(KERN_ERR "Reading sb failed; rc = [%d]\n", rc);
499 		goto out_abort;
500 	}
501 	goto out;
502 out_abort:
503 	dput(sb->s_root);
504 	up_write(&sb->s_umount);
505 	deactivate_super(sb);
506 out:
507 	return rc;
508 }
509 
510 /**
511  * ecryptfs_kill_block_super
512  * @sb: The ecryptfs super block
513  *
514  * Used to bring the superblock down and free the private data.
515  * Private data is free'd in ecryptfs_put_super()
516  */
517 static void ecryptfs_kill_block_super(struct super_block *sb)
518 {
519 	generic_shutdown_super(sb);
520 }
521 
522 static struct file_system_type ecryptfs_fs_type = {
523 	.owner = THIS_MODULE,
524 	.name = "ecryptfs",
525 	.get_sb = ecryptfs_get_sb,
526 	.kill_sb = ecryptfs_kill_block_super,
527 	.fs_flags = 0
528 };
529 
530 /**
531  * inode_info_init_once
532  *
533  * Initializes the ecryptfs_inode_info_cache when it is created
534  */
535 static void
536 inode_info_init_once(void *vptr, struct kmem_cache *cachep, unsigned long flags)
537 {
538 	struct ecryptfs_inode_info *ei = (struct ecryptfs_inode_info *)vptr;
539 
540 	if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
541 	    SLAB_CTOR_CONSTRUCTOR)
542 		inode_init_once(&ei->vfs_inode);
543 }
544 
545 static struct ecryptfs_cache_info {
546 	struct kmem_cache **cache;
547 	const char *name;
548 	size_t size;
549 	void (*ctor)(void*, struct kmem_cache *, unsigned long);
550 } ecryptfs_cache_infos[] = {
551 	{
552 		.cache = &ecryptfs_auth_tok_list_item_cache,
553 		.name = "ecryptfs_auth_tok_list_item",
554 		.size = sizeof(struct ecryptfs_auth_tok_list_item),
555 	},
556 	{
557 		.cache = &ecryptfs_file_info_cache,
558 		.name = "ecryptfs_file_cache",
559 		.size = sizeof(struct ecryptfs_file_info),
560 	},
561 	{
562 		.cache = &ecryptfs_dentry_info_cache,
563 		.name = "ecryptfs_dentry_info_cache",
564 		.size = sizeof(struct ecryptfs_dentry_info),
565 	},
566 	{
567 		.cache = &ecryptfs_inode_info_cache,
568 		.name = "ecryptfs_inode_cache",
569 		.size = sizeof(struct ecryptfs_inode_info),
570 		.ctor = inode_info_init_once,
571 	},
572 	{
573 		.cache = &ecryptfs_sb_info_cache,
574 		.name = "ecryptfs_sb_cache",
575 		.size = sizeof(struct ecryptfs_sb_info),
576 	},
577 	{
578 		.cache = &ecryptfs_header_cache_0,
579 		.name = "ecryptfs_headers_0",
580 		.size = PAGE_CACHE_SIZE,
581 	},
582 	{
583 		.cache = &ecryptfs_header_cache_1,
584 		.name = "ecryptfs_headers_1",
585 		.size = PAGE_CACHE_SIZE,
586 	},
587 	{
588 		.cache = &ecryptfs_header_cache_2,
589 		.name = "ecryptfs_headers_2",
590 		.size = PAGE_CACHE_SIZE,
591 	},
592 	{
593 		.cache = &ecryptfs_lower_page_cache,
594 		.name = "ecryptfs_lower_page_cache",
595 		.size = PAGE_CACHE_SIZE,
596 	},
597 };
598 
599 static void ecryptfs_free_kmem_caches(void)
600 {
601 	int i;
602 
603 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
604 		struct ecryptfs_cache_info *info;
605 
606 		info = &ecryptfs_cache_infos[i];
607 		if (*(info->cache))
608 			kmem_cache_destroy(*(info->cache));
609 	}
610 }
611 
612 /**
613  * ecryptfs_init_kmem_caches
614  *
615  * Returns zero on success; non-zero otherwise
616  */
617 static int ecryptfs_init_kmem_caches(void)
618 {
619 	int i;
620 
621 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
622 		struct ecryptfs_cache_info *info;
623 
624 		info = &ecryptfs_cache_infos[i];
625 		*(info->cache) = kmem_cache_create(info->name, info->size,
626 				0, SLAB_HWCACHE_ALIGN, info->ctor, NULL);
627 		if (!*(info->cache)) {
628 			ecryptfs_free_kmem_caches();
629 			ecryptfs_printk(KERN_WARNING, "%s: "
630 					"kmem_cache_create failed\n",
631 					info->name);
632 			return -ENOMEM;
633 		}
634 	}
635 	return 0;
636 }
637 
638 struct ecryptfs_obj {
639 	char *name;
640 	struct list_head slot_list;
641 	struct kobject kobj;
642 };
643 
644 struct ecryptfs_attribute {
645 	struct attribute attr;
646 	ssize_t(*show) (struct ecryptfs_obj *, char *);
647 	ssize_t(*store) (struct ecryptfs_obj *, const char *, size_t);
648 };
649 
650 static ssize_t
651 ecryptfs_attr_store(struct kobject *kobj,
652 		    struct attribute *attr, const char *buf, size_t len)
653 {
654 	struct ecryptfs_obj *obj = container_of(kobj, struct ecryptfs_obj,
655 						kobj);
656 	struct ecryptfs_attribute *attribute =
657 		container_of(attr, struct ecryptfs_attribute, attr);
658 
659 	return (attribute->store ? attribute->store(obj, buf, len) : 0);
660 }
661 
662 static ssize_t
663 ecryptfs_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
664 {
665 	struct ecryptfs_obj *obj = container_of(kobj, struct ecryptfs_obj,
666 						kobj);
667 	struct ecryptfs_attribute *attribute =
668 		container_of(attr, struct ecryptfs_attribute, attr);
669 
670 	return (attribute->show ? attribute->show(obj, buf) : 0);
671 }
672 
673 static struct sysfs_ops ecryptfs_sysfs_ops = {
674 	.show = ecryptfs_attr_show,
675 	.store = ecryptfs_attr_store
676 };
677 
678 static struct kobj_type ecryptfs_ktype = {
679 	.sysfs_ops = &ecryptfs_sysfs_ops
680 };
681 
682 static decl_subsys(ecryptfs, &ecryptfs_ktype, NULL);
683 
684 static ssize_t version_show(struct ecryptfs_obj *obj, char *buff)
685 {
686 	return snprintf(buff, PAGE_SIZE, "%d\n", ECRYPTFS_VERSIONING_MASK);
687 }
688 
689 static struct ecryptfs_attribute sysfs_attr_version = __ATTR_RO(version);
690 
691 static struct ecryptfs_version_str_map_elem {
692 	u32 flag;
693 	char *str;
694 } ecryptfs_version_str_map[] = {
695 	{ECRYPTFS_VERSIONING_PASSPHRASE, "passphrase"},
696 	{ECRYPTFS_VERSIONING_PUBKEY, "pubkey"},
697 	{ECRYPTFS_VERSIONING_PLAINTEXT_PASSTHROUGH, "plaintext passthrough"},
698 	{ECRYPTFS_VERSIONING_POLICY, "policy"}
699 };
700 
701 static ssize_t version_str_show(struct ecryptfs_obj *obj, char *buff)
702 {
703 	int i;
704 	int remaining = PAGE_SIZE;
705 	int total_written = 0;
706 
707 	buff[0] = '\0';
708 	for (i = 0; i < ARRAY_SIZE(ecryptfs_version_str_map); i++) {
709 		int entry_size;
710 
711 		if (!(ECRYPTFS_VERSIONING_MASK
712 		      & ecryptfs_version_str_map[i].flag))
713 			continue;
714 		entry_size = strlen(ecryptfs_version_str_map[i].str);
715 		if ((entry_size + 2) > remaining)
716 			goto out;
717 		memcpy(buff, ecryptfs_version_str_map[i].str, entry_size);
718 		buff[entry_size++] = '\n';
719 		buff[entry_size] = '\0';
720 		buff += entry_size;
721 		total_written += entry_size;
722 		remaining -= entry_size;
723 	}
724 out:
725 	return total_written;
726 }
727 
728 static struct ecryptfs_attribute sysfs_attr_version_str = __ATTR_RO(version_str);
729 
730 static int do_sysfs_registration(void)
731 {
732 	int rc;
733 
734 	if ((rc = subsystem_register(&ecryptfs_subsys))) {
735 		printk(KERN_ERR
736 		       "Unable to register ecryptfs sysfs subsystem\n");
737 		goto out;
738 	}
739 	rc = sysfs_create_file(&ecryptfs_subsys.kset.kobj,
740 			       &sysfs_attr_version.attr);
741 	if (rc) {
742 		printk(KERN_ERR
743 		       "Unable to create ecryptfs version attribute\n");
744 		subsystem_unregister(&ecryptfs_subsys);
745 		goto out;
746 	}
747 	rc = sysfs_create_file(&ecryptfs_subsys.kset.kobj,
748 			       &sysfs_attr_version_str.attr);
749 	if (rc) {
750 		printk(KERN_ERR
751 		       "Unable to create ecryptfs version_str attribute\n");
752 		sysfs_remove_file(&ecryptfs_subsys.kset.kobj,
753 				  &sysfs_attr_version.attr);
754 		subsystem_unregister(&ecryptfs_subsys);
755 		goto out;
756 	}
757 out:
758 	return rc;
759 }
760 
761 static int __init ecryptfs_init(void)
762 {
763 	int rc;
764 
765 	if (ECRYPTFS_DEFAULT_EXTENT_SIZE > PAGE_CACHE_SIZE) {
766 		rc = -EINVAL;
767 		ecryptfs_printk(KERN_ERR, "The eCryptfs extent size is "
768 				"larger than the host's page size, and so "
769 				"eCryptfs cannot run on this system. The "
770 				"default eCryptfs extent size is [%d] bytes; "
771 				"the page size is [%d] bytes.\n",
772 				ECRYPTFS_DEFAULT_EXTENT_SIZE, PAGE_CACHE_SIZE);
773 		goto out;
774 	}
775 	rc = ecryptfs_init_kmem_caches();
776 	if (rc) {
777 		printk(KERN_ERR
778 		       "Failed to allocate one or more kmem_cache objects\n");
779 		goto out;
780 	}
781 	rc = register_filesystem(&ecryptfs_fs_type);
782 	if (rc) {
783 		printk(KERN_ERR "Failed to register filesystem\n");
784 		ecryptfs_free_kmem_caches();
785 		goto out;
786 	}
787 	kset_set_kset_s(&ecryptfs_subsys, fs_subsys);
788 	sysfs_attr_version.attr.owner = THIS_MODULE;
789 	sysfs_attr_version_str.attr.owner = THIS_MODULE;
790 	rc = do_sysfs_registration();
791 	if (rc) {
792 		printk(KERN_ERR "sysfs registration failed\n");
793 		unregister_filesystem(&ecryptfs_fs_type);
794 		ecryptfs_free_kmem_caches();
795 		goto out;
796 	}
797 out:
798 	return rc;
799 }
800 
801 static void __exit ecryptfs_exit(void)
802 {
803 	sysfs_remove_file(&ecryptfs_subsys.kset.kobj,
804 			  &sysfs_attr_version.attr);
805 	sysfs_remove_file(&ecryptfs_subsys.kset.kobj,
806 			  &sysfs_attr_version_str.attr);
807 	subsystem_unregister(&ecryptfs_subsys);
808 	unregister_filesystem(&ecryptfs_fs_type);
809 	ecryptfs_free_kmem_caches();
810 }
811 
812 MODULE_AUTHOR("Michael A. Halcrow <mhalcrow@us.ibm.com>");
813 MODULE_DESCRIPTION("eCryptfs");
814 
815 MODULE_LICENSE("GPL");
816 
817 module_init(ecryptfs_init)
818 module_exit(ecryptfs_exit)
819