xref: /openbmc/linux/fs/ecryptfs/main.c (revision 72b55fffd631a89e5be6fe1b4f2565bc4cd90deb)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2003 Erez Zadok
5  * Copyright (C) 2001-2003 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *              Michael C. Thompson <mcthomps@us.ibm.com>
9  *              Tyler Hicks <tyhicks@ou.edu>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License as
13  * published by the Free Software Foundation; either version 2 of the
14  * License, or (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
24  * 02111-1307, USA.
25  */
26 
27 #include <linux/dcache.h>
28 #include <linux/file.h>
29 #include <linux/module.h>
30 #include <linux/namei.h>
31 #include <linux/skbuff.h>
32 #include <linux/crypto.h>
33 #include <linux/netlink.h>
34 #include <linux/mount.h>
35 #include <linux/pagemap.h>
36 #include <linux/key.h>
37 #include <linux/parser.h>
38 #include <linux/fs_stack.h>
39 #include "ecryptfs_kernel.h"
40 
41 /**
42  * Module parameter that defines the ecryptfs_verbosity level.
43  */
44 int ecryptfs_verbosity = 0;
45 
46 module_param(ecryptfs_verbosity, int, 0);
47 MODULE_PARM_DESC(ecryptfs_verbosity,
48 		 "Initial verbosity level (0 or 1; defaults to "
49 		 "0, which is Quiet)");
50 
51 /**
52  * Module parameter that defines the number of netlink message buffer
53  * elements
54  */
55 unsigned int ecryptfs_message_buf_len = ECRYPTFS_DEFAULT_MSG_CTX_ELEMS;
56 
57 module_param(ecryptfs_message_buf_len, uint, 0);
58 MODULE_PARM_DESC(ecryptfs_message_buf_len,
59 		 "Number of message buffer elements");
60 
61 /**
62  * Module parameter that defines the maximum guaranteed amount of time to wait
63  * for a response through netlink.  The actual sleep time will be, more than
64  * likely, a small amount greater than this specified value, but only less if
65  * the netlink message successfully arrives.
66  */
67 signed long ecryptfs_message_wait_timeout = ECRYPTFS_MAX_MSG_CTX_TTL / HZ;
68 
69 module_param(ecryptfs_message_wait_timeout, long, 0);
70 MODULE_PARM_DESC(ecryptfs_message_wait_timeout,
71 		 "Maximum number of seconds that an operation will "
72 		 "sleep while waiting for a message response from "
73 		 "userspace");
74 
75 /**
76  * Module parameter that is an estimate of the maximum number of users
77  * that will be concurrently using eCryptfs. Set this to the right
78  * value to balance performance and memory use.
79  */
80 unsigned int ecryptfs_number_of_users = ECRYPTFS_DEFAULT_NUM_USERS;
81 
82 module_param(ecryptfs_number_of_users, uint, 0);
83 MODULE_PARM_DESC(ecryptfs_number_of_users, "An estimate of the number of "
84 		 "concurrent users of eCryptfs");
85 
86 unsigned int ecryptfs_transport = ECRYPTFS_DEFAULT_TRANSPORT;
87 
88 void __ecryptfs_printk(const char *fmt, ...)
89 {
90 	va_list args;
91 	va_start(args, fmt);
92 	if (fmt[1] == '7') { /* KERN_DEBUG */
93 		if (ecryptfs_verbosity >= 1)
94 			vprintk(fmt, args);
95 	} else
96 		vprintk(fmt, args);
97 	va_end(args);
98 }
99 
100 /**
101  * ecryptfs_init_persistent_file
102  * @ecryptfs_dentry: Fully initialized eCryptfs dentry object, with
103  *                   the lower dentry and the lower mount set
104  *
105  * eCryptfs only ever keeps a single open file for every lower
106  * inode. All I/O operations to the lower inode occur through that
107  * file. When the first eCryptfs dentry that interposes with the first
108  * lower dentry for that inode is created, this function creates the
109  * persistent file struct and associates it with the eCryptfs
110  * inode. When the eCryptfs inode is destroyed, the file is closed.
111  *
112  * The persistent file will be opened with read/write permissions, if
113  * possible. Otherwise, it is opened read-only.
114  *
115  * This function does nothing if a lower persistent file is already
116  * associated with the eCryptfs inode.
117  *
118  * Returns zero on success; non-zero otherwise
119  */
120 int ecryptfs_init_persistent_file(struct dentry *ecryptfs_dentry)
121 {
122 	struct ecryptfs_inode_info *inode_info =
123 		ecryptfs_inode_to_private(ecryptfs_dentry->d_inode);
124 	int rc = 0;
125 
126 	mutex_lock(&inode_info->lower_file_mutex);
127 	if (!inode_info->lower_file) {
128 		struct dentry *lower_dentry;
129 		struct vfsmount *lower_mnt =
130 			ecryptfs_dentry_to_lower_mnt(ecryptfs_dentry);
131 
132 		lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
133 		rc = ecryptfs_privileged_open(&inode_info->lower_file,
134 						     lower_dentry, lower_mnt);
135 		if (rc || IS_ERR(inode_info->lower_file)) {
136 			printk(KERN_ERR "Error opening lower persistent file "
137 			       "for lower_dentry [0x%p] and lower_mnt [0x%p]; "
138 			       "rc = [%d]\n", lower_dentry, lower_mnt, rc);
139 			rc = PTR_ERR(inode_info->lower_file);
140 			inode_info->lower_file = NULL;
141 		}
142 	}
143 	mutex_unlock(&inode_info->lower_file_mutex);
144 	return rc;
145 }
146 
147 /**
148  * ecryptfs_interpose
149  * @lower_dentry: Existing dentry in the lower filesystem
150  * @dentry: ecryptfs' dentry
151  * @sb: ecryptfs's super_block
152  * @flags: flags to govern behavior of interpose procedure
153  *
154  * Interposes upper and lower dentries.
155  *
156  * Returns zero on success; non-zero otherwise
157  */
158 int ecryptfs_interpose(struct dentry *lower_dentry, struct dentry *dentry,
159 		       struct super_block *sb, u32 flags)
160 {
161 	struct inode *lower_inode;
162 	struct inode *inode;
163 	int rc = 0;
164 
165 	lower_inode = lower_dentry->d_inode;
166 	if (lower_inode->i_sb != ecryptfs_superblock_to_lower(sb)) {
167 		rc = -EXDEV;
168 		goto out;
169 	}
170 	if (!igrab(lower_inode)) {
171 		rc = -ESTALE;
172 		goto out;
173 	}
174 	inode = iget5_locked(sb, (unsigned long)lower_inode,
175 			     ecryptfs_inode_test, ecryptfs_inode_set,
176 			     lower_inode);
177 	if (!inode) {
178 		rc = -EACCES;
179 		iput(lower_inode);
180 		goto out;
181 	}
182 	if (inode->i_state & I_NEW)
183 		unlock_new_inode(inode);
184 	else
185 		iput(lower_inode);
186 	if (S_ISLNK(lower_inode->i_mode))
187 		inode->i_op = &ecryptfs_symlink_iops;
188 	else if (S_ISDIR(lower_inode->i_mode))
189 		inode->i_op = &ecryptfs_dir_iops;
190 	if (S_ISDIR(lower_inode->i_mode))
191 		inode->i_fop = &ecryptfs_dir_fops;
192 	if (special_file(lower_inode->i_mode))
193 		init_special_inode(inode, lower_inode->i_mode,
194 				   lower_inode->i_rdev);
195 	dentry->d_op = &ecryptfs_dops;
196 	if (flags & ECRYPTFS_INTERPOSE_FLAG_D_ADD)
197 		d_add(dentry, inode);
198 	else
199 		d_instantiate(dentry, inode);
200 	fsstack_copy_attr_all(inode, lower_inode, NULL);
201 	/* This size will be overwritten for real files w/ headers and
202 	 * other metadata */
203 	fsstack_copy_inode_size(inode, lower_inode);
204 	if (!(flags & ECRYPTFS_INTERPOSE_FLAG_DELAY_PERSISTENT_FILE)) {
205 		rc = ecryptfs_init_persistent_file(dentry);
206 		if (rc) {
207 			printk(KERN_ERR "%s: Error attempting to initialize "
208 			       "the persistent file for the dentry with name "
209 			       "[%s]; rc = [%d]\n", __func__,
210 			       dentry->d_name.name, rc);
211 			goto out;
212 		}
213 	} else {
214 		struct ecryptfs_inode_info *inode_info =
215 			ecryptfs_inode_to_private(dentry->d_inode);
216 
217 		inode_info->lower_file = NULL;
218 		inode_info->crypt_stat.flags |= ECRYPTFS_DELAY_PERSISTENT;
219 	}
220 out:
221 	return rc;
222 }
223 
224 enum { ecryptfs_opt_sig, ecryptfs_opt_ecryptfs_sig,
225        ecryptfs_opt_cipher, ecryptfs_opt_ecryptfs_cipher,
226        ecryptfs_opt_ecryptfs_key_bytes,
227        ecryptfs_opt_passthrough, ecryptfs_opt_xattr_metadata,
228        ecryptfs_opt_encrypted_view, ecryptfs_opt_err };
229 
230 static match_table_t tokens = {
231 	{ecryptfs_opt_sig, "sig=%s"},
232 	{ecryptfs_opt_ecryptfs_sig, "ecryptfs_sig=%s"},
233 	{ecryptfs_opt_cipher, "cipher=%s"},
234 	{ecryptfs_opt_ecryptfs_cipher, "ecryptfs_cipher=%s"},
235 	{ecryptfs_opt_ecryptfs_key_bytes, "ecryptfs_key_bytes=%u"},
236 	{ecryptfs_opt_passthrough, "ecryptfs_passthrough"},
237 	{ecryptfs_opt_xattr_metadata, "ecryptfs_xattr_metadata"},
238 	{ecryptfs_opt_encrypted_view, "ecryptfs_encrypted_view"},
239 	{ecryptfs_opt_err, NULL}
240 };
241 
242 static int ecryptfs_init_global_auth_toks(
243 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
244 {
245 	struct ecryptfs_global_auth_tok *global_auth_tok;
246 	int rc = 0;
247 
248 	list_for_each_entry(global_auth_tok,
249 			    &mount_crypt_stat->global_auth_tok_list,
250 			    mount_crypt_stat_list) {
251 		rc = ecryptfs_keyring_auth_tok_for_sig(
252 			&global_auth_tok->global_auth_tok_key,
253 			&global_auth_tok->global_auth_tok,
254 			global_auth_tok->sig);
255 		if (rc) {
256 			printk(KERN_ERR "Could not find valid key in user "
257 			       "session keyring for sig specified in mount "
258 			       "option: [%s]\n", global_auth_tok->sig);
259 			global_auth_tok->flags |= ECRYPTFS_AUTH_TOK_INVALID;
260 			goto out;
261 		} else
262 			global_auth_tok->flags &= ~ECRYPTFS_AUTH_TOK_INVALID;
263 	}
264 out:
265 	return rc;
266 }
267 
268 static void ecryptfs_init_mount_crypt_stat(
269 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
270 {
271 	memset((void *)mount_crypt_stat, 0,
272 	       sizeof(struct ecryptfs_mount_crypt_stat));
273 	INIT_LIST_HEAD(&mount_crypt_stat->global_auth_tok_list);
274 	mutex_init(&mount_crypt_stat->global_auth_tok_list_mutex);
275 	mount_crypt_stat->flags |= ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED;
276 }
277 
278 /**
279  * ecryptfs_parse_options
280  * @sb: The ecryptfs super block
281  * @options: The options pased to the kernel
282  *
283  * Parse mount options:
284  * debug=N 	   - ecryptfs_verbosity level for debug output
285  * sig=XXX	   - description(signature) of the key to use
286  *
287  * Returns the dentry object of the lower-level (lower/interposed)
288  * directory; We want to mount our stackable file system on top of
289  * that lower directory.
290  *
291  * The signature of the key to use must be the description of a key
292  * already in the keyring. Mounting will fail if the key can not be
293  * found.
294  *
295  * Returns zero on success; non-zero on error
296  */
297 static int ecryptfs_parse_options(struct super_block *sb, char *options)
298 {
299 	char *p;
300 	int rc = 0;
301 	int sig_set = 0;
302 	int cipher_name_set = 0;
303 	int cipher_key_bytes;
304 	int cipher_key_bytes_set = 0;
305 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
306 		&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
307 	substring_t args[MAX_OPT_ARGS];
308 	int token;
309 	char *sig_src;
310 	char *cipher_name_dst;
311 	char *cipher_name_src;
312 	char *cipher_key_bytes_src;
313 
314 	if (!options) {
315 		rc = -EINVAL;
316 		goto out;
317 	}
318 	ecryptfs_init_mount_crypt_stat(mount_crypt_stat);
319 	while ((p = strsep(&options, ",")) != NULL) {
320 		if (!*p)
321 			continue;
322 		token = match_token(p, tokens, args);
323 		switch (token) {
324 		case ecryptfs_opt_sig:
325 		case ecryptfs_opt_ecryptfs_sig:
326 			sig_src = args[0].from;
327 			rc = ecryptfs_add_global_auth_tok(mount_crypt_stat,
328 							  sig_src);
329 			if (rc) {
330 				printk(KERN_ERR "Error attempting to register "
331 				       "global sig; rc = [%d]\n", rc);
332 				goto out;
333 			}
334 			sig_set = 1;
335 			break;
336 		case ecryptfs_opt_cipher:
337 		case ecryptfs_opt_ecryptfs_cipher:
338 			cipher_name_src = args[0].from;
339 			cipher_name_dst =
340 				mount_crypt_stat->
341 				global_default_cipher_name;
342 			strncpy(cipher_name_dst, cipher_name_src,
343 				ECRYPTFS_MAX_CIPHER_NAME_SIZE);
344 			ecryptfs_printk(KERN_DEBUG,
345 					"The mount_crypt_stat "
346 					"global_default_cipher_name set to: "
347 					"[%s]\n", cipher_name_dst);
348 			cipher_name_set = 1;
349 			break;
350 		case ecryptfs_opt_ecryptfs_key_bytes:
351 			cipher_key_bytes_src = args[0].from;
352 			cipher_key_bytes =
353 				(int)simple_strtol(cipher_key_bytes_src,
354 						   &cipher_key_bytes_src, 0);
355 			mount_crypt_stat->global_default_cipher_key_size =
356 				cipher_key_bytes;
357 			ecryptfs_printk(KERN_DEBUG,
358 					"The mount_crypt_stat "
359 					"global_default_cipher_key_size "
360 					"set to: [%d]\n", mount_crypt_stat->
361 					global_default_cipher_key_size);
362 			cipher_key_bytes_set = 1;
363 			break;
364 		case ecryptfs_opt_passthrough:
365 			mount_crypt_stat->flags |=
366 				ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED;
367 			break;
368 		case ecryptfs_opt_xattr_metadata:
369 			mount_crypt_stat->flags |=
370 				ECRYPTFS_XATTR_METADATA_ENABLED;
371 			break;
372 		case ecryptfs_opt_encrypted_view:
373 			mount_crypt_stat->flags |=
374 				ECRYPTFS_XATTR_METADATA_ENABLED;
375 			mount_crypt_stat->flags |=
376 				ECRYPTFS_ENCRYPTED_VIEW_ENABLED;
377 			break;
378 		case ecryptfs_opt_err:
379 		default:
380 			ecryptfs_printk(KERN_WARNING,
381 					"eCryptfs: unrecognized option '%s'\n",
382 					p);
383 		}
384 	}
385 	if (!sig_set) {
386 		rc = -EINVAL;
387 		ecryptfs_printk(KERN_ERR, "You must supply at least one valid "
388 				"auth tok signature as a mount "
389 				"parameter; see the eCryptfs README\n");
390 		goto out;
391 	}
392 	if (!cipher_name_set) {
393 		int cipher_name_len = strlen(ECRYPTFS_DEFAULT_CIPHER);
394 
395 		BUG_ON(cipher_name_len >= ECRYPTFS_MAX_CIPHER_NAME_SIZE);
396 
397 		strcpy(mount_crypt_stat->global_default_cipher_name,
398 		       ECRYPTFS_DEFAULT_CIPHER);
399 	}
400 	if (!cipher_key_bytes_set) {
401 		mount_crypt_stat->global_default_cipher_key_size = 0;
402 	}
403 	mutex_lock(&key_tfm_list_mutex);
404 	if (!ecryptfs_tfm_exists(mount_crypt_stat->global_default_cipher_name,
405 				 NULL))
406 		rc = ecryptfs_add_new_key_tfm(
407 			NULL, mount_crypt_stat->global_default_cipher_name,
408 			mount_crypt_stat->global_default_cipher_key_size);
409 	mutex_unlock(&key_tfm_list_mutex);
410 	if (rc) {
411 		printk(KERN_ERR "Error attempting to initialize cipher with "
412 		       "name = [%s] and key size = [%td]; rc = [%d]\n",
413 		       mount_crypt_stat->global_default_cipher_name,
414 		       mount_crypt_stat->global_default_cipher_key_size, rc);
415 		rc = -EINVAL;
416 		goto out;
417 	}
418 	rc = ecryptfs_init_global_auth_toks(mount_crypt_stat);
419 	if (rc) {
420 		printk(KERN_WARNING "One or more global auth toks could not "
421 		       "properly register; rc = [%d]\n", rc);
422 	}
423 out:
424 	return rc;
425 }
426 
427 struct kmem_cache *ecryptfs_sb_info_cache;
428 
429 /**
430  * ecryptfs_fill_super
431  * @sb: The ecryptfs super block
432  * @raw_data: The options passed to mount
433  * @silent: Not used but required by function prototype
434  *
435  * Sets up what we can of the sb, rest is done in ecryptfs_read_super
436  *
437  * Returns zero on success; non-zero otherwise
438  */
439 static int
440 ecryptfs_fill_super(struct super_block *sb, void *raw_data, int silent)
441 {
442 	int rc = 0;
443 
444 	/* Released in ecryptfs_put_super() */
445 	ecryptfs_set_superblock_private(sb,
446 					kmem_cache_zalloc(ecryptfs_sb_info_cache,
447 							 GFP_KERNEL));
448 	if (!ecryptfs_superblock_to_private(sb)) {
449 		ecryptfs_printk(KERN_WARNING, "Out of memory\n");
450 		rc = -ENOMEM;
451 		goto out;
452 	}
453 	sb->s_op = &ecryptfs_sops;
454 	/* Released through deactivate_super(sb) from get_sb_nodev */
455 	sb->s_root = d_alloc(NULL, &(const struct qstr) {
456 			     .hash = 0,.name = "/",.len = 1});
457 	if (!sb->s_root) {
458 		ecryptfs_printk(KERN_ERR, "d_alloc failed\n");
459 		rc = -ENOMEM;
460 		goto out;
461 	}
462 	sb->s_root->d_op = &ecryptfs_dops;
463 	sb->s_root->d_sb = sb;
464 	sb->s_root->d_parent = sb->s_root;
465 	/* Released in d_release when dput(sb->s_root) is called */
466 	/* through deactivate_super(sb) from get_sb_nodev() */
467 	ecryptfs_set_dentry_private(sb->s_root,
468 				    kmem_cache_zalloc(ecryptfs_dentry_info_cache,
469 						     GFP_KERNEL));
470 	if (!ecryptfs_dentry_to_private(sb->s_root)) {
471 		ecryptfs_printk(KERN_ERR,
472 				"dentry_info_cache alloc failed\n");
473 		rc = -ENOMEM;
474 		goto out;
475 	}
476 	rc = 0;
477 out:
478 	/* Should be able to rely on deactivate_super called from
479 	 * get_sb_nodev */
480 	return rc;
481 }
482 
483 /**
484  * ecryptfs_read_super
485  * @sb: The ecryptfs super block
486  * @dev_name: The path to mount over
487  *
488  * Read the super block of the lower filesystem, and use
489  * ecryptfs_interpose to create our initial inode and super block
490  * struct.
491  */
492 static int ecryptfs_read_super(struct super_block *sb, const char *dev_name)
493 {
494 	int rc;
495 	struct nameidata nd;
496 	struct dentry *lower_root;
497 	struct vfsmount *lower_mnt;
498 
499 	memset(&nd, 0, sizeof(struct nameidata));
500 	rc = path_lookup(dev_name, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &nd);
501 	if (rc) {
502 		ecryptfs_printk(KERN_WARNING, "path_lookup() failed\n");
503 		goto out;
504 	}
505 	lower_root = nd.path.dentry;
506 	lower_mnt = nd.path.mnt;
507 	ecryptfs_set_superblock_lower(sb, lower_root->d_sb);
508 	sb->s_maxbytes = lower_root->d_sb->s_maxbytes;
509 	sb->s_blocksize = lower_root->d_sb->s_blocksize;
510 	ecryptfs_set_dentry_lower(sb->s_root, lower_root);
511 	ecryptfs_set_dentry_lower_mnt(sb->s_root, lower_mnt);
512 	rc = ecryptfs_interpose(lower_root, sb->s_root, sb, 0);
513 	if (rc)
514 		goto out_free;
515 	rc = 0;
516 	goto out;
517 out_free:
518 	path_put(&nd.path);
519 out:
520 	return rc;
521 }
522 
523 /**
524  * ecryptfs_get_sb
525  * @fs_type
526  * @flags
527  * @dev_name: The path to mount over
528  * @raw_data: The options passed into the kernel
529  *
530  * The whole ecryptfs_get_sb process is broken into 4 functions:
531  * ecryptfs_parse_options(): handle options passed to ecryptfs, if any
532  * ecryptfs_fill_super(): used by get_sb_nodev, fills out the super_block
533  *                        with as much information as it can before needing
534  *                        the lower filesystem.
535  * ecryptfs_read_super(): this accesses the lower filesystem and uses
536  *                        ecryptfs_interpolate to perform most of the linking
537  * ecryptfs_interpolate(): links the lower filesystem into ecryptfs
538  */
539 static int ecryptfs_get_sb(struct file_system_type *fs_type, int flags,
540 			const char *dev_name, void *raw_data,
541 			struct vfsmount *mnt)
542 {
543 	int rc;
544 	struct super_block *sb;
545 
546 	rc = get_sb_nodev(fs_type, flags, raw_data, ecryptfs_fill_super, mnt);
547 	if (rc < 0) {
548 		printk(KERN_ERR "Getting sb failed; rc = [%d]\n", rc);
549 		goto out;
550 	}
551 	sb = mnt->mnt_sb;
552 	rc = ecryptfs_parse_options(sb, raw_data);
553 	if (rc) {
554 		printk(KERN_ERR "Error parsing options; rc = [%d]\n", rc);
555 		goto out_abort;
556 	}
557 	rc = ecryptfs_read_super(sb, dev_name);
558 	if (rc) {
559 		printk(KERN_ERR "Reading sb failed; rc = [%d]\n", rc);
560 		goto out_abort;
561 	}
562 	goto out;
563 out_abort:
564 	dput(sb->s_root);
565 	up_write(&sb->s_umount);
566 	deactivate_super(sb);
567 out:
568 	return rc;
569 }
570 
571 /**
572  * ecryptfs_kill_block_super
573  * @sb: The ecryptfs super block
574  *
575  * Used to bring the superblock down and free the private data.
576  * Private data is free'd in ecryptfs_put_super()
577  */
578 static void ecryptfs_kill_block_super(struct super_block *sb)
579 {
580 	generic_shutdown_super(sb);
581 }
582 
583 static struct file_system_type ecryptfs_fs_type = {
584 	.owner = THIS_MODULE,
585 	.name = "ecryptfs",
586 	.get_sb = ecryptfs_get_sb,
587 	.kill_sb = ecryptfs_kill_block_super,
588 	.fs_flags = 0
589 };
590 
591 /**
592  * inode_info_init_once
593  *
594  * Initializes the ecryptfs_inode_info_cache when it is created
595  */
596 static void
597 inode_info_init_once(struct kmem_cache *cachep, void *vptr)
598 {
599 	struct ecryptfs_inode_info *ei = (struct ecryptfs_inode_info *)vptr;
600 
601 	inode_init_once(&ei->vfs_inode);
602 }
603 
604 static struct ecryptfs_cache_info {
605 	struct kmem_cache **cache;
606 	const char *name;
607 	size_t size;
608 	void (*ctor)(struct kmem_cache *cache, void *obj);
609 } ecryptfs_cache_infos[] = {
610 	{
611 		.cache = &ecryptfs_auth_tok_list_item_cache,
612 		.name = "ecryptfs_auth_tok_list_item",
613 		.size = sizeof(struct ecryptfs_auth_tok_list_item),
614 	},
615 	{
616 		.cache = &ecryptfs_file_info_cache,
617 		.name = "ecryptfs_file_cache",
618 		.size = sizeof(struct ecryptfs_file_info),
619 	},
620 	{
621 		.cache = &ecryptfs_dentry_info_cache,
622 		.name = "ecryptfs_dentry_info_cache",
623 		.size = sizeof(struct ecryptfs_dentry_info),
624 	},
625 	{
626 		.cache = &ecryptfs_inode_info_cache,
627 		.name = "ecryptfs_inode_cache",
628 		.size = sizeof(struct ecryptfs_inode_info),
629 		.ctor = inode_info_init_once,
630 	},
631 	{
632 		.cache = &ecryptfs_sb_info_cache,
633 		.name = "ecryptfs_sb_cache",
634 		.size = sizeof(struct ecryptfs_sb_info),
635 	},
636 	{
637 		.cache = &ecryptfs_header_cache_1,
638 		.name = "ecryptfs_headers_1",
639 		.size = PAGE_CACHE_SIZE,
640 	},
641 	{
642 		.cache = &ecryptfs_header_cache_2,
643 		.name = "ecryptfs_headers_2",
644 		.size = PAGE_CACHE_SIZE,
645 	},
646 	{
647 		.cache = &ecryptfs_xattr_cache,
648 		.name = "ecryptfs_xattr_cache",
649 		.size = PAGE_CACHE_SIZE,
650 	},
651 	{
652 		.cache = &ecryptfs_key_record_cache,
653 		.name = "ecryptfs_key_record_cache",
654 		.size = sizeof(struct ecryptfs_key_record),
655 	},
656 	{
657 		.cache = &ecryptfs_key_sig_cache,
658 		.name = "ecryptfs_key_sig_cache",
659 		.size = sizeof(struct ecryptfs_key_sig),
660 	},
661 	{
662 		.cache = &ecryptfs_global_auth_tok_cache,
663 		.name = "ecryptfs_global_auth_tok_cache",
664 		.size = sizeof(struct ecryptfs_global_auth_tok),
665 	},
666 	{
667 		.cache = &ecryptfs_key_tfm_cache,
668 		.name = "ecryptfs_key_tfm_cache",
669 		.size = sizeof(struct ecryptfs_key_tfm),
670 	},
671 	{
672 		.cache = &ecryptfs_open_req_cache,
673 		.name = "ecryptfs_open_req_cache",
674 		.size = sizeof(struct ecryptfs_open_req),
675 	},
676 };
677 
678 static void ecryptfs_free_kmem_caches(void)
679 {
680 	int i;
681 
682 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
683 		struct ecryptfs_cache_info *info;
684 
685 		info = &ecryptfs_cache_infos[i];
686 		if (*(info->cache))
687 			kmem_cache_destroy(*(info->cache));
688 	}
689 }
690 
691 /**
692  * ecryptfs_init_kmem_caches
693  *
694  * Returns zero on success; non-zero otherwise
695  */
696 static int ecryptfs_init_kmem_caches(void)
697 {
698 	int i;
699 
700 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
701 		struct ecryptfs_cache_info *info;
702 
703 		info = &ecryptfs_cache_infos[i];
704 		*(info->cache) = kmem_cache_create(info->name, info->size,
705 				0, SLAB_HWCACHE_ALIGN, info->ctor);
706 		if (!*(info->cache)) {
707 			ecryptfs_free_kmem_caches();
708 			ecryptfs_printk(KERN_WARNING, "%s: "
709 					"kmem_cache_create failed\n",
710 					info->name);
711 			return -ENOMEM;
712 		}
713 	}
714 	return 0;
715 }
716 
717 static struct kobject *ecryptfs_kobj;
718 
719 static ssize_t version_show(struct kobject *kobj,
720 			    struct kobj_attribute *attr, char *buff)
721 {
722 	return snprintf(buff, PAGE_SIZE, "%d\n", ECRYPTFS_VERSIONING_MASK);
723 }
724 
725 static struct kobj_attribute version_attr = __ATTR_RO(version);
726 
727 static struct attribute *attributes[] = {
728 	&version_attr.attr,
729 	NULL,
730 };
731 
732 static struct attribute_group attr_group = {
733 	.attrs = attributes,
734 };
735 
736 static int do_sysfs_registration(void)
737 {
738 	int rc;
739 
740 	ecryptfs_kobj = kobject_create_and_add("ecryptfs", fs_kobj);
741 	if (!ecryptfs_kobj) {
742 		printk(KERN_ERR "Unable to create ecryptfs kset\n");
743 		rc = -ENOMEM;
744 		goto out;
745 	}
746 	rc = sysfs_create_group(ecryptfs_kobj, &attr_group);
747 	if (rc) {
748 		printk(KERN_ERR
749 		       "Unable to create ecryptfs version attributes\n");
750 		kobject_put(ecryptfs_kobj);
751 	}
752 out:
753 	return rc;
754 }
755 
756 static void do_sysfs_unregistration(void)
757 {
758 	sysfs_remove_group(ecryptfs_kobj, &attr_group);
759 	kobject_put(ecryptfs_kobj);
760 }
761 
762 static int __init ecryptfs_init(void)
763 {
764 	int rc;
765 
766 	if (ECRYPTFS_DEFAULT_EXTENT_SIZE > PAGE_CACHE_SIZE) {
767 		rc = -EINVAL;
768 		ecryptfs_printk(KERN_ERR, "The eCryptfs extent size is "
769 				"larger than the host's page size, and so "
770 				"eCryptfs cannot run on this system. The "
771 				"default eCryptfs extent size is [%d] bytes; "
772 				"the page size is [%d] bytes.\n",
773 				ECRYPTFS_DEFAULT_EXTENT_SIZE, PAGE_CACHE_SIZE);
774 		goto out;
775 	}
776 	rc = ecryptfs_init_kmem_caches();
777 	if (rc) {
778 		printk(KERN_ERR
779 		       "Failed to allocate one or more kmem_cache objects\n");
780 		goto out;
781 	}
782 	rc = register_filesystem(&ecryptfs_fs_type);
783 	if (rc) {
784 		printk(KERN_ERR "Failed to register filesystem\n");
785 		goto out_free_kmem_caches;
786 	}
787 	rc = do_sysfs_registration();
788 	if (rc) {
789 		printk(KERN_ERR "sysfs registration failed\n");
790 		goto out_unregister_filesystem;
791 	}
792 	rc = ecryptfs_init_kthread();
793 	if (rc) {
794 		printk(KERN_ERR "%s: kthread initialization failed; "
795 		       "rc = [%d]\n", __func__, rc);
796 		goto out_do_sysfs_unregistration;
797 	}
798 	rc = ecryptfs_init_messaging(ecryptfs_transport);
799 	if (rc) {
800 		printk(KERN_ERR "Failure occured while attempting to "
801 				"initialize the eCryptfs netlink socket\n");
802 		goto out_destroy_kthread;
803 	}
804 	rc = ecryptfs_init_crypto();
805 	if (rc) {
806 		printk(KERN_ERR "Failure whilst attempting to init crypto; "
807 		       "rc = [%d]\n", rc);
808 		goto out_release_messaging;
809 	}
810 	if (ecryptfs_verbosity > 0)
811 		printk(KERN_CRIT "eCryptfs verbosity set to %d. Secret values "
812 			"will be written to the syslog!\n", ecryptfs_verbosity);
813 
814 	goto out;
815 out_release_messaging:
816 	ecryptfs_release_messaging(ecryptfs_transport);
817 out_destroy_kthread:
818 	ecryptfs_destroy_kthread();
819 out_do_sysfs_unregistration:
820 	do_sysfs_unregistration();
821 out_unregister_filesystem:
822 	unregister_filesystem(&ecryptfs_fs_type);
823 out_free_kmem_caches:
824 	ecryptfs_free_kmem_caches();
825 out:
826 	return rc;
827 }
828 
829 static void __exit ecryptfs_exit(void)
830 {
831 	int rc;
832 
833 	rc = ecryptfs_destroy_crypto();
834 	if (rc)
835 		printk(KERN_ERR "Failure whilst attempting to destroy crypto; "
836 		       "rc = [%d]\n", rc);
837 	ecryptfs_release_messaging(ecryptfs_transport);
838 	ecryptfs_destroy_kthread();
839 	do_sysfs_unregistration();
840 	unregister_filesystem(&ecryptfs_fs_type);
841 	ecryptfs_free_kmem_caches();
842 }
843 
844 MODULE_AUTHOR("Michael A. Halcrow <mhalcrow@us.ibm.com>");
845 MODULE_DESCRIPTION("eCryptfs");
846 
847 MODULE_LICENSE("GPL");
848 
849 module_init(ecryptfs_init)
850 module_exit(ecryptfs_exit)
851