xref: /openbmc/linux/fs/ecryptfs/crypto.c (revision c376222960ae91d5ffb9197ee36771aaed1d9f90)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2006 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *   		Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include "ecryptfs_kernel.h"
37 
38 static int
39 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
40 			     struct page *dst_page, int dst_offset,
41 			     struct page *src_page, int src_offset, int size,
42 			     unsigned char *iv);
43 static int
44 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
45 			     struct page *dst_page, int dst_offset,
46 			     struct page *src_page, int src_offset, int size,
47 			     unsigned char *iv);
48 
49 /**
50  * ecryptfs_to_hex
51  * @dst: Buffer to take hex character representation of contents of
52  *       src; must be at least of size (src_size * 2)
53  * @src: Buffer to be converted to a hex string respresentation
54  * @src_size: number of bytes to convert
55  */
56 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
57 {
58 	int x;
59 
60 	for (x = 0; x < src_size; x++)
61 		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
62 }
63 
64 /**
65  * ecryptfs_from_hex
66  * @dst: Buffer to take the bytes from src hex; must be at least of
67  *       size (src_size / 2)
68  * @src: Buffer to be converted from a hex string respresentation to raw value
69  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
70  */
71 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
72 {
73 	int x;
74 	char tmp[3] = { 0, };
75 
76 	for (x = 0; x < dst_size; x++) {
77 		tmp[0] = src[x * 2];
78 		tmp[1] = src[x * 2 + 1];
79 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
80 	}
81 }
82 
83 /**
84  * ecryptfs_calculate_md5 - calculates the md5 of @src
85  * @dst: Pointer to 16 bytes of allocated memory
86  * @crypt_stat: Pointer to crypt_stat struct for the current inode
87  * @src: Data to be md5'd
88  * @len: Length of @src
89  *
90  * Uses the allocated crypto context that crypt_stat references to
91  * generate the MD5 sum of the contents of src.
92  */
93 static int ecryptfs_calculate_md5(char *dst,
94 				  struct ecryptfs_crypt_stat *crypt_stat,
95 				  char *src, int len)
96 {
97 	struct scatterlist sg;
98 	struct hash_desc desc = {
99 		.tfm = crypt_stat->hash_tfm,
100 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
101 	};
102 	int rc = 0;
103 
104 	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
105 	sg_init_one(&sg, (u8 *)src, len);
106 	if (!desc.tfm) {
107 		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
108 					     CRYPTO_ALG_ASYNC);
109 		if (IS_ERR(desc.tfm)) {
110 			rc = PTR_ERR(desc.tfm);
111 			ecryptfs_printk(KERN_ERR, "Error attempting to "
112 					"allocate crypto context; rc = [%d]\n",
113 					rc);
114 			goto out;
115 		}
116 		crypt_stat->hash_tfm = desc.tfm;
117 	}
118 	crypto_hash_init(&desc);
119 	crypto_hash_update(&desc, &sg, len);
120 	crypto_hash_final(&desc, dst);
121 	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
122 out:
123 	return rc;
124 }
125 
126 int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
127 					   char *cipher_name,
128 					   char *chaining_modifier)
129 {
130 	int cipher_name_len = strlen(cipher_name);
131 	int chaining_modifier_len = strlen(chaining_modifier);
132 	int algified_name_len;
133 	int rc;
134 
135 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
136 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
137 	if (!(*algified_name)) {
138 		rc = -ENOMEM;
139 		goto out;
140 	}
141 	snprintf((*algified_name), algified_name_len, "%s(%s)",
142 		 chaining_modifier, cipher_name);
143 	rc = 0;
144 out:
145 	return rc;
146 }
147 
148 /**
149  * ecryptfs_derive_iv
150  * @iv: destination for the derived iv vale
151  * @crypt_stat: Pointer to crypt_stat struct for the current inode
152  * @offset: Offset of the page whose's iv we are to derive
153  *
154  * Generate the initialization vector from the given root IV and page
155  * offset.
156  *
157  * Returns zero on success; non-zero on error.
158  */
159 static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
160 			      pgoff_t offset)
161 {
162 	int rc = 0;
163 	char dst[MD5_DIGEST_SIZE];
164 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
165 
166 	if (unlikely(ecryptfs_verbosity > 0)) {
167 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
168 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
169 	}
170 	/* TODO: It is probably secure to just cast the least
171 	 * significant bits of the root IV into an unsigned long and
172 	 * add the offset to that rather than go through all this
173 	 * hashing business. -Halcrow */
174 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
175 	memset((src + crypt_stat->iv_bytes), 0, 16);
176 	snprintf((src + crypt_stat->iv_bytes), 16, "%ld", offset);
177 	if (unlikely(ecryptfs_verbosity > 0)) {
178 		ecryptfs_printk(KERN_DEBUG, "source:\n");
179 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
180 	}
181 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
182 				    (crypt_stat->iv_bytes + 16));
183 	if (rc) {
184 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
185 				"MD5 while generating IV for a page\n");
186 		goto out;
187 	}
188 	memcpy(iv, dst, crypt_stat->iv_bytes);
189 	if (unlikely(ecryptfs_verbosity > 0)) {
190 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
191 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
192 	}
193 out:
194 	return rc;
195 }
196 
197 /**
198  * ecryptfs_init_crypt_stat
199  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
200  *
201  * Initialize the crypt_stat structure.
202  */
203 void
204 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
205 {
206 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
207 	mutex_init(&crypt_stat->cs_mutex);
208 	mutex_init(&crypt_stat->cs_tfm_mutex);
209 	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
210 	ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_STRUCT_INITIALIZED);
211 }
212 
213 /**
214  * ecryptfs_destruct_crypt_stat
215  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
216  *
217  * Releases all memory associated with a crypt_stat struct.
218  */
219 void ecryptfs_destruct_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
220 {
221 	if (crypt_stat->tfm)
222 		crypto_free_blkcipher(crypt_stat->tfm);
223 	if (crypt_stat->hash_tfm)
224 		crypto_free_hash(crypt_stat->hash_tfm);
225 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
226 }
227 
228 void ecryptfs_destruct_mount_crypt_stat(
229 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
230 {
231 	if (mount_crypt_stat->global_auth_tok_key)
232 		key_put(mount_crypt_stat->global_auth_tok_key);
233 	if (mount_crypt_stat->global_key_tfm)
234 		crypto_free_blkcipher(mount_crypt_stat->global_key_tfm);
235 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
236 }
237 
238 /**
239  * virt_to_scatterlist
240  * @addr: Virtual address
241  * @size: Size of data; should be an even multiple of the block size
242  * @sg: Pointer to scatterlist array; set to NULL to obtain only
243  *      the number of scatterlist structs required in array
244  * @sg_size: Max array size
245  *
246  * Fills in a scatterlist array with page references for a passed
247  * virtual address.
248  *
249  * Returns the number of scatterlist structs in array used
250  */
251 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
252 			int sg_size)
253 {
254 	int i = 0;
255 	struct page *pg;
256 	int offset;
257 	int remainder_of_page;
258 
259 	while (size > 0 && i < sg_size) {
260 		pg = virt_to_page(addr);
261 		offset = offset_in_page(addr);
262 		if (sg) {
263 			sg[i].page = pg;
264 			sg[i].offset = offset;
265 		}
266 		remainder_of_page = PAGE_CACHE_SIZE - offset;
267 		if (size >= remainder_of_page) {
268 			if (sg)
269 				sg[i].length = remainder_of_page;
270 			addr += remainder_of_page;
271 			size -= remainder_of_page;
272 		} else {
273 			if (sg)
274 				sg[i].length = size;
275 			addr += size;
276 			size = 0;
277 		}
278 		i++;
279 	}
280 	if (size > 0)
281 		return -ENOMEM;
282 	return i;
283 }
284 
285 /**
286  * encrypt_scatterlist
287  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
288  * @dest_sg: Destination of encrypted data
289  * @src_sg: Data to be encrypted
290  * @size: Length of data to be encrypted
291  * @iv: iv to use during encryption
292  *
293  * Returns the number of bytes encrypted; negative value on error
294  */
295 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
296 			       struct scatterlist *dest_sg,
297 			       struct scatterlist *src_sg, int size,
298 			       unsigned char *iv)
299 {
300 	struct blkcipher_desc desc = {
301 		.tfm = crypt_stat->tfm,
302 		.info = iv,
303 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
304 	};
305 	int rc = 0;
306 
307 	BUG_ON(!crypt_stat || !crypt_stat->tfm
308 	       || !ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
309 				       ECRYPTFS_STRUCT_INITIALIZED));
310 	if (unlikely(ecryptfs_verbosity > 0)) {
311 		ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
312 				crypt_stat->key_size);
313 		ecryptfs_dump_hex(crypt_stat->key,
314 				  crypt_stat->key_size);
315 	}
316 	/* Consider doing this once, when the file is opened */
317 	mutex_lock(&crypt_stat->cs_tfm_mutex);
318 	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
319 				     crypt_stat->key_size);
320 	if (rc) {
321 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
322 				rc);
323 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
324 		rc = -EINVAL;
325 		goto out;
326 	}
327 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
328 	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
329 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
330 out:
331 	return rc;
332 }
333 
334 static void
335 ecryptfs_extent_to_lwr_pg_idx_and_offset(unsigned long *lower_page_idx,
336 					 int *byte_offset,
337 					 struct ecryptfs_crypt_stat *crypt_stat,
338 					 unsigned long extent_num)
339 {
340 	unsigned long lower_extent_num;
341 	int extents_occupied_by_headers_at_front;
342 	int bytes_occupied_by_headers_at_front;
343 	int extent_offset;
344 	int extents_per_page;
345 
346 	bytes_occupied_by_headers_at_front =
347 		( crypt_stat->header_extent_size
348 		  * crypt_stat->num_header_extents_at_front );
349 	extents_occupied_by_headers_at_front =
350 		( bytes_occupied_by_headers_at_front
351 		  / crypt_stat->extent_size );
352 	lower_extent_num = extents_occupied_by_headers_at_front + extent_num;
353 	extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
354 	(*lower_page_idx) = lower_extent_num / extents_per_page;
355 	extent_offset = lower_extent_num % extents_per_page;
356 	(*byte_offset) = extent_offset * crypt_stat->extent_size;
357 	ecryptfs_printk(KERN_DEBUG, " * crypt_stat->header_extent_size = "
358 			"[%d]\n", crypt_stat->header_extent_size);
359 	ecryptfs_printk(KERN_DEBUG, " * crypt_stat->"
360 			"num_header_extents_at_front = [%d]\n",
361 			crypt_stat->num_header_extents_at_front);
362 	ecryptfs_printk(KERN_DEBUG, " * extents_occupied_by_headers_at_"
363 			"front = [%d]\n", extents_occupied_by_headers_at_front);
364 	ecryptfs_printk(KERN_DEBUG, " * lower_extent_num = [0x%.16x]\n",
365 			lower_extent_num);
366 	ecryptfs_printk(KERN_DEBUG, " * extents_per_page = [%d]\n",
367 			extents_per_page);
368 	ecryptfs_printk(KERN_DEBUG, " * (*lower_page_idx) = [0x%.16x]\n",
369 			(*lower_page_idx));
370 	ecryptfs_printk(KERN_DEBUG, " * extent_offset = [%d]\n",
371 			extent_offset);
372 	ecryptfs_printk(KERN_DEBUG, " * (*byte_offset) = [%d]\n",
373 			(*byte_offset));
374 }
375 
376 static int ecryptfs_write_out_page(struct ecryptfs_page_crypt_context *ctx,
377 				   struct page *lower_page,
378 				   struct inode *lower_inode,
379 				   int byte_offset_in_page, int bytes_to_write)
380 {
381 	int rc = 0;
382 
383 	if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) {
384 		rc = ecryptfs_commit_lower_page(lower_page, lower_inode,
385 						ctx->param.lower_file,
386 						byte_offset_in_page,
387 						bytes_to_write);
388 		if (rc) {
389 			ecryptfs_printk(KERN_ERR, "Error calling lower "
390 					"commit; rc = [%d]\n", rc);
391 			goto out;
392 		}
393 	} else {
394 		rc = ecryptfs_writepage_and_release_lower_page(lower_page,
395 							       lower_inode,
396 							       ctx->param.wbc);
397 		if (rc) {
398 			ecryptfs_printk(KERN_ERR, "Error calling lower "
399 					"writepage(); rc = [%d]\n", rc);
400 			goto out;
401 		}
402 	}
403 out:
404 	return rc;
405 }
406 
407 static int ecryptfs_read_in_page(struct ecryptfs_page_crypt_context *ctx,
408 				 struct page **lower_page,
409 				 struct inode *lower_inode,
410 				 unsigned long lower_page_idx,
411 				 int byte_offset_in_page)
412 {
413 	int rc = 0;
414 
415 	if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) {
416 		/* TODO: Limit this to only the data extents that are
417 		 * needed */
418 		rc = ecryptfs_get_lower_page(lower_page, lower_inode,
419 					     ctx->param.lower_file,
420 					     lower_page_idx,
421 					     byte_offset_in_page,
422 					     (PAGE_CACHE_SIZE
423 					      - byte_offset_in_page));
424 		if (rc) {
425 			ecryptfs_printk(
426 				KERN_ERR, "Error attempting to grab, map, "
427 				"and prepare_write lower page with index "
428 				"[0x%.16x]; rc = [%d]\n", lower_page_idx, rc);
429 			goto out;
430 		}
431 	} else {
432 		rc = ecryptfs_grab_and_map_lower_page(lower_page, NULL,
433 						      lower_inode,
434 						      lower_page_idx);
435 		if (rc) {
436 			ecryptfs_printk(
437 				KERN_ERR, "Error attempting to grab and map "
438 				"lower page with index [0x%.16x]; rc = [%d]\n",
439 				lower_page_idx, rc);
440 			goto out;
441 		}
442 	}
443 out:
444 	return rc;
445 }
446 
447 /**
448  * ecryptfs_encrypt_page
449  * @ctx: The context of the page
450  *
451  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
452  * that eCryptfs pages may straddle the lower pages -- for instance,
453  * if the file was created on a machine with an 8K page size
454  * (resulting in an 8K header), and then the file is copied onto a
455  * host with a 32K page size, then when reading page 0 of the eCryptfs
456  * file, 24K of page 0 of the lower file will be read and decrypted,
457  * and then 8K of page 1 of the lower file will be read and decrypted.
458  *
459  * The actual operations performed on each page depends on the
460  * contents of the ecryptfs_page_crypt_context struct.
461  *
462  * Returns zero on success; negative on error
463  */
464 int ecryptfs_encrypt_page(struct ecryptfs_page_crypt_context *ctx)
465 {
466 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
467 	unsigned long base_extent;
468 	unsigned long extent_offset = 0;
469 	unsigned long lower_page_idx = 0;
470 	unsigned long prior_lower_page_idx = 0;
471 	struct page *lower_page;
472 	struct inode *lower_inode;
473 	struct ecryptfs_inode_info *inode_info;
474 	struct ecryptfs_crypt_stat *crypt_stat;
475 	int rc = 0;
476 	int lower_byte_offset = 0;
477 	int orig_byte_offset = 0;
478 	int num_extents_per_page;
479 #define ECRYPTFS_PAGE_STATE_UNREAD    0
480 #define ECRYPTFS_PAGE_STATE_READ      1
481 #define ECRYPTFS_PAGE_STATE_MODIFIED  2
482 #define ECRYPTFS_PAGE_STATE_WRITTEN   3
483 	int page_state;
484 
485 	lower_inode = ecryptfs_inode_to_lower(ctx->page->mapping->host);
486 	inode_info = ecryptfs_inode_to_private(ctx->page->mapping->host);
487 	crypt_stat = &inode_info->crypt_stat;
488 	if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED)) {
489 		rc = ecryptfs_copy_page_to_lower(ctx->page, lower_inode,
490 						 ctx->param.lower_file);
491 		if (rc)
492 			ecryptfs_printk(KERN_ERR, "Error attempting to copy "
493 					"page at index [0x%.16x]\n",
494 					ctx->page->index);
495 		goto out;
496 	}
497 	num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
498 	base_extent = (ctx->page->index * num_extents_per_page);
499 	page_state = ECRYPTFS_PAGE_STATE_UNREAD;
500 	while (extent_offset < num_extents_per_page) {
501 		ecryptfs_extent_to_lwr_pg_idx_and_offset(
502 			&lower_page_idx, &lower_byte_offset, crypt_stat,
503 			(base_extent + extent_offset));
504 		if (prior_lower_page_idx != lower_page_idx
505 		    && page_state == ECRYPTFS_PAGE_STATE_MODIFIED) {
506 			rc = ecryptfs_write_out_page(ctx, lower_page,
507 						     lower_inode,
508 						     orig_byte_offset,
509 						     (PAGE_CACHE_SIZE
510 						      - orig_byte_offset));
511 			if (rc) {
512 				ecryptfs_printk(KERN_ERR, "Error attempting "
513 						"to write out page; rc = [%d]"
514 						"\n", rc);
515 				goto out;
516 			}
517 			page_state = ECRYPTFS_PAGE_STATE_WRITTEN;
518 		}
519 		if (page_state == ECRYPTFS_PAGE_STATE_UNREAD
520 		    || page_state == ECRYPTFS_PAGE_STATE_WRITTEN) {
521 			rc = ecryptfs_read_in_page(ctx, &lower_page,
522 						   lower_inode, lower_page_idx,
523 						   lower_byte_offset);
524 			if (rc) {
525 				ecryptfs_printk(KERN_ERR, "Error attempting "
526 						"to read in lower page with "
527 						"index [0x%.16x]; rc = [%d]\n",
528 						lower_page_idx, rc);
529 				goto out;
530 			}
531 			orig_byte_offset = lower_byte_offset;
532 			prior_lower_page_idx = lower_page_idx;
533 			page_state = ECRYPTFS_PAGE_STATE_READ;
534 		}
535 		BUG_ON(!(page_state == ECRYPTFS_PAGE_STATE_MODIFIED
536 			 || page_state == ECRYPTFS_PAGE_STATE_READ));
537 		rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
538 					(base_extent + extent_offset));
539 		if (rc) {
540 			ecryptfs_printk(KERN_ERR, "Error attempting to "
541 					"derive IV for extent [0x%.16x]; "
542 					"rc = [%d]\n",
543 					(base_extent + extent_offset), rc);
544 			goto out;
545 		}
546 		if (unlikely(ecryptfs_verbosity > 0)) {
547 			ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
548 					"with iv:\n");
549 			ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
550 			ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
551 					"encryption:\n");
552 			ecryptfs_dump_hex((char *)
553 					  (page_address(ctx->page)
554 					   + (extent_offset
555 					      * crypt_stat->extent_size)), 8);
556 		}
557 		rc = ecryptfs_encrypt_page_offset(
558 			crypt_stat, lower_page, lower_byte_offset, ctx->page,
559 			(extent_offset * crypt_stat->extent_size),
560 			crypt_stat->extent_size, extent_iv);
561 		ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
562 				"rc = [%d]\n",
563 				(base_extent + extent_offset), rc);
564 		if (unlikely(ecryptfs_verbosity > 0)) {
565 			ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
566 					"encryption:\n");
567 			ecryptfs_dump_hex((char *)(page_address(lower_page)
568 						   + lower_byte_offset), 8);
569 		}
570 		page_state = ECRYPTFS_PAGE_STATE_MODIFIED;
571 		extent_offset++;
572 	}
573 	BUG_ON(orig_byte_offset != 0);
574 	rc = ecryptfs_write_out_page(ctx, lower_page, lower_inode, 0,
575 				     (lower_byte_offset
576 				      + crypt_stat->extent_size));
577 	if (rc) {
578 		ecryptfs_printk(KERN_ERR, "Error attempting to write out "
579 				"page; rc = [%d]\n", rc);
580 				goto out;
581 	}
582 out:
583 	return rc;
584 }
585 
586 /**
587  * ecryptfs_decrypt_page
588  * @file: The ecryptfs file
589  * @page: The page in ecryptfs to decrypt
590  *
591  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
592  * that eCryptfs pages may straddle the lower pages -- for instance,
593  * if the file was created on a machine with an 8K page size
594  * (resulting in an 8K header), and then the file is copied onto a
595  * host with a 32K page size, then when reading page 0 of the eCryptfs
596  * file, 24K of page 0 of the lower file will be read and decrypted,
597  * and then 8K of page 1 of the lower file will be read and decrypted.
598  *
599  * Returns zero on success; negative on error
600  */
601 int ecryptfs_decrypt_page(struct file *file, struct page *page)
602 {
603 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
604 	unsigned long base_extent;
605 	unsigned long extent_offset = 0;
606 	unsigned long lower_page_idx = 0;
607 	unsigned long prior_lower_page_idx = 0;
608 	struct page *lower_page;
609 	char *lower_page_virt = NULL;
610 	struct inode *lower_inode;
611 	struct ecryptfs_crypt_stat *crypt_stat;
612 	int rc = 0;
613 	int byte_offset;
614 	int num_extents_per_page;
615 	int page_state;
616 
617 	crypt_stat = &(ecryptfs_inode_to_private(
618 			       page->mapping->host)->crypt_stat);
619 	lower_inode = ecryptfs_inode_to_lower(page->mapping->host);
620 	if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED)) {
621 		rc = ecryptfs_do_readpage(file, page, page->index);
622 		if (rc)
623 			ecryptfs_printk(KERN_ERR, "Error attempting to copy "
624 					"page at index [0x%.16x]\n",
625 					page->index);
626 		goto out;
627 	}
628 	num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
629 	base_extent = (page->index * num_extents_per_page);
630 	lower_page_virt = kmem_cache_alloc(ecryptfs_lower_page_cache,
631 					   GFP_KERNEL);
632 	if (!lower_page_virt) {
633 		rc = -ENOMEM;
634 		ecryptfs_printk(KERN_ERR, "Error getting page for encrypted "
635 				"lower page(s)\n");
636 		goto out;
637 	}
638 	lower_page = virt_to_page(lower_page_virt);
639 	page_state = ECRYPTFS_PAGE_STATE_UNREAD;
640 	while (extent_offset < num_extents_per_page) {
641 		ecryptfs_extent_to_lwr_pg_idx_and_offset(
642 			&lower_page_idx, &byte_offset, crypt_stat,
643 			(base_extent + extent_offset));
644 		if (prior_lower_page_idx != lower_page_idx
645 		    || page_state == ECRYPTFS_PAGE_STATE_UNREAD) {
646 			rc = ecryptfs_do_readpage(file, lower_page,
647 						  lower_page_idx);
648 			if (rc) {
649 				ecryptfs_printk(KERN_ERR, "Error reading "
650 						"lower encrypted page; rc = "
651 						"[%d]\n", rc);
652 				goto out;
653 			}
654 			prior_lower_page_idx = lower_page_idx;
655 			page_state = ECRYPTFS_PAGE_STATE_READ;
656 		}
657 		rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
658 					(base_extent + extent_offset));
659 		if (rc) {
660 			ecryptfs_printk(KERN_ERR, "Error attempting to "
661 					"derive IV for extent [0x%.16x]; rc = "
662 					"[%d]\n",
663 					(base_extent + extent_offset), rc);
664 			goto out;
665 		}
666 		if (unlikely(ecryptfs_verbosity > 0)) {
667 			ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
668 					"with iv:\n");
669 			ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
670 			ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
671 					"decryption:\n");
672 			ecryptfs_dump_hex((lower_page_virt + byte_offset), 8);
673 		}
674 		rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
675 						  (extent_offset
676 						   * crypt_stat->extent_size),
677 						  lower_page, byte_offset,
678 						  crypt_stat->extent_size,
679 						  extent_iv);
680 		if (rc != crypt_stat->extent_size) {
681 			ecryptfs_printk(KERN_ERR, "Error attempting to "
682 					"decrypt extent [0x%.16x]\n",
683 					(base_extent + extent_offset));
684 			goto out;
685 		}
686 		rc = 0;
687 		if (unlikely(ecryptfs_verbosity > 0)) {
688 			ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
689 					"decryption:\n");
690 			ecryptfs_dump_hex((char *)(page_address(page)
691 						   + byte_offset), 8);
692 		}
693 		extent_offset++;
694 	}
695 out:
696 	if (lower_page_virt)
697 		kmem_cache_free(ecryptfs_lower_page_cache, lower_page_virt);
698 	return rc;
699 }
700 
701 /**
702  * decrypt_scatterlist
703  *
704  * Returns the number of bytes decrypted; negative value on error
705  */
706 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
707 			       struct scatterlist *dest_sg,
708 			       struct scatterlist *src_sg, int size,
709 			       unsigned char *iv)
710 {
711 	struct blkcipher_desc desc = {
712 		.tfm = crypt_stat->tfm,
713 		.info = iv,
714 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
715 	};
716 	int rc = 0;
717 
718 	/* Consider doing this once, when the file is opened */
719 	mutex_lock(&crypt_stat->cs_tfm_mutex);
720 	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
721 				     crypt_stat->key_size);
722 	if (rc) {
723 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
724 				rc);
725 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
726 		rc = -EINVAL;
727 		goto out;
728 	}
729 	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
730 	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
731 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
732 	if (rc) {
733 		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
734 				rc);
735 		goto out;
736 	}
737 	rc = size;
738 out:
739 	return rc;
740 }
741 
742 /**
743  * ecryptfs_encrypt_page_offset
744  *
745  * Returns the number of bytes encrypted
746  */
747 static int
748 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
749 			     struct page *dst_page, int dst_offset,
750 			     struct page *src_page, int src_offset, int size,
751 			     unsigned char *iv)
752 {
753 	struct scatterlist src_sg, dst_sg;
754 
755 	src_sg.page = src_page;
756 	src_sg.offset = src_offset;
757 	src_sg.length = size;
758 	dst_sg.page = dst_page;
759 	dst_sg.offset = dst_offset;
760 	dst_sg.length = size;
761 	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
762 }
763 
764 /**
765  * ecryptfs_decrypt_page_offset
766  *
767  * Returns the number of bytes decrypted
768  */
769 static int
770 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
771 			     struct page *dst_page, int dst_offset,
772 			     struct page *src_page, int src_offset, int size,
773 			     unsigned char *iv)
774 {
775 	struct scatterlist src_sg, dst_sg;
776 
777 	src_sg.page = src_page;
778 	src_sg.offset = src_offset;
779 	src_sg.length = size;
780 	dst_sg.page = dst_page;
781 	dst_sg.offset = dst_offset;
782 	dst_sg.length = size;
783 	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
784 }
785 
786 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
787 
788 /**
789  * ecryptfs_init_crypt_ctx
790  * @crypt_stat: Uninitilized crypt stats structure
791  *
792  * Initialize the crypto context.
793  *
794  * TODO: Performance: Keep a cache of initialized cipher contexts;
795  * only init if needed
796  */
797 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
798 {
799 	char *full_alg_name;
800 	int rc = -EINVAL;
801 
802 	if (!crypt_stat->cipher) {
803 		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
804 		goto out;
805 	}
806 	ecryptfs_printk(KERN_DEBUG,
807 			"Initializing cipher [%s]; strlen = [%d]; "
808 			"key_size_bits = [%d]\n",
809 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
810 			crypt_stat->key_size << 3);
811 	if (crypt_stat->tfm) {
812 		rc = 0;
813 		goto out;
814 	}
815 	mutex_lock(&crypt_stat->cs_tfm_mutex);
816 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
817 						    crypt_stat->cipher, "cbc");
818 	if (rc)
819 		goto out;
820 	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
821 						 CRYPTO_ALG_ASYNC);
822 	kfree(full_alg_name);
823 	if (IS_ERR(crypt_stat->tfm)) {
824 		rc = PTR_ERR(crypt_stat->tfm);
825 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
826 				"Error initializing cipher [%s]\n",
827 				crypt_stat->cipher);
828 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
829 		goto out;
830 	}
831 	crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
832 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
833 	rc = 0;
834 out:
835 	return rc;
836 }
837 
838 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
839 {
840 	int extent_size_tmp;
841 
842 	crypt_stat->extent_mask = 0xFFFFFFFF;
843 	crypt_stat->extent_shift = 0;
844 	if (crypt_stat->extent_size == 0)
845 		return;
846 	extent_size_tmp = crypt_stat->extent_size;
847 	while ((extent_size_tmp & 0x01) == 0) {
848 		extent_size_tmp >>= 1;
849 		crypt_stat->extent_mask <<= 1;
850 		crypt_stat->extent_shift++;
851 	}
852 }
853 
854 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
855 {
856 	/* Default values; may be overwritten as we are parsing the
857 	 * packets. */
858 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
859 	set_extent_mask_and_shift(crypt_stat);
860 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
861 	if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) {
862 		crypt_stat->header_extent_size =
863 			ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
864 	} else
865 		crypt_stat->header_extent_size = PAGE_CACHE_SIZE;
866 	crypt_stat->num_header_extents_at_front = 1;
867 }
868 
869 /**
870  * ecryptfs_compute_root_iv
871  * @crypt_stats
872  *
873  * On error, sets the root IV to all 0's.
874  */
875 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
876 {
877 	int rc = 0;
878 	char dst[MD5_DIGEST_SIZE];
879 
880 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
881 	BUG_ON(crypt_stat->iv_bytes <= 0);
882 	if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID)) {
883 		rc = -EINVAL;
884 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
885 				"cannot generate root IV\n");
886 		goto out;
887 	}
888 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
889 				    crypt_stat->key_size);
890 	if (rc) {
891 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
892 				"MD5 while generating root IV\n");
893 		goto out;
894 	}
895 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
896 out:
897 	if (rc) {
898 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
899 		ECRYPTFS_SET_FLAG(crypt_stat->flags,
900 				  ECRYPTFS_SECURITY_WARNING);
901 	}
902 	return rc;
903 }
904 
905 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
906 {
907 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
908 	ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID);
909 	ecryptfs_compute_root_iv(crypt_stat);
910 	if (unlikely(ecryptfs_verbosity > 0)) {
911 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
912 		ecryptfs_dump_hex(crypt_stat->key,
913 				  crypt_stat->key_size);
914 	}
915 }
916 
917 /**
918  * ecryptfs_set_default_crypt_stat_vals
919  * @crypt_stat
920  *
921  * Default values in the event that policy does not override them.
922  */
923 static void ecryptfs_set_default_crypt_stat_vals(
924 	struct ecryptfs_crypt_stat *crypt_stat,
925 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
926 {
927 	ecryptfs_set_default_sizes(crypt_stat);
928 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
929 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
930 	ECRYPTFS_CLEAR_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID);
931 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
932 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
933 }
934 
935 /**
936  * ecryptfs_new_file_context
937  * @ecryptfs_dentry
938  *
939  * If the crypto context for the file has not yet been established,
940  * this is where we do that.  Establishing a new crypto context
941  * involves the following decisions:
942  *  - What cipher to use?
943  *  - What set of authentication tokens to use?
944  * Here we just worry about getting enough information into the
945  * authentication tokens so that we know that they are available.
946  * We associate the available authentication tokens with the new file
947  * via the set of signatures in the crypt_stat struct.  Later, when
948  * the headers are actually written out, we may again defer to
949  * userspace to perform the encryption of the session key; for the
950  * foreseeable future, this will be the case with public key packets.
951  *
952  * Returns zero on success; non-zero otherwise
953  */
954 /* Associate an authentication token(s) with the file */
955 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
956 {
957 	int rc = 0;
958 	struct ecryptfs_crypt_stat *crypt_stat =
959 	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
960 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
961 	    &ecryptfs_superblock_to_private(
962 		    ecryptfs_dentry->d_sb)->mount_crypt_stat;
963 	int cipher_name_len;
964 
965 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
966 	/* See if there are mount crypt options */
967 	if (mount_crypt_stat->global_auth_tok) {
968 		ecryptfs_printk(KERN_DEBUG, "Initializing context for new "
969 				"file using mount_crypt_stat\n");
970 		ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED);
971 		ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID);
972 		memcpy(crypt_stat->keysigs[crypt_stat->num_keysigs++],
973 		       mount_crypt_stat->global_auth_tok_sig,
974 		       ECRYPTFS_SIG_SIZE_HEX);
975 		cipher_name_len =
976 		    strlen(mount_crypt_stat->global_default_cipher_name);
977 		memcpy(crypt_stat->cipher,
978 		       mount_crypt_stat->global_default_cipher_name,
979 		       cipher_name_len);
980 		crypt_stat->cipher[cipher_name_len] = '\0';
981 		crypt_stat->key_size =
982 			mount_crypt_stat->global_default_cipher_key_size;
983 		ecryptfs_generate_new_key(crypt_stat);
984 	} else
985 		/* We should not encounter this scenario since we
986 		 * should detect lack of global_auth_tok at mount time
987 		 * TODO: Applies to 0.1 release only; remove in future
988 		 * release */
989 		BUG();
990 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
991 	if (rc)
992 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
993 				"context for cipher [%s]: rc = [%d]\n",
994 				crypt_stat->cipher, rc);
995 	return rc;
996 }
997 
998 /**
999  * contains_ecryptfs_marker - check for the ecryptfs marker
1000  * @data: The data block in which to check
1001  *
1002  * Returns one if marker found; zero if not found
1003  */
1004 int contains_ecryptfs_marker(char *data)
1005 {
1006 	u32 m_1, m_2;
1007 
1008 	memcpy(&m_1, data, 4);
1009 	m_1 = be32_to_cpu(m_1);
1010 	memcpy(&m_2, (data + 4), 4);
1011 	m_2 = be32_to_cpu(m_2);
1012 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1013 		return 1;
1014 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1015 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1016 			MAGIC_ECRYPTFS_MARKER);
1017 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1018 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1019 	return 0;
1020 }
1021 
1022 struct ecryptfs_flag_map_elem {
1023 	u32 file_flag;
1024 	u32 local_flag;
1025 };
1026 
1027 /* Add support for additional flags by adding elements here. */
1028 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1029 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
1030 	{0x00000002, ECRYPTFS_ENCRYPTED}
1031 };
1032 
1033 /**
1034  * ecryptfs_process_flags
1035  * @crypt_stat
1036  * @page_virt: Source data to be parsed
1037  * @bytes_read: Updated with the number of bytes read
1038  *
1039  * Returns zero on success; non-zero if the flag set is invalid
1040  */
1041 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1042 				  char *page_virt, int *bytes_read)
1043 {
1044 	int rc = 0;
1045 	int i;
1046 	u32 flags;
1047 
1048 	memcpy(&flags, page_virt, 4);
1049 	flags = be32_to_cpu(flags);
1050 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1051 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1052 		if (flags & ecryptfs_flag_map[i].file_flag) {
1053 			ECRYPTFS_SET_FLAG(crypt_stat->flags,
1054 					  ecryptfs_flag_map[i].local_flag);
1055 		} else
1056 			ECRYPTFS_CLEAR_FLAG(crypt_stat->flags,
1057 					    ecryptfs_flag_map[i].local_flag);
1058 	/* Version is in top 8 bits of the 32-bit flag vector */
1059 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
1060 	(*bytes_read) = 4;
1061 	return rc;
1062 }
1063 
1064 /**
1065  * write_ecryptfs_marker
1066  * @page_virt: The pointer to in a page to begin writing the marker
1067  * @written: Number of bytes written
1068  *
1069  * Marker = 0x3c81b7f5
1070  */
1071 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1072 {
1073 	u32 m_1, m_2;
1074 
1075 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1076 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1077 	m_1 = cpu_to_be32(m_1);
1078 	memcpy(page_virt, &m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1079 	m_2 = cpu_to_be32(m_2);
1080 	memcpy(page_virt + (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2), &m_2,
1081 	       (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1082 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1083 }
1084 
1085 static void
1086 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1087 		     size_t *written)
1088 {
1089 	u32 flags = 0;
1090 	int i;
1091 
1092 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1093 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1094 		if (ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
1095 					ecryptfs_flag_map[i].local_flag))
1096 			flags |= ecryptfs_flag_map[i].file_flag;
1097 	/* Version is in top 8 bits of the 32-bit flag vector */
1098 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1099 	flags = cpu_to_be32(flags);
1100 	memcpy(page_virt, &flags, 4);
1101 	(*written) = 4;
1102 }
1103 
1104 struct ecryptfs_cipher_code_str_map_elem {
1105 	char cipher_str[16];
1106 	u16 cipher_code;
1107 };
1108 
1109 /* Add support for additional ciphers by adding elements here. The
1110  * cipher_code is whatever OpenPGP applicatoins use to identify the
1111  * ciphers. List in order of probability. */
1112 static struct ecryptfs_cipher_code_str_map_elem
1113 ecryptfs_cipher_code_str_map[] = {
1114 	{"aes",RFC2440_CIPHER_AES_128 },
1115 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
1116 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
1117 	{"cast5", RFC2440_CIPHER_CAST_5},
1118 	{"twofish", RFC2440_CIPHER_TWOFISH},
1119 	{"cast6", RFC2440_CIPHER_CAST_6},
1120 	{"aes", RFC2440_CIPHER_AES_192},
1121 	{"aes", RFC2440_CIPHER_AES_256}
1122 };
1123 
1124 /**
1125  * ecryptfs_code_for_cipher_string
1126  * @str: The string representing the cipher name
1127  *
1128  * Returns zero on no match, or the cipher code on match
1129  */
1130 u16 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat)
1131 {
1132 	int i;
1133 	u16 code = 0;
1134 	struct ecryptfs_cipher_code_str_map_elem *map =
1135 		ecryptfs_cipher_code_str_map;
1136 
1137 	if (strcmp(crypt_stat->cipher, "aes") == 0) {
1138 		switch (crypt_stat->key_size) {
1139 		case 16:
1140 			code = RFC2440_CIPHER_AES_128;
1141 			break;
1142 		case 24:
1143 			code = RFC2440_CIPHER_AES_192;
1144 			break;
1145 		case 32:
1146 			code = RFC2440_CIPHER_AES_256;
1147 		}
1148 	} else {
1149 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1150 			if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){
1151 				code = map[i].cipher_code;
1152 				break;
1153 			}
1154 	}
1155 	return code;
1156 }
1157 
1158 /**
1159  * ecryptfs_cipher_code_to_string
1160  * @str: Destination to write out the cipher name
1161  * @cipher_code: The code to convert to cipher name string
1162  *
1163  * Returns zero on success
1164  */
1165 int ecryptfs_cipher_code_to_string(char *str, u16 cipher_code)
1166 {
1167 	int rc = 0;
1168 	int i;
1169 
1170 	str[0] = '\0';
1171 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1172 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1173 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1174 	if (str[0] == '\0') {
1175 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1176 				"[%d]\n", cipher_code);
1177 		rc = -EINVAL;
1178 	}
1179 	return rc;
1180 }
1181 
1182 /**
1183  * ecryptfs_read_header_region
1184  * @data
1185  * @dentry
1186  * @nd
1187  *
1188  * Returns zero on success; non-zero otherwise
1189  */
1190 int ecryptfs_read_header_region(char *data, struct dentry *dentry,
1191 				struct vfsmount *mnt)
1192 {
1193 	struct file *lower_file;
1194 	mm_segment_t oldfs;
1195 	int rc;
1196 
1197 	if ((rc = ecryptfs_open_lower_file(&lower_file, dentry, mnt,
1198 					   O_RDONLY))) {
1199 		printk(KERN_ERR
1200 		       "Error opening lower_file to read header region\n");
1201 		goto out;
1202 	}
1203 	lower_file->f_pos = 0;
1204 	oldfs = get_fs();
1205 	set_fs(get_ds());
1206 	/* For releases 0.1 and 0.2, all of the header information
1207 	 * fits in the first data extent-sized region. */
1208 	rc = lower_file->f_op->read(lower_file, (char __user *)data,
1209 			      ECRYPTFS_DEFAULT_EXTENT_SIZE, &lower_file->f_pos);
1210 	set_fs(oldfs);
1211 	if ((rc = ecryptfs_close_lower_file(lower_file))) {
1212 		printk(KERN_ERR "Error closing lower_file\n");
1213 		goto out;
1214 	}
1215 	rc = 0;
1216 out:
1217 	return rc;
1218 }
1219 
1220 static void
1221 write_header_metadata(char *virt, struct ecryptfs_crypt_stat *crypt_stat,
1222 		      size_t *written)
1223 {
1224 	u32 header_extent_size;
1225 	u16 num_header_extents_at_front;
1226 
1227 	header_extent_size = (u32)crypt_stat->header_extent_size;
1228 	num_header_extents_at_front =
1229 		(u16)crypt_stat->num_header_extents_at_front;
1230 	header_extent_size = cpu_to_be32(header_extent_size);
1231 	memcpy(virt, &header_extent_size, 4);
1232 	virt += 4;
1233 	num_header_extents_at_front = cpu_to_be16(num_header_extents_at_front);
1234 	memcpy(virt, &num_header_extents_at_front, 2);
1235 	(*written) = 6;
1236 }
1237 
1238 struct kmem_cache *ecryptfs_header_cache_0;
1239 struct kmem_cache *ecryptfs_header_cache_1;
1240 struct kmem_cache *ecryptfs_header_cache_2;
1241 
1242 /**
1243  * ecryptfs_write_headers_virt
1244  * @page_virt
1245  * @crypt_stat
1246  * @ecryptfs_dentry
1247  *
1248  * Format version: 1
1249  *
1250  *   Header Extent:
1251  *     Octets 0-7:        Unencrypted file size (big-endian)
1252  *     Octets 8-15:       eCryptfs special marker
1253  *     Octets 16-19:      Flags
1254  *      Octet 16:         File format version number (between 0 and 255)
1255  *      Octets 17-18:     Reserved
1256  *      Octet 19:         Bit 1 (lsb): Reserved
1257  *                        Bit 2: Encrypted?
1258  *                        Bits 3-8: Reserved
1259  *     Octets 20-23:      Header extent size (big-endian)
1260  *     Octets 24-25:      Number of header extents at front of file
1261  *                        (big-endian)
1262  *     Octet  26:         Begin RFC 2440 authentication token packet set
1263  *   Data Extent 0:
1264  *     Lower data (CBC encrypted)
1265  *   Data Extent 1:
1266  *     Lower data (CBC encrypted)
1267  *   ...
1268  *
1269  * Returns zero on success
1270  */
1271 int ecryptfs_write_headers_virt(char *page_virt,
1272 				struct ecryptfs_crypt_stat *crypt_stat,
1273 				struct dentry *ecryptfs_dentry)
1274 {
1275 	int rc;
1276 	size_t written;
1277 	size_t offset;
1278 
1279 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1280 	write_ecryptfs_marker((page_virt + offset), &written);
1281 	offset += written;
1282 	write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1283 	offset += written;
1284 	write_header_metadata((page_virt + offset), crypt_stat, &written);
1285 	offset += written;
1286 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1287 					      ecryptfs_dentry, &written,
1288 					      PAGE_CACHE_SIZE - offset);
1289 	if (rc)
1290 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1291 				"set; rc = [%d]\n", rc);
1292 	return rc;
1293 }
1294 
1295 /**
1296  * ecryptfs_write_headers
1297  * @lower_file: The lower file struct, which was returned from dentry_open
1298  *
1299  * Write the file headers out.  This will likely involve a userspace
1300  * callout, in which the session key is encrypted with one or more
1301  * public keys and/or the passphrase necessary to do the encryption is
1302  * retrieved via a prompt.  Exactly what happens at this point should
1303  * be policy-dependent.
1304  *
1305  * Returns zero on success; non-zero on error
1306  */
1307 int ecryptfs_write_headers(struct dentry *ecryptfs_dentry,
1308 			   struct file *lower_file)
1309 {
1310 	mm_segment_t oldfs;
1311 	struct ecryptfs_crypt_stat *crypt_stat;
1312 	char *page_virt;
1313 	int current_header_page;
1314 	int header_pages;
1315 	int rc = 0;
1316 
1317 	crypt_stat = &ecryptfs_inode_to_private(
1318 		ecryptfs_dentry->d_inode)->crypt_stat;
1319 	if (likely(ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
1320 				       ECRYPTFS_ENCRYPTED))) {
1321 		if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
1322 					 ECRYPTFS_KEY_VALID)) {
1323 			ecryptfs_printk(KERN_DEBUG, "Key is "
1324 					"invalid; bailing out\n");
1325 			rc = -EINVAL;
1326 			goto out;
1327 		}
1328 	} else {
1329 		rc = -EINVAL;
1330 		ecryptfs_printk(KERN_WARNING,
1331 				"Called with crypt_stat->encrypted == 0\n");
1332 		goto out;
1333 	}
1334 	/* Released in this function */
1335 	page_virt = kmem_cache_zalloc(ecryptfs_header_cache_0, GFP_USER);
1336 	if (!page_virt) {
1337 		ecryptfs_printk(KERN_ERR, "Out of memory\n");
1338 		rc = -ENOMEM;
1339 		goto out;
1340 	}
1341 
1342 	rc = ecryptfs_write_headers_virt(page_virt, crypt_stat,
1343 					 ecryptfs_dentry);
1344 	if (unlikely(rc)) {
1345 		ecryptfs_printk(KERN_ERR, "Error whilst writing headers\n");
1346 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1347 		goto out_free;
1348 	}
1349 	ecryptfs_printk(KERN_DEBUG,
1350 			"Writing key packet set to underlying file\n");
1351 	lower_file->f_pos = 0;
1352 	oldfs = get_fs();
1353 	set_fs(get_ds());
1354 	ecryptfs_printk(KERN_DEBUG, "Calling lower_file->f_op->"
1355 			"write() w/ header page; lower_file->f_pos = "
1356 			"[0x%.16x]\n", lower_file->f_pos);
1357 	lower_file->f_op->write(lower_file, (char __user *)page_virt,
1358 				PAGE_CACHE_SIZE, &lower_file->f_pos);
1359 	header_pages = ((crypt_stat->header_extent_size
1360 			 * crypt_stat->num_header_extents_at_front)
1361 			/ PAGE_CACHE_SIZE);
1362 	memset(page_virt, 0, PAGE_CACHE_SIZE);
1363 	current_header_page = 1;
1364 	while (current_header_page < header_pages) {
1365 		ecryptfs_printk(KERN_DEBUG, "Calling lower_file->f_op->"
1366 				"write() w/ zero'd page; lower_file->f_pos = "
1367 				"[0x%.16x]\n", lower_file->f_pos);
1368 		lower_file->f_op->write(lower_file, (char __user *)page_virt,
1369 					PAGE_CACHE_SIZE, &lower_file->f_pos);
1370 		current_header_page++;
1371 	}
1372 	set_fs(oldfs);
1373 	ecryptfs_printk(KERN_DEBUG,
1374 			"Done writing key packet set to underlying file.\n");
1375 out_free:
1376 	kmem_cache_free(ecryptfs_header_cache_0, page_virt);
1377 out:
1378 	return rc;
1379 }
1380 
1381 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1382 				 char *virt, int *bytes_read)
1383 {
1384 	int rc = 0;
1385 	u32 header_extent_size;
1386 	u16 num_header_extents_at_front;
1387 
1388 	memcpy(&header_extent_size, virt, 4);
1389 	header_extent_size = be32_to_cpu(header_extent_size);
1390 	virt += 4;
1391 	memcpy(&num_header_extents_at_front, virt, 2);
1392 	num_header_extents_at_front = be16_to_cpu(num_header_extents_at_front);
1393 	crypt_stat->header_extent_size = (int)header_extent_size;
1394 	crypt_stat->num_header_extents_at_front =
1395 		(int)num_header_extents_at_front;
1396 	(*bytes_read) = 6;
1397 	if ((crypt_stat->header_extent_size
1398 	     * crypt_stat->num_header_extents_at_front)
1399 	    < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) {
1400 		rc = -EINVAL;
1401 		ecryptfs_printk(KERN_WARNING, "Invalid header extent size: "
1402 				"[%d]\n", crypt_stat->header_extent_size);
1403 	}
1404 	return rc;
1405 }
1406 
1407 /**
1408  * set_default_header_data
1409  *
1410  * For version 0 file format; this function is only for backwards
1411  * compatibility for files created with the prior versions of
1412  * eCryptfs.
1413  */
1414 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1415 {
1416 	crypt_stat->header_extent_size = 4096;
1417 	crypt_stat->num_header_extents_at_front = 1;
1418 }
1419 
1420 /**
1421  * ecryptfs_read_headers_virt
1422  *
1423  * Read/parse the header data. The header format is detailed in the
1424  * comment block for the ecryptfs_write_headers_virt() function.
1425  *
1426  * Returns zero on success
1427  */
1428 static int ecryptfs_read_headers_virt(char *page_virt,
1429 				      struct ecryptfs_crypt_stat *crypt_stat,
1430 				      struct dentry *ecryptfs_dentry)
1431 {
1432 	int rc = 0;
1433 	int offset;
1434 	int bytes_read;
1435 
1436 	ecryptfs_set_default_sizes(crypt_stat);
1437 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1438 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1439 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1440 	rc = contains_ecryptfs_marker(page_virt + offset);
1441 	if (rc == 0) {
1442 		rc = -EINVAL;
1443 		goto out;
1444 	}
1445 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1446 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1447 				    &bytes_read);
1448 	if (rc) {
1449 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1450 		goto out;
1451 	}
1452 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1453 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1454 				"file version [%d] is supported by this "
1455 				"version of eCryptfs\n",
1456 				crypt_stat->file_version,
1457 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1458 		rc = -EINVAL;
1459 		goto out;
1460 	}
1461 	offset += bytes_read;
1462 	if (crypt_stat->file_version >= 1) {
1463 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1464 					   &bytes_read);
1465 		if (rc) {
1466 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1467 					"metadata; rc = [%d]\n", rc);
1468 		}
1469 		offset += bytes_read;
1470 	} else
1471 		set_default_header_data(crypt_stat);
1472 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1473 				       ecryptfs_dentry);
1474 out:
1475 	return rc;
1476 }
1477 
1478 /**
1479  * ecryptfs_read_headers
1480  *
1481  * Returns zero if valid headers found and parsed; non-zero otherwise
1482  */
1483 int ecryptfs_read_headers(struct dentry *ecryptfs_dentry,
1484 			  struct file *lower_file)
1485 {
1486 	int rc = 0;
1487 	char *page_virt = NULL;
1488 	mm_segment_t oldfs;
1489 	ssize_t bytes_read;
1490 	struct ecryptfs_crypt_stat *crypt_stat =
1491 	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1492 
1493 	/* Read the first page from the underlying file */
1494 	page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1495 	if (!page_virt) {
1496 		rc = -ENOMEM;
1497 		ecryptfs_printk(KERN_ERR, "Unable to allocate page_virt\n");
1498 		goto out;
1499 	}
1500 	lower_file->f_pos = 0;
1501 	oldfs = get_fs();
1502 	set_fs(get_ds());
1503 	bytes_read = lower_file->f_op->read(lower_file,
1504 					    (char __user *)page_virt,
1505 					    ECRYPTFS_DEFAULT_EXTENT_SIZE,
1506 					    &lower_file->f_pos);
1507 	set_fs(oldfs);
1508 	if (bytes_read != ECRYPTFS_DEFAULT_EXTENT_SIZE) {
1509 		rc = -EINVAL;
1510 		goto out;
1511 	}
1512 	rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1513 					ecryptfs_dentry);
1514 	if (rc) {
1515 		ecryptfs_printk(KERN_DEBUG, "Valid eCryptfs headers not "
1516 				"found\n");
1517 		rc = -EINVAL;
1518 	}
1519 out:
1520 	if (page_virt) {
1521 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1522 		kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1523 	}
1524 	return rc;
1525 }
1526 
1527 /**
1528  * ecryptfs_encode_filename - converts a plaintext file name to cipher text
1529  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1530  * @name: The plaintext name
1531  * @length: The length of the plaintext
1532  * @encoded_name: The encypted name
1533  *
1534  * Encrypts and encodes a filename into something that constitutes a
1535  * valid filename for a filesystem, with printable characters.
1536  *
1537  * We assume that we have a properly initialized crypto context,
1538  * pointed to by crypt_stat->tfm.
1539  *
1540  * TODO: Implement filename decoding and decryption here, in place of
1541  * memcpy. We are keeping the framework around for now to (1)
1542  * facilitate testing of the components needed to implement filename
1543  * encryption and (2) to provide a code base from which other
1544  * developers in the community can easily implement this feature.
1545  *
1546  * Returns the length of encoded filename; negative if error
1547  */
1548 int
1549 ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1550 			 const char *name, int length, char **encoded_name)
1551 {
1552 	int error = 0;
1553 
1554 	(*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
1555 	if (!(*encoded_name)) {
1556 		error = -ENOMEM;
1557 		goto out;
1558 	}
1559 	/* TODO: Filename encryption is a scheduled feature for a
1560 	 * future version of eCryptfs. This function is here only for
1561 	 * the purpose of providing a framework for other developers
1562 	 * to easily implement filename encryption. Hint: Replace this
1563 	 * memcpy() with a call to encrypt and encode the
1564 	 * filename, the set the length accordingly. */
1565 	memcpy((void *)(*encoded_name), (void *)name, length);
1566 	(*encoded_name)[length] = '\0';
1567 	error = length + 1;
1568 out:
1569 	return error;
1570 }
1571 
1572 /**
1573  * ecryptfs_decode_filename - converts the cipher text name to plaintext
1574  * @crypt_stat: The crypt_stat struct associated with the file
1575  * @name: The filename in cipher text
1576  * @length: The length of the cipher text name
1577  * @decrypted_name: The plaintext name
1578  *
1579  * Decodes and decrypts the filename.
1580  *
1581  * We assume that we have a properly initialized crypto context,
1582  * pointed to by crypt_stat->tfm.
1583  *
1584  * TODO: Implement filename decoding and decryption here, in place of
1585  * memcpy. We are keeping the framework around for now to (1)
1586  * facilitate testing of the components needed to implement filename
1587  * encryption and (2) to provide a code base from which other
1588  * developers in the community can easily implement this feature.
1589  *
1590  * Returns the length of decoded filename; negative if error
1591  */
1592 int
1593 ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1594 			 const char *name, int length, char **decrypted_name)
1595 {
1596 	int error = 0;
1597 
1598 	(*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
1599 	if (!(*decrypted_name)) {
1600 		error = -ENOMEM;
1601 		goto out;
1602 	}
1603 	/* TODO: Filename encryption is a scheduled feature for a
1604 	 * future version of eCryptfs. This function is here only for
1605 	 * the purpose of providing a framework for other developers
1606 	 * to easily implement filename encryption. Hint: Replace this
1607 	 * memcpy() with a call to decode and decrypt the
1608 	 * filename, the set the length accordingly. */
1609 	memcpy((void *)(*decrypted_name), (void *)name, length);
1610 	(*decrypted_name)[length + 1] = '\0';	/* Only for convenience
1611 						 * in printing out the
1612 						 * string in debug
1613 						 * messages */
1614 	error = length;
1615 out:
1616 	return error;
1617 }
1618 
1619 /**
1620  * ecryptfs_process_cipher - Perform cipher initialization.
1621  * @key_tfm: Crypto context for key material, set by this function
1622  * @cipher_name: Name of the cipher
1623  * @key_size: Size of the key in bytes
1624  *
1625  * Returns zero on success. Any crypto_tfm structs allocated here
1626  * should be released by other functions, such as on a superblock put
1627  * event, regardless of whether this function succeeds for fails.
1628  */
1629 int
1630 ecryptfs_process_cipher(struct crypto_blkcipher **key_tfm, char *cipher_name,
1631 			size_t *key_size)
1632 {
1633 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1634 	char *full_alg_name;
1635 	int rc;
1636 
1637 	*key_tfm = NULL;
1638 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1639 		rc = -EINVAL;
1640 		printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
1641 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1642 		goto out;
1643 	}
1644 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1645 						    "ecb");
1646 	if (rc)
1647 		goto out;
1648 	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1649 	kfree(full_alg_name);
1650 	if (IS_ERR(*key_tfm)) {
1651 		rc = PTR_ERR(*key_tfm);
1652 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1653 		       "[%s]; rc = [%d]\n", cipher_name, rc);
1654 		goto out;
1655 	}
1656 	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1657 	if (*key_size == 0) {
1658 		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1659 
1660 		*key_size = alg->max_keysize;
1661 	}
1662 	get_random_bytes(dummy_key, *key_size);
1663 	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1664 	if (rc) {
1665 		printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
1666 		       "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
1667 		rc = -EINVAL;
1668 		goto out;
1669 	}
1670 out:
1671 	return rc;
1672 }
1673