xref: /openbmc/linux/fs/ecryptfs/crypto.c (revision 8bba066f4e3854755a303cee37ea37bd080a46b3)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2006 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *   		Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include "ecryptfs_kernel.h"
37 
38 static int
39 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
40 			     struct page *dst_page, int dst_offset,
41 			     struct page *src_page, int src_offset, int size,
42 			     unsigned char *iv);
43 static int
44 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
45 			     struct page *dst_page, int dst_offset,
46 			     struct page *src_page, int src_offset, int size,
47 			     unsigned char *iv);
48 
49 /**
50  * ecryptfs_to_hex
51  * @dst: Buffer to take hex character representation of contents of
52  *       src; must be at least of size (src_size * 2)
53  * @src: Buffer to be converted to a hex string respresentation
54  * @src_size: number of bytes to convert
55  */
56 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
57 {
58 	int x;
59 
60 	for (x = 0; x < src_size; x++)
61 		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
62 }
63 
64 /**
65  * ecryptfs_from_hex
66  * @dst: Buffer to take the bytes from src hex; must be at least of
67  *       size (src_size / 2)
68  * @src: Buffer to be converted from a hex string respresentation to raw value
69  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
70  */
71 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
72 {
73 	int x;
74 	char tmp[3] = { 0, };
75 
76 	for (x = 0; x < dst_size; x++) {
77 		tmp[0] = src[x * 2];
78 		tmp[1] = src[x * 2 + 1];
79 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
80 	}
81 }
82 
83 /**
84  * ecryptfs_calculate_md5 - calculates the md5 of @src
85  * @dst: Pointer to 16 bytes of allocated memory
86  * @crypt_stat: Pointer to crypt_stat struct for the current inode
87  * @src: Data to be md5'd
88  * @len: Length of @src
89  *
90  * Uses the allocated crypto context that crypt_stat references to
91  * generate the MD5 sum of the contents of src.
92  */
93 static int ecryptfs_calculate_md5(char *dst,
94 				  struct ecryptfs_crypt_stat *crypt_stat,
95 				  char *src, int len)
96 {
97 	struct scatterlist sg;
98 	struct hash_desc desc = {
99 		.tfm = crypt_stat->hash_tfm,
100 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
101 	};
102 	int rc = 0;
103 
104 	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
105 	sg_init_one(&sg, (u8 *)src, len);
106 	if (!desc.tfm) {
107 		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
108 					     CRYPTO_ALG_ASYNC);
109 		if (IS_ERR(desc.tfm)) {
110 			rc = PTR_ERR(desc.tfm);
111 			ecryptfs_printk(KERN_ERR, "Error attempting to "
112 					"allocate crypto context; rc = [%d]\n",
113 					rc);
114 			goto out;
115 		}
116 		crypt_stat->hash_tfm = desc.tfm;
117 	}
118 	crypto_hash_init(&desc);
119 	crypto_hash_update(&desc, &sg, len);
120 	crypto_hash_final(&desc, dst);
121 	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
122 out:
123 	return rc;
124 }
125 
126 int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
127 					   char *cipher_name,
128 					   char *chaining_modifier)
129 {
130 	int cipher_name_len = strlen(cipher_name);
131 	int chaining_modifier_len = strlen(chaining_modifier);
132 	int algified_name_len;
133 	int rc;
134 
135 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
136 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
137 	if (!(algified_name)) {
138 		rc = -ENOMEM;
139 		goto out;
140 	}
141 	snprintf((*algified_name), algified_name_len, "%s(%s)",
142 		 chaining_modifier, cipher_name);
143 	rc = 0;
144 out:
145 	return rc;
146 }
147 
148 /**
149  * ecryptfs_derive_iv
150  * @iv: destination for the derived iv vale
151  * @crypt_stat: Pointer to crypt_stat struct for the current inode
152  * @offset: Offset of the page whose's iv we are to derive
153  *
154  * Generate the initialization vector from the given root IV and page
155  * offset.
156  *
157  * Returns zero on success; non-zero on error.
158  */
159 static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
160 			      pgoff_t offset)
161 {
162 	int rc = 0;
163 	char dst[MD5_DIGEST_SIZE];
164 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
165 
166 	if (unlikely(ecryptfs_verbosity > 0)) {
167 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
168 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
169 	}
170 	/* TODO: It is probably secure to just cast the least
171 	 * significant bits of the root IV into an unsigned long and
172 	 * add the offset to that rather than go through all this
173 	 * hashing business. -Halcrow */
174 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
175 	memset((src + crypt_stat->iv_bytes), 0, 16);
176 	snprintf((src + crypt_stat->iv_bytes), 16, "%ld", offset);
177 	if (unlikely(ecryptfs_verbosity > 0)) {
178 		ecryptfs_printk(KERN_DEBUG, "source:\n");
179 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
180 	}
181 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
182 				    (crypt_stat->iv_bytes + 16));
183 	if (rc) {
184 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
185 				"MD5 while generating IV for a page\n");
186 		goto out;
187 	}
188 	memcpy(iv, dst, crypt_stat->iv_bytes);
189 	if (unlikely(ecryptfs_verbosity > 0)) {
190 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
191 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
192 	}
193 out:
194 	return rc;
195 }
196 
197 /**
198  * ecryptfs_init_crypt_stat
199  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
200  *
201  * Initialize the crypt_stat structure.
202  */
203 void
204 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
205 {
206 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
207 	mutex_init(&crypt_stat->cs_mutex);
208 	mutex_init(&crypt_stat->cs_tfm_mutex);
209 	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
210 	ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_STRUCT_INITIALIZED);
211 }
212 
213 /**
214  * ecryptfs_destruct_crypt_stat
215  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
216  *
217  * Releases all memory associated with a crypt_stat struct.
218  */
219 void ecryptfs_destruct_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
220 {
221 	if (crypt_stat->tfm)
222 		crypto_free_blkcipher(crypt_stat->tfm);
223 	if (crypt_stat->hash_tfm)
224 		crypto_free_hash(crypt_stat->hash_tfm);
225 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
226 }
227 
228 void ecryptfs_destruct_mount_crypt_stat(
229 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
230 {
231 	if (mount_crypt_stat->global_auth_tok_key)
232 		key_put(mount_crypt_stat->global_auth_tok_key);
233 	if (mount_crypt_stat->global_key_tfm)
234 		crypto_free_blkcipher(mount_crypt_stat->global_key_tfm);
235 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
236 }
237 
238 /**
239  * virt_to_scatterlist
240  * @addr: Virtual address
241  * @size: Size of data; should be an even multiple of the block size
242  * @sg: Pointer to scatterlist array; set to NULL to obtain only
243  *      the number of scatterlist structs required in array
244  * @sg_size: Max array size
245  *
246  * Fills in a scatterlist array with page references for a passed
247  * virtual address.
248  *
249  * Returns the number of scatterlist structs in array used
250  */
251 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
252 			int sg_size)
253 {
254 	int i = 0;
255 	struct page *pg;
256 	int offset;
257 	int remainder_of_page;
258 
259 	while (size > 0 && i < sg_size) {
260 		pg = virt_to_page(addr);
261 		offset = offset_in_page(addr);
262 		if (sg) {
263 			sg[i].page = pg;
264 			sg[i].offset = offset;
265 		}
266 		remainder_of_page = PAGE_CACHE_SIZE - offset;
267 		if (size >= remainder_of_page) {
268 			if (sg)
269 				sg[i].length = remainder_of_page;
270 			addr += remainder_of_page;
271 			size -= remainder_of_page;
272 		} else {
273 			if (sg)
274 				sg[i].length = size;
275 			addr += size;
276 			size = 0;
277 		}
278 		i++;
279 	}
280 	if (size > 0)
281 		return -ENOMEM;
282 	return i;
283 }
284 
285 /**
286  * encrypt_scatterlist
287  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
288  * @dest_sg: Destination of encrypted data
289  * @src_sg: Data to be encrypted
290  * @size: Length of data to be encrypted
291  * @iv: iv to use during encryption
292  *
293  * Returns the number of bytes encrypted; negative value on error
294  */
295 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
296 			       struct scatterlist *dest_sg,
297 			       struct scatterlist *src_sg, int size,
298 			       unsigned char *iv)
299 {
300 	struct blkcipher_desc desc = {
301 		.tfm = crypt_stat->tfm,
302 		.info = iv,
303 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
304 	};
305 	int rc = 0;
306 
307 	BUG_ON(!crypt_stat || !crypt_stat->tfm
308 	       || !ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
309 				       ECRYPTFS_STRUCT_INITIALIZED));
310 	if (unlikely(ecryptfs_verbosity > 0)) {
311 		ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
312 				crypt_stat->key_size);
313 		ecryptfs_dump_hex(crypt_stat->key,
314 				  crypt_stat->key_size);
315 	}
316 	/* Consider doing this once, when the file is opened */
317 	mutex_lock(&crypt_stat->cs_tfm_mutex);
318 	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
319 				     crypt_stat->key_size);
320 	if (rc) {
321 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
322 				rc);
323 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
324 		rc = -EINVAL;
325 		goto out;
326 	}
327 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
328 	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
329 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
330 out:
331 	return rc;
332 }
333 
334 static void
335 ecryptfs_extent_to_lwr_pg_idx_and_offset(unsigned long *lower_page_idx,
336 					 int *byte_offset,
337 					 struct ecryptfs_crypt_stat *crypt_stat,
338 					 unsigned long extent_num)
339 {
340 	unsigned long lower_extent_num;
341 	int extents_occupied_by_headers_at_front;
342 	int bytes_occupied_by_headers_at_front;
343 	int extent_offset;
344 	int extents_per_page;
345 
346 	bytes_occupied_by_headers_at_front =
347 		( crypt_stat->header_extent_size
348 		  * crypt_stat->num_header_extents_at_front );
349 	extents_occupied_by_headers_at_front =
350 		( bytes_occupied_by_headers_at_front
351 		  / crypt_stat->extent_size );
352 	lower_extent_num = extents_occupied_by_headers_at_front + extent_num;
353 	extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
354 	(*lower_page_idx) = lower_extent_num / extents_per_page;
355 	extent_offset = lower_extent_num % extents_per_page;
356 	(*byte_offset) = extent_offset * crypt_stat->extent_size;
357 	ecryptfs_printk(KERN_DEBUG, " * crypt_stat->header_extent_size = "
358 			"[%d]\n", crypt_stat->header_extent_size);
359 	ecryptfs_printk(KERN_DEBUG, " * crypt_stat->"
360 			"num_header_extents_at_front = [%d]\n",
361 			crypt_stat->num_header_extents_at_front);
362 	ecryptfs_printk(KERN_DEBUG, " * extents_occupied_by_headers_at_"
363 			"front = [%d]\n", extents_occupied_by_headers_at_front);
364 	ecryptfs_printk(KERN_DEBUG, " * lower_extent_num = [0x%.16x]\n",
365 			lower_extent_num);
366 	ecryptfs_printk(KERN_DEBUG, " * extents_per_page = [%d]\n",
367 			extents_per_page);
368 	ecryptfs_printk(KERN_DEBUG, " * (*lower_page_idx) = [0x%.16x]\n",
369 			(*lower_page_idx));
370 	ecryptfs_printk(KERN_DEBUG, " * extent_offset = [%d]\n",
371 			extent_offset);
372 	ecryptfs_printk(KERN_DEBUG, " * (*byte_offset) = [%d]\n",
373 			(*byte_offset));
374 }
375 
376 static int ecryptfs_write_out_page(struct ecryptfs_page_crypt_context *ctx,
377 				   struct page *lower_page,
378 				   struct inode *lower_inode,
379 				   int byte_offset_in_page, int bytes_to_write)
380 {
381 	int rc = 0;
382 
383 	if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) {
384 		rc = ecryptfs_commit_lower_page(lower_page, lower_inode,
385 						ctx->param.lower_file,
386 						byte_offset_in_page,
387 						bytes_to_write);
388 		if (rc) {
389 			ecryptfs_printk(KERN_ERR, "Error calling lower "
390 					"commit; rc = [%d]\n", rc);
391 			goto out;
392 		}
393 	} else {
394 		rc = ecryptfs_writepage_and_release_lower_page(lower_page,
395 							       lower_inode,
396 							       ctx->param.wbc);
397 		if (rc) {
398 			ecryptfs_printk(KERN_ERR, "Error calling lower "
399 					"writepage(); rc = [%d]\n", rc);
400 			goto out;
401 		}
402 	}
403 out:
404 	return rc;
405 }
406 
407 static int ecryptfs_read_in_page(struct ecryptfs_page_crypt_context *ctx,
408 				 struct page **lower_page,
409 				 struct inode *lower_inode,
410 				 unsigned long lower_page_idx,
411 				 int byte_offset_in_page)
412 {
413 	int rc = 0;
414 
415 	if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) {
416 		/* TODO: Limit this to only the data extents that are
417 		 * needed */
418 		rc = ecryptfs_get_lower_page(lower_page, lower_inode,
419 					     ctx->param.lower_file,
420 					     lower_page_idx,
421 					     byte_offset_in_page,
422 					     (PAGE_CACHE_SIZE
423 					      - byte_offset_in_page));
424 		if (rc) {
425 			ecryptfs_printk(
426 				KERN_ERR, "Error attempting to grab, map, "
427 				"and prepare_write lower page with index "
428 				"[0x%.16x]; rc = [%d]\n", lower_page_idx, rc);
429 			goto out;
430 		}
431 	} else {
432 		rc = ecryptfs_grab_and_map_lower_page(lower_page, NULL,
433 						      lower_inode,
434 						      lower_page_idx);
435 		if (rc) {
436 			ecryptfs_printk(
437 				KERN_ERR, "Error attempting to grab and map "
438 				"lower page with index [0x%.16x]; rc = [%d]\n",
439 				lower_page_idx, rc);
440 			goto out;
441 		}
442 	}
443 out:
444 	return rc;
445 }
446 
447 /**
448  * ecryptfs_encrypt_page
449  * @ctx: The context of the page
450  *
451  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
452  * that eCryptfs pages may straddle the lower pages -- for instance,
453  * if the file was created on a machine with an 8K page size
454  * (resulting in an 8K header), and then the file is copied onto a
455  * host with a 32K page size, then when reading page 0 of the eCryptfs
456  * file, 24K of page 0 of the lower file will be read and decrypted,
457  * and then 8K of page 1 of the lower file will be read and decrypted.
458  *
459  * The actual operations performed on each page depends on the
460  * contents of the ecryptfs_page_crypt_context struct.
461  *
462  * Returns zero on success; negative on error
463  */
464 int ecryptfs_encrypt_page(struct ecryptfs_page_crypt_context *ctx)
465 {
466 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
467 	unsigned long base_extent;
468 	unsigned long extent_offset = 0;
469 	unsigned long lower_page_idx = 0;
470 	unsigned long prior_lower_page_idx = 0;
471 	struct page *lower_page;
472 	struct inode *lower_inode;
473 	struct ecryptfs_inode_info *inode_info;
474 	struct ecryptfs_crypt_stat *crypt_stat;
475 	int rc = 0;
476 	int lower_byte_offset = 0;
477 	int orig_byte_offset = 0;
478 	int num_extents_per_page;
479 #define ECRYPTFS_PAGE_STATE_UNREAD    0
480 #define ECRYPTFS_PAGE_STATE_READ      1
481 #define ECRYPTFS_PAGE_STATE_MODIFIED  2
482 #define ECRYPTFS_PAGE_STATE_WRITTEN   3
483 	int page_state;
484 
485 	lower_inode = ecryptfs_inode_to_lower(ctx->page->mapping->host);
486 	inode_info = ecryptfs_inode_to_private(ctx->page->mapping->host);
487 	crypt_stat = &inode_info->crypt_stat;
488 	if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED)) {
489 		rc = ecryptfs_copy_page_to_lower(ctx->page, lower_inode,
490 						 ctx->param.lower_file);
491 		if (rc)
492 			ecryptfs_printk(KERN_ERR, "Error attempting to copy "
493 					"page at index [0x%.16x]\n",
494 					ctx->page->index);
495 		goto out;
496 	}
497 	num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
498 	base_extent = (ctx->page->index * num_extents_per_page);
499 	page_state = ECRYPTFS_PAGE_STATE_UNREAD;
500 	while (extent_offset < num_extents_per_page) {
501 		ecryptfs_extent_to_lwr_pg_idx_and_offset(
502 			&lower_page_idx, &lower_byte_offset, crypt_stat,
503 			(base_extent + extent_offset));
504 		if (prior_lower_page_idx != lower_page_idx
505 		    && page_state == ECRYPTFS_PAGE_STATE_MODIFIED) {
506 			rc = ecryptfs_write_out_page(ctx, lower_page,
507 						     lower_inode,
508 						     orig_byte_offset,
509 						     (PAGE_CACHE_SIZE
510 						      - orig_byte_offset));
511 			if (rc) {
512 				ecryptfs_printk(KERN_ERR, "Error attempting "
513 						"to write out page; rc = [%d]"
514 						"\n", rc);
515 				goto out;
516 			}
517 			page_state = ECRYPTFS_PAGE_STATE_WRITTEN;
518 		}
519 		if (page_state == ECRYPTFS_PAGE_STATE_UNREAD
520 		    || page_state == ECRYPTFS_PAGE_STATE_WRITTEN) {
521 			rc = ecryptfs_read_in_page(ctx, &lower_page,
522 						   lower_inode, lower_page_idx,
523 						   lower_byte_offset);
524 			if (rc) {
525 				ecryptfs_printk(KERN_ERR, "Error attempting "
526 						"to read in lower page with "
527 						"index [0x%.16x]; rc = [%d]\n",
528 						lower_page_idx, rc);
529 				goto out;
530 			}
531 			orig_byte_offset = lower_byte_offset;
532 			prior_lower_page_idx = lower_page_idx;
533 			page_state = ECRYPTFS_PAGE_STATE_READ;
534 		}
535 		BUG_ON(!(page_state == ECRYPTFS_PAGE_STATE_MODIFIED
536 			 || page_state == ECRYPTFS_PAGE_STATE_READ));
537 		rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
538 					(base_extent + extent_offset));
539 		if (rc) {
540 			ecryptfs_printk(KERN_ERR, "Error attempting to "
541 					"derive IV for extent [0x%.16x]; "
542 					"rc = [%d]\n",
543 					(base_extent + extent_offset), rc);
544 			goto out;
545 		}
546 		if (unlikely(ecryptfs_verbosity > 0)) {
547 			ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
548 					"with iv:\n");
549 			ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
550 			ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
551 					"encryption:\n");
552 			ecryptfs_dump_hex((char *)
553 					  (page_address(ctx->page)
554 					   + (extent_offset
555 					      * crypt_stat->extent_size)), 8);
556 		}
557 		rc = ecryptfs_encrypt_page_offset(
558 			crypt_stat, lower_page, lower_byte_offset, ctx->page,
559 			(extent_offset * crypt_stat->extent_size),
560 			crypt_stat->extent_size, extent_iv);
561 		ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
562 				"rc = [%d]\n",
563 				(base_extent + extent_offset), rc);
564 		if (unlikely(ecryptfs_verbosity > 0)) {
565 			ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
566 					"encryption:\n");
567 			ecryptfs_dump_hex((char *)(page_address(lower_page)
568 						   + lower_byte_offset), 8);
569 		}
570 		page_state = ECRYPTFS_PAGE_STATE_MODIFIED;
571 		extent_offset++;
572 	}
573 	BUG_ON(orig_byte_offset != 0);
574 	rc = ecryptfs_write_out_page(ctx, lower_page, lower_inode, 0,
575 				     (lower_byte_offset
576 				      + crypt_stat->extent_size));
577 	if (rc) {
578 		ecryptfs_printk(KERN_ERR, "Error attempting to write out "
579 				"page; rc = [%d]\n", rc);
580 				goto out;
581 	}
582 out:
583 	return rc;
584 }
585 
586 /**
587  * ecryptfs_decrypt_page
588  * @file: The ecryptfs file
589  * @page: The page in ecryptfs to decrypt
590  *
591  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
592  * that eCryptfs pages may straddle the lower pages -- for instance,
593  * if the file was created on a machine with an 8K page size
594  * (resulting in an 8K header), and then the file is copied onto a
595  * host with a 32K page size, then when reading page 0 of the eCryptfs
596  * file, 24K of page 0 of the lower file will be read and decrypted,
597  * and then 8K of page 1 of the lower file will be read and decrypted.
598  *
599  * Returns zero on success; negative on error
600  */
601 int ecryptfs_decrypt_page(struct file *file, struct page *page)
602 {
603 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
604 	unsigned long base_extent;
605 	unsigned long extent_offset = 0;
606 	unsigned long lower_page_idx = 0;
607 	unsigned long prior_lower_page_idx = 0;
608 	struct page *lower_page;
609 	char *lower_page_virt = NULL;
610 	struct inode *lower_inode;
611 	struct ecryptfs_crypt_stat *crypt_stat;
612 	int rc = 0;
613 	int byte_offset;
614 	int num_extents_per_page;
615 	int page_state;
616 
617 	crypt_stat = &(ecryptfs_inode_to_private(
618 			       page->mapping->host)->crypt_stat);
619 	lower_inode = ecryptfs_inode_to_lower(page->mapping->host);
620 	if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED)) {
621 		rc = ecryptfs_do_readpage(file, page, page->index);
622 		if (rc)
623 			ecryptfs_printk(KERN_ERR, "Error attempting to copy "
624 					"page at index [0x%.16x]\n",
625 					page->index);
626 		goto out;
627 	}
628 	num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
629 	base_extent = (page->index * num_extents_per_page);
630 	lower_page_virt = kmem_cache_alloc(ecryptfs_lower_page_cache,
631 					   SLAB_KERNEL);
632 	if (!lower_page_virt) {
633 		rc = -ENOMEM;
634 		ecryptfs_printk(KERN_ERR, "Error getting page for encrypted "
635 				"lower page(s)\n");
636 		goto out;
637 	}
638 	lower_page = virt_to_page(lower_page_virt);
639 	page_state = ECRYPTFS_PAGE_STATE_UNREAD;
640 	while (extent_offset < num_extents_per_page) {
641 		ecryptfs_extent_to_lwr_pg_idx_and_offset(
642 			&lower_page_idx, &byte_offset, crypt_stat,
643 			(base_extent + extent_offset));
644 		if (prior_lower_page_idx != lower_page_idx
645 		    || page_state == ECRYPTFS_PAGE_STATE_UNREAD) {
646 			rc = ecryptfs_do_readpage(file, lower_page,
647 						  lower_page_idx);
648 			if (rc) {
649 				ecryptfs_printk(KERN_ERR, "Error reading "
650 						"lower encrypted page; rc = "
651 						"[%d]\n", rc);
652 				goto out;
653 			}
654 			prior_lower_page_idx = lower_page_idx;
655 			page_state = ECRYPTFS_PAGE_STATE_READ;
656 		}
657 		rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
658 					(base_extent + extent_offset));
659 		if (rc) {
660 			ecryptfs_printk(KERN_ERR, "Error attempting to "
661 					"derive IV for extent [0x%.16x]; rc = "
662 					"[%d]\n",
663 					(base_extent + extent_offset), rc);
664 			goto out;
665 		}
666 		if (unlikely(ecryptfs_verbosity > 0)) {
667 			ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
668 					"with iv:\n");
669 			ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
670 			ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
671 					"decryption:\n");
672 			ecryptfs_dump_hex((lower_page_virt + byte_offset), 8);
673 		}
674 		rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
675 						  (extent_offset
676 						   * crypt_stat->extent_size),
677 						  lower_page, byte_offset,
678 						  crypt_stat->extent_size,
679 						  extent_iv);
680 		if (rc != crypt_stat->extent_size) {
681 			ecryptfs_printk(KERN_ERR, "Error attempting to "
682 					"decrypt extent [0x%.16x]\n",
683 					(base_extent + extent_offset));
684 			goto out;
685 		}
686 		rc = 0;
687 		if (unlikely(ecryptfs_verbosity > 0)) {
688 			ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
689 					"decryption:\n");
690 			ecryptfs_dump_hex((char *)(page_address(page)
691 						   + byte_offset), 8);
692 		}
693 		extent_offset++;
694 	}
695 out:
696 	if (lower_page_virt)
697 		kmem_cache_free(ecryptfs_lower_page_cache, lower_page_virt);
698 	return rc;
699 }
700 
701 /**
702  * decrypt_scatterlist
703  *
704  * Returns the number of bytes decrypted; negative value on error
705  */
706 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
707 			       struct scatterlist *dest_sg,
708 			       struct scatterlist *src_sg, int size,
709 			       unsigned char *iv)
710 {
711 	struct blkcipher_desc desc = {
712 		.tfm = crypt_stat->tfm,
713 		.info = iv,
714 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
715 	};
716 	int rc = 0;
717 
718 	/* Consider doing this once, when the file is opened */
719 	mutex_lock(&crypt_stat->cs_tfm_mutex);
720 	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
721 				     crypt_stat->key_size);
722 	if (rc) {
723 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
724 				rc);
725 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
726 		rc = -EINVAL;
727 		goto out;
728 	}
729 	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
730 	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
731 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
732 	if (rc) {
733 		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
734 				rc);
735 		goto out;
736 	}
737 	rc = size;
738 out:
739 	return rc;
740 }
741 
742 /**
743  * ecryptfs_encrypt_page_offset
744  *
745  * Returns the number of bytes encrypted
746  */
747 static int
748 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
749 			     struct page *dst_page, int dst_offset,
750 			     struct page *src_page, int src_offset, int size,
751 			     unsigned char *iv)
752 {
753 	struct scatterlist src_sg, dst_sg;
754 
755 	src_sg.page = src_page;
756 	src_sg.offset = src_offset;
757 	src_sg.length = size;
758 	dst_sg.page = dst_page;
759 	dst_sg.offset = dst_offset;
760 	dst_sg.length = size;
761 	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
762 }
763 
764 /**
765  * ecryptfs_decrypt_page_offset
766  *
767  * Returns the number of bytes decrypted
768  */
769 static int
770 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
771 			     struct page *dst_page, int dst_offset,
772 			     struct page *src_page, int src_offset, int size,
773 			     unsigned char *iv)
774 {
775 	struct scatterlist src_sg, dst_sg;
776 
777 	src_sg.page = src_page;
778 	src_sg.offset = src_offset;
779 	src_sg.length = size;
780 	dst_sg.page = dst_page;
781 	dst_sg.offset = dst_offset;
782 	dst_sg.length = size;
783 	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
784 }
785 
786 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
787 
788 /**
789  * ecryptfs_init_crypt_ctx
790  * @crypt_stat: Uninitilized crypt stats structure
791  *
792  * Initialize the crypto context.
793  *
794  * TODO: Performance: Keep a cache of initialized cipher contexts;
795  * only init if needed
796  */
797 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
798 {
799 	char *full_alg_name;
800 	int rc = -EINVAL;
801 
802 	if (!crypt_stat->cipher) {
803 		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
804 		goto out;
805 	}
806 	ecryptfs_printk(KERN_DEBUG,
807 			"Initializing cipher [%s]; strlen = [%d]; "
808 			"key_size_bits = [%d]\n",
809 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
810 			crypt_stat->key_size << 3);
811 	if (crypt_stat->tfm) {
812 		rc = 0;
813 		goto out;
814 	}
815 	mutex_lock(&crypt_stat->cs_tfm_mutex);
816 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
817 						    crypt_stat->cipher, "cbc");
818 	if (rc)
819 		goto out;
820 	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
821 						 CRYPTO_ALG_ASYNC);
822 	kfree(full_alg_name);
823 	if (!crypt_stat->tfm) {
824 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
825 				"Error initializing cipher [%s]\n",
826 				crypt_stat->cipher);
827 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
828 		goto out;
829 	}
830 	crypto_blkcipher_set_flags(crypt_stat->tfm,
831 				   (ECRYPTFS_DEFAULT_CHAINING_MODE
832 				    | CRYPTO_TFM_REQ_WEAK_KEY));
833 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
834 	rc = 0;
835 out:
836 	return rc;
837 }
838 
839 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
840 {
841 	int extent_size_tmp;
842 
843 	crypt_stat->extent_mask = 0xFFFFFFFF;
844 	crypt_stat->extent_shift = 0;
845 	if (crypt_stat->extent_size == 0)
846 		return;
847 	extent_size_tmp = crypt_stat->extent_size;
848 	while ((extent_size_tmp & 0x01) == 0) {
849 		extent_size_tmp >>= 1;
850 		crypt_stat->extent_mask <<= 1;
851 		crypt_stat->extent_shift++;
852 	}
853 }
854 
855 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
856 {
857 	/* Default values; may be overwritten as we are parsing the
858 	 * packets. */
859 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
860 	set_extent_mask_and_shift(crypt_stat);
861 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
862 	if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) {
863 		crypt_stat->header_extent_size =
864 			ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
865 	} else
866 		crypt_stat->header_extent_size = PAGE_CACHE_SIZE;
867 	crypt_stat->num_header_extents_at_front = 1;
868 }
869 
870 /**
871  * ecryptfs_compute_root_iv
872  * @crypt_stats
873  *
874  * On error, sets the root IV to all 0's.
875  */
876 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
877 {
878 	int rc = 0;
879 	char dst[MD5_DIGEST_SIZE];
880 
881 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
882 	BUG_ON(crypt_stat->iv_bytes <= 0);
883 	if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID)) {
884 		rc = -EINVAL;
885 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
886 				"cannot generate root IV\n");
887 		goto out;
888 	}
889 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
890 				    crypt_stat->key_size);
891 	if (rc) {
892 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
893 				"MD5 while generating root IV\n");
894 		goto out;
895 	}
896 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
897 out:
898 	if (rc) {
899 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
900 		ECRYPTFS_SET_FLAG(crypt_stat->flags,
901 				  ECRYPTFS_SECURITY_WARNING);
902 	}
903 	return rc;
904 }
905 
906 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
907 {
908 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
909 	ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID);
910 	ecryptfs_compute_root_iv(crypt_stat);
911 	if (unlikely(ecryptfs_verbosity > 0)) {
912 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
913 		ecryptfs_dump_hex(crypt_stat->key,
914 				  crypt_stat->key_size);
915 	}
916 }
917 
918 /**
919  * ecryptfs_set_default_crypt_stat_vals
920  * @crypt_stat
921  *
922  * Default values in the event that policy does not override them.
923  */
924 static void ecryptfs_set_default_crypt_stat_vals(
925 	struct ecryptfs_crypt_stat *crypt_stat,
926 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
927 {
928 	ecryptfs_set_default_sizes(crypt_stat);
929 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
930 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
931 	ECRYPTFS_CLEAR_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID);
932 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
933 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
934 }
935 
936 /**
937  * ecryptfs_new_file_context
938  * @ecryptfs_dentry
939  *
940  * If the crypto context for the file has not yet been established,
941  * this is where we do that.  Establishing a new crypto context
942  * involves the following decisions:
943  *  - What cipher to use?
944  *  - What set of authentication tokens to use?
945  * Here we just worry about getting enough information into the
946  * authentication tokens so that we know that they are available.
947  * We associate the available authentication tokens with the new file
948  * via the set of signatures in the crypt_stat struct.  Later, when
949  * the headers are actually written out, we may again defer to
950  * userspace to perform the encryption of the session key; for the
951  * foreseeable future, this will be the case with public key packets.
952  *
953  * Returns zero on success; non-zero otherwise
954  */
955 /* Associate an authentication token(s) with the file */
956 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
957 {
958 	int rc = 0;
959 	struct ecryptfs_crypt_stat *crypt_stat =
960 	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
961 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
962 	    &ecryptfs_superblock_to_private(
963 		    ecryptfs_dentry->d_sb)->mount_crypt_stat;
964 	int cipher_name_len;
965 
966 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
967 	/* See if there are mount crypt options */
968 	if (mount_crypt_stat->global_auth_tok) {
969 		ecryptfs_printk(KERN_DEBUG, "Initializing context for new "
970 				"file using mount_crypt_stat\n");
971 		ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED);
972 		ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID);
973 		memcpy(crypt_stat->keysigs[crypt_stat->num_keysigs++],
974 		       mount_crypt_stat->global_auth_tok_sig,
975 		       ECRYPTFS_SIG_SIZE_HEX);
976 		cipher_name_len =
977 		    strlen(mount_crypt_stat->global_default_cipher_name);
978 		memcpy(crypt_stat->cipher,
979 		       mount_crypt_stat->global_default_cipher_name,
980 		       cipher_name_len);
981 		crypt_stat->cipher[cipher_name_len] = '\0';
982 		crypt_stat->key_size =
983 			mount_crypt_stat->global_default_cipher_key_size;
984 		ecryptfs_generate_new_key(crypt_stat);
985 	} else
986 		/* We should not encounter this scenario since we
987 		 * should detect lack of global_auth_tok at mount time
988 		 * TODO: Applies to 0.1 release only; remove in future
989 		 * release */
990 		BUG();
991 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
992 	if (rc)
993 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
994 				"context for cipher [%s]: rc = [%d]\n",
995 				crypt_stat->cipher, rc);
996 	return rc;
997 }
998 
999 /**
1000  * contains_ecryptfs_marker - check for the ecryptfs marker
1001  * @data: The data block in which to check
1002  *
1003  * Returns one if marker found; zero if not found
1004  */
1005 int contains_ecryptfs_marker(char *data)
1006 {
1007 	u32 m_1, m_2;
1008 
1009 	memcpy(&m_1, data, 4);
1010 	m_1 = be32_to_cpu(m_1);
1011 	memcpy(&m_2, (data + 4), 4);
1012 	m_2 = be32_to_cpu(m_2);
1013 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1014 		return 1;
1015 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1016 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1017 			MAGIC_ECRYPTFS_MARKER);
1018 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1019 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1020 	return 0;
1021 }
1022 
1023 struct ecryptfs_flag_map_elem {
1024 	u32 file_flag;
1025 	u32 local_flag;
1026 };
1027 
1028 /* Add support for additional flags by adding elements here. */
1029 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1030 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
1031 	{0x00000002, ECRYPTFS_ENCRYPTED}
1032 };
1033 
1034 /**
1035  * ecryptfs_process_flags
1036  * @crypt_stat
1037  * @page_virt: Source data to be parsed
1038  * @bytes_read: Updated with the number of bytes read
1039  *
1040  * Returns zero on success; non-zero if the flag set is invalid
1041  */
1042 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1043 				  char *page_virt, int *bytes_read)
1044 {
1045 	int rc = 0;
1046 	int i;
1047 	u32 flags;
1048 
1049 	memcpy(&flags, page_virt, 4);
1050 	flags = be32_to_cpu(flags);
1051 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1052 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1053 		if (flags & ecryptfs_flag_map[i].file_flag) {
1054 			ECRYPTFS_SET_FLAG(crypt_stat->flags,
1055 					  ecryptfs_flag_map[i].local_flag);
1056 		} else
1057 			ECRYPTFS_CLEAR_FLAG(crypt_stat->flags,
1058 					    ecryptfs_flag_map[i].local_flag);
1059 	/* Version is in top 8 bits of the 32-bit flag vector */
1060 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
1061 	(*bytes_read) = 4;
1062 	return rc;
1063 }
1064 
1065 /**
1066  * write_ecryptfs_marker
1067  * @page_virt: The pointer to in a page to begin writing the marker
1068  * @written: Number of bytes written
1069  *
1070  * Marker = 0x3c81b7f5
1071  */
1072 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1073 {
1074 	u32 m_1, m_2;
1075 
1076 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1077 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1078 	m_1 = cpu_to_be32(m_1);
1079 	memcpy(page_virt, &m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1080 	m_2 = cpu_to_be32(m_2);
1081 	memcpy(page_virt + (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2), &m_2,
1082 	       (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1083 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1084 }
1085 
1086 static void
1087 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1088 		     size_t *written)
1089 {
1090 	u32 flags = 0;
1091 	int i;
1092 
1093 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1094 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1095 		if (ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
1096 					ecryptfs_flag_map[i].local_flag))
1097 			flags |= ecryptfs_flag_map[i].file_flag;
1098 	/* Version is in top 8 bits of the 32-bit flag vector */
1099 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1100 	flags = cpu_to_be32(flags);
1101 	memcpy(page_virt, &flags, 4);
1102 	(*written) = 4;
1103 }
1104 
1105 struct ecryptfs_cipher_code_str_map_elem {
1106 	char cipher_str[16];
1107 	u16 cipher_code;
1108 };
1109 
1110 /* Add support for additional ciphers by adding elements here. The
1111  * cipher_code is whatever OpenPGP applicatoins use to identify the
1112  * ciphers. List in order of probability. */
1113 static struct ecryptfs_cipher_code_str_map_elem
1114 ecryptfs_cipher_code_str_map[] = {
1115 	{"aes",RFC2440_CIPHER_AES_128 },
1116 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
1117 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
1118 	{"cast5", RFC2440_CIPHER_CAST_5},
1119 	{"twofish", RFC2440_CIPHER_TWOFISH},
1120 	{"cast6", RFC2440_CIPHER_CAST_6},
1121 	{"aes", RFC2440_CIPHER_AES_192},
1122 	{"aes", RFC2440_CIPHER_AES_256}
1123 };
1124 
1125 /**
1126  * ecryptfs_code_for_cipher_string
1127  * @str: The string representing the cipher name
1128  *
1129  * Returns zero on no match, or the cipher code on match
1130  */
1131 u16 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat)
1132 {
1133 	int i;
1134 	u16 code = 0;
1135 	struct ecryptfs_cipher_code_str_map_elem *map =
1136 		ecryptfs_cipher_code_str_map;
1137 
1138 	if (strcmp(crypt_stat->cipher, "aes") == 0) {
1139 		switch (crypt_stat->key_size) {
1140 		case 16:
1141 			code = RFC2440_CIPHER_AES_128;
1142 			break;
1143 		case 24:
1144 			code = RFC2440_CIPHER_AES_192;
1145 			break;
1146 		case 32:
1147 			code = RFC2440_CIPHER_AES_256;
1148 		}
1149 	} else {
1150 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1151 			if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){
1152 				code = map[i].cipher_code;
1153 				break;
1154 			}
1155 	}
1156 	return code;
1157 }
1158 
1159 /**
1160  * ecryptfs_cipher_code_to_string
1161  * @str: Destination to write out the cipher name
1162  * @cipher_code: The code to convert to cipher name string
1163  *
1164  * Returns zero on success
1165  */
1166 int ecryptfs_cipher_code_to_string(char *str, u16 cipher_code)
1167 {
1168 	int rc = 0;
1169 	int i;
1170 
1171 	str[0] = '\0';
1172 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1173 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1174 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1175 	if (str[0] == '\0') {
1176 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1177 				"[%d]\n", cipher_code);
1178 		rc = -EINVAL;
1179 	}
1180 	return rc;
1181 }
1182 
1183 /**
1184  * ecryptfs_read_header_region
1185  * @data
1186  * @dentry
1187  * @nd
1188  *
1189  * Returns zero on success; non-zero otherwise
1190  */
1191 int ecryptfs_read_header_region(char *data, struct dentry *dentry,
1192 				struct vfsmount *mnt)
1193 {
1194 	struct file *file;
1195 	mm_segment_t oldfs;
1196 	int rc;
1197 
1198 	mnt = mntget(mnt);
1199 	file = dentry_open(dentry, mnt, O_RDONLY);
1200 	if (IS_ERR(file)) {
1201 		ecryptfs_printk(KERN_DEBUG, "Error opening file to "
1202 				"read header region\n");
1203 		mntput(mnt);
1204 		rc = PTR_ERR(file);
1205 		goto out;
1206 	}
1207 	file->f_pos = 0;
1208 	oldfs = get_fs();
1209 	set_fs(get_ds());
1210 	/* For releases 0.1 and 0.2, all of the header information
1211 	 * fits in the first data extent-sized region. */
1212 	rc = file->f_op->read(file, (char __user *)data,
1213 			      ECRYPTFS_DEFAULT_EXTENT_SIZE, &file->f_pos);
1214 	set_fs(oldfs);
1215 	fput(file);
1216 	rc = 0;
1217 out:
1218 	return rc;
1219 }
1220 
1221 static void
1222 write_header_metadata(char *virt, struct ecryptfs_crypt_stat *crypt_stat,
1223 		      size_t *written)
1224 {
1225 	u32 header_extent_size;
1226 	u16 num_header_extents_at_front;
1227 
1228 	header_extent_size = (u32)crypt_stat->header_extent_size;
1229 	num_header_extents_at_front =
1230 		(u16)crypt_stat->num_header_extents_at_front;
1231 	header_extent_size = cpu_to_be32(header_extent_size);
1232 	memcpy(virt, &header_extent_size, 4);
1233 	virt += 4;
1234 	num_header_extents_at_front = cpu_to_be16(num_header_extents_at_front);
1235 	memcpy(virt, &num_header_extents_at_front, 2);
1236 	(*written) = 6;
1237 }
1238 
1239 struct kmem_cache *ecryptfs_header_cache_0;
1240 struct kmem_cache *ecryptfs_header_cache_1;
1241 struct kmem_cache *ecryptfs_header_cache_2;
1242 
1243 /**
1244  * ecryptfs_write_headers_virt
1245  * @page_virt
1246  * @crypt_stat
1247  * @ecryptfs_dentry
1248  *
1249  * Format version: 1
1250  *
1251  *   Header Extent:
1252  *     Octets 0-7:        Unencrypted file size (big-endian)
1253  *     Octets 8-15:       eCryptfs special marker
1254  *     Octets 16-19:      Flags
1255  *      Octet 16:         File format version number (between 0 and 255)
1256  *      Octets 17-18:     Reserved
1257  *      Octet 19:         Bit 1 (lsb): Reserved
1258  *                        Bit 2: Encrypted?
1259  *                        Bits 3-8: Reserved
1260  *     Octets 20-23:      Header extent size (big-endian)
1261  *     Octets 24-25:      Number of header extents at front of file
1262  *                        (big-endian)
1263  *     Octet  26:         Begin RFC 2440 authentication token packet set
1264  *   Data Extent 0:
1265  *     Lower data (CBC encrypted)
1266  *   Data Extent 1:
1267  *     Lower data (CBC encrypted)
1268  *   ...
1269  *
1270  * Returns zero on success
1271  */
1272 int ecryptfs_write_headers_virt(char *page_virt,
1273 				struct ecryptfs_crypt_stat *crypt_stat,
1274 				struct dentry *ecryptfs_dentry)
1275 {
1276 	int rc;
1277 	size_t written;
1278 	size_t offset;
1279 
1280 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1281 	write_ecryptfs_marker((page_virt + offset), &written);
1282 	offset += written;
1283 	write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1284 	offset += written;
1285 	write_header_metadata((page_virt + offset), crypt_stat, &written);
1286 	offset += written;
1287 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1288 					      ecryptfs_dentry, &written,
1289 					      PAGE_CACHE_SIZE - offset);
1290 	if (rc)
1291 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1292 				"set; rc = [%d]\n", rc);
1293 	return rc;
1294 }
1295 
1296 /**
1297  * ecryptfs_write_headers
1298  * @lower_file: The lower file struct, which was returned from dentry_open
1299  *
1300  * Write the file headers out.  This will likely involve a userspace
1301  * callout, in which the session key is encrypted with one or more
1302  * public keys and/or the passphrase necessary to do the encryption is
1303  * retrieved via a prompt.  Exactly what happens at this point should
1304  * be policy-dependent.
1305  *
1306  * Returns zero on success; non-zero on error
1307  */
1308 int ecryptfs_write_headers(struct dentry *ecryptfs_dentry,
1309 			   struct file *lower_file)
1310 {
1311 	mm_segment_t oldfs;
1312 	struct ecryptfs_crypt_stat *crypt_stat;
1313 	char *page_virt;
1314 	int current_header_page;
1315 	int header_pages;
1316 	int rc = 0;
1317 
1318 	crypt_stat = &ecryptfs_inode_to_private(
1319 		ecryptfs_dentry->d_inode)->crypt_stat;
1320 	if (likely(ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
1321 				       ECRYPTFS_ENCRYPTED))) {
1322 		if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
1323 					 ECRYPTFS_KEY_VALID)) {
1324 			ecryptfs_printk(KERN_DEBUG, "Key is "
1325 					"invalid; bailing out\n");
1326 			rc = -EINVAL;
1327 			goto out;
1328 		}
1329 	} else {
1330 		rc = -EINVAL;
1331 		ecryptfs_printk(KERN_WARNING,
1332 				"Called with crypt_stat->encrypted == 0\n");
1333 		goto out;
1334 	}
1335 	/* Released in this function */
1336 	page_virt = kmem_cache_alloc(ecryptfs_header_cache_0, SLAB_USER);
1337 	if (!page_virt) {
1338 		ecryptfs_printk(KERN_ERR, "Out of memory\n");
1339 		rc = -ENOMEM;
1340 		goto out;
1341 	}
1342 	memset(page_virt, 0, PAGE_CACHE_SIZE);
1343 	rc = ecryptfs_write_headers_virt(page_virt, crypt_stat,
1344 					 ecryptfs_dentry);
1345 	if (unlikely(rc)) {
1346 		ecryptfs_printk(KERN_ERR, "Error whilst writing headers\n");
1347 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1348 		goto out_free;
1349 	}
1350 	ecryptfs_printk(KERN_DEBUG,
1351 			"Writing key packet set to underlying file\n");
1352 	lower_file->f_pos = 0;
1353 	oldfs = get_fs();
1354 	set_fs(get_ds());
1355 	ecryptfs_printk(KERN_DEBUG, "Calling lower_file->f_op->"
1356 			"write() w/ header page; lower_file->f_pos = "
1357 			"[0x%.16x]\n", lower_file->f_pos);
1358 	lower_file->f_op->write(lower_file, (char __user *)page_virt,
1359 				PAGE_CACHE_SIZE, &lower_file->f_pos);
1360 	header_pages = ((crypt_stat->header_extent_size
1361 			 * crypt_stat->num_header_extents_at_front)
1362 			/ PAGE_CACHE_SIZE);
1363 	memset(page_virt, 0, PAGE_CACHE_SIZE);
1364 	current_header_page = 1;
1365 	while (current_header_page < header_pages) {
1366 		ecryptfs_printk(KERN_DEBUG, "Calling lower_file->f_op->"
1367 				"write() w/ zero'd page; lower_file->f_pos = "
1368 				"[0x%.16x]\n", lower_file->f_pos);
1369 		lower_file->f_op->write(lower_file, (char __user *)page_virt,
1370 					PAGE_CACHE_SIZE, &lower_file->f_pos);
1371 		current_header_page++;
1372 	}
1373 	set_fs(oldfs);
1374 	ecryptfs_printk(KERN_DEBUG,
1375 			"Done writing key packet set to underlying file.\n");
1376 out_free:
1377 	kmem_cache_free(ecryptfs_header_cache_0, page_virt);
1378 out:
1379 	return rc;
1380 }
1381 
1382 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1383 				 char *virt, int *bytes_read)
1384 {
1385 	int rc = 0;
1386 	u32 header_extent_size;
1387 	u16 num_header_extents_at_front;
1388 
1389 	memcpy(&header_extent_size, virt, 4);
1390 	header_extent_size = be32_to_cpu(header_extent_size);
1391 	virt += 4;
1392 	memcpy(&num_header_extents_at_front, virt, 2);
1393 	num_header_extents_at_front = be16_to_cpu(num_header_extents_at_front);
1394 	crypt_stat->header_extent_size = (int)header_extent_size;
1395 	crypt_stat->num_header_extents_at_front =
1396 		(int)num_header_extents_at_front;
1397 	(*bytes_read) = 6;
1398 	if ((crypt_stat->header_extent_size
1399 	     * crypt_stat->num_header_extents_at_front)
1400 	    < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) {
1401 		rc = -EINVAL;
1402 		ecryptfs_printk(KERN_WARNING, "Invalid header extent size: "
1403 				"[%d]\n", crypt_stat->header_extent_size);
1404 	}
1405 	return rc;
1406 }
1407 
1408 /**
1409  * set_default_header_data
1410  *
1411  * For version 0 file format; this function is only for backwards
1412  * compatibility for files created with the prior versions of
1413  * eCryptfs.
1414  */
1415 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1416 {
1417 	crypt_stat->header_extent_size = 4096;
1418 	crypt_stat->num_header_extents_at_front = 1;
1419 }
1420 
1421 /**
1422  * ecryptfs_read_headers_virt
1423  *
1424  * Read/parse the header data. The header format is detailed in the
1425  * comment block for the ecryptfs_write_headers_virt() function.
1426  *
1427  * Returns zero on success
1428  */
1429 static int ecryptfs_read_headers_virt(char *page_virt,
1430 				      struct ecryptfs_crypt_stat *crypt_stat,
1431 				      struct dentry *ecryptfs_dentry)
1432 {
1433 	int rc = 0;
1434 	int offset;
1435 	int bytes_read;
1436 
1437 	ecryptfs_set_default_sizes(crypt_stat);
1438 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1439 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1440 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1441 	rc = contains_ecryptfs_marker(page_virt + offset);
1442 	if (rc == 0) {
1443 		rc = -EINVAL;
1444 		goto out;
1445 	}
1446 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1447 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1448 				    &bytes_read);
1449 	if (rc) {
1450 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1451 		goto out;
1452 	}
1453 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1454 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1455 				"file version [%d] is supported by this "
1456 				"version of eCryptfs\n",
1457 				crypt_stat->file_version,
1458 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1459 		rc = -EINVAL;
1460 		goto out;
1461 	}
1462 	offset += bytes_read;
1463 	if (crypt_stat->file_version >= 1) {
1464 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1465 					   &bytes_read);
1466 		if (rc) {
1467 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1468 					"metadata; rc = [%d]\n", rc);
1469 		}
1470 		offset += bytes_read;
1471 	} else
1472 		set_default_header_data(crypt_stat);
1473 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1474 				       ecryptfs_dentry);
1475 out:
1476 	return rc;
1477 }
1478 
1479 /**
1480  * ecryptfs_read_headers
1481  *
1482  * Returns zero if valid headers found and parsed; non-zero otherwise
1483  */
1484 int ecryptfs_read_headers(struct dentry *ecryptfs_dentry,
1485 			  struct file *lower_file)
1486 {
1487 	int rc = 0;
1488 	char *page_virt = NULL;
1489 	mm_segment_t oldfs;
1490 	ssize_t bytes_read;
1491 	struct ecryptfs_crypt_stat *crypt_stat =
1492 	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1493 
1494 	/* Read the first page from the underlying file */
1495 	page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, SLAB_USER);
1496 	if (!page_virt) {
1497 		rc = -ENOMEM;
1498 		ecryptfs_printk(KERN_ERR, "Unable to allocate page_virt\n");
1499 		goto out;
1500 	}
1501 	lower_file->f_pos = 0;
1502 	oldfs = get_fs();
1503 	set_fs(get_ds());
1504 	bytes_read = lower_file->f_op->read(lower_file,
1505 					    (char __user *)page_virt,
1506 					    ECRYPTFS_DEFAULT_EXTENT_SIZE,
1507 					    &lower_file->f_pos);
1508 	set_fs(oldfs);
1509 	if (bytes_read != ECRYPTFS_DEFAULT_EXTENT_SIZE) {
1510 		rc = -EINVAL;
1511 		goto out;
1512 	}
1513 	rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1514 					ecryptfs_dentry);
1515 	if (rc) {
1516 		ecryptfs_printk(KERN_DEBUG, "Valid eCryptfs headers not "
1517 				"found\n");
1518 		rc = -EINVAL;
1519 	}
1520 out:
1521 	if (page_virt) {
1522 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1523 		kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1524 	}
1525 	return rc;
1526 }
1527 
1528 /**
1529  * ecryptfs_encode_filename - converts a plaintext file name to cipher text
1530  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1531  * @name: The plaintext name
1532  * @length: The length of the plaintext
1533  * @encoded_name: The encypted name
1534  *
1535  * Encrypts and encodes a filename into something that constitutes a
1536  * valid filename for a filesystem, with printable characters.
1537  *
1538  * We assume that we have a properly initialized crypto context,
1539  * pointed to by crypt_stat->tfm.
1540  *
1541  * TODO: Implement filename decoding and decryption here, in place of
1542  * memcpy. We are keeping the framework around for now to (1)
1543  * facilitate testing of the components needed to implement filename
1544  * encryption and (2) to provide a code base from which other
1545  * developers in the community can easily implement this feature.
1546  *
1547  * Returns the length of encoded filename; negative if error
1548  */
1549 int
1550 ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1551 			 const char *name, int length, char **encoded_name)
1552 {
1553 	int error = 0;
1554 
1555 	(*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
1556 	if (!(*encoded_name)) {
1557 		error = -ENOMEM;
1558 		goto out;
1559 	}
1560 	/* TODO: Filename encryption is a scheduled feature for a
1561 	 * future version of eCryptfs. This function is here only for
1562 	 * the purpose of providing a framework for other developers
1563 	 * to easily implement filename encryption. Hint: Replace this
1564 	 * memcpy() with a call to encrypt and encode the
1565 	 * filename, the set the length accordingly. */
1566 	memcpy((void *)(*encoded_name), (void *)name, length);
1567 	(*encoded_name)[length] = '\0';
1568 	error = length + 1;
1569 out:
1570 	return error;
1571 }
1572 
1573 /**
1574  * ecryptfs_decode_filename - converts the cipher text name to plaintext
1575  * @crypt_stat: The crypt_stat struct associated with the file
1576  * @name: The filename in cipher text
1577  * @length: The length of the cipher text name
1578  * @decrypted_name: The plaintext name
1579  *
1580  * Decodes and decrypts the filename.
1581  *
1582  * We assume that we have a properly initialized crypto context,
1583  * pointed to by crypt_stat->tfm.
1584  *
1585  * TODO: Implement filename decoding and decryption here, in place of
1586  * memcpy. We are keeping the framework around for now to (1)
1587  * facilitate testing of the components needed to implement filename
1588  * encryption and (2) to provide a code base from which other
1589  * developers in the community can easily implement this feature.
1590  *
1591  * Returns the length of decoded filename; negative if error
1592  */
1593 int
1594 ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1595 			 const char *name, int length, char **decrypted_name)
1596 {
1597 	int error = 0;
1598 
1599 	(*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
1600 	if (!(*decrypted_name)) {
1601 		error = -ENOMEM;
1602 		goto out;
1603 	}
1604 	/* TODO: Filename encryption is a scheduled feature for a
1605 	 * future version of eCryptfs. This function is here only for
1606 	 * the purpose of providing a framework for other developers
1607 	 * to easily implement filename encryption. Hint: Replace this
1608 	 * memcpy() with a call to decode and decrypt the
1609 	 * filename, the set the length accordingly. */
1610 	memcpy((void *)(*decrypted_name), (void *)name, length);
1611 	(*decrypted_name)[length + 1] = '\0';	/* Only for convenience
1612 						 * in printing out the
1613 						 * string in debug
1614 						 * messages */
1615 	error = length;
1616 out:
1617 	return error;
1618 }
1619 
1620 /**
1621  * ecryptfs_process_cipher - Perform cipher initialization.
1622  * @key_tfm: Crypto context for key material, set by this function
1623  * @cipher_name: Name of the cipher
1624  * @key_size: Size of the key in bytes
1625  *
1626  * Returns zero on success. Any crypto_tfm structs allocated here
1627  * should be released by other functions, such as on a superblock put
1628  * event, regardless of whether this function succeeds for fails.
1629  */
1630 int
1631 ecryptfs_process_cipher(struct crypto_blkcipher **key_tfm, char *cipher_name,
1632 			size_t *key_size)
1633 {
1634 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1635 	char *full_alg_name;
1636 	int rc;
1637 
1638 	*key_tfm = NULL;
1639 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1640 		rc = -EINVAL;
1641 		printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
1642 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1643 		goto out;
1644 	}
1645 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1646 						    "ecb");
1647 	if (rc)
1648 		goto out;
1649 	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1650 	kfree(full_alg_name);
1651 	if (IS_ERR(*key_tfm)) {
1652 		rc = PTR_ERR(*key_tfm);
1653 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1654 		       "[%s]; rc = [%d]\n", cipher_name, rc);
1655 		goto out;
1656 	}
1657 	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1658 	if (*key_size == 0) {
1659 		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1660 
1661 		*key_size = alg->max_keysize;
1662 	}
1663 	get_random_bytes(dummy_key, *key_size);
1664 	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1665 	if (rc) {
1666 		printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
1667 		       "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
1668 		rc = -EINVAL;
1669 		goto out;
1670 	}
1671 out:
1672 	return rc;
1673 }
1674