1 /** 2 * eCryptfs: Linux filesystem encryption layer 3 * 4 * Copyright (C) 1997-2004 Erez Zadok 5 * Copyright (C) 2001-2004 Stony Brook University 6 * Copyright (C) 2004-2006 International Business Machines Corp. 7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 8 * Michael C. Thompson <mcthomps@us.ibm.com> 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 of the 13 * License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 23 * 02111-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/mount.h> 28 #include <linux/pagemap.h> 29 #include <linux/random.h> 30 #include <linux/compiler.h> 31 #include <linux/key.h> 32 #include <linux/namei.h> 33 #include <linux/crypto.h> 34 #include <linux/file.h> 35 #include <linux/scatterlist.h> 36 #include "ecryptfs_kernel.h" 37 38 static int 39 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 40 struct page *dst_page, int dst_offset, 41 struct page *src_page, int src_offset, int size, 42 unsigned char *iv); 43 static int 44 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 45 struct page *dst_page, int dst_offset, 46 struct page *src_page, int src_offset, int size, 47 unsigned char *iv); 48 49 /** 50 * ecryptfs_to_hex 51 * @dst: Buffer to take hex character representation of contents of 52 * src; must be at least of size (src_size * 2) 53 * @src: Buffer to be converted to a hex string respresentation 54 * @src_size: number of bytes to convert 55 */ 56 void ecryptfs_to_hex(char *dst, char *src, size_t src_size) 57 { 58 int x; 59 60 for (x = 0; x < src_size; x++) 61 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]); 62 } 63 64 /** 65 * ecryptfs_from_hex 66 * @dst: Buffer to take the bytes from src hex; must be at least of 67 * size (src_size / 2) 68 * @src: Buffer to be converted from a hex string respresentation to raw value 69 * @dst_size: size of dst buffer, or number of hex characters pairs to convert 70 */ 71 void ecryptfs_from_hex(char *dst, char *src, int dst_size) 72 { 73 int x; 74 char tmp[3] = { 0, }; 75 76 for (x = 0; x < dst_size; x++) { 77 tmp[0] = src[x * 2]; 78 tmp[1] = src[x * 2 + 1]; 79 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); 80 } 81 } 82 83 /** 84 * ecryptfs_calculate_md5 - calculates the md5 of @src 85 * @dst: Pointer to 16 bytes of allocated memory 86 * @crypt_stat: Pointer to crypt_stat struct for the current inode 87 * @src: Data to be md5'd 88 * @len: Length of @src 89 * 90 * Uses the allocated crypto context that crypt_stat references to 91 * generate the MD5 sum of the contents of src. 92 */ 93 static int ecryptfs_calculate_md5(char *dst, 94 struct ecryptfs_crypt_stat *crypt_stat, 95 char *src, int len) 96 { 97 struct scatterlist sg; 98 struct hash_desc desc = { 99 .tfm = crypt_stat->hash_tfm, 100 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 101 }; 102 int rc = 0; 103 104 mutex_lock(&crypt_stat->cs_hash_tfm_mutex); 105 sg_init_one(&sg, (u8 *)src, len); 106 if (!desc.tfm) { 107 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0, 108 CRYPTO_ALG_ASYNC); 109 if (IS_ERR(desc.tfm)) { 110 rc = PTR_ERR(desc.tfm); 111 ecryptfs_printk(KERN_ERR, "Error attempting to " 112 "allocate crypto context; rc = [%d]\n", 113 rc); 114 goto out; 115 } 116 crypt_stat->hash_tfm = desc.tfm; 117 } 118 crypto_hash_init(&desc); 119 crypto_hash_update(&desc, &sg, len); 120 crypto_hash_final(&desc, dst); 121 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex); 122 out: 123 return rc; 124 } 125 126 int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, 127 char *cipher_name, 128 char *chaining_modifier) 129 { 130 int cipher_name_len = strlen(cipher_name); 131 int chaining_modifier_len = strlen(chaining_modifier); 132 int algified_name_len; 133 int rc; 134 135 algified_name_len = (chaining_modifier_len + cipher_name_len + 3); 136 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); 137 if (!(algified_name)) { 138 rc = -ENOMEM; 139 goto out; 140 } 141 snprintf((*algified_name), algified_name_len, "%s(%s)", 142 chaining_modifier, cipher_name); 143 rc = 0; 144 out: 145 return rc; 146 } 147 148 /** 149 * ecryptfs_derive_iv 150 * @iv: destination for the derived iv vale 151 * @crypt_stat: Pointer to crypt_stat struct for the current inode 152 * @offset: Offset of the page whose's iv we are to derive 153 * 154 * Generate the initialization vector from the given root IV and page 155 * offset. 156 * 157 * Returns zero on success; non-zero on error. 158 */ 159 static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, 160 pgoff_t offset) 161 { 162 int rc = 0; 163 char dst[MD5_DIGEST_SIZE]; 164 char src[ECRYPTFS_MAX_IV_BYTES + 16]; 165 166 if (unlikely(ecryptfs_verbosity > 0)) { 167 ecryptfs_printk(KERN_DEBUG, "root iv:\n"); 168 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); 169 } 170 /* TODO: It is probably secure to just cast the least 171 * significant bits of the root IV into an unsigned long and 172 * add the offset to that rather than go through all this 173 * hashing business. -Halcrow */ 174 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); 175 memset((src + crypt_stat->iv_bytes), 0, 16); 176 snprintf((src + crypt_stat->iv_bytes), 16, "%ld", offset); 177 if (unlikely(ecryptfs_verbosity > 0)) { 178 ecryptfs_printk(KERN_DEBUG, "source:\n"); 179 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); 180 } 181 rc = ecryptfs_calculate_md5(dst, crypt_stat, src, 182 (crypt_stat->iv_bytes + 16)); 183 if (rc) { 184 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 185 "MD5 while generating IV for a page\n"); 186 goto out; 187 } 188 memcpy(iv, dst, crypt_stat->iv_bytes); 189 if (unlikely(ecryptfs_verbosity > 0)) { 190 ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); 191 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); 192 } 193 out: 194 return rc; 195 } 196 197 /** 198 * ecryptfs_init_crypt_stat 199 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 200 * 201 * Initialize the crypt_stat structure. 202 */ 203 void 204 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 205 { 206 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 207 mutex_init(&crypt_stat->cs_mutex); 208 mutex_init(&crypt_stat->cs_tfm_mutex); 209 mutex_init(&crypt_stat->cs_hash_tfm_mutex); 210 ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_STRUCT_INITIALIZED); 211 } 212 213 /** 214 * ecryptfs_destruct_crypt_stat 215 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 216 * 217 * Releases all memory associated with a crypt_stat struct. 218 */ 219 void ecryptfs_destruct_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 220 { 221 if (crypt_stat->tfm) 222 crypto_free_blkcipher(crypt_stat->tfm); 223 if (crypt_stat->hash_tfm) 224 crypto_free_hash(crypt_stat->hash_tfm); 225 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 226 } 227 228 void ecryptfs_destruct_mount_crypt_stat( 229 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 230 { 231 if (mount_crypt_stat->global_auth_tok_key) 232 key_put(mount_crypt_stat->global_auth_tok_key); 233 if (mount_crypt_stat->global_key_tfm) 234 crypto_free_blkcipher(mount_crypt_stat->global_key_tfm); 235 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); 236 } 237 238 /** 239 * virt_to_scatterlist 240 * @addr: Virtual address 241 * @size: Size of data; should be an even multiple of the block size 242 * @sg: Pointer to scatterlist array; set to NULL to obtain only 243 * the number of scatterlist structs required in array 244 * @sg_size: Max array size 245 * 246 * Fills in a scatterlist array with page references for a passed 247 * virtual address. 248 * 249 * Returns the number of scatterlist structs in array used 250 */ 251 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, 252 int sg_size) 253 { 254 int i = 0; 255 struct page *pg; 256 int offset; 257 int remainder_of_page; 258 259 while (size > 0 && i < sg_size) { 260 pg = virt_to_page(addr); 261 offset = offset_in_page(addr); 262 if (sg) { 263 sg[i].page = pg; 264 sg[i].offset = offset; 265 } 266 remainder_of_page = PAGE_CACHE_SIZE - offset; 267 if (size >= remainder_of_page) { 268 if (sg) 269 sg[i].length = remainder_of_page; 270 addr += remainder_of_page; 271 size -= remainder_of_page; 272 } else { 273 if (sg) 274 sg[i].length = size; 275 addr += size; 276 size = 0; 277 } 278 i++; 279 } 280 if (size > 0) 281 return -ENOMEM; 282 return i; 283 } 284 285 /** 286 * encrypt_scatterlist 287 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 288 * @dest_sg: Destination of encrypted data 289 * @src_sg: Data to be encrypted 290 * @size: Length of data to be encrypted 291 * @iv: iv to use during encryption 292 * 293 * Returns the number of bytes encrypted; negative value on error 294 */ 295 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 296 struct scatterlist *dest_sg, 297 struct scatterlist *src_sg, int size, 298 unsigned char *iv) 299 { 300 struct blkcipher_desc desc = { 301 .tfm = crypt_stat->tfm, 302 .info = iv, 303 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 304 }; 305 int rc = 0; 306 307 BUG_ON(!crypt_stat || !crypt_stat->tfm 308 || !ECRYPTFS_CHECK_FLAG(crypt_stat->flags, 309 ECRYPTFS_STRUCT_INITIALIZED)); 310 if (unlikely(ecryptfs_verbosity > 0)) { 311 ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n", 312 crypt_stat->key_size); 313 ecryptfs_dump_hex(crypt_stat->key, 314 crypt_stat->key_size); 315 } 316 /* Consider doing this once, when the file is opened */ 317 mutex_lock(&crypt_stat->cs_tfm_mutex); 318 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 319 crypt_stat->key_size); 320 if (rc) { 321 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", 322 rc); 323 mutex_unlock(&crypt_stat->cs_tfm_mutex); 324 rc = -EINVAL; 325 goto out; 326 } 327 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size); 328 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size); 329 mutex_unlock(&crypt_stat->cs_tfm_mutex); 330 out: 331 return rc; 332 } 333 334 static void 335 ecryptfs_extent_to_lwr_pg_idx_and_offset(unsigned long *lower_page_idx, 336 int *byte_offset, 337 struct ecryptfs_crypt_stat *crypt_stat, 338 unsigned long extent_num) 339 { 340 unsigned long lower_extent_num; 341 int extents_occupied_by_headers_at_front; 342 int bytes_occupied_by_headers_at_front; 343 int extent_offset; 344 int extents_per_page; 345 346 bytes_occupied_by_headers_at_front = 347 ( crypt_stat->header_extent_size 348 * crypt_stat->num_header_extents_at_front ); 349 extents_occupied_by_headers_at_front = 350 ( bytes_occupied_by_headers_at_front 351 / crypt_stat->extent_size ); 352 lower_extent_num = extents_occupied_by_headers_at_front + extent_num; 353 extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size; 354 (*lower_page_idx) = lower_extent_num / extents_per_page; 355 extent_offset = lower_extent_num % extents_per_page; 356 (*byte_offset) = extent_offset * crypt_stat->extent_size; 357 ecryptfs_printk(KERN_DEBUG, " * crypt_stat->header_extent_size = " 358 "[%d]\n", crypt_stat->header_extent_size); 359 ecryptfs_printk(KERN_DEBUG, " * crypt_stat->" 360 "num_header_extents_at_front = [%d]\n", 361 crypt_stat->num_header_extents_at_front); 362 ecryptfs_printk(KERN_DEBUG, " * extents_occupied_by_headers_at_" 363 "front = [%d]\n", extents_occupied_by_headers_at_front); 364 ecryptfs_printk(KERN_DEBUG, " * lower_extent_num = [0x%.16x]\n", 365 lower_extent_num); 366 ecryptfs_printk(KERN_DEBUG, " * extents_per_page = [%d]\n", 367 extents_per_page); 368 ecryptfs_printk(KERN_DEBUG, " * (*lower_page_idx) = [0x%.16x]\n", 369 (*lower_page_idx)); 370 ecryptfs_printk(KERN_DEBUG, " * extent_offset = [%d]\n", 371 extent_offset); 372 ecryptfs_printk(KERN_DEBUG, " * (*byte_offset) = [%d]\n", 373 (*byte_offset)); 374 } 375 376 static int ecryptfs_write_out_page(struct ecryptfs_page_crypt_context *ctx, 377 struct page *lower_page, 378 struct inode *lower_inode, 379 int byte_offset_in_page, int bytes_to_write) 380 { 381 int rc = 0; 382 383 if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) { 384 rc = ecryptfs_commit_lower_page(lower_page, lower_inode, 385 ctx->param.lower_file, 386 byte_offset_in_page, 387 bytes_to_write); 388 if (rc) { 389 ecryptfs_printk(KERN_ERR, "Error calling lower " 390 "commit; rc = [%d]\n", rc); 391 goto out; 392 } 393 } else { 394 rc = ecryptfs_writepage_and_release_lower_page(lower_page, 395 lower_inode, 396 ctx->param.wbc); 397 if (rc) { 398 ecryptfs_printk(KERN_ERR, "Error calling lower " 399 "writepage(); rc = [%d]\n", rc); 400 goto out; 401 } 402 } 403 out: 404 return rc; 405 } 406 407 static int ecryptfs_read_in_page(struct ecryptfs_page_crypt_context *ctx, 408 struct page **lower_page, 409 struct inode *lower_inode, 410 unsigned long lower_page_idx, 411 int byte_offset_in_page) 412 { 413 int rc = 0; 414 415 if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) { 416 /* TODO: Limit this to only the data extents that are 417 * needed */ 418 rc = ecryptfs_get_lower_page(lower_page, lower_inode, 419 ctx->param.lower_file, 420 lower_page_idx, 421 byte_offset_in_page, 422 (PAGE_CACHE_SIZE 423 - byte_offset_in_page)); 424 if (rc) { 425 ecryptfs_printk( 426 KERN_ERR, "Error attempting to grab, map, " 427 "and prepare_write lower page with index " 428 "[0x%.16x]; rc = [%d]\n", lower_page_idx, rc); 429 goto out; 430 } 431 } else { 432 rc = ecryptfs_grab_and_map_lower_page(lower_page, NULL, 433 lower_inode, 434 lower_page_idx); 435 if (rc) { 436 ecryptfs_printk( 437 KERN_ERR, "Error attempting to grab and map " 438 "lower page with index [0x%.16x]; rc = [%d]\n", 439 lower_page_idx, rc); 440 goto out; 441 } 442 } 443 out: 444 return rc; 445 } 446 447 /** 448 * ecryptfs_encrypt_page 449 * @ctx: The context of the page 450 * 451 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note 452 * that eCryptfs pages may straddle the lower pages -- for instance, 453 * if the file was created on a machine with an 8K page size 454 * (resulting in an 8K header), and then the file is copied onto a 455 * host with a 32K page size, then when reading page 0 of the eCryptfs 456 * file, 24K of page 0 of the lower file will be read and decrypted, 457 * and then 8K of page 1 of the lower file will be read and decrypted. 458 * 459 * The actual operations performed on each page depends on the 460 * contents of the ecryptfs_page_crypt_context struct. 461 * 462 * Returns zero on success; negative on error 463 */ 464 int ecryptfs_encrypt_page(struct ecryptfs_page_crypt_context *ctx) 465 { 466 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 467 unsigned long base_extent; 468 unsigned long extent_offset = 0; 469 unsigned long lower_page_idx = 0; 470 unsigned long prior_lower_page_idx = 0; 471 struct page *lower_page; 472 struct inode *lower_inode; 473 struct ecryptfs_inode_info *inode_info; 474 struct ecryptfs_crypt_stat *crypt_stat; 475 int rc = 0; 476 int lower_byte_offset = 0; 477 int orig_byte_offset = 0; 478 int num_extents_per_page; 479 #define ECRYPTFS_PAGE_STATE_UNREAD 0 480 #define ECRYPTFS_PAGE_STATE_READ 1 481 #define ECRYPTFS_PAGE_STATE_MODIFIED 2 482 #define ECRYPTFS_PAGE_STATE_WRITTEN 3 483 int page_state; 484 485 lower_inode = ecryptfs_inode_to_lower(ctx->page->mapping->host); 486 inode_info = ecryptfs_inode_to_private(ctx->page->mapping->host); 487 crypt_stat = &inode_info->crypt_stat; 488 if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED)) { 489 rc = ecryptfs_copy_page_to_lower(ctx->page, lower_inode, 490 ctx->param.lower_file); 491 if (rc) 492 ecryptfs_printk(KERN_ERR, "Error attempting to copy " 493 "page at index [0x%.16x]\n", 494 ctx->page->index); 495 goto out; 496 } 497 num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size; 498 base_extent = (ctx->page->index * num_extents_per_page); 499 page_state = ECRYPTFS_PAGE_STATE_UNREAD; 500 while (extent_offset < num_extents_per_page) { 501 ecryptfs_extent_to_lwr_pg_idx_and_offset( 502 &lower_page_idx, &lower_byte_offset, crypt_stat, 503 (base_extent + extent_offset)); 504 if (prior_lower_page_idx != lower_page_idx 505 && page_state == ECRYPTFS_PAGE_STATE_MODIFIED) { 506 rc = ecryptfs_write_out_page(ctx, lower_page, 507 lower_inode, 508 orig_byte_offset, 509 (PAGE_CACHE_SIZE 510 - orig_byte_offset)); 511 if (rc) { 512 ecryptfs_printk(KERN_ERR, "Error attempting " 513 "to write out page; rc = [%d]" 514 "\n", rc); 515 goto out; 516 } 517 page_state = ECRYPTFS_PAGE_STATE_WRITTEN; 518 } 519 if (page_state == ECRYPTFS_PAGE_STATE_UNREAD 520 || page_state == ECRYPTFS_PAGE_STATE_WRITTEN) { 521 rc = ecryptfs_read_in_page(ctx, &lower_page, 522 lower_inode, lower_page_idx, 523 lower_byte_offset); 524 if (rc) { 525 ecryptfs_printk(KERN_ERR, "Error attempting " 526 "to read in lower page with " 527 "index [0x%.16x]; rc = [%d]\n", 528 lower_page_idx, rc); 529 goto out; 530 } 531 orig_byte_offset = lower_byte_offset; 532 prior_lower_page_idx = lower_page_idx; 533 page_state = ECRYPTFS_PAGE_STATE_READ; 534 } 535 BUG_ON(!(page_state == ECRYPTFS_PAGE_STATE_MODIFIED 536 || page_state == ECRYPTFS_PAGE_STATE_READ)); 537 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 538 (base_extent + extent_offset)); 539 if (rc) { 540 ecryptfs_printk(KERN_ERR, "Error attempting to " 541 "derive IV for extent [0x%.16x]; " 542 "rc = [%d]\n", 543 (base_extent + extent_offset), rc); 544 goto out; 545 } 546 if (unlikely(ecryptfs_verbosity > 0)) { 547 ecryptfs_printk(KERN_DEBUG, "Encrypting extent " 548 "with iv:\n"); 549 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes); 550 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before " 551 "encryption:\n"); 552 ecryptfs_dump_hex((char *) 553 (page_address(ctx->page) 554 + (extent_offset 555 * crypt_stat->extent_size)), 8); 556 } 557 rc = ecryptfs_encrypt_page_offset( 558 crypt_stat, lower_page, lower_byte_offset, ctx->page, 559 (extent_offset * crypt_stat->extent_size), 560 crypt_stat->extent_size, extent_iv); 561 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; " 562 "rc = [%d]\n", 563 (base_extent + extent_offset), rc); 564 if (unlikely(ecryptfs_verbosity > 0)) { 565 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after " 566 "encryption:\n"); 567 ecryptfs_dump_hex((char *)(page_address(lower_page) 568 + lower_byte_offset), 8); 569 } 570 page_state = ECRYPTFS_PAGE_STATE_MODIFIED; 571 extent_offset++; 572 } 573 BUG_ON(orig_byte_offset != 0); 574 rc = ecryptfs_write_out_page(ctx, lower_page, lower_inode, 0, 575 (lower_byte_offset 576 + crypt_stat->extent_size)); 577 if (rc) { 578 ecryptfs_printk(KERN_ERR, "Error attempting to write out " 579 "page; rc = [%d]\n", rc); 580 goto out; 581 } 582 out: 583 return rc; 584 } 585 586 /** 587 * ecryptfs_decrypt_page 588 * @file: The ecryptfs file 589 * @page: The page in ecryptfs to decrypt 590 * 591 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note 592 * that eCryptfs pages may straddle the lower pages -- for instance, 593 * if the file was created on a machine with an 8K page size 594 * (resulting in an 8K header), and then the file is copied onto a 595 * host with a 32K page size, then when reading page 0 of the eCryptfs 596 * file, 24K of page 0 of the lower file will be read and decrypted, 597 * and then 8K of page 1 of the lower file will be read and decrypted. 598 * 599 * Returns zero on success; negative on error 600 */ 601 int ecryptfs_decrypt_page(struct file *file, struct page *page) 602 { 603 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 604 unsigned long base_extent; 605 unsigned long extent_offset = 0; 606 unsigned long lower_page_idx = 0; 607 unsigned long prior_lower_page_idx = 0; 608 struct page *lower_page; 609 char *lower_page_virt = NULL; 610 struct inode *lower_inode; 611 struct ecryptfs_crypt_stat *crypt_stat; 612 int rc = 0; 613 int byte_offset; 614 int num_extents_per_page; 615 int page_state; 616 617 crypt_stat = &(ecryptfs_inode_to_private( 618 page->mapping->host)->crypt_stat); 619 lower_inode = ecryptfs_inode_to_lower(page->mapping->host); 620 if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED)) { 621 rc = ecryptfs_do_readpage(file, page, page->index); 622 if (rc) 623 ecryptfs_printk(KERN_ERR, "Error attempting to copy " 624 "page at index [0x%.16x]\n", 625 page->index); 626 goto out; 627 } 628 num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size; 629 base_extent = (page->index * num_extents_per_page); 630 lower_page_virt = kmem_cache_alloc(ecryptfs_lower_page_cache, 631 SLAB_KERNEL); 632 if (!lower_page_virt) { 633 rc = -ENOMEM; 634 ecryptfs_printk(KERN_ERR, "Error getting page for encrypted " 635 "lower page(s)\n"); 636 goto out; 637 } 638 lower_page = virt_to_page(lower_page_virt); 639 page_state = ECRYPTFS_PAGE_STATE_UNREAD; 640 while (extent_offset < num_extents_per_page) { 641 ecryptfs_extent_to_lwr_pg_idx_and_offset( 642 &lower_page_idx, &byte_offset, crypt_stat, 643 (base_extent + extent_offset)); 644 if (prior_lower_page_idx != lower_page_idx 645 || page_state == ECRYPTFS_PAGE_STATE_UNREAD) { 646 rc = ecryptfs_do_readpage(file, lower_page, 647 lower_page_idx); 648 if (rc) { 649 ecryptfs_printk(KERN_ERR, "Error reading " 650 "lower encrypted page; rc = " 651 "[%d]\n", rc); 652 goto out; 653 } 654 prior_lower_page_idx = lower_page_idx; 655 page_state = ECRYPTFS_PAGE_STATE_READ; 656 } 657 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 658 (base_extent + extent_offset)); 659 if (rc) { 660 ecryptfs_printk(KERN_ERR, "Error attempting to " 661 "derive IV for extent [0x%.16x]; rc = " 662 "[%d]\n", 663 (base_extent + extent_offset), rc); 664 goto out; 665 } 666 if (unlikely(ecryptfs_verbosity > 0)) { 667 ecryptfs_printk(KERN_DEBUG, "Decrypting extent " 668 "with iv:\n"); 669 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes); 670 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before " 671 "decryption:\n"); 672 ecryptfs_dump_hex((lower_page_virt + byte_offset), 8); 673 } 674 rc = ecryptfs_decrypt_page_offset(crypt_stat, page, 675 (extent_offset 676 * crypt_stat->extent_size), 677 lower_page, byte_offset, 678 crypt_stat->extent_size, 679 extent_iv); 680 if (rc != crypt_stat->extent_size) { 681 ecryptfs_printk(KERN_ERR, "Error attempting to " 682 "decrypt extent [0x%.16x]\n", 683 (base_extent + extent_offset)); 684 goto out; 685 } 686 rc = 0; 687 if (unlikely(ecryptfs_verbosity > 0)) { 688 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after " 689 "decryption:\n"); 690 ecryptfs_dump_hex((char *)(page_address(page) 691 + byte_offset), 8); 692 } 693 extent_offset++; 694 } 695 out: 696 if (lower_page_virt) 697 kmem_cache_free(ecryptfs_lower_page_cache, lower_page_virt); 698 return rc; 699 } 700 701 /** 702 * decrypt_scatterlist 703 * 704 * Returns the number of bytes decrypted; negative value on error 705 */ 706 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 707 struct scatterlist *dest_sg, 708 struct scatterlist *src_sg, int size, 709 unsigned char *iv) 710 { 711 struct blkcipher_desc desc = { 712 .tfm = crypt_stat->tfm, 713 .info = iv, 714 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 715 }; 716 int rc = 0; 717 718 /* Consider doing this once, when the file is opened */ 719 mutex_lock(&crypt_stat->cs_tfm_mutex); 720 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 721 crypt_stat->key_size); 722 if (rc) { 723 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", 724 rc); 725 mutex_unlock(&crypt_stat->cs_tfm_mutex); 726 rc = -EINVAL; 727 goto out; 728 } 729 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size); 730 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size); 731 mutex_unlock(&crypt_stat->cs_tfm_mutex); 732 if (rc) { 733 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n", 734 rc); 735 goto out; 736 } 737 rc = size; 738 out: 739 return rc; 740 } 741 742 /** 743 * ecryptfs_encrypt_page_offset 744 * 745 * Returns the number of bytes encrypted 746 */ 747 static int 748 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 749 struct page *dst_page, int dst_offset, 750 struct page *src_page, int src_offset, int size, 751 unsigned char *iv) 752 { 753 struct scatterlist src_sg, dst_sg; 754 755 src_sg.page = src_page; 756 src_sg.offset = src_offset; 757 src_sg.length = size; 758 dst_sg.page = dst_page; 759 dst_sg.offset = dst_offset; 760 dst_sg.length = size; 761 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); 762 } 763 764 /** 765 * ecryptfs_decrypt_page_offset 766 * 767 * Returns the number of bytes decrypted 768 */ 769 static int 770 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 771 struct page *dst_page, int dst_offset, 772 struct page *src_page, int src_offset, int size, 773 unsigned char *iv) 774 { 775 struct scatterlist src_sg, dst_sg; 776 777 src_sg.page = src_page; 778 src_sg.offset = src_offset; 779 src_sg.length = size; 780 dst_sg.page = dst_page; 781 dst_sg.offset = dst_offset; 782 dst_sg.length = size; 783 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); 784 } 785 786 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 787 788 /** 789 * ecryptfs_init_crypt_ctx 790 * @crypt_stat: Uninitilized crypt stats structure 791 * 792 * Initialize the crypto context. 793 * 794 * TODO: Performance: Keep a cache of initialized cipher contexts; 795 * only init if needed 796 */ 797 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) 798 { 799 char *full_alg_name; 800 int rc = -EINVAL; 801 802 if (!crypt_stat->cipher) { 803 ecryptfs_printk(KERN_ERR, "No cipher specified\n"); 804 goto out; 805 } 806 ecryptfs_printk(KERN_DEBUG, 807 "Initializing cipher [%s]; strlen = [%d]; " 808 "key_size_bits = [%d]\n", 809 crypt_stat->cipher, (int)strlen(crypt_stat->cipher), 810 crypt_stat->key_size << 3); 811 if (crypt_stat->tfm) { 812 rc = 0; 813 goto out; 814 } 815 mutex_lock(&crypt_stat->cs_tfm_mutex); 816 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, 817 crypt_stat->cipher, "cbc"); 818 if (rc) 819 goto out; 820 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0, 821 CRYPTO_ALG_ASYNC); 822 kfree(full_alg_name); 823 if (!crypt_stat->tfm) { 824 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " 825 "Error initializing cipher [%s]\n", 826 crypt_stat->cipher); 827 mutex_unlock(&crypt_stat->cs_tfm_mutex); 828 goto out; 829 } 830 crypto_blkcipher_set_flags(crypt_stat->tfm, 831 (ECRYPTFS_DEFAULT_CHAINING_MODE 832 | CRYPTO_TFM_REQ_WEAK_KEY)); 833 mutex_unlock(&crypt_stat->cs_tfm_mutex); 834 rc = 0; 835 out: 836 return rc; 837 } 838 839 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) 840 { 841 int extent_size_tmp; 842 843 crypt_stat->extent_mask = 0xFFFFFFFF; 844 crypt_stat->extent_shift = 0; 845 if (crypt_stat->extent_size == 0) 846 return; 847 extent_size_tmp = crypt_stat->extent_size; 848 while ((extent_size_tmp & 0x01) == 0) { 849 extent_size_tmp >>= 1; 850 crypt_stat->extent_mask <<= 1; 851 crypt_stat->extent_shift++; 852 } 853 } 854 855 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) 856 { 857 /* Default values; may be overwritten as we are parsing the 858 * packets. */ 859 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 860 set_extent_mask_and_shift(crypt_stat); 861 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; 862 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) { 863 crypt_stat->header_extent_size = 864 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 865 } else 866 crypt_stat->header_extent_size = PAGE_CACHE_SIZE; 867 crypt_stat->num_header_extents_at_front = 1; 868 } 869 870 /** 871 * ecryptfs_compute_root_iv 872 * @crypt_stats 873 * 874 * On error, sets the root IV to all 0's. 875 */ 876 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) 877 { 878 int rc = 0; 879 char dst[MD5_DIGEST_SIZE]; 880 881 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); 882 BUG_ON(crypt_stat->iv_bytes <= 0); 883 if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID)) { 884 rc = -EINVAL; 885 ecryptfs_printk(KERN_WARNING, "Session key not valid; " 886 "cannot generate root IV\n"); 887 goto out; 888 } 889 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, 890 crypt_stat->key_size); 891 if (rc) { 892 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 893 "MD5 while generating root IV\n"); 894 goto out; 895 } 896 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); 897 out: 898 if (rc) { 899 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); 900 ECRYPTFS_SET_FLAG(crypt_stat->flags, 901 ECRYPTFS_SECURITY_WARNING); 902 } 903 return rc; 904 } 905 906 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) 907 { 908 get_random_bytes(crypt_stat->key, crypt_stat->key_size); 909 ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID); 910 ecryptfs_compute_root_iv(crypt_stat); 911 if (unlikely(ecryptfs_verbosity > 0)) { 912 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); 913 ecryptfs_dump_hex(crypt_stat->key, 914 crypt_stat->key_size); 915 } 916 } 917 918 /** 919 * ecryptfs_set_default_crypt_stat_vals 920 * @crypt_stat 921 * 922 * Default values in the event that policy does not override them. 923 */ 924 static void ecryptfs_set_default_crypt_stat_vals( 925 struct ecryptfs_crypt_stat *crypt_stat, 926 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 927 { 928 ecryptfs_set_default_sizes(crypt_stat); 929 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); 930 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; 931 ECRYPTFS_CLEAR_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID); 932 crypt_stat->file_version = ECRYPTFS_FILE_VERSION; 933 crypt_stat->mount_crypt_stat = mount_crypt_stat; 934 } 935 936 /** 937 * ecryptfs_new_file_context 938 * @ecryptfs_dentry 939 * 940 * If the crypto context for the file has not yet been established, 941 * this is where we do that. Establishing a new crypto context 942 * involves the following decisions: 943 * - What cipher to use? 944 * - What set of authentication tokens to use? 945 * Here we just worry about getting enough information into the 946 * authentication tokens so that we know that they are available. 947 * We associate the available authentication tokens with the new file 948 * via the set of signatures in the crypt_stat struct. Later, when 949 * the headers are actually written out, we may again defer to 950 * userspace to perform the encryption of the session key; for the 951 * foreseeable future, this will be the case with public key packets. 952 * 953 * Returns zero on success; non-zero otherwise 954 */ 955 /* Associate an authentication token(s) with the file */ 956 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry) 957 { 958 int rc = 0; 959 struct ecryptfs_crypt_stat *crypt_stat = 960 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat; 961 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 962 &ecryptfs_superblock_to_private( 963 ecryptfs_dentry->d_sb)->mount_crypt_stat; 964 int cipher_name_len; 965 966 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); 967 /* See if there are mount crypt options */ 968 if (mount_crypt_stat->global_auth_tok) { 969 ecryptfs_printk(KERN_DEBUG, "Initializing context for new " 970 "file using mount_crypt_stat\n"); 971 ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED); 972 ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID); 973 memcpy(crypt_stat->keysigs[crypt_stat->num_keysigs++], 974 mount_crypt_stat->global_auth_tok_sig, 975 ECRYPTFS_SIG_SIZE_HEX); 976 cipher_name_len = 977 strlen(mount_crypt_stat->global_default_cipher_name); 978 memcpy(crypt_stat->cipher, 979 mount_crypt_stat->global_default_cipher_name, 980 cipher_name_len); 981 crypt_stat->cipher[cipher_name_len] = '\0'; 982 crypt_stat->key_size = 983 mount_crypt_stat->global_default_cipher_key_size; 984 ecryptfs_generate_new_key(crypt_stat); 985 } else 986 /* We should not encounter this scenario since we 987 * should detect lack of global_auth_tok at mount time 988 * TODO: Applies to 0.1 release only; remove in future 989 * release */ 990 BUG(); 991 rc = ecryptfs_init_crypt_ctx(crypt_stat); 992 if (rc) 993 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " 994 "context for cipher [%s]: rc = [%d]\n", 995 crypt_stat->cipher, rc); 996 return rc; 997 } 998 999 /** 1000 * contains_ecryptfs_marker - check for the ecryptfs marker 1001 * @data: The data block in which to check 1002 * 1003 * Returns one if marker found; zero if not found 1004 */ 1005 int contains_ecryptfs_marker(char *data) 1006 { 1007 u32 m_1, m_2; 1008 1009 memcpy(&m_1, data, 4); 1010 m_1 = be32_to_cpu(m_1); 1011 memcpy(&m_2, (data + 4), 4); 1012 m_2 = be32_to_cpu(m_2); 1013 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) 1014 return 1; 1015 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " 1016 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, 1017 MAGIC_ECRYPTFS_MARKER); 1018 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " 1019 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); 1020 return 0; 1021 } 1022 1023 struct ecryptfs_flag_map_elem { 1024 u32 file_flag; 1025 u32 local_flag; 1026 }; 1027 1028 /* Add support for additional flags by adding elements here. */ 1029 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { 1030 {0x00000001, ECRYPTFS_ENABLE_HMAC}, 1031 {0x00000002, ECRYPTFS_ENCRYPTED} 1032 }; 1033 1034 /** 1035 * ecryptfs_process_flags 1036 * @crypt_stat 1037 * @page_virt: Source data to be parsed 1038 * @bytes_read: Updated with the number of bytes read 1039 * 1040 * Returns zero on success; non-zero if the flag set is invalid 1041 */ 1042 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, 1043 char *page_virt, int *bytes_read) 1044 { 1045 int rc = 0; 1046 int i; 1047 u32 flags; 1048 1049 memcpy(&flags, page_virt, 4); 1050 flags = be32_to_cpu(flags); 1051 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 1052 / sizeof(struct ecryptfs_flag_map_elem))); i++) 1053 if (flags & ecryptfs_flag_map[i].file_flag) { 1054 ECRYPTFS_SET_FLAG(crypt_stat->flags, 1055 ecryptfs_flag_map[i].local_flag); 1056 } else 1057 ECRYPTFS_CLEAR_FLAG(crypt_stat->flags, 1058 ecryptfs_flag_map[i].local_flag); 1059 /* Version is in top 8 bits of the 32-bit flag vector */ 1060 crypt_stat->file_version = ((flags >> 24) & 0xFF); 1061 (*bytes_read) = 4; 1062 return rc; 1063 } 1064 1065 /** 1066 * write_ecryptfs_marker 1067 * @page_virt: The pointer to in a page to begin writing the marker 1068 * @written: Number of bytes written 1069 * 1070 * Marker = 0x3c81b7f5 1071 */ 1072 static void write_ecryptfs_marker(char *page_virt, size_t *written) 1073 { 1074 u32 m_1, m_2; 1075 1076 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 1077 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); 1078 m_1 = cpu_to_be32(m_1); 1079 memcpy(page_virt, &m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 1080 m_2 = cpu_to_be32(m_2); 1081 memcpy(page_virt + (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2), &m_2, 1082 (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 1083 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1084 } 1085 1086 static void 1087 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat, 1088 size_t *written) 1089 { 1090 u32 flags = 0; 1091 int i; 1092 1093 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 1094 / sizeof(struct ecryptfs_flag_map_elem))); i++) 1095 if (ECRYPTFS_CHECK_FLAG(crypt_stat->flags, 1096 ecryptfs_flag_map[i].local_flag)) 1097 flags |= ecryptfs_flag_map[i].file_flag; 1098 /* Version is in top 8 bits of the 32-bit flag vector */ 1099 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); 1100 flags = cpu_to_be32(flags); 1101 memcpy(page_virt, &flags, 4); 1102 (*written) = 4; 1103 } 1104 1105 struct ecryptfs_cipher_code_str_map_elem { 1106 char cipher_str[16]; 1107 u16 cipher_code; 1108 }; 1109 1110 /* Add support for additional ciphers by adding elements here. The 1111 * cipher_code is whatever OpenPGP applicatoins use to identify the 1112 * ciphers. List in order of probability. */ 1113 static struct ecryptfs_cipher_code_str_map_elem 1114 ecryptfs_cipher_code_str_map[] = { 1115 {"aes",RFC2440_CIPHER_AES_128 }, 1116 {"blowfish", RFC2440_CIPHER_BLOWFISH}, 1117 {"des3_ede", RFC2440_CIPHER_DES3_EDE}, 1118 {"cast5", RFC2440_CIPHER_CAST_5}, 1119 {"twofish", RFC2440_CIPHER_TWOFISH}, 1120 {"cast6", RFC2440_CIPHER_CAST_6}, 1121 {"aes", RFC2440_CIPHER_AES_192}, 1122 {"aes", RFC2440_CIPHER_AES_256} 1123 }; 1124 1125 /** 1126 * ecryptfs_code_for_cipher_string 1127 * @str: The string representing the cipher name 1128 * 1129 * Returns zero on no match, or the cipher code on match 1130 */ 1131 u16 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat) 1132 { 1133 int i; 1134 u16 code = 0; 1135 struct ecryptfs_cipher_code_str_map_elem *map = 1136 ecryptfs_cipher_code_str_map; 1137 1138 if (strcmp(crypt_stat->cipher, "aes") == 0) { 1139 switch (crypt_stat->key_size) { 1140 case 16: 1141 code = RFC2440_CIPHER_AES_128; 1142 break; 1143 case 24: 1144 code = RFC2440_CIPHER_AES_192; 1145 break; 1146 case 32: 1147 code = RFC2440_CIPHER_AES_256; 1148 } 1149 } else { 1150 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1151 if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){ 1152 code = map[i].cipher_code; 1153 break; 1154 } 1155 } 1156 return code; 1157 } 1158 1159 /** 1160 * ecryptfs_cipher_code_to_string 1161 * @str: Destination to write out the cipher name 1162 * @cipher_code: The code to convert to cipher name string 1163 * 1164 * Returns zero on success 1165 */ 1166 int ecryptfs_cipher_code_to_string(char *str, u16 cipher_code) 1167 { 1168 int rc = 0; 1169 int i; 1170 1171 str[0] = '\0'; 1172 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1173 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) 1174 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); 1175 if (str[0] == '\0') { 1176 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " 1177 "[%d]\n", cipher_code); 1178 rc = -EINVAL; 1179 } 1180 return rc; 1181 } 1182 1183 /** 1184 * ecryptfs_read_header_region 1185 * @data 1186 * @dentry 1187 * @nd 1188 * 1189 * Returns zero on success; non-zero otherwise 1190 */ 1191 int ecryptfs_read_header_region(char *data, struct dentry *dentry, 1192 struct vfsmount *mnt) 1193 { 1194 struct file *lower_file; 1195 mm_segment_t oldfs; 1196 int rc; 1197 1198 if ((rc = ecryptfs_open_lower_file(&lower_file, dentry, mnt, 1199 O_RDONLY))) { 1200 printk(KERN_ERR 1201 "Error opening lower_file to read header region\n"); 1202 goto out; 1203 } 1204 lower_file->f_pos = 0; 1205 oldfs = get_fs(); 1206 set_fs(get_ds()); 1207 /* For releases 0.1 and 0.2, all of the header information 1208 * fits in the first data extent-sized region. */ 1209 rc = lower_file->f_op->read(lower_file, (char __user *)data, 1210 ECRYPTFS_DEFAULT_EXTENT_SIZE, &lower_file->f_pos); 1211 set_fs(oldfs); 1212 if ((rc = ecryptfs_close_lower_file(lower_file))) { 1213 printk(KERN_ERR "Error closing lower_file\n"); 1214 goto out; 1215 } 1216 rc = 0; 1217 out: 1218 return rc; 1219 } 1220 1221 static void 1222 write_header_metadata(char *virt, struct ecryptfs_crypt_stat *crypt_stat, 1223 size_t *written) 1224 { 1225 u32 header_extent_size; 1226 u16 num_header_extents_at_front; 1227 1228 header_extent_size = (u32)crypt_stat->header_extent_size; 1229 num_header_extents_at_front = 1230 (u16)crypt_stat->num_header_extents_at_front; 1231 header_extent_size = cpu_to_be32(header_extent_size); 1232 memcpy(virt, &header_extent_size, 4); 1233 virt += 4; 1234 num_header_extents_at_front = cpu_to_be16(num_header_extents_at_front); 1235 memcpy(virt, &num_header_extents_at_front, 2); 1236 (*written) = 6; 1237 } 1238 1239 struct kmem_cache *ecryptfs_header_cache_0; 1240 struct kmem_cache *ecryptfs_header_cache_1; 1241 struct kmem_cache *ecryptfs_header_cache_2; 1242 1243 /** 1244 * ecryptfs_write_headers_virt 1245 * @page_virt 1246 * @crypt_stat 1247 * @ecryptfs_dentry 1248 * 1249 * Format version: 1 1250 * 1251 * Header Extent: 1252 * Octets 0-7: Unencrypted file size (big-endian) 1253 * Octets 8-15: eCryptfs special marker 1254 * Octets 16-19: Flags 1255 * Octet 16: File format version number (between 0 and 255) 1256 * Octets 17-18: Reserved 1257 * Octet 19: Bit 1 (lsb): Reserved 1258 * Bit 2: Encrypted? 1259 * Bits 3-8: Reserved 1260 * Octets 20-23: Header extent size (big-endian) 1261 * Octets 24-25: Number of header extents at front of file 1262 * (big-endian) 1263 * Octet 26: Begin RFC 2440 authentication token packet set 1264 * Data Extent 0: 1265 * Lower data (CBC encrypted) 1266 * Data Extent 1: 1267 * Lower data (CBC encrypted) 1268 * ... 1269 * 1270 * Returns zero on success 1271 */ 1272 int ecryptfs_write_headers_virt(char *page_virt, 1273 struct ecryptfs_crypt_stat *crypt_stat, 1274 struct dentry *ecryptfs_dentry) 1275 { 1276 int rc; 1277 size_t written; 1278 size_t offset; 1279 1280 offset = ECRYPTFS_FILE_SIZE_BYTES; 1281 write_ecryptfs_marker((page_virt + offset), &written); 1282 offset += written; 1283 write_ecryptfs_flags((page_virt + offset), crypt_stat, &written); 1284 offset += written; 1285 write_header_metadata((page_virt + offset), crypt_stat, &written); 1286 offset += written; 1287 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, 1288 ecryptfs_dentry, &written, 1289 PAGE_CACHE_SIZE - offset); 1290 if (rc) 1291 ecryptfs_printk(KERN_WARNING, "Error generating key packet " 1292 "set; rc = [%d]\n", rc); 1293 return rc; 1294 } 1295 1296 /** 1297 * ecryptfs_write_headers 1298 * @lower_file: The lower file struct, which was returned from dentry_open 1299 * 1300 * Write the file headers out. This will likely involve a userspace 1301 * callout, in which the session key is encrypted with one or more 1302 * public keys and/or the passphrase necessary to do the encryption is 1303 * retrieved via a prompt. Exactly what happens at this point should 1304 * be policy-dependent. 1305 * 1306 * Returns zero on success; non-zero on error 1307 */ 1308 int ecryptfs_write_headers(struct dentry *ecryptfs_dentry, 1309 struct file *lower_file) 1310 { 1311 mm_segment_t oldfs; 1312 struct ecryptfs_crypt_stat *crypt_stat; 1313 char *page_virt; 1314 int current_header_page; 1315 int header_pages; 1316 int rc = 0; 1317 1318 crypt_stat = &ecryptfs_inode_to_private( 1319 ecryptfs_dentry->d_inode)->crypt_stat; 1320 if (likely(ECRYPTFS_CHECK_FLAG(crypt_stat->flags, 1321 ECRYPTFS_ENCRYPTED))) { 1322 if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, 1323 ECRYPTFS_KEY_VALID)) { 1324 ecryptfs_printk(KERN_DEBUG, "Key is " 1325 "invalid; bailing out\n"); 1326 rc = -EINVAL; 1327 goto out; 1328 } 1329 } else { 1330 rc = -EINVAL; 1331 ecryptfs_printk(KERN_WARNING, 1332 "Called with crypt_stat->encrypted == 0\n"); 1333 goto out; 1334 } 1335 /* Released in this function */ 1336 page_virt = kmem_cache_alloc(ecryptfs_header_cache_0, SLAB_USER); 1337 if (!page_virt) { 1338 ecryptfs_printk(KERN_ERR, "Out of memory\n"); 1339 rc = -ENOMEM; 1340 goto out; 1341 } 1342 memset(page_virt, 0, PAGE_CACHE_SIZE); 1343 rc = ecryptfs_write_headers_virt(page_virt, crypt_stat, 1344 ecryptfs_dentry); 1345 if (unlikely(rc)) { 1346 ecryptfs_printk(KERN_ERR, "Error whilst writing headers\n"); 1347 memset(page_virt, 0, PAGE_CACHE_SIZE); 1348 goto out_free; 1349 } 1350 ecryptfs_printk(KERN_DEBUG, 1351 "Writing key packet set to underlying file\n"); 1352 lower_file->f_pos = 0; 1353 oldfs = get_fs(); 1354 set_fs(get_ds()); 1355 ecryptfs_printk(KERN_DEBUG, "Calling lower_file->f_op->" 1356 "write() w/ header page; lower_file->f_pos = " 1357 "[0x%.16x]\n", lower_file->f_pos); 1358 lower_file->f_op->write(lower_file, (char __user *)page_virt, 1359 PAGE_CACHE_SIZE, &lower_file->f_pos); 1360 header_pages = ((crypt_stat->header_extent_size 1361 * crypt_stat->num_header_extents_at_front) 1362 / PAGE_CACHE_SIZE); 1363 memset(page_virt, 0, PAGE_CACHE_SIZE); 1364 current_header_page = 1; 1365 while (current_header_page < header_pages) { 1366 ecryptfs_printk(KERN_DEBUG, "Calling lower_file->f_op->" 1367 "write() w/ zero'd page; lower_file->f_pos = " 1368 "[0x%.16x]\n", lower_file->f_pos); 1369 lower_file->f_op->write(lower_file, (char __user *)page_virt, 1370 PAGE_CACHE_SIZE, &lower_file->f_pos); 1371 current_header_page++; 1372 } 1373 set_fs(oldfs); 1374 ecryptfs_printk(KERN_DEBUG, 1375 "Done writing key packet set to underlying file.\n"); 1376 out_free: 1377 kmem_cache_free(ecryptfs_header_cache_0, page_virt); 1378 out: 1379 return rc; 1380 } 1381 1382 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, 1383 char *virt, int *bytes_read) 1384 { 1385 int rc = 0; 1386 u32 header_extent_size; 1387 u16 num_header_extents_at_front; 1388 1389 memcpy(&header_extent_size, virt, 4); 1390 header_extent_size = be32_to_cpu(header_extent_size); 1391 virt += 4; 1392 memcpy(&num_header_extents_at_front, virt, 2); 1393 num_header_extents_at_front = be16_to_cpu(num_header_extents_at_front); 1394 crypt_stat->header_extent_size = (int)header_extent_size; 1395 crypt_stat->num_header_extents_at_front = 1396 (int)num_header_extents_at_front; 1397 (*bytes_read) = 6; 1398 if ((crypt_stat->header_extent_size 1399 * crypt_stat->num_header_extents_at_front) 1400 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) { 1401 rc = -EINVAL; 1402 ecryptfs_printk(KERN_WARNING, "Invalid header extent size: " 1403 "[%d]\n", crypt_stat->header_extent_size); 1404 } 1405 return rc; 1406 } 1407 1408 /** 1409 * set_default_header_data 1410 * 1411 * For version 0 file format; this function is only for backwards 1412 * compatibility for files created with the prior versions of 1413 * eCryptfs. 1414 */ 1415 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) 1416 { 1417 crypt_stat->header_extent_size = 4096; 1418 crypt_stat->num_header_extents_at_front = 1; 1419 } 1420 1421 /** 1422 * ecryptfs_read_headers_virt 1423 * 1424 * Read/parse the header data. The header format is detailed in the 1425 * comment block for the ecryptfs_write_headers_virt() function. 1426 * 1427 * Returns zero on success 1428 */ 1429 static int ecryptfs_read_headers_virt(char *page_virt, 1430 struct ecryptfs_crypt_stat *crypt_stat, 1431 struct dentry *ecryptfs_dentry) 1432 { 1433 int rc = 0; 1434 int offset; 1435 int bytes_read; 1436 1437 ecryptfs_set_default_sizes(crypt_stat); 1438 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( 1439 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1440 offset = ECRYPTFS_FILE_SIZE_BYTES; 1441 rc = contains_ecryptfs_marker(page_virt + offset); 1442 if (rc == 0) { 1443 rc = -EINVAL; 1444 goto out; 1445 } 1446 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1447 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset), 1448 &bytes_read); 1449 if (rc) { 1450 ecryptfs_printk(KERN_WARNING, "Error processing flags\n"); 1451 goto out; 1452 } 1453 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { 1454 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " 1455 "file version [%d] is supported by this " 1456 "version of eCryptfs\n", 1457 crypt_stat->file_version, 1458 ECRYPTFS_SUPPORTED_FILE_VERSION); 1459 rc = -EINVAL; 1460 goto out; 1461 } 1462 offset += bytes_read; 1463 if (crypt_stat->file_version >= 1) { 1464 rc = parse_header_metadata(crypt_stat, (page_virt + offset), 1465 &bytes_read); 1466 if (rc) { 1467 ecryptfs_printk(KERN_WARNING, "Error reading header " 1468 "metadata; rc = [%d]\n", rc); 1469 } 1470 offset += bytes_read; 1471 } else 1472 set_default_header_data(crypt_stat); 1473 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), 1474 ecryptfs_dentry); 1475 out: 1476 return rc; 1477 } 1478 1479 /** 1480 * ecryptfs_read_headers 1481 * 1482 * Returns zero if valid headers found and parsed; non-zero otherwise 1483 */ 1484 int ecryptfs_read_headers(struct dentry *ecryptfs_dentry, 1485 struct file *lower_file) 1486 { 1487 int rc = 0; 1488 char *page_virt = NULL; 1489 mm_segment_t oldfs; 1490 ssize_t bytes_read; 1491 struct ecryptfs_crypt_stat *crypt_stat = 1492 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat; 1493 1494 /* Read the first page from the underlying file */ 1495 page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, SLAB_USER); 1496 if (!page_virt) { 1497 rc = -ENOMEM; 1498 ecryptfs_printk(KERN_ERR, "Unable to allocate page_virt\n"); 1499 goto out; 1500 } 1501 lower_file->f_pos = 0; 1502 oldfs = get_fs(); 1503 set_fs(get_ds()); 1504 bytes_read = lower_file->f_op->read(lower_file, 1505 (char __user *)page_virt, 1506 ECRYPTFS_DEFAULT_EXTENT_SIZE, 1507 &lower_file->f_pos); 1508 set_fs(oldfs); 1509 if (bytes_read != ECRYPTFS_DEFAULT_EXTENT_SIZE) { 1510 rc = -EINVAL; 1511 goto out; 1512 } 1513 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1514 ecryptfs_dentry); 1515 if (rc) { 1516 ecryptfs_printk(KERN_DEBUG, "Valid eCryptfs headers not " 1517 "found\n"); 1518 rc = -EINVAL; 1519 } 1520 out: 1521 if (page_virt) { 1522 memset(page_virt, 0, PAGE_CACHE_SIZE); 1523 kmem_cache_free(ecryptfs_header_cache_1, page_virt); 1524 } 1525 return rc; 1526 } 1527 1528 /** 1529 * ecryptfs_encode_filename - converts a plaintext file name to cipher text 1530 * @crypt_stat: The crypt_stat struct associated with the file anem to encode 1531 * @name: The plaintext name 1532 * @length: The length of the plaintext 1533 * @encoded_name: The encypted name 1534 * 1535 * Encrypts and encodes a filename into something that constitutes a 1536 * valid filename for a filesystem, with printable characters. 1537 * 1538 * We assume that we have a properly initialized crypto context, 1539 * pointed to by crypt_stat->tfm. 1540 * 1541 * TODO: Implement filename decoding and decryption here, in place of 1542 * memcpy. We are keeping the framework around for now to (1) 1543 * facilitate testing of the components needed to implement filename 1544 * encryption and (2) to provide a code base from which other 1545 * developers in the community can easily implement this feature. 1546 * 1547 * Returns the length of encoded filename; negative if error 1548 */ 1549 int 1550 ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat, 1551 const char *name, int length, char **encoded_name) 1552 { 1553 int error = 0; 1554 1555 (*encoded_name) = kmalloc(length + 2, GFP_KERNEL); 1556 if (!(*encoded_name)) { 1557 error = -ENOMEM; 1558 goto out; 1559 } 1560 /* TODO: Filename encryption is a scheduled feature for a 1561 * future version of eCryptfs. This function is here only for 1562 * the purpose of providing a framework for other developers 1563 * to easily implement filename encryption. Hint: Replace this 1564 * memcpy() with a call to encrypt and encode the 1565 * filename, the set the length accordingly. */ 1566 memcpy((void *)(*encoded_name), (void *)name, length); 1567 (*encoded_name)[length] = '\0'; 1568 error = length + 1; 1569 out: 1570 return error; 1571 } 1572 1573 /** 1574 * ecryptfs_decode_filename - converts the cipher text name to plaintext 1575 * @crypt_stat: The crypt_stat struct associated with the file 1576 * @name: The filename in cipher text 1577 * @length: The length of the cipher text name 1578 * @decrypted_name: The plaintext name 1579 * 1580 * Decodes and decrypts the filename. 1581 * 1582 * We assume that we have a properly initialized crypto context, 1583 * pointed to by crypt_stat->tfm. 1584 * 1585 * TODO: Implement filename decoding and decryption here, in place of 1586 * memcpy. We are keeping the framework around for now to (1) 1587 * facilitate testing of the components needed to implement filename 1588 * encryption and (2) to provide a code base from which other 1589 * developers in the community can easily implement this feature. 1590 * 1591 * Returns the length of decoded filename; negative if error 1592 */ 1593 int 1594 ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat, 1595 const char *name, int length, char **decrypted_name) 1596 { 1597 int error = 0; 1598 1599 (*decrypted_name) = kmalloc(length + 2, GFP_KERNEL); 1600 if (!(*decrypted_name)) { 1601 error = -ENOMEM; 1602 goto out; 1603 } 1604 /* TODO: Filename encryption is a scheduled feature for a 1605 * future version of eCryptfs. This function is here only for 1606 * the purpose of providing a framework for other developers 1607 * to easily implement filename encryption. Hint: Replace this 1608 * memcpy() with a call to decode and decrypt the 1609 * filename, the set the length accordingly. */ 1610 memcpy((void *)(*decrypted_name), (void *)name, length); 1611 (*decrypted_name)[length + 1] = '\0'; /* Only for convenience 1612 * in printing out the 1613 * string in debug 1614 * messages */ 1615 error = length; 1616 out: 1617 return error; 1618 } 1619 1620 /** 1621 * ecryptfs_process_cipher - Perform cipher initialization. 1622 * @key_tfm: Crypto context for key material, set by this function 1623 * @cipher_name: Name of the cipher 1624 * @key_size: Size of the key in bytes 1625 * 1626 * Returns zero on success. Any crypto_tfm structs allocated here 1627 * should be released by other functions, such as on a superblock put 1628 * event, regardless of whether this function succeeds for fails. 1629 */ 1630 int 1631 ecryptfs_process_cipher(struct crypto_blkcipher **key_tfm, char *cipher_name, 1632 size_t *key_size) 1633 { 1634 char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; 1635 char *full_alg_name; 1636 int rc; 1637 1638 *key_tfm = NULL; 1639 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { 1640 rc = -EINVAL; 1641 printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum " 1642 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); 1643 goto out; 1644 } 1645 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, 1646 "ecb"); 1647 if (rc) 1648 goto out; 1649 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); 1650 kfree(full_alg_name); 1651 if (IS_ERR(*key_tfm)) { 1652 rc = PTR_ERR(*key_tfm); 1653 printk(KERN_ERR "Unable to allocate crypto cipher with name " 1654 "[%s]; rc = [%d]\n", cipher_name, rc); 1655 goto out; 1656 } 1657 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY); 1658 if (*key_size == 0) { 1659 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm); 1660 1661 *key_size = alg->max_keysize; 1662 } 1663 get_random_bytes(dummy_key, *key_size); 1664 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size); 1665 if (rc) { 1666 printk(KERN_ERR "Error attempting to set key of size [%Zd] for " 1667 "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc); 1668 rc = -EINVAL; 1669 goto out; 1670 } 1671 out: 1672 return rc; 1673 } 1674