xref: /openbmc/linux/fs/ecryptfs/crypto.c (revision 17398957aa0a05ef62535060b41d103590dcc533)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2006 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *   		Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include "ecryptfs_kernel.h"
37 
38 static int
39 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
40 			     struct page *dst_page, int dst_offset,
41 			     struct page *src_page, int src_offset, int size,
42 			     unsigned char *iv);
43 static int
44 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
45 			     struct page *dst_page, int dst_offset,
46 			     struct page *src_page, int src_offset, int size,
47 			     unsigned char *iv);
48 
49 /**
50  * ecryptfs_to_hex
51  * @dst: Buffer to take hex character representation of contents of
52  *       src; must be at least of size (src_size * 2)
53  * @src: Buffer to be converted to a hex string respresentation
54  * @src_size: number of bytes to convert
55  */
56 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
57 {
58 	int x;
59 
60 	for (x = 0; x < src_size; x++)
61 		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
62 }
63 
64 /**
65  * ecryptfs_from_hex
66  * @dst: Buffer to take the bytes from src hex; must be at least of
67  *       size (src_size / 2)
68  * @src: Buffer to be converted from a hex string respresentation to raw value
69  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
70  */
71 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
72 {
73 	int x;
74 	char tmp[3] = { 0, };
75 
76 	for (x = 0; x < dst_size; x++) {
77 		tmp[0] = src[x * 2];
78 		tmp[1] = src[x * 2 + 1];
79 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
80 	}
81 }
82 
83 /**
84  * ecryptfs_calculate_md5 - calculates the md5 of @src
85  * @dst: Pointer to 16 bytes of allocated memory
86  * @crypt_stat: Pointer to crypt_stat struct for the current inode
87  * @src: Data to be md5'd
88  * @len: Length of @src
89  *
90  * Uses the allocated crypto context that crypt_stat references to
91  * generate the MD5 sum of the contents of src.
92  */
93 static int ecryptfs_calculate_md5(char *dst,
94 				  struct ecryptfs_crypt_stat *crypt_stat,
95 				  char *src, int len)
96 {
97 	struct scatterlist sg;
98 	struct hash_desc desc = {
99 		.tfm = crypt_stat->hash_tfm,
100 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
101 	};
102 	int rc = 0;
103 
104 	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
105 	sg_init_one(&sg, (u8 *)src, len);
106 	if (!desc.tfm) {
107 		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
108 					     CRYPTO_ALG_ASYNC);
109 		if (IS_ERR(desc.tfm)) {
110 			rc = PTR_ERR(desc.tfm);
111 			ecryptfs_printk(KERN_ERR, "Error attempting to "
112 					"allocate crypto context; rc = [%d]\n",
113 					rc);
114 			goto out;
115 		}
116 		crypt_stat->hash_tfm = desc.tfm;
117 	}
118 	crypto_hash_init(&desc);
119 	crypto_hash_update(&desc, &sg, len);
120 	crypto_hash_final(&desc, dst);
121 	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
122 out:
123 	return rc;
124 }
125 
126 int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
127 					   char *cipher_name,
128 					   char *chaining_modifier)
129 {
130 	int cipher_name_len = strlen(cipher_name);
131 	int chaining_modifier_len = strlen(chaining_modifier);
132 	int algified_name_len;
133 	int rc;
134 
135 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
136 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
137 	if (!(*algified_name)) {
138 		rc = -ENOMEM;
139 		goto out;
140 	}
141 	snprintf((*algified_name), algified_name_len, "%s(%s)",
142 		 chaining_modifier, cipher_name);
143 	rc = 0;
144 out:
145 	return rc;
146 }
147 
148 /**
149  * ecryptfs_derive_iv
150  * @iv: destination for the derived iv vale
151  * @crypt_stat: Pointer to crypt_stat struct for the current inode
152  * @offset: Offset of the page whose's iv we are to derive
153  *
154  * Generate the initialization vector from the given root IV and page
155  * offset.
156  *
157  * Returns zero on success; non-zero on error.
158  */
159 static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
160 			      pgoff_t offset)
161 {
162 	int rc = 0;
163 	char dst[MD5_DIGEST_SIZE];
164 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
165 
166 	if (unlikely(ecryptfs_verbosity > 0)) {
167 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
168 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
169 	}
170 	/* TODO: It is probably secure to just cast the least
171 	 * significant bits of the root IV into an unsigned long and
172 	 * add the offset to that rather than go through all this
173 	 * hashing business. -Halcrow */
174 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
175 	memset((src + crypt_stat->iv_bytes), 0, 16);
176 	snprintf((src + crypt_stat->iv_bytes), 16, "%ld", offset);
177 	if (unlikely(ecryptfs_verbosity > 0)) {
178 		ecryptfs_printk(KERN_DEBUG, "source:\n");
179 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
180 	}
181 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
182 				    (crypt_stat->iv_bytes + 16));
183 	if (rc) {
184 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
185 				"MD5 while generating IV for a page\n");
186 		goto out;
187 	}
188 	memcpy(iv, dst, crypt_stat->iv_bytes);
189 	if (unlikely(ecryptfs_verbosity > 0)) {
190 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
191 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
192 	}
193 out:
194 	return rc;
195 }
196 
197 /**
198  * ecryptfs_init_crypt_stat
199  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
200  *
201  * Initialize the crypt_stat structure.
202  */
203 void
204 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
205 {
206 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
207 	mutex_init(&crypt_stat->cs_mutex);
208 	mutex_init(&crypt_stat->cs_tfm_mutex);
209 	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
210 	ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_STRUCT_INITIALIZED);
211 }
212 
213 /**
214  * ecryptfs_destruct_crypt_stat
215  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
216  *
217  * Releases all memory associated with a crypt_stat struct.
218  */
219 void ecryptfs_destruct_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
220 {
221 	if (crypt_stat->tfm)
222 		crypto_free_blkcipher(crypt_stat->tfm);
223 	if (crypt_stat->hash_tfm)
224 		crypto_free_hash(crypt_stat->hash_tfm);
225 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
226 }
227 
228 void ecryptfs_destruct_mount_crypt_stat(
229 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
230 {
231 	if (mount_crypt_stat->global_auth_tok_key)
232 		key_put(mount_crypt_stat->global_auth_tok_key);
233 	if (mount_crypt_stat->global_key_tfm)
234 		crypto_free_blkcipher(mount_crypt_stat->global_key_tfm);
235 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
236 }
237 
238 /**
239  * virt_to_scatterlist
240  * @addr: Virtual address
241  * @size: Size of data; should be an even multiple of the block size
242  * @sg: Pointer to scatterlist array; set to NULL to obtain only
243  *      the number of scatterlist structs required in array
244  * @sg_size: Max array size
245  *
246  * Fills in a scatterlist array with page references for a passed
247  * virtual address.
248  *
249  * Returns the number of scatterlist structs in array used
250  */
251 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
252 			int sg_size)
253 {
254 	int i = 0;
255 	struct page *pg;
256 	int offset;
257 	int remainder_of_page;
258 
259 	while (size > 0 && i < sg_size) {
260 		pg = virt_to_page(addr);
261 		offset = offset_in_page(addr);
262 		if (sg) {
263 			sg[i].page = pg;
264 			sg[i].offset = offset;
265 		}
266 		remainder_of_page = PAGE_CACHE_SIZE - offset;
267 		if (size >= remainder_of_page) {
268 			if (sg)
269 				sg[i].length = remainder_of_page;
270 			addr += remainder_of_page;
271 			size -= remainder_of_page;
272 		} else {
273 			if (sg)
274 				sg[i].length = size;
275 			addr += size;
276 			size = 0;
277 		}
278 		i++;
279 	}
280 	if (size > 0)
281 		return -ENOMEM;
282 	return i;
283 }
284 
285 /**
286  * encrypt_scatterlist
287  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
288  * @dest_sg: Destination of encrypted data
289  * @src_sg: Data to be encrypted
290  * @size: Length of data to be encrypted
291  * @iv: iv to use during encryption
292  *
293  * Returns the number of bytes encrypted; negative value on error
294  */
295 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
296 			       struct scatterlist *dest_sg,
297 			       struct scatterlist *src_sg, int size,
298 			       unsigned char *iv)
299 {
300 	struct blkcipher_desc desc = {
301 		.tfm = crypt_stat->tfm,
302 		.info = iv,
303 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
304 	};
305 	int rc = 0;
306 
307 	BUG_ON(!crypt_stat || !crypt_stat->tfm
308 	       || !ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
309 				       ECRYPTFS_STRUCT_INITIALIZED));
310 	if (unlikely(ecryptfs_verbosity > 0)) {
311 		ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
312 				crypt_stat->key_size);
313 		ecryptfs_dump_hex(crypt_stat->key,
314 				  crypt_stat->key_size);
315 	}
316 	/* Consider doing this once, when the file is opened */
317 	mutex_lock(&crypt_stat->cs_tfm_mutex);
318 	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
319 				     crypt_stat->key_size);
320 	if (rc) {
321 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
322 				rc);
323 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
324 		rc = -EINVAL;
325 		goto out;
326 	}
327 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
328 	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
329 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
330 out:
331 	return rc;
332 }
333 
334 static void
335 ecryptfs_extent_to_lwr_pg_idx_and_offset(unsigned long *lower_page_idx,
336 					 int *byte_offset,
337 					 struct ecryptfs_crypt_stat *crypt_stat,
338 					 unsigned long extent_num)
339 {
340 	unsigned long lower_extent_num;
341 	int extents_occupied_by_headers_at_front;
342 	int bytes_occupied_by_headers_at_front;
343 	int extent_offset;
344 	int extents_per_page;
345 
346 	bytes_occupied_by_headers_at_front =
347 		( crypt_stat->header_extent_size
348 		  * crypt_stat->num_header_extents_at_front );
349 	extents_occupied_by_headers_at_front =
350 		( bytes_occupied_by_headers_at_front
351 		  / crypt_stat->extent_size );
352 	lower_extent_num = extents_occupied_by_headers_at_front + extent_num;
353 	extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
354 	(*lower_page_idx) = lower_extent_num / extents_per_page;
355 	extent_offset = lower_extent_num % extents_per_page;
356 	(*byte_offset) = extent_offset * crypt_stat->extent_size;
357 	ecryptfs_printk(KERN_DEBUG, " * crypt_stat->header_extent_size = "
358 			"[%d]\n", crypt_stat->header_extent_size);
359 	ecryptfs_printk(KERN_DEBUG, " * crypt_stat->"
360 			"num_header_extents_at_front = [%d]\n",
361 			crypt_stat->num_header_extents_at_front);
362 	ecryptfs_printk(KERN_DEBUG, " * extents_occupied_by_headers_at_"
363 			"front = [%d]\n", extents_occupied_by_headers_at_front);
364 	ecryptfs_printk(KERN_DEBUG, " * lower_extent_num = [0x%.16x]\n",
365 			lower_extent_num);
366 	ecryptfs_printk(KERN_DEBUG, " * extents_per_page = [%d]\n",
367 			extents_per_page);
368 	ecryptfs_printk(KERN_DEBUG, " * (*lower_page_idx) = [0x%.16x]\n",
369 			(*lower_page_idx));
370 	ecryptfs_printk(KERN_DEBUG, " * extent_offset = [%d]\n",
371 			extent_offset);
372 	ecryptfs_printk(KERN_DEBUG, " * (*byte_offset) = [%d]\n",
373 			(*byte_offset));
374 }
375 
376 static int ecryptfs_write_out_page(struct ecryptfs_page_crypt_context *ctx,
377 				   struct page *lower_page,
378 				   struct inode *lower_inode,
379 				   int byte_offset_in_page, int bytes_to_write)
380 {
381 	int rc = 0;
382 
383 	if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) {
384 		rc = ecryptfs_commit_lower_page(lower_page, lower_inode,
385 						ctx->param.lower_file,
386 						byte_offset_in_page,
387 						bytes_to_write);
388 		if (rc) {
389 			ecryptfs_printk(KERN_ERR, "Error calling lower "
390 					"commit; rc = [%d]\n", rc);
391 			goto out;
392 		}
393 	} else {
394 		rc = ecryptfs_writepage_and_release_lower_page(lower_page,
395 							       lower_inode,
396 							       ctx->param.wbc);
397 		if (rc) {
398 			ecryptfs_printk(KERN_ERR, "Error calling lower "
399 					"writepage(); rc = [%d]\n", rc);
400 			goto out;
401 		}
402 	}
403 out:
404 	return rc;
405 }
406 
407 static int ecryptfs_read_in_page(struct ecryptfs_page_crypt_context *ctx,
408 				 struct page **lower_page,
409 				 struct inode *lower_inode,
410 				 unsigned long lower_page_idx,
411 				 int byte_offset_in_page)
412 {
413 	int rc = 0;
414 
415 	if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) {
416 		/* TODO: Limit this to only the data extents that are
417 		 * needed */
418 		rc = ecryptfs_get_lower_page(lower_page, lower_inode,
419 					     ctx->param.lower_file,
420 					     lower_page_idx,
421 					     byte_offset_in_page,
422 					     (PAGE_CACHE_SIZE
423 					      - byte_offset_in_page));
424 		if (rc) {
425 			ecryptfs_printk(
426 				KERN_ERR, "Error attempting to grab, map, "
427 				"and prepare_write lower page with index "
428 				"[0x%.16x]; rc = [%d]\n", lower_page_idx, rc);
429 			goto out;
430 		}
431 	} else {
432 		rc = ecryptfs_grab_and_map_lower_page(lower_page, NULL,
433 						      lower_inode,
434 						      lower_page_idx);
435 		if (rc) {
436 			ecryptfs_printk(
437 				KERN_ERR, "Error attempting to grab and map "
438 				"lower page with index [0x%.16x]; rc = [%d]\n",
439 				lower_page_idx, rc);
440 			goto out;
441 		}
442 	}
443 out:
444 	return rc;
445 }
446 
447 /**
448  * ecryptfs_encrypt_page
449  * @ctx: The context of the page
450  *
451  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
452  * that eCryptfs pages may straddle the lower pages -- for instance,
453  * if the file was created on a machine with an 8K page size
454  * (resulting in an 8K header), and then the file is copied onto a
455  * host with a 32K page size, then when reading page 0 of the eCryptfs
456  * file, 24K of page 0 of the lower file will be read and decrypted,
457  * and then 8K of page 1 of the lower file will be read and decrypted.
458  *
459  * The actual operations performed on each page depends on the
460  * contents of the ecryptfs_page_crypt_context struct.
461  *
462  * Returns zero on success; negative on error
463  */
464 int ecryptfs_encrypt_page(struct ecryptfs_page_crypt_context *ctx)
465 {
466 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
467 	unsigned long base_extent;
468 	unsigned long extent_offset = 0;
469 	unsigned long lower_page_idx = 0;
470 	unsigned long prior_lower_page_idx = 0;
471 	struct page *lower_page;
472 	struct inode *lower_inode;
473 	struct ecryptfs_inode_info *inode_info;
474 	struct ecryptfs_crypt_stat *crypt_stat;
475 	int rc = 0;
476 	int lower_byte_offset = 0;
477 	int orig_byte_offset = 0;
478 	int num_extents_per_page;
479 #define ECRYPTFS_PAGE_STATE_UNREAD    0
480 #define ECRYPTFS_PAGE_STATE_READ      1
481 #define ECRYPTFS_PAGE_STATE_MODIFIED  2
482 #define ECRYPTFS_PAGE_STATE_WRITTEN   3
483 	int page_state;
484 
485 	lower_inode = ecryptfs_inode_to_lower(ctx->page->mapping->host);
486 	inode_info = ecryptfs_inode_to_private(ctx->page->mapping->host);
487 	crypt_stat = &inode_info->crypt_stat;
488 	if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED)) {
489 		rc = ecryptfs_copy_page_to_lower(ctx->page, lower_inode,
490 						 ctx->param.lower_file);
491 		if (rc)
492 			ecryptfs_printk(KERN_ERR, "Error attempting to copy "
493 					"page at index [0x%.16x]\n",
494 					ctx->page->index);
495 		goto out;
496 	}
497 	num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
498 	base_extent = (ctx->page->index * num_extents_per_page);
499 	page_state = ECRYPTFS_PAGE_STATE_UNREAD;
500 	while (extent_offset < num_extents_per_page) {
501 		ecryptfs_extent_to_lwr_pg_idx_and_offset(
502 			&lower_page_idx, &lower_byte_offset, crypt_stat,
503 			(base_extent + extent_offset));
504 		if (prior_lower_page_idx != lower_page_idx
505 		    && page_state == ECRYPTFS_PAGE_STATE_MODIFIED) {
506 			rc = ecryptfs_write_out_page(ctx, lower_page,
507 						     lower_inode,
508 						     orig_byte_offset,
509 						     (PAGE_CACHE_SIZE
510 						      - orig_byte_offset));
511 			if (rc) {
512 				ecryptfs_printk(KERN_ERR, "Error attempting "
513 						"to write out page; rc = [%d]"
514 						"\n", rc);
515 				goto out;
516 			}
517 			page_state = ECRYPTFS_PAGE_STATE_WRITTEN;
518 		}
519 		if (page_state == ECRYPTFS_PAGE_STATE_UNREAD
520 		    || page_state == ECRYPTFS_PAGE_STATE_WRITTEN) {
521 			rc = ecryptfs_read_in_page(ctx, &lower_page,
522 						   lower_inode, lower_page_idx,
523 						   lower_byte_offset);
524 			if (rc) {
525 				ecryptfs_printk(KERN_ERR, "Error attempting "
526 						"to read in lower page with "
527 						"index [0x%.16x]; rc = [%d]\n",
528 						lower_page_idx, rc);
529 				goto out;
530 			}
531 			orig_byte_offset = lower_byte_offset;
532 			prior_lower_page_idx = lower_page_idx;
533 			page_state = ECRYPTFS_PAGE_STATE_READ;
534 		}
535 		BUG_ON(!(page_state == ECRYPTFS_PAGE_STATE_MODIFIED
536 			 || page_state == ECRYPTFS_PAGE_STATE_READ));
537 		rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
538 					(base_extent + extent_offset));
539 		if (rc) {
540 			ecryptfs_printk(KERN_ERR, "Error attempting to "
541 					"derive IV for extent [0x%.16x]; "
542 					"rc = [%d]\n",
543 					(base_extent + extent_offset), rc);
544 			goto out;
545 		}
546 		if (unlikely(ecryptfs_verbosity > 0)) {
547 			ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
548 					"with iv:\n");
549 			ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
550 			ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
551 					"encryption:\n");
552 			ecryptfs_dump_hex((char *)
553 					  (page_address(ctx->page)
554 					   + (extent_offset
555 					      * crypt_stat->extent_size)), 8);
556 		}
557 		rc = ecryptfs_encrypt_page_offset(
558 			crypt_stat, lower_page, lower_byte_offset, ctx->page,
559 			(extent_offset * crypt_stat->extent_size),
560 			crypt_stat->extent_size, extent_iv);
561 		ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
562 				"rc = [%d]\n",
563 				(base_extent + extent_offset), rc);
564 		if (unlikely(ecryptfs_verbosity > 0)) {
565 			ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
566 					"encryption:\n");
567 			ecryptfs_dump_hex((char *)(page_address(lower_page)
568 						   + lower_byte_offset), 8);
569 		}
570 		page_state = ECRYPTFS_PAGE_STATE_MODIFIED;
571 		extent_offset++;
572 	}
573 	BUG_ON(orig_byte_offset != 0);
574 	rc = ecryptfs_write_out_page(ctx, lower_page, lower_inode, 0,
575 				     (lower_byte_offset
576 				      + crypt_stat->extent_size));
577 	if (rc) {
578 		ecryptfs_printk(KERN_ERR, "Error attempting to write out "
579 				"page; rc = [%d]\n", rc);
580 				goto out;
581 	}
582 out:
583 	return rc;
584 }
585 
586 /**
587  * ecryptfs_decrypt_page
588  * @file: The ecryptfs file
589  * @page: The page in ecryptfs to decrypt
590  *
591  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
592  * that eCryptfs pages may straddle the lower pages -- for instance,
593  * if the file was created on a machine with an 8K page size
594  * (resulting in an 8K header), and then the file is copied onto a
595  * host with a 32K page size, then when reading page 0 of the eCryptfs
596  * file, 24K of page 0 of the lower file will be read and decrypted,
597  * and then 8K of page 1 of the lower file will be read and decrypted.
598  *
599  * Returns zero on success; negative on error
600  */
601 int ecryptfs_decrypt_page(struct file *file, struct page *page)
602 {
603 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
604 	unsigned long base_extent;
605 	unsigned long extent_offset = 0;
606 	unsigned long lower_page_idx = 0;
607 	unsigned long prior_lower_page_idx = 0;
608 	struct page *lower_page;
609 	char *lower_page_virt = NULL;
610 	struct inode *lower_inode;
611 	struct ecryptfs_crypt_stat *crypt_stat;
612 	int rc = 0;
613 	int byte_offset;
614 	int num_extents_per_page;
615 	int page_state;
616 
617 	crypt_stat = &(ecryptfs_inode_to_private(
618 			       page->mapping->host)->crypt_stat);
619 	lower_inode = ecryptfs_inode_to_lower(page->mapping->host);
620 	if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED)) {
621 		rc = ecryptfs_do_readpage(file, page, page->index);
622 		if (rc)
623 			ecryptfs_printk(KERN_ERR, "Error attempting to copy "
624 					"page at index [0x%.16x]\n",
625 					page->index);
626 		goto out;
627 	}
628 	num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
629 	base_extent = (page->index * num_extents_per_page);
630 	lower_page_virt = kmem_cache_alloc(ecryptfs_lower_page_cache,
631 					   GFP_KERNEL);
632 	if (!lower_page_virt) {
633 		rc = -ENOMEM;
634 		ecryptfs_printk(KERN_ERR, "Error getting page for encrypted "
635 				"lower page(s)\n");
636 		goto out;
637 	}
638 	lower_page = virt_to_page(lower_page_virt);
639 	page_state = ECRYPTFS_PAGE_STATE_UNREAD;
640 	while (extent_offset < num_extents_per_page) {
641 		ecryptfs_extent_to_lwr_pg_idx_and_offset(
642 			&lower_page_idx, &byte_offset, crypt_stat,
643 			(base_extent + extent_offset));
644 		if (prior_lower_page_idx != lower_page_idx
645 		    || page_state == ECRYPTFS_PAGE_STATE_UNREAD) {
646 			rc = ecryptfs_do_readpage(file, lower_page,
647 						  lower_page_idx);
648 			if (rc) {
649 				ecryptfs_printk(KERN_ERR, "Error reading "
650 						"lower encrypted page; rc = "
651 						"[%d]\n", rc);
652 				goto out;
653 			}
654 			prior_lower_page_idx = lower_page_idx;
655 			page_state = ECRYPTFS_PAGE_STATE_READ;
656 		}
657 		rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
658 					(base_extent + extent_offset));
659 		if (rc) {
660 			ecryptfs_printk(KERN_ERR, "Error attempting to "
661 					"derive IV for extent [0x%.16x]; rc = "
662 					"[%d]\n",
663 					(base_extent + extent_offset), rc);
664 			goto out;
665 		}
666 		if (unlikely(ecryptfs_verbosity > 0)) {
667 			ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
668 					"with iv:\n");
669 			ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
670 			ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
671 					"decryption:\n");
672 			ecryptfs_dump_hex((lower_page_virt + byte_offset), 8);
673 		}
674 		rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
675 						  (extent_offset
676 						   * crypt_stat->extent_size),
677 						  lower_page, byte_offset,
678 						  crypt_stat->extent_size,
679 						  extent_iv);
680 		if (rc != crypt_stat->extent_size) {
681 			ecryptfs_printk(KERN_ERR, "Error attempting to "
682 					"decrypt extent [0x%.16x]\n",
683 					(base_extent + extent_offset));
684 			goto out;
685 		}
686 		rc = 0;
687 		if (unlikely(ecryptfs_verbosity > 0)) {
688 			ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
689 					"decryption:\n");
690 			ecryptfs_dump_hex((char *)(page_address(page)
691 						   + byte_offset), 8);
692 		}
693 		extent_offset++;
694 	}
695 out:
696 	if (lower_page_virt)
697 		kmem_cache_free(ecryptfs_lower_page_cache, lower_page_virt);
698 	return rc;
699 }
700 
701 /**
702  * decrypt_scatterlist
703  *
704  * Returns the number of bytes decrypted; negative value on error
705  */
706 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
707 			       struct scatterlist *dest_sg,
708 			       struct scatterlist *src_sg, int size,
709 			       unsigned char *iv)
710 {
711 	struct blkcipher_desc desc = {
712 		.tfm = crypt_stat->tfm,
713 		.info = iv,
714 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
715 	};
716 	int rc = 0;
717 
718 	/* Consider doing this once, when the file is opened */
719 	mutex_lock(&crypt_stat->cs_tfm_mutex);
720 	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
721 				     crypt_stat->key_size);
722 	if (rc) {
723 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
724 				rc);
725 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
726 		rc = -EINVAL;
727 		goto out;
728 	}
729 	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
730 	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
731 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
732 	if (rc) {
733 		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
734 				rc);
735 		goto out;
736 	}
737 	rc = size;
738 out:
739 	return rc;
740 }
741 
742 /**
743  * ecryptfs_encrypt_page_offset
744  *
745  * Returns the number of bytes encrypted
746  */
747 static int
748 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
749 			     struct page *dst_page, int dst_offset,
750 			     struct page *src_page, int src_offset, int size,
751 			     unsigned char *iv)
752 {
753 	struct scatterlist src_sg, dst_sg;
754 
755 	src_sg.page = src_page;
756 	src_sg.offset = src_offset;
757 	src_sg.length = size;
758 	dst_sg.page = dst_page;
759 	dst_sg.offset = dst_offset;
760 	dst_sg.length = size;
761 	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
762 }
763 
764 /**
765  * ecryptfs_decrypt_page_offset
766  *
767  * Returns the number of bytes decrypted
768  */
769 static int
770 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
771 			     struct page *dst_page, int dst_offset,
772 			     struct page *src_page, int src_offset, int size,
773 			     unsigned char *iv)
774 {
775 	struct scatterlist src_sg, dst_sg;
776 
777 	src_sg.page = src_page;
778 	src_sg.offset = src_offset;
779 	src_sg.length = size;
780 	dst_sg.page = dst_page;
781 	dst_sg.offset = dst_offset;
782 	dst_sg.length = size;
783 	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
784 }
785 
786 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
787 
788 /**
789  * ecryptfs_init_crypt_ctx
790  * @crypt_stat: Uninitilized crypt stats structure
791  *
792  * Initialize the crypto context.
793  *
794  * TODO: Performance: Keep a cache of initialized cipher contexts;
795  * only init if needed
796  */
797 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
798 {
799 	char *full_alg_name;
800 	int rc = -EINVAL;
801 
802 	if (!crypt_stat->cipher) {
803 		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
804 		goto out;
805 	}
806 	ecryptfs_printk(KERN_DEBUG,
807 			"Initializing cipher [%s]; strlen = [%d]; "
808 			"key_size_bits = [%d]\n",
809 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
810 			crypt_stat->key_size << 3);
811 	if (crypt_stat->tfm) {
812 		rc = 0;
813 		goto out;
814 	}
815 	mutex_lock(&crypt_stat->cs_tfm_mutex);
816 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
817 						    crypt_stat->cipher, "cbc");
818 	if (rc)
819 		goto out;
820 	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
821 						 CRYPTO_ALG_ASYNC);
822 	kfree(full_alg_name);
823 	if (IS_ERR(crypt_stat->tfm)) {
824 		rc = PTR_ERR(crypt_stat->tfm);
825 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
826 				"Error initializing cipher [%s]\n",
827 				crypt_stat->cipher);
828 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
829 		goto out;
830 	}
831 	crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
832 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
833 	rc = 0;
834 out:
835 	return rc;
836 }
837 
838 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
839 {
840 	int extent_size_tmp;
841 
842 	crypt_stat->extent_mask = 0xFFFFFFFF;
843 	crypt_stat->extent_shift = 0;
844 	if (crypt_stat->extent_size == 0)
845 		return;
846 	extent_size_tmp = crypt_stat->extent_size;
847 	while ((extent_size_tmp & 0x01) == 0) {
848 		extent_size_tmp >>= 1;
849 		crypt_stat->extent_mask <<= 1;
850 		crypt_stat->extent_shift++;
851 	}
852 }
853 
854 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
855 {
856 	/* Default values; may be overwritten as we are parsing the
857 	 * packets. */
858 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
859 	set_extent_mask_and_shift(crypt_stat);
860 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
861 	if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) {
862 		crypt_stat->header_extent_size =
863 			ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
864 	} else
865 		crypt_stat->header_extent_size = PAGE_CACHE_SIZE;
866 	crypt_stat->num_header_extents_at_front = 1;
867 }
868 
869 /**
870  * ecryptfs_compute_root_iv
871  * @crypt_stats
872  *
873  * On error, sets the root IV to all 0's.
874  */
875 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
876 {
877 	int rc = 0;
878 	char dst[MD5_DIGEST_SIZE];
879 
880 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
881 	BUG_ON(crypt_stat->iv_bytes <= 0);
882 	if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID)) {
883 		rc = -EINVAL;
884 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
885 				"cannot generate root IV\n");
886 		goto out;
887 	}
888 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
889 				    crypt_stat->key_size);
890 	if (rc) {
891 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
892 				"MD5 while generating root IV\n");
893 		goto out;
894 	}
895 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
896 out:
897 	if (rc) {
898 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
899 		ECRYPTFS_SET_FLAG(crypt_stat->flags,
900 				  ECRYPTFS_SECURITY_WARNING);
901 	}
902 	return rc;
903 }
904 
905 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
906 {
907 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
908 	ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID);
909 	ecryptfs_compute_root_iv(crypt_stat);
910 	if (unlikely(ecryptfs_verbosity > 0)) {
911 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
912 		ecryptfs_dump_hex(crypt_stat->key,
913 				  crypt_stat->key_size);
914 	}
915 }
916 
917 /**
918  * ecryptfs_copy_mount_wide_flags_to_inode_flags
919  *
920  * This function propagates the mount-wide flags to individual inode
921  * flags.
922  */
923 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
924 	struct ecryptfs_crypt_stat *crypt_stat,
925 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
926 {
927 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
928 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
929 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
930 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
931 }
932 
933 /**
934  * ecryptfs_set_default_crypt_stat_vals
935  * @crypt_stat
936  *
937  * Default values in the event that policy does not override them.
938  */
939 static void ecryptfs_set_default_crypt_stat_vals(
940 	struct ecryptfs_crypt_stat *crypt_stat,
941 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
942 {
943 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
944 						      mount_crypt_stat);
945 	ecryptfs_set_default_sizes(crypt_stat);
946 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
947 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
948 	ECRYPTFS_CLEAR_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID);
949 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
950 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
951 }
952 
953 /**
954  * ecryptfs_new_file_context
955  * @ecryptfs_dentry
956  *
957  * If the crypto context for the file has not yet been established,
958  * this is where we do that.  Establishing a new crypto context
959  * involves the following decisions:
960  *  - What cipher to use?
961  *  - What set of authentication tokens to use?
962  * Here we just worry about getting enough information into the
963  * authentication tokens so that we know that they are available.
964  * We associate the available authentication tokens with the new file
965  * via the set of signatures in the crypt_stat struct.  Later, when
966  * the headers are actually written out, we may again defer to
967  * userspace to perform the encryption of the session key; for the
968  * foreseeable future, this will be the case with public key packets.
969  *
970  * Returns zero on success; non-zero otherwise
971  */
972 /* Associate an authentication token(s) with the file */
973 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
974 {
975 	int rc = 0;
976 	struct ecryptfs_crypt_stat *crypt_stat =
977 	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
978 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
979 	    &ecryptfs_superblock_to_private(
980 		    ecryptfs_dentry->d_sb)->mount_crypt_stat;
981 	int cipher_name_len;
982 
983 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
984 	/* See if there are mount crypt options */
985 	if (mount_crypt_stat->global_auth_tok) {
986 		ecryptfs_printk(KERN_DEBUG, "Initializing context for new "
987 				"file using mount_crypt_stat\n");
988 		ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED);
989 		ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID);
990 		ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
991 							      mount_crypt_stat);
992 		memcpy(crypt_stat->keysigs[crypt_stat->num_keysigs++],
993 		       mount_crypt_stat->global_auth_tok_sig,
994 		       ECRYPTFS_SIG_SIZE_HEX);
995 		cipher_name_len =
996 		    strlen(mount_crypt_stat->global_default_cipher_name);
997 		memcpy(crypt_stat->cipher,
998 		       mount_crypt_stat->global_default_cipher_name,
999 		       cipher_name_len);
1000 		crypt_stat->cipher[cipher_name_len] = '\0';
1001 		crypt_stat->key_size =
1002 			mount_crypt_stat->global_default_cipher_key_size;
1003 		ecryptfs_generate_new_key(crypt_stat);
1004 	} else
1005 		/* We should not encounter this scenario since we
1006 		 * should detect lack of global_auth_tok at mount time
1007 		 * TODO: Applies to 0.1 release only; remove in future
1008 		 * release */
1009 		BUG();
1010 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1011 	if (rc)
1012 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1013 				"context for cipher [%s]: rc = [%d]\n",
1014 				crypt_stat->cipher, rc);
1015 	return rc;
1016 }
1017 
1018 /**
1019  * contains_ecryptfs_marker - check for the ecryptfs marker
1020  * @data: The data block in which to check
1021  *
1022  * Returns one if marker found; zero if not found
1023  */
1024 int contains_ecryptfs_marker(char *data)
1025 {
1026 	u32 m_1, m_2;
1027 
1028 	memcpy(&m_1, data, 4);
1029 	m_1 = be32_to_cpu(m_1);
1030 	memcpy(&m_2, (data + 4), 4);
1031 	m_2 = be32_to_cpu(m_2);
1032 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1033 		return 1;
1034 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1035 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1036 			MAGIC_ECRYPTFS_MARKER);
1037 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1038 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1039 	return 0;
1040 }
1041 
1042 struct ecryptfs_flag_map_elem {
1043 	u32 file_flag;
1044 	u32 local_flag;
1045 };
1046 
1047 /* Add support for additional flags by adding elements here. */
1048 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1049 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
1050 	{0x00000002, ECRYPTFS_ENCRYPTED}
1051 };
1052 
1053 /**
1054  * ecryptfs_process_flags
1055  * @crypt_stat
1056  * @page_virt: Source data to be parsed
1057  * @bytes_read: Updated with the number of bytes read
1058  *
1059  * Returns zero on success; non-zero if the flag set is invalid
1060  */
1061 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1062 				  char *page_virt, int *bytes_read)
1063 {
1064 	int rc = 0;
1065 	int i;
1066 	u32 flags;
1067 
1068 	memcpy(&flags, page_virt, 4);
1069 	flags = be32_to_cpu(flags);
1070 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1071 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1072 		if (flags & ecryptfs_flag_map[i].file_flag) {
1073 			ECRYPTFS_SET_FLAG(crypt_stat->flags,
1074 					  ecryptfs_flag_map[i].local_flag);
1075 		} else
1076 			ECRYPTFS_CLEAR_FLAG(crypt_stat->flags,
1077 					    ecryptfs_flag_map[i].local_flag);
1078 	/* Version is in top 8 bits of the 32-bit flag vector */
1079 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
1080 	(*bytes_read) = 4;
1081 	return rc;
1082 }
1083 
1084 /**
1085  * write_ecryptfs_marker
1086  * @page_virt: The pointer to in a page to begin writing the marker
1087  * @written: Number of bytes written
1088  *
1089  * Marker = 0x3c81b7f5
1090  */
1091 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1092 {
1093 	u32 m_1, m_2;
1094 
1095 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1096 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1097 	m_1 = cpu_to_be32(m_1);
1098 	memcpy(page_virt, &m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1099 	m_2 = cpu_to_be32(m_2);
1100 	memcpy(page_virt + (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2), &m_2,
1101 	       (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1102 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1103 }
1104 
1105 static void
1106 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1107 		     size_t *written)
1108 {
1109 	u32 flags = 0;
1110 	int i;
1111 
1112 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1113 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1114 		if (ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
1115 					ecryptfs_flag_map[i].local_flag))
1116 			flags |= ecryptfs_flag_map[i].file_flag;
1117 	/* Version is in top 8 bits of the 32-bit flag vector */
1118 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1119 	flags = cpu_to_be32(flags);
1120 	memcpy(page_virt, &flags, 4);
1121 	(*written) = 4;
1122 }
1123 
1124 struct ecryptfs_cipher_code_str_map_elem {
1125 	char cipher_str[16];
1126 	u16 cipher_code;
1127 };
1128 
1129 /* Add support for additional ciphers by adding elements here. The
1130  * cipher_code is whatever OpenPGP applicatoins use to identify the
1131  * ciphers. List in order of probability. */
1132 static struct ecryptfs_cipher_code_str_map_elem
1133 ecryptfs_cipher_code_str_map[] = {
1134 	{"aes",RFC2440_CIPHER_AES_128 },
1135 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
1136 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
1137 	{"cast5", RFC2440_CIPHER_CAST_5},
1138 	{"twofish", RFC2440_CIPHER_TWOFISH},
1139 	{"cast6", RFC2440_CIPHER_CAST_6},
1140 	{"aes", RFC2440_CIPHER_AES_192},
1141 	{"aes", RFC2440_CIPHER_AES_256}
1142 };
1143 
1144 /**
1145  * ecryptfs_code_for_cipher_string
1146  * @str: The string representing the cipher name
1147  *
1148  * Returns zero on no match, or the cipher code on match
1149  */
1150 u16 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat)
1151 {
1152 	int i;
1153 	u16 code = 0;
1154 	struct ecryptfs_cipher_code_str_map_elem *map =
1155 		ecryptfs_cipher_code_str_map;
1156 
1157 	if (strcmp(crypt_stat->cipher, "aes") == 0) {
1158 		switch (crypt_stat->key_size) {
1159 		case 16:
1160 			code = RFC2440_CIPHER_AES_128;
1161 			break;
1162 		case 24:
1163 			code = RFC2440_CIPHER_AES_192;
1164 			break;
1165 		case 32:
1166 			code = RFC2440_CIPHER_AES_256;
1167 		}
1168 	} else {
1169 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1170 			if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){
1171 				code = map[i].cipher_code;
1172 				break;
1173 			}
1174 	}
1175 	return code;
1176 }
1177 
1178 /**
1179  * ecryptfs_cipher_code_to_string
1180  * @str: Destination to write out the cipher name
1181  * @cipher_code: The code to convert to cipher name string
1182  *
1183  * Returns zero on success
1184  */
1185 int ecryptfs_cipher_code_to_string(char *str, u16 cipher_code)
1186 {
1187 	int rc = 0;
1188 	int i;
1189 
1190 	str[0] = '\0';
1191 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1192 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1193 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1194 	if (str[0] == '\0') {
1195 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1196 				"[%d]\n", cipher_code);
1197 		rc = -EINVAL;
1198 	}
1199 	return rc;
1200 }
1201 
1202 /**
1203  * ecryptfs_read_header_region
1204  * @data
1205  * @dentry
1206  * @nd
1207  *
1208  * Returns zero on success; non-zero otherwise
1209  */
1210 int ecryptfs_read_header_region(char *data, struct dentry *dentry,
1211 				struct vfsmount *mnt)
1212 {
1213 	struct file *lower_file;
1214 	mm_segment_t oldfs;
1215 	int rc;
1216 
1217 	if ((rc = ecryptfs_open_lower_file(&lower_file, dentry, mnt,
1218 					   O_RDONLY))) {
1219 		printk(KERN_ERR
1220 		       "Error opening lower_file to read header region\n");
1221 		goto out;
1222 	}
1223 	lower_file->f_pos = 0;
1224 	oldfs = get_fs();
1225 	set_fs(get_ds());
1226 	/* For releases 0.1 and 0.2, all of the header information
1227 	 * fits in the first data extent-sized region. */
1228 	rc = lower_file->f_op->read(lower_file, (char __user *)data,
1229 			      ECRYPTFS_DEFAULT_EXTENT_SIZE, &lower_file->f_pos);
1230 	set_fs(oldfs);
1231 	if ((rc = ecryptfs_close_lower_file(lower_file))) {
1232 		printk(KERN_ERR "Error closing lower_file\n");
1233 		goto out;
1234 	}
1235 	rc = 0;
1236 out:
1237 	return rc;
1238 }
1239 
1240 static void
1241 write_header_metadata(char *virt, struct ecryptfs_crypt_stat *crypt_stat,
1242 		      size_t *written)
1243 {
1244 	u32 header_extent_size;
1245 	u16 num_header_extents_at_front;
1246 
1247 	header_extent_size = (u32)crypt_stat->header_extent_size;
1248 	num_header_extents_at_front =
1249 		(u16)crypt_stat->num_header_extents_at_front;
1250 	header_extent_size = cpu_to_be32(header_extent_size);
1251 	memcpy(virt, &header_extent_size, 4);
1252 	virt += 4;
1253 	num_header_extents_at_front = cpu_to_be16(num_header_extents_at_front);
1254 	memcpy(virt, &num_header_extents_at_front, 2);
1255 	(*written) = 6;
1256 }
1257 
1258 struct kmem_cache *ecryptfs_header_cache_0;
1259 struct kmem_cache *ecryptfs_header_cache_1;
1260 struct kmem_cache *ecryptfs_header_cache_2;
1261 
1262 /**
1263  * ecryptfs_write_headers_virt
1264  * @page_virt
1265  * @crypt_stat
1266  * @ecryptfs_dentry
1267  *
1268  * Format version: 1
1269  *
1270  *   Header Extent:
1271  *     Octets 0-7:        Unencrypted file size (big-endian)
1272  *     Octets 8-15:       eCryptfs special marker
1273  *     Octets 16-19:      Flags
1274  *      Octet 16:         File format version number (between 0 and 255)
1275  *      Octets 17-18:     Reserved
1276  *      Octet 19:         Bit 1 (lsb): Reserved
1277  *                        Bit 2: Encrypted?
1278  *                        Bits 3-8: Reserved
1279  *     Octets 20-23:      Header extent size (big-endian)
1280  *     Octets 24-25:      Number of header extents at front of file
1281  *                        (big-endian)
1282  *     Octet  26:         Begin RFC 2440 authentication token packet set
1283  *   Data Extent 0:
1284  *     Lower data (CBC encrypted)
1285  *   Data Extent 1:
1286  *     Lower data (CBC encrypted)
1287  *   ...
1288  *
1289  * Returns zero on success
1290  */
1291 int ecryptfs_write_headers_virt(char *page_virt,
1292 				struct ecryptfs_crypt_stat *crypt_stat,
1293 				struct dentry *ecryptfs_dentry)
1294 {
1295 	int rc;
1296 	size_t written;
1297 	size_t offset;
1298 
1299 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1300 	write_ecryptfs_marker((page_virt + offset), &written);
1301 	offset += written;
1302 	write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1303 	offset += written;
1304 	write_header_metadata((page_virt + offset), crypt_stat, &written);
1305 	offset += written;
1306 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1307 					      ecryptfs_dentry, &written,
1308 					      PAGE_CACHE_SIZE - offset);
1309 	if (rc)
1310 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1311 				"set; rc = [%d]\n", rc);
1312 	return rc;
1313 }
1314 
1315 /**
1316  * ecryptfs_write_headers
1317  * @lower_file: The lower file struct, which was returned from dentry_open
1318  *
1319  * Write the file headers out.  This will likely involve a userspace
1320  * callout, in which the session key is encrypted with one or more
1321  * public keys and/or the passphrase necessary to do the encryption is
1322  * retrieved via a prompt.  Exactly what happens at this point should
1323  * be policy-dependent.
1324  *
1325  * Returns zero on success; non-zero on error
1326  */
1327 int ecryptfs_write_headers(struct dentry *ecryptfs_dentry,
1328 			   struct file *lower_file)
1329 {
1330 	mm_segment_t oldfs;
1331 	struct ecryptfs_crypt_stat *crypt_stat;
1332 	char *page_virt;
1333 	int current_header_page;
1334 	int header_pages;
1335 	int rc = 0;
1336 
1337 	crypt_stat = &ecryptfs_inode_to_private(
1338 		ecryptfs_dentry->d_inode)->crypt_stat;
1339 	if (likely(ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
1340 				       ECRYPTFS_ENCRYPTED))) {
1341 		if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
1342 					 ECRYPTFS_KEY_VALID)) {
1343 			ecryptfs_printk(KERN_DEBUG, "Key is "
1344 					"invalid; bailing out\n");
1345 			rc = -EINVAL;
1346 			goto out;
1347 		}
1348 	} else {
1349 		rc = -EINVAL;
1350 		ecryptfs_printk(KERN_WARNING,
1351 				"Called with crypt_stat->encrypted == 0\n");
1352 		goto out;
1353 	}
1354 	/* Released in this function */
1355 	page_virt = kmem_cache_zalloc(ecryptfs_header_cache_0, GFP_USER);
1356 	if (!page_virt) {
1357 		ecryptfs_printk(KERN_ERR, "Out of memory\n");
1358 		rc = -ENOMEM;
1359 		goto out;
1360 	}
1361 
1362 	rc = ecryptfs_write_headers_virt(page_virt, crypt_stat,
1363 					 ecryptfs_dentry);
1364 	if (unlikely(rc)) {
1365 		ecryptfs_printk(KERN_ERR, "Error whilst writing headers\n");
1366 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1367 		goto out_free;
1368 	}
1369 	ecryptfs_printk(KERN_DEBUG,
1370 			"Writing key packet set to underlying file\n");
1371 	lower_file->f_pos = 0;
1372 	oldfs = get_fs();
1373 	set_fs(get_ds());
1374 	ecryptfs_printk(KERN_DEBUG, "Calling lower_file->f_op->"
1375 			"write() w/ header page; lower_file->f_pos = "
1376 			"[0x%.16x]\n", lower_file->f_pos);
1377 	lower_file->f_op->write(lower_file, (char __user *)page_virt,
1378 				PAGE_CACHE_SIZE, &lower_file->f_pos);
1379 	header_pages = ((crypt_stat->header_extent_size
1380 			 * crypt_stat->num_header_extents_at_front)
1381 			/ PAGE_CACHE_SIZE);
1382 	memset(page_virt, 0, PAGE_CACHE_SIZE);
1383 	current_header_page = 1;
1384 	while (current_header_page < header_pages) {
1385 		ecryptfs_printk(KERN_DEBUG, "Calling lower_file->f_op->"
1386 				"write() w/ zero'd page; lower_file->f_pos = "
1387 				"[0x%.16x]\n", lower_file->f_pos);
1388 		lower_file->f_op->write(lower_file, (char __user *)page_virt,
1389 					PAGE_CACHE_SIZE, &lower_file->f_pos);
1390 		current_header_page++;
1391 	}
1392 	set_fs(oldfs);
1393 	ecryptfs_printk(KERN_DEBUG,
1394 			"Done writing key packet set to underlying file.\n");
1395 out_free:
1396 	kmem_cache_free(ecryptfs_header_cache_0, page_virt);
1397 out:
1398 	return rc;
1399 }
1400 
1401 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1402 				 char *virt, int *bytes_read)
1403 {
1404 	int rc = 0;
1405 	u32 header_extent_size;
1406 	u16 num_header_extents_at_front;
1407 
1408 	memcpy(&header_extent_size, virt, 4);
1409 	header_extent_size = be32_to_cpu(header_extent_size);
1410 	virt += 4;
1411 	memcpy(&num_header_extents_at_front, virt, 2);
1412 	num_header_extents_at_front = be16_to_cpu(num_header_extents_at_front);
1413 	crypt_stat->header_extent_size = (int)header_extent_size;
1414 	crypt_stat->num_header_extents_at_front =
1415 		(int)num_header_extents_at_front;
1416 	(*bytes_read) = 6;
1417 	if ((crypt_stat->header_extent_size
1418 	     * crypt_stat->num_header_extents_at_front)
1419 	    < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) {
1420 		rc = -EINVAL;
1421 		ecryptfs_printk(KERN_WARNING, "Invalid header extent size: "
1422 				"[%d]\n", crypt_stat->header_extent_size);
1423 	}
1424 	return rc;
1425 }
1426 
1427 /**
1428  * set_default_header_data
1429  *
1430  * For version 0 file format; this function is only for backwards
1431  * compatibility for files created with the prior versions of
1432  * eCryptfs.
1433  */
1434 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1435 {
1436 	crypt_stat->header_extent_size = 4096;
1437 	crypt_stat->num_header_extents_at_front = 1;
1438 }
1439 
1440 /**
1441  * ecryptfs_read_headers_virt
1442  *
1443  * Read/parse the header data. The header format is detailed in the
1444  * comment block for the ecryptfs_write_headers_virt() function.
1445  *
1446  * Returns zero on success
1447  */
1448 static int ecryptfs_read_headers_virt(char *page_virt,
1449 				      struct ecryptfs_crypt_stat *crypt_stat,
1450 				      struct dentry *ecryptfs_dentry)
1451 {
1452 	int rc = 0;
1453 	int offset;
1454 	int bytes_read;
1455 
1456 	ecryptfs_set_default_sizes(crypt_stat);
1457 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1458 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1459 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1460 	rc = contains_ecryptfs_marker(page_virt + offset);
1461 	if (rc == 0) {
1462 		rc = -EINVAL;
1463 		goto out;
1464 	}
1465 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1466 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1467 				    &bytes_read);
1468 	if (rc) {
1469 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1470 		goto out;
1471 	}
1472 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1473 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1474 				"file version [%d] is supported by this "
1475 				"version of eCryptfs\n",
1476 				crypt_stat->file_version,
1477 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1478 		rc = -EINVAL;
1479 		goto out;
1480 	}
1481 	offset += bytes_read;
1482 	if (crypt_stat->file_version >= 1) {
1483 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1484 					   &bytes_read);
1485 		if (rc) {
1486 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1487 					"metadata; rc = [%d]\n", rc);
1488 		}
1489 		offset += bytes_read;
1490 	} else
1491 		set_default_header_data(crypt_stat);
1492 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1493 				       ecryptfs_dentry);
1494 out:
1495 	return rc;
1496 }
1497 
1498 /**
1499  * ecryptfs_read_headers
1500  *
1501  * Returns zero if valid headers found and parsed; non-zero otherwise
1502  */
1503 int ecryptfs_read_headers(struct dentry *ecryptfs_dentry,
1504 			  struct file *lower_file)
1505 {
1506 	int rc = 0;
1507 	char *page_virt = NULL;
1508 	mm_segment_t oldfs;
1509 	ssize_t bytes_read;
1510 	struct ecryptfs_crypt_stat *crypt_stat =
1511 	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1512 
1513 	/* Read the first page from the underlying file */
1514 	page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1515 	if (!page_virt) {
1516 		rc = -ENOMEM;
1517 		ecryptfs_printk(KERN_ERR, "Unable to allocate page_virt\n");
1518 		goto out;
1519 	}
1520 	lower_file->f_pos = 0;
1521 	oldfs = get_fs();
1522 	set_fs(get_ds());
1523 	bytes_read = lower_file->f_op->read(lower_file,
1524 					    (char __user *)page_virt,
1525 					    ECRYPTFS_DEFAULT_EXTENT_SIZE,
1526 					    &lower_file->f_pos);
1527 	set_fs(oldfs);
1528 	if (bytes_read != ECRYPTFS_DEFAULT_EXTENT_SIZE) {
1529 		rc = -EINVAL;
1530 		goto out;
1531 	}
1532 	rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1533 					ecryptfs_dentry);
1534 	if (rc) {
1535 		ecryptfs_printk(KERN_DEBUG, "Valid eCryptfs headers not "
1536 				"found\n");
1537 		rc = -EINVAL;
1538 	}
1539 out:
1540 	if (page_virt) {
1541 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1542 		kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1543 	}
1544 	return rc;
1545 }
1546 
1547 /**
1548  * ecryptfs_encode_filename - converts a plaintext file name to cipher text
1549  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1550  * @name: The plaintext name
1551  * @length: The length of the plaintext
1552  * @encoded_name: The encypted name
1553  *
1554  * Encrypts and encodes a filename into something that constitutes a
1555  * valid filename for a filesystem, with printable characters.
1556  *
1557  * We assume that we have a properly initialized crypto context,
1558  * pointed to by crypt_stat->tfm.
1559  *
1560  * TODO: Implement filename decoding and decryption here, in place of
1561  * memcpy. We are keeping the framework around for now to (1)
1562  * facilitate testing of the components needed to implement filename
1563  * encryption and (2) to provide a code base from which other
1564  * developers in the community can easily implement this feature.
1565  *
1566  * Returns the length of encoded filename; negative if error
1567  */
1568 int
1569 ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1570 			 const char *name, int length, char **encoded_name)
1571 {
1572 	int error = 0;
1573 
1574 	(*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
1575 	if (!(*encoded_name)) {
1576 		error = -ENOMEM;
1577 		goto out;
1578 	}
1579 	/* TODO: Filename encryption is a scheduled feature for a
1580 	 * future version of eCryptfs. This function is here only for
1581 	 * the purpose of providing a framework for other developers
1582 	 * to easily implement filename encryption. Hint: Replace this
1583 	 * memcpy() with a call to encrypt and encode the
1584 	 * filename, the set the length accordingly. */
1585 	memcpy((void *)(*encoded_name), (void *)name, length);
1586 	(*encoded_name)[length] = '\0';
1587 	error = length + 1;
1588 out:
1589 	return error;
1590 }
1591 
1592 /**
1593  * ecryptfs_decode_filename - converts the cipher text name to plaintext
1594  * @crypt_stat: The crypt_stat struct associated with the file
1595  * @name: The filename in cipher text
1596  * @length: The length of the cipher text name
1597  * @decrypted_name: The plaintext name
1598  *
1599  * Decodes and decrypts the filename.
1600  *
1601  * We assume that we have a properly initialized crypto context,
1602  * pointed to by crypt_stat->tfm.
1603  *
1604  * TODO: Implement filename decoding and decryption here, in place of
1605  * memcpy. We are keeping the framework around for now to (1)
1606  * facilitate testing of the components needed to implement filename
1607  * encryption and (2) to provide a code base from which other
1608  * developers in the community can easily implement this feature.
1609  *
1610  * Returns the length of decoded filename; negative if error
1611  */
1612 int
1613 ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1614 			 const char *name, int length, char **decrypted_name)
1615 {
1616 	int error = 0;
1617 
1618 	(*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
1619 	if (!(*decrypted_name)) {
1620 		error = -ENOMEM;
1621 		goto out;
1622 	}
1623 	/* TODO: Filename encryption is a scheduled feature for a
1624 	 * future version of eCryptfs. This function is here only for
1625 	 * the purpose of providing a framework for other developers
1626 	 * to easily implement filename encryption. Hint: Replace this
1627 	 * memcpy() with a call to decode and decrypt the
1628 	 * filename, the set the length accordingly. */
1629 	memcpy((void *)(*decrypted_name), (void *)name, length);
1630 	(*decrypted_name)[length + 1] = '\0';	/* Only for convenience
1631 						 * in printing out the
1632 						 * string in debug
1633 						 * messages */
1634 	error = length;
1635 out:
1636 	return error;
1637 }
1638 
1639 /**
1640  * ecryptfs_process_cipher - Perform cipher initialization.
1641  * @key_tfm: Crypto context for key material, set by this function
1642  * @cipher_name: Name of the cipher
1643  * @key_size: Size of the key in bytes
1644  *
1645  * Returns zero on success. Any crypto_tfm structs allocated here
1646  * should be released by other functions, such as on a superblock put
1647  * event, regardless of whether this function succeeds for fails.
1648  */
1649 int
1650 ecryptfs_process_cipher(struct crypto_blkcipher **key_tfm, char *cipher_name,
1651 			size_t *key_size)
1652 {
1653 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1654 	char *full_alg_name;
1655 	int rc;
1656 
1657 	*key_tfm = NULL;
1658 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1659 		rc = -EINVAL;
1660 		printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
1661 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1662 		goto out;
1663 	}
1664 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1665 						    "ecb");
1666 	if (rc)
1667 		goto out;
1668 	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1669 	kfree(full_alg_name);
1670 	if (IS_ERR(*key_tfm)) {
1671 		rc = PTR_ERR(*key_tfm);
1672 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1673 		       "[%s]; rc = [%d]\n", cipher_name, rc);
1674 		goto out;
1675 	}
1676 	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1677 	if (*key_size == 0) {
1678 		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1679 
1680 		*key_size = alg->max_keysize;
1681 	}
1682 	get_random_bytes(dummy_key, *key_size);
1683 	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1684 	if (rc) {
1685 		printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
1686 		       "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
1687 		rc = -EINVAL;
1688 		goto out;
1689 	}
1690 out:
1691 	return rc;
1692 }
1693