1 /****************************************************************************** 2 ******************************************************************************* 3 ** 4 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 5 ** Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 6 ** 7 ** This copyrighted material is made available to anyone wishing to use, 8 ** modify, copy, or redistribute it subject to the terms and conditions 9 ** of the GNU General Public License v.2. 10 ** 11 ******************************************************************************* 12 ******************************************************************************/ 13 14 #include "dlm_internal.h" 15 #include "lockspace.h" 16 #include "dir.h" 17 #include "config.h" 18 #include "ast.h" 19 #include "memory.h" 20 #include "rcom.h" 21 #include "lock.h" 22 #include "lowcomms.h" 23 #include "member.h" 24 #include "recover.h" 25 26 27 /* 28 * Recovery waiting routines: these functions wait for a particular reply from 29 * a remote node, or for the remote node to report a certain status. They need 30 * to abort if the lockspace is stopped indicating a node has failed (perhaps 31 * the one being waited for). 32 */ 33 34 /* 35 * Wait until given function returns non-zero or lockspace is stopped 36 * (LS_RECOVERY_STOP set due to failure of a node in ls_nodes). When another 37 * function thinks it could have completed the waited-on task, they should wake 38 * up ls_wait_general to get an immediate response rather than waiting for the 39 * timer to detect the result. A timer wakes us up periodically while waiting 40 * to see if we should abort due to a node failure. This should only be called 41 * by the dlm_recoverd thread. 42 */ 43 44 static void dlm_wait_timer_fn(unsigned long data) 45 { 46 struct dlm_ls *ls = (struct dlm_ls *) data; 47 mod_timer(&ls->ls_timer, jiffies + (dlm_config.ci_recover_timer * HZ)); 48 wake_up(&ls->ls_wait_general); 49 } 50 51 int dlm_wait_function(struct dlm_ls *ls, int (*testfn) (struct dlm_ls *ls)) 52 { 53 int error = 0; 54 55 init_timer(&ls->ls_timer); 56 ls->ls_timer.function = dlm_wait_timer_fn; 57 ls->ls_timer.data = (long) ls; 58 ls->ls_timer.expires = jiffies + (dlm_config.ci_recover_timer * HZ); 59 add_timer(&ls->ls_timer); 60 61 wait_event(ls->ls_wait_general, testfn(ls) || dlm_recovery_stopped(ls)); 62 del_timer_sync(&ls->ls_timer); 63 64 if (dlm_recovery_stopped(ls)) { 65 log_debug(ls, "dlm_wait_function aborted"); 66 error = -EINTR; 67 } 68 return error; 69 } 70 71 /* 72 * An efficient way for all nodes to wait for all others to have a certain 73 * status. The node with the lowest nodeid polls all the others for their 74 * status (wait_status_all) and all the others poll the node with the low id 75 * for its accumulated result (wait_status_low). When all nodes have set 76 * status flag X, then status flag X_ALL will be set on the low nodeid. 77 */ 78 79 uint32_t dlm_recover_status(struct dlm_ls *ls) 80 { 81 uint32_t status; 82 spin_lock(&ls->ls_recover_lock); 83 status = ls->ls_recover_status; 84 spin_unlock(&ls->ls_recover_lock); 85 return status; 86 } 87 88 static void _set_recover_status(struct dlm_ls *ls, uint32_t status) 89 { 90 ls->ls_recover_status |= status; 91 } 92 93 void dlm_set_recover_status(struct dlm_ls *ls, uint32_t status) 94 { 95 spin_lock(&ls->ls_recover_lock); 96 _set_recover_status(ls, status); 97 spin_unlock(&ls->ls_recover_lock); 98 } 99 100 static int wait_status_all(struct dlm_ls *ls, uint32_t wait_status, 101 int save_slots) 102 { 103 struct dlm_rcom *rc = ls->ls_recover_buf; 104 struct dlm_member *memb; 105 int error = 0, delay; 106 107 list_for_each_entry(memb, &ls->ls_nodes, list) { 108 delay = 0; 109 for (;;) { 110 if (dlm_recovery_stopped(ls)) { 111 error = -EINTR; 112 goto out; 113 } 114 115 error = dlm_rcom_status(ls, memb->nodeid, 0); 116 if (error) 117 goto out; 118 119 if (save_slots) 120 dlm_slot_save(ls, rc, memb); 121 122 if (rc->rc_result & wait_status) 123 break; 124 if (delay < 1000) 125 delay += 20; 126 msleep(delay); 127 } 128 } 129 out: 130 return error; 131 } 132 133 static int wait_status_low(struct dlm_ls *ls, uint32_t wait_status, 134 uint32_t status_flags) 135 { 136 struct dlm_rcom *rc = ls->ls_recover_buf; 137 int error = 0, delay = 0, nodeid = ls->ls_low_nodeid; 138 139 for (;;) { 140 if (dlm_recovery_stopped(ls)) { 141 error = -EINTR; 142 goto out; 143 } 144 145 error = dlm_rcom_status(ls, nodeid, status_flags); 146 if (error) 147 break; 148 149 if (rc->rc_result & wait_status) 150 break; 151 if (delay < 1000) 152 delay += 20; 153 msleep(delay); 154 } 155 out: 156 return error; 157 } 158 159 static int wait_status(struct dlm_ls *ls, uint32_t status) 160 { 161 uint32_t status_all = status << 1; 162 int error; 163 164 if (ls->ls_low_nodeid == dlm_our_nodeid()) { 165 error = wait_status_all(ls, status, 0); 166 if (!error) 167 dlm_set_recover_status(ls, status_all); 168 } else 169 error = wait_status_low(ls, status_all, 0); 170 171 return error; 172 } 173 174 int dlm_recover_members_wait(struct dlm_ls *ls) 175 { 176 struct dlm_member *memb; 177 struct dlm_slot *slots; 178 int num_slots, slots_size; 179 int error, rv; 180 uint32_t gen; 181 182 list_for_each_entry(memb, &ls->ls_nodes, list) { 183 memb->slot = -1; 184 memb->generation = 0; 185 } 186 187 if (ls->ls_low_nodeid == dlm_our_nodeid()) { 188 error = wait_status_all(ls, DLM_RS_NODES, 1); 189 if (error) 190 goto out; 191 192 /* slots array is sparse, slots_size may be > num_slots */ 193 194 rv = dlm_slots_assign(ls, &num_slots, &slots_size, &slots, &gen); 195 if (!rv) { 196 spin_lock(&ls->ls_recover_lock); 197 _set_recover_status(ls, DLM_RS_NODES_ALL); 198 ls->ls_num_slots = num_slots; 199 ls->ls_slots_size = slots_size; 200 ls->ls_slots = slots; 201 ls->ls_generation = gen; 202 spin_unlock(&ls->ls_recover_lock); 203 } else { 204 dlm_set_recover_status(ls, DLM_RS_NODES_ALL); 205 } 206 } else { 207 error = wait_status_low(ls, DLM_RS_NODES_ALL, DLM_RSF_NEED_SLOTS); 208 if (error) 209 goto out; 210 211 dlm_slots_copy_in(ls); 212 } 213 out: 214 return error; 215 } 216 217 int dlm_recover_directory_wait(struct dlm_ls *ls) 218 { 219 return wait_status(ls, DLM_RS_DIR); 220 } 221 222 int dlm_recover_locks_wait(struct dlm_ls *ls) 223 { 224 return wait_status(ls, DLM_RS_LOCKS); 225 } 226 227 int dlm_recover_done_wait(struct dlm_ls *ls) 228 { 229 return wait_status(ls, DLM_RS_DONE); 230 } 231 232 /* 233 * The recover_list contains all the rsb's for which we've requested the new 234 * master nodeid. As replies are returned from the resource directories the 235 * rsb's are removed from the list. When the list is empty we're done. 236 * 237 * The recover_list is later similarly used for all rsb's for which we've sent 238 * new lkb's and need to receive new corresponding lkid's. 239 * 240 * We use the address of the rsb struct as a simple local identifier for the 241 * rsb so we can match an rcom reply with the rsb it was sent for. 242 */ 243 244 static int recover_list_empty(struct dlm_ls *ls) 245 { 246 int empty; 247 248 spin_lock(&ls->ls_recover_list_lock); 249 empty = list_empty(&ls->ls_recover_list); 250 spin_unlock(&ls->ls_recover_list_lock); 251 252 return empty; 253 } 254 255 static void recover_list_add(struct dlm_rsb *r) 256 { 257 struct dlm_ls *ls = r->res_ls; 258 259 spin_lock(&ls->ls_recover_list_lock); 260 if (list_empty(&r->res_recover_list)) { 261 list_add_tail(&r->res_recover_list, &ls->ls_recover_list); 262 ls->ls_recover_list_count++; 263 dlm_hold_rsb(r); 264 } 265 spin_unlock(&ls->ls_recover_list_lock); 266 } 267 268 static void recover_list_del(struct dlm_rsb *r) 269 { 270 struct dlm_ls *ls = r->res_ls; 271 272 spin_lock(&ls->ls_recover_list_lock); 273 list_del_init(&r->res_recover_list); 274 ls->ls_recover_list_count--; 275 spin_unlock(&ls->ls_recover_list_lock); 276 277 dlm_put_rsb(r); 278 } 279 280 static struct dlm_rsb *recover_list_find(struct dlm_ls *ls, uint64_t id) 281 { 282 struct dlm_rsb *r = NULL; 283 284 spin_lock(&ls->ls_recover_list_lock); 285 286 list_for_each_entry(r, &ls->ls_recover_list, res_recover_list) { 287 if (id == (unsigned long) r) 288 goto out; 289 } 290 r = NULL; 291 out: 292 spin_unlock(&ls->ls_recover_list_lock); 293 return r; 294 } 295 296 static void recover_list_clear(struct dlm_ls *ls) 297 { 298 struct dlm_rsb *r, *s; 299 300 spin_lock(&ls->ls_recover_list_lock); 301 list_for_each_entry_safe(r, s, &ls->ls_recover_list, res_recover_list) { 302 list_del_init(&r->res_recover_list); 303 r->res_recover_locks_count = 0; 304 dlm_put_rsb(r); 305 ls->ls_recover_list_count--; 306 } 307 308 if (ls->ls_recover_list_count != 0) { 309 log_error(ls, "warning: recover_list_count %d", 310 ls->ls_recover_list_count); 311 ls->ls_recover_list_count = 0; 312 } 313 spin_unlock(&ls->ls_recover_list_lock); 314 } 315 316 317 /* Master recovery: find new master node for rsb's that were 318 mastered on nodes that have been removed. 319 320 dlm_recover_masters 321 recover_master 322 dlm_send_rcom_lookup -> receive_rcom_lookup 323 dlm_dir_lookup 324 receive_rcom_lookup_reply <- 325 dlm_recover_master_reply 326 set_new_master 327 set_master_lkbs 328 set_lock_master 329 */ 330 331 /* 332 * Set the lock master for all LKBs in a lock queue 333 * If we are the new master of the rsb, we may have received new 334 * MSTCPY locks from other nodes already which we need to ignore 335 * when setting the new nodeid. 336 */ 337 338 static void set_lock_master(struct list_head *queue, int nodeid) 339 { 340 struct dlm_lkb *lkb; 341 342 list_for_each_entry(lkb, queue, lkb_statequeue) { 343 if (!(lkb->lkb_flags & DLM_IFL_MSTCPY)) { 344 lkb->lkb_nodeid = nodeid; 345 lkb->lkb_remid = 0; 346 } 347 } 348 } 349 350 static void set_master_lkbs(struct dlm_rsb *r) 351 { 352 set_lock_master(&r->res_grantqueue, r->res_nodeid); 353 set_lock_master(&r->res_convertqueue, r->res_nodeid); 354 set_lock_master(&r->res_waitqueue, r->res_nodeid); 355 } 356 357 /* 358 * Propagate the new master nodeid to locks 359 * The NEW_MASTER flag tells dlm_recover_locks() which rsb's to consider. 360 * The NEW_MASTER2 flag tells recover_lvb() and recover_grant() which 361 * rsb's to consider. 362 */ 363 364 static void set_new_master(struct dlm_rsb *r) 365 { 366 set_master_lkbs(r); 367 rsb_set_flag(r, RSB_NEW_MASTER); 368 rsb_set_flag(r, RSB_NEW_MASTER2); 369 } 370 371 /* 372 * We do async lookups on rsb's that need new masters. The rsb's 373 * waiting for a lookup reply are kept on the recover_list. 374 * 375 * Another node recovering the master may have sent us a rcom lookup, 376 * and our dlm_master_lookup() set it as the new master, along with 377 * NEW_MASTER so that we'll recover it here (this implies dir_nodeid 378 * equals our_nodeid below). 379 */ 380 381 static int recover_master(struct dlm_rsb *r, unsigned int *count) 382 { 383 struct dlm_ls *ls = r->res_ls; 384 int our_nodeid, dir_nodeid; 385 int is_removed = 0; 386 int error; 387 388 if (is_master(r)) 389 return 0; 390 391 is_removed = dlm_is_removed(ls, r->res_nodeid); 392 393 if (!is_removed && !rsb_flag(r, RSB_NEW_MASTER)) 394 return 0; 395 396 our_nodeid = dlm_our_nodeid(); 397 dir_nodeid = dlm_dir_nodeid(r); 398 399 if (dir_nodeid == our_nodeid) { 400 if (is_removed) { 401 r->res_master_nodeid = our_nodeid; 402 r->res_nodeid = 0; 403 } 404 405 /* set master of lkbs to ourself when is_removed, or to 406 another new master which we set along with NEW_MASTER 407 in dlm_master_lookup */ 408 set_new_master(r); 409 error = 0; 410 } else { 411 recover_list_add(r); 412 error = dlm_send_rcom_lookup(r, dir_nodeid); 413 } 414 415 (*count)++; 416 return error; 417 } 418 419 /* 420 * All MSTCPY locks are purged and rebuilt, even if the master stayed the same. 421 * This is necessary because recovery can be started, aborted and restarted, 422 * causing the master nodeid to briefly change during the aborted recovery, and 423 * change back to the original value in the second recovery. The MSTCPY locks 424 * may or may not have been purged during the aborted recovery. Another node 425 * with an outstanding request in waiters list and a request reply saved in the 426 * requestqueue, cannot know whether it should ignore the reply and resend the 427 * request, or accept the reply and complete the request. It must do the 428 * former if the remote node purged MSTCPY locks, and it must do the later if 429 * the remote node did not. This is solved by always purging MSTCPY locks, in 430 * which case, the request reply would always be ignored and the request 431 * resent. 432 */ 433 434 static int recover_master_static(struct dlm_rsb *r, unsigned int *count) 435 { 436 int dir_nodeid = dlm_dir_nodeid(r); 437 int new_master = dir_nodeid; 438 439 if (dir_nodeid == dlm_our_nodeid()) 440 new_master = 0; 441 442 dlm_purge_mstcpy_locks(r); 443 r->res_master_nodeid = dir_nodeid; 444 r->res_nodeid = new_master; 445 set_new_master(r); 446 (*count)++; 447 return 0; 448 } 449 450 /* 451 * Go through local root resources and for each rsb which has a master which 452 * has departed, get the new master nodeid from the directory. The dir will 453 * assign mastery to the first node to look up the new master. That means 454 * we'll discover in this lookup if we're the new master of any rsb's. 455 * 456 * We fire off all the dir lookup requests individually and asynchronously to 457 * the correct dir node. 458 */ 459 460 int dlm_recover_masters(struct dlm_ls *ls) 461 { 462 struct dlm_rsb *r; 463 unsigned int total = 0; 464 unsigned int count = 0; 465 int nodir = dlm_no_directory(ls); 466 int error; 467 468 log_debug(ls, "dlm_recover_masters"); 469 470 down_read(&ls->ls_root_sem); 471 list_for_each_entry(r, &ls->ls_root_list, res_root_list) { 472 if (dlm_recovery_stopped(ls)) { 473 up_read(&ls->ls_root_sem); 474 error = -EINTR; 475 goto out; 476 } 477 478 lock_rsb(r); 479 if (nodir) 480 error = recover_master_static(r, &count); 481 else 482 error = recover_master(r, &count); 483 unlock_rsb(r); 484 cond_resched(); 485 total++; 486 487 if (error) { 488 up_read(&ls->ls_root_sem); 489 goto out; 490 } 491 } 492 up_read(&ls->ls_root_sem); 493 494 log_debug(ls, "dlm_recover_masters %u of %u", count, total); 495 496 error = dlm_wait_function(ls, &recover_list_empty); 497 out: 498 if (error) 499 recover_list_clear(ls); 500 return error; 501 } 502 503 int dlm_recover_master_reply(struct dlm_ls *ls, struct dlm_rcom *rc) 504 { 505 struct dlm_rsb *r; 506 int ret_nodeid, new_master; 507 508 r = recover_list_find(ls, rc->rc_id); 509 if (!r) { 510 log_error(ls, "dlm_recover_master_reply no id %llx", 511 (unsigned long long)rc->rc_id); 512 goto out; 513 } 514 515 ret_nodeid = rc->rc_result; 516 517 if (ret_nodeid == dlm_our_nodeid()) 518 new_master = 0; 519 else 520 new_master = ret_nodeid; 521 522 lock_rsb(r); 523 r->res_master_nodeid = ret_nodeid; 524 r->res_nodeid = new_master; 525 set_new_master(r); 526 unlock_rsb(r); 527 recover_list_del(r); 528 529 if (recover_list_empty(ls)) 530 wake_up(&ls->ls_wait_general); 531 out: 532 return 0; 533 } 534 535 536 /* Lock recovery: rebuild the process-copy locks we hold on a 537 remastered rsb on the new rsb master. 538 539 dlm_recover_locks 540 recover_locks 541 recover_locks_queue 542 dlm_send_rcom_lock -> receive_rcom_lock 543 dlm_recover_master_copy 544 receive_rcom_lock_reply <- 545 dlm_recover_process_copy 546 */ 547 548 549 /* 550 * keep a count of the number of lkb's we send to the new master; when we get 551 * an equal number of replies then recovery for the rsb is done 552 */ 553 554 static int recover_locks_queue(struct dlm_rsb *r, struct list_head *head) 555 { 556 struct dlm_lkb *lkb; 557 int error = 0; 558 559 list_for_each_entry(lkb, head, lkb_statequeue) { 560 error = dlm_send_rcom_lock(r, lkb); 561 if (error) 562 break; 563 r->res_recover_locks_count++; 564 } 565 566 return error; 567 } 568 569 static int recover_locks(struct dlm_rsb *r) 570 { 571 int error = 0; 572 573 lock_rsb(r); 574 575 DLM_ASSERT(!r->res_recover_locks_count, dlm_dump_rsb(r);); 576 577 error = recover_locks_queue(r, &r->res_grantqueue); 578 if (error) 579 goto out; 580 error = recover_locks_queue(r, &r->res_convertqueue); 581 if (error) 582 goto out; 583 error = recover_locks_queue(r, &r->res_waitqueue); 584 if (error) 585 goto out; 586 587 if (r->res_recover_locks_count) 588 recover_list_add(r); 589 else 590 rsb_clear_flag(r, RSB_NEW_MASTER); 591 out: 592 unlock_rsb(r); 593 return error; 594 } 595 596 int dlm_recover_locks(struct dlm_ls *ls) 597 { 598 struct dlm_rsb *r; 599 int error, count = 0; 600 601 down_read(&ls->ls_root_sem); 602 list_for_each_entry(r, &ls->ls_root_list, res_root_list) { 603 if (is_master(r)) { 604 rsb_clear_flag(r, RSB_NEW_MASTER); 605 continue; 606 } 607 608 if (!rsb_flag(r, RSB_NEW_MASTER)) 609 continue; 610 611 if (dlm_recovery_stopped(ls)) { 612 error = -EINTR; 613 up_read(&ls->ls_root_sem); 614 goto out; 615 } 616 617 error = recover_locks(r); 618 if (error) { 619 up_read(&ls->ls_root_sem); 620 goto out; 621 } 622 623 count += r->res_recover_locks_count; 624 } 625 up_read(&ls->ls_root_sem); 626 627 log_debug(ls, "dlm_recover_locks %d out", count); 628 629 error = dlm_wait_function(ls, &recover_list_empty); 630 out: 631 if (error) 632 recover_list_clear(ls); 633 return error; 634 } 635 636 void dlm_recovered_lock(struct dlm_rsb *r) 637 { 638 DLM_ASSERT(rsb_flag(r, RSB_NEW_MASTER), dlm_dump_rsb(r);); 639 640 r->res_recover_locks_count--; 641 if (!r->res_recover_locks_count) { 642 rsb_clear_flag(r, RSB_NEW_MASTER); 643 recover_list_del(r); 644 } 645 646 if (recover_list_empty(r->res_ls)) 647 wake_up(&r->res_ls->ls_wait_general); 648 } 649 650 /* 651 * The lvb needs to be recovered on all master rsb's. This includes setting 652 * the VALNOTVALID flag if necessary, and determining the correct lvb contents 653 * based on the lvb's of the locks held on the rsb. 654 * 655 * RSB_VALNOTVALID is set if there are only NL/CR locks on the rsb. If it 656 * was already set prior to recovery, it's not cleared, regardless of locks. 657 * 658 * The LVB contents are only considered for changing when this is a new master 659 * of the rsb (NEW_MASTER2). Then, the rsb's lvb is taken from any lkb with 660 * mode > CR. If no lkb's exist with mode above CR, the lvb contents are taken 661 * from the lkb with the largest lvb sequence number. 662 */ 663 664 static void recover_lvb(struct dlm_rsb *r) 665 { 666 struct dlm_lkb *lkb, *high_lkb = NULL; 667 uint32_t high_seq = 0; 668 int lock_lvb_exists = 0; 669 int big_lock_exists = 0; 670 int lvblen = r->res_ls->ls_lvblen; 671 672 list_for_each_entry(lkb, &r->res_grantqueue, lkb_statequeue) { 673 if (!(lkb->lkb_exflags & DLM_LKF_VALBLK)) 674 continue; 675 676 lock_lvb_exists = 1; 677 678 if (lkb->lkb_grmode > DLM_LOCK_CR) { 679 big_lock_exists = 1; 680 goto setflag; 681 } 682 683 if (((int)lkb->lkb_lvbseq - (int)high_seq) >= 0) { 684 high_lkb = lkb; 685 high_seq = lkb->lkb_lvbseq; 686 } 687 } 688 689 list_for_each_entry(lkb, &r->res_convertqueue, lkb_statequeue) { 690 if (!(lkb->lkb_exflags & DLM_LKF_VALBLK)) 691 continue; 692 693 lock_lvb_exists = 1; 694 695 if (lkb->lkb_grmode > DLM_LOCK_CR) { 696 big_lock_exists = 1; 697 goto setflag; 698 } 699 700 if (((int)lkb->lkb_lvbseq - (int)high_seq) >= 0) { 701 high_lkb = lkb; 702 high_seq = lkb->lkb_lvbseq; 703 } 704 } 705 706 setflag: 707 if (!lock_lvb_exists) 708 goto out; 709 710 if (!big_lock_exists) 711 rsb_set_flag(r, RSB_VALNOTVALID); 712 713 /* don't mess with the lvb unless we're the new master */ 714 if (!rsb_flag(r, RSB_NEW_MASTER2)) 715 goto out; 716 717 if (!r->res_lvbptr) { 718 r->res_lvbptr = dlm_allocate_lvb(r->res_ls); 719 if (!r->res_lvbptr) 720 goto out; 721 } 722 723 if (big_lock_exists) { 724 r->res_lvbseq = lkb->lkb_lvbseq; 725 memcpy(r->res_lvbptr, lkb->lkb_lvbptr, lvblen); 726 } else if (high_lkb) { 727 r->res_lvbseq = high_lkb->lkb_lvbseq; 728 memcpy(r->res_lvbptr, high_lkb->lkb_lvbptr, lvblen); 729 } else { 730 r->res_lvbseq = 0; 731 memset(r->res_lvbptr, 0, lvblen); 732 } 733 out: 734 return; 735 } 736 737 /* All master rsb's flagged RECOVER_CONVERT need to be looked at. The locks 738 converting PR->CW or CW->PR need to have their lkb_grmode set. */ 739 740 static void recover_conversion(struct dlm_rsb *r) 741 { 742 struct dlm_lkb *lkb; 743 int grmode = -1; 744 745 list_for_each_entry(lkb, &r->res_grantqueue, lkb_statequeue) { 746 if (lkb->lkb_grmode == DLM_LOCK_PR || 747 lkb->lkb_grmode == DLM_LOCK_CW) { 748 grmode = lkb->lkb_grmode; 749 break; 750 } 751 } 752 753 list_for_each_entry(lkb, &r->res_convertqueue, lkb_statequeue) { 754 if (lkb->lkb_grmode != DLM_LOCK_IV) 755 continue; 756 if (grmode == -1) 757 lkb->lkb_grmode = lkb->lkb_rqmode; 758 else 759 lkb->lkb_grmode = grmode; 760 } 761 } 762 763 /* We've become the new master for this rsb and waiting/converting locks may 764 need to be granted in dlm_recover_grant() due to locks that may have 765 existed from a removed node. */ 766 767 static void recover_grant(struct dlm_rsb *r) 768 { 769 if (!list_empty(&r->res_waitqueue) || !list_empty(&r->res_convertqueue)) 770 rsb_set_flag(r, RSB_RECOVER_GRANT); 771 } 772 773 void dlm_recover_rsbs(struct dlm_ls *ls) 774 { 775 struct dlm_rsb *r; 776 unsigned int count = 0; 777 778 down_read(&ls->ls_root_sem); 779 list_for_each_entry(r, &ls->ls_root_list, res_root_list) { 780 lock_rsb(r); 781 if (is_master(r)) { 782 if (rsb_flag(r, RSB_RECOVER_CONVERT)) 783 recover_conversion(r); 784 if (rsb_flag(r, RSB_NEW_MASTER2)) 785 recover_grant(r); 786 recover_lvb(r); 787 count++; 788 } 789 rsb_clear_flag(r, RSB_RECOVER_CONVERT); 790 rsb_clear_flag(r, RSB_NEW_MASTER2); 791 unlock_rsb(r); 792 } 793 up_read(&ls->ls_root_sem); 794 795 if (count) 796 log_debug(ls, "dlm_recover_rsbs %d done", count); 797 } 798 799 /* Create a single list of all root rsb's to be used during recovery */ 800 801 int dlm_create_root_list(struct dlm_ls *ls) 802 { 803 struct rb_node *n; 804 struct dlm_rsb *r; 805 int i, error = 0; 806 807 down_write(&ls->ls_root_sem); 808 if (!list_empty(&ls->ls_root_list)) { 809 log_error(ls, "root list not empty"); 810 error = -EINVAL; 811 goto out; 812 } 813 814 for (i = 0; i < ls->ls_rsbtbl_size; i++) { 815 spin_lock(&ls->ls_rsbtbl[i].lock); 816 for (n = rb_first(&ls->ls_rsbtbl[i].keep); n; n = rb_next(n)) { 817 r = rb_entry(n, struct dlm_rsb, res_hashnode); 818 list_add(&r->res_root_list, &ls->ls_root_list); 819 dlm_hold_rsb(r); 820 } 821 822 if (!RB_EMPTY_ROOT(&ls->ls_rsbtbl[i].toss)) 823 log_error(ls, "dlm_create_root_list toss not empty"); 824 spin_unlock(&ls->ls_rsbtbl[i].lock); 825 } 826 out: 827 up_write(&ls->ls_root_sem); 828 return error; 829 } 830 831 void dlm_release_root_list(struct dlm_ls *ls) 832 { 833 struct dlm_rsb *r, *safe; 834 835 down_write(&ls->ls_root_sem); 836 list_for_each_entry_safe(r, safe, &ls->ls_root_list, res_root_list) { 837 list_del_init(&r->res_root_list); 838 dlm_put_rsb(r); 839 } 840 up_write(&ls->ls_root_sem); 841 } 842 843 void dlm_clear_toss(struct dlm_ls *ls) 844 { 845 struct rb_node *n, *next; 846 struct dlm_rsb *r; 847 unsigned int count = 0; 848 int i; 849 850 for (i = 0; i < ls->ls_rsbtbl_size; i++) { 851 spin_lock(&ls->ls_rsbtbl[i].lock); 852 for (n = rb_first(&ls->ls_rsbtbl[i].toss); n; n = next) { 853 next = rb_next(n); 854 r = rb_entry(n, struct dlm_rsb, res_hashnode); 855 rb_erase(n, &ls->ls_rsbtbl[i].toss); 856 dlm_free_rsb(r); 857 count++; 858 } 859 spin_unlock(&ls->ls_rsbtbl[i].lock); 860 } 861 862 if (count) 863 log_debug(ls, "dlm_clear_toss %u done", count); 864 } 865 866