xref: /openbmc/linux/fs/direct-io.c (revision ad721bc919edfd8b4b06977458a412011e2f0c50)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/direct-io.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * O_DIRECT
8  *
9  * 04Jul2002	Andrew Morton
10  *		Initial version
11  * 11Sep2002	janetinc@us.ibm.com
12  * 		added readv/writev support.
13  * 29Oct2002	Andrew Morton
14  *		rewrote bio_add_page() support.
15  * 30Oct2002	pbadari@us.ibm.com
16  *		added support for non-aligned IO.
17  * 06Nov2002	pbadari@us.ibm.com
18  *		added asynchronous IO support.
19  * 21Jul2003	nathans@sgi.com
20  *		added IO completion notifier.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/mm.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/bio.h>
33 #include <linux/wait.h>
34 #include <linux/err.h>
35 #include <linux/blkdev.h>
36 #include <linux/buffer_head.h>
37 #include <linux/rwsem.h>
38 #include <linux/uio.h>
39 #include <linux/atomic.h>
40 #include <linux/prefetch.h>
41 
42 #include "internal.h"
43 
44 /*
45  * How many user pages to map in one call to get_user_pages().  This determines
46  * the size of a structure in the slab cache
47  */
48 #define DIO_PAGES	64
49 
50 /*
51  * Flags for dio_complete()
52  */
53 #define DIO_COMPLETE_ASYNC		0x01	/* This is async IO */
54 #define DIO_COMPLETE_INVALIDATE		0x02	/* Can invalidate pages */
55 
56 /*
57  * This code generally works in units of "dio_blocks".  A dio_block is
58  * somewhere between the hard sector size and the filesystem block size.  it
59  * is determined on a per-invocation basis.   When talking to the filesystem
60  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
61  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
62  * to bio_block quantities by shifting left by blkfactor.
63  *
64  * If blkfactor is zero then the user's request was aligned to the filesystem's
65  * blocksize.
66  */
67 
68 /* dio_state only used in the submission path */
69 
70 struct dio_submit {
71 	struct bio *bio;		/* bio under assembly */
72 	unsigned blkbits;		/* doesn't change */
73 	unsigned blkfactor;		/* When we're using an alignment which
74 					   is finer than the filesystem's soft
75 					   blocksize, this specifies how much
76 					   finer.  blkfactor=2 means 1/4-block
77 					   alignment.  Does not change */
78 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
79 					   been performed at the start of a
80 					   write */
81 	int pages_in_io;		/* approximate total IO pages */
82 	sector_t block_in_file;		/* Current offset into the underlying
83 					   file in dio_block units. */
84 	unsigned blocks_available;	/* At block_in_file.  changes */
85 	int reap_counter;		/* rate limit reaping */
86 	sector_t final_block_in_request;/* doesn't change */
87 	int boundary;			/* prev block is at a boundary */
88 	get_block_t *get_block;		/* block mapping function */
89 
90 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
91 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
92 	sector_t next_block_for_io;	/* next block to be put under IO,
93 					   in dio_blocks units */
94 
95 	/*
96 	 * Deferred addition of a page to the dio.  These variables are
97 	 * private to dio_send_cur_page(), submit_page_section() and
98 	 * dio_bio_add_page().
99 	 */
100 	struct page *cur_page;		/* The page */
101 	unsigned cur_page_offset;	/* Offset into it, in bytes */
102 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
103 	sector_t cur_page_block;	/* Where it starts */
104 	loff_t cur_page_fs_offset;	/* Offset in file */
105 
106 	struct iov_iter *iter;
107 	/*
108 	 * Page queue.  These variables belong to dio_refill_pages() and
109 	 * dio_get_page().
110 	 */
111 	unsigned head;			/* next page to process */
112 	unsigned tail;			/* last valid page + 1 */
113 	size_t from, to;
114 };
115 
116 /* dio_state communicated between submission path and end_io */
117 struct dio {
118 	int flags;			/* doesn't change */
119 	blk_opf_t opf;			/* request operation type and flags */
120 	struct gendisk *bio_disk;
121 	struct inode *inode;
122 	loff_t i_size;			/* i_size when submitted */
123 	dio_iodone_t *end_io;		/* IO completion function */
124 
125 	void *private;			/* copy from map_bh.b_private */
126 
127 	/* BIO completion state */
128 	spinlock_t bio_lock;		/* protects BIO fields below */
129 	int page_errors;		/* errno from get_user_pages() */
130 	int is_async;			/* is IO async ? */
131 	bool defer_completion;		/* defer AIO completion to workqueue? */
132 	bool should_dirty;		/* if pages should be dirtied */
133 	int io_error;			/* IO error in completion path */
134 	unsigned long refcount;		/* direct_io_worker() and bios */
135 	struct bio *bio_list;		/* singly linked via bi_private */
136 	struct task_struct *waiter;	/* waiting task (NULL if none) */
137 
138 	/* AIO related stuff */
139 	struct kiocb *iocb;		/* kiocb */
140 	ssize_t result;                 /* IO result */
141 
142 	/*
143 	 * pages[] (and any fields placed after it) are not zeroed out at
144 	 * allocation time.  Don't add new fields after pages[] unless you
145 	 * wish that they not be zeroed.
146 	 */
147 	union {
148 		struct page *pages[DIO_PAGES];	/* page buffer */
149 		struct work_struct complete_work;/* deferred AIO completion */
150 	};
151 } ____cacheline_aligned_in_smp;
152 
153 static struct kmem_cache *dio_cache __read_mostly;
154 
155 /*
156  * How many pages are in the queue?
157  */
158 static inline unsigned dio_pages_present(struct dio_submit *sdio)
159 {
160 	return sdio->tail - sdio->head;
161 }
162 
163 /*
164  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
165  */
166 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
167 {
168 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
169 	ssize_t ret;
170 
171 	ret = iov_iter_get_pages2(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
172 				&sdio->from);
173 
174 	if (ret < 0 && sdio->blocks_available && dio_op == REQ_OP_WRITE) {
175 		struct page *page = ZERO_PAGE(0);
176 		/*
177 		 * A memory fault, but the filesystem has some outstanding
178 		 * mapped blocks.  We need to use those blocks up to avoid
179 		 * leaking stale data in the file.
180 		 */
181 		if (dio->page_errors == 0)
182 			dio->page_errors = ret;
183 		get_page(page);
184 		dio->pages[0] = page;
185 		sdio->head = 0;
186 		sdio->tail = 1;
187 		sdio->from = 0;
188 		sdio->to = PAGE_SIZE;
189 		return 0;
190 	}
191 
192 	if (ret >= 0) {
193 		ret += sdio->from;
194 		sdio->head = 0;
195 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
196 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
197 		return 0;
198 	}
199 	return ret;
200 }
201 
202 /*
203  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
204  * buffered inside the dio so that we can call get_user_pages() against a
205  * decent number of pages, less frequently.  To provide nicer use of the
206  * L1 cache.
207  */
208 static inline struct page *dio_get_page(struct dio *dio,
209 					struct dio_submit *sdio)
210 {
211 	if (dio_pages_present(sdio) == 0) {
212 		int ret;
213 
214 		ret = dio_refill_pages(dio, sdio);
215 		if (ret)
216 			return ERR_PTR(ret);
217 		BUG_ON(dio_pages_present(sdio) == 0);
218 	}
219 	return dio->pages[sdio->head];
220 }
221 
222 /*
223  * dio_complete() - called when all DIO BIO I/O has been completed
224  *
225  * This drops i_dio_count, lets interested parties know that a DIO operation
226  * has completed, and calculates the resulting return code for the operation.
227  *
228  * It lets the filesystem know if it registered an interest earlier via
229  * get_block.  Pass the private field of the map buffer_head so that
230  * filesystems can use it to hold additional state between get_block calls and
231  * dio_complete.
232  */
233 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
234 {
235 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
236 	loff_t offset = dio->iocb->ki_pos;
237 	ssize_t transferred = 0;
238 	int err;
239 
240 	/*
241 	 * AIO submission can race with bio completion to get here while
242 	 * expecting to have the last io completed by bio completion.
243 	 * In that case -EIOCBQUEUED is in fact not an error we want
244 	 * to preserve through this call.
245 	 */
246 	if (ret == -EIOCBQUEUED)
247 		ret = 0;
248 
249 	if (dio->result) {
250 		transferred = dio->result;
251 
252 		/* Check for short read case */
253 		if (dio_op == REQ_OP_READ &&
254 		    ((offset + transferred) > dio->i_size))
255 			transferred = dio->i_size - offset;
256 		/* ignore EFAULT if some IO has been done */
257 		if (unlikely(ret == -EFAULT) && transferred)
258 			ret = 0;
259 	}
260 
261 	if (ret == 0)
262 		ret = dio->page_errors;
263 	if (ret == 0)
264 		ret = dio->io_error;
265 	if (ret == 0)
266 		ret = transferred;
267 
268 	if (dio->end_io) {
269 		// XXX: ki_pos??
270 		err = dio->end_io(dio->iocb, offset, ret, dio->private);
271 		if (err)
272 			ret = err;
273 	}
274 
275 	/*
276 	 * Try again to invalidate clean pages which might have been cached by
277 	 * non-direct readahead, or faulted in by get_user_pages() if the source
278 	 * of the write was an mmap'ed region of the file we're writing.  Either
279 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
280 	 * this invalidation fails, tough, the write still worked...
281 	 *
282 	 * And this page cache invalidation has to be after dio->end_io(), as
283 	 * some filesystems convert unwritten extents to real allocations in
284 	 * end_io() when necessary, otherwise a racing buffer read would cache
285 	 * zeros from unwritten extents.
286 	 */
287 	if (flags & DIO_COMPLETE_INVALIDATE &&
288 	    ret > 0 && dio_op == REQ_OP_WRITE &&
289 	    dio->inode->i_mapping->nrpages) {
290 		err = invalidate_inode_pages2_range(dio->inode->i_mapping,
291 					offset >> PAGE_SHIFT,
292 					(offset + ret - 1) >> PAGE_SHIFT);
293 		if (err)
294 			dio_warn_stale_pagecache(dio->iocb->ki_filp);
295 	}
296 
297 	inode_dio_end(dio->inode);
298 
299 	if (flags & DIO_COMPLETE_ASYNC) {
300 		/*
301 		 * generic_write_sync expects ki_pos to have been updated
302 		 * already, but the submission path only does this for
303 		 * synchronous I/O.
304 		 */
305 		dio->iocb->ki_pos += transferred;
306 
307 		if (ret > 0 && dio_op == REQ_OP_WRITE)
308 			ret = generic_write_sync(dio->iocb, ret);
309 		dio->iocb->ki_complete(dio->iocb, ret);
310 	}
311 
312 	kmem_cache_free(dio_cache, dio);
313 	return ret;
314 }
315 
316 static void dio_aio_complete_work(struct work_struct *work)
317 {
318 	struct dio *dio = container_of(work, struct dio, complete_work);
319 
320 	dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
321 }
322 
323 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
324 
325 /*
326  * Asynchronous IO callback.
327  */
328 static void dio_bio_end_aio(struct bio *bio)
329 {
330 	struct dio *dio = bio->bi_private;
331 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
332 	unsigned long remaining;
333 	unsigned long flags;
334 	bool defer_completion = false;
335 
336 	/* cleanup the bio */
337 	dio_bio_complete(dio, bio);
338 
339 	spin_lock_irqsave(&dio->bio_lock, flags);
340 	remaining = --dio->refcount;
341 	if (remaining == 1 && dio->waiter)
342 		wake_up_process(dio->waiter);
343 	spin_unlock_irqrestore(&dio->bio_lock, flags);
344 
345 	if (remaining == 0) {
346 		/*
347 		 * Defer completion when defer_completion is set or
348 		 * when the inode has pages mapped and this is AIO write.
349 		 * We need to invalidate those pages because there is a
350 		 * chance they contain stale data in the case buffered IO
351 		 * went in between AIO submission and completion into the
352 		 * same region.
353 		 */
354 		if (dio->result)
355 			defer_completion = dio->defer_completion ||
356 					   (dio_op == REQ_OP_WRITE &&
357 					    dio->inode->i_mapping->nrpages);
358 		if (defer_completion) {
359 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
360 			queue_work(dio->inode->i_sb->s_dio_done_wq,
361 				   &dio->complete_work);
362 		} else {
363 			dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
364 		}
365 	}
366 }
367 
368 /*
369  * The BIO completion handler simply queues the BIO up for the process-context
370  * handler.
371  *
372  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
373  * implement a singly-linked list of completed BIOs, at dio->bio_list.
374  */
375 static void dio_bio_end_io(struct bio *bio)
376 {
377 	struct dio *dio = bio->bi_private;
378 	unsigned long flags;
379 
380 	spin_lock_irqsave(&dio->bio_lock, flags);
381 	bio->bi_private = dio->bio_list;
382 	dio->bio_list = bio;
383 	if (--dio->refcount == 1 && dio->waiter)
384 		wake_up_process(dio->waiter);
385 	spin_unlock_irqrestore(&dio->bio_lock, flags);
386 }
387 
388 static inline void
389 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
390 	      struct block_device *bdev,
391 	      sector_t first_sector, int nr_vecs)
392 {
393 	struct bio *bio;
394 
395 	/*
396 	 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
397 	 * we request a valid number of vectors.
398 	 */
399 	bio = bio_alloc(bdev, nr_vecs, dio->opf, GFP_KERNEL);
400 	bio->bi_iter.bi_sector = first_sector;
401 	if (dio->is_async)
402 		bio->bi_end_io = dio_bio_end_aio;
403 	else
404 		bio->bi_end_io = dio_bio_end_io;
405 	sdio->bio = bio;
406 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
407 }
408 
409 /*
410  * In the AIO read case we speculatively dirty the pages before starting IO.
411  * During IO completion, any of these pages which happen to have been written
412  * back will be redirtied by bio_check_pages_dirty().
413  *
414  * bios hold a dio reference between submit_bio and ->end_io.
415  */
416 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
417 {
418 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
419 	struct bio *bio = sdio->bio;
420 	unsigned long flags;
421 
422 	bio->bi_private = dio;
423 
424 	spin_lock_irqsave(&dio->bio_lock, flags);
425 	dio->refcount++;
426 	spin_unlock_irqrestore(&dio->bio_lock, flags);
427 
428 	if (dio->is_async && dio_op == REQ_OP_READ && dio->should_dirty)
429 		bio_set_pages_dirty(bio);
430 
431 	dio->bio_disk = bio->bi_bdev->bd_disk;
432 
433 	submit_bio(bio);
434 
435 	sdio->bio = NULL;
436 	sdio->boundary = 0;
437 	sdio->logical_offset_in_bio = 0;
438 }
439 
440 /*
441  * Release any resources in case of a failure
442  */
443 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
444 {
445 	while (sdio->head < sdio->tail)
446 		put_page(dio->pages[sdio->head++]);
447 }
448 
449 /*
450  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
451  * returned once all BIOs have been completed.  This must only be called once
452  * all bios have been issued so that dio->refcount can only decrease.  This
453  * requires that the caller hold a reference on the dio.
454  */
455 static struct bio *dio_await_one(struct dio *dio)
456 {
457 	unsigned long flags;
458 	struct bio *bio = NULL;
459 
460 	spin_lock_irqsave(&dio->bio_lock, flags);
461 
462 	/*
463 	 * Wait as long as the list is empty and there are bios in flight.  bio
464 	 * completion drops the count, maybe adds to the list, and wakes while
465 	 * holding the bio_lock so we don't need set_current_state()'s barrier
466 	 * and can call it after testing our condition.
467 	 */
468 	while (dio->refcount > 1 && dio->bio_list == NULL) {
469 		__set_current_state(TASK_UNINTERRUPTIBLE);
470 		dio->waiter = current;
471 		spin_unlock_irqrestore(&dio->bio_lock, flags);
472 		blk_io_schedule();
473 		/* wake up sets us TASK_RUNNING */
474 		spin_lock_irqsave(&dio->bio_lock, flags);
475 		dio->waiter = NULL;
476 	}
477 	if (dio->bio_list) {
478 		bio = dio->bio_list;
479 		dio->bio_list = bio->bi_private;
480 	}
481 	spin_unlock_irqrestore(&dio->bio_lock, flags);
482 	return bio;
483 }
484 
485 /*
486  * Process one completed BIO.  No locks are held.
487  */
488 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
489 {
490 	blk_status_t err = bio->bi_status;
491 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
492 	bool should_dirty = dio_op == REQ_OP_READ && dio->should_dirty;
493 
494 	if (err) {
495 		if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
496 			dio->io_error = -EAGAIN;
497 		else
498 			dio->io_error = -EIO;
499 	}
500 
501 	if (dio->is_async && should_dirty) {
502 		bio_check_pages_dirty(bio);	/* transfers ownership */
503 	} else {
504 		bio_release_pages(bio, should_dirty);
505 		bio_put(bio);
506 	}
507 	return err;
508 }
509 
510 /*
511  * Wait on and process all in-flight BIOs.  This must only be called once
512  * all bios have been issued so that the refcount can only decrease.
513  * This just waits for all bios to make it through dio_bio_complete.  IO
514  * errors are propagated through dio->io_error and should be propagated via
515  * dio_complete().
516  */
517 static void dio_await_completion(struct dio *dio)
518 {
519 	struct bio *bio;
520 	do {
521 		bio = dio_await_one(dio);
522 		if (bio)
523 			dio_bio_complete(dio, bio);
524 	} while (bio);
525 }
526 
527 /*
528  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
529  * to keep the memory consumption sane we periodically reap any completed BIOs
530  * during the BIO generation phase.
531  *
532  * This also helps to limit the peak amount of pinned userspace memory.
533  */
534 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
535 {
536 	int ret = 0;
537 
538 	if (sdio->reap_counter++ >= 64) {
539 		while (dio->bio_list) {
540 			unsigned long flags;
541 			struct bio *bio;
542 			int ret2;
543 
544 			spin_lock_irqsave(&dio->bio_lock, flags);
545 			bio = dio->bio_list;
546 			dio->bio_list = bio->bi_private;
547 			spin_unlock_irqrestore(&dio->bio_lock, flags);
548 			ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
549 			if (ret == 0)
550 				ret = ret2;
551 		}
552 		sdio->reap_counter = 0;
553 	}
554 	return ret;
555 }
556 
557 static int dio_set_defer_completion(struct dio *dio)
558 {
559 	struct super_block *sb = dio->inode->i_sb;
560 
561 	if (dio->defer_completion)
562 		return 0;
563 	dio->defer_completion = true;
564 	if (!sb->s_dio_done_wq)
565 		return sb_init_dio_done_wq(sb);
566 	return 0;
567 }
568 
569 /*
570  * Call into the fs to map some more disk blocks.  We record the current number
571  * of available blocks at sdio->blocks_available.  These are in units of the
572  * fs blocksize, i_blocksize(inode).
573  *
574  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
575  * it uses the passed inode-relative block number as the file offset, as usual.
576  *
577  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
578  * has remaining to do.  The fs should not map more than this number of blocks.
579  *
580  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
581  * indicate how much contiguous disk space has been made available at
582  * bh->b_blocknr.
583  *
584  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
585  * This isn't very efficient...
586  *
587  * In the case of filesystem holes: the fs may return an arbitrarily-large
588  * hole by returning an appropriate value in b_size and by clearing
589  * buffer_mapped().  However the direct-io code will only process holes one
590  * block at a time - it will repeatedly call get_block() as it walks the hole.
591  */
592 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
593 			   struct buffer_head *map_bh)
594 {
595 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
596 	int ret;
597 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
598 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
599 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
600 	int create;
601 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
602 	loff_t i_size;
603 
604 	/*
605 	 * If there was a memory error and we've overwritten all the
606 	 * mapped blocks then we can now return that memory error
607 	 */
608 	ret = dio->page_errors;
609 	if (ret == 0) {
610 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
611 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
612 		fs_endblk = (sdio->final_block_in_request - 1) >>
613 					sdio->blkfactor;
614 		fs_count = fs_endblk - fs_startblk + 1;
615 
616 		map_bh->b_state = 0;
617 		map_bh->b_size = fs_count << i_blkbits;
618 
619 		/*
620 		 * For writes that could fill holes inside i_size on a
621 		 * DIO_SKIP_HOLES filesystem we forbid block creations: only
622 		 * overwrites are permitted. We will return early to the caller
623 		 * once we see an unmapped buffer head returned, and the caller
624 		 * will fall back to buffered I/O.
625 		 *
626 		 * Otherwise the decision is left to the get_blocks method,
627 		 * which may decide to handle it or also return an unmapped
628 		 * buffer head.
629 		 */
630 		create = dio_op == REQ_OP_WRITE;
631 		if (dio->flags & DIO_SKIP_HOLES) {
632 			i_size = i_size_read(dio->inode);
633 			if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
634 				create = 0;
635 		}
636 
637 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
638 						map_bh, create);
639 
640 		/* Store for completion */
641 		dio->private = map_bh->b_private;
642 
643 		if (ret == 0 && buffer_defer_completion(map_bh))
644 			ret = dio_set_defer_completion(dio);
645 	}
646 	return ret;
647 }
648 
649 /*
650  * There is no bio.  Make one now.
651  */
652 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
653 		sector_t start_sector, struct buffer_head *map_bh)
654 {
655 	sector_t sector;
656 	int ret, nr_pages;
657 
658 	ret = dio_bio_reap(dio, sdio);
659 	if (ret)
660 		goto out;
661 	sector = start_sector << (sdio->blkbits - 9);
662 	nr_pages = bio_max_segs(sdio->pages_in_io);
663 	BUG_ON(nr_pages <= 0);
664 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
665 	sdio->boundary = 0;
666 out:
667 	return ret;
668 }
669 
670 /*
671  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
672  * that was successful then update final_block_in_bio and take a ref against
673  * the just-added page.
674  *
675  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
676  */
677 static inline int dio_bio_add_page(struct dio_submit *sdio)
678 {
679 	int ret;
680 
681 	ret = bio_add_page(sdio->bio, sdio->cur_page,
682 			sdio->cur_page_len, sdio->cur_page_offset);
683 	if (ret == sdio->cur_page_len) {
684 		/*
685 		 * Decrement count only, if we are done with this page
686 		 */
687 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
688 			sdio->pages_in_io--;
689 		get_page(sdio->cur_page);
690 		sdio->final_block_in_bio = sdio->cur_page_block +
691 			(sdio->cur_page_len >> sdio->blkbits);
692 		ret = 0;
693 	} else {
694 		ret = 1;
695 	}
696 	return ret;
697 }
698 
699 /*
700  * Put cur_page under IO.  The section of cur_page which is described by
701  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
702  * starts on-disk at cur_page_block.
703  *
704  * We take a ref against the page here (on behalf of its presence in the bio).
705  *
706  * The caller of this function is responsible for removing cur_page from the
707  * dio, and for dropping the refcount which came from that presence.
708  */
709 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
710 		struct buffer_head *map_bh)
711 {
712 	int ret = 0;
713 
714 	if (sdio->bio) {
715 		loff_t cur_offset = sdio->cur_page_fs_offset;
716 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
717 			sdio->bio->bi_iter.bi_size;
718 
719 		/*
720 		 * See whether this new request is contiguous with the old.
721 		 *
722 		 * Btrfs cannot handle having logically non-contiguous requests
723 		 * submitted.  For example if you have
724 		 *
725 		 * Logical:  [0-4095][HOLE][8192-12287]
726 		 * Physical: [0-4095]      [4096-8191]
727 		 *
728 		 * We cannot submit those pages together as one BIO.  So if our
729 		 * current logical offset in the file does not equal what would
730 		 * be the next logical offset in the bio, submit the bio we
731 		 * have.
732 		 */
733 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
734 		    cur_offset != bio_next_offset)
735 			dio_bio_submit(dio, sdio);
736 	}
737 
738 	if (sdio->bio == NULL) {
739 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
740 		if (ret)
741 			goto out;
742 	}
743 
744 	if (dio_bio_add_page(sdio) != 0) {
745 		dio_bio_submit(dio, sdio);
746 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
747 		if (ret == 0) {
748 			ret = dio_bio_add_page(sdio);
749 			BUG_ON(ret != 0);
750 		}
751 	}
752 out:
753 	return ret;
754 }
755 
756 /*
757  * An autonomous function to put a chunk of a page under deferred IO.
758  *
759  * The caller doesn't actually know (or care) whether this piece of page is in
760  * a BIO, or is under IO or whatever.  We just take care of all possible
761  * situations here.  The separation between the logic of do_direct_IO() and
762  * that of submit_page_section() is important for clarity.  Please don't break.
763  *
764  * The chunk of page starts on-disk at blocknr.
765  *
766  * We perform deferred IO, by recording the last-submitted page inside our
767  * private part of the dio structure.  If possible, we just expand the IO
768  * across that page here.
769  *
770  * If that doesn't work out then we put the old page into the bio and add this
771  * page to the dio instead.
772  */
773 static inline int
774 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
775 		    unsigned offset, unsigned len, sector_t blocknr,
776 		    struct buffer_head *map_bh)
777 {
778 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
779 	int ret = 0;
780 	int boundary = sdio->boundary;	/* dio_send_cur_page may clear it */
781 
782 	if (dio_op == REQ_OP_WRITE) {
783 		/*
784 		 * Read accounting is performed in submit_bio()
785 		 */
786 		task_io_account_write(len);
787 	}
788 
789 	/*
790 	 * Can we just grow the current page's presence in the dio?
791 	 */
792 	if (sdio->cur_page == page &&
793 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
794 	    sdio->cur_page_block +
795 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
796 		sdio->cur_page_len += len;
797 		goto out;
798 	}
799 
800 	/*
801 	 * If there's a deferred page already there then send it.
802 	 */
803 	if (sdio->cur_page) {
804 		ret = dio_send_cur_page(dio, sdio, map_bh);
805 		put_page(sdio->cur_page);
806 		sdio->cur_page = NULL;
807 		if (ret)
808 			return ret;
809 	}
810 
811 	get_page(page);		/* It is in dio */
812 	sdio->cur_page = page;
813 	sdio->cur_page_offset = offset;
814 	sdio->cur_page_len = len;
815 	sdio->cur_page_block = blocknr;
816 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
817 out:
818 	/*
819 	 * If boundary then we want to schedule the IO now to
820 	 * avoid metadata seeks.
821 	 */
822 	if (boundary) {
823 		ret = dio_send_cur_page(dio, sdio, map_bh);
824 		if (sdio->bio)
825 			dio_bio_submit(dio, sdio);
826 		put_page(sdio->cur_page);
827 		sdio->cur_page = NULL;
828 	}
829 	return ret;
830 }
831 
832 /*
833  * If we are not writing the entire block and get_block() allocated
834  * the block for us, we need to fill-in the unused portion of the
835  * block with zeros. This happens only if user-buffer, fileoffset or
836  * io length is not filesystem block-size multiple.
837  *
838  * `end' is zero if we're doing the start of the IO, 1 at the end of the
839  * IO.
840  */
841 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
842 		int end, struct buffer_head *map_bh)
843 {
844 	unsigned dio_blocks_per_fs_block;
845 	unsigned this_chunk_blocks;	/* In dio_blocks */
846 	unsigned this_chunk_bytes;
847 	struct page *page;
848 
849 	sdio->start_zero_done = 1;
850 	if (!sdio->blkfactor || !buffer_new(map_bh))
851 		return;
852 
853 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
854 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
855 
856 	if (!this_chunk_blocks)
857 		return;
858 
859 	/*
860 	 * We need to zero out part of an fs block.  It is either at the
861 	 * beginning or the end of the fs block.
862 	 */
863 	if (end)
864 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
865 
866 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
867 
868 	page = ZERO_PAGE(0);
869 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
870 				sdio->next_block_for_io, map_bh))
871 		return;
872 
873 	sdio->next_block_for_io += this_chunk_blocks;
874 }
875 
876 /*
877  * Walk the user pages, and the file, mapping blocks to disk and generating
878  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
879  * into submit_page_section(), which takes care of the next stage of submission
880  *
881  * Direct IO against a blockdev is different from a file.  Because we can
882  * happily perform page-sized but 512-byte aligned IOs.  It is important that
883  * blockdev IO be able to have fine alignment and large sizes.
884  *
885  * So what we do is to permit the ->get_block function to populate bh.b_size
886  * with the size of IO which is permitted at this offset and this i_blkbits.
887  *
888  * For best results, the blockdev should be set up with 512-byte i_blkbits and
889  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
890  * fine alignment but still allows this function to work in PAGE_SIZE units.
891  */
892 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
893 			struct buffer_head *map_bh)
894 {
895 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
896 	const unsigned blkbits = sdio->blkbits;
897 	const unsigned i_blkbits = blkbits + sdio->blkfactor;
898 	int ret = 0;
899 
900 	while (sdio->block_in_file < sdio->final_block_in_request) {
901 		struct page *page;
902 		size_t from, to;
903 
904 		page = dio_get_page(dio, sdio);
905 		if (IS_ERR(page)) {
906 			ret = PTR_ERR(page);
907 			goto out;
908 		}
909 		from = sdio->head ? 0 : sdio->from;
910 		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
911 		sdio->head++;
912 
913 		while (from < to) {
914 			unsigned this_chunk_bytes;	/* # of bytes mapped */
915 			unsigned this_chunk_blocks;	/* # of blocks */
916 			unsigned u;
917 
918 			if (sdio->blocks_available == 0) {
919 				/*
920 				 * Need to go and map some more disk
921 				 */
922 				unsigned long blkmask;
923 				unsigned long dio_remainder;
924 
925 				ret = get_more_blocks(dio, sdio, map_bh);
926 				if (ret) {
927 					put_page(page);
928 					goto out;
929 				}
930 				if (!buffer_mapped(map_bh))
931 					goto do_holes;
932 
933 				sdio->blocks_available =
934 						map_bh->b_size >> blkbits;
935 				sdio->next_block_for_io =
936 					map_bh->b_blocknr << sdio->blkfactor;
937 				if (buffer_new(map_bh)) {
938 					clean_bdev_aliases(
939 						map_bh->b_bdev,
940 						map_bh->b_blocknr,
941 						map_bh->b_size >> i_blkbits);
942 				}
943 
944 				if (!sdio->blkfactor)
945 					goto do_holes;
946 
947 				blkmask = (1 << sdio->blkfactor) - 1;
948 				dio_remainder = (sdio->block_in_file & blkmask);
949 
950 				/*
951 				 * If we are at the start of IO and that IO
952 				 * starts partway into a fs-block,
953 				 * dio_remainder will be non-zero.  If the IO
954 				 * is a read then we can simply advance the IO
955 				 * cursor to the first block which is to be
956 				 * read.  But if the IO is a write and the
957 				 * block was newly allocated we cannot do that;
958 				 * the start of the fs block must be zeroed out
959 				 * on-disk
960 				 */
961 				if (!buffer_new(map_bh))
962 					sdio->next_block_for_io += dio_remainder;
963 				sdio->blocks_available -= dio_remainder;
964 			}
965 do_holes:
966 			/* Handle holes */
967 			if (!buffer_mapped(map_bh)) {
968 				loff_t i_size_aligned;
969 
970 				/* AKPM: eargh, -ENOTBLK is a hack */
971 				if (dio_op == REQ_OP_WRITE) {
972 					put_page(page);
973 					return -ENOTBLK;
974 				}
975 
976 				/*
977 				 * Be sure to account for a partial block as the
978 				 * last block in the file
979 				 */
980 				i_size_aligned = ALIGN(i_size_read(dio->inode),
981 							1 << blkbits);
982 				if (sdio->block_in_file >=
983 						i_size_aligned >> blkbits) {
984 					/* We hit eof */
985 					put_page(page);
986 					goto out;
987 				}
988 				zero_user(page, from, 1 << blkbits);
989 				sdio->block_in_file++;
990 				from += 1 << blkbits;
991 				dio->result += 1 << blkbits;
992 				goto next_block;
993 			}
994 
995 			/*
996 			 * If we're performing IO which has an alignment which
997 			 * is finer than the underlying fs, go check to see if
998 			 * we must zero out the start of this block.
999 			 */
1000 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1001 				dio_zero_block(dio, sdio, 0, map_bh);
1002 
1003 			/*
1004 			 * Work out, in this_chunk_blocks, how much disk we
1005 			 * can add to this page
1006 			 */
1007 			this_chunk_blocks = sdio->blocks_available;
1008 			u = (to - from) >> blkbits;
1009 			if (this_chunk_blocks > u)
1010 				this_chunk_blocks = u;
1011 			u = sdio->final_block_in_request - sdio->block_in_file;
1012 			if (this_chunk_blocks > u)
1013 				this_chunk_blocks = u;
1014 			this_chunk_bytes = this_chunk_blocks << blkbits;
1015 			BUG_ON(this_chunk_bytes == 0);
1016 
1017 			if (this_chunk_blocks == sdio->blocks_available)
1018 				sdio->boundary = buffer_boundary(map_bh);
1019 			ret = submit_page_section(dio, sdio, page,
1020 						  from,
1021 						  this_chunk_bytes,
1022 						  sdio->next_block_for_io,
1023 						  map_bh);
1024 			if (ret) {
1025 				put_page(page);
1026 				goto out;
1027 			}
1028 			sdio->next_block_for_io += this_chunk_blocks;
1029 
1030 			sdio->block_in_file += this_chunk_blocks;
1031 			from += this_chunk_bytes;
1032 			dio->result += this_chunk_bytes;
1033 			sdio->blocks_available -= this_chunk_blocks;
1034 next_block:
1035 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1036 			if (sdio->block_in_file == sdio->final_block_in_request)
1037 				break;
1038 		}
1039 
1040 		/* Drop the ref which was taken in get_user_pages() */
1041 		put_page(page);
1042 	}
1043 out:
1044 	return ret;
1045 }
1046 
1047 static inline int drop_refcount(struct dio *dio)
1048 {
1049 	int ret2;
1050 	unsigned long flags;
1051 
1052 	/*
1053 	 * Sync will always be dropping the final ref and completing the
1054 	 * operation.  AIO can if it was a broken operation described above or
1055 	 * in fact if all the bios race to complete before we get here.  In
1056 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1057 	 * return code that the caller will hand to ->complete().
1058 	 *
1059 	 * This is managed by the bio_lock instead of being an atomic_t so that
1060 	 * completion paths can drop their ref and use the remaining count to
1061 	 * decide to wake the submission path atomically.
1062 	 */
1063 	spin_lock_irqsave(&dio->bio_lock, flags);
1064 	ret2 = --dio->refcount;
1065 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1066 	return ret2;
1067 }
1068 
1069 /*
1070  * This is a library function for use by filesystem drivers.
1071  *
1072  * The locking rules are governed by the flags parameter:
1073  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1074  *    scheme for dumb filesystems.
1075  *    For writes this function is called under i_mutex and returns with
1076  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1077  *    taken and dropped again before returning.
1078  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1079  *    internal locking but rather rely on the filesystem to synchronize
1080  *    direct I/O reads/writes versus each other and truncate.
1081  *
1082  * To help with locking against truncate we incremented the i_dio_count
1083  * counter before starting direct I/O, and decrement it once we are done.
1084  * Truncate can wait for it to reach zero to provide exclusion.  It is
1085  * expected that filesystem provide exclusion between new direct I/O
1086  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1087  * but other filesystems need to take care of this on their own.
1088  *
1089  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1090  * is always inlined. Otherwise gcc is unable to split the structure into
1091  * individual fields and will generate much worse code. This is important
1092  * for the whole file.
1093  */
1094 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1095 		struct block_device *bdev, struct iov_iter *iter,
1096 		get_block_t get_block, dio_iodone_t end_io,
1097 		int flags)
1098 {
1099 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1100 	unsigned blkbits = i_blkbits;
1101 	unsigned blocksize_mask = (1 << blkbits) - 1;
1102 	ssize_t retval = -EINVAL;
1103 	const size_t count = iov_iter_count(iter);
1104 	loff_t offset = iocb->ki_pos;
1105 	const loff_t end = offset + count;
1106 	struct dio *dio;
1107 	struct dio_submit sdio = { 0, };
1108 	struct buffer_head map_bh = { 0, };
1109 	struct blk_plug plug;
1110 	unsigned long align = offset | iov_iter_alignment(iter);
1111 
1112 	/*
1113 	 * Avoid references to bdev if not absolutely needed to give
1114 	 * the early prefetch in the caller enough time.
1115 	 */
1116 
1117 	/* watch out for a 0 len io from a tricksy fs */
1118 	if (iov_iter_rw(iter) == READ && !count)
1119 		return 0;
1120 
1121 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1122 	if (!dio)
1123 		return -ENOMEM;
1124 	/*
1125 	 * Believe it or not, zeroing out the page array caused a .5%
1126 	 * performance regression in a database benchmark.  So, we take
1127 	 * care to only zero out what's needed.
1128 	 */
1129 	memset(dio, 0, offsetof(struct dio, pages));
1130 
1131 	dio->flags = flags;
1132 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1133 		/* will be released by direct_io_worker */
1134 		inode_lock(inode);
1135 	}
1136 
1137 	/* Once we sampled i_size check for reads beyond EOF */
1138 	dio->i_size = i_size_read(inode);
1139 	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1140 		retval = 0;
1141 		goto fail_dio;
1142 	}
1143 
1144 	if (align & blocksize_mask) {
1145 		if (bdev)
1146 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1147 		blocksize_mask = (1 << blkbits) - 1;
1148 		if (align & blocksize_mask)
1149 			goto fail_dio;
1150 	}
1151 
1152 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1153 		struct address_space *mapping = iocb->ki_filp->f_mapping;
1154 
1155 		retval = filemap_write_and_wait_range(mapping, offset, end - 1);
1156 		if (retval)
1157 			goto fail_dio;
1158 	}
1159 
1160 	/*
1161 	 * For file extending writes updating i_size before data writeouts
1162 	 * complete can expose uninitialized blocks in dumb filesystems.
1163 	 * In that case we need to wait for I/O completion even if asked
1164 	 * for an asynchronous write.
1165 	 */
1166 	if (is_sync_kiocb(iocb))
1167 		dio->is_async = false;
1168 	else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1169 		dio->is_async = false;
1170 	else
1171 		dio->is_async = true;
1172 
1173 	dio->inode = inode;
1174 	if (iov_iter_rw(iter) == WRITE) {
1175 		dio->opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
1176 		if (iocb->ki_flags & IOCB_NOWAIT)
1177 			dio->opf |= REQ_NOWAIT;
1178 	} else {
1179 		dio->opf = REQ_OP_READ;
1180 	}
1181 
1182 	/*
1183 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1184 	 * so that we can call ->fsync.
1185 	 */
1186 	if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1187 		retval = 0;
1188 		if (iocb_is_dsync(iocb))
1189 			retval = dio_set_defer_completion(dio);
1190 		else if (!dio->inode->i_sb->s_dio_done_wq) {
1191 			/*
1192 			 * In case of AIO write racing with buffered read we
1193 			 * need to defer completion. We can't decide this now,
1194 			 * however the workqueue needs to be initialized here.
1195 			 */
1196 			retval = sb_init_dio_done_wq(dio->inode->i_sb);
1197 		}
1198 		if (retval)
1199 			goto fail_dio;
1200 	}
1201 
1202 	/*
1203 	 * Will be decremented at I/O completion time.
1204 	 */
1205 	inode_dio_begin(inode);
1206 
1207 	retval = 0;
1208 	sdio.blkbits = blkbits;
1209 	sdio.blkfactor = i_blkbits - blkbits;
1210 	sdio.block_in_file = offset >> blkbits;
1211 
1212 	sdio.get_block = get_block;
1213 	dio->end_io = end_io;
1214 	sdio.final_block_in_bio = -1;
1215 	sdio.next_block_for_io = -1;
1216 
1217 	dio->iocb = iocb;
1218 
1219 	spin_lock_init(&dio->bio_lock);
1220 	dio->refcount = 1;
1221 
1222 	dio->should_dirty = user_backed_iter(iter) && iov_iter_rw(iter) == READ;
1223 	sdio.iter = iter;
1224 	sdio.final_block_in_request = end >> blkbits;
1225 
1226 	/*
1227 	 * In case of non-aligned buffers, we may need 2 more
1228 	 * pages since we need to zero out first and last block.
1229 	 */
1230 	if (unlikely(sdio.blkfactor))
1231 		sdio.pages_in_io = 2;
1232 
1233 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1234 
1235 	blk_start_plug(&plug);
1236 
1237 	retval = do_direct_IO(dio, &sdio, &map_bh);
1238 	if (retval)
1239 		dio_cleanup(dio, &sdio);
1240 
1241 	if (retval == -ENOTBLK) {
1242 		/*
1243 		 * The remaining part of the request will be
1244 		 * handled by buffered I/O when we return
1245 		 */
1246 		retval = 0;
1247 	}
1248 	/*
1249 	 * There may be some unwritten disk at the end of a part-written
1250 	 * fs-block-sized block.  Go zero that now.
1251 	 */
1252 	dio_zero_block(dio, &sdio, 1, &map_bh);
1253 
1254 	if (sdio.cur_page) {
1255 		ssize_t ret2;
1256 
1257 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1258 		if (retval == 0)
1259 			retval = ret2;
1260 		put_page(sdio.cur_page);
1261 		sdio.cur_page = NULL;
1262 	}
1263 	if (sdio.bio)
1264 		dio_bio_submit(dio, &sdio);
1265 
1266 	blk_finish_plug(&plug);
1267 
1268 	/*
1269 	 * It is possible that, we return short IO due to end of file.
1270 	 * In that case, we need to release all the pages we got hold on.
1271 	 */
1272 	dio_cleanup(dio, &sdio);
1273 
1274 	/*
1275 	 * All block lookups have been performed. For READ requests
1276 	 * we can let i_mutex go now that its achieved its purpose
1277 	 * of protecting us from looking up uninitialized blocks.
1278 	 */
1279 	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1280 		inode_unlock(dio->inode);
1281 
1282 	/*
1283 	 * The only time we want to leave bios in flight is when a successful
1284 	 * partial aio read or full aio write have been setup.  In that case
1285 	 * bio completion will call aio_complete.  The only time it's safe to
1286 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1287 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1288 	 */
1289 	BUG_ON(retval == -EIOCBQUEUED);
1290 	if (dio->is_async && retval == 0 && dio->result &&
1291 	    (iov_iter_rw(iter) == READ || dio->result == count))
1292 		retval = -EIOCBQUEUED;
1293 	else
1294 		dio_await_completion(dio);
1295 
1296 	if (drop_refcount(dio) == 0) {
1297 		retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1298 	} else
1299 		BUG_ON(retval != -EIOCBQUEUED);
1300 
1301 	return retval;
1302 
1303 fail_dio:
1304 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ)
1305 		inode_unlock(inode);
1306 
1307 	kmem_cache_free(dio_cache, dio);
1308 	return retval;
1309 }
1310 EXPORT_SYMBOL(__blockdev_direct_IO);
1311 
1312 static __init int dio_init(void)
1313 {
1314 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1315 	return 0;
1316 }
1317 module_init(dio_init)
1318