xref: /openbmc/linux/fs/dcache.c (revision 5542aa2fa7f6cddb03c4ac3135e390adffda98ca)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include "internal.h"
42 #include "mount.h"
43 
44 /*
45  * Usage:
46  * dcache->d_inode->i_lock protects:
47  *   - i_dentry, d_alias, d_inode of aliases
48  * dcache_hash_bucket lock protects:
49  *   - the dcache hash table
50  * s_anon bl list spinlock protects:
51  *   - the s_anon list (see __d_drop)
52  * dentry->d_sb->s_dentry_lru_lock protects:
53  *   - the dcache lru lists and counters
54  * d_lock protects:
55  *   - d_flags
56  *   - d_name
57  *   - d_lru
58  *   - d_count
59  *   - d_unhashed()
60  *   - d_parent and d_subdirs
61  *   - childrens' d_child and d_parent
62  *   - d_alias, d_inode
63  *
64  * Ordering:
65  * dentry->d_inode->i_lock
66  *   dentry->d_lock
67  *     dentry->d_sb->s_dentry_lru_lock
68  *     dcache_hash_bucket lock
69  *     s_anon lock
70  *
71  * If there is an ancestor relationship:
72  * dentry->d_parent->...->d_parent->d_lock
73  *   ...
74  *     dentry->d_parent->d_lock
75  *       dentry->d_lock
76  *
77  * If no ancestor relationship:
78  * if (dentry1 < dentry2)
79  *   dentry1->d_lock
80  *     dentry2->d_lock
81  */
82 int sysctl_vfs_cache_pressure __read_mostly = 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84 
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 
87 EXPORT_SYMBOL(rename_lock);
88 
89 static struct kmem_cache *dentry_cache __read_mostly;
90 
91 /*
92  * This is the single most critical data structure when it comes
93  * to the dcache: the hashtable for lookups. Somebody should try
94  * to make this good - I've just made it work.
95  *
96  * This hash-function tries to avoid losing too many bits of hash
97  * information, yet avoid using a prime hash-size or similar.
98  */
99 
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
102 
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
104 
105 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
106 					unsigned int hash)
107 {
108 	hash += (unsigned long) parent / L1_CACHE_BYTES;
109 	return dentry_hashtable + hash_32(hash, d_hash_shift);
110 }
111 
112 /* Statistics gathering. */
113 struct dentry_stat_t dentry_stat = {
114 	.age_limit = 45,
115 };
116 
117 static DEFINE_PER_CPU(long, nr_dentry);
118 static DEFINE_PER_CPU(long, nr_dentry_unused);
119 
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121 
122 /*
123  * Here we resort to our own counters instead of using generic per-cpu counters
124  * for consistency with what the vfs inode code does. We are expected to harvest
125  * better code and performance by having our own specialized counters.
126  *
127  * Please note that the loop is done over all possible CPUs, not over all online
128  * CPUs. The reason for this is that we don't want to play games with CPUs going
129  * on and off. If one of them goes off, we will just keep their counters.
130  *
131  * glommer: See cffbc8a for details, and if you ever intend to change this,
132  * please update all vfs counters to match.
133  */
134 static long get_nr_dentry(void)
135 {
136 	int i;
137 	long sum = 0;
138 	for_each_possible_cpu(i)
139 		sum += per_cpu(nr_dentry, i);
140 	return sum < 0 ? 0 : sum;
141 }
142 
143 static long get_nr_dentry_unused(void)
144 {
145 	int i;
146 	long sum = 0;
147 	for_each_possible_cpu(i)
148 		sum += per_cpu(nr_dentry_unused, i);
149 	return sum < 0 ? 0 : sum;
150 }
151 
152 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
153 		   size_t *lenp, loff_t *ppos)
154 {
155 	dentry_stat.nr_dentry = get_nr_dentry();
156 	dentry_stat.nr_unused = get_nr_dentry_unused();
157 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
158 }
159 #endif
160 
161 /*
162  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
163  * The strings are both count bytes long, and count is non-zero.
164  */
165 #ifdef CONFIG_DCACHE_WORD_ACCESS
166 
167 #include <asm/word-at-a-time.h>
168 /*
169  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
170  * aligned allocation for this particular component. We don't
171  * strictly need the load_unaligned_zeropad() safety, but it
172  * doesn't hurt either.
173  *
174  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
175  * need the careful unaligned handling.
176  */
177 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
178 {
179 	unsigned long a,b,mask;
180 
181 	for (;;) {
182 		a = *(unsigned long *)cs;
183 		b = load_unaligned_zeropad(ct);
184 		if (tcount < sizeof(unsigned long))
185 			break;
186 		if (unlikely(a != b))
187 			return 1;
188 		cs += sizeof(unsigned long);
189 		ct += sizeof(unsigned long);
190 		tcount -= sizeof(unsigned long);
191 		if (!tcount)
192 			return 0;
193 	}
194 	mask = bytemask_from_count(tcount);
195 	return unlikely(!!((a ^ b) & mask));
196 }
197 
198 #else
199 
200 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
201 {
202 	do {
203 		if (*cs != *ct)
204 			return 1;
205 		cs++;
206 		ct++;
207 		tcount--;
208 	} while (tcount);
209 	return 0;
210 }
211 
212 #endif
213 
214 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
215 {
216 	const unsigned char *cs;
217 	/*
218 	 * Be careful about RCU walk racing with rename:
219 	 * use ACCESS_ONCE to fetch the name pointer.
220 	 *
221 	 * NOTE! Even if a rename will mean that the length
222 	 * was not loaded atomically, we don't care. The
223 	 * RCU walk will check the sequence count eventually,
224 	 * and catch it. And we won't overrun the buffer,
225 	 * because we're reading the name pointer atomically,
226 	 * and a dentry name is guaranteed to be properly
227 	 * terminated with a NUL byte.
228 	 *
229 	 * End result: even if 'len' is wrong, we'll exit
230 	 * early because the data cannot match (there can
231 	 * be no NUL in the ct/tcount data)
232 	 */
233 	cs = ACCESS_ONCE(dentry->d_name.name);
234 	smp_read_barrier_depends();
235 	return dentry_string_cmp(cs, ct, tcount);
236 }
237 
238 struct external_name {
239 	union {
240 		atomic_t count;
241 		struct rcu_head head;
242 	} u;
243 	unsigned char name[];
244 };
245 
246 static inline struct external_name *external_name(struct dentry *dentry)
247 {
248 	return container_of(dentry->d_name.name, struct external_name, name[0]);
249 }
250 
251 static void __d_free(struct rcu_head *head)
252 {
253 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
254 
255 	WARN_ON(!hlist_unhashed(&dentry->d_alias));
256 	kmem_cache_free(dentry_cache, dentry);
257 }
258 
259 static void __d_free_external(struct rcu_head *head)
260 {
261 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
262 	WARN_ON(!hlist_unhashed(&dentry->d_alias));
263 	kfree(external_name(dentry));
264 	kmem_cache_free(dentry_cache, dentry);
265 }
266 
267 static void dentry_free(struct dentry *dentry)
268 {
269 	if (unlikely(dname_external(dentry))) {
270 		struct external_name *p = external_name(dentry);
271 		if (likely(atomic_dec_and_test(&p->u.count))) {
272 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
273 			return;
274 		}
275 	}
276 	/* if dentry was never visible to RCU, immediate free is OK */
277 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
278 		__d_free(&dentry->d_u.d_rcu);
279 	else
280 		call_rcu(&dentry->d_u.d_rcu, __d_free);
281 }
282 
283 /**
284  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
285  * @dentry: the target dentry
286  * After this call, in-progress rcu-walk path lookup will fail. This
287  * should be called after unhashing, and after changing d_inode (if
288  * the dentry has not already been unhashed).
289  */
290 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
291 {
292 	assert_spin_locked(&dentry->d_lock);
293 	/* Go through a barrier */
294 	write_seqcount_barrier(&dentry->d_seq);
295 }
296 
297 /*
298  * Release the dentry's inode, using the filesystem
299  * d_iput() operation if defined. Dentry has no refcount
300  * and is unhashed.
301  */
302 static void dentry_iput(struct dentry * dentry)
303 	__releases(dentry->d_lock)
304 	__releases(dentry->d_inode->i_lock)
305 {
306 	struct inode *inode = dentry->d_inode;
307 	if (inode) {
308 		dentry->d_inode = NULL;
309 		hlist_del_init(&dentry->d_alias);
310 		spin_unlock(&dentry->d_lock);
311 		spin_unlock(&inode->i_lock);
312 		if (!inode->i_nlink)
313 			fsnotify_inoderemove(inode);
314 		if (dentry->d_op && dentry->d_op->d_iput)
315 			dentry->d_op->d_iput(dentry, inode);
316 		else
317 			iput(inode);
318 	} else {
319 		spin_unlock(&dentry->d_lock);
320 	}
321 }
322 
323 /*
324  * Release the dentry's inode, using the filesystem
325  * d_iput() operation if defined. dentry remains in-use.
326  */
327 static void dentry_unlink_inode(struct dentry * dentry)
328 	__releases(dentry->d_lock)
329 	__releases(dentry->d_inode->i_lock)
330 {
331 	struct inode *inode = dentry->d_inode;
332 	__d_clear_type(dentry);
333 	dentry->d_inode = NULL;
334 	hlist_del_init(&dentry->d_alias);
335 	dentry_rcuwalk_barrier(dentry);
336 	spin_unlock(&dentry->d_lock);
337 	spin_unlock(&inode->i_lock);
338 	if (!inode->i_nlink)
339 		fsnotify_inoderemove(inode);
340 	if (dentry->d_op && dentry->d_op->d_iput)
341 		dentry->d_op->d_iput(dentry, inode);
342 	else
343 		iput(inode);
344 }
345 
346 /*
347  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
348  * is in use - which includes both the "real" per-superblock
349  * LRU list _and_ the DCACHE_SHRINK_LIST use.
350  *
351  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
352  * on the shrink list (ie not on the superblock LRU list).
353  *
354  * The per-cpu "nr_dentry_unused" counters are updated with
355  * the DCACHE_LRU_LIST bit.
356  *
357  * These helper functions make sure we always follow the
358  * rules. d_lock must be held by the caller.
359  */
360 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
361 static void d_lru_add(struct dentry *dentry)
362 {
363 	D_FLAG_VERIFY(dentry, 0);
364 	dentry->d_flags |= DCACHE_LRU_LIST;
365 	this_cpu_inc(nr_dentry_unused);
366 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
367 }
368 
369 static void d_lru_del(struct dentry *dentry)
370 {
371 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
372 	dentry->d_flags &= ~DCACHE_LRU_LIST;
373 	this_cpu_dec(nr_dentry_unused);
374 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
375 }
376 
377 static void d_shrink_del(struct dentry *dentry)
378 {
379 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
380 	list_del_init(&dentry->d_lru);
381 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
382 	this_cpu_dec(nr_dentry_unused);
383 }
384 
385 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
386 {
387 	D_FLAG_VERIFY(dentry, 0);
388 	list_add(&dentry->d_lru, list);
389 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
390 	this_cpu_inc(nr_dentry_unused);
391 }
392 
393 /*
394  * These can only be called under the global LRU lock, ie during the
395  * callback for freeing the LRU list. "isolate" removes it from the
396  * LRU lists entirely, while shrink_move moves it to the indicated
397  * private list.
398  */
399 static void d_lru_isolate(struct dentry *dentry)
400 {
401 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
402 	dentry->d_flags &= ~DCACHE_LRU_LIST;
403 	this_cpu_dec(nr_dentry_unused);
404 	list_del_init(&dentry->d_lru);
405 }
406 
407 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
408 {
409 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410 	dentry->d_flags |= DCACHE_SHRINK_LIST;
411 	list_move_tail(&dentry->d_lru, list);
412 }
413 
414 /*
415  * dentry_lru_(add|del)_list) must be called with d_lock held.
416  */
417 static void dentry_lru_add(struct dentry *dentry)
418 {
419 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
420 		d_lru_add(dentry);
421 }
422 
423 /**
424  * d_drop - drop a dentry
425  * @dentry: dentry to drop
426  *
427  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
428  * be found through a VFS lookup any more. Note that this is different from
429  * deleting the dentry - d_delete will try to mark the dentry negative if
430  * possible, giving a successful _negative_ lookup, while d_drop will
431  * just make the cache lookup fail.
432  *
433  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
434  * reason (NFS timeouts or autofs deletes).
435  *
436  * __d_drop requires dentry->d_lock.
437  */
438 void __d_drop(struct dentry *dentry)
439 {
440 	if (!d_unhashed(dentry)) {
441 		struct hlist_bl_head *b;
442 		/*
443 		 * Hashed dentries are normally on the dentry hashtable,
444 		 * with the exception of those newly allocated by
445 		 * d_obtain_alias, which are always IS_ROOT:
446 		 */
447 		if (unlikely(IS_ROOT(dentry)))
448 			b = &dentry->d_sb->s_anon;
449 		else
450 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
451 
452 		hlist_bl_lock(b);
453 		__hlist_bl_del(&dentry->d_hash);
454 		dentry->d_hash.pprev = NULL;
455 		hlist_bl_unlock(b);
456 		dentry_rcuwalk_barrier(dentry);
457 	}
458 }
459 EXPORT_SYMBOL(__d_drop);
460 
461 void d_drop(struct dentry *dentry)
462 {
463 	spin_lock(&dentry->d_lock);
464 	__d_drop(dentry);
465 	spin_unlock(&dentry->d_lock);
466 }
467 EXPORT_SYMBOL(d_drop);
468 
469 static void __dentry_kill(struct dentry *dentry)
470 {
471 	struct dentry *parent = NULL;
472 	bool can_free = true;
473 	if (!IS_ROOT(dentry))
474 		parent = dentry->d_parent;
475 
476 	/*
477 	 * The dentry is now unrecoverably dead to the world.
478 	 */
479 	lockref_mark_dead(&dentry->d_lockref);
480 
481 	/*
482 	 * inform the fs via d_prune that this dentry is about to be
483 	 * unhashed and destroyed.
484 	 */
485 	if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
486 		dentry->d_op->d_prune(dentry);
487 
488 	if (dentry->d_flags & DCACHE_LRU_LIST) {
489 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
490 			d_lru_del(dentry);
491 	}
492 	/* if it was on the hash then remove it */
493 	__d_drop(dentry);
494 	list_del(&dentry->d_u.d_child);
495 	/*
496 	 * Inform d_walk() that we are no longer attached to the
497 	 * dentry tree
498 	 */
499 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
500 	if (parent)
501 		spin_unlock(&parent->d_lock);
502 	dentry_iput(dentry);
503 	/*
504 	 * dentry_iput drops the locks, at which point nobody (except
505 	 * transient RCU lookups) can reach this dentry.
506 	 */
507 	BUG_ON((int)dentry->d_lockref.count > 0);
508 	this_cpu_dec(nr_dentry);
509 	if (dentry->d_op && dentry->d_op->d_release)
510 		dentry->d_op->d_release(dentry);
511 
512 	spin_lock(&dentry->d_lock);
513 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
514 		dentry->d_flags |= DCACHE_MAY_FREE;
515 		can_free = false;
516 	}
517 	spin_unlock(&dentry->d_lock);
518 	if (likely(can_free))
519 		dentry_free(dentry);
520 }
521 
522 /*
523  * Finish off a dentry we've decided to kill.
524  * dentry->d_lock must be held, returns with it unlocked.
525  * If ref is non-zero, then decrement the refcount too.
526  * Returns dentry requiring refcount drop, or NULL if we're done.
527  */
528 static struct dentry *dentry_kill(struct dentry *dentry)
529 	__releases(dentry->d_lock)
530 {
531 	struct inode *inode = dentry->d_inode;
532 	struct dentry *parent = NULL;
533 
534 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
535 		goto failed;
536 
537 	if (!IS_ROOT(dentry)) {
538 		parent = dentry->d_parent;
539 		if (unlikely(!spin_trylock(&parent->d_lock))) {
540 			if (inode)
541 				spin_unlock(&inode->i_lock);
542 			goto failed;
543 		}
544 	}
545 
546 	__dentry_kill(dentry);
547 	return parent;
548 
549 failed:
550 	spin_unlock(&dentry->d_lock);
551 	cpu_relax();
552 	return dentry; /* try again with same dentry */
553 }
554 
555 static inline struct dentry *lock_parent(struct dentry *dentry)
556 {
557 	struct dentry *parent = dentry->d_parent;
558 	if (IS_ROOT(dentry))
559 		return NULL;
560 	if (unlikely((int)dentry->d_lockref.count < 0))
561 		return NULL;
562 	if (likely(spin_trylock(&parent->d_lock)))
563 		return parent;
564 	rcu_read_lock();
565 	spin_unlock(&dentry->d_lock);
566 again:
567 	parent = ACCESS_ONCE(dentry->d_parent);
568 	spin_lock(&parent->d_lock);
569 	/*
570 	 * We can't blindly lock dentry until we are sure
571 	 * that we won't violate the locking order.
572 	 * Any changes of dentry->d_parent must have
573 	 * been done with parent->d_lock held, so
574 	 * spin_lock() above is enough of a barrier
575 	 * for checking if it's still our child.
576 	 */
577 	if (unlikely(parent != dentry->d_parent)) {
578 		spin_unlock(&parent->d_lock);
579 		goto again;
580 	}
581 	rcu_read_unlock();
582 	if (parent != dentry)
583 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
584 	else
585 		parent = NULL;
586 	return parent;
587 }
588 
589 /*
590  * This is dput
591  *
592  * This is complicated by the fact that we do not want to put
593  * dentries that are no longer on any hash chain on the unused
594  * list: we'd much rather just get rid of them immediately.
595  *
596  * However, that implies that we have to traverse the dentry
597  * tree upwards to the parents which might _also_ now be
598  * scheduled for deletion (it may have been only waiting for
599  * its last child to go away).
600  *
601  * This tail recursion is done by hand as we don't want to depend
602  * on the compiler to always get this right (gcc generally doesn't).
603  * Real recursion would eat up our stack space.
604  */
605 
606 /*
607  * dput - release a dentry
608  * @dentry: dentry to release
609  *
610  * Release a dentry. This will drop the usage count and if appropriate
611  * call the dentry unlink method as well as removing it from the queues and
612  * releasing its resources. If the parent dentries were scheduled for release
613  * they too may now get deleted.
614  */
615 void dput(struct dentry *dentry)
616 {
617 	if (unlikely(!dentry))
618 		return;
619 
620 repeat:
621 	if (lockref_put_or_lock(&dentry->d_lockref))
622 		return;
623 
624 	/* Unreachable? Get rid of it */
625 	if (unlikely(d_unhashed(dentry)))
626 		goto kill_it;
627 
628 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
629 		if (dentry->d_op->d_delete(dentry))
630 			goto kill_it;
631 	}
632 
633 	if (!(dentry->d_flags & DCACHE_REFERENCED))
634 		dentry->d_flags |= DCACHE_REFERENCED;
635 	dentry_lru_add(dentry);
636 
637 	dentry->d_lockref.count--;
638 	spin_unlock(&dentry->d_lock);
639 	return;
640 
641 kill_it:
642 	dentry = dentry_kill(dentry);
643 	if (dentry)
644 		goto repeat;
645 }
646 EXPORT_SYMBOL(dput);
647 
648 
649 /* This must be called with d_lock held */
650 static inline void __dget_dlock(struct dentry *dentry)
651 {
652 	dentry->d_lockref.count++;
653 }
654 
655 static inline void __dget(struct dentry *dentry)
656 {
657 	lockref_get(&dentry->d_lockref);
658 }
659 
660 struct dentry *dget_parent(struct dentry *dentry)
661 {
662 	int gotref;
663 	struct dentry *ret;
664 
665 	/*
666 	 * Do optimistic parent lookup without any
667 	 * locking.
668 	 */
669 	rcu_read_lock();
670 	ret = ACCESS_ONCE(dentry->d_parent);
671 	gotref = lockref_get_not_zero(&ret->d_lockref);
672 	rcu_read_unlock();
673 	if (likely(gotref)) {
674 		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
675 			return ret;
676 		dput(ret);
677 	}
678 
679 repeat:
680 	/*
681 	 * Don't need rcu_dereference because we re-check it was correct under
682 	 * the lock.
683 	 */
684 	rcu_read_lock();
685 	ret = dentry->d_parent;
686 	spin_lock(&ret->d_lock);
687 	if (unlikely(ret != dentry->d_parent)) {
688 		spin_unlock(&ret->d_lock);
689 		rcu_read_unlock();
690 		goto repeat;
691 	}
692 	rcu_read_unlock();
693 	BUG_ON(!ret->d_lockref.count);
694 	ret->d_lockref.count++;
695 	spin_unlock(&ret->d_lock);
696 	return ret;
697 }
698 EXPORT_SYMBOL(dget_parent);
699 
700 /**
701  * d_find_alias - grab a hashed alias of inode
702  * @inode: inode in question
703  *
704  * If inode has a hashed alias, or is a directory and has any alias,
705  * acquire the reference to alias and return it. Otherwise return NULL.
706  * Notice that if inode is a directory there can be only one alias and
707  * it can be unhashed only if it has no children, or if it is the root
708  * of a filesystem, or if the directory was renamed and d_revalidate
709  * was the first vfs operation to notice.
710  *
711  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
712  * any other hashed alias over that one.
713  */
714 static struct dentry *__d_find_alias(struct inode *inode)
715 {
716 	struct dentry *alias, *discon_alias;
717 
718 again:
719 	discon_alias = NULL;
720 	hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
721 		spin_lock(&alias->d_lock);
722  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
723 			if (IS_ROOT(alias) &&
724 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
725 				discon_alias = alias;
726 			} else {
727 				__dget_dlock(alias);
728 				spin_unlock(&alias->d_lock);
729 				return alias;
730 			}
731 		}
732 		spin_unlock(&alias->d_lock);
733 	}
734 	if (discon_alias) {
735 		alias = discon_alias;
736 		spin_lock(&alias->d_lock);
737 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
738 			__dget_dlock(alias);
739 			spin_unlock(&alias->d_lock);
740 			return alias;
741 		}
742 		spin_unlock(&alias->d_lock);
743 		goto again;
744 	}
745 	return NULL;
746 }
747 
748 struct dentry *d_find_alias(struct inode *inode)
749 {
750 	struct dentry *de = NULL;
751 
752 	if (!hlist_empty(&inode->i_dentry)) {
753 		spin_lock(&inode->i_lock);
754 		de = __d_find_alias(inode);
755 		spin_unlock(&inode->i_lock);
756 	}
757 	return de;
758 }
759 EXPORT_SYMBOL(d_find_alias);
760 
761 /*
762  *	Try to kill dentries associated with this inode.
763  * WARNING: you must own a reference to inode.
764  */
765 void d_prune_aliases(struct inode *inode)
766 {
767 	struct dentry *dentry;
768 restart:
769 	spin_lock(&inode->i_lock);
770 	hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
771 		spin_lock(&dentry->d_lock);
772 		if (!dentry->d_lockref.count) {
773 			/*
774 			 * inform the fs via d_prune that this dentry
775 			 * is about to be unhashed and destroyed.
776 			 */
777 			if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
778 			    !d_unhashed(dentry))
779 				dentry->d_op->d_prune(dentry);
780 
781 			__dget_dlock(dentry);
782 			__d_drop(dentry);
783 			spin_unlock(&dentry->d_lock);
784 			spin_unlock(&inode->i_lock);
785 			dput(dentry);
786 			goto restart;
787 		}
788 		spin_unlock(&dentry->d_lock);
789 	}
790 	spin_unlock(&inode->i_lock);
791 }
792 EXPORT_SYMBOL(d_prune_aliases);
793 
794 static void shrink_dentry_list(struct list_head *list)
795 {
796 	struct dentry *dentry, *parent;
797 
798 	while (!list_empty(list)) {
799 		struct inode *inode;
800 		dentry = list_entry(list->prev, struct dentry, d_lru);
801 		spin_lock(&dentry->d_lock);
802 		parent = lock_parent(dentry);
803 
804 		/*
805 		 * The dispose list is isolated and dentries are not accounted
806 		 * to the LRU here, so we can simply remove it from the list
807 		 * here regardless of whether it is referenced or not.
808 		 */
809 		d_shrink_del(dentry);
810 
811 		/*
812 		 * We found an inuse dentry which was not removed from
813 		 * the LRU because of laziness during lookup. Do not free it.
814 		 */
815 		if ((int)dentry->d_lockref.count > 0) {
816 			spin_unlock(&dentry->d_lock);
817 			if (parent)
818 				spin_unlock(&parent->d_lock);
819 			continue;
820 		}
821 
822 
823 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
824 			bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
825 			spin_unlock(&dentry->d_lock);
826 			if (parent)
827 				spin_unlock(&parent->d_lock);
828 			if (can_free)
829 				dentry_free(dentry);
830 			continue;
831 		}
832 
833 		inode = dentry->d_inode;
834 		if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
835 			d_shrink_add(dentry, list);
836 			spin_unlock(&dentry->d_lock);
837 			if (parent)
838 				spin_unlock(&parent->d_lock);
839 			continue;
840 		}
841 
842 		__dentry_kill(dentry);
843 
844 		/*
845 		 * We need to prune ancestors too. This is necessary to prevent
846 		 * quadratic behavior of shrink_dcache_parent(), but is also
847 		 * expected to be beneficial in reducing dentry cache
848 		 * fragmentation.
849 		 */
850 		dentry = parent;
851 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
852 			parent = lock_parent(dentry);
853 			if (dentry->d_lockref.count != 1) {
854 				dentry->d_lockref.count--;
855 				spin_unlock(&dentry->d_lock);
856 				if (parent)
857 					spin_unlock(&parent->d_lock);
858 				break;
859 			}
860 			inode = dentry->d_inode;	/* can't be NULL */
861 			if (unlikely(!spin_trylock(&inode->i_lock))) {
862 				spin_unlock(&dentry->d_lock);
863 				if (parent)
864 					spin_unlock(&parent->d_lock);
865 				cpu_relax();
866 				continue;
867 			}
868 			__dentry_kill(dentry);
869 			dentry = parent;
870 		}
871 	}
872 }
873 
874 static enum lru_status
875 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
876 {
877 	struct list_head *freeable = arg;
878 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
879 
880 
881 	/*
882 	 * we are inverting the lru lock/dentry->d_lock here,
883 	 * so use a trylock. If we fail to get the lock, just skip
884 	 * it
885 	 */
886 	if (!spin_trylock(&dentry->d_lock))
887 		return LRU_SKIP;
888 
889 	/*
890 	 * Referenced dentries are still in use. If they have active
891 	 * counts, just remove them from the LRU. Otherwise give them
892 	 * another pass through the LRU.
893 	 */
894 	if (dentry->d_lockref.count) {
895 		d_lru_isolate(dentry);
896 		spin_unlock(&dentry->d_lock);
897 		return LRU_REMOVED;
898 	}
899 
900 	if (dentry->d_flags & DCACHE_REFERENCED) {
901 		dentry->d_flags &= ~DCACHE_REFERENCED;
902 		spin_unlock(&dentry->d_lock);
903 
904 		/*
905 		 * The list move itself will be made by the common LRU code. At
906 		 * this point, we've dropped the dentry->d_lock but keep the
907 		 * lru lock. This is safe to do, since every list movement is
908 		 * protected by the lru lock even if both locks are held.
909 		 *
910 		 * This is guaranteed by the fact that all LRU management
911 		 * functions are intermediated by the LRU API calls like
912 		 * list_lru_add and list_lru_del. List movement in this file
913 		 * only ever occur through this functions or through callbacks
914 		 * like this one, that are called from the LRU API.
915 		 *
916 		 * The only exceptions to this are functions like
917 		 * shrink_dentry_list, and code that first checks for the
918 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
919 		 * operating only with stack provided lists after they are
920 		 * properly isolated from the main list.  It is thus, always a
921 		 * local access.
922 		 */
923 		return LRU_ROTATE;
924 	}
925 
926 	d_lru_shrink_move(dentry, freeable);
927 	spin_unlock(&dentry->d_lock);
928 
929 	return LRU_REMOVED;
930 }
931 
932 /**
933  * prune_dcache_sb - shrink the dcache
934  * @sb: superblock
935  * @nr_to_scan : number of entries to try to free
936  * @nid: which node to scan for freeable entities
937  *
938  * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
939  * done when we need more memory an called from the superblock shrinker
940  * function.
941  *
942  * This function may fail to free any resources if all the dentries are in
943  * use.
944  */
945 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
946 		     int nid)
947 {
948 	LIST_HEAD(dispose);
949 	long freed;
950 
951 	freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
952 				       &dispose, &nr_to_scan);
953 	shrink_dentry_list(&dispose);
954 	return freed;
955 }
956 
957 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
958 						spinlock_t *lru_lock, void *arg)
959 {
960 	struct list_head *freeable = arg;
961 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
962 
963 	/*
964 	 * we are inverting the lru lock/dentry->d_lock here,
965 	 * so use a trylock. If we fail to get the lock, just skip
966 	 * it
967 	 */
968 	if (!spin_trylock(&dentry->d_lock))
969 		return LRU_SKIP;
970 
971 	d_lru_shrink_move(dentry, freeable);
972 	spin_unlock(&dentry->d_lock);
973 
974 	return LRU_REMOVED;
975 }
976 
977 
978 /**
979  * shrink_dcache_sb - shrink dcache for a superblock
980  * @sb: superblock
981  *
982  * Shrink the dcache for the specified super block. This is used to free
983  * the dcache before unmounting a file system.
984  */
985 void shrink_dcache_sb(struct super_block *sb)
986 {
987 	long freed;
988 
989 	do {
990 		LIST_HEAD(dispose);
991 
992 		freed = list_lru_walk(&sb->s_dentry_lru,
993 			dentry_lru_isolate_shrink, &dispose, UINT_MAX);
994 
995 		this_cpu_sub(nr_dentry_unused, freed);
996 		shrink_dentry_list(&dispose);
997 	} while (freed > 0);
998 }
999 EXPORT_SYMBOL(shrink_dcache_sb);
1000 
1001 /**
1002  * enum d_walk_ret - action to talke during tree walk
1003  * @D_WALK_CONTINUE:	contrinue walk
1004  * @D_WALK_QUIT:	quit walk
1005  * @D_WALK_NORETRY:	quit when retry is needed
1006  * @D_WALK_SKIP:	skip this dentry and its children
1007  */
1008 enum d_walk_ret {
1009 	D_WALK_CONTINUE,
1010 	D_WALK_QUIT,
1011 	D_WALK_NORETRY,
1012 	D_WALK_SKIP,
1013 };
1014 
1015 /**
1016  * d_walk - walk the dentry tree
1017  * @parent:	start of walk
1018  * @data:	data passed to @enter() and @finish()
1019  * @enter:	callback when first entering the dentry
1020  * @finish:	callback when successfully finished the walk
1021  *
1022  * The @enter() and @finish() callbacks are called with d_lock held.
1023  */
1024 static void d_walk(struct dentry *parent, void *data,
1025 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1026 		   void (*finish)(void *))
1027 {
1028 	struct dentry *this_parent;
1029 	struct list_head *next;
1030 	unsigned seq = 0;
1031 	enum d_walk_ret ret;
1032 	bool retry = true;
1033 
1034 again:
1035 	read_seqbegin_or_lock(&rename_lock, &seq);
1036 	this_parent = parent;
1037 	spin_lock(&this_parent->d_lock);
1038 
1039 	ret = enter(data, this_parent);
1040 	switch (ret) {
1041 	case D_WALK_CONTINUE:
1042 		break;
1043 	case D_WALK_QUIT:
1044 	case D_WALK_SKIP:
1045 		goto out_unlock;
1046 	case D_WALK_NORETRY:
1047 		retry = false;
1048 		break;
1049 	}
1050 repeat:
1051 	next = this_parent->d_subdirs.next;
1052 resume:
1053 	while (next != &this_parent->d_subdirs) {
1054 		struct list_head *tmp = next;
1055 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1056 		next = tmp->next;
1057 
1058 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1059 
1060 		ret = enter(data, dentry);
1061 		switch (ret) {
1062 		case D_WALK_CONTINUE:
1063 			break;
1064 		case D_WALK_QUIT:
1065 			spin_unlock(&dentry->d_lock);
1066 			goto out_unlock;
1067 		case D_WALK_NORETRY:
1068 			retry = false;
1069 			break;
1070 		case D_WALK_SKIP:
1071 			spin_unlock(&dentry->d_lock);
1072 			continue;
1073 		}
1074 
1075 		if (!list_empty(&dentry->d_subdirs)) {
1076 			spin_unlock(&this_parent->d_lock);
1077 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1078 			this_parent = dentry;
1079 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1080 			goto repeat;
1081 		}
1082 		spin_unlock(&dentry->d_lock);
1083 	}
1084 	/*
1085 	 * All done at this level ... ascend and resume the search.
1086 	 */
1087 	if (this_parent != parent) {
1088 		struct dentry *child = this_parent;
1089 		this_parent = child->d_parent;
1090 
1091 		rcu_read_lock();
1092 		spin_unlock(&child->d_lock);
1093 		spin_lock(&this_parent->d_lock);
1094 
1095 		/*
1096 		 * might go back up the wrong parent if we have had a rename
1097 		 * or deletion
1098 		 */
1099 		if (this_parent != child->d_parent ||
1100 			 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1101 			 need_seqretry(&rename_lock, seq)) {
1102 			spin_unlock(&this_parent->d_lock);
1103 			rcu_read_unlock();
1104 			goto rename_retry;
1105 		}
1106 		rcu_read_unlock();
1107 		next = child->d_u.d_child.next;
1108 		goto resume;
1109 	}
1110 	if (need_seqretry(&rename_lock, seq)) {
1111 		spin_unlock(&this_parent->d_lock);
1112 		goto rename_retry;
1113 	}
1114 	if (finish)
1115 		finish(data);
1116 
1117 out_unlock:
1118 	spin_unlock(&this_parent->d_lock);
1119 	done_seqretry(&rename_lock, seq);
1120 	return;
1121 
1122 rename_retry:
1123 	if (!retry)
1124 		return;
1125 	seq = 1;
1126 	goto again;
1127 }
1128 
1129 /*
1130  * Search for at least 1 mount point in the dentry's subdirs.
1131  * We descend to the next level whenever the d_subdirs
1132  * list is non-empty and continue searching.
1133  */
1134 
1135 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1136 {
1137 	int *ret = data;
1138 	if (d_mountpoint(dentry)) {
1139 		*ret = 1;
1140 		return D_WALK_QUIT;
1141 	}
1142 	return D_WALK_CONTINUE;
1143 }
1144 
1145 /**
1146  * have_submounts - check for mounts over a dentry
1147  * @parent: dentry to check.
1148  *
1149  * Return true if the parent or its subdirectories contain
1150  * a mount point
1151  */
1152 int have_submounts(struct dentry *parent)
1153 {
1154 	int ret = 0;
1155 
1156 	d_walk(parent, &ret, check_mount, NULL);
1157 
1158 	return ret;
1159 }
1160 EXPORT_SYMBOL(have_submounts);
1161 
1162 /*
1163  * Called by mount code to set a mountpoint and check if the mountpoint is
1164  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1165  * subtree can become unreachable).
1166  *
1167  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1168  * this reason take rename_lock and d_lock on dentry and ancestors.
1169  */
1170 int d_set_mounted(struct dentry *dentry)
1171 {
1172 	struct dentry *p;
1173 	int ret = -ENOENT;
1174 	write_seqlock(&rename_lock);
1175 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1176 		/* Need exclusion wrt. d_invalidate() */
1177 		spin_lock(&p->d_lock);
1178 		if (unlikely(d_unhashed(p))) {
1179 			spin_unlock(&p->d_lock);
1180 			goto out;
1181 		}
1182 		spin_unlock(&p->d_lock);
1183 	}
1184 	spin_lock(&dentry->d_lock);
1185 	if (!d_unlinked(dentry)) {
1186 		dentry->d_flags |= DCACHE_MOUNTED;
1187 		ret = 0;
1188 	}
1189  	spin_unlock(&dentry->d_lock);
1190 out:
1191 	write_sequnlock(&rename_lock);
1192 	return ret;
1193 }
1194 
1195 /*
1196  * Search the dentry child list of the specified parent,
1197  * and move any unused dentries to the end of the unused
1198  * list for prune_dcache(). We descend to the next level
1199  * whenever the d_subdirs list is non-empty and continue
1200  * searching.
1201  *
1202  * It returns zero iff there are no unused children,
1203  * otherwise  it returns the number of children moved to
1204  * the end of the unused list. This may not be the total
1205  * number of unused children, because select_parent can
1206  * drop the lock and return early due to latency
1207  * constraints.
1208  */
1209 
1210 struct select_data {
1211 	struct dentry *start;
1212 	struct list_head dispose;
1213 	int found;
1214 };
1215 
1216 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1217 {
1218 	struct select_data *data = _data;
1219 	enum d_walk_ret ret = D_WALK_CONTINUE;
1220 
1221 	if (data->start == dentry)
1222 		goto out;
1223 
1224 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1225 		data->found++;
1226 	} else {
1227 		if (dentry->d_flags & DCACHE_LRU_LIST)
1228 			d_lru_del(dentry);
1229 		if (!dentry->d_lockref.count) {
1230 			d_shrink_add(dentry, &data->dispose);
1231 			data->found++;
1232 		}
1233 	}
1234 	/*
1235 	 * We can return to the caller if we have found some (this
1236 	 * ensures forward progress). We'll be coming back to find
1237 	 * the rest.
1238 	 */
1239 	if (!list_empty(&data->dispose))
1240 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1241 out:
1242 	return ret;
1243 }
1244 
1245 /**
1246  * shrink_dcache_parent - prune dcache
1247  * @parent: parent of entries to prune
1248  *
1249  * Prune the dcache to remove unused children of the parent dentry.
1250  */
1251 void shrink_dcache_parent(struct dentry *parent)
1252 {
1253 	for (;;) {
1254 		struct select_data data;
1255 
1256 		INIT_LIST_HEAD(&data.dispose);
1257 		data.start = parent;
1258 		data.found = 0;
1259 
1260 		d_walk(parent, &data, select_collect, NULL);
1261 		if (!data.found)
1262 			break;
1263 
1264 		shrink_dentry_list(&data.dispose);
1265 		cond_resched();
1266 	}
1267 }
1268 EXPORT_SYMBOL(shrink_dcache_parent);
1269 
1270 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1271 {
1272 	/* it has busy descendents; complain about those instead */
1273 	if (!list_empty(&dentry->d_subdirs))
1274 		return D_WALK_CONTINUE;
1275 
1276 	/* root with refcount 1 is fine */
1277 	if (dentry == _data && dentry->d_lockref.count == 1)
1278 		return D_WALK_CONTINUE;
1279 
1280 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1281 			" still in use (%d) [unmount of %s %s]\n",
1282 		       dentry,
1283 		       dentry->d_inode ?
1284 		       dentry->d_inode->i_ino : 0UL,
1285 		       dentry,
1286 		       dentry->d_lockref.count,
1287 		       dentry->d_sb->s_type->name,
1288 		       dentry->d_sb->s_id);
1289 	WARN_ON(1);
1290 	return D_WALK_CONTINUE;
1291 }
1292 
1293 static void do_one_tree(struct dentry *dentry)
1294 {
1295 	shrink_dcache_parent(dentry);
1296 	d_walk(dentry, dentry, umount_check, NULL);
1297 	d_drop(dentry);
1298 	dput(dentry);
1299 }
1300 
1301 /*
1302  * destroy the dentries attached to a superblock on unmounting
1303  */
1304 void shrink_dcache_for_umount(struct super_block *sb)
1305 {
1306 	struct dentry *dentry;
1307 
1308 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1309 
1310 	dentry = sb->s_root;
1311 	sb->s_root = NULL;
1312 	do_one_tree(dentry);
1313 
1314 	while (!hlist_bl_empty(&sb->s_anon)) {
1315 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1316 		do_one_tree(dentry);
1317 	}
1318 }
1319 
1320 struct detach_data {
1321 	struct select_data select;
1322 	struct dentry *mountpoint;
1323 };
1324 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1325 {
1326 	struct detach_data *data = _data;
1327 
1328 	if (d_mountpoint(dentry)) {
1329 		__dget_dlock(dentry);
1330 		data->mountpoint = dentry;
1331 		return D_WALK_QUIT;
1332 	}
1333 
1334 	return select_collect(&data->select, dentry);
1335 }
1336 
1337 static void check_and_drop(void *_data)
1338 {
1339 	struct detach_data *data = _data;
1340 
1341 	if (!data->mountpoint && !data->select.found)
1342 		__d_drop(data->select.start);
1343 }
1344 
1345 /**
1346  * d_invalidate - detach submounts, prune dcache, and drop
1347  * @dentry: dentry to invalidate (aka detach, prune and drop)
1348  *
1349  * no dcache lock.
1350  *
1351  * The final d_drop is done as an atomic operation relative to
1352  * rename_lock ensuring there are no races with d_set_mounted.  This
1353  * ensures there are no unhashed dentries on the path to a mountpoint.
1354  */
1355 void d_invalidate(struct dentry *dentry)
1356 {
1357 	/*
1358 	 * If it's already been dropped, return OK.
1359 	 */
1360 	spin_lock(&dentry->d_lock);
1361 	if (d_unhashed(dentry)) {
1362 		spin_unlock(&dentry->d_lock);
1363 		return;
1364 	}
1365 	spin_unlock(&dentry->d_lock);
1366 
1367 	/* Negative dentries can be dropped without further checks */
1368 	if (!dentry->d_inode) {
1369 		d_drop(dentry);
1370 		return;
1371 	}
1372 
1373 	for (;;) {
1374 		struct detach_data data;
1375 
1376 		data.mountpoint = NULL;
1377 		INIT_LIST_HEAD(&data.select.dispose);
1378 		data.select.start = dentry;
1379 		data.select.found = 0;
1380 
1381 		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1382 
1383 		if (data.select.found)
1384 			shrink_dentry_list(&data.select.dispose);
1385 
1386 		if (data.mountpoint) {
1387 			detach_mounts(data.mountpoint);
1388 			dput(data.mountpoint);
1389 		}
1390 
1391 		if (!data.mountpoint && !data.select.found)
1392 			break;
1393 
1394 		cond_resched();
1395 	}
1396 }
1397 EXPORT_SYMBOL(d_invalidate);
1398 
1399 /**
1400  * __d_alloc	-	allocate a dcache entry
1401  * @sb: filesystem it will belong to
1402  * @name: qstr of the name
1403  *
1404  * Allocates a dentry. It returns %NULL if there is insufficient memory
1405  * available. On a success the dentry is returned. The name passed in is
1406  * copied and the copy passed in may be reused after this call.
1407  */
1408 
1409 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1410 {
1411 	struct dentry *dentry;
1412 	char *dname;
1413 
1414 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1415 	if (!dentry)
1416 		return NULL;
1417 
1418 	/*
1419 	 * We guarantee that the inline name is always NUL-terminated.
1420 	 * This way the memcpy() done by the name switching in rename
1421 	 * will still always have a NUL at the end, even if we might
1422 	 * be overwriting an internal NUL character
1423 	 */
1424 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1425 	if (name->len > DNAME_INLINE_LEN-1) {
1426 		size_t size = offsetof(struct external_name, name[1]);
1427 		struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1428 		if (!p) {
1429 			kmem_cache_free(dentry_cache, dentry);
1430 			return NULL;
1431 		}
1432 		atomic_set(&p->u.count, 1);
1433 		dname = p->name;
1434 	} else  {
1435 		dname = dentry->d_iname;
1436 	}
1437 
1438 	dentry->d_name.len = name->len;
1439 	dentry->d_name.hash = name->hash;
1440 	memcpy(dname, name->name, name->len);
1441 	dname[name->len] = 0;
1442 
1443 	/* Make sure we always see the terminating NUL character */
1444 	smp_wmb();
1445 	dentry->d_name.name = dname;
1446 
1447 	dentry->d_lockref.count = 1;
1448 	dentry->d_flags = 0;
1449 	spin_lock_init(&dentry->d_lock);
1450 	seqcount_init(&dentry->d_seq);
1451 	dentry->d_inode = NULL;
1452 	dentry->d_parent = dentry;
1453 	dentry->d_sb = sb;
1454 	dentry->d_op = NULL;
1455 	dentry->d_fsdata = NULL;
1456 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1457 	INIT_LIST_HEAD(&dentry->d_lru);
1458 	INIT_LIST_HEAD(&dentry->d_subdirs);
1459 	INIT_HLIST_NODE(&dentry->d_alias);
1460 	INIT_LIST_HEAD(&dentry->d_u.d_child);
1461 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1462 
1463 	this_cpu_inc(nr_dentry);
1464 
1465 	return dentry;
1466 }
1467 
1468 /**
1469  * d_alloc	-	allocate a dcache entry
1470  * @parent: parent of entry to allocate
1471  * @name: qstr of the name
1472  *
1473  * Allocates a dentry. It returns %NULL if there is insufficient memory
1474  * available. On a success the dentry is returned. The name passed in is
1475  * copied and the copy passed in may be reused after this call.
1476  */
1477 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1478 {
1479 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1480 	if (!dentry)
1481 		return NULL;
1482 
1483 	spin_lock(&parent->d_lock);
1484 	/*
1485 	 * don't need child lock because it is not subject
1486 	 * to concurrency here
1487 	 */
1488 	__dget_dlock(parent);
1489 	dentry->d_parent = parent;
1490 	list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1491 	spin_unlock(&parent->d_lock);
1492 
1493 	return dentry;
1494 }
1495 EXPORT_SYMBOL(d_alloc);
1496 
1497 /**
1498  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1499  * @sb: the superblock
1500  * @name: qstr of the name
1501  *
1502  * For a filesystem that just pins its dentries in memory and never
1503  * performs lookups at all, return an unhashed IS_ROOT dentry.
1504  */
1505 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1506 {
1507 	return __d_alloc(sb, name);
1508 }
1509 EXPORT_SYMBOL(d_alloc_pseudo);
1510 
1511 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1512 {
1513 	struct qstr q;
1514 
1515 	q.name = name;
1516 	q.len = strlen(name);
1517 	q.hash = full_name_hash(q.name, q.len);
1518 	return d_alloc(parent, &q);
1519 }
1520 EXPORT_SYMBOL(d_alloc_name);
1521 
1522 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1523 {
1524 	WARN_ON_ONCE(dentry->d_op);
1525 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1526 				DCACHE_OP_COMPARE	|
1527 				DCACHE_OP_REVALIDATE	|
1528 				DCACHE_OP_WEAK_REVALIDATE	|
1529 				DCACHE_OP_DELETE ));
1530 	dentry->d_op = op;
1531 	if (!op)
1532 		return;
1533 	if (op->d_hash)
1534 		dentry->d_flags |= DCACHE_OP_HASH;
1535 	if (op->d_compare)
1536 		dentry->d_flags |= DCACHE_OP_COMPARE;
1537 	if (op->d_revalidate)
1538 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1539 	if (op->d_weak_revalidate)
1540 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1541 	if (op->d_delete)
1542 		dentry->d_flags |= DCACHE_OP_DELETE;
1543 	if (op->d_prune)
1544 		dentry->d_flags |= DCACHE_OP_PRUNE;
1545 
1546 }
1547 EXPORT_SYMBOL(d_set_d_op);
1548 
1549 static unsigned d_flags_for_inode(struct inode *inode)
1550 {
1551 	unsigned add_flags = DCACHE_FILE_TYPE;
1552 
1553 	if (!inode)
1554 		return DCACHE_MISS_TYPE;
1555 
1556 	if (S_ISDIR(inode->i_mode)) {
1557 		add_flags = DCACHE_DIRECTORY_TYPE;
1558 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1559 			if (unlikely(!inode->i_op->lookup))
1560 				add_flags = DCACHE_AUTODIR_TYPE;
1561 			else
1562 				inode->i_opflags |= IOP_LOOKUP;
1563 		}
1564 	} else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1565 		if (unlikely(inode->i_op->follow_link))
1566 			add_flags = DCACHE_SYMLINK_TYPE;
1567 		else
1568 			inode->i_opflags |= IOP_NOFOLLOW;
1569 	}
1570 
1571 	if (unlikely(IS_AUTOMOUNT(inode)))
1572 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1573 	return add_flags;
1574 }
1575 
1576 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1577 {
1578 	unsigned add_flags = d_flags_for_inode(inode);
1579 
1580 	spin_lock(&dentry->d_lock);
1581 	__d_set_type(dentry, add_flags);
1582 	if (inode)
1583 		hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1584 	dentry->d_inode = inode;
1585 	dentry_rcuwalk_barrier(dentry);
1586 	spin_unlock(&dentry->d_lock);
1587 	fsnotify_d_instantiate(dentry, inode);
1588 }
1589 
1590 /**
1591  * d_instantiate - fill in inode information for a dentry
1592  * @entry: dentry to complete
1593  * @inode: inode to attach to this dentry
1594  *
1595  * Fill in inode information in the entry.
1596  *
1597  * This turns negative dentries into productive full members
1598  * of society.
1599  *
1600  * NOTE! This assumes that the inode count has been incremented
1601  * (or otherwise set) by the caller to indicate that it is now
1602  * in use by the dcache.
1603  */
1604 
1605 void d_instantiate(struct dentry *entry, struct inode * inode)
1606 {
1607 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1608 	if (inode)
1609 		spin_lock(&inode->i_lock);
1610 	__d_instantiate(entry, inode);
1611 	if (inode)
1612 		spin_unlock(&inode->i_lock);
1613 	security_d_instantiate(entry, inode);
1614 }
1615 EXPORT_SYMBOL(d_instantiate);
1616 
1617 /**
1618  * d_instantiate_unique - instantiate a non-aliased dentry
1619  * @entry: dentry to instantiate
1620  * @inode: inode to attach to this dentry
1621  *
1622  * Fill in inode information in the entry. On success, it returns NULL.
1623  * If an unhashed alias of "entry" already exists, then we return the
1624  * aliased dentry instead and drop one reference to inode.
1625  *
1626  * Note that in order to avoid conflicts with rename() etc, the caller
1627  * had better be holding the parent directory semaphore.
1628  *
1629  * This also assumes that the inode count has been incremented
1630  * (or otherwise set) by the caller to indicate that it is now
1631  * in use by the dcache.
1632  */
1633 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1634 					     struct inode *inode)
1635 {
1636 	struct dentry *alias;
1637 	int len = entry->d_name.len;
1638 	const char *name = entry->d_name.name;
1639 	unsigned int hash = entry->d_name.hash;
1640 
1641 	if (!inode) {
1642 		__d_instantiate(entry, NULL);
1643 		return NULL;
1644 	}
1645 
1646 	hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1647 		/*
1648 		 * Don't need alias->d_lock here, because aliases with
1649 		 * d_parent == entry->d_parent are not subject to name or
1650 		 * parent changes, because the parent inode i_mutex is held.
1651 		 */
1652 		if (alias->d_name.hash != hash)
1653 			continue;
1654 		if (alias->d_parent != entry->d_parent)
1655 			continue;
1656 		if (alias->d_name.len != len)
1657 			continue;
1658 		if (dentry_cmp(alias, name, len))
1659 			continue;
1660 		__dget(alias);
1661 		return alias;
1662 	}
1663 
1664 	__d_instantiate(entry, inode);
1665 	return NULL;
1666 }
1667 
1668 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1669 {
1670 	struct dentry *result;
1671 
1672 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1673 
1674 	if (inode)
1675 		spin_lock(&inode->i_lock);
1676 	result = __d_instantiate_unique(entry, inode);
1677 	if (inode)
1678 		spin_unlock(&inode->i_lock);
1679 
1680 	if (!result) {
1681 		security_d_instantiate(entry, inode);
1682 		return NULL;
1683 	}
1684 
1685 	BUG_ON(!d_unhashed(result));
1686 	iput(inode);
1687 	return result;
1688 }
1689 
1690 EXPORT_SYMBOL(d_instantiate_unique);
1691 
1692 /**
1693  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1694  * @entry: dentry to complete
1695  * @inode: inode to attach to this dentry
1696  *
1697  * Fill in inode information in the entry.  If a directory alias is found, then
1698  * return an error (and drop inode).  Together with d_materialise_unique() this
1699  * guarantees that a directory inode may never have more than one alias.
1700  */
1701 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1702 {
1703 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1704 
1705 	spin_lock(&inode->i_lock);
1706 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1707 		spin_unlock(&inode->i_lock);
1708 		iput(inode);
1709 		return -EBUSY;
1710 	}
1711 	__d_instantiate(entry, inode);
1712 	spin_unlock(&inode->i_lock);
1713 	security_d_instantiate(entry, inode);
1714 
1715 	return 0;
1716 }
1717 EXPORT_SYMBOL(d_instantiate_no_diralias);
1718 
1719 struct dentry *d_make_root(struct inode *root_inode)
1720 {
1721 	struct dentry *res = NULL;
1722 
1723 	if (root_inode) {
1724 		static const struct qstr name = QSTR_INIT("/", 1);
1725 
1726 		res = __d_alloc(root_inode->i_sb, &name);
1727 		if (res)
1728 			d_instantiate(res, root_inode);
1729 		else
1730 			iput(root_inode);
1731 	}
1732 	return res;
1733 }
1734 EXPORT_SYMBOL(d_make_root);
1735 
1736 static struct dentry * __d_find_any_alias(struct inode *inode)
1737 {
1738 	struct dentry *alias;
1739 
1740 	if (hlist_empty(&inode->i_dentry))
1741 		return NULL;
1742 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1743 	__dget(alias);
1744 	return alias;
1745 }
1746 
1747 /**
1748  * d_find_any_alias - find any alias for a given inode
1749  * @inode: inode to find an alias for
1750  *
1751  * If any aliases exist for the given inode, take and return a
1752  * reference for one of them.  If no aliases exist, return %NULL.
1753  */
1754 struct dentry *d_find_any_alias(struct inode *inode)
1755 {
1756 	struct dentry *de;
1757 
1758 	spin_lock(&inode->i_lock);
1759 	de = __d_find_any_alias(inode);
1760 	spin_unlock(&inode->i_lock);
1761 	return de;
1762 }
1763 EXPORT_SYMBOL(d_find_any_alias);
1764 
1765 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1766 {
1767 	static const struct qstr anonstring = QSTR_INIT("/", 1);
1768 	struct dentry *tmp;
1769 	struct dentry *res;
1770 	unsigned add_flags;
1771 
1772 	if (!inode)
1773 		return ERR_PTR(-ESTALE);
1774 	if (IS_ERR(inode))
1775 		return ERR_CAST(inode);
1776 
1777 	res = d_find_any_alias(inode);
1778 	if (res)
1779 		goto out_iput;
1780 
1781 	tmp = __d_alloc(inode->i_sb, &anonstring);
1782 	if (!tmp) {
1783 		res = ERR_PTR(-ENOMEM);
1784 		goto out_iput;
1785 	}
1786 
1787 	spin_lock(&inode->i_lock);
1788 	res = __d_find_any_alias(inode);
1789 	if (res) {
1790 		spin_unlock(&inode->i_lock);
1791 		dput(tmp);
1792 		goto out_iput;
1793 	}
1794 
1795 	/* attach a disconnected dentry */
1796 	add_flags = d_flags_for_inode(inode);
1797 
1798 	if (disconnected)
1799 		add_flags |= DCACHE_DISCONNECTED;
1800 
1801 	spin_lock(&tmp->d_lock);
1802 	tmp->d_inode = inode;
1803 	tmp->d_flags |= add_flags;
1804 	hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1805 	hlist_bl_lock(&tmp->d_sb->s_anon);
1806 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1807 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1808 	spin_unlock(&tmp->d_lock);
1809 	spin_unlock(&inode->i_lock);
1810 	security_d_instantiate(tmp, inode);
1811 
1812 	return tmp;
1813 
1814  out_iput:
1815 	if (res && !IS_ERR(res))
1816 		security_d_instantiate(res, inode);
1817 	iput(inode);
1818 	return res;
1819 }
1820 
1821 /**
1822  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1823  * @inode: inode to allocate the dentry for
1824  *
1825  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1826  * similar open by handle operations.  The returned dentry may be anonymous,
1827  * or may have a full name (if the inode was already in the cache).
1828  *
1829  * When called on a directory inode, we must ensure that the inode only ever
1830  * has one dentry.  If a dentry is found, that is returned instead of
1831  * allocating a new one.
1832  *
1833  * On successful return, the reference to the inode has been transferred
1834  * to the dentry.  In case of an error the reference on the inode is released.
1835  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1836  * be passed in and the error will be propagated to the return value,
1837  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1838  */
1839 struct dentry *d_obtain_alias(struct inode *inode)
1840 {
1841 	return __d_obtain_alias(inode, 1);
1842 }
1843 EXPORT_SYMBOL(d_obtain_alias);
1844 
1845 /**
1846  * d_obtain_root - find or allocate a dentry for a given inode
1847  * @inode: inode to allocate the dentry for
1848  *
1849  * Obtain an IS_ROOT dentry for the root of a filesystem.
1850  *
1851  * We must ensure that directory inodes only ever have one dentry.  If a
1852  * dentry is found, that is returned instead of allocating a new one.
1853  *
1854  * On successful return, the reference to the inode has been transferred
1855  * to the dentry.  In case of an error the reference on the inode is
1856  * released.  A %NULL or IS_ERR inode may be passed in and will be the
1857  * error will be propagate to the return value, with a %NULL @inode
1858  * replaced by ERR_PTR(-ESTALE).
1859  */
1860 struct dentry *d_obtain_root(struct inode *inode)
1861 {
1862 	return __d_obtain_alias(inode, 0);
1863 }
1864 EXPORT_SYMBOL(d_obtain_root);
1865 
1866 /**
1867  * d_add_ci - lookup or allocate new dentry with case-exact name
1868  * @inode:  the inode case-insensitive lookup has found
1869  * @dentry: the negative dentry that was passed to the parent's lookup func
1870  * @name:   the case-exact name to be associated with the returned dentry
1871  *
1872  * This is to avoid filling the dcache with case-insensitive names to the
1873  * same inode, only the actual correct case is stored in the dcache for
1874  * case-insensitive filesystems.
1875  *
1876  * For a case-insensitive lookup match and if the the case-exact dentry
1877  * already exists in in the dcache, use it and return it.
1878  *
1879  * If no entry exists with the exact case name, allocate new dentry with
1880  * the exact case, and return the spliced entry.
1881  */
1882 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1883 			struct qstr *name)
1884 {
1885 	struct dentry *found;
1886 	struct dentry *new;
1887 
1888 	/*
1889 	 * First check if a dentry matching the name already exists,
1890 	 * if not go ahead and create it now.
1891 	 */
1892 	found = d_hash_and_lookup(dentry->d_parent, name);
1893 	if (unlikely(IS_ERR(found)))
1894 		goto err_out;
1895 	if (!found) {
1896 		new = d_alloc(dentry->d_parent, name);
1897 		if (!new) {
1898 			found = ERR_PTR(-ENOMEM);
1899 			goto err_out;
1900 		}
1901 
1902 		found = d_splice_alias(inode, new);
1903 		if (found) {
1904 			dput(new);
1905 			return found;
1906 		}
1907 		return new;
1908 	}
1909 
1910 	/*
1911 	 * If a matching dentry exists, and it's not negative use it.
1912 	 *
1913 	 * Decrement the reference count to balance the iget() done
1914 	 * earlier on.
1915 	 */
1916 	if (found->d_inode) {
1917 		if (unlikely(found->d_inode != inode)) {
1918 			/* This can't happen because bad inodes are unhashed. */
1919 			BUG_ON(!is_bad_inode(inode));
1920 			BUG_ON(!is_bad_inode(found->d_inode));
1921 		}
1922 		iput(inode);
1923 		return found;
1924 	}
1925 
1926 	/*
1927 	 * Negative dentry: instantiate it unless the inode is a directory and
1928 	 * already has a dentry.
1929 	 */
1930 	new = d_splice_alias(inode, found);
1931 	if (new) {
1932 		dput(found);
1933 		found = new;
1934 	}
1935 	return found;
1936 
1937 err_out:
1938 	iput(inode);
1939 	return found;
1940 }
1941 EXPORT_SYMBOL(d_add_ci);
1942 
1943 /*
1944  * Do the slow-case of the dentry name compare.
1945  *
1946  * Unlike the dentry_cmp() function, we need to atomically
1947  * load the name and length information, so that the
1948  * filesystem can rely on them, and can use the 'name' and
1949  * 'len' information without worrying about walking off the
1950  * end of memory etc.
1951  *
1952  * Thus the read_seqcount_retry() and the "duplicate" info
1953  * in arguments (the low-level filesystem should not look
1954  * at the dentry inode or name contents directly, since
1955  * rename can change them while we're in RCU mode).
1956  */
1957 enum slow_d_compare {
1958 	D_COMP_OK,
1959 	D_COMP_NOMATCH,
1960 	D_COMP_SEQRETRY,
1961 };
1962 
1963 static noinline enum slow_d_compare slow_dentry_cmp(
1964 		const struct dentry *parent,
1965 		struct dentry *dentry,
1966 		unsigned int seq,
1967 		const struct qstr *name)
1968 {
1969 	int tlen = dentry->d_name.len;
1970 	const char *tname = dentry->d_name.name;
1971 
1972 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
1973 		cpu_relax();
1974 		return D_COMP_SEQRETRY;
1975 	}
1976 	if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1977 		return D_COMP_NOMATCH;
1978 	return D_COMP_OK;
1979 }
1980 
1981 /**
1982  * __d_lookup_rcu - search for a dentry (racy, store-free)
1983  * @parent: parent dentry
1984  * @name: qstr of name we wish to find
1985  * @seqp: returns d_seq value at the point where the dentry was found
1986  * Returns: dentry, or NULL
1987  *
1988  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1989  * resolution (store-free path walking) design described in
1990  * Documentation/filesystems/path-lookup.txt.
1991  *
1992  * This is not to be used outside core vfs.
1993  *
1994  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1995  * held, and rcu_read_lock held. The returned dentry must not be stored into
1996  * without taking d_lock and checking d_seq sequence count against @seq
1997  * returned here.
1998  *
1999  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2000  * function.
2001  *
2002  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2003  * the returned dentry, so long as its parent's seqlock is checked after the
2004  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2005  * is formed, giving integrity down the path walk.
2006  *
2007  * NOTE! The caller *has* to check the resulting dentry against the sequence
2008  * number we've returned before using any of the resulting dentry state!
2009  */
2010 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2011 				const struct qstr *name,
2012 				unsigned *seqp)
2013 {
2014 	u64 hashlen = name->hash_len;
2015 	const unsigned char *str = name->name;
2016 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2017 	struct hlist_bl_node *node;
2018 	struct dentry *dentry;
2019 
2020 	/*
2021 	 * Note: There is significant duplication with __d_lookup_rcu which is
2022 	 * required to prevent single threaded performance regressions
2023 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2024 	 * Keep the two functions in sync.
2025 	 */
2026 
2027 	/*
2028 	 * The hash list is protected using RCU.
2029 	 *
2030 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2031 	 * races with d_move().
2032 	 *
2033 	 * It is possible that concurrent renames can mess up our list
2034 	 * walk here and result in missing our dentry, resulting in the
2035 	 * false-negative result. d_lookup() protects against concurrent
2036 	 * renames using rename_lock seqlock.
2037 	 *
2038 	 * See Documentation/filesystems/path-lookup.txt for more details.
2039 	 */
2040 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2041 		unsigned seq;
2042 
2043 seqretry:
2044 		/*
2045 		 * The dentry sequence count protects us from concurrent
2046 		 * renames, and thus protects parent and name fields.
2047 		 *
2048 		 * The caller must perform a seqcount check in order
2049 		 * to do anything useful with the returned dentry.
2050 		 *
2051 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2052 		 * we don't wait for the sequence count to stabilize if it
2053 		 * is in the middle of a sequence change. If we do the slow
2054 		 * dentry compare, we will do seqretries until it is stable,
2055 		 * and if we end up with a successful lookup, we actually
2056 		 * want to exit RCU lookup anyway.
2057 		 */
2058 		seq = raw_seqcount_begin(&dentry->d_seq);
2059 		if (dentry->d_parent != parent)
2060 			continue;
2061 		if (d_unhashed(dentry))
2062 			continue;
2063 
2064 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2065 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2066 				continue;
2067 			*seqp = seq;
2068 			switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2069 			case D_COMP_OK:
2070 				return dentry;
2071 			case D_COMP_NOMATCH:
2072 				continue;
2073 			default:
2074 				goto seqretry;
2075 			}
2076 		}
2077 
2078 		if (dentry->d_name.hash_len != hashlen)
2079 			continue;
2080 		*seqp = seq;
2081 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2082 			return dentry;
2083 	}
2084 	return NULL;
2085 }
2086 
2087 /**
2088  * d_lookup - search for a dentry
2089  * @parent: parent dentry
2090  * @name: qstr of name we wish to find
2091  * Returns: dentry, or NULL
2092  *
2093  * d_lookup searches the children of the parent dentry for the name in
2094  * question. If the dentry is found its reference count is incremented and the
2095  * dentry is returned. The caller must use dput to free the entry when it has
2096  * finished using it. %NULL is returned if the dentry does not exist.
2097  */
2098 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2099 {
2100 	struct dentry *dentry;
2101 	unsigned seq;
2102 
2103         do {
2104                 seq = read_seqbegin(&rename_lock);
2105                 dentry = __d_lookup(parent, name);
2106                 if (dentry)
2107 			break;
2108 	} while (read_seqretry(&rename_lock, seq));
2109 	return dentry;
2110 }
2111 EXPORT_SYMBOL(d_lookup);
2112 
2113 /**
2114  * __d_lookup - search for a dentry (racy)
2115  * @parent: parent dentry
2116  * @name: qstr of name we wish to find
2117  * Returns: dentry, or NULL
2118  *
2119  * __d_lookup is like d_lookup, however it may (rarely) return a
2120  * false-negative result due to unrelated rename activity.
2121  *
2122  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2123  * however it must be used carefully, eg. with a following d_lookup in
2124  * the case of failure.
2125  *
2126  * __d_lookup callers must be commented.
2127  */
2128 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2129 {
2130 	unsigned int len = name->len;
2131 	unsigned int hash = name->hash;
2132 	const unsigned char *str = name->name;
2133 	struct hlist_bl_head *b = d_hash(parent, hash);
2134 	struct hlist_bl_node *node;
2135 	struct dentry *found = NULL;
2136 	struct dentry *dentry;
2137 
2138 	/*
2139 	 * Note: There is significant duplication with __d_lookup_rcu which is
2140 	 * required to prevent single threaded performance regressions
2141 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2142 	 * Keep the two functions in sync.
2143 	 */
2144 
2145 	/*
2146 	 * The hash list is protected using RCU.
2147 	 *
2148 	 * Take d_lock when comparing a candidate dentry, to avoid races
2149 	 * with d_move().
2150 	 *
2151 	 * It is possible that concurrent renames can mess up our list
2152 	 * walk here and result in missing our dentry, resulting in the
2153 	 * false-negative result. d_lookup() protects against concurrent
2154 	 * renames using rename_lock seqlock.
2155 	 *
2156 	 * See Documentation/filesystems/path-lookup.txt for more details.
2157 	 */
2158 	rcu_read_lock();
2159 
2160 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2161 
2162 		if (dentry->d_name.hash != hash)
2163 			continue;
2164 
2165 		spin_lock(&dentry->d_lock);
2166 		if (dentry->d_parent != parent)
2167 			goto next;
2168 		if (d_unhashed(dentry))
2169 			goto next;
2170 
2171 		/*
2172 		 * It is safe to compare names since d_move() cannot
2173 		 * change the qstr (protected by d_lock).
2174 		 */
2175 		if (parent->d_flags & DCACHE_OP_COMPARE) {
2176 			int tlen = dentry->d_name.len;
2177 			const char *tname = dentry->d_name.name;
2178 			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2179 				goto next;
2180 		} else {
2181 			if (dentry->d_name.len != len)
2182 				goto next;
2183 			if (dentry_cmp(dentry, str, len))
2184 				goto next;
2185 		}
2186 
2187 		dentry->d_lockref.count++;
2188 		found = dentry;
2189 		spin_unlock(&dentry->d_lock);
2190 		break;
2191 next:
2192 		spin_unlock(&dentry->d_lock);
2193  	}
2194  	rcu_read_unlock();
2195 
2196  	return found;
2197 }
2198 
2199 /**
2200  * d_hash_and_lookup - hash the qstr then search for a dentry
2201  * @dir: Directory to search in
2202  * @name: qstr of name we wish to find
2203  *
2204  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2205  */
2206 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2207 {
2208 	/*
2209 	 * Check for a fs-specific hash function. Note that we must
2210 	 * calculate the standard hash first, as the d_op->d_hash()
2211 	 * routine may choose to leave the hash value unchanged.
2212 	 */
2213 	name->hash = full_name_hash(name->name, name->len);
2214 	if (dir->d_flags & DCACHE_OP_HASH) {
2215 		int err = dir->d_op->d_hash(dir, name);
2216 		if (unlikely(err < 0))
2217 			return ERR_PTR(err);
2218 	}
2219 	return d_lookup(dir, name);
2220 }
2221 EXPORT_SYMBOL(d_hash_and_lookup);
2222 
2223 /**
2224  * d_validate - verify dentry provided from insecure source (deprecated)
2225  * @dentry: The dentry alleged to be valid child of @dparent
2226  * @dparent: The parent dentry (known to be valid)
2227  *
2228  * An insecure source has sent us a dentry, here we verify it and dget() it.
2229  * This is used by ncpfs in its readdir implementation.
2230  * Zero is returned in the dentry is invalid.
2231  *
2232  * This function is slow for big directories, and deprecated, do not use it.
2233  */
2234 int d_validate(struct dentry *dentry, struct dentry *dparent)
2235 {
2236 	struct dentry *child;
2237 
2238 	spin_lock(&dparent->d_lock);
2239 	list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2240 		if (dentry == child) {
2241 			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2242 			__dget_dlock(dentry);
2243 			spin_unlock(&dentry->d_lock);
2244 			spin_unlock(&dparent->d_lock);
2245 			return 1;
2246 		}
2247 	}
2248 	spin_unlock(&dparent->d_lock);
2249 
2250 	return 0;
2251 }
2252 EXPORT_SYMBOL(d_validate);
2253 
2254 /*
2255  * When a file is deleted, we have two options:
2256  * - turn this dentry into a negative dentry
2257  * - unhash this dentry and free it.
2258  *
2259  * Usually, we want to just turn this into
2260  * a negative dentry, but if anybody else is
2261  * currently using the dentry or the inode
2262  * we can't do that and we fall back on removing
2263  * it from the hash queues and waiting for
2264  * it to be deleted later when it has no users
2265  */
2266 
2267 /**
2268  * d_delete - delete a dentry
2269  * @dentry: The dentry to delete
2270  *
2271  * Turn the dentry into a negative dentry if possible, otherwise
2272  * remove it from the hash queues so it can be deleted later
2273  */
2274 
2275 void d_delete(struct dentry * dentry)
2276 {
2277 	struct inode *inode;
2278 	int isdir = 0;
2279 	/*
2280 	 * Are we the only user?
2281 	 */
2282 again:
2283 	spin_lock(&dentry->d_lock);
2284 	inode = dentry->d_inode;
2285 	isdir = S_ISDIR(inode->i_mode);
2286 	if (dentry->d_lockref.count == 1) {
2287 		if (!spin_trylock(&inode->i_lock)) {
2288 			spin_unlock(&dentry->d_lock);
2289 			cpu_relax();
2290 			goto again;
2291 		}
2292 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2293 		dentry_unlink_inode(dentry);
2294 		fsnotify_nameremove(dentry, isdir);
2295 		return;
2296 	}
2297 
2298 	if (!d_unhashed(dentry))
2299 		__d_drop(dentry);
2300 
2301 	spin_unlock(&dentry->d_lock);
2302 
2303 	fsnotify_nameremove(dentry, isdir);
2304 }
2305 EXPORT_SYMBOL(d_delete);
2306 
2307 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2308 {
2309 	BUG_ON(!d_unhashed(entry));
2310 	hlist_bl_lock(b);
2311 	entry->d_flags |= DCACHE_RCUACCESS;
2312 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2313 	hlist_bl_unlock(b);
2314 }
2315 
2316 static void _d_rehash(struct dentry * entry)
2317 {
2318 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2319 }
2320 
2321 /**
2322  * d_rehash	- add an entry back to the hash
2323  * @entry: dentry to add to the hash
2324  *
2325  * Adds a dentry to the hash according to its name.
2326  */
2327 
2328 void d_rehash(struct dentry * entry)
2329 {
2330 	spin_lock(&entry->d_lock);
2331 	_d_rehash(entry);
2332 	spin_unlock(&entry->d_lock);
2333 }
2334 EXPORT_SYMBOL(d_rehash);
2335 
2336 /**
2337  * dentry_update_name_case - update case insensitive dentry with a new name
2338  * @dentry: dentry to be updated
2339  * @name: new name
2340  *
2341  * Update a case insensitive dentry with new case of name.
2342  *
2343  * dentry must have been returned by d_lookup with name @name. Old and new
2344  * name lengths must match (ie. no d_compare which allows mismatched name
2345  * lengths).
2346  *
2347  * Parent inode i_mutex must be held over d_lookup and into this call (to
2348  * keep renames and concurrent inserts, and readdir(2) away).
2349  */
2350 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2351 {
2352 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2353 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2354 
2355 	spin_lock(&dentry->d_lock);
2356 	write_seqcount_begin(&dentry->d_seq);
2357 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2358 	write_seqcount_end(&dentry->d_seq);
2359 	spin_unlock(&dentry->d_lock);
2360 }
2361 EXPORT_SYMBOL(dentry_update_name_case);
2362 
2363 static void swap_names(struct dentry *dentry, struct dentry *target)
2364 {
2365 	if (unlikely(dname_external(target))) {
2366 		if (unlikely(dname_external(dentry))) {
2367 			/*
2368 			 * Both external: swap the pointers
2369 			 */
2370 			swap(target->d_name.name, dentry->d_name.name);
2371 		} else {
2372 			/*
2373 			 * dentry:internal, target:external.  Steal target's
2374 			 * storage and make target internal.
2375 			 */
2376 			memcpy(target->d_iname, dentry->d_name.name,
2377 					dentry->d_name.len + 1);
2378 			dentry->d_name.name = target->d_name.name;
2379 			target->d_name.name = target->d_iname;
2380 		}
2381 	} else {
2382 		if (unlikely(dname_external(dentry))) {
2383 			/*
2384 			 * dentry:external, target:internal.  Give dentry's
2385 			 * storage to target and make dentry internal
2386 			 */
2387 			memcpy(dentry->d_iname, target->d_name.name,
2388 					target->d_name.len + 1);
2389 			target->d_name.name = dentry->d_name.name;
2390 			dentry->d_name.name = dentry->d_iname;
2391 		} else {
2392 			/*
2393 			 * Both are internal.
2394 			 */
2395 			unsigned int i;
2396 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2397 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2398 				swap(((long *) &dentry->d_iname)[i],
2399 				     ((long *) &target->d_iname)[i]);
2400 			}
2401 		}
2402 	}
2403 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2404 }
2405 
2406 static void copy_name(struct dentry *dentry, struct dentry *target)
2407 {
2408 	struct external_name *old_name = NULL;
2409 	if (unlikely(dname_external(dentry)))
2410 		old_name = external_name(dentry);
2411 	if (unlikely(dname_external(target))) {
2412 		atomic_inc(&external_name(target)->u.count);
2413 		dentry->d_name = target->d_name;
2414 	} else {
2415 		memcpy(dentry->d_iname, target->d_name.name,
2416 				target->d_name.len + 1);
2417 		dentry->d_name.name = dentry->d_iname;
2418 		dentry->d_name.hash_len = target->d_name.hash_len;
2419 	}
2420 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2421 		kfree_rcu(old_name, u.head);
2422 }
2423 
2424 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2425 {
2426 	/*
2427 	 * XXXX: do we really need to take target->d_lock?
2428 	 */
2429 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2430 		spin_lock(&target->d_parent->d_lock);
2431 	else {
2432 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2433 			spin_lock(&dentry->d_parent->d_lock);
2434 			spin_lock_nested(&target->d_parent->d_lock,
2435 						DENTRY_D_LOCK_NESTED);
2436 		} else {
2437 			spin_lock(&target->d_parent->d_lock);
2438 			spin_lock_nested(&dentry->d_parent->d_lock,
2439 						DENTRY_D_LOCK_NESTED);
2440 		}
2441 	}
2442 	if (target < dentry) {
2443 		spin_lock_nested(&target->d_lock, 2);
2444 		spin_lock_nested(&dentry->d_lock, 3);
2445 	} else {
2446 		spin_lock_nested(&dentry->d_lock, 2);
2447 		spin_lock_nested(&target->d_lock, 3);
2448 	}
2449 }
2450 
2451 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2452 {
2453 	if (target->d_parent != dentry->d_parent)
2454 		spin_unlock(&dentry->d_parent->d_lock);
2455 	if (target->d_parent != target)
2456 		spin_unlock(&target->d_parent->d_lock);
2457 	spin_unlock(&target->d_lock);
2458 	spin_unlock(&dentry->d_lock);
2459 }
2460 
2461 /*
2462  * When switching names, the actual string doesn't strictly have to
2463  * be preserved in the target - because we're dropping the target
2464  * anyway. As such, we can just do a simple memcpy() to copy over
2465  * the new name before we switch, unless we are going to rehash
2466  * it.  Note that if we *do* unhash the target, we are not allowed
2467  * to rehash it without giving it a new name/hash key - whether
2468  * we swap or overwrite the names here, resulting name won't match
2469  * the reality in filesystem; it's only there for d_path() purposes.
2470  * Note that all of this is happening under rename_lock, so the
2471  * any hash lookup seeing it in the middle of manipulations will
2472  * be discarded anyway.  So we do not care what happens to the hash
2473  * key in that case.
2474  */
2475 /*
2476  * __d_move - move a dentry
2477  * @dentry: entry to move
2478  * @target: new dentry
2479  * @exchange: exchange the two dentries
2480  *
2481  * Update the dcache to reflect the move of a file name. Negative
2482  * dcache entries should not be moved in this way. Caller must hold
2483  * rename_lock, the i_mutex of the source and target directories,
2484  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2485  */
2486 static void __d_move(struct dentry *dentry, struct dentry *target,
2487 		     bool exchange)
2488 {
2489 	if (!dentry->d_inode)
2490 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2491 
2492 	BUG_ON(d_ancestor(dentry, target));
2493 	BUG_ON(d_ancestor(target, dentry));
2494 
2495 	dentry_lock_for_move(dentry, target);
2496 
2497 	write_seqcount_begin(&dentry->d_seq);
2498 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2499 
2500 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2501 
2502 	/*
2503 	 * Move the dentry to the target hash queue. Don't bother checking
2504 	 * for the same hash queue because of how unlikely it is.
2505 	 */
2506 	__d_drop(dentry);
2507 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2508 
2509 	/*
2510 	 * Unhash the target (d_delete() is not usable here).  If exchanging
2511 	 * the two dentries, then rehash onto the other's hash queue.
2512 	 */
2513 	__d_drop(target);
2514 	if (exchange) {
2515 		__d_rehash(target,
2516 			   d_hash(dentry->d_parent, dentry->d_name.hash));
2517 	}
2518 
2519 	/* Switch the names.. */
2520 	if (exchange)
2521 		swap_names(dentry, target);
2522 	else
2523 		copy_name(dentry, target);
2524 
2525 	/* ... and switch them in the tree */
2526 	if (IS_ROOT(dentry)) {
2527 		/* splicing a tree */
2528 		dentry->d_parent = target->d_parent;
2529 		target->d_parent = target;
2530 		list_del_init(&target->d_u.d_child);
2531 		list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2532 	} else {
2533 		/* swapping two dentries */
2534 		swap(dentry->d_parent, target->d_parent);
2535 		list_move(&target->d_u.d_child, &target->d_parent->d_subdirs);
2536 		list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2537 		if (exchange)
2538 			fsnotify_d_move(target);
2539 		fsnotify_d_move(dentry);
2540 	}
2541 
2542 	write_seqcount_end(&target->d_seq);
2543 	write_seqcount_end(&dentry->d_seq);
2544 
2545 	dentry_unlock_for_move(dentry, target);
2546 }
2547 
2548 /*
2549  * d_move - move a dentry
2550  * @dentry: entry to move
2551  * @target: new dentry
2552  *
2553  * Update the dcache to reflect the move of a file name. Negative
2554  * dcache entries should not be moved in this way. See the locking
2555  * requirements for __d_move.
2556  */
2557 void d_move(struct dentry *dentry, struct dentry *target)
2558 {
2559 	write_seqlock(&rename_lock);
2560 	__d_move(dentry, target, false);
2561 	write_sequnlock(&rename_lock);
2562 }
2563 EXPORT_SYMBOL(d_move);
2564 
2565 /*
2566  * d_exchange - exchange two dentries
2567  * @dentry1: first dentry
2568  * @dentry2: second dentry
2569  */
2570 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2571 {
2572 	write_seqlock(&rename_lock);
2573 
2574 	WARN_ON(!dentry1->d_inode);
2575 	WARN_ON(!dentry2->d_inode);
2576 	WARN_ON(IS_ROOT(dentry1));
2577 	WARN_ON(IS_ROOT(dentry2));
2578 
2579 	__d_move(dentry1, dentry2, true);
2580 
2581 	write_sequnlock(&rename_lock);
2582 }
2583 
2584 /**
2585  * d_ancestor - search for an ancestor
2586  * @p1: ancestor dentry
2587  * @p2: child dentry
2588  *
2589  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2590  * an ancestor of p2, else NULL.
2591  */
2592 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2593 {
2594 	struct dentry *p;
2595 
2596 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2597 		if (p->d_parent == p1)
2598 			return p;
2599 	}
2600 	return NULL;
2601 }
2602 
2603 /*
2604  * This helper attempts to cope with remotely renamed directories
2605  *
2606  * It assumes that the caller is already holding
2607  * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2608  *
2609  * Note: If ever the locking in lock_rename() changes, then please
2610  * remember to update this too...
2611  */
2612 static struct dentry *__d_unalias(struct inode *inode,
2613 		struct dentry *dentry, struct dentry *alias)
2614 {
2615 	struct mutex *m1 = NULL, *m2 = NULL;
2616 	struct dentry *ret = ERR_PTR(-EBUSY);
2617 
2618 	/* If alias and dentry share a parent, then no extra locks required */
2619 	if (alias->d_parent == dentry->d_parent)
2620 		goto out_unalias;
2621 
2622 	/* See lock_rename() */
2623 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2624 		goto out_err;
2625 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2626 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2627 		goto out_err;
2628 	m2 = &alias->d_parent->d_inode->i_mutex;
2629 out_unalias:
2630 	__d_move(alias, dentry, false);
2631 	ret = alias;
2632 out_err:
2633 	spin_unlock(&inode->i_lock);
2634 	if (m2)
2635 		mutex_unlock(m2);
2636 	if (m1)
2637 		mutex_unlock(m1);
2638 	return ret;
2639 }
2640 
2641 /**
2642  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2643  * @inode:  the inode which may have a disconnected dentry
2644  * @dentry: a negative dentry which we want to point to the inode.
2645  *
2646  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2647  * place of the given dentry and return it, else simply d_add the inode
2648  * to the dentry and return NULL.
2649  *
2650  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2651  * we should error out: directories can't have multiple aliases.
2652  *
2653  * This is needed in the lookup routine of any filesystem that is exportable
2654  * (via knfsd) so that we can build dcache paths to directories effectively.
2655  *
2656  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2657  * is returned.  This matches the expected return value of ->lookup.
2658  *
2659  * Cluster filesystems may call this function with a negative, hashed dentry.
2660  * In that case, we know that the inode will be a regular file, and also this
2661  * will only occur during atomic_open. So we need to check for the dentry
2662  * being already hashed only in the final case.
2663  */
2664 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2665 {
2666 	struct dentry *new = NULL;
2667 
2668 	if (IS_ERR(inode))
2669 		return ERR_CAST(inode);
2670 
2671 	if (inode && S_ISDIR(inode->i_mode)) {
2672 		spin_lock(&inode->i_lock);
2673 		new = __d_find_any_alias(inode);
2674 		if (new) {
2675 			if (!IS_ROOT(new)) {
2676 				spin_unlock(&inode->i_lock);
2677 				dput(new);
2678 				return ERR_PTR(-EIO);
2679 			}
2680 			if (d_ancestor(new, dentry)) {
2681 				spin_unlock(&inode->i_lock);
2682 				dput(new);
2683 				return ERR_PTR(-EIO);
2684 			}
2685 			write_seqlock(&rename_lock);
2686 			__d_move(new, dentry, false);
2687 			write_sequnlock(&rename_lock);
2688 			spin_unlock(&inode->i_lock);
2689 			security_d_instantiate(new, inode);
2690 			iput(inode);
2691 		} else {
2692 			/* already taking inode->i_lock, so d_add() by hand */
2693 			__d_instantiate(dentry, inode);
2694 			spin_unlock(&inode->i_lock);
2695 			security_d_instantiate(dentry, inode);
2696 			d_rehash(dentry);
2697 		}
2698 	} else {
2699 		d_instantiate(dentry, inode);
2700 		if (d_unhashed(dentry))
2701 			d_rehash(dentry);
2702 	}
2703 	return new;
2704 }
2705 EXPORT_SYMBOL(d_splice_alias);
2706 
2707 /**
2708  * d_materialise_unique - introduce an inode into the tree
2709  * @dentry: candidate dentry
2710  * @inode: inode to bind to the dentry, to which aliases may be attached
2711  *
2712  * Introduces an dentry into the tree, substituting an extant disconnected
2713  * root directory alias in its place if there is one. Caller must hold the
2714  * i_mutex of the parent directory.
2715  */
2716 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2717 {
2718 	struct dentry *actual;
2719 
2720 	BUG_ON(!d_unhashed(dentry));
2721 
2722 	if (!inode) {
2723 		actual = dentry;
2724 		__d_instantiate(dentry, NULL);
2725 		d_rehash(actual);
2726 		goto out_nolock;
2727 	}
2728 
2729 	spin_lock(&inode->i_lock);
2730 
2731 	if (S_ISDIR(inode->i_mode)) {
2732 		struct dentry *alias;
2733 
2734 		/* Does an aliased dentry already exist? */
2735 		alias = __d_find_alias(inode);
2736 		if (alias) {
2737 			actual = alias;
2738 			write_seqlock(&rename_lock);
2739 
2740 			if (d_ancestor(alias, dentry)) {
2741 				/* Check for loops */
2742 				actual = ERR_PTR(-ELOOP);
2743 				spin_unlock(&inode->i_lock);
2744 			} else if (IS_ROOT(alias)) {
2745 				/* Is this an anonymous mountpoint that we
2746 				 * could splice into our tree? */
2747 				__d_move(alias, dentry, false);
2748 				write_sequnlock(&rename_lock);
2749 				goto found;
2750 			} else {
2751 				/* Nope, but we must(!) avoid directory
2752 				 * aliasing. This drops inode->i_lock */
2753 				actual = __d_unalias(inode, dentry, alias);
2754 			}
2755 			write_sequnlock(&rename_lock);
2756 			if (IS_ERR(actual)) {
2757 				if (PTR_ERR(actual) == -ELOOP)
2758 					pr_warn_ratelimited(
2759 						"VFS: Lookup of '%s' in %s %s"
2760 						" would have caused loop\n",
2761 						dentry->d_name.name,
2762 						inode->i_sb->s_type->name,
2763 						inode->i_sb->s_id);
2764 				dput(alias);
2765 			}
2766 			goto out_nolock;
2767 		}
2768 	}
2769 
2770 	/* Add a unique reference */
2771 	actual = __d_instantiate_unique(dentry, inode);
2772 	if (!actual)
2773 		actual = dentry;
2774 
2775 	d_rehash(actual);
2776 found:
2777 	spin_unlock(&inode->i_lock);
2778 out_nolock:
2779 	if (actual == dentry) {
2780 		security_d_instantiate(dentry, inode);
2781 		return NULL;
2782 	}
2783 
2784 	iput(inode);
2785 	return actual;
2786 }
2787 EXPORT_SYMBOL_GPL(d_materialise_unique);
2788 
2789 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2790 {
2791 	*buflen -= namelen;
2792 	if (*buflen < 0)
2793 		return -ENAMETOOLONG;
2794 	*buffer -= namelen;
2795 	memcpy(*buffer, str, namelen);
2796 	return 0;
2797 }
2798 
2799 /**
2800  * prepend_name - prepend a pathname in front of current buffer pointer
2801  * @buffer: buffer pointer
2802  * @buflen: allocated length of the buffer
2803  * @name:   name string and length qstr structure
2804  *
2805  * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2806  * make sure that either the old or the new name pointer and length are
2807  * fetched. However, there may be mismatch between length and pointer.
2808  * The length cannot be trusted, we need to copy it byte-by-byte until
2809  * the length is reached or a null byte is found. It also prepends "/" at
2810  * the beginning of the name. The sequence number check at the caller will
2811  * retry it again when a d_move() does happen. So any garbage in the buffer
2812  * due to mismatched pointer and length will be discarded.
2813  *
2814  * Data dependency barrier is needed to make sure that we see that terminating
2815  * NUL.  Alpha strikes again, film at 11...
2816  */
2817 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2818 {
2819 	const char *dname = ACCESS_ONCE(name->name);
2820 	u32 dlen = ACCESS_ONCE(name->len);
2821 	char *p;
2822 
2823 	smp_read_barrier_depends();
2824 
2825 	*buflen -= dlen + 1;
2826 	if (*buflen < 0)
2827 		return -ENAMETOOLONG;
2828 	p = *buffer -= dlen + 1;
2829 	*p++ = '/';
2830 	while (dlen--) {
2831 		char c = *dname++;
2832 		if (!c)
2833 			break;
2834 		*p++ = c;
2835 	}
2836 	return 0;
2837 }
2838 
2839 /**
2840  * prepend_path - Prepend path string to a buffer
2841  * @path: the dentry/vfsmount to report
2842  * @root: root vfsmnt/dentry
2843  * @buffer: pointer to the end of the buffer
2844  * @buflen: pointer to buffer length
2845  *
2846  * The function will first try to write out the pathname without taking any
2847  * lock other than the RCU read lock to make sure that dentries won't go away.
2848  * It only checks the sequence number of the global rename_lock as any change
2849  * in the dentry's d_seq will be preceded by changes in the rename_lock
2850  * sequence number. If the sequence number had been changed, it will restart
2851  * the whole pathname back-tracing sequence again by taking the rename_lock.
2852  * In this case, there is no need to take the RCU read lock as the recursive
2853  * parent pointer references will keep the dentry chain alive as long as no
2854  * rename operation is performed.
2855  */
2856 static int prepend_path(const struct path *path,
2857 			const struct path *root,
2858 			char **buffer, int *buflen)
2859 {
2860 	struct dentry *dentry;
2861 	struct vfsmount *vfsmnt;
2862 	struct mount *mnt;
2863 	int error = 0;
2864 	unsigned seq, m_seq = 0;
2865 	char *bptr;
2866 	int blen;
2867 
2868 	rcu_read_lock();
2869 restart_mnt:
2870 	read_seqbegin_or_lock(&mount_lock, &m_seq);
2871 	seq = 0;
2872 	rcu_read_lock();
2873 restart:
2874 	bptr = *buffer;
2875 	blen = *buflen;
2876 	error = 0;
2877 	dentry = path->dentry;
2878 	vfsmnt = path->mnt;
2879 	mnt = real_mount(vfsmnt);
2880 	read_seqbegin_or_lock(&rename_lock, &seq);
2881 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2882 		struct dentry * parent;
2883 
2884 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2885 			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2886 			/* Global root? */
2887 			if (mnt != parent) {
2888 				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2889 				mnt = parent;
2890 				vfsmnt = &mnt->mnt;
2891 				continue;
2892 			}
2893 			/*
2894 			 * Filesystems needing to implement special "root names"
2895 			 * should do so with ->d_dname()
2896 			 */
2897 			if (IS_ROOT(dentry) &&
2898 			   (dentry->d_name.len != 1 ||
2899 			    dentry->d_name.name[0] != '/')) {
2900 				WARN(1, "Root dentry has weird name <%.*s>\n",
2901 				     (int) dentry->d_name.len,
2902 				     dentry->d_name.name);
2903 			}
2904 			if (!error)
2905 				error = is_mounted(vfsmnt) ? 1 : 2;
2906 			break;
2907 		}
2908 		parent = dentry->d_parent;
2909 		prefetch(parent);
2910 		error = prepend_name(&bptr, &blen, &dentry->d_name);
2911 		if (error)
2912 			break;
2913 
2914 		dentry = parent;
2915 	}
2916 	if (!(seq & 1))
2917 		rcu_read_unlock();
2918 	if (need_seqretry(&rename_lock, seq)) {
2919 		seq = 1;
2920 		goto restart;
2921 	}
2922 	done_seqretry(&rename_lock, seq);
2923 
2924 	if (!(m_seq & 1))
2925 		rcu_read_unlock();
2926 	if (need_seqretry(&mount_lock, m_seq)) {
2927 		m_seq = 1;
2928 		goto restart_mnt;
2929 	}
2930 	done_seqretry(&mount_lock, m_seq);
2931 
2932 	if (error >= 0 && bptr == *buffer) {
2933 		if (--blen < 0)
2934 			error = -ENAMETOOLONG;
2935 		else
2936 			*--bptr = '/';
2937 	}
2938 	*buffer = bptr;
2939 	*buflen = blen;
2940 	return error;
2941 }
2942 
2943 /**
2944  * __d_path - return the path of a dentry
2945  * @path: the dentry/vfsmount to report
2946  * @root: root vfsmnt/dentry
2947  * @buf: buffer to return value in
2948  * @buflen: buffer length
2949  *
2950  * Convert a dentry into an ASCII path name.
2951  *
2952  * Returns a pointer into the buffer or an error code if the
2953  * path was too long.
2954  *
2955  * "buflen" should be positive.
2956  *
2957  * If the path is not reachable from the supplied root, return %NULL.
2958  */
2959 char *__d_path(const struct path *path,
2960 	       const struct path *root,
2961 	       char *buf, int buflen)
2962 {
2963 	char *res = buf + buflen;
2964 	int error;
2965 
2966 	prepend(&res, &buflen, "\0", 1);
2967 	error = prepend_path(path, root, &res, &buflen);
2968 
2969 	if (error < 0)
2970 		return ERR_PTR(error);
2971 	if (error > 0)
2972 		return NULL;
2973 	return res;
2974 }
2975 
2976 char *d_absolute_path(const struct path *path,
2977 	       char *buf, int buflen)
2978 {
2979 	struct path root = {};
2980 	char *res = buf + buflen;
2981 	int error;
2982 
2983 	prepend(&res, &buflen, "\0", 1);
2984 	error = prepend_path(path, &root, &res, &buflen);
2985 
2986 	if (error > 1)
2987 		error = -EINVAL;
2988 	if (error < 0)
2989 		return ERR_PTR(error);
2990 	return res;
2991 }
2992 
2993 /*
2994  * same as __d_path but appends "(deleted)" for unlinked files.
2995  */
2996 static int path_with_deleted(const struct path *path,
2997 			     const struct path *root,
2998 			     char **buf, int *buflen)
2999 {
3000 	prepend(buf, buflen, "\0", 1);
3001 	if (d_unlinked(path->dentry)) {
3002 		int error = prepend(buf, buflen, " (deleted)", 10);
3003 		if (error)
3004 			return error;
3005 	}
3006 
3007 	return prepend_path(path, root, buf, buflen);
3008 }
3009 
3010 static int prepend_unreachable(char **buffer, int *buflen)
3011 {
3012 	return prepend(buffer, buflen, "(unreachable)", 13);
3013 }
3014 
3015 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3016 {
3017 	unsigned seq;
3018 
3019 	do {
3020 		seq = read_seqcount_begin(&fs->seq);
3021 		*root = fs->root;
3022 	} while (read_seqcount_retry(&fs->seq, seq));
3023 }
3024 
3025 /**
3026  * d_path - return the path of a dentry
3027  * @path: path to report
3028  * @buf: buffer to return value in
3029  * @buflen: buffer length
3030  *
3031  * Convert a dentry into an ASCII path name. If the entry has been deleted
3032  * the string " (deleted)" is appended. Note that this is ambiguous.
3033  *
3034  * Returns a pointer into the buffer or an error code if the path was
3035  * too long. Note: Callers should use the returned pointer, not the passed
3036  * in buffer, to use the name! The implementation often starts at an offset
3037  * into the buffer, and may leave 0 bytes at the start.
3038  *
3039  * "buflen" should be positive.
3040  */
3041 char *d_path(const struct path *path, char *buf, int buflen)
3042 {
3043 	char *res = buf + buflen;
3044 	struct path root;
3045 	int error;
3046 
3047 	/*
3048 	 * We have various synthetic filesystems that never get mounted.  On
3049 	 * these filesystems dentries are never used for lookup purposes, and
3050 	 * thus don't need to be hashed.  They also don't need a name until a
3051 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3052 	 * below allows us to generate a name for these objects on demand:
3053 	 *
3054 	 * Some pseudo inodes are mountable.  When they are mounted
3055 	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3056 	 * and instead have d_path return the mounted path.
3057 	 */
3058 	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3059 	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3060 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3061 
3062 	rcu_read_lock();
3063 	get_fs_root_rcu(current->fs, &root);
3064 	error = path_with_deleted(path, &root, &res, &buflen);
3065 	rcu_read_unlock();
3066 
3067 	if (error < 0)
3068 		res = ERR_PTR(error);
3069 	return res;
3070 }
3071 EXPORT_SYMBOL(d_path);
3072 
3073 /*
3074  * Helper function for dentry_operations.d_dname() members
3075  */
3076 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3077 			const char *fmt, ...)
3078 {
3079 	va_list args;
3080 	char temp[64];
3081 	int sz;
3082 
3083 	va_start(args, fmt);
3084 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3085 	va_end(args);
3086 
3087 	if (sz > sizeof(temp) || sz > buflen)
3088 		return ERR_PTR(-ENAMETOOLONG);
3089 
3090 	buffer += buflen - sz;
3091 	return memcpy(buffer, temp, sz);
3092 }
3093 
3094 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3095 {
3096 	char *end = buffer + buflen;
3097 	/* these dentries are never renamed, so d_lock is not needed */
3098 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3099 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3100 	    prepend(&end, &buflen, "/", 1))
3101 		end = ERR_PTR(-ENAMETOOLONG);
3102 	return end;
3103 }
3104 EXPORT_SYMBOL(simple_dname);
3105 
3106 /*
3107  * Write full pathname from the root of the filesystem into the buffer.
3108  */
3109 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3110 {
3111 	struct dentry *dentry;
3112 	char *end, *retval;
3113 	int len, seq = 0;
3114 	int error = 0;
3115 
3116 	if (buflen < 2)
3117 		goto Elong;
3118 
3119 	rcu_read_lock();
3120 restart:
3121 	dentry = d;
3122 	end = buf + buflen;
3123 	len = buflen;
3124 	prepend(&end, &len, "\0", 1);
3125 	/* Get '/' right */
3126 	retval = end-1;
3127 	*retval = '/';
3128 	read_seqbegin_or_lock(&rename_lock, &seq);
3129 	while (!IS_ROOT(dentry)) {
3130 		struct dentry *parent = dentry->d_parent;
3131 
3132 		prefetch(parent);
3133 		error = prepend_name(&end, &len, &dentry->d_name);
3134 		if (error)
3135 			break;
3136 
3137 		retval = end;
3138 		dentry = parent;
3139 	}
3140 	if (!(seq & 1))
3141 		rcu_read_unlock();
3142 	if (need_seqretry(&rename_lock, seq)) {
3143 		seq = 1;
3144 		goto restart;
3145 	}
3146 	done_seqretry(&rename_lock, seq);
3147 	if (error)
3148 		goto Elong;
3149 	return retval;
3150 Elong:
3151 	return ERR_PTR(-ENAMETOOLONG);
3152 }
3153 
3154 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3155 {
3156 	return __dentry_path(dentry, buf, buflen);
3157 }
3158 EXPORT_SYMBOL(dentry_path_raw);
3159 
3160 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3161 {
3162 	char *p = NULL;
3163 	char *retval;
3164 
3165 	if (d_unlinked(dentry)) {
3166 		p = buf + buflen;
3167 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3168 			goto Elong;
3169 		buflen++;
3170 	}
3171 	retval = __dentry_path(dentry, buf, buflen);
3172 	if (!IS_ERR(retval) && p)
3173 		*p = '/';	/* restore '/' overriden with '\0' */
3174 	return retval;
3175 Elong:
3176 	return ERR_PTR(-ENAMETOOLONG);
3177 }
3178 
3179 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3180 				    struct path *pwd)
3181 {
3182 	unsigned seq;
3183 
3184 	do {
3185 		seq = read_seqcount_begin(&fs->seq);
3186 		*root = fs->root;
3187 		*pwd = fs->pwd;
3188 	} while (read_seqcount_retry(&fs->seq, seq));
3189 }
3190 
3191 /*
3192  * NOTE! The user-level library version returns a
3193  * character pointer. The kernel system call just
3194  * returns the length of the buffer filled (which
3195  * includes the ending '\0' character), or a negative
3196  * error value. So libc would do something like
3197  *
3198  *	char *getcwd(char * buf, size_t size)
3199  *	{
3200  *		int retval;
3201  *
3202  *		retval = sys_getcwd(buf, size);
3203  *		if (retval >= 0)
3204  *			return buf;
3205  *		errno = -retval;
3206  *		return NULL;
3207  *	}
3208  */
3209 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3210 {
3211 	int error;
3212 	struct path pwd, root;
3213 	char *page = __getname();
3214 
3215 	if (!page)
3216 		return -ENOMEM;
3217 
3218 	rcu_read_lock();
3219 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3220 
3221 	error = -ENOENT;
3222 	if (!d_unlinked(pwd.dentry)) {
3223 		unsigned long len;
3224 		char *cwd = page + PATH_MAX;
3225 		int buflen = PATH_MAX;
3226 
3227 		prepend(&cwd, &buflen, "\0", 1);
3228 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3229 		rcu_read_unlock();
3230 
3231 		if (error < 0)
3232 			goto out;
3233 
3234 		/* Unreachable from current root */
3235 		if (error > 0) {
3236 			error = prepend_unreachable(&cwd, &buflen);
3237 			if (error)
3238 				goto out;
3239 		}
3240 
3241 		error = -ERANGE;
3242 		len = PATH_MAX + page - cwd;
3243 		if (len <= size) {
3244 			error = len;
3245 			if (copy_to_user(buf, cwd, len))
3246 				error = -EFAULT;
3247 		}
3248 	} else {
3249 		rcu_read_unlock();
3250 	}
3251 
3252 out:
3253 	__putname(page);
3254 	return error;
3255 }
3256 
3257 /*
3258  * Test whether new_dentry is a subdirectory of old_dentry.
3259  *
3260  * Trivially implemented using the dcache structure
3261  */
3262 
3263 /**
3264  * is_subdir - is new dentry a subdirectory of old_dentry
3265  * @new_dentry: new dentry
3266  * @old_dentry: old dentry
3267  *
3268  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3269  * Returns 0 otherwise.
3270  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3271  */
3272 
3273 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3274 {
3275 	int result;
3276 	unsigned seq;
3277 
3278 	if (new_dentry == old_dentry)
3279 		return 1;
3280 
3281 	do {
3282 		/* for restarting inner loop in case of seq retry */
3283 		seq = read_seqbegin(&rename_lock);
3284 		/*
3285 		 * Need rcu_readlock to protect against the d_parent trashing
3286 		 * due to d_move
3287 		 */
3288 		rcu_read_lock();
3289 		if (d_ancestor(old_dentry, new_dentry))
3290 			result = 1;
3291 		else
3292 			result = 0;
3293 		rcu_read_unlock();
3294 	} while (read_seqretry(&rename_lock, seq));
3295 
3296 	return result;
3297 }
3298 
3299 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3300 {
3301 	struct dentry *root = data;
3302 	if (dentry != root) {
3303 		if (d_unhashed(dentry) || !dentry->d_inode)
3304 			return D_WALK_SKIP;
3305 
3306 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3307 			dentry->d_flags |= DCACHE_GENOCIDE;
3308 			dentry->d_lockref.count--;
3309 		}
3310 	}
3311 	return D_WALK_CONTINUE;
3312 }
3313 
3314 void d_genocide(struct dentry *parent)
3315 {
3316 	d_walk(parent, parent, d_genocide_kill, NULL);
3317 }
3318 
3319 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3320 {
3321 	inode_dec_link_count(inode);
3322 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3323 		!hlist_unhashed(&dentry->d_alias) ||
3324 		!d_unlinked(dentry));
3325 	spin_lock(&dentry->d_parent->d_lock);
3326 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3327 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3328 				(unsigned long long)inode->i_ino);
3329 	spin_unlock(&dentry->d_lock);
3330 	spin_unlock(&dentry->d_parent->d_lock);
3331 	d_instantiate(dentry, inode);
3332 }
3333 EXPORT_SYMBOL(d_tmpfile);
3334 
3335 static __initdata unsigned long dhash_entries;
3336 static int __init set_dhash_entries(char *str)
3337 {
3338 	if (!str)
3339 		return 0;
3340 	dhash_entries = simple_strtoul(str, &str, 0);
3341 	return 1;
3342 }
3343 __setup("dhash_entries=", set_dhash_entries);
3344 
3345 static void __init dcache_init_early(void)
3346 {
3347 	unsigned int loop;
3348 
3349 	/* If hashes are distributed across NUMA nodes, defer
3350 	 * hash allocation until vmalloc space is available.
3351 	 */
3352 	if (hashdist)
3353 		return;
3354 
3355 	dentry_hashtable =
3356 		alloc_large_system_hash("Dentry cache",
3357 					sizeof(struct hlist_bl_head),
3358 					dhash_entries,
3359 					13,
3360 					HASH_EARLY,
3361 					&d_hash_shift,
3362 					&d_hash_mask,
3363 					0,
3364 					0);
3365 
3366 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3367 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3368 }
3369 
3370 static void __init dcache_init(void)
3371 {
3372 	unsigned int loop;
3373 
3374 	/*
3375 	 * A constructor could be added for stable state like the lists,
3376 	 * but it is probably not worth it because of the cache nature
3377 	 * of the dcache.
3378 	 */
3379 	dentry_cache = KMEM_CACHE(dentry,
3380 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3381 
3382 	/* Hash may have been set up in dcache_init_early */
3383 	if (!hashdist)
3384 		return;
3385 
3386 	dentry_hashtable =
3387 		alloc_large_system_hash("Dentry cache",
3388 					sizeof(struct hlist_bl_head),
3389 					dhash_entries,
3390 					13,
3391 					0,
3392 					&d_hash_shift,
3393 					&d_hash_mask,
3394 					0,
3395 					0);
3396 
3397 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3398 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3399 }
3400 
3401 /* SLAB cache for __getname() consumers */
3402 struct kmem_cache *names_cachep __read_mostly;
3403 EXPORT_SYMBOL(names_cachep);
3404 
3405 EXPORT_SYMBOL(d_genocide);
3406 
3407 void __init vfs_caches_init_early(void)
3408 {
3409 	dcache_init_early();
3410 	inode_init_early();
3411 }
3412 
3413 void __init vfs_caches_init(unsigned long mempages)
3414 {
3415 	unsigned long reserve;
3416 
3417 	/* Base hash sizes on available memory, with a reserve equal to
3418            150% of current kernel size */
3419 
3420 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3421 	mempages -= reserve;
3422 
3423 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3424 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3425 
3426 	dcache_init();
3427 	inode_init();
3428 	files_init(mempages);
3429 	mnt_init();
3430 	bdev_cache_init();
3431 	chrdev_init();
3432 }
3433