xref: /openbmc/linux/fs/dcache.c (revision 1ffe46d11cc88479797b262f60d92e5fb461b411)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include "internal.h"
42 #include "mount.h"
43 
44 /*
45  * Usage:
46  * dcache->d_inode->i_lock protects:
47  *   - i_dentry, d_alias, d_inode of aliases
48  * dcache_hash_bucket lock protects:
49  *   - the dcache hash table
50  * s_anon bl list spinlock protects:
51  *   - the s_anon list (see __d_drop)
52  * dentry->d_sb->s_dentry_lru_lock protects:
53  *   - the dcache lru lists and counters
54  * d_lock protects:
55  *   - d_flags
56  *   - d_name
57  *   - d_lru
58  *   - d_count
59  *   - d_unhashed()
60  *   - d_parent and d_subdirs
61  *   - childrens' d_child and d_parent
62  *   - d_alias, d_inode
63  *
64  * Ordering:
65  * dentry->d_inode->i_lock
66  *   dentry->d_lock
67  *     dentry->d_sb->s_dentry_lru_lock
68  *     dcache_hash_bucket lock
69  *     s_anon lock
70  *
71  * If there is an ancestor relationship:
72  * dentry->d_parent->...->d_parent->d_lock
73  *   ...
74  *     dentry->d_parent->d_lock
75  *       dentry->d_lock
76  *
77  * If no ancestor relationship:
78  * if (dentry1 < dentry2)
79  *   dentry1->d_lock
80  *     dentry2->d_lock
81  */
82 int sysctl_vfs_cache_pressure __read_mostly = 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84 
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 
87 EXPORT_SYMBOL(rename_lock);
88 
89 static struct kmem_cache *dentry_cache __read_mostly;
90 
91 /*
92  * This is the single most critical data structure when it comes
93  * to the dcache: the hashtable for lookups. Somebody should try
94  * to make this good - I've just made it work.
95  *
96  * This hash-function tries to avoid losing too many bits of hash
97  * information, yet avoid using a prime hash-size or similar.
98  */
99 
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
102 
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
104 
105 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
106 					unsigned int hash)
107 {
108 	hash += (unsigned long) parent / L1_CACHE_BYTES;
109 	return dentry_hashtable + hash_32(hash, d_hash_shift);
110 }
111 
112 /* Statistics gathering. */
113 struct dentry_stat_t dentry_stat = {
114 	.age_limit = 45,
115 };
116 
117 static DEFINE_PER_CPU(long, nr_dentry);
118 static DEFINE_PER_CPU(long, nr_dentry_unused);
119 
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121 
122 /*
123  * Here we resort to our own counters instead of using generic per-cpu counters
124  * for consistency with what the vfs inode code does. We are expected to harvest
125  * better code and performance by having our own specialized counters.
126  *
127  * Please note that the loop is done over all possible CPUs, not over all online
128  * CPUs. The reason for this is that we don't want to play games with CPUs going
129  * on and off. If one of them goes off, we will just keep their counters.
130  *
131  * glommer: See cffbc8a for details, and if you ever intend to change this,
132  * please update all vfs counters to match.
133  */
134 static long get_nr_dentry(void)
135 {
136 	int i;
137 	long sum = 0;
138 	for_each_possible_cpu(i)
139 		sum += per_cpu(nr_dentry, i);
140 	return sum < 0 ? 0 : sum;
141 }
142 
143 static long get_nr_dentry_unused(void)
144 {
145 	int i;
146 	long sum = 0;
147 	for_each_possible_cpu(i)
148 		sum += per_cpu(nr_dentry_unused, i);
149 	return sum < 0 ? 0 : sum;
150 }
151 
152 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
153 		   size_t *lenp, loff_t *ppos)
154 {
155 	dentry_stat.nr_dentry = get_nr_dentry();
156 	dentry_stat.nr_unused = get_nr_dentry_unused();
157 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
158 }
159 #endif
160 
161 /*
162  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
163  * The strings are both count bytes long, and count is non-zero.
164  */
165 #ifdef CONFIG_DCACHE_WORD_ACCESS
166 
167 #include <asm/word-at-a-time.h>
168 /*
169  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
170  * aligned allocation for this particular component. We don't
171  * strictly need the load_unaligned_zeropad() safety, but it
172  * doesn't hurt either.
173  *
174  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
175  * need the careful unaligned handling.
176  */
177 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
178 {
179 	unsigned long a,b,mask;
180 
181 	for (;;) {
182 		a = *(unsigned long *)cs;
183 		b = load_unaligned_zeropad(ct);
184 		if (tcount < sizeof(unsigned long))
185 			break;
186 		if (unlikely(a != b))
187 			return 1;
188 		cs += sizeof(unsigned long);
189 		ct += sizeof(unsigned long);
190 		tcount -= sizeof(unsigned long);
191 		if (!tcount)
192 			return 0;
193 	}
194 	mask = bytemask_from_count(tcount);
195 	return unlikely(!!((a ^ b) & mask));
196 }
197 
198 #else
199 
200 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
201 {
202 	do {
203 		if (*cs != *ct)
204 			return 1;
205 		cs++;
206 		ct++;
207 		tcount--;
208 	} while (tcount);
209 	return 0;
210 }
211 
212 #endif
213 
214 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
215 {
216 	const unsigned char *cs;
217 	/*
218 	 * Be careful about RCU walk racing with rename:
219 	 * use ACCESS_ONCE to fetch the name pointer.
220 	 *
221 	 * NOTE! Even if a rename will mean that the length
222 	 * was not loaded atomically, we don't care. The
223 	 * RCU walk will check the sequence count eventually,
224 	 * and catch it. And we won't overrun the buffer,
225 	 * because we're reading the name pointer atomically,
226 	 * and a dentry name is guaranteed to be properly
227 	 * terminated with a NUL byte.
228 	 *
229 	 * End result: even if 'len' is wrong, we'll exit
230 	 * early because the data cannot match (there can
231 	 * be no NUL in the ct/tcount data)
232 	 */
233 	cs = ACCESS_ONCE(dentry->d_name.name);
234 	smp_read_barrier_depends();
235 	return dentry_string_cmp(cs, ct, tcount);
236 }
237 
238 struct external_name {
239 	union {
240 		atomic_t count;
241 		struct rcu_head head;
242 	} u;
243 	unsigned char name[];
244 };
245 
246 static inline struct external_name *external_name(struct dentry *dentry)
247 {
248 	return container_of(dentry->d_name.name, struct external_name, name[0]);
249 }
250 
251 static void __d_free(struct rcu_head *head)
252 {
253 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
254 
255 	WARN_ON(!hlist_unhashed(&dentry->d_alias));
256 	kmem_cache_free(dentry_cache, dentry);
257 }
258 
259 static void __d_free_external(struct rcu_head *head)
260 {
261 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
262 	WARN_ON(!hlist_unhashed(&dentry->d_alias));
263 	kfree(external_name(dentry));
264 	kmem_cache_free(dentry_cache, dentry);
265 }
266 
267 static void dentry_free(struct dentry *dentry)
268 {
269 	if (unlikely(dname_external(dentry))) {
270 		struct external_name *p = external_name(dentry);
271 		if (likely(atomic_dec_and_test(&p->u.count))) {
272 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
273 			return;
274 		}
275 	}
276 	/* if dentry was never visible to RCU, immediate free is OK */
277 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
278 		__d_free(&dentry->d_u.d_rcu);
279 	else
280 		call_rcu(&dentry->d_u.d_rcu, __d_free);
281 }
282 
283 /**
284  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
285  * @dentry: the target dentry
286  * After this call, in-progress rcu-walk path lookup will fail. This
287  * should be called after unhashing, and after changing d_inode (if
288  * the dentry has not already been unhashed).
289  */
290 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
291 {
292 	assert_spin_locked(&dentry->d_lock);
293 	/* Go through a barrier */
294 	write_seqcount_barrier(&dentry->d_seq);
295 }
296 
297 /*
298  * Release the dentry's inode, using the filesystem
299  * d_iput() operation if defined. Dentry has no refcount
300  * and is unhashed.
301  */
302 static void dentry_iput(struct dentry * dentry)
303 	__releases(dentry->d_lock)
304 	__releases(dentry->d_inode->i_lock)
305 {
306 	struct inode *inode = dentry->d_inode;
307 	if (inode) {
308 		dentry->d_inode = NULL;
309 		hlist_del_init(&dentry->d_alias);
310 		spin_unlock(&dentry->d_lock);
311 		spin_unlock(&inode->i_lock);
312 		if (!inode->i_nlink)
313 			fsnotify_inoderemove(inode);
314 		if (dentry->d_op && dentry->d_op->d_iput)
315 			dentry->d_op->d_iput(dentry, inode);
316 		else
317 			iput(inode);
318 	} else {
319 		spin_unlock(&dentry->d_lock);
320 	}
321 }
322 
323 /*
324  * Release the dentry's inode, using the filesystem
325  * d_iput() operation if defined. dentry remains in-use.
326  */
327 static void dentry_unlink_inode(struct dentry * dentry)
328 	__releases(dentry->d_lock)
329 	__releases(dentry->d_inode->i_lock)
330 {
331 	struct inode *inode = dentry->d_inode;
332 	__d_clear_type(dentry);
333 	dentry->d_inode = NULL;
334 	hlist_del_init(&dentry->d_alias);
335 	dentry_rcuwalk_barrier(dentry);
336 	spin_unlock(&dentry->d_lock);
337 	spin_unlock(&inode->i_lock);
338 	if (!inode->i_nlink)
339 		fsnotify_inoderemove(inode);
340 	if (dentry->d_op && dentry->d_op->d_iput)
341 		dentry->d_op->d_iput(dentry, inode);
342 	else
343 		iput(inode);
344 }
345 
346 /*
347  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
348  * is in use - which includes both the "real" per-superblock
349  * LRU list _and_ the DCACHE_SHRINK_LIST use.
350  *
351  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
352  * on the shrink list (ie not on the superblock LRU list).
353  *
354  * The per-cpu "nr_dentry_unused" counters are updated with
355  * the DCACHE_LRU_LIST bit.
356  *
357  * These helper functions make sure we always follow the
358  * rules. d_lock must be held by the caller.
359  */
360 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
361 static void d_lru_add(struct dentry *dentry)
362 {
363 	D_FLAG_VERIFY(dentry, 0);
364 	dentry->d_flags |= DCACHE_LRU_LIST;
365 	this_cpu_inc(nr_dentry_unused);
366 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
367 }
368 
369 static void d_lru_del(struct dentry *dentry)
370 {
371 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
372 	dentry->d_flags &= ~DCACHE_LRU_LIST;
373 	this_cpu_dec(nr_dentry_unused);
374 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
375 }
376 
377 static void d_shrink_del(struct dentry *dentry)
378 {
379 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
380 	list_del_init(&dentry->d_lru);
381 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
382 	this_cpu_dec(nr_dentry_unused);
383 }
384 
385 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
386 {
387 	D_FLAG_VERIFY(dentry, 0);
388 	list_add(&dentry->d_lru, list);
389 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
390 	this_cpu_inc(nr_dentry_unused);
391 }
392 
393 /*
394  * These can only be called under the global LRU lock, ie during the
395  * callback for freeing the LRU list. "isolate" removes it from the
396  * LRU lists entirely, while shrink_move moves it to the indicated
397  * private list.
398  */
399 static void d_lru_isolate(struct dentry *dentry)
400 {
401 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
402 	dentry->d_flags &= ~DCACHE_LRU_LIST;
403 	this_cpu_dec(nr_dentry_unused);
404 	list_del_init(&dentry->d_lru);
405 }
406 
407 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
408 {
409 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410 	dentry->d_flags |= DCACHE_SHRINK_LIST;
411 	list_move_tail(&dentry->d_lru, list);
412 }
413 
414 /*
415  * dentry_lru_(add|del)_list) must be called with d_lock held.
416  */
417 static void dentry_lru_add(struct dentry *dentry)
418 {
419 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
420 		d_lru_add(dentry);
421 }
422 
423 /**
424  * d_drop - drop a dentry
425  * @dentry: dentry to drop
426  *
427  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
428  * be found through a VFS lookup any more. Note that this is different from
429  * deleting the dentry - d_delete will try to mark the dentry negative if
430  * possible, giving a successful _negative_ lookup, while d_drop will
431  * just make the cache lookup fail.
432  *
433  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
434  * reason (NFS timeouts or autofs deletes).
435  *
436  * __d_drop requires dentry->d_lock.
437  */
438 void __d_drop(struct dentry *dentry)
439 {
440 	if (!d_unhashed(dentry)) {
441 		struct hlist_bl_head *b;
442 		/*
443 		 * Hashed dentries are normally on the dentry hashtable,
444 		 * with the exception of those newly allocated by
445 		 * d_obtain_alias, which are always IS_ROOT:
446 		 */
447 		if (unlikely(IS_ROOT(dentry)))
448 			b = &dentry->d_sb->s_anon;
449 		else
450 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
451 
452 		hlist_bl_lock(b);
453 		__hlist_bl_del(&dentry->d_hash);
454 		dentry->d_hash.pprev = NULL;
455 		hlist_bl_unlock(b);
456 		dentry_rcuwalk_barrier(dentry);
457 	}
458 }
459 EXPORT_SYMBOL(__d_drop);
460 
461 void d_drop(struct dentry *dentry)
462 {
463 	spin_lock(&dentry->d_lock);
464 	__d_drop(dentry);
465 	spin_unlock(&dentry->d_lock);
466 }
467 EXPORT_SYMBOL(d_drop);
468 
469 static void __dentry_kill(struct dentry *dentry)
470 {
471 	struct dentry *parent = NULL;
472 	bool can_free = true;
473 	if (!IS_ROOT(dentry))
474 		parent = dentry->d_parent;
475 
476 	/*
477 	 * The dentry is now unrecoverably dead to the world.
478 	 */
479 	lockref_mark_dead(&dentry->d_lockref);
480 
481 	/*
482 	 * inform the fs via d_prune that this dentry is about to be
483 	 * unhashed and destroyed.
484 	 */
485 	if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
486 		dentry->d_op->d_prune(dentry);
487 
488 	if (dentry->d_flags & DCACHE_LRU_LIST) {
489 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
490 			d_lru_del(dentry);
491 	}
492 	/* if it was on the hash then remove it */
493 	__d_drop(dentry);
494 	list_del(&dentry->d_u.d_child);
495 	/*
496 	 * Inform d_walk() that we are no longer attached to the
497 	 * dentry tree
498 	 */
499 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
500 	if (parent)
501 		spin_unlock(&parent->d_lock);
502 	dentry_iput(dentry);
503 	/*
504 	 * dentry_iput drops the locks, at which point nobody (except
505 	 * transient RCU lookups) can reach this dentry.
506 	 */
507 	BUG_ON((int)dentry->d_lockref.count > 0);
508 	this_cpu_dec(nr_dentry);
509 	if (dentry->d_op && dentry->d_op->d_release)
510 		dentry->d_op->d_release(dentry);
511 
512 	spin_lock(&dentry->d_lock);
513 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
514 		dentry->d_flags |= DCACHE_MAY_FREE;
515 		can_free = false;
516 	}
517 	spin_unlock(&dentry->d_lock);
518 	if (likely(can_free))
519 		dentry_free(dentry);
520 }
521 
522 /*
523  * Finish off a dentry we've decided to kill.
524  * dentry->d_lock must be held, returns with it unlocked.
525  * If ref is non-zero, then decrement the refcount too.
526  * Returns dentry requiring refcount drop, or NULL if we're done.
527  */
528 static struct dentry *dentry_kill(struct dentry *dentry)
529 	__releases(dentry->d_lock)
530 {
531 	struct inode *inode = dentry->d_inode;
532 	struct dentry *parent = NULL;
533 
534 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
535 		goto failed;
536 
537 	if (!IS_ROOT(dentry)) {
538 		parent = dentry->d_parent;
539 		if (unlikely(!spin_trylock(&parent->d_lock))) {
540 			if (inode)
541 				spin_unlock(&inode->i_lock);
542 			goto failed;
543 		}
544 	}
545 
546 	__dentry_kill(dentry);
547 	return parent;
548 
549 failed:
550 	spin_unlock(&dentry->d_lock);
551 	cpu_relax();
552 	return dentry; /* try again with same dentry */
553 }
554 
555 static inline struct dentry *lock_parent(struct dentry *dentry)
556 {
557 	struct dentry *parent = dentry->d_parent;
558 	if (IS_ROOT(dentry))
559 		return NULL;
560 	if (unlikely((int)dentry->d_lockref.count < 0))
561 		return NULL;
562 	if (likely(spin_trylock(&parent->d_lock)))
563 		return parent;
564 	rcu_read_lock();
565 	spin_unlock(&dentry->d_lock);
566 again:
567 	parent = ACCESS_ONCE(dentry->d_parent);
568 	spin_lock(&parent->d_lock);
569 	/*
570 	 * We can't blindly lock dentry until we are sure
571 	 * that we won't violate the locking order.
572 	 * Any changes of dentry->d_parent must have
573 	 * been done with parent->d_lock held, so
574 	 * spin_lock() above is enough of a barrier
575 	 * for checking if it's still our child.
576 	 */
577 	if (unlikely(parent != dentry->d_parent)) {
578 		spin_unlock(&parent->d_lock);
579 		goto again;
580 	}
581 	rcu_read_unlock();
582 	if (parent != dentry)
583 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
584 	else
585 		parent = NULL;
586 	return parent;
587 }
588 
589 /*
590  * This is dput
591  *
592  * This is complicated by the fact that we do not want to put
593  * dentries that are no longer on any hash chain on the unused
594  * list: we'd much rather just get rid of them immediately.
595  *
596  * However, that implies that we have to traverse the dentry
597  * tree upwards to the parents which might _also_ now be
598  * scheduled for deletion (it may have been only waiting for
599  * its last child to go away).
600  *
601  * This tail recursion is done by hand as we don't want to depend
602  * on the compiler to always get this right (gcc generally doesn't).
603  * Real recursion would eat up our stack space.
604  */
605 
606 /*
607  * dput - release a dentry
608  * @dentry: dentry to release
609  *
610  * Release a dentry. This will drop the usage count and if appropriate
611  * call the dentry unlink method as well as removing it from the queues and
612  * releasing its resources. If the parent dentries were scheduled for release
613  * they too may now get deleted.
614  */
615 void dput(struct dentry *dentry)
616 {
617 	if (unlikely(!dentry))
618 		return;
619 
620 repeat:
621 	if (lockref_put_or_lock(&dentry->d_lockref))
622 		return;
623 
624 	/* Unreachable? Get rid of it */
625 	if (unlikely(d_unhashed(dentry)))
626 		goto kill_it;
627 
628 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
629 		if (dentry->d_op->d_delete(dentry))
630 			goto kill_it;
631 	}
632 
633 	if (!(dentry->d_flags & DCACHE_REFERENCED))
634 		dentry->d_flags |= DCACHE_REFERENCED;
635 	dentry_lru_add(dentry);
636 
637 	dentry->d_lockref.count--;
638 	spin_unlock(&dentry->d_lock);
639 	return;
640 
641 kill_it:
642 	dentry = dentry_kill(dentry);
643 	if (dentry)
644 		goto repeat;
645 }
646 EXPORT_SYMBOL(dput);
647 
648 
649 /* This must be called with d_lock held */
650 static inline void __dget_dlock(struct dentry *dentry)
651 {
652 	dentry->d_lockref.count++;
653 }
654 
655 static inline void __dget(struct dentry *dentry)
656 {
657 	lockref_get(&dentry->d_lockref);
658 }
659 
660 struct dentry *dget_parent(struct dentry *dentry)
661 {
662 	int gotref;
663 	struct dentry *ret;
664 
665 	/*
666 	 * Do optimistic parent lookup without any
667 	 * locking.
668 	 */
669 	rcu_read_lock();
670 	ret = ACCESS_ONCE(dentry->d_parent);
671 	gotref = lockref_get_not_zero(&ret->d_lockref);
672 	rcu_read_unlock();
673 	if (likely(gotref)) {
674 		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
675 			return ret;
676 		dput(ret);
677 	}
678 
679 repeat:
680 	/*
681 	 * Don't need rcu_dereference because we re-check it was correct under
682 	 * the lock.
683 	 */
684 	rcu_read_lock();
685 	ret = dentry->d_parent;
686 	spin_lock(&ret->d_lock);
687 	if (unlikely(ret != dentry->d_parent)) {
688 		spin_unlock(&ret->d_lock);
689 		rcu_read_unlock();
690 		goto repeat;
691 	}
692 	rcu_read_unlock();
693 	BUG_ON(!ret->d_lockref.count);
694 	ret->d_lockref.count++;
695 	spin_unlock(&ret->d_lock);
696 	return ret;
697 }
698 EXPORT_SYMBOL(dget_parent);
699 
700 /**
701  * d_find_alias - grab a hashed alias of inode
702  * @inode: inode in question
703  *
704  * If inode has a hashed alias, or is a directory and has any alias,
705  * acquire the reference to alias and return it. Otherwise return NULL.
706  * Notice that if inode is a directory there can be only one alias and
707  * it can be unhashed only if it has no children, or if it is the root
708  * of a filesystem, or if the directory was renamed and d_revalidate
709  * was the first vfs operation to notice.
710  *
711  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
712  * any other hashed alias over that one.
713  */
714 static struct dentry *__d_find_alias(struct inode *inode)
715 {
716 	struct dentry *alias, *discon_alias;
717 
718 again:
719 	discon_alias = NULL;
720 	hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
721 		spin_lock(&alias->d_lock);
722  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
723 			if (IS_ROOT(alias) &&
724 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
725 				discon_alias = alias;
726 			} else {
727 				__dget_dlock(alias);
728 				spin_unlock(&alias->d_lock);
729 				return alias;
730 			}
731 		}
732 		spin_unlock(&alias->d_lock);
733 	}
734 	if (discon_alias) {
735 		alias = discon_alias;
736 		spin_lock(&alias->d_lock);
737 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
738 			__dget_dlock(alias);
739 			spin_unlock(&alias->d_lock);
740 			return alias;
741 		}
742 		spin_unlock(&alias->d_lock);
743 		goto again;
744 	}
745 	return NULL;
746 }
747 
748 struct dentry *d_find_alias(struct inode *inode)
749 {
750 	struct dentry *de = NULL;
751 
752 	if (!hlist_empty(&inode->i_dentry)) {
753 		spin_lock(&inode->i_lock);
754 		de = __d_find_alias(inode);
755 		spin_unlock(&inode->i_lock);
756 	}
757 	return de;
758 }
759 EXPORT_SYMBOL(d_find_alias);
760 
761 /*
762  *	Try to kill dentries associated with this inode.
763  * WARNING: you must own a reference to inode.
764  */
765 void d_prune_aliases(struct inode *inode)
766 {
767 	struct dentry *dentry;
768 restart:
769 	spin_lock(&inode->i_lock);
770 	hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
771 		spin_lock(&dentry->d_lock);
772 		if (!dentry->d_lockref.count) {
773 			/*
774 			 * inform the fs via d_prune that this dentry
775 			 * is about to be unhashed and destroyed.
776 			 */
777 			if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
778 			    !d_unhashed(dentry))
779 				dentry->d_op->d_prune(dentry);
780 
781 			__dget_dlock(dentry);
782 			__d_drop(dentry);
783 			spin_unlock(&dentry->d_lock);
784 			spin_unlock(&inode->i_lock);
785 			dput(dentry);
786 			goto restart;
787 		}
788 		spin_unlock(&dentry->d_lock);
789 	}
790 	spin_unlock(&inode->i_lock);
791 }
792 EXPORT_SYMBOL(d_prune_aliases);
793 
794 static void shrink_dentry_list(struct list_head *list)
795 {
796 	struct dentry *dentry, *parent;
797 
798 	while (!list_empty(list)) {
799 		struct inode *inode;
800 		dentry = list_entry(list->prev, struct dentry, d_lru);
801 		spin_lock(&dentry->d_lock);
802 		parent = lock_parent(dentry);
803 
804 		/*
805 		 * The dispose list is isolated and dentries are not accounted
806 		 * to the LRU here, so we can simply remove it from the list
807 		 * here regardless of whether it is referenced or not.
808 		 */
809 		d_shrink_del(dentry);
810 
811 		/*
812 		 * We found an inuse dentry which was not removed from
813 		 * the LRU because of laziness during lookup. Do not free it.
814 		 */
815 		if ((int)dentry->d_lockref.count > 0) {
816 			spin_unlock(&dentry->d_lock);
817 			if (parent)
818 				spin_unlock(&parent->d_lock);
819 			continue;
820 		}
821 
822 
823 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
824 			bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
825 			spin_unlock(&dentry->d_lock);
826 			if (parent)
827 				spin_unlock(&parent->d_lock);
828 			if (can_free)
829 				dentry_free(dentry);
830 			continue;
831 		}
832 
833 		inode = dentry->d_inode;
834 		if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
835 			d_shrink_add(dentry, list);
836 			spin_unlock(&dentry->d_lock);
837 			if (parent)
838 				spin_unlock(&parent->d_lock);
839 			continue;
840 		}
841 
842 		__dentry_kill(dentry);
843 
844 		/*
845 		 * We need to prune ancestors too. This is necessary to prevent
846 		 * quadratic behavior of shrink_dcache_parent(), but is also
847 		 * expected to be beneficial in reducing dentry cache
848 		 * fragmentation.
849 		 */
850 		dentry = parent;
851 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
852 			parent = lock_parent(dentry);
853 			if (dentry->d_lockref.count != 1) {
854 				dentry->d_lockref.count--;
855 				spin_unlock(&dentry->d_lock);
856 				if (parent)
857 					spin_unlock(&parent->d_lock);
858 				break;
859 			}
860 			inode = dentry->d_inode;	/* can't be NULL */
861 			if (unlikely(!spin_trylock(&inode->i_lock))) {
862 				spin_unlock(&dentry->d_lock);
863 				if (parent)
864 					spin_unlock(&parent->d_lock);
865 				cpu_relax();
866 				continue;
867 			}
868 			__dentry_kill(dentry);
869 			dentry = parent;
870 		}
871 	}
872 }
873 
874 static enum lru_status
875 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
876 {
877 	struct list_head *freeable = arg;
878 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
879 
880 
881 	/*
882 	 * we are inverting the lru lock/dentry->d_lock here,
883 	 * so use a trylock. If we fail to get the lock, just skip
884 	 * it
885 	 */
886 	if (!spin_trylock(&dentry->d_lock))
887 		return LRU_SKIP;
888 
889 	/*
890 	 * Referenced dentries are still in use. If they have active
891 	 * counts, just remove them from the LRU. Otherwise give them
892 	 * another pass through the LRU.
893 	 */
894 	if (dentry->d_lockref.count) {
895 		d_lru_isolate(dentry);
896 		spin_unlock(&dentry->d_lock);
897 		return LRU_REMOVED;
898 	}
899 
900 	if (dentry->d_flags & DCACHE_REFERENCED) {
901 		dentry->d_flags &= ~DCACHE_REFERENCED;
902 		spin_unlock(&dentry->d_lock);
903 
904 		/*
905 		 * The list move itself will be made by the common LRU code. At
906 		 * this point, we've dropped the dentry->d_lock but keep the
907 		 * lru lock. This is safe to do, since every list movement is
908 		 * protected by the lru lock even if both locks are held.
909 		 *
910 		 * This is guaranteed by the fact that all LRU management
911 		 * functions are intermediated by the LRU API calls like
912 		 * list_lru_add and list_lru_del. List movement in this file
913 		 * only ever occur through this functions or through callbacks
914 		 * like this one, that are called from the LRU API.
915 		 *
916 		 * The only exceptions to this are functions like
917 		 * shrink_dentry_list, and code that first checks for the
918 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
919 		 * operating only with stack provided lists after they are
920 		 * properly isolated from the main list.  It is thus, always a
921 		 * local access.
922 		 */
923 		return LRU_ROTATE;
924 	}
925 
926 	d_lru_shrink_move(dentry, freeable);
927 	spin_unlock(&dentry->d_lock);
928 
929 	return LRU_REMOVED;
930 }
931 
932 /**
933  * prune_dcache_sb - shrink the dcache
934  * @sb: superblock
935  * @nr_to_scan : number of entries to try to free
936  * @nid: which node to scan for freeable entities
937  *
938  * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
939  * done when we need more memory an called from the superblock shrinker
940  * function.
941  *
942  * This function may fail to free any resources if all the dentries are in
943  * use.
944  */
945 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
946 		     int nid)
947 {
948 	LIST_HEAD(dispose);
949 	long freed;
950 
951 	freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
952 				       &dispose, &nr_to_scan);
953 	shrink_dentry_list(&dispose);
954 	return freed;
955 }
956 
957 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
958 						spinlock_t *lru_lock, void *arg)
959 {
960 	struct list_head *freeable = arg;
961 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
962 
963 	/*
964 	 * we are inverting the lru lock/dentry->d_lock here,
965 	 * so use a trylock. If we fail to get the lock, just skip
966 	 * it
967 	 */
968 	if (!spin_trylock(&dentry->d_lock))
969 		return LRU_SKIP;
970 
971 	d_lru_shrink_move(dentry, freeable);
972 	spin_unlock(&dentry->d_lock);
973 
974 	return LRU_REMOVED;
975 }
976 
977 
978 /**
979  * shrink_dcache_sb - shrink dcache for a superblock
980  * @sb: superblock
981  *
982  * Shrink the dcache for the specified super block. This is used to free
983  * the dcache before unmounting a file system.
984  */
985 void shrink_dcache_sb(struct super_block *sb)
986 {
987 	long freed;
988 
989 	do {
990 		LIST_HEAD(dispose);
991 
992 		freed = list_lru_walk(&sb->s_dentry_lru,
993 			dentry_lru_isolate_shrink, &dispose, UINT_MAX);
994 
995 		this_cpu_sub(nr_dentry_unused, freed);
996 		shrink_dentry_list(&dispose);
997 	} while (freed > 0);
998 }
999 EXPORT_SYMBOL(shrink_dcache_sb);
1000 
1001 /**
1002  * enum d_walk_ret - action to talke during tree walk
1003  * @D_WALK_CONTINUE:	contrinue walk
1004  * @D_WALK_QUIT:	quit walk
1005  * @D_WALK_NORETRY:	quit when retry is needed
1006  * @D_WALK_SKIP:	skip this dentry and its children
1007  */
1008 enum d_walk_ret {
1009 	D_WALK_CONTINUE,
1010 	D_WALK_QUIT,
1011 	D_WALK_NORETRY,
1012 	D_WALK_SKIP,
1013 };
1014 
1015 /**
1016  * d_walk - walk the dentry tree
1017  * @parent:	start of walk
1018  * @data:	data passed to @enter() and @finish()
1019  * @enter:	callback when first entering the dentry
1020  * @finish:	callback when successfully finished the walk
1021  *
1022  * The @enter() and @finish() callbacks are called with d_lock held.
1023  */
1024 static void d_walk(struct dentry *parent, void *data,
1025 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1026 		   void (*finish)(void *))
1027 {
1028 	struct dentry *this_parent;
1029 	struct list_head *next;
1030 	unsigned seq = 0;
1031 	enum d_walk_ret ret;
1032 	bool retry = true;
1033 
1034 again:
1035 	read_seqbegin_or_lock(&rename_lock, &seq);
1036 	this_parent = parent;
1037 	spin_lock(&this_parent->d_lock);
1038 
1039 	ret = enter(data, this_parent);
1040 	switch (ret) {
1041 	case D_WALK_CONTINUE:
1042 		break;
1043 	case D_WALK_QUIT:
1044 	case D_WALK_SKIP:
1045 		goto out_unlock;
1046 	case D_WALK_NORETRY:
1047 		retry = false;
1048 		break;
1049 	}
1050 repeat:
1051 	next = this_parent->d_subdirs.next;
1052 resume:
1053 	while (next != &this_parent->d_subdirs) {
1054 		struct list_head *tmp = next;
1055 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1056 		next = tmp->next;
1057 
1058 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1059 
1060 		ret = enter(data, dentry);
1061 		switch (ret) {
1062 		case D_WALK_CONTINUE:
1063 			break;
1064 		case D_WALK_QUIT:
1065 			spin_unlock(&dentry->d_lock);
1066 			goto out_unlock;
1067 		case D_WALK_NORETRY:
1068 			retry = false;
1069 			break;
1070 		case D_WALK_SKIP:
1071 			spin_unlock(&dentry->d_lock);
1072 			continue;
1073 		}
1074 
1075 		if (!list_empty(&dentry->d_subdirs)) {
1076 			spin_unlock(&this_parent->d_lock);
1077 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1078 			this_parent = dentry;
1079 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1080 			goto repeat;
1081 		}
1082 		spin_unlock(&dentry->d_lock);
1083 	}
1084 	/*
1085 	 * All done at this level ... ascend and resume the search.
1086 	 */
1087 	if (this_parent != parent) {
1088 		struct dentry *child = this_parent;
1089 		this_parent = child->d_parent;
1090 
1091 		rcu_read_lock();
1092 		spin_unlock(&child->d_lock);
1093 		spin_lock(&this_parent->d_lock);
1094 
1095 		/*
1096 		 * might go back up the wrong parent if we have had a rename
1097 		 * or deletion
1098 		 */
1099 		if (this_parent != child->d_parent ||
1100 			 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1101 			 need_seqretry(&rename_lock, seq)) {
1102 			spin_unlock(&this_parent->d_lock);
1103 			rcu_read_unlock();
1104 			goto rename_retry;
1105 		}
1106 		rcu_read_unlock();
1107 		next = child->d_u.d_child.next;
1108 		goto resume;
1109 	}
1110 	if (need_seqretry(&rename_lock, seq)) {
1111 		spin_unlock(&this_parent->d_lock);
1112 		goto rename_retry;
1113 	}
1114 	if (finish)
1115 		finish(data);
1116 
1117 out_unlock:
1118 	spin_unlock(&this_parent->d_lock);
1119 	done_seqretry(&rename_lock, seq);
1120 	return;
1121 
1122 rename_retry:
1123 	if (!retry)
1124 		return;
1125 	seq = 1;
1126 	goto again;
1127 }
1128 
1129 /*
1130  * Search for at least 1 mount point in the dentry's subdirs.
1131  * We descend to the next level whenever the d_subdirs
1132  * list is non-empty and continue searching.
1133  */
1134 
1135 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1136 {
1137 	int *ret = data;
1138 	if (d_mountpoint(dentry)) {
1139 		*ret = 1;
1140 		return D_WALK_QUIT;
1141 	}
1142 	return D_WALK_CONTINUE;
1143 }
1144 
1145 /**
1146  * have_submounts - check for mounts over a dentry
1147  * @parent: dentry to check.
1148  *
1149  * Return true if the parent or its subdirectories contain
1150  * a mount point
1151  */
1152 int have_submounts(struct dentry *parent)
1153 {
1154 	int ret = 0;
1155 
1156 	d_walk(parent, &ret, check_mount, NULL);
1157 
1158 	return ret;
1159 }
1160 EXPORT_SYMBOL(have_submounts);
1161 
1162 /*
1163  * Called by mount code to set a mountpoint and check if the mountpoint is
1164  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1165  * subtree can become unreachable).
1166  *
1167  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1168  * this reason take rename_lock and d_lock on dentry and ancestors.
1169  */
1170 int d_set_mounted(struct dentry *dentry)
1171 {
1172 	struct dentry *p;
1173 	int ret = -ENOENT;
1174 	write_seqlock(&rename_lock);
1175 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1176 		/* Need exclusion wrt. d_invalidate() */
1177 		spin_lock(&p->d_lock);
1178 		if (unlikely(d_unhashed(p))) {
1179 			spin_unlock(&p->d_lock);
1180 			goto out;
1181 		}
1182 		spin_unlock(&p->d_lock);
1183 	}
1184 	spin_lock(&dentry->d_lock);
1185 	if (!d_unlinked(dentry)) {
1186 		dentry->d_flags |= DCACHE_MOUNTED;
1187 		ret = 0;
1188 	}
1189  	spin_unlock(&dentry->d_lock);
1190 out:
1191 	write_sequnlock(&rename_lock);
1192 	return ret;
1193 }
1194 
1195 /*
1196  * Search the dentry child list of the specified parent,
1197  * and move any unused dentries to the end of the unused
1198  * list for prune_dcache(). We descend to the next level
1199  * whenever the d_subdirs list is non-empty and continue
1200  * searching.
1201  *
1202  * It returns zero iff there are no unused children,
1203  * otherwise  it returns the number of children moved to
1204  * the end of the unused list. This may not be the total
1205  * number of unused children, because select_parent can
1206  * drop the lock and return early due to latency
1207  * constraints.
1208  */
1209 
1210 struct select_data {
1211 	struct dentry *start;
1212 	struct list_head dispose;
1213 	int found;
1214 };
1215 
1216 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1217 {
1218 	struct select_data *data = _data;
1219 	enum d_walk_ret ret = D_WALK_CONTINUE;
1220 
1221 	if (data->start == dentry)
1222 		goto out;
1223 
1224 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1225 		data->found++;
1226 	} else {
1227 		if (dentry->d_flags & DCACHE_LRU_LIST)
1228 			d_lru_del(dentry);
1229 		if (!dentry->d_lockref.count) {
1230 			d_shrink_add(dentry, &data->dispose);
1231 			data->found++;
1232 		}
1233 	}
1234 	/*
1235 	 * We can return to the caller if we have found some (this
1236 	 * ensures forward progress). We'll be coming back to find
1237 	 * the rest.
1238 	 */
1239 	if (!list_empty(&data->dispose))
1240 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1241 out:
1242 	return ret;
1243 }
1244 
1245 /**
1246  * shrink_dcache_parent - prune dcache
1247  * @parent: parent of entries to prune
1248  *
1249  * Prune the dcache to remove unused children of the parent dentry.
1250  */
1251 void shrink_dcache_parent(struct dentry *parent)
1252 {
1253 	for (;;) {
1254 		struct select_data data;
1255 
1256 		INIT_LIST_HEAD(&data.dispose);
1257 		data.start = parent;
1258 		data.found = 0;
1259 
1260 		d_walk(parent, &data, select_collect, NULL);
1261 		if (!data.found)
1262 			break;
1263 
1264 		shrink_dentry_list(&data.dispose);
1265 		cond_resched();
1266 	}
1267 }
1268 EXPORT_SYMBOL(shrink_dcache_parent);
1269 
1270 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1271 {
1272 	/* it has busy descendents; complain about those instead */
1273 	if (!list_empty(&dentry->d_subdirs))
1274 		return D_WALK_CONTINUE;
1275 
1276 	/* root with refcount 1 is fine */
1277 	if (dentry == _data && dentry->d_lockref.count == 1)
1278 		return D_WALK_CONTINUE;
1279 
1280 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1281 			" still in use (%d) [unmount of %s %s]\n",
1282 		       dentry,
1283 		       dentry->d_inode ?
1284 		       dentry->d_inode->i_ino : 0UL,
1285 		       dentry,
1286 		       dentry->d_lockref.count,
1287 		       dentry->d_sb->s_type->name,
1288 		       dentry->d_sb->s_id);
1289 	WARN_ON(1);
1290 	return D_WALK_CONTINUE;
1291 }
1292 
1293 static void do_one_tree(struct dentry *dentry)
1294 {
1295 	shrink_dcache_parent(dentry);
1296 	d_walk(dentry, dentry, umount_check, NULL);
1297 	d_drop(dentry);
1298 	dput(dentry);
1299 }
1300 
1301 /*
1302  * destroy the dentries attached to a superblock on unmounting
1303  */
1304 void shrink_dcache_for_umount(struct super_block *sb)
1305 {
1306 	struct dentry *dentry;
1307 
1308 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1309 
1310 	dentry = sb->s_root;
1311 	sb->s_root = NULL;
1312 	do_one_tree(dentry);
1313 
1314 	while (!hlist_bl_empty(&sb->s_anon)) {
1315 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1316 		do_one_tree(dentry);
1317 	}
1318 }
1319 
1320 struct detach_data {
1321 	struct select_data select;
1322 	struct dentry *mountpoint;
1323 };
1324 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1325 {
1326 	struct detach_data *data = _data;
1327 
1328 	if (d_mountpoint(dentry)) {
1329 		__dget_dlock(dentry);
1330 		data->mountpoint = dentry;
1331 		return D_WALK_QUIT;
1332 	}
1333 
1334 	return select_collect(&data->select, dentry);
1335 }
1336 
1337 static void check_and_drop(void *_data)
1338 {
1339 	struct detach_data *data = _data;
1340 
1341 	if (!data->mountpoint && !data->select.found)
1342 		__d_drop(data->select.start);
1343 }
1344 
1345 /**
1346  * d_invalidate - detach submounts, prune dcache, and drop
1347  * @dentry: dentry to invalidate (aka detach, prune and drop)
1348  *
1349  * Try to invalidate the dentry if it turns out to be
1350  * possible. If there are reasons not to delete it
1351  * return -EBUSY. On success return 0.
1352  *
1353  * no dcache lock.
1354  *
1355  * The final d_drop is done as an atomic operation relative to
1356  * rename_lock ensuring there are no races with d_set_mounted.  This
1357  * ensures there are no unhashed dentries on the path to a mountpoint.
1358  */
1359 int d_invalidate(struct dentry *dentry)
1360 {
1361 	int ret = 0;
1362 
1363 	/*
1364 	 * If it's already been dropped, return OK.
1365 	 */
1366 	spin_lock(&dentry->d_lock);
1367 	if (d_unhashed(dentry)) {
1368 		spin_unlock(&dentry->d_lock);
1369 		return 0;
1370 	}
1371 	spin_unlock(&dentry->d_lock);
1372 
1373 	/* Negative dentries can be dropped without further checks */
1374 	if (!dentry->d_inode) {
1375 		d_drop(dentry);
1376 		goto out;
1377 	}
1378 
1379 	for (;;) {
1380 		struct detach_data data;
1381 
1382 		data.mountpoint = NULL;
1383 		INIT_LIST_HEAD(&data.select.dispose);
1384 		data.select.start = dentry;
1385 		data.select.found = 0;
1386 
1387 		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1388 
1389 		if (data.select.found)
1390 			shrink_dentry_list(&data.select.dispose);
1391 
1392 		if (data.mountpoint) {
1393 			detach_mounts(data.mountpoint);
1394 			dput(data.mountpoint);
1395 		}
1396 
1397 		if (!data.mountpoint && !data.select.found)
1398 			break;
1399 
1400 		cond_resched();
1401 	}
1402 
1403 out:
1404 	return ret;
1405 }
1406 EXPORT_SYMBOL(d_invalidate);
1407 
1408 /**
1409  * __d_alloc	-	allocate a dcache entry
1410  * @sb: filesystem it will belong to
1411  * @name: qstr of the name
1412  *
1413  * Allocates a dentry. It returns %NULL if there is insufficient memory
1414  * available. On a success the dentry is returned. The name passed in is
1415  * copied and the copy passed in may be reused after this call.
1416  */
1417 
1418 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1419 {
1420 	struct dentry *dentry;
1421 	char *dname;
1422 
1423 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1424 	if (!dentry)
1425 		return NULL;
1426 
1427 	/*
1428 	 * We guarantee that the inline name is always NUL-terminated.
1429 	 * This way the memcpy() done by the name switching in rename
1430 	 * will still always have a NUL at the end, even if we might
1431 	 * be overwriting an internal NUL character
1432 	 */
1433 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1434 	if (name->len > DNAME_INLINE_LEN-1) {
1435 		size_t size = offsetof(struct external_name, name[1]);
1436 		struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1437 		if (!p) {
1438 			kmem_cache_free(dentry_cache, dentry);
1439 			return NULL;
1440 		}
1441 		atomic_set(&p->u.count, 1);
1442 		dname = p->name;
1443 	} else  {
1444 		dname = dentry->d_iname;
1445 	}
1446 
1447 	dentry->d_name.len = name->len;
1448 	dentry->d_name.hash = name->hash;
1449 	memcpy(dname, name->name, name->len);
1450 	dname[name->len] = 0;
1451 
1452 	/* Make sure we always see the terminating NUL character */
1453 	smp_wmb();
1454 	dentry->d_name.name = dname;
1455 
1456 	dentry->d_lockref.count = 1;
1457 	dentry->d_flags = 0;
1458 	spin_lock_init(&dentry->d_lock);
1459 	seqcount_init(&dentry->d_seq);
1460 	dentry->d_inode = NULL;
1461 	dentry->d_parent = dentry;
1462 	dentry->d_sb = sb;
1463 	dentry->d_op = NULL;
1464 	dentry->d_fsdata = NULL;
1465 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1466 	INIT_LIST_HEAD(&dentry->d_lru);
1467 	INIT_LIST_HEAD(&dentry->d_subdirs);
1468 	INIT_HLIST_NODE(&dentry->d_alias);
1469 	INIT_LIST_HEAD(&dentry->d_u.d_child);
1470 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1471 
1472 	this_cpu_inc(nr_dentry);
1473 
1474 	return dentry;
1475 }
1476 
1477 /**
1478  * d_alloc	-	allocate a dcache entry
1479  * @parent: parent of entry to allocate
1480  * @name: qstr of the name
1481  *
1482  * Allocates a dentry. It returns %NULL if there is insufficient memory
1483  * available. On a success the dentry is returned. The name passed in is
1484  * copied and the copy passed in may be reused after this call.
1485  */
1486 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1487 {
1488 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1489 	if (!dentry)
1490 		return NULL;
1491 
1492 	spin_lock(&parent->d_lock);
1493 	/*
1494 	 * don't need child lock because it is not subject
1495 	 * to concurrency here
1496 	 */
1497 	__dget_dlock(parent);
1498 	dentry->d_parent = parent;
1499 	list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1500 	spin_unlock(&parent->d_lock);
1501 
1502 	return dentry;
1503 }
1504 EXPORT_SYMBOL(d_alloc);
1505 
1506 /**
1507  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1508  * @sb: the superblock
1509  * @name: qstr of the name
1510  *
1511  * For a filesystem that just pins its dentries in memory and never
1512  * performs lookups at all, return an unhashed IS_ROOT dentry.
1513  */
1514 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1515 {
1516 	return __d_alloc(sb, name);
1517 }
1518 EXPORT_SYMBOL(d_alloc_pseudo);
1519 
1520 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1521 {
1522 	struct qstr q;
1523 
1524 	q.name = name;
1525 	q.len = strlen(name);
1526 	q.hash = full_name_hash(q.name, q.len);
1527 	return d_alloc(parent, &q);
1528 }
1529 EXPORT_SYMBOL(d_alloc_name);
1530 
1531 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1532 {
1533 	WARN_ON_ONCE(dentry->d_op);
1534 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1535 				DCACHE_OP_COMPARE	|
1536 				DCACHE_OP_REVALIDATE	|
1537 				DCACHE_OP_WEAK_REVALIDATE	|
1538 				DCACHE_OP_DELETE ));
1539 	dentry->d_op = op;
1540 	if (!op)
1541 		return;
1542 	if (op->d_hash)
1543 		dentry->d_flags |= DCACHE_OP_HASH;
1544 	if (op->d_compare)
1545 		dentry->d_flags |= DCACHE_OP_COMPARE;
1546 	if (op->d_revalidate)
1547 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1548 	if (op->d_weak_revalidate)
1549 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1550 	if (op->d_delete)
1551 		dentry->d_flags |= DCACHE_OP_DELETE;
1552 	if (op->d_prune)
1553 		dentry->d_flags |= DCACHE_OP_PRUNE;
1554 
1555 }
1556 EXPORT_SYMBOL(d_set_d_op);
1557 
1558 static unsigned d_flags_for_inode(struct inode *inode)
1559 {
1560 	unsigned add_flags = DCACHE_FILE_TYPE;
1561 
1562 	if (!inode)
1563 		return DCACHE_MISS_TYPE;
1564 
1565 	if (S_ISDIR(inode->i_mode)) {
1566 		add_flags = DCACHE_DIRECTORY_TYPE;
1567 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1568 			if (unlikely(!inode->i_op->lookup))
1569 				add_flags = DCACHE_AUTODIR_TYPE;
1570 			else
1571 				inode->i_opflags |= IOP_LOOKUP;
1572 		}
1573 	} else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1574 		if (unlikely(inode->i_op->follow_link))
1575 			add_flags = DCACHE_SYMLINK_TYPE;
1576 		else
1577 			inode->i_opflags |= IOP_NOFOLLOW;
1578 	}
1579 
1580 	if (unlikely(IS_AUTOMOUNT(inode)))
1581 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1582 	return add_flags;
1583 }
1584 
1585 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1586 {
1587 	unsigned add_flags = d_flags_for_inode(inode);
1588 
1589 	spin_lock(&dentry->d_lock);
1590 	__d_set_type(dentry, add_flags);
1591 	if (inode)
1592 		hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1593 	dentry->d_inode = inode;
1594 	dentry_rcuwalk_barrier(dentry);
1595 	spin_unlock(&dentry->d_lock);
1596 	fsnotify_d_instantiate(dentry, inode);
1597 }
1598 
1599 /**
1600  * d_instantiate - fill in inode information for a dentry
1601  * @entry: dentry to complete
1602  * @inode: inode to attach to this dentry
1603  *
1604  * Fill in inode information in the entry.
1605  *
1606  * This turns negative dentries into productive full members
1607  * of society.
1608  *
1609  * NOTE! This assumes that the inode count has been incremented
1610  * (or otherwise set) by the caller to indicate that it is now
1611  * in use by the dcache.
1612  */
1613 
1614 void d_instantiate(struct dentry *entry, struct inode * inode)
1615 {
1616 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1617 	if (inode)
1618 		spin_lock(&inode->i_lock);
1619 	__d_instantiate(entry, inode);
1620 	if (inode)
1621 		spin_unlock(&inode->i_lock);
1622 	security_d_instantiate(entry, inode);
1623 }
1624 EXPORT_SYMBOL(d_instantiate);
1625 
1626 /**
1627  * d_instantiate_unique - instantiate a non-aliased dentry
1628  * @entry: dentry to instantiate
1629  * @inode: inode to attach to this dentry
1630  *
1631  * Fill in inode information in the entry. On success, it returns NULL.
1632  * If an unhashed alias of "entry" already exists, then we return the
1633  * aliased dentry instead and drop one reference to inode.
1634  *
1635  * Note that in order to avoid conflicts with rename() etc, the caller
1636  * had better be holding the parent directory semaphore.
1637  *
1638  * This also assumes that the inode count has been incremented
1639  * (or otherwise set) by the caller to indicate that it is now
1640  * in use by the dcache.
1641  */
1642 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1643 					     struct inode *inode)
1644 {
1645 	struct dentry *alias;
1646 	int len = entry->d_name.len;
1647 	const char *name = entry->d_name.name;
1648 	unsigned int hash = entry->d_name.hash;
1649 
1650 	if (!inode) {
1651 		__d_instantiate(entry, NULL);
1652 		return NULL;
1653 	}
1654 
1655 	hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1656 		/*
1657 		 * Don't need alias->d_lock here, because aliases with
1658 		 * d_parent == entry->d_parent are not subject to name or
1659 		 * parent changes, because the parent inode i_mutex is held.
1660 		 */
1661 		if (alias->d_name.hash != hash)
1662 			continue;
1663 		if (alias->d_parent != entry->d_parent)
1664 			continue;
1665 		if (alias->d_name.len != len)
1666 			continue;
1667 		if (dentry_cmp(alias, name, len))
1668 			continue;
1669 		__dget(alias);
1670 		return alias;
1671 	}
1672 
1673 	__d_instantiate(entry, inode);
1674 	return NULL;
1675 }
1676 
1677 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1678 {
1679 	struct dentry *result;
1680 
1681 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1682 
1683 	if (inode)
1684 		spin_lock(&inode->i_lock);
1685 	result = __d_instantiate_unique(entry, inode);
1686 	if (inode)
1687 		spin_unlock(&inode->i_lock);
1688 
1689 	if (!result) {
1690 		security_d_instantiate(entry, inode);
1691 		return NULL;
1692 	}
1693 
1694 	BUG_ON(!d_unhashed(result));
1695 	iput(inode);
1696 	return result;
1697 }
1698 
1699 EXPORT_SYMBOL(d_instantiate_unique);
1700 
1701 /**
1702  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1703  * @entry: dentry to complete
1704  * @inode: inode to attach to this dentry
1705  *
1706  * Fill in inode information in the entry.  If a directory alias is found, then
1707  * return an error (and drop inode).  Together with d_materialise_unique() this
1708  * guarantees that a directory inode may never have more than one alias.
1709  */
1710 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1711 {
1712 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1713 
1714 	spin_lock(&inode->i_lock);
1715 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1716 		spin_unlock(&inode->i_lock);
1717 		iput(inode);
1718 		return -EBUSY;
1719 	}
1720 	__d_instantiate(entry, inode);
1721 	spin_unlock(&inode->i_lock);
1722 	security_d_instantiate(entry, inode);
1723 
1724 	return 0;
1725 }
1726 EXPORT_SYMBOL(d_instantiate_no_diralias);
1727 
1728 struct dentry *d_make_root(struct inode *root_inode)
1729 {
1730 	struct dentry *res = NULL;
1731 
1732 	if (root_inode) {
1733 		static const struct qstr name = QSTR_INIT("/", 1);
1734 
1735 		res = __d_alloc(root_inode->i_sb, &name);
1736 		if (res)
1737 			d_instantiate(res, root_inode);
1738 		else
1739 			iput(root_inode);
1740 	}
1741 	return res;
1742 }
1743 EXPORT_SYMBOL(d_make_root);
1744 
1745 static struct dentry * __d_find_any_alias(struct inode *inode)
1746 {
1747 	struct dentry *alias;
1748 
1749 	if (hlist_empty(&inode->i_dentry))
1750 		return NULL;
1751 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1752 	__dget(alias);
1753 	return alias;
1754 }
1755 
1756 /**
1757  * d_find_any_alias - find any alias for a given inode
1758  * @inode: inode to find an alias for
1759  *
1760  * If any aliases exist for the given inode, take and return a
1761  * reference for one of them.  If no aliases exist, return %NULL.
1762  */
1763 struct dentry *d_find_any_alias(struct inode *inode)
1764 {
1765 	struct dentry *de;
1766 
1767 	spin_lock(&inode->i_lock);
1768 	de = __d_find_any_alias(inode);
1769 	spin_unlock(&inode->i_lock);
1770 	return de;
1771 }
1772 EXPORT_SYMBOL(d_find_any_alias);
1773 
1774 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1775 {
1776 	static const struct qstr anonstring = QSTR_INIT("/", 1);
1777 	struct dentry *tmp;
1778 	struct dentry *res;
1779 	unsigned add_flags;
1780 
1781 	if (!inode)
1782 		return ERR_PTR(-ESTALE);
1783 	if (IS_ERR(inode))
1784 		return ERR_CAST(inode);
1785 
1786 	res = d_find_any_alias(inode);
1787 	if (res)
1788 		goto out_iput;
1789 
1790 	tmp = __d_alloc(inode->i_sb, &anonstring);
1791 	if (!tmp) {
1792 		res = ERR_PTR(-ENOMEM);
1793 		goto out_iput;
1794 	}
1795 
1796 	spin_lock(&inode->i_lock);
1797 	res = __d_find_any_alias(inode);
1798 	if (res) {
1799 		spin_unlock(&inode->i_lock);
1800 		dput(tmp);
1801 		goto out_iput;
1802 	}
1803 
1804 	/* attach a disconnected dentry */
1805 	add_flags = d_flags_for_inode(inode);
1806 
1807 	if (disconnected)
1808 		add_flags |= DCACHE_DISCONNECTED;
1809 
1810 	spin_lock(&tmp->d_lock);
1811 	tmp->d_inode = inode;
1812 	tmp->d_flags |= add_flags;
1813 	hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1814 	hlist_bl_lock(&tmp->d_sb->s_anon);
1815 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1816 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1817 	spin_unlock(&tmp->d_lock);
1818 	spin_unlock(&inode->i_lock);
1819 	security_d_instantiate(tmp, inode);
1820 
1821 	return tmp;
1822 
1823  out_iput:
1824 	if (res && !IS_ERR(res))
1825 		security_d_instantiate(res, inode);
1826 	iput(inode);
1827 	return res;
1828 }
1829 
1830 /**
1831  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1832  * @inode: inode to allocate the dentry for
1833  *
1834  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1835  * similar open by handle operations.  The returned dentry may be anonymous,
1836  * or may have a full name (if the inode was already in the cache).
1837  *
1838  * When called on a directory inode, we must ensure that the inode only ever
1839  * has one dentry.  If a dentry is found, that is returned instead of
1840  * allocating a new one.
1841  *
1842  * On successful return, the reference to the inode has been transferred
1843  * to the dentry.  In case of an error the reference on the inode is released.
1844  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1845  * be passed in and the error will be propagated to the return value,
1846  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1847  */
1848 struct dentry *d_obtain_alias(struct inode *inode)
1849 {
1850 	return __d_obtain_alias(inode, 1);
1851 }
1852 EXPORT_SYMBOL(d_obtain_alias);
1853 
1854 /**
1855  * d_obtain_root - find or allocate a dentry for a given inode
1856  * @inode: inode to allocate the dentry for
1857  *
1858  * Obtain an IS_ROOT dentry for the root of a filesystem.
1859  *
1860  * We must ensure that directory inodes only ever have one dentry.  If a
1861  * dentry is found, that is returned instead of allocating a new one.
1862  *
1863  * On successful return, the reference to the inode has been transferred
1864  * to the dentry.  In case of an error the reference on the inode is
1865  * released.  A %NULL or IS_ERR inode may be passed in and will be the
1866  * error will be propagate to the return value, with a %NULL @inode
1867  * replaced by ERR_PTR(-ESTALE).
1868  */
1869 struct dentry *d_obtain_root(struct inode *inode)
1870 {
1871 	return __d_obtain_alias(inode, 0);
1872 }
1873 EXPORT_SYMBOL(d_obtain_root);
1874 
1875 /**
1876  * d_add_ci - lookup or allocate new dentry with case-exact name
1877  * @inode:  the inode case-insensitive lookup has found
1878  * @dentry: the negative dentry that was passed to the parent's lookup func
1879  * @name:   the case-exact name to be associated with the returned dentry
1880  *
1881  * This is to avoid filling the dcache with case-insensitive names to the
1882  * same inode, only the actual correct case is stored in the dcache for
1883  * case-insensitive filesystems.
1884  *
1885  * For a case-insensitive lookup match and if the the case-exact dentry
1886  * already exists in in the dcache, use it and return it.
1887  *
1888  * If no entry exists with the exact case name, allocate new dentry with
1889  * the exact case, and return the spliced entry.
1890  */
1891 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1892 			struct qstr *name)
1893 {
1894 	struct dentry *found;
1895 	struct dentry *new;
1896 
1897 	/*
1898 	 * First check if a dentry matching the name already exists,
1899 	 * if not go ahead and create it now.
1900 	 */
1901 	found = d_hash_and_lookup(dentry->d_parent, name);
1902 	if (unlikely(IS_ERR(found)))
1903 		goto err_out;
1904 	if (!found) {
1905 		new = d_alloc(dentry->d_parent, name);
1906 		if (!new) {
1907 			found = ERR_PTR(-ENOMEM);
1908 			goto err_out;
1909 		}
1910 
1911 		found = d_splice_alias(inode, new);
1912 		if (found) {
1913 			dput(new);
1914 			return found;
1915 		}
1916 		return new;
1917 	}
1918 
1919 	/*
1920 	 * If a matching dentry exists, and it's not negative use it.
1921 	 *
1922 	 * Decrement the reference count to balance the iget() done
1923 	 * earlier on.
1924 	 */
1925 	if (found->d_inode) {
1926 		if (unlikely(found->d_inode != inode)) {
1927 			/* This can't happen because bad inodes are unhashed. */
1928 			BUG_ON(!is_bad_inode(inode));
1929 			BUG_ON(!is_bad_inode(found->d_inode));
1930 		}
1931 		iput(inode);
1932 		return found;
1933 	}
1934 
1935 	/*
1936 	 * Negative dentry: instantiate it unless the inode is a directory and
1937 	 * already has a dentry.
1938 	 */
1939 	new = d_splice_alias(inode, found);
1940 	if (new) {
1941 		dput(found);
1942 		found = new;
1943 	}
1944 	return found;
1945 
1946 err_out:
1947 	iput(inode);
1948 	return found;
1949 }
1950 EXPORT_SYMBOL(d_add_ci);
1951 
1952 /*
1953  * Do the slow-case of the dentry name compare.
1954  *
1955  * Unlike the dentry_cmp() function, we need to atomically
1956  * load the name and length information, so that the
1957  * filesystem can rely on them, and can use the 'name' and
1958  * 'len' information without worrying about walking off the
1959  * end of memory etc.
1960  *
1961  * Thus the read_seqcount_retry() and the "duplicate" info
1962  * in arguments (the low-level filesystem should not look
1963  * at the dentry inode or name contents directly, since
1964  * rename can change them while we're in RCU mode).
1965  */
1966 enum slow_d_compare {
1967 	D_COMP_OK,
1968 	D_COMP_NOMATCH,
1969 	D_COMP_SEQRETRY,
1970 };
1971 
1972 static noinline enum slow_d_compare slow_dentry_cmp(
1973 		const struct dentry *parent,
1974 		struct dentry *dentry,
1975 		unsigned int seq,
1976 		const struct qstr *name)
1977 {
1978 	int tlen = dentry->d_name.len;
1979 	const char *tname = dentry->d_name.name;
1980 
1981 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
1982 		cpu_relax();
1983 		return D_COMP_SEQRETRY;
1984 	}
1985 	if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1986 		return D_COMP_NOMATCH;
1987 	return D_COMP_OK;
1988 }
1989 
1990 /**
1991  * __d_lookup_rcu - search for a dentry (racy, store-free)
1992  * @parent: parent dentry
1993  * @name: qstr of name we wish to find
1994  * @seqp: returns d_seq value at the point where the dentry was found
1995  * Returns: dentry, or NULL
1996  *
1997  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1998  * resolution (store-free path walking) design described in
1999  * Documentation/filesystems/path-lookup.txt.
2000  *
2001  * This is not to be used outside core vfs.
2002  *
2003  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2004  * held, and rcu_read_lock held. The returned dentry must not be stored into
2005  * without taking d_lock and checking d_seq sequence count against @seq
2006  * returned here.
2007  *
2008  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2009  * function.
2010  *
2011  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2012  * the returned dentry, so long as its parent's seqlock is checked after the
2013  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2014  * is formed, giving integrity down the path walk.
2015  *
2016  * NOTE! The caller *has* to check the resulting dentry against the sequence
2017  * number we've returned before using any of the resulting dentry state!
2018  */
2019 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2020 				const struct qstr *name,
2021 				unsigned *seqp)
2022 {
2023 	u64 hashlen = name->hash_len;
2024 	const unsigned char *str = name->name;
2025 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2026 	struct hlist_bl_node *node;
2027 	struct dentry *dentry;
2028 
2029 	/*
2030 	 * Note: There is significant duplication with __d_lookup_rcu which is
2031 	 * required to prevent single threaded performance regressions
2032 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2033 	 * Keep the two functions in sync.
2034 	 */
2035 
2036 	/*
2037 	 * The hash list is protected using RCU.
2038 	 *
2039 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2040 	 * races with d_move().
2041 	 *
2042 	 * It is possible that concurrent renames can mess up our list
2043 	 * walk here and result in missing our dentry, resulting in the
2044 	 * false-negative result. d_lookup() protects against concurrent
2045 	 * renames using rename_lock seqlock.
2046 	 *
2047 	 * See Documentation/filesystems/path-lookup.txt for more details.
2048 	 */
2049 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2050 		unsigned seq;
2051 
2052 seqretry:
2053 		/*
2054 		 * The dentry sequence count protects us from concurrent
2055 		 * renames, and thus protects parent and name fields.
2056 		 *
2057 		 * The caller must perform a seqcount check in order
2058 		 * to do anything useful with the returned dentry.
2059 		 *
2060 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2061 		 * we don't wait for the sequence count to stabilize if it
2062 		 * is in the middle of a sequence change. If we do the slow
2063 		 * dentry compare, we will do seqretries until it is stable,
2064 		 * and if we end up with a successful lookup, we actually
2065 		 * want to exit RCU lookup anyway.
2066 		 */
2067 		seq = raw_seqcount_begin(&dentry->d_seq);
2068 		if (dentry->d_parent != parent)
2069 			continue;
2070 		if (d_unhashed(dentry))
2071 			continue;
2072 
2073 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2074 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2075 				continue;
2076 			*seqp = seq;
2077 			switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2078 			case D_COMP_OK:
2079 				return dentry;
2080 			case D_COMP_NOMATCH:
2081 				continue;
2082 			default:
2083 				goto seqretry;
2084 			}
2085 		}
2086 
2087 		if (dentry->d_name.hash_len != hashlen)
2088 			continue;
2089 		*seqp = seq;
2090 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2091 			return dentry;
2092 	}
2093 	return NULL;
2094 }
2095 
2096 /**
2097  * d_lookup - search for a dentry
2098  * @parent: parent dentry
2099  * @name: qstr of name we wish to find
2100  * Returns: dentry, or NULL
2101  *
2102  * d_lookup searches the children of the parent dentry for the name in
2103  * question. If the dentry is found its reference count is incremented and the
2104  * dentry is returned. The caller must use dput to free the entry when it has
2105  * finished using it. %NULL is returned if the dentry does not exist.
2106  */
2107 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2108 {
2109 	struct dentry *dentry;
2110 	unsigned seq;
2111 
2112         do {
2113                 seq = read_seqbegin(&rename_lock);
2114                 dentry = __d_lookup(parent, name);
2115                 if (dentry)
2116 			break;
2117 	} while (read_seqretry(&rename_lock, seq));
2118 	return dentry;
2119 }
2120 EXPORT_SYMBOL(d_lookup);
2121 
2122 /**
2123  * __d_lookup - search for a dentry (racy)
2124  * @parent: parent dentry
2125  * @name: qstr of name we wish to find
2126  * Returns: dentry, or NULL
2127  *
2128  * __d_lookup is like d_lookup, however it may (rarely) return a
2129  * false-negative result due to unrelated rename activity.
2130  *
2131  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2132  * however it must be used carefully, eg. with a following d_lookup in
2133  * the case of failure.
2134  *
2135  * __d_lookup callers must be commented.
2136  */
2137 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2138 {
2139 	unsigned int len = name->len;
2140 	unsigned int hash = name->hash;
2141 	const unsigned char *str = name->name;
2142 	struct hlist_bl_head *b = d_hash(parent, hash);
2143 	struct hlist_bl_node *node;
2144 	struct dentry *found = NULL;
2145 	struct dentry *dentry;
2146 
2147 	/*
2148 	 * Note: There is significant duplication with __d_lookup_rcu which is
2149 	 * required to prevent single threaded performance regressions
2150 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2151 	 * Keep the two functions in sync.
2152 	 */
2153 
2154 	/*
2155 	 * The hash list is protected using RCU.
2156 	 *
2157 	 * Take d_lock when comparing a candidate dentry, to avoid races
2158 	 * with d_move().
2159 	 *
2160 	 * It is possible that concurrent renames can mess up our list
2161 	 * walk here and result in missing our dentry, resulting in the
2162 	 * false-negative result. d_lookup() protects against concurrent
2163 	 * renames using rename_lock seqlock.
2164 	 *
2165 	 * See Documentation/filesystems/path-lookup.txt for more details.
2166 	 */
2167 	rcu_read_lock();
2168 
2169 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2170 
2171 		if (dentry->d_name.hash != hash)
2172 			continue;
2173 
2174 		spin_lock(&dentry->d_lock);
2175 		if (dentry->d_parent != parent)
2176 			goto next;
2177 		if (d_unhashed(dentry))
2178 			goto next;
2179 
2180 		/*
2181 		 * It is safe to compare names since d_move() cannot
2182 		 * change the qstr (protected by d_lock).
2183 		 */
2184 		if (parent->d_flags & DCACHE_OP_COMPARE) {
2185 			int tlen = dentry->d_name.len;
2186 			const char *tname = dentry->d_name.name;
2187 			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2188 				goto next;
2189 		} else {
2190 			if (dentry->d_name.len != len)
2191 				goto next;
2192 			if (dentry_cmp(dentry, str, len))
2193 				goto next;
2194 		}
2195 
2196 		dentry->d_lockref.count++;
2197 		found = dentry;
2198 		spin_unlock(&dentry->d_lock);
2199 		break;
2200 next:
2201 		spin_unlock(&dentry->d_lock);
2202  	}
2203  	rcu_read_unlock();
2204 
2205  	return found;
2206 }
2207 
2208 /**
2209  * d_hash_and_lookup - hash the qstr then search for a dentry
2210  * @dir: Directory to search in
2211  * @name: qstr of name we wish to find
2212  *
2213  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2214  */
2215 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2216 {
2217 	/*
2218 	 * Check for a fs-specific hash function. Note that we must
2219 	 * calculate the standard hash first, as the d_op->d_hash()
2220 	 * routine may choose to leave the hash value unchanged.
2221 	 */
2222 	name->hash = full_name_hash(name->name, name->len);
2223 	if (dir->d_flags & DCACHE_OP_HASH) {
2224 		int err = dir->d_op->d_hash(dir, name);
2225 		if (unlikely(err < 0))
2226 			return ERR_PTR(err);
2227 	}
2228 	return d_lookup(dir, name);
2229 }
2230 EXPORT_SYMBOL(d_hash_and_lookup);
2231 
2232 /**
2233  * d_validate - verify dentry provided from insecure source (deprecated)
2234  * @dentry: The dentry alleged to be valid child of @dparent
2235  * @dparent: The parent dentry (known to be valid)
2236  *
2237  * An insecure source has sent us a dentry, here we verify it and dget() it.
2238  * This is used by ncpfs in its readdir implementation.
2239  * Zero is returned in the dentry is invalid.
2240  *
2241  * This function is slow for big directories, and deprecated, do not use it.
2242  */
2243 int d_validate(struct dentry *dentry, struct dentry *dparent)
2244 {
2245 	struct dentry *child;
2246 
2247 	spin_lock(&dparent->d_lock);
2248 	list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2249 		if (dentry == child) {
2250 			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2251 			__dget_dlock(dentry);
2252 			spin_unlock(&dentry->d_lock);
2253 			spin_unlock(&dparent->d_lock);
2254 			return 1;
2255 		}
2256 	}
2257 	spin_unlock(&dparent->d_lock);
2258 
2259 	return 0;
2260 }
2261 EXPORT_SYMBOL(d_validate);
2262 
2263 /*
2264  * When a file is deleted, we have two options:
2265  * - turn this dentry into a negative dentry
2266  * - unhash this dentry and free it.
2267  *
2268  * Usually, we want to just turn this into
2269  * a negative dentry, but if anybody else is
2270  * currently using the dentry or the inode
2271  * we can't do that and we fall back on removing
2272  * it from the hash queues and waiting for
2273  * it to be deleted later when it has no users
2274  */
2275 
2276 /**
2277  * d_delete - delete a dentry
2278  * @dentry: The dentry to delete
2279  *
2280  * Turn the dentry into a negative dentry if possible, otherwise
2281  * remove it from the hash queues so it can be deleted later
2282  */
2283 
2284 void d_delete(struct dentry * dentry)
2285 {
2286 	struct inode *inode;
2287 	int isdir = 0;
2288 	/*
2289 	 * Are we the only user?
2290 	 */
2291 again:
2292 	spin_lock(&dentry->d_lock);
2293 	inode = dentry->d_inode;
2294 	isdir = S_ISDIR(inode->i_mode);
2295 	if (dentry->d_lockref.count == 1) {
2296 		if (!spin_trylock(&inode->i_lock)) {
2297 			spin_unlock(&dentry->d_lock);
2298 			cpu_relax();
2299 			goto again;
2300 		}
2301 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2302 		dentry_unlink_inode(dentry);
2303 		fsnotify_nameremove(dentry, isdir);
2304 		return;
2305 	}
2306 
2307 	if (!d_unhashed(dentry))
2308 		__d_drop(dentry);
2309 
2310 	spin_unlock(&dentry->d_lock);
2311 
2312 	fsnotify_nameremove(dentry, isdir);
2313 }
2314 EXPORT_SYMBOL(d_delete);
2315 
2316 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2317 {
2318 	BUG_ON(!d_unhashed(entry));
2319 	hlist_bl_lock(b);
2320 	entry->d_flags |= DCACHE_RCUACCESS;
2321 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2322 	hlist_bl_unlock(b);
2323 }
2324 
2325 static void _d_rehash(struct dentry * entry)
2326 {
2327 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2328 }
2329 
2330 /**
2331  * d_rehash	- add an entry back to the hash
2332  * @entry: dentry to add to the hash
2333  *
2334  * Adds a dentry to the hash according to its name.
2335  */
2336 
2337 void d_rehash(struct dentry * entry)
2338 {
2339 	spin_lock(&entry->d_lock);
2340 	_d_rehash(entry);
2341 	spin_unlock(&entry->d_lock);
2342 }
2343 EXPORT_SYMBOL(d_rehash);
2344 
2345 /**
2346  * dentry_update_name_case - update case insensitive dentry with a new name
2347  * @dentry: dentry to be updated
2348  * @name: new name
2349  *
2350  * Update a case insensitive dentry with new case of name.
2351  *
2352  * dentry must have been returned by d_lookup with name @name. Old and new
2353  * name lengths must match (ie. no d_compare which allows mismatched name
2354  * lengths).
2355  *
2356  * Parent inode i_mutex must be held over d_lookup and into this call (to
2357  * keep renames and concurrent inserts, and readdir(2) away).
2358  */
2359 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2360 {
2361 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2362 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2363 
2364 	spin_lock(&dentry->d_lock);
2365 	write_seqcount_begin(&dentry->d_seq);
2366 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2367 	write_seqcount_end(&dentry->d_seq);
2368 	spin_unlock(&dentry->d_lock);
2369 }
2370 EXPORT_SYMBOL(dentry_update_name_case);
2371 
2372 static void swap_names(struct dentry *dentry, struct dentry *target)
2373 {
2374 	if (unlikely(dname_external(target))) {
2375 		if (unlikely(dname_external(dentry))) {
2376 			/*
2377 			 * Both external: swap the pointers
2378 			 */
2379 			swap(target->d_name.name, dentry->d_name.name);
2380 		} else {
2381 			/*
2382 			 * dentry:internal, target:external.  Steal target's
2383 			 * storage and make target internal.
2384 			 */
2385 			memcpy(target->d_iname, dentry->d_name.name,
2386 					dentry->d_name.len + 1);
2387 			dentry->d_name.name = target->d_name.name;
2388 			target->d_name.name = target->d_iname;
2389 		}
2390 	} else {
2391 		if (unlikely(dname_external(dentry))) {
2392 			/*
2393 			 * dentry:external, target:internal.  Give dentry's
2394 			 * storage to target and make dentry internal
2395 			 */
2396 			memcpy(dentry->d_iname, target->d_name.name,
2397 					target->d_name.len + 1);
2398 			target->d_name.name = dentry->d_name.name;
2399 			dentry->d_name.name = dentry->d_iname;
2400 		} else {
2401 			/*
2402 			 * Both are internal.
2403 			 */
2404 			unsigned int i;
2405 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2406 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2407 				swap(((long *) &dentry->d_iname)[i],
2408 				     ((long *) &target->d_iname)[i]);
2409 			}
2410 		}
2411 	}
2412 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2413 }
2414 
2415 static void copy_name(struct dentry *dentry, struct dentry *target)
2416 {
2417 	struct external_name *old_name = NULL;
2418 	if (unlikely(dname_external(dentry)))
2419 		old_name = external_name(dentry);
2420 	if (unlikely(dname_external(target))) {
2421 		atomic_inc(&external_name(target)->u.count);
2422 		dentry->d_name = target->d_name;
2423 	} else {
2424 		memcpy(dentry->d_iname, target->d_name.name,
2425 				target->d_name.len + 1);
2426 		dentry->d_name.name = dentry->d_iname;
2427 		dentry->d_name.hash_len = target->d_name.hash_len;
2428 	}
2429 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2430 		kfree_rcu(old_name, u.head);
2431 }
2432 
2433 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2434 {
2435 	/*
2436 	 * XXXX: do we really need to take target->d_lock?
2437 	 */
2438 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2439 		spin_lock(&target->d_parent->d_lock);
2440 	else {
2441 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2442 			spin_lock(&dentry->d_parent->d_lock);
2443 			spin_lock_nested(&target->d_parent->d_lock,
2444 						DENTRY_D_LOCK_NESTED);
2445 		} else {
2446 			spin_lock(&target->d_parent->d_lock);
2447 			spin_lock_nested(&dentry->d_parent->d_lock,
2448 						DENTRY_D_LOCK_NESTED);
2449 		}
2450 	}
2451 	if (target < dentry) {
2452 		spin_lock_nested(&target->d_lock, 2);
2453 		spin_lock_nested(&dentry->d_lock, 3);
2454 	} else {
2455 		spin_lock_nested(&dentry->d_lock, 2);
2456 		spin_lock_nested(&target->d_lock, 3);
2457 	}
2458 }
2459 
2460 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2461 {
2462 	if (target->d_parent != dentry->d_parent)
2463 		spin_unlock(&dentry->d_parent->d_lock);
2464 	if (target->d_parent != target)
2465 		spin_unlock(&target->d_parent->d_lock);
2466 	spin_unlock(&target->d_lock);
2467 	spin_unlock(&dentry->d_lock);
2468 }
2469 
2470 /*
2471  * When switching names, the actual string doesn't strictly have to
2472  * be preserved in the target - because we're dropping the target
2473  * anyway. As such, we can just do a simple memcpy() to copy over
2474  * the new name before we switch, unless we are going to rehash
2475  * it.  Note that if we *do* unhash the target, we are not allowed
2476  * to rehash it without giving it a new name/hash key - whether
2477  * we swap or overwrite the names here, resulting name won't match
2478  * the reality in filesystem; it's only there for d_path() purposes.
2479  * Note that all of this is happening under rename_lock, so the
2480  * any hash lookup seeing it in the middle of manipulations will
2481  * be discarded anyway.  So we do not care what happens to the hash
2482  * key in that case.
2483  */
2484 /*
2485  * __d_move - move a dentry
2486  * @dentry: entry to move
2487  * @target: new dentry
2488  * @exchange: exchange the two dentries
2489  *
2490  * Update the dcache to reflect the move of a file name. Negative
2491  * dcache entries should not be moved in this way. Caller must hold
2492  * rename_lock, the i_mutex of the source and target directories,
2493  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2494  */
2495 static void __d_move(struct dentry *dentry, struct dentry *target,
2496 		     bool exchange)
2497 {
2498 	if (!dentry->d_inode)
2499 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2500 
2501 	BUG_ON(d_ancestor(dentry, target));
2502 	BUG_ON(d_ancestor(target, dentry));
2503 
2504 	dentry_lock_for_move(dentry, target);
2505 
2506 	write_seqcount_begin(&dentry->d_seq);
2507 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2508 
2509 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2510 
2511 	/*
2512 	 * Move the dentry to the target hash queue. Don't bother checking
2513 	 * for the same hash queue because of how unlikely it is.
2514 	 */
2515 	__d_drop(dentry);
2516 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2517 
2518 	/*
2519 	 * Unhash the target (d_delete() is not usable here).  If exchanging
2520 	 * the two dentries, then rehash onto the other's hash queue.
2521 	 */
2522 	__d_drop(target);
2523 	if (exchange) {
2524 		__d_rehash(target,
2525 			   d_hash(dentry->d_parent, dentry->d_name.hash));
2526 	}
2527 
2528 	/* Switch the names.. */
2529 	if (exchange)
2530 		swap_names(dentry, target);
2531 	else
2532 		copy_name(dentry, target);
2533 
2534 	/* ... and switch them in the tree */
2535 	if (IS_ROOT(dentry)) {
2536 		/* splicing a tree */
2537 		dentry->d_parent = target->d_parent;
2538 		target->d_parent = target;
2539 		list_del_init(&target->d_u.d_child);
2540 		list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2541 	} else {
2542 		/* swapping two dentries */
2543 		swap(dentry->d_parent, target->d_parent);
2544 		list_move(&target->d_u.d_child, &target->d_parent->d_subdirs);
2545 		list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2546 		if (exchange)
2547 			fsnotify_d_move(target);
2548 		fsnotify_d_move(dentry);
2549 	}
2550 
2551 	write_seqcount_end(&target->d_seq);
2552 	write_seqcount_end(&dentry->d_seq);
2553 
2554 	dentry_unlock_for_move(dentry, target);
2555 }
2556 
2557 /*
2558  * d_move - move a dentry
2559  * @dentry: entry to move
2560  * @target: new dentry
2561  *
2562  * Update the dcache to reflect the move of a file name. Negative
2563  * dcache entries should not be moved in this way. See the locking
2564  * requirements for __d_move.
2565  */
2566 void d_move(struct dentry *dentry, struct dentry *target)
2567 {
2568 	write_seqlock(&rename_lock);
2569 	__d_move(dentry, target, false);
2570 	write_sequnlock(&rename_lock);
2571 }
2572 EXPORT_SYMBOL(d_move);
2573 
2574 /*
2575  * d_exchange - exchange two dentries
2576  * @dentry1: first dentry
2577  * @dentry2: second dentry
2578  */
2579 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2580 {
2581 	write_seqlock(&rename_lock);
2582 
2583 	WARN_ON(!dentry1->d_inode);
2584 	WARN_ON(!dentry2->d_inode);
2585 	WARN_ON(IS_ROOT(dentry1));
2586 	WARN_ON(IS_ROOT(dentry2));
2587 
2588 	__d_move(dentry1, dentry2, true);
2589 
2590 	write_sequnlock(&rename_lock);
2591 }
2592 
2593 /**
2594  * d_ancestor - search for an ancestor
2595  * @p1: ancestor dentry
2596  * @p2: child dentry
2597  *
2598  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2599  * an ancestor of p2, else NULL.
2600  */
2601 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2602 {
2603 	struct dentry *p;
2604 
2605 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2606 		if (p->d_parent == p1)
2607 			return p;
2608 	}
2609 	return NULL;
2610 }
2611 
2612 /*
2613  * This helper attempts to cope with remotely renamed directories
2614  *
2615  * It assumes that the caller is already holding
2616  * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2617  *
2618  * Note: If ever the locking in lock_rename() changes, then please
2619  * remember to update this too...
2620  */
2621 static struct dentry *__d_unalias(struct inode *inode,
2622 		struct dentry *dentry, struct dentry *alias)
2623 {
2624 	struct mutex *m1 = NULL, *m2 = NULL;
2625 	struct dentry *ret = ERR_PTR(-EBUSY);
2626 
2627 	/* If alias and dentry share a parent, then no extra locks required */
2628 	if (alias->d_parent == dentry->d_parent)
2629 		goto out_unalias;
2630 
2631 	/* See lock_rename() */
2632 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2633 		goto out_err;
2634 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2635 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2636 		goto out_err;
2637 	m2 = &alias->d_parent->d_inode->i_mutex;
2638 out_unalias:
2639 	__d_move(alias, dentry, false);
2640 	ret = alias;
2641 out_err:
2642 	spin_unlock(&inode->i_lock);
2643 	if (m2)
2644 		mutex_unlock(m2);
2645 	if (m1)
2646 		mutex_unlock(m1);
2647 	return ret;
2648 }
2649 
2650 /**
2651  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2652  * @inode:  the inode which may have a disconnected dentry
2653  * @dentry: a negative dentry which we want to point to the inode.
2654  *
2655  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2656  * place of the given dentry and return it, else simply d_add the inode
2657  * to the dentry and return NULL.
2658  *
2659  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2660  * we should error out: directories can't have multiple aliases.
2661  *
2662  * This is needed in the lookup routine of any filesystem that is exportable
2663  * (via knfsd) so that we can build dcache paths to directories effectively.
2664  *
2665  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2666  * is returned.  This matches the expected return value of ->lookup.
2667  *
2668  * Cluster filesystems may call this function with a negative, hashed dentry.
2669  * In that case, we know that the inode will be a regular file, and also this
2670  * will only occur during atomic_open. So we need to check for the dentry
2671  * being already hashed only in the final case.
2672  */
2673 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2674 {
2675 	struct dentry *new = NULL;
2676 
2677 	if (IS_ERR(inode))
2678 		return ERR_CAST(inode);
2679 
2680 	if (inode && S_ISDIR(inode->i_mode)) {
2681 		spin_lock(&inode->i_lock);
2682 		new = __d_find_any_alias(inode);
2683 		if (new) {
2684 			if (!IS_ROOT(new)) {
2685 				spin_unlock(&inode->i_lock);
2686 				dput(new);
2687 				return ERR_PTR(-EIO);
2688 			}
2689 			if (d_ancestor(new, dentry)) {
2690 				spin_unlock(&inode->i_lock);
2691 				dput(new);
2692 				return ERR_PTR(-EIO);
2693 			}
2694 			write_seqlock(&rename_lock);
2695 			__d_move(new, dentry, false);
2696 			write_sequnlock(&rename_lock);
2697 			spin_unlock(&inode->i_lock);
2698 			security_d_instantiate(new, inode);
2699 			iput(inode);
2700 		} else {
2701 			/* already taking inode->i_lock, so d_add() by hand */
2702 			__d_instantiate(dentry, inode);
2703 			spin_unlock(&inode->i_lock);
2704 			security_d_instantiate(dentry, inode);
2705 			d_rehash(dentry);
2706 		}
2707 	} else {
2708 		d_instantiate(dentry, inode);
2709 		if (d_unhashed(dentry))
2710 			d_rehash(dentry);
2711 	}
2712 	return new;
2713 }
2714 EXPORT_SYMBOL(d_splice_alias);
2715 
2716 /**
2717  * d_materialise_unique - introduce an inode into the tree
2718  * @dentry: candidate dentry
2719  * @inode: inode to bind to the dentry, to which aliases may be attached
2720  *
2721  * Introduces an dentry into the tree, substituting an extant disconnected
2722  * root directory alias in its place if there is one. Caller must hold the
2723  * i_mutex of the parent directory.
2724  */
2725 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2726 {
2727 	struct dentry *actual;
2728 
2729 	BUG_ON(!d_unhashed(dentry));
2730 
2731 	if (!inode) {
2732 		actual = dentry;
2733 		__d_instantiate(dentry, NULL);
2734 		d_rehash(actual);
2735 		goto out_nolock;
2736 	}
2737 
2738 	spin_lock(&inode->i_lock);
2739 
2740 	if (S_ISDIR(inode->i_mode)) {
2741 		struct dentry *alias;
2742 
2743 		/* Does an aliased dentry already exist? */
2744 		alias = __d_find_alias(inode);
2745 		if (alias) {
2746 			actual = alias;
2747 			write_seqlock(&rename_lock);
2748 
2749 			if (d_ancestor(alias, dentry)) {
2750 				/* Check for loops */
2751 				actual = ERR_PTR(-ELOOP);
2752 				spin_unlock(&inode->i_lock);
2753 			} else if (IS_ROOT(alias)) {
2754 				/* Is this an anonymous mountpoint that we
2755 				 * could splice into our tree? */
2756 				__d_move(alias, dentry, false);
2757 				write_sequnlock(&rename_lock);
2758 				goto found;
2759 			} else {
2760 				/* Nope, but we must(!) avoid directory
2761 				 * aliasing. This drops inode->i_lock */
2762 				actual = __d_unalias(inode, dentry, alias);
2763 			}
2764 			write_sequnlock(&rename_lock);
2765 			if (IS_ERR(actual)) {
2766 				if (PTR_ERR(actual) == -ELOOP)
2767 					pr_warn_ratelimited(
2768 						"VFS: Lookup of '%s' in %s %s"
2769 						" would have caused loop\n",
2770 						dentry->d_name.name,
2771 						inode->i_sb->s_type->name,
2772 						inode->i_sb->s_id);
2773 				dput(alias);
2774 			}
2775 			goto out_nolock;
2776 		}
2777 	}
2778 
2779 	/* Add a unique reference */
2780 	actual = __d_instantiate_unique(dentry, inode);
2781 	if (!actual)
2782 		actual = dentry;
2783 
2784 	d_rehash(actual);
2785 found:
2786 	spin_unlock(&inode->i_lock);
2787 out_nolock:
2788 	if (actual == dentry) {
2789 		security_d_instantiate(dentry, inode);
2790 		return NULL;
2791 	}
2792 
2793 	iput(inode);
2794 	return actual;
2795 }
2796 EXPORT_SYMBOL_GPL(d_materialise_unique);
2797 
2798 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2799 {
2800 	*buflen -= namelen;
2801 	if (*buflen < 0)
2802 		return -ENAMETOOLONG;
2803 	*buffer -= namelen;
2804 	memcpy(*buffer, str, namelen);
2805 	return 0;
2806 }
2807 
2808 /**
2809  * prepend_name - prepend a pathname in front of current buffer pointer
2810  * @buffer: buffer pointer
2811  * @buflen: allocated length of the buffer
2812  * @name:   name string and length qstr structure
2813  *
2814  * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2815  * make sure that either the old or the new name pointer and length are
2816  * fetched. However, there may be mismatch between length and pointer.
2817  * The length cannot be trusted, we need to copy it byte-by-byte until
2818  * the length is reached or a null byte is found. It also prepends "/" at
2819  * the beginning of the name. The sequence number check at the caller will
2820  * retry it again when a d_move() does happen. So any garbage in the buffer
2821  * due to mismatched pointer and length will be discarded.
2822  *
2823  * Data dependency barrier is needed to make sure that we see that terminating
2824  * NUL.  Alpha strikes again, film at 11...
2825  */
2826 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2827 {
2828 	const char *dname = ACCESS_ONCE(name->name);
2829 	u32 dlen = ACCESS_ONCE(name->len);
2830 	char *p;
2831 
2832 	smp_read_barrier_depends();
2833 
2834 	*buflen -= dlen + 1;
2835 	if (*buflen < 0)
2836 		return -ENAMETOOLONG;
2837 	p = *buffer -= dlen + 1;
2838 	*p++ = '/';
2839 	while (dlen--) {
2840 		char c = *dname++;
2841 		if (!c)
2842 			break;
2843 		*p++ = c;
2844 	}
2845 	return 0;
2846 }
2847 
2848 /**
2849  * prepend_path - Prepend path string to a buffer
2850  * @path: the dentry/vfsmount to report
2851  * @root: root vfsmnt/dentry
2852  * @buffer: pointer to the end of the buffer
2853  * @buflen: pointer to buffer length
2854  *
2855  * The function will first try to write out the pathname without taking any
2856  * lock other than the RCU read lock to make sure that dentries won't go away.
2857  * It only checks the sequence number of the global rename_lock as any change
2858  * in the dentry's d_seq will be preceded by changes in the rename_lock
2859  * sequence number. If the sequence number had been changed, it will restart
2860  * the whole pathname back-tracing sequence again by taking the rename_lock.
2861  * In this case, there is no need to take the RCU read lock as the recursive
2862  * parent pointer references will keep the dentry chain alive as long as no
2863  * rename operation is performed.
2864  */
2865 static int prepend_path(const struct path *path,
2866 			const struct path *root,
2867 			char **buffer, int *buflen)
2868 {
2869 	struct dentry *dentry;
2870 	struct vfsmount *vfsmnt;
2871 	struct mount *mnt;
2872 	int error = 0;
2873 	unsigned seq, m_seq = 0;
2874 	char *bptr;
2875 	int blen;
2876 
2877 	rcu_read_lock();
2878 restart_mnt:
2879 	read_seqbegin_or_lock(&mount_lock, &m_seq);
2880 	seq = 0;
2881 	rcu_read_lock();
2882 restart:
2883 	bptr = *buffer;
2884 	blen = *buflen;
2885 	error = 0;
2886 	dentry = path->dentry;
2887 	vfsmnt = path->mnt;
2888 	mnt = real_mount(vfsmnt);
2889 	read_seqbegin_or_lock(&rename_lock, &seq);
2890 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2891 		struct dentry * parent;
2892 
2893 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2894 			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2895 			/* Global root? */
2896 			if (mnt != parent) {
2897 				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2898 				mnt = parent;
2899 				vfsmnt = &mnt->mnt;
2900 				continue;
2901 			}
2902 			/*
2903 			 * Filesystems needing to implement special "root names"
2904 			 * should do so with ->d_dname()
2905 			 */
2906 			if (IS_ROOT(dentry) &&
2907 			   (dentry->d_name.len != 1 ||
2908 			    dentry->d_name.name[0] != '/')) {
2909 				WARN(1, "Root dentry has weird name <%.*s>\n",
2910 				     (int) dentry->d_name.len,
2911 				     dentry->d_name.name);
2912 			}
2913 			if (!error)
2914 				error = is_mounted(vfsmnt) ? 1 : 2;
2915 			break;
2916 		}
2917 		parent = dentry->d_parent;
2918 		prefetch(parent);
2919 		error = prepend_name(&bptr, &blen, &dentry->d_name);
2920 		if (error)
2921 			break;
2922 
2923 		dentry = parent;
2924 	}
2925 	if (!(seq & 1))
2926 		rcu_read_unlock();
2927 	if (need_seqretry(&rename_lock, seq)) {
2928 		seq = 1;
2929 		goto restart;
2930 	}
2931 	done_seqretry(&rename_lock, seq);
2932 
2933 	if (!(m_seq & 1))
2934 		rcu_read_unlock();
2935 	if (need_seqretry(&mount_lock, m_seq)) {
2936 		m_seq = 1;
2937 		goto restart_mnt;
2938 	}
2939 	done_seqretry(&mount_lock, m_seq);
2940 
2941 	if (error >= 0 && bptr == *buffer) {
2942 		if (--blen < 0)
2943 			error = -ENAMETOOLONG;
2944 		else
2945 			*--bptr = '/';
2946 	}
2947 	*buffer = bptr;
2948 	*buflen = blen;
2949 	return error;
2950 }
2951 
2952 /**
2953  * __d_path - return the path of a dentry
2954  * @path: the dentry/vfsmount to report
2955  * @root: root vfsmnt/dentry
2956  * @buf: buffer to return value in
2957  * @buflen: buffer length
2958  *
2959  * Convert a dentry into an ASCII path name.
2960  *
2961  * Returns a pointer into the buffer or an error code if the
2962  * path was too long.
2963  *
2964  * "buflen" should be positive.
2965  *
2966  * If the path is not reachable from the supplied root, return %NULL.
2967  */
2968 char *__d_path(const struct path *path,
2969 	       const struct path *root,
2970 	       char *buf, int buflen)
2971 {
2972 	char *res = buf + buflen;
2973 	int error;
2974 
2975 	prepend(&res, &buflen, "\0", 1);
2976 	error = prepend_path(path, root, &res, &buflen);
2977 
2978 	if (error < 0)
2979 		return ERR_PTR(error);
2980 	if (error > 0)
2981 		return NULL;
2982 	return res;
2983 }
2984 
2985 char *d_absolute_path(const struct path *path,
2986 	       char *buf, int buflen)
2987 {
2988 	struct path root = {};
2989 	char *res = buf + buflen;
2990 	int error;
2991 
2992 	prepend(&res, &buflen, "\0", 1);
2993 	error = prepend_path(path, &root, &res, &buflen);
2994 
2995 	if (error > 1)
2996 		error = -EINVAL;
2997 	if (error < 0)
2998 		return ERR_PTR(error);
2999 	return res;
3000 }
3001 
3002 /*
3003  * same as __d_path but appends "(deleted)" for unlinked files.
3004  */
3005 static int path_with_deleted(const struct path *path,
3006 			     const struct path *root,
3007 			     char **buf, int *buflen)
3008 {
3009 	prepend(buf, buflen, "\0", 1);
3010 	if (d_unlinked(path->dentry)) {
3011 		int error = prepend(buf, buflen, " (deleted)", 10);
3012 		if (error)
3013 			return error;
3014 	}
3015 
3016 	return prepend_path(path, root, buf, buflen);
3017 }
3018 
3019 static int prepend_unreachable(char **buffer, int *buflen)
3020 {
3021 	return prepend(buffer, buflen, "(unreachable)", 13);
3022 }
3023 
3024 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3025 {
3026 	unsigned seq;
3027 
3028 	do {
3029 		seq = read_seqcount_begin(&fs->seq);
3030 		*root = fs->root;
3031 	} while (read_seqcount_retry(&fs->seq, seq));
3032 }
3033 
3034 /**
3035  * d_path - return the path of a dentry
3036  * @path: path to report
3037  * @buf: buffer to return value in
3038  * @buflen: buffer length
3039  *
3040  * Convert a dentry into an ASCII path name. If the entry has been deleted
3041  * the string " (deleted)" is appended. Note that this is ambiguous.
3042  *
3043  * Returns a pointer into the buffer or an error code if the path was
3044  * too long. Note: Callers should use the returned pointer, not the passed
3045  * in buffer, to use the name! The implementation often starts at an offset
3046  * into the buffer, and may leave 0 bytes at the start.
3047  *
3048  * "buflen" should be positive.
3049  */
3050 char *d_path(const struct path *path, char *buf, int buflen)
3051 {
3052 	char *res = buf + buflen;
3053 	struct path root;
3054 	int error;
3055 
3056 	/*
3057 	 * We have various synthetic filesystems that never get mounted.  On
3058 	 * these filesystems dentries are never used for lookup purposes, and
3059 	 * thus don't need to be hashed.  They also don't need a name until a
3060 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3061 	 * below allows us to generate a name for these objects on demand:
3062 	 *
3063 	 * Some pseudo inodes are mountable.  When they are mounted
3064 	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3065 	 * and instead have d_path return the mounted path.
3066 	 */
3067 	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3068 	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3069 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3070 
3071 	rcu_read_lock();
3072 	get_fs_root_rcu(current->fs, &root);
3073 	error = path_with_deleted(path, &root, &res, &buflen);
3074 	rcu_read_unlock();
3075 
3076 	if (error < 0)
3077 		res = ERR_PTR(error);
3078 	return res;
3079 }
3080 EXPORT_SYMBOL(d_path);
3081 
3082 /*
3083  * Helper function for dentry_operations.d_dname() members
3084  */
3085 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3086 			const char *fmt, ...)
3087 {
3088 	va_list args;
3089 	char temp[64];
3090 	int sz;
3091 
3092 	va_start(args, fmt);
3093 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3094 	va_end(args);
3095 
3096 	if (sz > sizeof(temp) || sz > buflen)
3097 		return ERR_PTR(-ENAMETOOLONG);
3098 
3099 	buffer += buflen - sz;
3100 	return memcpy(buffer, temp, sz);
3101 }
3102 
3103 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3104 {
3105 	char *end = buffer + buflen;
3106 	/* these dentries are never renamed, so d_lock is not needed */
3107 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3108 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3109 	    prepend(&end, &buflen, "/", 1))
3110 		end = ERR_PTR(-ENAMETOOLONG);
3111 	return end;
3112 }
3113 EXPORT_SYMBOL(simple_dname);
3114 
3115 /*
3116  * Write full pathname from the root of the filesystem into the buffer.
3117  */
3118 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3119 {
3120 	struct dentry *dentry;
3121 	char *end, *retval;
3122 	int len, seq = 0;
3123 	int error = 0;
3124 
3125 	if (buflen < 2)
3126 		goto Elong;
3127 
3128 	rcu_read_lock();
3129 restart:
3130 	dentry = d;
3131 	end = buf + buflen;
3132 	len = buflen;
3133 	prepend(&end, &len, "\0", 1);
3134 	/* Get '/' right */
3135 	retval = end-1;
3136 	*retval = '/';
3137 	read_seqbegin_or_lock(&rename_lock, &seq);
3138 	while (!IS_ROOT(dentry)) {
3139 		struct dentry *parent = dentry->d_parent;
3140 
3141 		prefetch(parent);
3142 		error = prepend_name(&end, &len, &dentry->d_name);
3143 		if (error)
3144 			break;
3145 
3146 		retval = end;
3147 		dentry = parent;
3148 	}
3149 	if (!(seq & 1))
3150 		rcu_read_unlock();
3151 	if (need_seqretry(&rename_lock, seq)) {
3152 		seq = 1;
3153 		goto restart;
3154 	}
3155 	done_seqretry(&rename_lock, seq);
3156 	if (error)
3157 		goto Elong;
3158 	return retval;
3159 Elong:
3160 	return ERR_PTR(-ENAMETOOLONG);
3161 }
3162 
3163 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3164 {
3165 	return __dentry_path(dentry, buf, buflen);
3166 }
3167 EXPORT_SYMBOL(dentry_path_raw);
3168 
3169 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3170 {
3171 	char *p = NULL;
3172 	char *retval;
3173 
3174 	if (d_unlinked(dentry)) {
3175 		p = buf + buflen;
3176 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3177 			goto Elong;
3178 		buflen++;
3179 	}
3180 	retval = __dentry_path(dentry, buf, buflen);
3181 	if (!IS_ERR(retval) && p)
3182 		*p = '/';	/* restore '/' overriden with '\0' */
3183 	return retval;
3184 Elong:
3185 	return ERR_PTR(-ENAMETOOLONG);
3186 }
3187 
3188 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3189 				    struct path *pwd)
3190 {
3191 	unsigned seq;
3192 
3193 	do {
3194 		seq = read_seqcount_begin(&fs->seq);
3195 		*root = fs->root;
3196 		*pwd = fs->pwd;
3197 	} while (read_seqcount_retry(&fs->seq, seq));
3198 }
3199 
3200 /*
3201  * NOTE! The user-level library version returns a
3202  * character pointer. The kernel system call just
3203  * returns the length of the buffer filled (which
3204  * includes the ending '\0' character), or a negative
3205  * error value. So libc would do something like
3206  *
3207  *	char *getcwd(char * buf, size_t size)
3208  *	{
3209  *		int retval;
3210  *
3211  *		retval = sys_getcwd(buf, size);
3212  *		if (retval >= 0)
3213  *			return buf;
3214  *		errno = -retval;
3215  *		return NULL;
3216  *	}
3217  */
3218 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3219 {
3220 	int error;
3221 	struct path pwd, root;
3222 	char *page = __getname();
3223 
3224 	if (!page)
3225 		return -ENOMEM;
3226 
3227 	rcu_read_lock();
3228 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3229 
3230 	error = -ENOENT;
3231 	if (!d_unlinked(pwd.dentry)) {
3232 		unsigned long len;
3233 		char *cwd = page + PATH_MAX;
3234 		int buflen = PATH_MAX;
3235 
3236 		prepend(&cwd, &buflen, "\0", 1);
3237 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3238 		rcu_read_unlock();
3239 
3240 		if (error < 0)
3241 			goto out;
3242 
3243 		/* Unreachable from current root */
3244 		if (error > 0) {
3245 			error = prepend_unreachable(&cwd, &buflen);
3246 			if (error)
3247 				goto out;
3248 		}
3249 
3250 		error = -ERANGE;
3251 		len = PATH_MAX + page - cwd;
3252 		if (len <= size) {
3253 			error = len;
3254 			if (copy_to_user(buf, cwd, len))
3255 				error = -EFAULT;
3256 		}
3257 	} else {
3258 		rcu_read_unlock();
3259 	}
3260 
3261 out:
3262 	__putname(page);
3263 	return error;
3264 }
3265 
3266 /*
3267  * Test whether new_dentry is a subdirectory of old_dentry.
3268  *
3269  * Trivially implemented using the dcache structure
3270  */
3271 
3272 /**
3273  * is_subdir - is new dentry a subdirectory of old_dentry
3274  * @new_dentry: new dentry
3275  * @old_dentry: old dentry
3276  *
3277  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3278  * Returns 0 otherwise.
3279  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3280  */
3281 
3282 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3283 {
3284 	int result;
3285 	unsigned seq;
3286 
3287 	if (new_dentry == old_dentry)
3288 		return 1;
3289 
3290 	do {
3291 		/* for restarting inner loop in case of seq retry */
3292 		seq = read_seqbegin(&rename_lock);
3293 		/*
3294 		 * Need rcu_readlock to protect against the d_parent trashing
3295 		 * due to d_move
3296 		 */
3297 		rcu_read_lock();
3298 		if (d_ancestor(old_dentry, new_dentry))
3299 			result = 1;
3300 		else
3301 			result = 0;
3302 		rcu_read_unlock();
3303 	} while (read_seqretry(&rename_lock, seq));
3304 
3305 	return result;
3306 }
3307 
3308 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3309 {
3310 	struct dentry *root = data;
3311 	if (dentry != root) {
3312 		if (d_unhashed(dentry) || !dentry->d_inode)
3313 			return D_WALK_SKIP;
3314 
3315 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3316 			dentry->d_flags |= DCACHE_GENOCIDE;
3317 			dentry->d_lockref.count--;
3318 		}
3319 	}
3320 	return D_WALK_CONTINUE;
3321 }
3322 
3323 void d_genocide(struct dentry *parent)
3324 {
3325 	d_walk(parent, parent, d_genocide_kill, NULL);
3326 }
3327 
3328 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3329 {
3330 	inode_dec_link_count(inode);
3331 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3332 		!hlist_unhashed(&dentry->d_alias) ||
3333 		!d_unlinked(dentry));
3334 	spin_lock(&dentry->d_parent->d_lock);
3335 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3336 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3337 				(unsigned long long)inode->i_ino);
3338 	spin_unlock(&dentry->d_lock);
3339 	spin_unlock(&dentry->d_parent->d_lock);
3340 	d_instantiate(dentry, inode);
3341 }
3342 EXPORT_SYMBOL(d_tmpfile);
3343 
3344 static __initdata unsigned long dhash_entries;
3345 static int __init set_dhash_entries(char *str)
3346 {
3347 	if (!str)
3348 		return 0;
3349 	dhash_entries = simple_strtoul(str, &str, 0);
3350 	return 1;
3351 }
3352 __setup("dhash_entries=", set_dhash_entries);
3353 
3354 static void __init dcache_init_early(void)
3355 {
3356 	unsigned int loop;
3357 
3358 	/* If hashes are distributed across NUMA nodes, defer
3359 	 * hash allocation until vmalloc space is available.
3360 	 */
3361 	if (hashdist)
3362 		return;
3363 
3364 	dentry_hashtable =
3365 		alloc_large_system_hash("Dentry cache",
3366 					sizeof(struct hlist_bl_head),
3367 					dhash_entries,
3368 					13,
3369 					HASH_EARLY,
3370 					&d_hash_shift,
3371 					&d_hash_mask,
3372 					0,
3373 					0);
3374 
3375 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3376 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3377 }
3378 
3379 static void __init dcache_init(void)
3380 {
3381 	unsigned int loop;
3382 
3383 	/*
3384 	 * A constructor could be added for stable state like the lists,
3385 	 * but it is probably not worth it because of the cache nature
3386 	 * of the dcache.
3387 	 */
3388 	dentry_cache = KMEM_CACHE(dentry,
3389 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3390 
3391 	/* Hash may have been set up in dcache_init_early */
3392 	if (!hashdist)
3393 		return;
3394 
3395 	dentry_hashtable =
3396 		alloc_large_system_hash("Dentry cache",
3397 					sizeof(struct hlist_bl_head),
3398 					dhash_entries,
3399 					13,
3400 					0,
3401 					&d_hash_shift,
3402 					&d_hash_mask,
3403 					0,
3404 					0);
3405 
3406 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3407 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3408 }
3409 
3410 /* SLAB cache for __getname() consumers */
3411 struct kmem_cache *names_cachep __read_mostly;
3412 EXPORT_SYMBOL(names_cachep);
3413 
3414 EXPORT_SYMBOL(d_genocide);
3415 
3416 void __init vfs_caches_init_early(void)
3417 {
3418 	dcache_init_early();
3419 	inode_init_early();
3420 }
3421 
3422 void __init vfs_caches_init(unsigned long mempages)
3423 {
3424 	unsigned long reserve;
3425 
3426 	/* Base hash sizes on available memory, with a reserve equal to
3427            150% of current kernel size */
3428 
3429 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3430 	mempages -= reserve;
3431 
3432 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3433 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3434 
3435 	dcache_init();
3436 	inode_init();
3437 	files_init(mempages);
3438 	mnt_init();
3439 	bdev_cache_init();
3440 	chrdev_init();
3441 }
3442