xref: /openbmc/linux/fs/dax.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pmem.h>
28 #include <linux/sched.h>
29 #include <linux/uio.h>
30 #include <linux/vmstat.h>
31 
32 int dax_clear_blocks(struct inode *inode, sector_t block, long size)
33 {
34 	struct block_device *bdev = inode->i_sb->s_bdev;
35 	sector_t sector = block << (inode->i_blkbits - 9);
36 
37 	might_sleep();
38 	do {
39 		void __pmem *addr;
40 		unsigned long pfn;
41 		long count;
42 
43 		count = bdev_direct_access(bdev, sector, &addr, &pfn, size);
44 		if (count < 0)
45 			return count;
46 		BUG_ON(size < count);
47 		while (count > 0) {
48 			unsigned pgsz = PAGE_SIZE - offset_in_page(addr);
49 			if (pgsz > count)
50 				pgsz = count;
51 			clear_pmem(addr, pgsz);
52 			addr += pgsz;
53 			size -= pgsz;
54 			count -= pgsz;
55 			BUG_ON(pgsz & 511);
56 			sector += pgsz / 512;
57 			cond_resched();
58 		}
59 	} while (size);
60 
61 	wmb_pmem();
62 	return 0;
63 }
64 EXPORT_SYMBOL_GPL(dax_clear_blocks);
65 
66 static long dax_get_addr(struct buffer_head *bh, void __pmem **addr,
67 		unsigned blkbits)
68 {
69 	unsigned long pfn;
70 	sector_t sector = bh->b_blocknr << (blkbits - 9);
71 	return bdev_direct_access(bh->b_bdev, sector, addr, &pfn, bh->b_size);
72 }
73 
74 /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
75 static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
76 		loff_t pos, loff_t end)
77 {
78 	loff_t final = end - pos + first; /* The final byte of the buffer */
79 
80 	if (first > 0)
81 		clear_pmem(addr, first);
82 	if (final < size)
83 		clear_pmem(addr + final, size - final);
84 }
85 
86 static bool buffer_written(struct buffer_head *bh)
87 {
88 	return buffer_mapped(bh) && !buffer_unwritten(bh);
89 }
90 
91 /*
92  * When ext4 encounters a hole, it returns without modifying the buffer_head
93  * which means that we can't trust b_size.  To cope with this, we set b_state
94  * to 0 before calling get_block and, if any bit is set, we know we can trust
95  * b_size.  Unfortunate, really, since ext4 knows precisely how long a hole is
96  * and would save us time calling get_block repeatedly.
97  */
98 static bool buffer_size_valid(struct buffer_head *bh)
99 {
100 	return bh->b_state != 0;
101 }
102 
103 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
104 		      loff_t start, loff_t end, get_block_t get_block,
105 		      struct buffer_head *bh)
106 {
107 	ssize_t retval = 0;
108 	loff_t pos = start;
109 	loff_t max = start;
110 	loff_t bh_max = start;
111 	void __pmem *addr;
112 	bool hole = false;
113 	bool need_wmb = false;
114 
115 	if (iov_iter_rw(iter) != WRITE)
116 		end = min(end, i_size_read(inode));
117 
118 	while (pos < end) {
119 		size_t len;
120 		if (pos == max) {
121 			unsigned blkbits = inode->i_blkbits;
122 			long page = pos >> PAGE_SHIFT;
123 			sector_t block = page << (PAGE_SHIFT - blkbits);
124 			unsigned first = pos - (block << blkbits);
125 			long size;
126 
127 			if (pos == bh_max) {
128 				bh->b_size = PAGE_ALIGN(end - pos);
129 				bh->b_state = 0;
130 				retval = get_block(inode, block, bh,
131 						   iov_iter_rw(iter) == WRITE);
132 				if (retval)
133 					break;
134 				if (!buffer_size_valid(bh))
135 					bh->b_size = 1 << blkbits;
136 				bh_max = pos - first + bh->b_size;
137 			} else {
138 				unsigned done = bh->b_size -
139 						(bh_max - (pos - first));
140 				bh->b_blocknr += done >> blkbits;
141 				bh->b_size -= done;
142 			}
143 
144 			hole = iov_iter_rw(iter) != WRITE && !buffer_written(bh);
145 			if (hole) {
146 				addr = NULL;
147 				size = bh->b_size - first;
148 			} else {
149 				retval = dax_get_addr(bh, &addr, blkbits);
150 				if (retval < 0)
151 					break;
152 				if (buffer_unwritten(bh) || buffer_new(bh)) {
153 					dax_new_buf(addr, retval, first, pos,
154 									end);
155 					need_wmb = true;
156 				}
157 				addr += first;
158 				size = retval - first;
159 			}
160 			max = min(pos + size, end);
161 		}
162 
163 		if (iov_iter_rw(iter) == WRITE) {
164 			len = copy_from_iter_pmem(addr, max - pos, iter);
165 			need_wmb = true;
166 		} else if (!hole)
167 			len = copy_to_iter((void __force *)addr, max - pos,
168 					iter);
169 		else
170 			len = iov_iter_zero(max - pos, iter);
171 
172 		if (!len)
173 			break;
174 
175 		pos += len;
176 		addr += len;
177 	}
178 
179 	if (need_wmb)
180 		wmb_pmem();
181 
182 	return (pos == start) ? retval : pos - start;
183 }
184 
185 /**
186  * dax_do_io - Perform I/O to a DAX file
187  * @iocb: The control block for this I/O
188  * @inode: The file which the I/O is directed at
189  * @iter: The addresses to do I/O from or to
190  * @pos: The file offset where the I/O starts
191  * @get_block: The filesystem method used to translate file offsets to blocks
192  * @end_io: A filesystem callback for I/O completion
193  * @flags: See below
194  *
195  * This function uses the same locking scheme as do_blockdev_direct_IO:
196  * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
197  * caller for writes.  For reads, we take and release the i_mutex ourselves.
198  * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
199  * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
200  * is in progress.
201  */
202 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
203 		  struct iov_iter *iter, loff_t pos, get_block_t get_block,
204 		  dio_iodone_t end_io, int flags)
205 {
206 	struct buffer_head bh;
207 	ssize_t retval = -EINVAL;
208 	loff_t end = pos + iov_iter_count(iter);
209 
210 	memset(&bh, 0, sizeof(bh));
211 
212 	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
213 		struct address_space *mapping = inode->i_mapping;
214 		mutex_lock(&inode->i_mutex);
215 		retval = filemap_write_and_wait_range(mapping, pos, end - 1);
216 		if (retval) {
217 			mutex_unlock(&inode->i_mutex);
218 			goto out;
219 		}
220 	}
221 
222 	/* Protects against truncate */
223 	if (!(flags & DIO_SKIP_DIO_COUNT))
224 		inode_dio_begin(inode);
225 
226 	retval = dax_io(inode, iter, pos, end, get_block, &bh);
227 
228 	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
229 		mutex_unlock(&inode->i_mutex);
230 
231 	if ((retval > 0) && end_io)
232 		end_io(iocb, pos, retval, bh.b_private);
233 
234 	if (!(flags & DIO_SKIP_DIO_COUNT))
235 		inode_dio_end(inode);
236  out:
237 	return retval;
238 }
239 EXPORT_SYMBOL_GPL(dax_do_io);
240 
241 /*
242  * The user has performed a load from a hole in the file.  Allocating
243  * a new page in the file would cause excessive storage usage for
244  * workloads with sparse files.  We allocate a page cache page instead.
245  * We'll kick it out of the page cache if it's ever written to,
246  * otherwise it will simply fall out of the page cache under memory
247  * pressure without ever having been dirtied.
248  */
249 static int dax_load_hole(struct address_space *mapping, struct page *page,
250 							struct vm_fault *vmf)
251 {
252 	unsigned long size;
253 	struct inode *inode = mapping->host;
254 	if (!page)
255 		page = find_or_create_page(mapping, vmf->pgoff,
256 						GFP_KERNEL | __GFP_ZERO);
257 	if (!page)
258 		return VM_FAULT_OOM;
259 	/* Recheck i_size under page lock to avoid truncate race */
260 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
261 	if (vmf->pgoff >= size) {
262 		unlock_page(page);
263 		page_cache_release(page);
264 		return VM_FAULT_SIGBUS;
265 	}
266 
267 	vmf->page = page;
268 	return VM_FAULT_LOCKED;
269 }
270 
271 static int copy_user_bh(struct page *to, struct buffer_head *bh,
272 			unsigned blkbits, unsigned long vaddr)
273 {
274 	void __pmem *vfrom;
275 	void *vto;
276 
277 	if (dax_get_addr(bh, &vfrom, blkbits) < 0)
278 		return -EIO;
279 	vto = kmap_atomic(to);
280 	copy_user_page(vto, (void __force *)vfrom, vaddr, to);
281 	kunmap_atomic(vto);
282 	return 0;
283 }
284 
285 static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
286 			struct vm_area_struct *vma, struct vm_fault *vmf)
287 {
288 	struct address_space *mapping = inode->i_mapping;
289 	sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
290 	unsigned long vaddr = (unsigned long)vmf->virtual_address;
291 	void __pmem *addr;
292 	unsigned long pfn;
293 	pgoff_t size;
294 	int error;
295 
296 	i_mmap_lock_read(mapping);
297 
298 	/*
299 	 * Check truncate didn't happen while we were allocating a block.
300 	 * If it did, this block may or may not be still allocated to the
301 	 * file.  We can't tell the filesystem to free it because we can't
302 	 * take i_mutex here.  In the worst case, the file still has blocks
303 	 * allocated past the end of the file.
304 	 */
305 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
306 	if (unlikely(vmf->pgoff >= size)) {
307 		error = -EIO;
308 		goto out;
309 	}
310 
311 	error = bdev_direct_access(bh->b_bdev, sector, &addr, &pfn, bh->b_size);
312 	if (error < 0)
313 		goto out;
314 	if (error < PAGE_SIZE) {
315 		error = -EIO;
316 		goto out;
317 	}
318 
319 	if (buffer_unwritten(bh) || buffer_new(bh)) {
320 		clear_pmem(addr, PAGE_SIZE);
321 		wmb_pmem();
322 	}
323 
324 	error = vm_insert_mixed(vma, vaddr, pfn);
325 
326  out:
327 	i_mmap_unlock_read(mapping);
328 
329 	return error;
330 }
331 
332 /**
333  * __dax_fault - handle a page fault on a DAX file
334  * @vma: The virtual memory area where the fault occurred
335  * @vmf: The description of the fault
336  * @get_block: The filesystem method used to translate file offsets to blocks
337  * @complete_unwritten: The filesystem method used to convert unwritten blocks
338  *	to written so the data written to them is exposed. This is required for
339  *	required by write faults for filesystems that will return unwritten
340  *	extent mappings from @get_block, but it is optional for reads as
341  *	dax_insert_mapping() will always zero unwritten blocks. If the fs does
342  *	not support unwritten extents, the it should pass NULL.
343  *
344  * When a page fault occurs, filesystems may call this helper in their
345  * fault handler for DAX files. __dax_fault() assumes the caller has done all
346  * the necessary locking for the page fault to proceed successfully.
347  */
348 int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
349 			get_block_t get_block, dax_iodone_t complete_unwritten)
350 {
351 	struct file *file = vma->vm_file;
352 	struct address_space *mapping = file->f_mapping;
353 	struct inode *inode = mapping->host;
354 	struct page *page;
355 	struct buffer_head bh;
356 	unsigned long vaddr = (unsigned long)vmf->virtual_address;
357 	unsigned blkbits = inode->i_blkbits;
358 	sector_t block;
359 	pgoff_t size;
360 	int error;
361 	int major = 0;
362 
363 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
364 	if (vmf->pgoff >= size)
365 		return VM_FAULT_SIGBUS;
366 
367 	memset(&bh, 0, sizeof(bh));
368 	block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
369 	bh.b_size = PAGE_SIZE;
370 
371  repeat:
372 	page = find_get_page(mapping, vmf->pgoff);
373 	if (page) {
374 		if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
375 			page_cache_release(page);
376 			return VM_FAULT_RETRY;
377 		}
378 		if (unlikely(page->mapping != mapping)) {
379 			unlock_page(page);
380 			page_cache_release(page);
381 			goto repeat;
382 		}
383 		size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
384 		if (unlikely(vmf->pgoff >= size)) {
385 			/*
386 			 * We have a struct page covering a hole in the file
387 			 * from a read fault and we've raced with a truncate
388 			 */
389 			error = -EIO;
390 			goto unlock_page;
391 		}
392 	}
393 
394 	error = get_block(inode, block, &bh, 0);
395 	if (!error && (bh.b_size < PAGE_SIZE))
396 		error = -EIO;		/* fs corruption? */
397 	if (error)
398 		goto unlock_page;
399 
400 	if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
401 		if (vmf->flags & FAULT_FLAG_WRITE) {
402 			error = get_block(inode, block, &bh, 1);
403 			count_vm_event(PGMAJFAULT);
404 			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
405 			major = VM_FAULT_MAJOR;
406 			if (!error && (bh.b_size < PAGE_SIZE))
407 				error = -EIO;
408 			if (error)
409 				goto unlock_page;
410 		} else {
411 			return dax_load_hole(mapping, page, vmf);
412 		}
413 	}
414 
415 	if (vmf->cow_page) {
416 		struct page *new_page = vmf->cow_page;
417 		if (buffer_written(&bh))
418 			error = copy_user_bh(new_page, &bh, blkbits, vaddr);
419 		else
420 			clear_user_highpage(new_page, vaddr);
421 		if (error)
422 			goto unlock_page;
423 		vmf->page = page;
424 		if (!page) {
425 			i_mmap_lock_read(mapping);
426 			/* Check we didn't race with truncate */
427 			size = (i_size_read(inode) + PAGE_SIZE - 1) >>
428 								PAGE_SHIFT;
429 			if (vmf->pgoff >= size) {
430 				i_mmap_unlock_read(mapping);
431 				error = -EIO;
432 				goto out;
433 			}
434 		}
435 		return VM_FAULT_LOCKED;
436 	}
437 
438 	/* Check we didn't race with a read fault installing a new page */
439 	if (!page && major)
440 		page = find_lock_page(mapping, vmf->pgoff);
441 
442 	if (page) {
443 		unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
444 							PAGE_CACHE_SIZE, 0);
445 		delete_from_page_cache(page);
446 		unlock_page(page);
447 		page_cache_release(page);
448 	}
449 
450 	/*
451 	 * If we successfully insert the new mapping over an unwritten extent,
452 	 * we need to ensure we convert the unwritten extent. If there is an
453 	 * error inserting the mapping, the filesystem needs to leave it as
454 	 * unwritten to prevent exposure of the stale underlying data to
455 	 * userspace, but we still need to call the completion function so
456 	 * the private resources on the mapping buffer can be released. We
457 	 * indicate what the callback should do via the uptodate variable, same
458 	 * as for normal BH based IO completions.
459 	 */
460 	error = dax_insert_mapping(inode, &bh, vma, vmf);
461 	if (buffer_unwritten(&bh)) {
462 		if (complete_unwritten)
463 			complete_unwritten(&bh, !error);
464 		else
465 			WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
466 	}
467 
468  out:
469 	if (error == -ENOMEM)
470 		return VM_FAULT_OOM | major;
471 	/* -EBUSY is fine, somebody else faulted on the same PTE */
472 	if ((error < 0) && (error != -EBUSY))
473 		return VM_FAULT_SIGBUS | major;
474 	return VM_FAULT_NOPAGE | major;
475 
476  unlock_page:
477 	if (page) {
478 		unlock_page(page);
479 		page_cache_release(page);
480 	}
481 	goto out;
482 }
483 EXPORT_SYMBOL(__dax_fault);
484 
485 /**
486  * dax_fault - handle a page fault on a DAX file
487  * @vma: The virtual memory area where the fault occurred
488  * @vmf: The description of the fault
489  * @get_block: The filesystem method used to translate file offsets to blocks
490  *
491  * When a page fault occurs, filesystems may call this helper in their
492  * fault handler for DAX files.
493  */
494 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
495 	      get_block_t get_block, dax_iodone_t complete_unwritten)
496 {
497 	int result;
498 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
499 
500 	if (vmf->flags & FAULT_FLAG_WRITE) {
501 		sb_start_pagefault(sb);
502 		file_update_time(vma->vm_file);
503 	}
504 	result = __dax_fault(vma, vmf, get_block, complete_unwritten);
505 	if (vmf->flags & FAULT_FLAG_WRITE)
506 		sb_end_pagefault(sb);
507 
508 	return result;
509 }
510 EXPORT_SYMBOL_GPL(dax_fault);
511 
512 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
513 /*
514  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
515  * more often than one might expect in the below function.
516  */
517 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
518 
519 int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
520 		pmd_t *pmd, unsigned int flags, get_block_t get_block,
521 		dax_iodone_t complete_unwritten)
522 {
523 	struct file *file = vma->vm_file;
524 	struct address_space *mapping = file->f_mapping;
525 	struct inode *inode = mapping->host;
526 	struct buffer_head bh;
527 	unsigned blkbits = inode->i_blkbits;
528 	unsigned long pmd_addr = address & PMD_MASK;
529 	bool write = flags & FAULT_FLAG_WRITE;
530 	long length;
531 	void __pmem *kaddr;
532 	pgoff_t size, pgoff;
533 	sector_t block, sector;
534 	unsigned long pfn;
535 	int result = 0;
536 
537 	/* Fall back to PTEs if we're going to COW */
538 	if (write && !(vma->vm_flags & VM_SHARED))
539 		return VM_FAULT_FALLBACK;
540 	/* If the PMD would extend outside the VMA */
541 	if (pmd_addr < vma->vm_start)
542 		return VM_FAULT_FALLBACK;
543 	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
544 		return VM_FAULT_FALLBACK;
545 
546 	pgoff = linear_page_index(vma, pmd_addr);
547 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
548 	if (pgoff >= size)
549 		return VM_FAULT_SIGBUS;
550 	/* If the PMD would cover blocks out of the file */
551 	if ((pgoff | PG_PMD_COLOUR) >= size)
552 		return VM_FAULT_FALLBACK;
553 
554 	memset(&bh, 0, sizeof(bh));
555 	block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
556 
557 	bh.b_size = PMD_SIZE;
558 	length = get_block(inode, block, &bh, write);
559 	if (length)
560 		return VM_FAULT_SIGBUS;
561 	i_mmap_lock_read(mapping);
562 
563 	/*
564 	 * If the filesystem isn't willing to tell us the length of a hole,
565 	 * just fall back to PTEs.  Calling get_block 512 times in a loop
566 	 * would be silly.
567 	 */
568 	if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE)
569 		goto fallback;
570 
571 	/*
572 	 * If we allocated new storage, make sure no process has any
573 	 * zero pages covering this hole
574 	 */
575 	if (buffer_new(&bh)) {
576 		i_mmap_unlock_read(mapping);
577 		unmap_mapping_range(mapping, pgoff << PAGE_SHIFT, PMD_SIZE, 0);
578 		i_mmap_lock_read(mapping);
579 	}
580 
581 	/*
582 	 * If a truncate happened while we were allocating blocks, we may
583 	 * leave blocks allocated to the file that are beyond EOF.  We can't
584 	 * take i_mutex here, so just leave them hanging; they'll be freed
585 	 * when the file is deleted.
586 	 */
587 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
588 	if (pgoff >= size) {
589 		result = VM_FAULT_SIGBUS;
590 		goto out;
591 	}
592 	if ((pgoff | PG_PMD_COLOUR) >= size)
593 		goto fallback;
594 
595 	if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
596 		spinlock_t *ptl;
597 		pmd_t entry;
598 		struct page *zero_page = get_huge_zero_page();
599 
600 		if (unlikely(!zero_page))
601 			goto fallback;
602 
603 		ptl = pmd_lock(vma->vm_mm, pmd);
604 		if (!pmd_none(*pmd)) {
605 			spin_unlock(ptl);
606 			goto fallback;
607 		}
608 
609 		entry = mk_pmd(zero_page, vma->vm_page_prot);
610 		entry = pmd_mkhuge(entry);
611 		set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
612 		result = VM_FAULT_NOPAGE;
613 		spin_unlock(ptl);
614 	} else {
615 		sector = bh.b_blocknr << (blkbits - 9);
616 		length = bdev_direct_access(bh.b_bdev, sector, &kaddr, &pfn,
617 						bh.b_size);
618 		if (length < 0) {
619 			result = VM_FAULT_SIGBUS;
620 			goto out;
621 		}
622 		if ((length < PMD_SIZE) || (pfn & PG_PMD_COLOUR))
623 			goto fallback;
624 
625 		if (buffer_unwritten(&bh) || buffer_new(&bh)) {
626 			int i;
627 			for (i = 0; i < PTRS_PER_PMD; i++)
628 				clear_pmem(kaddr + i * PAGE_SIZE, PAGE_SIZE);
629 			wmb_pmem();
630 			count_vm_event(PGMAJFAULT);
631 			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
632 			result |= VM_FAULT_MAJOR;
633 		}
634 
635 		result |= vmf_insert_pfn_pmd(vma, address, pmd, pfn, write);
636 	}
637 
638  out:
639 	i_mmap_unlock_read(mapping);
640 
641 	if (buffer_unwritten(&bh))
642 		complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
643 
644 	return result;
645 
646  fallback:
647 	count_vm_event(THP_FAULT_FALLBACK);
648 	result = VM_FAULT_FALLBACK;
649 	goto out;
650 }
651 EXPORT_SYMBOL_GPL(__dax_pmd_fault);
652 
653 /**
654  * dax_pmd_fault - handle a PMD fault on a DAX file
655  * @vma: The virtual memory area where the fault occurred
656  * @vmf: The description of the fault
657  * @get_block: The filesystem method used to translate file offsets to blocks
658  *
659  * When a page fault occurs, filesystems may call this helper in their
660  * pmd_fault handler for DAX files.
661  */
662 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
663 			pmd_t *pmd, unsigned int flags, get_block_t get_block,
664 			dax_iodone_t complete_unwritten)
665 {
666 	int result;
667 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
668 
669 	if (flags & FAULT_FLAG_WRITE) {
670 		sb_start_pagefault(sb);
671 		file_update_time(vma->vm_file);
672 	}
673 	result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
674 				complete_unwritten);
675 	if (flags & FAULT_FLAG_WRITE)
676 		sb_end_pagefault(sb);
677 
678 	return result;
679 }
680 EXPORT_SYMBOL_GPL(dax_pmd_fault);
681 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
682 
683 /**
684  * dax_pfn_mkwrite - handle first write to DAX page
685  * @vma: The virtual memory area where the fault occurred
686  * @vmf: The description of the fault
687  *
688  */
689 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
690 {
691 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
692 
693 	sb_start_pagefault(sb);
694 	file_update_time(vma->vm_file);
695 	sb_end_pagefault(sb);
696 	return VM_FAULT_NOPAGE;
697 }
698 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
699 
700 /**
701  * dax_zero_page_range - zero a range within a page of a DAX file
702  * @inode: The file being truncated
703  * @from: The file offset that is being truncated to
704  * @length: The number of bytes to zero
705  * @get_block: The filesystem method used to translate file offsets to blocks
706  *
707  * This function can be called by a filesystem when it is zeroing part of a
708  * page in a DAX file.  This is intended for hole-punch operations.  If
709  * you are truncating a file, the helper function dax_truncate_page() may be
710  * more convenient.
711  *
712  * We work in terms of PAGE_CACHE_SIZE here for commonality with
713  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
714  * took care of disposing of the unnecessary blocks.  Even if the filesystem
715  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
716  * since the file might be mmapped.
717  */
718 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
719 							get_block_t get_block)
720 {
721 	struct buffer_head bh;
722 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
723 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
724 	int err;
725 
726 	/* Block boundary? Nothing to do */
727 	if (!length)
728 		return 0;
729 	BUG_ON((offset + length) > PAGE_CACHE_SIZE);
730 
731 	memset(&bh, 0, sizeof(bh));
732 	bh.b_size = PAGE_CACHE_SIZE;
733 	err = get_block(inode, index, &bh, 0);
734 	if (err < 0)
735 		return err;
736 	if (buffer_written(&bh)) {
737 		void __pmem *addr;
738 		err = dax_get_addr(&bh, &addr, inode->i_blkbits);
739 		if (err < 0)
740 			return err;
741 		clear_pmem(addr + offset, length);
742 		wmb_pmem();
743 	}
744 
745 	return 0;
746 }
747 EXPORT_SYMBOL_GPL(dax_zero_page_range);
748 
749 /**
750  * dax_truncate_page - handle a partial page being truncated in a DAX file
751  * @inode: The file being truncated
752  * @from: The file offset that is being truncated to
753  * @get_block: The filesystem method used to translate file offsets to blocks
754  *
755  * Similar to block_truncate_page(), this function can be called by a
756  * filesystem when it is truncating a DAX file to handle the partial page.
757  *
758  * We work in terms of PAGE_CACHE_SIZE here for commonality with
759  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
760  * took care of disposing of the unnecessary blocks.  Even if the filesystem
761  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
762  * since the file might be mmapped.
763  */
764 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
765 {
766 	unsigned length = PAGE_CACHE_ALIGN(from) - from;
767 	return dax_zero_page_range(inode, from, length, get_block);
768 }
769 EXPORT_SYMBOL_GPL(dax_truncate_page);
770