1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/dax.c - Direct Access filesystem code 4 * Copyright (c) 2013-2014 Intel Corporation 5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> 6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com> 7 */ 8 9 #include <linux/atomic.h> 10 #include <linux/blkdev.h> 11 #include <linux/buffer_head.h> 12 #include <linux/dax.h> 13 #include <linux/fs.h> 14 #include <linux/genhd.h> 15 #include <linux/highmem.h> 16 #include <linux/memcontrol.h> 17 #include <linux/mm.h> 18 #include <linux/mutex.h> 19 #include <linux/pagevec.h> 20 #include <linux/sched.h> 21 #include <linux/sched/signal.h> 22 #include <linux/uio.h> 23 #include <linux/vmstat.h> 24 #include <linux/pfn_t.h> 25 #include <linux/sizes.h> 26 #include <linux/mmu_notifier.h> 27 #include <linux/iomap.h> 28 #include <asm/pgalloc.h> 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/fs_dax.h> 32 33 static inline unsigned int pe_order(enum page_entry_size pe_size) 34 { 35 if (pe_size == PE_SIZE_PTE) 36 return PAGE_SHIFT - PAGE_SHIFT; 37 if (pe_size == PE_SIZE_PMD) 38 return PMD_SHIFT - PAGE_SHIFT; 39 if (pe_size == PE_SIZE_PUD) 40 return PUD_SHIFT - PAGE_SHIFT; 41 return ~0; 42 } 43 44 /* We choose 4096 entries - same as per-zone page wait tables */ 45 #define DAX_WAIT_TABLE_BITS 12 46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) 47 48 /* The 'colour' (ie low bits) within a PMD of a page offset. */ 49 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) 50 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT) 51 52 /* The order of a PMD entry */ 53 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT) 54 55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; 56 57 static int __init init_dax_wait_table(void) 58 { 59 int i; 60 61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) 62 init_waitqueue_head(wait_table + i); 63 return 0; 64 } 65 fs_initcall(init_dax_wait_table); 66 67 /* 68 * DAX pagecache entries use XArray value entries so they can't be mistaken 69 * for pages. We use one bit for locking, one bit for the entry size (PMD) 70 * and two more to tell us if the entry is a zero page or an empty entry that 71 * is just used for locking. In total four special bits. 72 * 73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE 74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem 75 * block allocation. 76 */ 77 #define DAX_SHIFT (4) 78 #define DAX_LOCKED (1UL << 0) 79 #define DAX_PMD (1UL << 1) 80 #define DAX_ZERO_PAGE (1UL << 2) 81 #define DAX_EMPTY (1UL << 3) 82 83 static unsigned long dax_to_pfn(void *entry) 84 { 85 return xa_to_value(entry) >> DAX_SHIFT; 86 } 87 88 static void *dax_make_entry(pfn_t pfn, unsigned long flags) 89 { 90 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT)); 91 } 92 93 static bool dax_is_locked(void *entry) 94 { 95 return xa_to_value(entry) & DAX_LOCKED; 96 } 97 98 static unsigned int dax_entry_order(void *entry) 99 { 100 if (xa_to_value(entry) & DAX_PMD) 101 return PMD_ORDER; 102 return 0; 103 } 104 105 static unsigned long dax_is_pmd_entry(void *entry) 106 { 107 return xa_to_value(entry) & DAX_PMD; 108 } 109 110 static bool dax_is_pte_entry(void *entry) 111 { 112 return !(xa_to_value(entry) & DAX_PMD); 113 } 114 115 static int dax_is_zero_entry(void *entry) 116 { 117 return xa_to_value(entry) & DAX_ZERO_PAGE; 118 } 119 120 static int dax_is_empty_entry(void *entry) 121 { 122 return xa_to_value(entry) & DAX_EMPTY; 123 } 124 125 /* 126 * true if the entry that was found is of a smaller order than the entry 127 * we were looking for 128 */ 129 static bool dax_is_conflict(void *entry) 130 { 131 return entry == XA_RETRY_ENTRY; 132 } 133 134 /* 135 * DAX page cache entry locking 136 */ 137 struct exceptional_entry_key { 138 struct xarray *xa; 139 pgoff_t entry_start; 140 }; 141 142 struct wait_exceptional_entry_queue { 143 wait_queue_entry_t wait; 144 struct exceptional_entry_key key; 145 }; 146 147 /** 148 * enum dax_wake_mode: waitqueue wakeup behaviour 149 * @WAKE_ALL: wake all waiters in the waitqueue 150 * @WAKE_NEXT: wake only the first waiter in the waitqueue 151 */ 152 enum dax_wake_mode { 153 WAKE_ALL, 154 WAKE_NEXT, 155 }; 156 157 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas, 158 void *entry, struct exceptional_entry_key *key) 159 { 160 unsigned long hash; 161 unsigned long index = xas->xa_index; 162 163 /* 164 * If 'entry' is a PMD, align the 'index' that we use for the wait 165 * queue to the start of that PMD. This ensures that all offsets in 166 * the range covered by the PMD map to the same bit lock. 167 */ 168 if (dax_is_pmd_entry(entry)) 169 index &= ~PG_PMD_COLOUR; 170 key->xa = xas->xa; 171 key->entry_start = index; 172 173 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS); 174 return wait_table + hash; 175 } 176 177 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, 178 unsigned int mode, int sync, void *keyp) 179 { 180 struct exceptional_entry_key *key = keyp; 181 struct wait_exceptional_entry_queue *ewait = 182 container_of(wait, struct wait_exceptional_entry_queue, wait); 183 184 if (key->xa != ewait->key.xa || 185 key->entry_start != ewait->key.entry_start) 186 return 0; 187 return autoremove_wake_function(wait, mode, sync, NULL); 188 } 189 190 /* 191 * @entry may no longer be the entry at the index in the mapping. 192 * The important information it's conveying is whether the entry at 193 * this index used to be a PMD entry. 194 */ 195 static void dax_wake_entry(struct xa_state *xas, void *entry, 196 enum dax_wake_mode mode) 197 { 198 struct exceptional_entry_key key; 199 wait_queue_head_t *wq; 200 201 wq = dax_entry_waitqueue(xas, entry, &key); 202 203 /* 204 * Checking for locked entry and prepare_to_wait_exclusive() happens 205 * under the i_pages lock, ditto for entry handling in our callers. 206 * So at this point all tasks that could have seen our entry locked 207 * must be in the waitqueue and the following check will see them. 208 */ 209 if (waitqueue_active(wq)) 210 __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key); 211 } 212 213 /* 214 * Look up entry in page cache, wait for it to become unlocked if it 215 * is a DAX entry and return it. The caller must subsequently call 216 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry() 217 * if it did. The entry returned may have a larger order than @order. 218 * If @order is larger than the order of the entry found in i_pages, this 219 * function returns a dax_is_conflict entry. 220 * 221 * Must be called with the i_pages lock held. 222 */ 223 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order) 224 { 225 void *entry; 226 struct wait_exceptional_entry_queue ewait; 227 wait_queue_head_t *wq; 228 229 init_wait(&ewait.wait); 230 ewait.wait.func = wake_exceptional_entry_func; 231 232 for (;;) { 233 entry = xas_find_conflict(xas); 234 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 235 return entry; 236 if (dax_entry_order(entry) < order) 237 return XA_RETRY_ENTRY; 238 if (!dax_is_locked(entry)) 239 return entry; 240 241 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 242 prepare_to_wait_exclusive(wq, &ewait.wait, 243 TASK_UNINTERRUPTIBLE); 244 xas_unlock_irq(xas); 245 xas_reset(xas); 246 schedule(); 247 finish_wait(wq, &ewait.wait); 248 xas_lock_irq(xas); 249 } 250 } 251 252 /* 253 * The only thing keeping the address space around is the i_pages lock 254 * (it's cycled in clear_inode() after removing the entries from i_pages) 255 * After we call xas_unlock_irq(), we cannot touch xas->xa. 256 */ 257 static void wait_entry_unlocked(struct xa_state *xas, void *entry) 258 { 259 struct wait_exceptional_entry_queue ewait; 260 wait_queue_head_t *wq; 261 262 init_wait(&ewait.wait); 263 ewait.wait.func = wake_exceptional_entry_func; 264 265 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 266 /* 267 * Unlike get_unlocked_entry() there is no guarantee that this 268 * path ever successfully retrieves an unlocked entry before an 269 * inode dies. Perform a non-exclusive wait in case this path 270 * never successfully performs its own wake up. 271 */ 272 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE); 273 xas_unlock_irq(xas); 274 schedule(); 275 finish_wait(wq, &ewait.wait); 276 } 277 278 static void put_unlocked_entry(struct xa_state *xas, void *entry, 279 enum dax_wake_mode mode) 280 { 281 if (entry && !dax_is_conflict(entry)) 282 dax_wake_entry(xas, entry, mode); 283 } 284 285 /* 286 * We used the xa_state to get the entry, but then we locked the entry and 287 * dropped the xa_lock, so we know the xa_state is stale and must be reset 288 * before use. 289 */ 290 static void dax_unlock_entry(struct xa_state *xas, void *entry) 291 { 292 void *old; 293 294 BUG_ON(dax_is_locked(entry)); 295 xas_reset(xas); 296 xas_lock_irq(xas); 297 old = xas_store(xas, entry); 298 xas_unlock_irq(xas); 299 BUG_ON(!dax_is_locked(old)); 300 dax_wake_entry(xas, entry, WAKE_NEXT); 301 } 302 303 /* 304 * Return: The entry stored at this location before it was locked. 305 */ 306 static void *dax_lock_entry(struct xa_state *xas, void *entry) 307 { 308 unsigned long v = xa_to_value(entry); 309 return xas_store(xas, xa_mk_value(v | DAX_LOCKED)); 310 } 311 312 static unsigned long dax_entry_size(void *entry) 313 { 314 if (dax_is_zero_entry(entry)) 315 return 0; 316 else if (dax_is_empty_entry(entry)) 317 return 0; 318 else if (dax_is_pmd_entry(entry)) 319 return PMD_SIZE; 320 else 321 return PAGE_SIZE; 322 } 323 324 static unsigned long dax_end_pfn(void *entry) 325 { 326 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE; 327 } 328 329 /* 330 * Iterate through all mapped pfns represented by an entry, i.e. skip 331 * 'empty' and 'zero' entries. 332 */ 333 #define for_each_mapped_pfn(entry, pfn) \ 334 for (pfn = dax_to_pfn(entry); \ 335 pfn < dax_end_pfn(entry); pfn++) 336 337 /* 338 * TODO: for reflink+dax we need a way to associate a single page with 339 * multiple address_space instances at different linear_page_index() 340 * offsets. 341 */ 342 static void dax_associate_entry(void *entry, struct address_space *mapping, 343 struct vm_area_struct *vma, unsigned long address) 344 { 345 unsigned long size = dax_entry_size(entry), pfn, index; 346 int i = 0; 347 348 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 349 return; 350 351 index = linear_page_index(vma, address & ~(size - 1)); 352 for_each_mapped_pfn(entry, pfn) { 353 struct page *page = pfn_to_page(pfn); 354 355 WARN_ON_ONCE(page->mapping); 356 page->mapping = mapping; 357 page->index = index + i++; 358 } 359 } 360 361 static void dax_disassociate_entry(void *entry, struct address_space *mapping, 362 bool trunc) 363 { 364 unsigned long pfn; 365 366 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 367 return; 368 369 for_each_mapped_pfn(entry, pfn) { 370 struct page *page = pfn_to_page(pfn); 371 372 WARN_ON_ONCE(trunc && page_ref_count(page) > 1); 373 WARN_ON_ONCE(page->mapping && page->mapping != mapping); 374 page->mapping = NULL; 375 page->index = 0; 376 } 377 } 378 379 static struct page *dax_busy_page(void *entry) 380 { 381 unsigned long pfn; 382 383 for_each_mapped_pfn(entry, pfn) { 384 struct page *page = pfn_to_page(pfn); 385 386 if (page_ref_count(page) > 1) 387 return page; 388 } 389 return NULL; 390 } 391 392 /* 393 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page 394 * @page: The page whose entry we want to lock 395 * 396 * Context: Process context. 397 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could 398 * not be locked. 399 */ 400 dax_entry_t dax_lock_page(struct page *page) 401 { 402 XA_STATE(xas, NULL, 0); 403 void *entry; 404 405 /* Ensure page->mapping isn't freed while we look at it */ 406 rcu_read_lock(); 407 for (;;) { 408 struct address_space *mapping = READ_ONCE(page->mapping); 409 410 entry = NULL; 411 if (!mapping || !dax_mapping(mapping)) 412 break; 413 414 /* 415 * In the device-dax case there's no need to lock, a 416 * struct dev_pagemap pin is sufficient to keep the 417 * inode alive, and we assume we have dev_pagemap pin 418 * otherwise we would not have a valid pfn_to_page() 419 * translation. 420 */ 421 entry = (void *)~0UL; 422 if (S_ISCHR(mapping->host->i_mode)) 423 break; 424 425 xas.xa = &mapping->i_pages; 426 xas_lock_irq(&xas); 427 if (mapping != page->mapping) { 428 xas_unlock_irq(&xas); 429 continue; 430 } 431 xas_set(&xas, page->index); 432 entry = xas_load(&xas); 433 if (dax_is_locked(entry)) { 434 rcu_read_unlock(); 435 wait_entry_unlocked(&xas, entry); 436 rcu_read_lock(); 437 continue; 438 } 439 dax_lock_entry(&xas, entry); 440 xas_unlock_irq(&xas); 441 break; 442 } 443 rcu_read_unlock(); 444 return (dax_entry_t)entry; 445 } 446 447 void dax_unlock_page(struct page *page, dax_entry_t cookie) 448 { 449 struct address_space *mapping = page->mapping; 450 XA_STATE(xas, &mapping->i_pages, page->index); 451 452 if (S_ISCHR(mapping->host->i_mode)) 453 return; 454 455 dax_unlock_entry(&xas, (void *)cookie); 456 } 457 458 /* 459 * Find page cache entry at given index. If it is a DAX entry, return it 460 * with the entry locked. If the page cache doesn't contain an entry at 461 * that index, add a locked empty entry. 462 * 463 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will 464 * either return that locked entry or will return VM_FAULT_FALLBACK. 465 * This will happen if there are any PTE entries within the PMD range 466 * that we are requesting. 467 * 468 * We always favor PTE entries over PMD entries. There isn't a flow where we 469 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD 470 * insertion will fail if it finds any PTE entries already in the tree, and a 471 * PTE insertion will cause an existing PMD entry to be unmapped and 472 * downgraded to PTE entries. This happens for both PMD zero pages as 473 * well as PMD empty entries. 474 * 475 * The exception to this downgrade path is for PMD entries that have 476 * real storage backing them. We will leave these real PMD entries in 477 * the tree, and PTE writes will simply dirty the entire PMD entry. 478 * 479 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For 480 * persistent memory the benefit is doubtful. We can add that later if we can 481 * show it helps. 482 * 483 * On error, this function does not return an ERR_PTR. Instead it returns 484 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values 485 * overlap with xarray value entries. 486 */ 487 static void *grab_mapping_entry(struct xa_state *xas, 488 struct address_space *mapping, unsigned int order) 489 { 490 unsigned long index = xas->xa_index; 491 bool pmd_downgrade; /* splitting PMD entry into PTE entries? */ 492 void *entry; 493 494 retry: 495 pmd_downgrade = false; 496 xas_lock_irq(xas); 497 entry = get_unlocked_entry(xas, order); 498 499 if (entry) { 500 if (dax_is_conflict(entry)) 501 goto fallback; 502 if (!xa_is_value(entry)) { 503 xas_set_err(xas, -EIO); 504 goto out_unlock; 505 } 506 507 if (order == 0) { 508 if (dax_is_pmd_entry(entry) && 509 (dax_is_zero_entry(entry) || 510 dax_is_empty_entry(entry))) { 511 pmd_downgrade = true; 512 } 513 } 514 } 515 516 if (pmd_downgrade) { 517 /* 518 * Make sure 'entry' remains valid while we drop 519 * the i_pages lock. 520 */ 521 dax_lock_entry(xas, entry); 522 523 /* 524 * Besides huge zero pages the only other thing that gets 525 * downgraded are empty entries which don't need to be 526 * unmapped. 527 */ 528 if (dax_is_zero_entry(entry)) { 529 xas_unlock_irq(xas); 530 unmap_mapping_pages(mapping, 531 xas->xa_index & ~PG_PMD_COLOUR, 532 PG_PMD_NR, false); 533 xas_reset(xas); 534 xas_lock_irq(xas); 535 } 536 537 dax_disassociate_entry(entry, mapping, false); 538 xas_store(xas, NULL); /* undo the PMD join */ 539 dax_wake_entry(xas, entry, WAKE_ALL); 540 mapping->nrpages -= PG_PMD_NR; 541 entry = NULL; 542 xas_set(xas, index); 543 } 544 545 if (entry) { 546 dax_lock_entry(xas, entry); 547 } else { 548 unsigned long flags = DAX_EMPTY; 549 550 if (order > 0) 551 flags |= DAX_PMD; 552 entry = dax_make_entry(pfn_to_pfn_t(0), flags); 553 dax_lock_entry(xas, entry); 554 if (xas_error(xas)) 555 goto out_unlock; 556 mapping->nrpages += 1UL << order; 557 } 558 559 out_unlock: 560 xas_unlock_irq(xas); 561 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM)) 562 goto retry; 563 if (xas->xa_node == XA_ERROR(-ENOMEM)) 564 return xa_mk_internal(VM_FAULT_OOM); 565 if (xas_error(xas)) 566 return xa_mk_internal(VM_FAULT_SIGBUS); 567 return entry; 568 fallback: 569 xas_unlock_irq(xas); 570 return xa_mk_internal(VM_FAULT_FALLBACK); 571 } 572 573 /** 574 * dax_layout_busy_page_range - find first pinned page in @mapping 575 * @mapping: address space to scan for a page with ref count > 1 576 * @start: Starting offset. Page containing 'start' is included. 577 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX, 578 * pages from 'start' till the end of file are included. 579 * 580 * DAX requires ZONE_DEVICE mapped pages. These pages are never 581 * 'onlined' to the page allocator so they are considered idle when 582 * page->count == 1. A filesystem uses this interface to determine if 583 * any page in the mapping is busy, i.e. for DMA, or other 584 * get_user_pages() usages. 585 * 586 * It is expected that the filesystem is holding locks to block the 587 * establishment of new mappings in this address_space. I.e. it expects 588 * to be able to run unmap_mapping_range() and subsequently not race 589 * mapping_mapped() becoming true. 590 */ 591 struct page *dax_layout_busy_page_range(struct address_space *mapping, 592 loff_t start, loff_t end) 593 { 594 void *entry; 595 unsigned int scanned = 0; 596 struct page *page = NULL; 597 pgoff_t start_idx = start >> PAGE_SHIFT; 598 pgoff_t end_idx; 599 XA_STATE(xas, &mapping->i_pages, start_idx); 600 601 /* 602 * In the 'limited' case get_user_pages() for dax is disabled. 603 */ 604 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 605 return NULL; 606 607 if (!dax_mapping(mapping) || !mapping_mapped(mapping)) 608 return NULL; 609 610 /* If end == LLONG_MAX, all pages from start to till end of file */ 611 if (end == LLONG_MAX) 612 end_idx = ULONG_MAX; 613 else 614 end_idx = end >> PAGE_SHIFT; 615 /* 616 * If we race get_user_pages_fast() here either we'll see the 617 * elevated page count in the iteration and wait, or 618 * get_user_pages_fast() will see that the page it took a reference 619 * against is no longer mapped in the page tables and bail to the 620 * get_user_pages() slow path. The slow path is protected by 621 * pte_lock() and pmd_lock(). New references are not taken without 622 * holding those locks, and unmap_mapping_pages() will not zero the 623 * pte or pmd without holding the respective lock, so we are 624 * guaranteed to either see new references or prevent new 625 * references from being established. 626 */ 627 unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0); 628 629 xas_lock_irq(&xas); 630 xas_for_each(&xas, entry, end_idx) { 631 if (WARN_ON_ONCE(!xa_is_value(entry))) 632 continue; 633 if (unlikely(dax_is_locked(entry))) 634 entry = get_unlocked_entry(&xas, 0); 635 if (entry) 636 page = dax_busy_page(entry); 637 put_unlocked_entry(&xas, entry, WAKE_NEXT); 638 if (page) 639 break; 640 if (++scanned % XA_CHECK_SCHED) 641 continue; 642 643 xas_pause(&xas); 644 xas_unlock_irq(&xas); 645 cond_resched(); 646 xas_lock_irq(&xas); 647 } 648 xas_unlock_irq(&xas); 649 return page; 650 } 651 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range); 652 653 struct page *dax_layout_busy_page(struct address_space *mapping) 654 { 655 return dax_layout_busy_page_range(mapping, 0, LLONG_MAX); 656 } 657 EXPORT_SYMBOL_GPL(dax_layout_busy_page); 658 659 static int __dax_invalidate_entry(struct address_space *mapping, 660 pgoff_t index, bool trunc) 661 { 662 XA_STATE(xas, &mapping->i_pages, index); 663 int ret = 0; 664 void *entry; 665 666 xas_lock_irq(&xas); 667 entry = get_unlocked_entry(&xas, 0); 668 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 669 goto out; 670 if (!trunc && 671 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) || 672 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE))) 673 goto out; 674 dax_disassociate_entry(entry, mapping, trunc); 675 xas_store(&xas, NULL); 676 mapping->nrpages -= 1UL << dax_entry_order(entry); 677 ret = 1; 678 out: 679 put_unlocked_entry(&xas, entry, WAKE_ALL); 680 xas_unlock_irq(&xas); 681 return ret; 682 } 683 684 /* 685 * Delete DAX entry at @index from @mapping. Wait for it 686 * to be unlocked before deleting it. 687 */ 688 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) 689 { 690 int ret = __dax_invalidate_entry(mapping, index, true); 691 692 /* 693 * This gets called from truncate / punch_hole path. As such, the caller 694 * must hold locks protecting against concurrent modifications of the 695 * page cache (usually fs-private i_mmap_sem for writing). Since the 696 * caller has seen a DAX entry for this index, we better find it 697 * at that index as well... 698 */ 699 WARN_ON_ONCE(!ret); 700 return ret; 701 } 702 703 /* 704 * Invalidate DAX entry if it is clean. 705 */ 706 int dax_invalidate_mapping_entry_sync(struct address_space *mapping, 707 pgoff_t index) 708 { 709 return __dax_invalidate_entry(mapping, index, false); 710 } 711 712 static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos) 713 { 714 phys_addr_t paddr = iomap->addr + (pos & PAGE_MASK) - iomap->offset; 715 716 if (iomap->bdev) 717 paddr += (get_start_sect(iomap->bdev) << SECTOR_SHIFT); 718 return PHYS_PFN(paddr); 719 } 720 721 static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter) 722 { 723 pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos); 724 void *vto, *kaddr; 725 long rc; 726 int id; 727 728 id = dax_read_lock(); 729 rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, &kaddr, NULL); 730 if (rc < 0) { 731 dax_read_unlock(id); 732 return rc; 733 } 734 vto = kmap_atomic(vmf->cow_page); 735 copy_user_page(vto, kaddr, vmf->address, vmf->cow_page); 736 kunmap_atomic(vto); 737 dax_read_unlock(id); 738 return 0; 739 } 740 741 /* 742 * By this point grab_mapping_entry() has ensured that we have a locked entry 743 * of the appropriate size so we don't have to worry about downgrading PMDs to 744 * PTEs. If we happen to be trying to insert a PTE and there is a PMD 745 * already in the tree, we will skip the insertion and just dirty the PMD as 746 * appropriate. 747 */ 748 static void *dax_insert_entry(struct xa_state *xas, 749 struct address_space *mapping, struct vm_fault *vmf, 750 void *entry, pfn_t pfn, unsigned long flags, bool dirty) 751 { 752 void *new_entry = dax_make_entry(pfn, flags); 753 754 if (dirty) 755 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 756 757 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) { 758 unsigned long index = xas->xa_index; 759 /* we are replacing a zero page with block mapping */ 760 if (dax_is_pmd_entry(entry)) 761 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, 762 PG_PMD_NR, false); 763 else /* pte entry */ 764 unmap_mapping_pages(mapping, index, 1, false); 765 } 766 767 xas_reset(xas); 768 xas_lock_irq(xas); 769 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { 770 void *old; 771 772 dax_disassociate_entry(entry, mapping, false); 773 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address); 774 /* 775 * Only swap our new entry into the page cache if the current 776 * entry is a zero page or an empty entry. If a normal PTE or 777 * PMD entry is already in the cache, we leave it alone. This 778 * means that if we are trying to insert a PTE and the 779 * existing entry is a PMD, we will just leave the PMD in the 780 * tree and dirty it if necessary. 781 */ 782 old = dax_lock_entry(xas, new_entry); 783 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) | 784 DAX_LOCKED)); 785 entry = new_entry; 786 } else { 787 xas_load(xas); /* Walk the xa_state */ 788 } 789 790 if (dirty) 791 xas_set_mark(xas, PAGECACHE_TAG_DIRTY); 792 793 xas_unlock_irq(xas); 794 return entry; 795 } 796 797 static inline 798 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma) 799 { 800 unsigned long address; 801 802 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 803 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 804 return address; 805 } 806 807 /* Walk all mappings of a given index of a file and writeprotect them */ 808 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index, 809 unsigned long pfn) 810 { 811 struct vm_area_struct *vma; 812 pte_t pte, *ptep = NULL; 813 pmd_t *pmdp = NULL; 814 spinlock_t *ptl; 815 816 i_mmap_lock_read(mapping); 817 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) { 818 struct mmu_notifier_range range; 819 unsigned long address; 820 821 cond_resched(); 822 823 if (!(vma->vm_flags & VM_SHARED)) 824 continue; 825 826 address = pgoff_address(index, vma); 827 828 /* 829 * follow_invalidate_pte() will use the range to call 830 * mmu_notifier_invalidate_range_start() on our behalf before 831 * taking any lock. 832 */ 833 if (follow_invalidate_pte(vma->vm_mm, address, &range, &ptep, 834 &pmdp, &ptl)) 835 continue; 836 837 /* 838 * No need to call mmu_notifier_invalidate_range() as we are 839 * downgrading page table protection not changing it to point 840 * to a new page. 841 * 842 * See Documentation/vm/mmu_notifier.rst 843 */ 844 if (pmdp) { 845 #ifdef CONFIG_FS_DAX_PMD 846 pmd_t pmd; 847 848 if (pfn != pmd_pfn(*pmdp)) 849 goto unlock_pmd; 850 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp)) 851 goto unlock_pmd; 852 853 flush_cache_page(vma, address, pfn); 854 pmd = pmdp_invalidate(vma, address, pmdp); 855 pmd = pmd_wrprotect(pmd); 856 pmd = pmd_mkclean(pmd); 857 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 858 unlock_pmd: 859 #endif 860 spin_unlock(ptl); 861 } else { 862 if (pfn != pte_pfn(*ptep)) 863 goto unlock_pte; 864 if (!pte_dirty(*ptep) && !pte_write(*ptep)) 865 goto unlock_pte; 866 867 flush_cache_page(vma, address, pfn); 868 pte = ptep_clear_flush(vma, address, ptep); 869 pte = pte_wrprotect(pte); 870 pte = pte_mkclean(pte); 871 set_pte_at(vma->vm_mm, address, ptep, pte); 872 unlock_pte: 873 pte_unmap_unlock(ptep, ptl); 874 } 875 876 mmu_notifier_invalidate_range_end(&range); 877 } 878 i_mmap_unlock_read(mapping); 879 } 880 881 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev, 882 struct address_space *mapping, void *entry) 883 { 884 unsigned long pfn, index, count; 885 long ret = 0; 886 887 /* 888 * A page got tagged dirty in DAX mapping? Something is seriously 889 * wrong. 890 */ 891 if (WARN_ON(!xa_is_value(entry))) 892 return -EIO; 893 894 if (unlikely(dax_is_locked(entry))) { 895 void *old_entry = entry; 896 897 entry = get_unlocked_entry(xas, 0); 898 899 /* Entry got punched out / reallocated? */ 900 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 901 goto put_unlocked; 902 /* 903 * Entry got reallocated elsewhere? No need to writeback. 904 * We have to compare pfns as we must not bail out due to 905 * difference in lockbit or entry type. 906 */ 907 if (dax_to_pfn(old_entry) != dax_to_pfn(entry)) 908 goto put_unlocked; 909 if (WARN_ON_ONCE(dax_is_empty_entry(entry) || 910 dax_is_zero_entry(entry))) { 911 ret = -EIO; 912 goto put_unlocked; 913 } 914 915 /* Another fsync thread may have already done this entry */ 916 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE)) 917 goto put_unlocked; 918 } 919 920 /* Lock the entry to serialize with page faults */ 921 dax_lock_entry(xas, entry); 922 923 /* 924 * We can clear the tag now but we have to be careful so that concurrent 925 * dax_writeback_one() calls for the same index cannot finish before we 926 * actually flush the caches. This is achieved as the calls will look 927 * at the entry only under the i_pages lock and once they do that 928 * they will see the entry locked and wait for it to unlock. 929 */ 930 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE); 931 xas_unlock_irq(xas); 932 933 /* 934 * If dax_writeback_mapping_range() was given a wbc->range_start 935 * in the middle of a PMD, the 'index' we use needs to be 936 * aligned to the start of the PMD. 937 * This allows us to flush for PMD_SIZE and not have to worry about 938 * partial PMD writebacks. 939 */ 940 pfn = dax_to_pfn(entry); 941 count = 1UL << dax_entry_order(entry); 942 index = xas->xa_index & ~(count - 1); 943 944 dax_entry_mkclean(mapping, index, pfn); 945 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE); 946 /* 947 * After we have flushed the cache, we can clear the dirty tag. There 948 * cannot be new dirty data in the pfn after the flush has completed as 949 * the pfn mappings are writeprotected and fault waits for mapping 950 * entry lock. 951 */ 952 xas_reset(xas); 953 xas_lock_irq(xas); 954 xas_store(xas, entry); 955 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY); 956 dax_wake_entry(xas, entry, WAKE_NEXT); 957 958 trace_dax_writeback_one(mapping->host, index, count); 959 return ret; 960 961 put_unlocked: 962 put_unlocked_entry(xas, entry, WAKE_NEXT); 963 return ret; 964 } 965 966 /* 967 * Flush the mapping to the persistent domain within the byte range of [start, 968 * end]. This is required by data integrity operations to ensure file data is 969 * on persistent storage prior to completion of the operation. 970 */ 971 int dax_writeback_mapping_range(struct address_space *mapping, 972 struct dax_device *dax_dev, struct writeback_control *wbc) 973 { 974 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT); 975 struct inode *inode = mapping->host; 976 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT; 977 void *entry; 978 int ret = 0; 979 unsigned int scanned = 0; 980 981 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) 982 return -EIO; 983 984 if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL) 985 return 0; 986 987 trace_dax_writeback_range(inode, xas.xa_index, end_index); 988 989 tag_pages_for_writeback(mapping, xas.xa_index, end_index); 990 991 xas_lock_irq(&xas); 992 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) { 993 ret = dax_writeback_one(&xas, dax_dev, mapping, entry); 994 if (ret < 0) { 995 mapping_set_error(mapping, ret); 996 break; 997 } 998 if (++scanned % XA_CHECK_SCHED) 999 continue; 1000 1001 xas_pause(&xas); 1002 xas_unlock_irq(&xas); 1003 cond_resched(); 1004 xas_lock_irq(&xas); 1005 } 1006 xas_unlock_irq(&xas); 1007 trace_dax_writeback_range_done(inode, xas.xa_index, end_index); 1008 return ret; 1009 } 1010 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); 1011 1012 static int dax_iomap_pfn(const struct iomap *iomap, loff_t pos, size_t size, 1013 pfn_t *pfnp) 1014 { 1015 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); 1016 int id, rc; 1017 long length; 1018 1019 id = dax_read_lock(); 1020 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size), 1021 NULL, pfnp); 1022 if (length < 0) { 1023 rc = length; 1024 goto out; 1025 } 1026 rc = -EINVAL; 1027 if (PFN_PHYS(length) < size) 1028 goto out; 1029 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1)) 1030 goto out; 1031 /* For larger pages we need devmap */ 1032 if (length > 1 && !pfn_t_devmap(*pfnp)) 1033 goto out; 1034 rc = 0; 1035 out: 1036 dax_read_unlock(id); 1037 return rc; 1038 } 1039 1040 /* 1041 * The user has performed a load from a hole in the file. Allocating a new 1042 * page in the file would cause excessive storage usage for workloads with 1043 * sparse files. Instead we insert a read-only mapping of the 4k zero page. 1044 * If this page is ever written to we will re-fault and change the mapping to 1045 * point to real DAX storage instead. 1046 */ 1047 static vm_fault_t dax_load_hole(struct xa_state *xas, 1048 struct address_space *mapping, void **entry, 1049 struct vm_fault *vmf) 1050 { 1051 struct inode *inode = mapping->host; 1052 unsigned long vaddr = vmf->address; 1053 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr)); 1054 vm_fault_t ret; 1055 1056 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, 1057 DAX_ZERO_PAGE, false); 1058 1059 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn); 1060 trace_dax_load_hole(inode, vmf, ret); 1061 return ret; 1062 } 1063 1064 #ifdef CONFIG_FS_DAX_PMD 1065 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, 1066 const struct iomap *iomap, void **entry) 1067 { 1068 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1069 unsigned long pmd_addr = vmf->address & PMD_MASK; 1070 struct vm_area_struct *vma = vmf->vma; 1071 struct inode *inode = mapping->host; 1072 pgtable_t pgtable = NULL; 1073 struct page *zero_page; 1074 spinlock_t *ptl; 1075 pmd_t pmd_entry; 1076 pfn_t pfn; 1077 1078 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm); 1079 1080 if (unlikely(!zero_page)) 1081 goto fallback; 1082 1083 pfn = page_to_pfn_t(zero_page); 1084 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, 1085 DAX_PMD | DAX_ZERO_PAGE, false); 1086 1087 if (arch_needs_pgtable_deposit()) { 1088 pgtable = pte_alloc_one(vma->vm_mm); 1089 if (!pgtable) 1090 return VM_FAULT_OOM; 1091 } 1092 1093 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1094 if (!pmd_none(*(vmf->pmd))) { 1095 spin_unlock(ptl); 1096 goto fallback; 1097 } 1098 1099 if (pgtable) { 1100 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 1101 mm_inc_nr_ptes(vma->vm_mm); 1102 } 1103 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot); 1104 pmd_entry = pmd_mkhuge(pmd_entry); 1105 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry); 1106 spin_unlock(ptl); 1107 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry); 1108 return VM_FAULT_NOPAGE; 1109 1110 fallback: 1111 if (pgtable) 1112 pte_free(vma->vm_mm, pgtable); 1113 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry); 1114 return VM_FAULT_FALLBACK; 1115 } 1116 #else 1117 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, 1118 const struct iomap *iomap, void **entry) 1119 { 1120 return VM_FAULT_FALLBACK; 1121 } 1122 #endif /* CONFIG_FS_DAX_PMD */ 1123 1124 static int dax_memzero(struct dax_device *dax_dev, pgoff_t pgoff, 1125 unsigned int offset, size_t size) 1126 { 1127 void *kaddr; 1128 long ret; 1129 1130 ret = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL); 1131 if (ret > 0) { 1132 memset(kaddr + offset, 0, size); 1133 dax_flush(dax_dev, kaddr + offset, size); 1134 } 1135 return ret; 1136 } 1137 1138 static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero) 1139 { 1140 const struct iomap *iomap = &iter->iomap; 1141 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1142 loff_t pos = iter->pos; 1143 u64 length = iomap_length(iter); 1144 s64 written = 0; 1145 1146 /* already zeroed? we're done. */ 1147 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 1148 return length; 1149 1150 do { 1151 unsigned offset = offset_in_page(pos); 1152 unsigned size = min_t(u64, PAGE_SIZE - offset, length); 1153 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); 1154 long rc; 1155 int id; 1156 1157 id = dax_read_lock(); 1158 if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE) 1159 rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1); 1160 else 1161 rc = dax_memzero(iomap->dax_dev, pgoff, offset, size); 1162 dax_read_unlock(id); 1163 1164 if (rc < 0) 1165 return rc; 1166 pos += size; 1167 length -= size; 1168 written += size; 1169 if (did_zero) 1170 *did_zero = true; 1171 } while (length > 0); 1172 1173 return written; 1174 } 1175 1176 int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 1177 const struct iomap_ops *ops) 1178 { 1179 struct iomap_iter iter = { 1180 .inode = inode, 1181 .pos = pos, 1182 .len = len, 1183 .flags = IOMAP_ZERO, 1184 }; 1185 int ret; 1186 1187 while ((ret = iomap_iter(&iter, ops)) > 0) 1188 iter.processed = dax_zero_iter(&iter, did_zero); 1189 return ret; 1190 } 1191 EXPORT_SYMBOL_GPL(dax_zero_range); 1192 1193 int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 1194 const struct iomap_ops *ops) 1195 { 1196 unsigned int blocksize = i_blocksize(inode); 1197 unsigned int off = pos & (blocksize - 1); 1198 1199 /* Block boundary? Nothing to do */ 1200 if (!off) 1201 return 0; 1202 return dax_zero_range(inode, pos, blocksize - off, did_zero, ops); 1203 } 1204 EXPORT_SYMBOL_GPL(dax_truncate_page); 1205 1206 static loff_t dax_iomap_iter(const struct iomap_iter *iomi, 1207 struct iov_iter *iter) 1208 { 1209 const struct iomap *iomap = &iomi->iomap; 1210 loff_t length = iomap_length(iomi); 1211 loff_t pos = iomi->pos; 1212 struct dax_device *dax_dev = iomap->dax_dev; 1213 loff_t end = pos + length, done = 0; 1214 ssize_t ret = 0; 1215 size_t xfer; 1216 int id; 1217 1218 if (iov_iter_rw(iter) == READ) { 1219 end = min(end, i_size_read(iomi->inode)); 1220 if (pos >= end) 1221 return 0; 1222 1223 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) 1224 return iov_iter_zero(min(length, end - pos), iter); 1225 } 1226 1227 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED)) 1228 return -EIO; 1229 1230 /* 1231 * Write can allocate block for an area which has a hole page mapped 1232 * into page tables. We have to tear down these mappings so that data 1233 * written by write(2) is visible in mmap. 1234 */ 1235 if (iomap->flags & IOMAP_F_NEW) { 1236 invalidate_inode_pages2_range(iomi->inode->i_mapping, 1237 pos >> PAGE_SHIFT, 1238 (end - 1) >> PAGE_SHIFT); 1239 } 1240 1241 id = dax_read_lock(); 1242 while (pos < end) { 1243 unsigned offset = pos & (PAGE_SIZE - 1); 1244 const size_t size = ALIGN(length + offset, PAGE_SIZE); 1245 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); 1246 ssize_t map_len; 1247 void *kaddr; 1248 1249 if (fatal_signal_pending(current)) { 1250 ret = -EINTR; 1251 break; 1252 } 1253 1254 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), 1255 &kaddr, NULL); 1256 if (map_len < 0) { 1257 ret = map_len; 1258 break; 1259 } 1260 1261 map_len = PFN_PHYS(map_len); 1262 kaddr += offset; 1263 map_len -= offset; 1264 if (map_len > end - pos) 1265 map_len = end - pos; 1266 1267 /* 1268 * The userspace address for the memory copy has already been 1269 * validated via access_ok() in either vfs_read() or 1270 * vfs_write(), depending on which operation we are doing. 1271 */ 1272 if (iov_iter_rw(iter) == WRITE) 1273 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr, 1274 map_len, iter); 1275 else 1276 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr, 1277 map_len, iter); 1278 1279 pos += xfer; 1280 length -= xfer; 1281 done += xfer; 1282 1283 if (xfer == 0) 1284 ret = -EFAULT; 1285 if (xfer < map_len) 1286 break; 1287 } 1288 dax_read_unlock(id); 1289 1290 return done ? done : ret; 1291 } 1292 1293 /** 1294 * dax_iomap_rw - Perform I/O to a DAX file 1295 * @iocb: The control block for this I/O 1296 * @iter: The addresses to do I/O from or to 1297 * @ops: iomap ops passed from the file system 1298 * 1299 * This function performs read and write operations to directly mapped 1300 * persistent memory. The callers needs to take care of read/write exclusion 1301 * and evicting any page cache pages in the region under I/O. 1302 */ 1303 ssize_t 1304 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, 1305 const struct iomap_ops *ops) 1306 { 1307 struct iomap_iter iomi = { 1308 .inode = iocb->ki_filp->f_mapping->host, 1309 .pos = iocb->ki_pos, 1310 .len = iov_iter_count(iter), 1311 }; 1312 loff_t done = 0; 1313 int ret; 1314 1315 if (iov_iter_rw(iter) == WRITE) { 1316 lockdep_assert_held_write(&iomi.inode->i_rwsem); 1317 iomi.flags |= IOMAP_WRITE; 1318 } else { 1319 lockdep_assert_held(&iomi.inode->i_rwsem); 1320 } 1321 1322 if (iocb->ki_flags & IOCB_NOWAIT) 1323 iomi.flags |= IOMAP_NOWAIT; 1324 1325 while ((ret = iomap_iter(&iomi, ops)) > 0) 1326 iomi.processed = dax_iomap_iter(&iomi, iter); 1327 1328 done = iomi.pos - iocb->ki_pos; 1329 iocb->ki_pos = iomi.pos; 1330 return done ? done : ret; 1331 } 1332 EXPORT_SYMBOL_GPL(dax_iomap_rw); 1333 1334 static vm_fault_t dax_fault_return(int error) 1335 { 1336 if (error == 0) 1337 return VM_FAULT_NOPAGE; 1338 return vmf_error(error); 1339 } 1340 1341 /* 1342 * MAP_SYNC on a dax mapping guarantees dirty metadata is 1343 * flushed on write-faults (non-cow), but not read-faults. 1344 */ 1345 static bool dax_fault_is_synchronous(unsigned long flags, 1346 struct vm_area_struct *vma, const struct iomap *iomap) 1347 { 1348 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) 1349 && (iomap->flags & IOMAP_F_DIRTY); 1350 } 1351 1352 /* 1353 * When handling a synchronous page fault and the inode need a fsync, we can 1354 * insert the PTE/PMD into page tables only after that fsync happened. Skip 1355 * insertion for now and return the pfn so that caller can insert it after the 1356 * fsync is done. 1357 */ 1358 static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn) 1359 { 1360 if (WARN_ON_ONCE(!pfnp)) 1361 return VM_FAULT_SIGBUS; 1362 *pfnp = pfn; 1363 return VM_FAULT_NEEDDSYNC; 1364 } 1365 1366 static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf, 1367 const struct iomap_iter *iter) 1368 { 1369 vm_fault_t ret; 1370 int error = 0; 1371 1372 switch (iter->iomap.type) { 1373 case IOMAP_HOLE: 1374 case IOMAP_UNWRITTEN: 1375 clear_user_highpage(vmf->cow_page, vmf->address); 1376 break; 1377 case IOMAP_MAPPED: 1378 error = copy_cow_page_dax(vmf, iter); 1379 break; 1380 default: 1381 WARN_ON_ONCE(1); 1382 error = -EIO; 1383 break; 1384 } 1385 1386 if (error) 1387 return dax_fault_return(error); 1388 1389 __SetPageUptodate(vmf->cow_page); 1390 ret = finish_fault(vmf); 1391 if (!ret) 1392 return VM_FAULT_DONE_COW; 1393 return ret; 1394 } 1395 1396 /** 1397 * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault. 1398 * @vmf: vm fault instance 1399 * @iter: iomap iter 1400 * @pfnp: pfn to be returned 1401 * @xas: the dax mapping tree of a file 1402 * @entry: an unlocked dax entry to be inserted 1403 * @pmd: distinguish whether it is a pmd fault 1404 */ 1405 static vm_fault_t dax_fault_iter(struct vm_fault *vmf, 1406 const struct iomap_iter *iter, pfn_t *pfnp, 1407 struct xa_state *xas, void **entry, bool pmd) 1408 { 1409 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1410 const struct iomap *iomap = &iter->iomap; 1411 size_t size = pmd ? PMD_SIZE : PAGE_SIZE; 1412 loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT; 1413 bool write = vmf->flags & FAULT_FLAG_WRITE; 1414 bool sync = dax_fault_is_synchronous(iter->flags, vmf->vma, iomap); 1415 unsigned long entry_flags = pmd ? DAX_PMD : 0; 1416 int err = 0; 1417 pfn_t pfn; 1418 1419 if (!pmd && vmf->cow_page) 1420 return dax_fault_cow_page(vmf, iter); 1421 1422 /* if we are reading UNWRITTEN and HOLE, return a hole. */ 1423 if (!write && 1424 (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) { 1425 if (!pmd) 1426 return dax_load_hole(xas, mapping, entry, vmf); 1427 return dax_pmd_load_hole(xas, vmf, iomap, entry); 1428 } 1429 1430 if (iomap->type != IOMAP_MAPPED) { 1431 WARN_ON_ONCE(1); 1432 return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS; 1433 } 1434 1435 err = dax_iomap_pfn(&iter->iomap, pos, size, &pfn); 1436 if (err) 1437 return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err); 1438 1439 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, entry_flags, 1440 write && !sync); 1441 1442 if (sync) 1443 return dax_fault_synchronous_pfnp(pfnp, pfn); 1444 1445 /* insert PMD pfn */ 1446 if (pmd) 1447 return vmf_insert_pfn_pmd(vmf, pfn, write); 1448 1449 /* insert PTE pfn */ 1450 if (write) 1451 return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); 1452 return vmf_insert_mixed(vmf->vma, vmf->address, pfn); 1453 } 1454 1455 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp, 1456 int *iomap_errp, const struct iomap_ops *ops) 1457 { 1458 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1459 XA_STATE(xas, &mapping->i_pages, vmf->pgoff); 1460 struct iomap_iter iter = { 1461 .inode = mapping->host, 1462 .pos = (loff_t)vmf->pgoff << PAGE_SHIFT, 1463 .len = PAGE_SIZE, 1464 .flags = IOMAP_FAULT, 1465 }; 1466 vm_fault_t ret = 0; 1467 void *entry; 1468 int error; 1469 1470 trace_dax_pte_fault(iter.inode, vmf, ret); 1471 /* 1472 * Check whether offset isn't beyond end of file now. Caller is supposed 1473 * to hold locks serializing us with truncate / punch hole so this is 1474 * a reliable test. 1475 */ 1476 if (iter.pos >= i_size_read(iter.inode)) { 1477 ret = VM_FAULT_SIGBUS; 1478 goto out; 1479 } 1480 1481 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page) 1482 iter.flags |= IOMAP_WRITE; 1483 1484 entry = grab_mapping_entry(&xas, mapping, 0); 1485 if (xa_is_internal(entry)) { 1486 ret = xa_to_internal(entry); 1487 goto out; 1488 } 1489 1490 /* 1491 * It is possible, particularly with mixed reads & writes to private 1492 * mappings, that we have raced with a PMD fault that overlaps with 1493 * the PTE we need to set up. If so just return and the fault will be 1494 * retried. 1495 */ 1496 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) { 1497 ret = VM_FAULT_NOPAGE; 1498 goto unlock_entry; 1499 } 1500 1501 while ((error = iomap_iter(&iter, ops)) > 0) { 1502 if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) { 1503 iter.processed = -EIO; /* fs corruption? */ 1504 continue; 1505 } 1506 1507 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false); 1508 if (ret != VM_FAULT_SIGBUS && 1509 (iter.iomap.flags & IOMAP_F_NEW)) { 1510 count_vm_event(PGMAJFAULT); 1511 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 1512 ret |= VM_FAULT_MAJOR; 1513 } 1514 1515 if (!(ret & VM_FAULT_ERROR)) 1516 iter.processed = PAGE_SIZE; 1517 } 1518 1519 if (iomap_errp) 1520 *iomap_errp = error; 1521 if (!ret && error) 1522 ret = dax_fault_return(error); 1523 1524 unlock_entry: 1525 dax_unlock_entry(&xas, entry); 1526 out: 1527 trace_dax_pte_fault_done(iter.inode, vmf, ret); 1528 return ret; 1529 } 1530 1531 #ifdef CONFIG_FS_DAX_PMD 1532 static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas, 1533 pgoff_t max_pgoff) 1534 { 1535 unsigned long pmd_addr = vmf->address & PMD_MASK; 1536 bool write = vmf->flags & FAULT_FLAG_WRITE; 1537 1538 /* 1539 * Make sure that the faulting address's PMD offset (color) matches 1540 * the PMD offset from the start of the file. This is necessary so 1541 * that a PMD range in the page table overlaps exactly with a PMD 1542 * range in the page cache. 1543 */ 1544 if ((vmf->pgoff & PG_PMD_COLOUR) != 1545 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR)) 1546 return true; 1547 1548 /* Fall back to PTEs if we're going to COW */ 1549 if (write && !(vmf->vma->vm_flags & VM_SHARED)) 1550 return true; 1551 1552 /* If the PMD would extend outside the VMA */ 1553 if (pmd_addr < vmf->vma->vm_start) 1554 return true; 1555 if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end) 1556 return true; 1557 1558 /* If the PMD would extend beyond the file size */ 1559 if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff) 1560 return true; 1561 1562 return false; 1563 } 1564 1565 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1566 const struct iomap_ops *ops) 1567 { 1568 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1569 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER); 1570 struct iomap_iter iter = { 1571 .inode = mapping->host, 1572 .len = PMD_SIZE, 1573 .flags = IOMAP_FAULT, 1574 }; 1575 vm_fault_t ret = VM_FAULT_FALLBACK; 1576 pgoff_t max_pgoff; 1577 void *entry; 1578 int error; 1579 1580 if (vmf->flags & FAULT_FLAG_WRITE) 1581 iter.flags |= IOMAP_WRITE; 1582 1583 /* 1584 * Check whether offset isn't beyond end of file now. Caller is 1585 * supposed to hold locks serializing us with truncate / punch hole so 1586 * this is a reliable test. 1587 */ 1588 max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE); 1589 1590 trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0); 1591 1592 if (xas.xa_index >= max_pgoff) { 1593 ret = VM_FAULT_SIGBUS; 1594 goto out; 1595 } 1596 1597 if (dax_fault_check_fallback(vmf, &xas, max_pgoff)) 1598 goto fallback; 1599 1600 /* 1601 * grab_mapping_entry() will make sure we get an empty PMD entry, 1602 * a zero PMD entry or a DAX PMD. If it can't (because a PTE 1603 * entry is already in the array, for instance), it will return 1604 * VM_FAULT_FALLBACK. 1605 */ 1606 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER); 1607 if (xa_is_internal(entry)) { 1608 ret = xa_to_internal(entry); 1609 goto fallback; 1610 } 1611 1612 /* 1613 * It is possible, particularly with mixed reads & writes to private 1614 * mappings, that we have raced with a PTE fault that overlaps with 1615 * the PMD we need to set up. If so just return and the fault will be 1616 * retried. 1617 */ 1618 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) && 1619 !pmd_devmap(*vmf->pmd)) { 1620 ret = 0; 1621 goto unlock_entry; 1622 } 1623 1624 iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT; 1625 while ((error = iomap_iter(&iter, ops)) > 0) { 1626 if (iomap_length(&iter) < PMD_SIZE) 1627 continue; /* actually breaks out of the loop */ 1628 1629 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true); 1630 if (ret != VM_FAULT_FALLBACK) 1631 iter.processed = PMD_SIZE; 1632 } 1633 1634 unlock_entry: 1635 dax_unlock_entry(&xas, entry); 1636 fallback: 1637 if (ret == VM_FAULT_FALLBACK) { 1638 split_huge_pmd(vmf->vma, vmf->pmd, vmf->address); 1639 count_vm_event(THP_FAULT_FALLBACK); 1640 } 1641 out: 1642 trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret); 1643 return ret; 1644 } 1645 #else 1646 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1647 const struct iomap_ops *ops) 1648 { 1649 return VM_FAULT_FALLBACK; 1650 } 1651 #endif /* CONFIG_FS_DAX_PMD */ 1652 1653 /** 1654 * dax_iomap_fault - handle a page fault on a DAX file 1655 * @vmf: The description of the fault 1656 * @pe_size: Size of the page to fault in 1657 * @pfnp: PFN to insert for synchronous faults if fsync is required 1658 * @iomap_errp: Storage for detailed error code in case of error 1659 * @ops: Iomap ops passed from the file system 1660 * 1661 * When a page fault occurs, filesystems may call this helper in 1662 * their fault handler for DAX files. dax_iomap_fault() assumes the caller 1663 * has done all the necessary locking for page fault to proceed 1664 * successfully. 1665 */ 1666 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size, 1667 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops) 1668 { 1669 switch (pe_size) { 1670 case PE_SIZE_PTE: 1671 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops); 1672 case PE_SIZE_PMD: 1673 return dax_iomap_pmd_fault(vmf, pfnp, ops); 1674 default: 1675 return VM_FAULT_FALLBACK; 1676 } 1677 } 1678 EXPORT_SYMBOL_GPL(dax_iomap_fault); 1679 1680 /* 1681 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables 1682 * @vmf: The description of the fault 1683 * @pfn: PFN to insert 1684 * @order: Order of entry to insert. 1685 * 1686 * This function inserts a writeable PTE or PMD entry into the page tables 1687 * for an mmaped DAX file. It also marks the page cache entry as dirty. 1688 */ 1689 static vm_fault_t 1690 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order) 1691 { 1692 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1693 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order); 1694 void *entry; 1695 vm_fault_t ret; 1696 1697 xas_lock_irq(&xas); 1698 entry = get_unlocked_entry(&xas, order); 1699 /* Did we race with someone splitting entry or so? */ 1700 if (!entry || dax_is_conflict(entry) || 1701 (order == 0 && !dax_is_pte_entry(entry))) { 1702 put_unlocked_entry(&xas, entry, WAKE_NEXT); 1703 xas_unlock_irq(&xas); 1704 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf, 1705 VM_FAULT_NOPAGE); 1706 return VM_FAULT_NOPAGE; 1707 } 1708 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY); 1709 dax_lock_entry(&xas, entry); 1710 xas_unlock_irq(&xas); 1711 if (order == 0) 1712 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); 1713 #ifdef CONFIG_FS_DAX_PMD 1714 else if (order == PMD_ORDER) 1715 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE); 1716 #endif 1717 else 1718 ret = VM_FAULT_FALLBACK; 1719 dax_unlock_entry(&xas, entry); 1720 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret); 1721 return ret; 1722 } 1723 1724 /** 1725 * dax_finish_sync_fault - finish synchronous page fault 1726 * @vmf: The description of the fault 1727 * @pe_size: Size of entry to be inserted 1728 * @pfn: PFN to insert 1729 * 1730 * This function ensures that the file range touched by the page fault is 1731 * stored persistently on the media and handles inserting of appropriate page 1732 * table entry. 1733 */ 1734 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, 1735 enum page_entry_size pe_size, pfn_t pfn) 1736 { 1737 int err; 1738 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT; 1739 unsigned int order = pe_order(pe_size); 1740 size_t len = PAGE_SIZE << order; 1741 1742 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1); 1743 if (err) 1744 return VM_FAULT_SIGBUS; 1745 return dax_insert_pfn_mkwrite(vmf, pfn, order); 1746 } 1747 EXPORT_SYMBOL_GPL(dax_finish_sync_fault); 1748