xref: /openbmc/linux/fs/crypto/fname.c (revision 8e1b52c15c81106456437f8e49575040e489e355)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This contains functions for filename crypto management
4  *
5  * Copyright (C) 2015, Google, Inc.
6  * Copyright (C) 2015, Motorola Mobility
7  *
8  * Written by Uday Savagaonkar, 2014.
9  * Modified by Jaegeuk Kim, 2015.
10  *
11  * This has not yet undergone a rigorous security audit.
12  */
13 
14 #include <linux/namei.h>
15 #include <linux/scatterlist.h>
16 #include <crypto/hash.h>
17 #include <crypto/sha2.h>
18 #include <crypto/skcipher.h>
19 #include "fscrypt_private.h"
20 
21 /*
22  * The minimum message length (input and output length), in bytes, for all
23  * filenames encryption modes.  Filenames shorter than this will be zero-padded
24  * before being encrypted.
25  */
26 #define FSCRYPT_FNAME_MIN_MSG_LEN 16
27 
28 /*
29  * struct fscrypt_nokey_name - identifier for directory entry when key is absent
30  *
31  * When userspace lists an encrypted directory without access to the key, the
32  * filesystem must present a unique "no-key name" for each filename that allows
33  * it to find the directory entry again if requested.  Naively, that would just
34  * mean using the ciphertext filenames.  However, since the ciphertext filenames
35  * can contain illegal characters ('\0' and '/'), they must be encoded in some
36  * way.  We use base64url.  But that can cause names to exceed NAME_MAX (255
37  * bytes), so we also need to use a strong hash to abbreviate long names.
38  *
39  * The filesystem may also need another kind of hash, the "dirhash", to quickly
40  * find the directory entry.  Since filesystems normally compute the dirhash
41  * over the on-disk filename (i.e. the ciphertext), it's not computable from
42  * no-key names that abbreviate the ciphertext using the strong hash to fit in
43  * NAME_MAX.  It's also not computable if it's a keyed hash taken over the
44  * plaintext (but it may still be available in the on-disk directory entry);
45  * casefolded directories use this type of dirhash.  At least in these cases,
46  * each no-key name must include the name's dirhash too.
47  *
48  * To meet all these requirements, we base64url-encode the following
49  * variable-length structure.  It contains the dirhash, or 0's if the filesystem
50  * didn't provide one; up to 149 bytes of the ciphertext name; and for
51  * ciphertexts longer than 149 bytes, also the SHA-256 of the remaining bytes.
52  *
53  * This ensures that each no-key name contains everything needed to find the
54  * directory entry again, contains only legal characters, doesn't exceed
55  * NAME_MAX, is unambiguous unless there's a SHA-256 collision, and that we only
56  * take the performance hit of SHA-256 on very long filenames (which are rare).
57  */
58 struct fscrypt_nokey_name {
59 	u32 dirhash[2];
60 	u8 bytes[149];
61 	u8 sha256[SHA256_DIGEST_SIZE];
62 }; /* 189 bytes => 252 bytes base64url-encoded, which is <= NAME_MAX (255) */
63 
64 /*
65  * Decoded size of max-size no-key name, i.e. a name that was abbreviated using
66  * the strong hash and thus includes the 'sha256' field.  This isn't simply
67  * sizeof(struct fscrypt_nokey_name), as the padding at the end isn't included.
68  */
69 #define FSCRYPT_NOKEY_NAME_MAX	offsetofend(struct fscrypt_nokey_name, sha256)
70 
71 /* Encoded size of max-size no-key name */
72 #define FSCRYPT_NOKEY_NAME_MAX_ENCODED \
73 		FSCRYPT_BASE64URL_CHARS(FSCRYPT_NOKEY_NAME_MAX)
74 
75 static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
76 {
77 	return is_dot_dotdot(str->name, str->len);
78 }
79 
80 /**
81  * fscrypt_fname_encrypt() - encrypt a filename
82  * @inode: inode of the parent directory (for regular filenames)
83  *	   or of the symlink (for symlink targets). Key must already be
84  *	   set up.
85  * @iname: the filename to encrypt
86  * @out: (output) the encrypted filename
87  * @olen: size of the encrypted filename.  It must be at least @iname->len.
88  *	  Any extra space is filled with NUL padding before encryption.
89  *
90  * Return: 0 on success, -errno on failure
91  */
92 int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
93 			  u8 *out, unsigned int olen)
94 {
95 	struct skcipher_request *req = NULL;
96 	DECLARE_CRYPTO_WAIT(wait);
97 	const struct fscrypt_info *ci = inode->i_crypt_info;
98 	struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
99 	union fscrypt_iv iv;
100 	struct scatterlist sg;
101 	int res;
102 
103 	/*
104 	 * Copy the filename to the output buffer for encrypting in-place and
105 	 * pad it with the needed number of NUL bytes.
106 	 */
107 	if (WARN_ON_ONCE(olen < iname->len))
108 		return -ENOBUFS;
109 	memcpy(out, iname->name, iname->len);
110 	memset(out + iname->len, 0, olen - iname->len);
111 
112 	/* Initialize the IV */
113 	fscrypt_generate_iv(&iv, 0, ci);
114 
115 	/* Set up the encryption request */
116 	req = skcipher_request_alloc(tfm, GFP_NOFS);
117 	if (!req)
118 		return -ENOMEM;
119 	skcipher_request_set_callback(req,
120 			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
121 			crypto_req_done, &wait);
122 	sg_init_one(&sg, out, olen);
123 	skcipher_request_set_crypt(req, &sg, &sg, olen, &iv);
124 
125 	/* Do the encryption */
126 	res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
127 	skcipher_request_free(req);
128 	if (res < 0) {
129 		fscrypt_err(inode, "Filename encryption failed: %d", res);
130 		return res;
131 	}
132 
133 	return 0;
134 }
135 EXPORT_SYMBOL_GPL(fscrypt_fname_encrypt);
136 
137 /**
138  * fname_decrypt() - decrypt a filename
139  * @inode: inode of the parent directory (for regular filenames)
140  *	   or of the symlink (for symlink targets)
141  * @iname: the encrypted filename to decrypt
142  * @oname: (output) the decrypted filename.  The caller must have allocated
143  *	   enough space for this, e.g. using fscrypt_fname_alloc_buffer().
144  *
145  * Return: 0 on success, -errno on failure
146  */
147 static int fname_decrypt(const struct inode *inode,
148 			 const struct fscrypt_str *iname,
149 			 struct fscrypt_str *oname)
150 {
151 	struct skcipher_request *req = NULL;
152 	DECLARE_CRYPTO_WAIT(wait);
153 	struct scatterlist src_sg, dst_sg;
154 	const struct fscrypt_info *ci = inode->i_crypt_info;
155 	struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
156 	union fscrypt_iv iv;
157 	int res;
158 
159 	/* Allocate request */
160 	req = skcipher_request_alloc(tfm, GFP_NOFS);
161 	if (!req)
162 		return -ENOMEM;
163 	skcipher_request_set_callback(req,
164 		CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
165 		crypto_req_done, &wait);
166 
167 	/* Initialize IV */
168 	fscrypt_generate_iv(&iv, 0, ci);
169 
170 	/* Create decryption request */
171 	sg_init_one(&src_sg, iname->name, iname->len);
172 	sg_init_one(&dst_sg, oname->name, oname->len);
173 	skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, &iv);
174 	res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
175 	skcipher_request_free(req);
176 	if (res < 0) {
177 		fscrypt_err(inode, "Filename decryption failed: %d", res);
178 		return res;
179 	}
180 
181 	oname->len = strnlen(oname->name, iname->len);
182 	return 0;
183 }
184 
185 static const char base64url_table[65] =
186 	"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";
187 
188 #define FSCRYPT_BASE64URL_CHARS(nbytes)	DIV_ROUND_UP((nbytes) * 4, 3)
189 
190 /**
191  * fscrypt_base64url_encode() - base64url-encode some binary data
192  * @src: the binary data to encode
193  * @srclen: the length of @src in bytes
194  * @dst: (output) the base64url-encoded string.  Not NUL-terminated.
195  *
196  * Encodes data using base64url encoding, i.e. the "Base 64 Encoding with URL
197  * and Filename Safe Alphabet" specified by RFC 4648.  '='-padding isn't used,
198  * as it's unneeded and not required by the RFC.  base64url is used instead of
199  * base64 to avoid the '/' character, which isn't allowed in filenames.
200  *
201  * Return: the length of the resulting base64url-encoded string in bytes.
202  *	   This will be equal to FSCRYPT_BASE64URL_CHARS(srclen).
203  */
204 static int fscrypt_base64url_encode(const u8 *src, int srclen, char *dst)
205 {
206 	u32 ac = 0;
207 	int bits = 0;
208 	int i;
209 	char *cp = dst;
210 
211 	for (i = 0; i < srclen; i++) {
212 		ac = (ac << 8) | src[i];
213 		bits += 8;
214 		do {
215 			bits -= 6;
216 			*cp++ = base64url_table[(ac >> bits) & 0x3f];
217 		} while (bits >= 6);
218 	}
219 	if (bits)
220 		*cp++ = base64url_table[(ac << (6 - bits)) & 0x3f];
221 	return cp - dst;
222 }
223 
224 /**
225  * fscrypt_base64url_decode() - base64url-decode a string
226  * @src: the string to decode.  Doesn't need to be NUL-terminated.
227  * @srclen: the length of @src in bytes
228  * @dst: (output) the decoded binary data
229  *
230  * Decodes a string using base64url encoding, i.e. the "Base 64 Encoding with
231  * URL and Filename Safe Alphabet" specified by RFC 4648.  '='-padding isn't
232  * accepted, nor are non-encoding characters such as whitespace.
233  *
234  * This implementation hasn't been optimized for performance.
235  *
236  * Return: the length of the resulting decoded binary data in bytes,
237  *	   or -1 if the string isn't a valid base64url string.
238  */
239 static int fscrypt_base64url_decode(const char *src, int srclen, u8 *dst)
240 {
241 	u32 ac = 0;
242 	int bits = 0;
243 	int i;
244 	u8 *bp = dst;
245 
246 	for (i = 0; i < srclen; i++) {
247 		const char *p = strchr(base64url_table, src[i]);
248 
249 		if (p == NULL || src[i] == 0)
250 			return -1;
251 		ac = (ac << 6) | (p - base64url_table);
252 		bits += 6;
253 		if (bits >= 8) {
254 			bits -= 8;
255 			*bp++ = (u8)(ac >> bits);
256 		}
257 	}
258 	if (ac & ((1 << bits) - 1))
259 		return -1;
260 	return bp - dst;
261 }
262 
263 bool __fscrypt_fname_encrypted_size(const union fscrypt_policy *policy,
264 				    u32 orig_len, u32 max_len,
265 				    u32 *encrypted_len_ret)
266 {
267 	int padding = 4 << (fscrypt_policy_flags(policy) &
268 			    FSCRYPT_POLICY_FLAGS_PAD_MASK);
269 	u32 encrypted_len;
270 
271 	if (orig_len > max_len)
272 		return false;
273 	encrypted_len = max_t(u32, orig_len, FSCRYPT_FNAME_MIN_MSG_LEN);
274 	encrypted_len = round_up(encrypted_len, padding);
275 	*encrypted_len_ret = min(encrypted_len, max_len);
276 	return true;
277 }
278 
279 /**
280  * fscrypt_fname_encrypted_size() - calculate length of encrypted filename
281  * @inode:		parent inode of dentry name being encrypted. Key must
282  *			already be set up.
283  * @orig_len:		length of the original filename
284  * @max_len:		maximum length to return
285  * @encrypted_len_ret:	where calculated length should be returned (on success)
286  *
287  * Filenames that are shorter than the maximum length may have their lengths
288  * increased slightly by encryption, due to padding that is applied.
289  *
290  * Return: false if the orig_len is greater than max_len. Otherwise, true and
291  *	   fill out encrypted_len_ret with the length (up to max_len).
292  */
293 bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
294 				  u32 max_len, u32 *encrypted_len_ret)
295 {
296 	return __fscrypt_fname_encrypted_size(&inode->i_crypt_info->ci_policy,
297 					      orig_len, max_len,
298 					      encrypted_len_ret);
299 }
300 EXPORT_SYMBOL_GPL(fscrypt_fname_encrypted_size);
301 
302 /**
303  * fscrypt_fname_alloc_buffer() - allocate a buffer for presented filenames
304  * @max_encrypted_len: maximum length of encrypted filenames the buffer will be
305  *		       used to present
306  * @crypto_str: (output) buffer to allocate
307  *
308  * Allocate a buffer that is large enough to hold any decrypted or encoded
309  * filename (null-terminated), for the given maximum encrypted filename length.
310  *
311  * Return: 0 on success, -errno on failure
312  */
313 int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
314 			       struct fscrypt_str *crypto_str)
315 {
316 	u32 max_presented_len = max_t(u32, FSCRYPT_NOKEY_NAME_MAX_ENCODED,
317 				      max_encrypted_len);
318 
319 	crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS);
320 	if (!crypto_str->name)
321 		return -ENOMEM;
322 	crypto_str->len = max_presented_len;
323 	return 0;
324 }
325 EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
326 
327 /**
328  * fscrypt_fname_free_buffer() - free a buffer for presented filenames
329  * @crypto_str: the buffer to free
330  *
331  * Free a buffer that was allocated by fscrypt_fname_alloc_buffer().
332  */
333 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
334 {
335 	if (!crypto_str)
336 		return;
337 	kfree(crypto_str->name);
338 	crypto_str->name = NULL;
339 }
340 EXPORT_SYMBOL(fscrypt_fname_free_buffer);
341 
342 /**
343  * fscrypt_fname_disk_to_usr() - convert an encrypted filename to
344  *				 user-presentable form
345  * @inode: inode of the parent directory (for regular filenames)
346  *	   or of the symlink (for symlink targets)
347  * @hash: first part of the name's dirhash, if applicable.  This only needs to
348  *	  be provided if the filename is located in an indexed directory whose
349  *	  encryption key may be unavailable.  Not needed for symlink targets.
350  * @minor_hash: second part of the name's dirhash, if applicable
351  * @iname: encrypted filename to convert.  May also be "." or "..", which
352  *	   aren't actually encrypted.
353  * @oname: output buffer for the user-presentable filename.  The caller must
354  *	   have allocated enough space for this, e.g. using
355  *	   fscrypt_fname_alloc_buffer().
356  *
357  * If the key is available, we'll decrypt the disk name.  Otherwise, we'll
358  * encode it for presentation in fscrypt_nokey_name format.
359  * See struct fscrypt_nokey_name for details.
360  *
361  * Return: 0 on success, -errno on failure
362  */
363 int fscrypt_fname_disk_to_usr(const struct inode *inode,
364 			      u32 hash, u32 minor_hash,
365 			      const struct fscrypt_str *iname,
366 			      struct fscrypt_str *oname)
367 {
368 	const struct qstr qname = FSTR_TO_QSTR(iname);
369 	struct fscrypt_nokey_name nokey_name;
370 	u32 size; /* size of the unencoded no-key name */
371 
372 	if (fscrypt_is_dot_dotdot(&qname)) {
373 		oname->name[0] = '.';
374 		oname->name[iname->len - 1] = '.';
375 		oname->len = iname->len;
376 		return 0;
377 	}
378 
379 	if (iname->len < FSCRYPT_FNAME_MIN_MSG_LEN)
380 		return -EUCLEAN;
381 
382 	if (fscrypt_has_encryption_key(inode))
383 		return fname_decrypt(inode, iname, oname);
384 
385 	/*
386 	 * Sanity check that struct fscrypt_nokey_name doesn't have padding
387 	 * between fields and that its encoded size never exceeds NAME_MAX.
388 	 */
389 	BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, dirhash) !=
390 		     offsetof(struct fscrypt_nokey_name, bytes));
391 	BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, bytes) !=
392 		     offsetof(struct fscrypt_nokey_name, sha256));
393 	BUILD_BUG_ON(FSCRYPT_NOKEY_NAME_MAX_ENCODED > NAME_MAX);
394 
395 	nokey_name.dirhash[0] = hash;
396 	nokey_name.dirhash[1] = minor_hash;
397 
398 	if (iname->len <= sizeof(nokey_name.bytes)) {
399 		memcpy(nokey_name.bytes, iname->name, iname->len);
400 		size = offsetof(struct fscrypt_nokey_name, bytes[iname->len]);
401 	} else {
402 		memcpy(nokey_name.bytes, iname->name, sizeof(nokey_name.bytes));
403 		/* Compute strong hash of remaining part of name. */
404 		sha256(&iname->name[sizeof(nokey_name.bytes)],
405 		       iname->len - sizeof(nokey_name.bytes),
406 		       nokey_name.sha256);
407 		size = FSCRYPT_NOKEY_NAME_MAX;
408 	}
409 	oname->len = fscrypt_base64url_encode((const u8 *)&nokey_name, size,
410 					      oname->name);
411 	return 0;
412 }
413 EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
414 
415 /**
416  * fscrypt_setup_filename() - prepare to search a possibly encrypted directory
417  * @dir: the directory that will be searched
418  * @iname: the user-provided filename being searched for
419  * @lookup: 1 if we're allowed to proceed without the key because it's
420  *	->lookup() or we're finding the dir_entry for deletion; 0 if we cannot
421  *	proceed without the key because we're going to create the dir_entry.
422  * @fname: the filename information to be filled in
423  *
424  * Given a user-provided filename @iname, this function sets @fname->disk_name
425  * to the name that would be stored in the on-disk directory entry, if possible.
426  * If the directory is unencrypted this is simply @iname.  Else, if we have the
427  * directory's encryption key, then @iname is the plaintext, so we encrypt it to
428  * get the disk_name.
429  *
430  * Else, for keyless @lookup operations, @iname should be a no-key name, so we
431  * decode it to get the struct fscrypt_nokey_name.  Non-@lookup operations will
432  * be impossible in this case, so we fail them with ENOKEY.
433  *
434  * If successful, fscrypt_free_filename() must be called later to clean up.
435  *
436  * Return: 0 on success, -errno on failure
437  */
438 int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
439 			      int lookup, struct fscrypt_name *fname)
440 {
441 	struct fscrypt_nokey_name *nokey_name;
442 	int ret;
443 
444 	memset(fname, 0, sizeof(struct fscrypt_name));
445 	fname->usr_fname = iname;
446 
447 	if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) {
448 		fname->disk_name.name = (unsigned char *)iname->name;
449 		fname->disk_name.len = iname->len;
450 		return 0;
451 	}
452 	ret = fscrypt_get_encryption_info(dir, lookup);
453 	if (ret)
454 		return ret;
455 
456 	if (fscrypt_has_encryption_key(dir)) {
457 		if (!fscrypt_fname_encrypted_size(dir, iname->len, NAME_MAX,
458 						  &fname->crypto_buf.len))
459 			return -ENAMETOOLONG;
460 		fname->crypto_buf.name = kmalloc(fname->crypto_buf.len,
461 						 GFP_NOFS);
462 		if (!fname->crypto_buf.name)
463 			return -ENOMEM;
464 
465 		ret = fscrypt_fname_encrypt(dir, iname, fname->crypto_buf.name,
466 					    fname->crypto_buf.len);
467 		if (ret)
468 			goto errout;
469 		fname->disk_name.name = fname->crypto_buf.name;
470 		fname->disk_name.len = fname->crypto_buf.len;
471 		return 0;
472 	}
473 	if (!lookup)
474 		return -ENOKEY;
475 	fname->is_nokey_name = true;
476 
477 	/*
478 	 * We don't have the key and we are doing a lookup; decode the
479 	 * user-supplied name
480 	 */
481 
482 	if (iname->len > FSCRYPT_NOKEY_NAME_MAX_ENCODED)
483 		return -ENOENT;
484 
485 	fname->crypto_buf.name = kmalloc(FSCRYPT_NOKEY_NAME_MAX, GFP_KERNEL);
486 	if (fname->crypto_buf.name == NULL)
487 		return -ENOMEM;
488 
489 	ret = fscrypt_base64url_decode(iname->name, iname->len,
490 				       fname->crypto_buf.name);
491 	if (ret < (int)offsetof(struct fscrypt_nokey_name, bytes[1]) ||
492 	    (ret > offsetof(struct fscrypt_nokey_name, sha256) &&
493 	     ret != FSCRYPT_NOKEY_NAME_MAX)) {
494 		ret = -ENOENT;
495 		goto errout;
496 	}
497 	fname->crypto_buf.len = ret;
498 
499 	nokey_name = (void *)fname->crypto_buf.name;
500 	fname->hash = nokey_name->dirhash[0];
501 	fname->minor_hash = nokey_name->dirhash[1];
502 	if (ret != FSCRYPT_NOKEY_NAME_MAX) {
503 		/* The full ciphertext filename is available. */
504 		fname->disk_name.name = nokey_name->bytes;
505 		fname->disk_name.len =
506 			ret - offsetof(struct fscrypt_nokey_name, bytes);
507 	}
508 	return 0;
509 
510 errout:
511 	kfree(fname->crypto_buf.name);
512 	return ret;
513 }
514 EXPORT_SYMBOL(fscrypt_setup_filename);
515 
516 /**
517  * fscrypt_match_name() - test whether the given name matches a directory entry
518  * @fname: the name being searched for
519  * @de_name: the name from the directory entry
520  * @de_name_len: the length of @de_name in bytes
521  *
522  * Normally @fname->disk_name will be set, and in that case we simply compare
523  * that to the name stored in the directory entry.  The only exception is that
524  * if we don't have the key for an encrypted directory and the name we're
525  * looking for is very long, then we won't have the full disk_name and instead
526  * we'll need to match against a fscrypt_nokey_name that includes a strong hash.
527  *
528  * Return: %true if the name matches, otherwise %false.
529  */
530 bool fscrypt_match_name(const struct fscrypt_name *fname,
531 			const u8 *de_name, u32 de_name_len)
532 {
533 	const struct fscrypt_nokey_name *nokey_name =
534 		(const void *)fname->crypto_buf.name;
535 	u8 digest[SHA256_DIGEST_SIZE];
536 
537 	if (likely(fname->disk_name.name)) {
538 		if (de_name_len != fname->disk_name.len)
539 			return false;
540 		return !memcmp(de_name, fname->disk_name.name, de_name_len);
541 	}
542 	if (de_name_len <= sizeof(nokey_name->bytes))
543 		return false;
544 	if (memcmp(de_name, nokey_name->bytes, sizeof(nokey_name->bytes)))
545 		return false;
546 	sha256(&de_name[sizeof(nokey_name->bytes)],
547 	       de_name_len - sizeof(nokey_name->bytes), digest);
548 	return !memcmp(digest, nokey_name->sha256, sizeof(digest));
549 }
550 EXPORT_SYMBOL_GPL(fscrypt_match_name);
551 
552 /**
553  * fscrypt_fname_siphash() - calculate the SipHash of a filename
554  * @dir: the parent directory
555  * @name: the filename to calculate the SipHash of
556  *
557  * Given a plaintext filename @name and a directory @dir which uses SipHash as
558  * its dirhash method and has had its fscrypt key set up, this function
559  * calculates the SipHash of that name using the directory's secret dirhash key.
560  *
561  * Return: the SipHash of @name using the hash key of @dir
562  */
563 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name)
564 {
565 	const struct fscrypt_info *ci = dir->i_crypt_info;
566 
567 	WARN_ON_ONCE(!ci->ci_dirhash_key_initialized);
568 
569 	return siphash(name->name, name->len, &ci->ci_dirhash_key);
570 }
571 EXPORT_SYMBOL_GPL(fscrypt_fname_siphash);
572 
573 /*
574  * Validate dentries in encrypted directories to make sure we aren't potentially
575  * caching stale dentries after a key has been added.
576  */
577 int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
578 {
579 	struct dentry *dir;
580 	int err;
581 	int valid;
582 
583 	/*
584 	 * Plaintext names are always valid, since fscrypt doesn't support
585 	 * reverting to no-key names without evicting the directory's inode
586 	 * -- which implies eviction of the dentries in the directory.
587 	 */
588 	if (!(dentry->d_flags & DCACHE_NOKEY_NAME))
589 		return 1;
590 
591 	/*
592 	 * No-key name; valid if the directory's key is still unavailable.
593 	 *
594 	 * Although fscrypt forbids rename() on no-key names, we still must use
595 	 * dget_parent() here rather than use ->d_parent directly.  That's
596 	 * because a corrupted fs image may contain directory hard links, which
597 	 * the VFS handles by moving the directory's dentry tree in the dcache
598 	 * each time ->lookup() finds the directory and it already has a dentry
599 	 * elsewhere.  Thus ->d_parent can be changing, and we must safely grab
600 	 * a reference to some ->d_parent to prevent it from being freed.
601 	 */
602 
603 	if (flags & LOOKUP_RCU)
604 		return -ECHILD;
605 
606 	dir = dget_parent(dentry);
607 	/*
608 	 * Pass allow_unsupported=true, so that files with an unsupported
609 	 * encryption policy can be deleted.
610 	 */
611 	err = fscrypt_get_encryption_info(d_inode(dir), true);
612 	valid = !fscrypt_has_encryption_key(d_inode(dir));
613 	dput(dir);
614 
615 	if (err < 0)
616 		return err;
617 
618 	return valid;
619 }
620 EXPORT_SYMBOL_GPL(fscrypt_d_revalidate);
621