xref: /openbmc/linux/fs/buffer.c (revision f98393a64ca1392130724c3acb4e3f325801d2b6)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/smp_lock.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/bio.h>
40 #include <linux/notifier.h>
41 #include <linux/cpu.h>
42 #include <linux/bitops.h>
43 #include <linux/mpage.h>
44 #include <linux/bit_spinlock.h>
45 
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 static void invalidate_bh_lrus(void);
48 
49 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50 
51 inline void
52 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
53 {
54 	bh->b_end_io = handler;
55 	bh->b_private = private;
56 }
57 
58 static int sync_buffer(void *word)
59 {
60 	struct block_device *bd;
61 	struct buffer_head *bh
62 		= container_of(word, struct buffer_head, b_state);
63 
64 	smp_mb();
65 	bd = bh->b_bdev;
66 	if (bd)
67 		blk_run_address_space(bd->bd_inode->i_mapping);
68 	io_schedule();
69 	return 0;
70 }
71 
72 void fastcall __lock_buffer(struct buffer_head *bh)
73 {
74 	wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
75 							TASK_UNINTERRUPTIBLE);
76 }
77 EXPORT_SYMBOL(__lock_buffer);
78 
79 void fastcall unlock_buffer(struct buffer_head *bh)
80 {
81 	smp_mb__before_clear_bit();
82 	clear_buffer_locked(bh);
83 	smp_mb__after_clear_bit();
84 	wake_up_bit(&bh->b_state, BH_Lock);
85 }
86 
87 /*
88  * Block until a buffer comes unlocked.  This doesn't stop it
89  * from becoming locked again - you have to lock it yourself
90  * if you want to preserve its state.
91  */
92 void __wait_on_buffer(struct buffer_head * bh)
93 {
94 	wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
95 }
96 
97 static void
98 __clear_page_buffers(struct page *page)
99 {
100 	ClearPagePrivate(page);
101 	set_page_private(page, 0);
102 	page_cache_release(page);
103 }
104 
105 static void buffer_io_error(struct buffer_head *bh)
106 {
107 	char b[BDEVNAME_SIZE];
108 
109 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
110 			bdevname(bh->b_bdev, b),
111 			(unsigned long long)bh->b_blocknr);
112 }
113 
114 /*
115  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
116  * unlock the buffer. This is what ll_rw_block uses too.
117  */
118 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
119 {
120 	if (uptodate) {
121 		set_buffer_uptodate(bh);
122 	} else {
123 		/* This happens, due to failed READA attempts. */
124 		clear_buffer_uptodate(bh);
125 	}
126 	unlock_buffer(bh);
127 	put_bh(bh);
128 }
129 
130 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
131 {
132 	char b[BDEVNAME_SIZE];
133 
134 	if (uptodate) {
135 		set_buffer_uptodate(bh);
136 	} else {
137 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
138 			buffer_io_error(bh);
139 			printk(KERN_WARNING "lost page write due to "
140 					"I/O error on %s\n",
141 				       bdevname(bh->b_bdev, b));
142 		}
143 		set_buffer_write_io_error(bh);
144 		clear_buffer_uptodate(bh);
145 	}
146 	unlock_buffer(bh);
147 	put_bh(bh);
148 }
149 
150 /*
151  * Write out and wait upon all the dirty data associated with a block
152  * device via its mapping.  Does not take the superblock lock.
153  */
154 int sync_blockdev(struct block_device *bdev)
155 {
156 	int ret = 0;
157 
158 	if (bdev)
159 		ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
160 	return ret;
161 }
162 EXPORT_SYMBOL(sync_blockdev);
163 
164 /*
165  * Write out and wait upon all dirty data associated with this
166  * device.   Filesystem data as well as the underlying block
167  * device.  Takes the superblock lock.
168  */
169 int fsync_bdev(struct block_device *bdev)
170 {
171 	struct super_block *sb = get_super(bdev);
172 	if (sb) {
173 		int res = fsync_super(sb);
174 		drop_super(sb);
175 		return res;
176 	}
177 	return sync_blockdev(bdev);
178 }
179 
180 /**
181  * freeze_bdev  --  lock a filesystem and force it into a consistent state
182  * @bdev:	blockdevice to lock
183  *
184  * This takes the block device bd_mount_sem to make sure no new mounts
185  * happen on bdev until thaw_bdev() is called.
186  * If a superblock is found on this device, we take the s_umount semaphore
187  * on it to make sure nobody unmounts until the snapshot creation is done.
188  */
189 struct super_block *freeze_bdev(struct block_device *bdev)
190 {
191 	struct super_block *sb;
192 
193 	down(&bdev->bd_mount_sem);
194 	sb = get_super(bdev);
195 	if (sb && !(sb->s_flags & MS_RDONLY)) {
196 		sb->s_frozen = SB_FREEZE_WRITE;
197 		smp_wmb();
198 
199 		__fsync_super(sb);
200 
201 		sb->s_frozen = SB_FREEZE_TRANS;
202 		smp_wmb();
203 
204 		sync_blockdev(sb->s_bdev);
205 
206 		if (sb->s_op->write_super_lockfs)
207 			sb->s_op->write_super_lockfs(sb);
208 	}
209 
210 	sync_blockdev(bdev);
211 	return sb;	/* thaw_bdev releases s->s_umount and bd_mount_sem */
212 }
213 EXPORT_SYMBOL(freeze_bdev);
214 
215 /**
216  * thaw_bdev  -- unlock filesystem
217  * @bdev:	blockdevice to unlock
218  * @sb:		associated superblock
219  *
220  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
221  */
222 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
223 {
224 	if (sb) {
225 		BUG_ON(sb->s_bdev != bdev);
226 
227 		if (sb->s_op->unlockfs)
228 			sb->s_op->unlockfs(sb);
229 		sb->s_frozen = SB_UNFROZEN;
230 		smp_wmb();
231 		wake_up(&sb->s_wait_unfrozen);
232 		drop_super(sb);
233 	}
234 
235 	up(&bdev->bd_mount_sem);
236 }
237 EXPORT_SYMBOL(thaw_bdev);
238 
239 /*
240  * Various filesystems appear to want __find_get_block to be non-blocking.
241  * But it's the page lock which protects the buffers.  To get around this,
242  * we get exclusion from try_to_free_buffers with the blockdev mapping's
243  * private_lock.
244  *
245  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
246  * may be quite high.  This code could TryLock the page, and if that
247  * succeeds, there is no need to take private_lock. (But if
248  * private_lock is contended then so is mapping->tree_lock).
249  */
250 static struct buffer_head *
251 __find_get_block_slow(struct block_device *bdev, sector_t block)
252 {
253 	struct inode *bd_inode = bdev->bd_inode;
254 	struct address_space *bd_mapping = bd_inode->i_mapping;
255 	struct buffer_head *ret = NULL;
256 	pgoff_t index;
257 	struct buffer_head *bh;
258 	struct buffer_head *head;
259 	struct page *page;
260 	int all_mapped = 1;
261 
262 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
263 	page = find_get_page(bd_mapping, index);
264 	if (!page)
265 		goto out;
266 
267 	spin_lock(&bd_mapping->private_lock);
268 	if (!page_has_buffers(page))
269 		goto out_unlock;
270 	head = page_buffers(page);
271 	bh = head;
272 	do {
273 		if (bh->b_blocknr == block) {
274 			ret = bh;
275 			get_bh(bh);
276 			goto out_unlock;
277 		}
278 		if (!buffer_mapped(bh))
279 			all_mapped = 0;
280 		bh = bh->b_this_page;
281 	} while (bh != head);
282 
283 	/* we might be here because some of the buffers on this page are
284 	 * not mapped.  This is due to various races between
285 	 * file io on the block device and getblk.  It gets dealt with
286 	 * elsewhere, don't buffer_error if we had some unmapped buffers
287 	 */
288 	if (all_mapped) {
289 		printk("__find_get_block_slow() failed. "
290 			"block=%llu, b_blocknr=%llu\n",
291 			(unsigned long long)block,
292 			(unsigned long long)bh->b_blocknr);
293 		printk("b_state=0x%08lx, b_size=%zu\n",
294 			bh->b_state, bh->b_size);
295 		printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
296 	}
297 out_unlock:
298 	spin_unlock(&bd_mapping->private_lock);
299 	page_cache_release(page);
300 out:
301 	return ret;
302 }
303 
304 /* If invalidate_buffers() will trash dirty buffers, it means some kind
305    of fs corruption is going on. Trashing dirty data always imply losing
306    information that was supposed to be just stored on the physical layer
307    by the user.
308 
309    Thus invalidate_buffers in general usage is not allwowed to trash
310    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
311    be preserved.  These buffers are simply skipped.
312 
313    We also skip buffers which are still in use.  For example this can
314    happen if a userspace program is reading the block device.
315 
316    NOTE: In the case where the user removed a removable-media-disk even if
317    there's still dirty data not synced on disk (due a bug in the device driver
318    or due an error of the user), by not destroying the dirty buffers we could
319    generate corruption also on the next media inserted, thus a parameter is
320    necessary to handle this case in the most safe way possible (trying
321    to not corrupt also the new disk inserted with the data belonging to
322    the old now corrupted disk). Also for the ramdisk the natural thing
323    to do in order to release the ramdisk memory is to destroy dirty buffers.
324 
325    These are two special cases. Normal usage imply the device driver
326    to issue a sync on the device (without waiting I/O completion) and
327    then an invalidate_buffers call that doesn't trash dirty buffers.
328 
329    For handling cache coherency with the blkdev pagecache the 'update' case
330    is been introduced. It is needed to re-read from disk any pinned
331    buffer. NOTE: re-reading from disk is destructive so we can do it only
332    when we assume nobody is changing the buffercache under our I/O and when
333    we think the disk contains more recent information than the buffercache.
334    The update == 1 pass marks the buffers we need to update, the update == 2
335    pass does the actual I/O. */
336 void invalidate_bdev(struct block_device *bdev)
337 {
338 	struct address_space *mapping = bdev->bd_inode->i_mapping;
339 
340 	if (mapping->nrpages == 0)
341 		return;
342 
343 	invalidate_bh_lrus();
344 	invalidate_mapping_pages(mapping, 0, -1);
345 }
346 
347 /*
348  * Kick pdflush then try to free up some ZONE_NORMAL memory.
349  */
350 static void free_more_memory(void)
351 {
352 	struct zone **zones;
353 	pg_data_t *pgdat;
354 
355 	wakeup_pdflush(1024);
356 	yield();
357 
358 	for_each_online_pgdat(pgdat) {
359 		zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
360 		if (*zones)
361 			try_to_free_pages(zones, GFP_NOFS);
362 	}
363 }
364 
365 /*
366  * I/O completion handler for block_read_full_page() - pages
367  * which come unlocked at the end of I/O.
368  */
369 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
370 {
371 	unsigned long flags;
372 	struct buffer_head *first;
373 	struct buffer_head *tmp;
374 	struct page *page;
375 	int page_uptodate = 1;
376 
377 	BUG_ON(!buffer_async_read(bh));
378 
379 	page = bh->b_page;
380 	if (uptodate) {
381 		set_buffer_uptodate(bh);
382 	} else {
383 		clear_buffer_uptodate(bh);
384 		if (printk_ratelimit())
385 			buffer_io_error(bh);
386 		SetPageError(page);
387 	}
388 
389 	/*
390 	 * Be _very_ careful from here on. Bad things can happen if
391 	 * two buffer heads end IO at almost the same time and both
392 	 * decide that the page is now completely done.
393 	 */
394 	first = page_buffers(page);
395 	local_irq_save(flags);
396 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
397 	clear_buffer_async_read(bh);
398 	unlock_buffer(bh);
399 	tmp = bh;
400 	do {
401 		if (!buffer_uptodate(tmp))
402 			page_uptodate = 0;
403 		if (buffer_async_read(tmp)) {
404 			BUG_ON(!buffer_locked(tmp));
405 			goto still_busy;
406 		}
407 		tmp = tmp->b_this_page;
408 	} while (tmp != bh);
409 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
410 	local_irq_restore(flags);
411 
412 	/*
413 	 * If none of the buffers had errors and they are all
414 	 * uptodate then we can set the page uptodate.
415 	 */
416 	if (page_uptodate && !PageError(page))
417 		SetPageUptodate(page);
418 	unlock_page(page);
419 	return;
420 
421 still_busy:
422 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
423 	local_irq_restore(flags);
424 	return;
425 }
426 
427 /*
428  * Completion handler for block_write_full_page() - pages which are unlocked
429  * during I/O, and which have PageWriteback cleared upon I/O completion.
430  */
431 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
432 {
433 	char b[BDEVNAME_SIZE];
434 	unsigned long flags;
435 	struct buffer_head *first;
436 	struct buffer_head *tmp;
437 	struct page *page;
438 
439 	BUG_ON(!buffer_async_write(bh));
440 
441 	page = bh->b_page;
442 	if (uptodate) {
443 		set_buffer_uptodate(bh);
444 	} else {
445 		if (printk_ratelimit()) {
446 			buffer_io_error(bh);
447 			printk(KERN_WARNING "lost page write due to "
448 					"I/O error on %s\n",
449 			       bdevname(bh->b_bdev, b));
450 		}
451 		set_bit(AS_EIO, &page->mapping->flags);
452 		set_buffer_write_io_error(bh);
453 		clear_buffer_uptodate(bh);
454 		SetPageError(page);
455 	}
456 
457 	first = page_buffers(page);
458 	local_irq_save(flags);
459 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
460 
461 	clear_buffer_async_write(bh);
462 	unlock_buffer(bh);
463 	tmp = bh->b_this_page;
464 	while (tmp != bh) {
465 		if (buffer_async_write(tmp)) {
466 			BUG_ON(!buffer_locked(tmp));
467 			goto still_busy;
468 		}
469 		tmp = tmp->b_this_page;
470 	}
471 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
472 	local_irq_restore(flags);
473 	end_page_writeback(page);
474 	return;
475 
476 still_busy:
477 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
478 	local_irq_restore(flags);
479 	return;
480 }
481 
482 /*
483  * If a page's buffers are under async readin (end_buffer_async_read
484  * completion) then there is a possibility that another thread of
485  * control could lock one of the buffers after it has completed
486  * but while some of the other buffers have not completed.  This
487  * locked buffer would confuse end_buffer_async_read() into not unlocking
488  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
489  * that this buffer is not under async I/O.
490  *
491  * The page comes unlocked when it has no locked buffer_async buffers
492  * left.
493  *
494  * PageLocked prevents anyone starting new async I/O reads any of
495  * the buffers.
496  *
497  * PageWriteback is used to prevent simultaneous writeout of the same
498  * page.
499  *
500  * PageLocked prevents anyone from starting writeback of a page which is
501  * under read I/O (PageWriteback is only ever set against a locked page).
502  */
503 static void mark_buffer_async_read(struct buffer_head *bh)
504 {
505 	bh->b_end_io = end_buffer_async_read;
506 	set_buffer_async_read(bh);
507 }
508 
509 void mark_buffer_async_write(struct buffer_head *bh)
510 {
511 	bh->b_end_io = end_buffer_async_write;
512 	set_buffer_async_write(bh);
513 }
514 EXPORT_SYMBOL(mark_buffer_async_write);
515 
516 
517 /*
518  * fs/buffer.c contains helper functions for buffer-backed address space's
519  * fsync functions.  A common requirement for buffer-based filesystems is
520  * that certain data from the backing blockdev needs to be written out for
521  * a successful fsync().  For example, ext2 indirect blocks need to be
522  * written back and waited upon before fsync() returns.
523  *
524  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
525  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
526  * management of a list of dependent buffers at ->i_mapping->private_list.
527  *
528  * Locking is a little subtle: try_to_free_buffers() will remove buffers
529  * from their controlling inode's queue when they are being freed.  But
530  * try_to_free_buffers() will be operating against the *blockdev* mapping
531  * at the time, not against the S_ISREG file which depends on those buffers.
532  * So the locking for private_list is via the private_lock in the address_space
533  * which backs the buffers.  Which is different from the address_space
534  * against which the buffers are listed.  So for a particular address_space,
535  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
536  * mapping->private_list will always be protected by the backing blockdev's
537  * ->private_lock.
538  *
539  * Which introduces a requirement: all buffers on an address_space's
540  * ->private_list must be from the same address_space: the blockdev's.
541  *
542  * address_spaces which do not place buffers at ->private_list via these
543  * utility functions are free to use private_lock and private_list for
544  * whatever they want.  The only requirement is that list_empty(private_list)
545  * be true at clear_inode() time.
546  *
547  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
548  * filesystems should do that.  invalidate_inode_buffers() should just go
549  * BUG_ON(!list_empty).
550  *
551  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
552  * take an address_space, not an inode.  And it should be called
553  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
554  * queued up.
555  *
556  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
557  * list if it is already on a list.  Because if the buffer is on a list,
558  * it *must* already be on the right one.  If not, the filesystem is being
559  * silly.  This will save a ton of locking.  But first we have to ensure
560  * that buffers are taken *off* the old inode's list when they are freed
561  * (presumably in truncate).  That requires careful auditing of all
562  * filesystems (do it inside bforget()).  It could also be done by bringing
563  * b_inode back.
564  */
565 
566 /*
567  * The buffer's backing address_space's private_lock must be held
568  */
569 static inline void __remove_assoc_queue(struct buffer_head *bh)
570 {
571 	list_del_init(&bh->b_assoc_buffers);
572 	WARN_ON(!bh->b_assoc_map);
573 	if (buffer_write_io_error(bh))
574 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
575 	bh->b_assoc_map = NULL;
576 }
577 
578 int inode_has_buffers(struct inode *inode)
579 {
580 	return !list_empty(&inode->i_data.private_list);
581 }
582 
583 /*
584  * osync is designed to support O_SYNC io.  It waits synchronously for
585  * all already-submitted IO to complete, but does not queue any new
586  * writes to the disk.
587  *
588  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
589  * you dirty the buffers, and then use osync_inode_buffers to wait for
590  * completion.  Any other dirty buffers which are not yet queued for
591  * write will not be flushed to disk by the osync.
592  */
593 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
594 {
595 	struct buffer_head *bh;
596 	struct list_head *p;
597 	int err = 0;
598 
599 	spin_lock(lock);
600 repeat:
601 	list_for_each_prev(p, list) {
602 		bh = BH_ENTRY(p);
603 		if (buffer_locked(bh)) {
604 			get_bh(bh);
605 			spin_unlock(lock);
606 			wait_on_buffer(bh);
607 			if (!buffer_uptodate(bh))
608 				err = -EIO;
609 			brelse(bh);
610 			spin_lock(lock);
611 			goto repeat;
612 		}
613 	}
614 	spin_unlock(lock);
615 	return err;
616 }
617 
618 /**
619  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
620  *                        buffers
621  * @mapping: the mapping which wants those buffers written
622  *
623  * Starts I/O against the buffers at mapping->private_list, and waits upon
624  * that I/O.
625  *
626  * Basically, this is a convenience function for fsync().
627  * @mapping is a file or directory which needs those buffers to be written for
628  * a successful fsync().
629  */
630 int sync_mapping_buffers(struct address_space *mapping)
631 {
632 	struct address_space *buffer_mapping = mapping->assoc_mapping;
633 
634 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
635 		return 0;
636 
637 	return fsync_buffers_list(&buffer_mapping->private_lock,
638 					&mapping->private_list);
639 }
640 EXPORT_SYMBOL(sync_mapping_buffers);
641 
642 /*
643  * Called when we've recently written block `bblock', and it is known that
644  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
645  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
646  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
647  */
648 void write_boundary_block(struct block_device *bdev,
649 			sector_t bblock, unsigned blocksize)
650 {
651 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
652 	if (bh) {
653 		if (buffer_dirty(bh))
654 			ll_rw_block(WRITE, 1, &bh);
655 		put_bh(bh);
656 	}
657 }
658 
659 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
660 {
661 	struct address_space *mapping = inode->i_mapping;
662 	struct address_space *buffer_mapping = bh->b_page->mapping;
663 
664 	mark_buffer_dirty(bh);
665 	if (!mapping->assoc_mapping) {
666 		mapping->assoc_mapping = buffer_mapping;
667 	} else {
668 		BUG_ON(mapping->assoc_mapping != buffer_mapping);
669 	}
670 	if (list_empty(&bh->b_assoc_buffers)) {
671 		spin_lock(&buffer_mapping->private_lock);
672 		list_move_tail(&bh->b_assoc_buffers,
673 				&mapping->private_list);
674 		bh->b_assoc_map = mapping;
675 		spin_unlock(&buffer_mapping->private_lock);
676 	}
677 }
678 EXPORT_SYMBOL(mark_buffer_dirty_inode);
679 
680 /*
681  * Add a page to the dirty page list.
682  *
683  * It is a sad fact of life that this function is called from several places
684  * deeply under spinlocking.  It may not sleep.
685  *
686  * If the page has buffers, the uptodate buffers are set dirty, to preserve
687  * dirty-state coherency between the page and the buffers.  It the page does
688  * not have buffers then when they are later attached they will all be set
689  * dirty.
690  *
691  * The buffers are dirtied before the page is dirtied.  There's a small race
692  * window in which a writepage caller may see the page cleanness but not the
693  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
694  * before the buffers, a concurrent writepage caller could clear the page dirty
695  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
696  * page on the dirty page list.
697  *
698  * We use private_lock to lock against try_to_free_buffers while using the
699  * page's buffer list.  Also use this to protect against clean buffers being
700  * added to the page after it was set dirty.
701  *
702  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
703  * address_space though.
704  */
705 int __set_page_dirty_buffers(struct page *page)
706 {
707 	struct address_space * const mapping = page_mapping(page);
708 
709 	if (unlikely(!mapping))
710 		return !TestSetPageDirty(page);
711 
712 	spin_lock(&mapping->private_lock);
713 	if (page_has_buffers(page)) {
714 		struct buffer_head *head = page_buffers(page);
715 		struct buffer_head *bh = head;
716 
717 		do {
718 			set_buffer_dirty(bh);
719 			bh = bh->b_this_page;
720 		} while (bh != head);
721 	}
722 	spin_unlock(&mapping->private_lock);
723 
724 	if (TestSetPageDirty(page))
725 		return 0;
726 
727 	write_lock_irq(&mapping->tree_lock);
728 	if (page->mapping) {	/* Race with truncate? */
729 		if (mapping_cap_account_dirty(mapping)) {
730 			__inc_zone_page_state(page, NR_FILE_DIRTY);
731 			task_io_account_write(PAGE_CACHE_SIZE);
732 		}
733 		radix_tree_tag_set(&mapping->page_tree,
734 				page_index(page), PAGECACHE_TAG_DIRTY);
735 	}
736 	write_unlock_irq(&mapping->tree_lock);
737 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
738 	return 1;
739 }
740 EXPORT_SYMBOL(__set_page_dirty_buffers);
741 
742 /*
743  * Write out and wait upon a list of buffers.
744  *
745  * We have conflicting pressures: we want to make sure that all
746  * initially dirty buffers get waited on, but that any subsequently
747  * dirtied buffers don't.  After all, we don't want fsync to last
748  * forever if somebody is actively writing to the file.
749  *
750  * Do this in two main stages: first we copy dirty buffers to a
751  * temporary inode list, queueing the writes as we go.  Then we clean
752  * up, waiting for those writes to complete.
753  *
754  * During this second stage, any subsequent updates to the file may end
755  * up refiling the buffer on the original inode's dirty list again, so
756  * there is a chance we will end up with a buffer queued for write but
757  * not yet completed on that list.  So, as a final cleanup we go through
758  * the osync code to catch these locked, dirty buffers without requeuing
759  * any newly dirty buffers for write.
760  */
761 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
762 {
763 	struct buffer_head *bh;
764 	struct list_head tmp;
765 	int err = 0, err2;
766 
767 	INIT_LIST_HEAD(&tmp);
768 
769 	spin_lock(lock);
770 	while (!list_empty(list)) {
771 		bh = BH_ENTRY(list->next);
772 		__remove_assoc_queue(bh);
773 		if (buffer_dirty(bh) || buffer_locked(bh)) {
774 			list_add(&bh->b_assoc_buffers, &tmp);
775 			if (buffer_dirty(bh)) {
776 				get_bh(bh);
777 				spin_unlock(lock);
778 				/*
779 				 * Ensure any pending I/O completes so that
780 				 * ll_rw_block() actually writes the current
781 				 * contents - it is a noop if I/O is still in
782 				 * flight on potentially older contents.
783 				 */
784 				ll_rw_block(SWRITE, 1, &bh);
785 				brelse(bh);
786 				spin_lock(lock);
787 			}
788 		}
789 	}
790 
791 	while (!list_empty(&tmp)) {
792 		bh = BH_ENTRY(tmp.prev);
793 		list_del_init(&bh->b_assoc_buffers);
794 		get_bh(bh);
795 		spin_unlock(lock);
796 		wait_on_buffer(bh);
797 		if (!buffer_uptodate(bh))
798 			err = -EIO;
799 		brelse(bh);
800 		spin_lock(lock);
801 	}
802 
803 	spin_unlock(lock);
804 	err2 = osync_buffers_list(lock, list);
805 	if (err)
806 		return err;
807 	else
808 		return err2;
809 }
810 
811 /*
812  * Invalidate any and all dirty buffers on a given inode.  We are
813  * probably unmounting the fs, but that doesn't mean we have already
814  * done a sync().  Just drop the buffers from the inode list.
815  *
816  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
817  * assumes that all the buffers are against the blockdev.  Not true
818  * for reiserfs.
819  */
820 void invalidate_inode_buffers(struct inode *inode)
821 {
822 	if (inode_has_buffers(inode)) {
823 		struct address_space *mapping = &inode->i_data;
824 		struct list_head *list = &mapping->private_list;
825 		struct address_space *buffer_mapping = mapping->assoc_mapping;
826 
827 		spin_lock(&buffer_mapping->private_lock);
828 		while (!list_empty(list))
829 			__remove_assoc_queue(BH_ENTRY(list->next));
830 		spin_unlock(&buffer_mapping->private_lock);
831 	}
832 }
833 
834 /*
835  * Remove any clean buffers from the inode's buffer list.  This is called
836  * when we're trying to free the inode itself.  Those buffers can pin it.
837  *
838  * Returns true if all buffers were removed.
839  */
840 int remove_inode_buffers(struct inode *inode)
841 {
842 	int ret = 1;
843 
844 	if (inode_has_buffers(inode)) {
845 		struct address_space *mapping = &inode->i_data;
846 		struct list_head *list = &mapping->private_list;
847 		struct address_space *buffer_mapping = mapping->assoc_mapping;
848 
849 		spin_lock(&buffer_mapping->private_lock);
850 		while (!list_empty(list)) {
851 			struct buffer_head *bh = BH_ENTRY(list->next);
852 			if (buffer_dirty(bh)) {
853 				ret = 0;
854 				break;
855 			}
856 			__remove_assoc_queue(bh);
857 		}
858 		spin_unlock(&buffer_mapping->private_lock);
859 	}
860 	return ret;
861 }
862 
863 /*
864  * Create the appropriate buffers when given a page for data area and
865  * the size of each buffer.. Use the bh->b_this_page linked list to
866  * follow the buffers created.  Return NULL if unable to create more
867  * buffers.
868  *
869  * The retry flag is used to differentiate async IO (paging, swapping)
870  * which may not fail from ordinary buffer allocations.
871  */
872 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
873 		int retry)
874 {
875 	struct buffer_head *bh, *head;
876 	long offset;
877 
878 try_again:
879 	head = NULL;
880 	offset = PAGE_SIZE;
881 	while ((offset -= size) >= 0) {
882 		bh = alloc_buffer_head(GFP_NOFS);
883 		if (!bh)
884 			goto no_grow;
885 
886 		bh->b_bdev = NULL;
887 		bh->b_this_page = head;
888 		bh->b_blocknr = -1;
889 		head = bh;
890 
891 		bh->b_state = 0;
892 		atomic_set(&bh->b_count, 0);
893 		bh->b_private = NULL;
894 		bh->b_size = size;
895 
896 		/* Link the buffer to its page */
897 		set_bh_page(bh, page, offset);
898 
899 		init_buffer(bh, NULL, NULL);
900 	}
901 	return head;
902 /*
903  * In case anything failed, we just free everything we got.
904  */
905 no_grow:
906 	if (head) {
907 		do {
908 			bh = head;
909 			head = head->b_this_page;
910 			free_buffer_head(bh);
911 		} while (head);
912 	}
913 
914 	/*
915 	 * Return failure for non-async IO requests.  Async IO requests
916 	 * are not allowed to fail, so we have to wait until buffer heads
917 	 * become available.  But we don't want tasks sleeping with
918 	 * partially complete buffers, so all were released above.
919 	 */
920 	if (!retry)
921 		return NULL;
922 
923 	/* We're _really_ low on memory. Now we just
924 	 * wait for old buffer heads to become free due to
925 	 * finishing IO.  Since this is an async request and
926 	 * the reserve list is empty, we're sure there are
927 	 * async buffer heads in use.
928 	 */
929 	free_more_memory();
930 	goto try_again;
931 }
932 EXPORT_SYMBOL_GPL(alloc_page_buffers);
933 
934 static inline void
935 link_dev_buffers(struct page *page, struct buffer_head *head)
936 {
937 	struct buffer_head *bh, *tail;
938 
939 	bh = head;
940 	do {
941 		tail = bh;
942 		bh = bh->b_this_page;
943 	} while (bh);
944 	tail->b_this_page = head;
945 	attach_page_buffers(page, head);
946 }
947 
948 /*
949  * Initialise the state of a blockdev page's buffers.
950  */
951 static void
952 init_page_buffers(struct page *page, struct block_device *bdev,
953 			sector_t block, int size)
954 {
955 	struct buffer_head *head = page_buffers(page);
956 	struct buffer_head *bh = head;
957 	int uptodate = PageUptodate(page);
958 
959 	do {
960 		if (!buffer_mapped(bh)) {
961 			init_buffer(bh, NULL, NULL);
962 			bh->b_bdev = bdev;
963 			bh->b_blocknr = block;
964 			if (uptodate)
965 				set_buffer_uptodate(bh);
966 			set_buffer_mapped(bh);
967 		}
968 		block++;
969 		bh = bh->b_this_page;
970 	} while (bh != head);
971 }
972 
973 /*
974  * Create the page-cache page that contains the requested block.
975  *
976  * This is user purely for blockdev mappings.
977  */
978 static struct page *
979 grow_dev_page(struct block_device *bdev, sector_t block,
980 		pgoff_t index, int size)
981 {
982 	struct inode *inode = bdev->bd_inode;
983 	struct page *page;
984 	struct buffer_head *bh;
985 
986 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
987 	if (!page)
988 		return NULL;
989 
990 	BUG_ON(!PageLocked(page));
991 
992 	if (page_has_buffers(page)) {
993 		bh = page_buffers(page);
994 		if (bh->b_size == size) {
995 			init_page_buffers(page, bdev, block, size);
996 			return page;
997 		}
998 		if (!try_to_free_buffers(page))
999 			goto failed;
1000 	}
1001 
1002 	/*
1003 	 * Allocate some buffers for this page
1004 	 */
1005 	bh = alloc_page_buffers(page, size, 0);
1006 	if (!bh)
1007 		goto failed;
1008 
1009 	/*
1010 	 * Link the page to the buffers and initialise them.  Take the
1011 	 * lock to be atomic wrt __find_get_block(), which does not
1012 	 * run under the page lock.
1013 	 */
1014 	spin_lock(&inode->i_mapping->private_lock);
1015 	link_dev_buffers(page, bh);
1016 	init_page_buffers(page, bdev, block, size);
1017 	spin_unlock(&inode->i_mapping->private_lock);
1018 	return page;
1019 
1020 failed:
1021 	BUG();
1022 	unlock_page(page);
1023 	page_cache_release(page);
1024 	return NULL;
1025 }
1026 
1027 /*
1028  * Create buffers for the specified block device block's page.  If
1029  * that page was dirty, the buffers are set dirty also.
1030  *
1031  * Except that's a bug.  Attaching dirty buffers to a dirty
1032  * blockdev's page can result in filesystem corruption, because
1033  * some of those buffers may be aliases of filesystem data.
1034  * grow_dev_page() will go BUG() if this happens.
1035  */
1036 static int
1037 grow_buffers(struct block_device *bdev, sector_t block, int size)
1038 {
1039 	struct page *page;
1040 	pgoff_t index;
1041 	int sizebits;
1042 
1043 	sizebits = -1;
1044 	do {
1045 		sizebits++;
1046 	} while ((size << sizebits) < PAGE_SIZE);
1047 
1048 	index = block >> sizebits;
1049 
1050 	/*
1051 	 * Check for a block which wants to lie outside our maximum possible
1052 	 * pagecache index.  (this comparison is done using sector_t types).
1053 	 */
1054 	if (unlikely(index != block >> sizebits)) {
1055 		char b[BDEVNAME_SIZE];
1056 
1057 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1058 			"device %s\n",
1059 			__FUNCTION__, (unsigned long long)block,
1060 			bdevname(bdev, b));
1061 		return -EIO;
1062 	}
1063 	block = index << sizebits;
1064 	/* Create a page with the proper size buffers.. */
1065 	page = grow_dev_page(bdev, block, index, size);
1066 	if (!page)
1067 		return 0;
1068 	unlock_page(page);
1069 	page_cache_release(page);
1070 	return 1;
1071 }
1072 
1073 static struct buffer_head *
1074 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1075 {
1076 	/* Size must be multiple of hard sectorsize */
1077 	if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1078 			(size < 512 || size > PAGE_SIZE))) {
1079 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1080 					size);
1081 		printk(KERN_ERR "hardsect size: %d\n",
1082 					bdev_hardsect_size(bdev));
1083 
1084 		dump_stack();
1085 		return NULL;
1086 	}
1087 
1088 	for (;;) {
1089 		struct buffer_head * bh;
1090 		int ret;
1091 
1092 		bh = __find_get_block(bdev, block, size);
1093 		if (bh)
1094 			return bh;
1095 
1096 		ret = grow_buffers(bdev, block, size);
1097 		if (ret < 0)
1098 			return NULL;
1099 		if (ret == 0)
1100 			free_more_memory();
1101 	}
1102 }
1103 
1104 /*
1105  * The relationship between dirty buffers and dirty pages:
1106  *
1107  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1108  * the page is tagged dirty in its radix tree.
1109  *
1110  * At all times, the dirtiness of the buffers represents the dirtiness of
1111  * subsections of the page.  If the page has buffers, the page dirty bit is
1112  * merely a hint about the true dirty state.
1113  *
1114  * When a page is set dirty in its entirety, all its buffers are marked dirty
1115  * (if the page has buffers).
1116  *
1117  * When a buffer is marked dirty, its page is dirtied, but the page's other
1118  * buffers are not.
1119  *
1120  * Also.  When blockdev buffers are explicitly read with bread(), they
1121  * individually become uptodate.  But their backing page remains not
1122  * uptodate - even if all of its buffers are uptodate.  A subsequent
1123  * block_read_full_page() against that page will discover all the uptodate
1124  * buffers, will set the page uptodate and will perform no I/O.
1125  */
1126 
1127 /**
1128  * mark_buffer_dirty - mark a buffer_head as needing writeout
1129  * @bh: the buffer_head to mark dirty
1130  *
1131  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1132  * backing page dirty, then tag the page as dirty in its address_space's radix
1133  * tree and then attach the address_space's inode to its superblock's dirty
1134  * inode list.
1135  *
1136  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1137  * mapping->tree_lock and the global inode_lock.
1138  */
1139 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1140 {
1141 	if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1142 		__set_page_dirty_nobuffers(bh->b_page);
1143 }
1144 
1145 /*
1146  * Decrement a buffer_head's reference count.  If all buffers against a page
1147  * have zero reference count, are clean and unlocked, and if the page is clean
1148  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1149  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1150  * a page but it ends up not being freed, and buffers may later be reattached).
1151  */
1152 void __brelse(struct buffer_head * buf)
1153 {
1154 	if (atomic_read(&buf->b_count)) {
1155 		put_bh(buf);
1156 		return;
1157 	}
1158 	printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1159 	WARN_ON(1);
1160 }
1161 
1162 /*
1163  * bforget() is like brelse(), except it discards any
1164  * potentially dirty data.
1165  */
1166 void __bforget(struct buffer_head *bh)
1167 {
1168 	clear_buffer_dirty(bh);
1169 	if (!list_empty(&bh->b_assoc_buffers)) {
1170 		struct address_space *buffer_mapping = bh->b_page->mapping;
1171 
1172 		spin_lock(&buffer_mapping->private_lock);
1173 		list_del_init(&bh->b_assoc_buffers);
1174 		bh->b_assoc_map = NULL;
1175 		spin_unlock(&buffer_mapping->private_lock);
1176 	}
1177 	__brelse(bh);
1178 }
1179 
1180 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1181 {
1182 	lock_buffer(bh);
1183 	if (buffer_uptodate(bh)) {
1184 		unlock_buffer(bh);
1185 		return bh;
1186 	} else {
1187 		get_bh(bh);
1188 		bh->b_end_io = end_buffer_read_sync;
1189 		submit_bh(READ, bh);
1190 		wait_on_buffer(bh);
1191 		if (buffer_uptodate(bh))
1192 			return bh;
1193 	}
1194 	brelse(bh);
1195 	return NULL;
1196 }
1197 
1198 /*
1199  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1200  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1201  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1202  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1203  * CPU's LRUs at the same time.
1204  *
1205  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1206  * sb_find_get_block().
1207  *
1208  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1209  * a local interrupt disable for that.
1210  */
1211 
1212 #define BH_LRU_SIZE	8
1213 
1214 struct bh_lru {
1215 	struct buffer_head *bhs[BH_LRU_SIZE];
1216 };
1217 
1218 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1219 
1220 #ifdef CONFIG_SMP
1221 #define bh_lru_lock()	local_irq_disable()
1222 #define bh_lru_unlock()	local_irq_enable()
1223 #else
1224 #define bh_lru_lock()	preempt_disable()
1225 #define bh_lru_unlock()	preempt_enable()
1226 #endif
1227 
1228 static inline void check_irqs_on(void)
1229 {
1230 #ifdef irqs_disabled
1231 	BUG_ON(irqs_disabled());
1232 #endif
1233 }
1234 
1235 /*
1236  * The LRU management algorithm is dopey-but-simple.  Sorry.
1237  */
1238 static void bh_lru_install(struct buffer_head *bh)
1239 {
1240 	struct buffer_head *evictee = NULL;
1241 	struct bh_lru *lru;
1242 
1243 	check_irqs_on();
1244 	bh_lru_lock();
1245 	lru = &__get_cpu_var(bh_lrus);
1246 	if (lru->bhs[0] != bh) {
1247 		struct buffer_head *bhs[BH_LRU_SIZE];
1248 		int in;
1249 		int out = 0;
1250 
1251 		get_bh(bh);
1252 		bhs[out++] = bh;
1253 		for (in = 0; in < BH_LRU_SIZE; in++) {
1254 			struct buffer_head *bh2 = lru->bhs[in];
1255 
1256 			if (bh2 == bh) {
1257 				__brelse(bh2);
1258 			} else {
1259 				if (out >= BH_LRU_SIZE) {
1260 					BUG_ON(evictee != NULL);
1261 					evictee = bh2;
1262 				} else {
1263 					bhs[out++] = bh2;
1264 				}
1265 			}
1266 		}
1267 		while (out < BH_LRU_SIZE)
1268 			bhs[out++] = NULL;
1269 		memcpy(lru->bhs, bhs, sizeof(bhs));
1270 	}
1271 	bh_lru_unlock();
1272 
1273 	if (evictee)
1274 		__brelse(evictee);
1275 }
1276 
1277 /*
1278  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1279  */
1280 static struct buffer_head *
1281 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1282 {
1283 	struct buffer_head *ret = NULL;
1284 	struct bh_lru *lru;
1285 	unsigned int i;
1286 
1287 	check_irqs_on();
1288 	bh_lru_lock();
1289 	lru = &__get_cpu_var(bh_lrus);
1290 	for (i = 0; i < BH_LRU_SIZE; i++) {
1291 		struct buffer_head *bh = lru->bhs[i];
1292 
1293 		if (bh && bh->b_bdev == bdev &&
1294 				bh->b_blocknr == block && bh->b_size == size) {
1295 			if (i) {
1296 				while (i) {
1297 					lru->bhs[i] = lru->bhs[i - 1];
1298 					i--;
1299 				}
1300 				lru->bhs[0] = bh;
1301 			}
1302 			get_bh(bh);
1303 			ret = bh;
1304 			break;
1305 		}
1306 	}
1307 	bh_lru_unlock();
1308 	return ret;
1309 }
1310 
1311 /*
1312  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1313  * it in the LRU and mark it as accessed.  If it is not present then return
1314  * NULL
1315  */
1316 struct buffer_head *
1317 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1318 {
1319 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1320 
1321 	if (bh == NULL) {
1322 		bh = __find_get_block_slow(bdev, block);
1323 		if (bh)
1324 			bh_lru_install(bh);
1325 	}
1326 	if (bh)
1327 		touch_buffer(bh);
1328 	return bh;
1329 }
1330 EXPORT_SYMBOL(__find_get_block);
1331 
1332 /*
1333  * __getblk will locate (and, if necessary, create) the buffer_head
1334  * which corresponds to the passed block_device, block and size. The
1335  * returned buffer has its reference count incremented.
1336  *
1337  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1338  * illegal block number, __getblk() will happily return a buffer_head
1339  * which represents the non-existent block.  Very weird.
1340  *
1341  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1342  * attempt is failing.  FIXME, perhaps?
1343  */
1344 struct buffer_head *
1345 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1346 {
1347 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1348 
1349 	might_sleep();
1350 	if (bh == NULL)
1351 		bh = __getblk_slow(bdev, block, size);
1352 	return bh;
1353 }
1354 EXPORT_SYMBOL(__getblk);
1355 
1356 /*
1357  * Do async read-ahead on a buffer..
1358  */
1359 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1360 {
1361 	struct buffer_head *bh = __getblk(bdev, block, size);
1362 	if (likely(bh)) {
1363 		ll_rw_block(READA, 1, &bh);
1364 		brelse(bh);
1365 	}
1366 }
1367 EXPORT_SYMBOL(__breadahead);
1368 
1369 /**
1370  *  __bread() - reads a specified block and returns the bh
1371  *  @bdev: the block_device to read from
1372  *  @block: number of block
1373  *  @size: size (in bytes) to read
1374  *
1375  *  Reads a specified block, and returns buffer head that contains it.
1376  *  It returns NULL if the block was unreadable.
1377  */
1378 struct buffer_head *
1379 __bread(struct block_device *bdev, sector_t block, unsigned size)
1380 {
1381 	struct buffer_head *bh = __getblk(bdev, block, size);
1382 
1383 	if (likely(bh) && !buffer_uptodate(bh))
1384 		bh = __bread_slow(bh);
1385 	return bh;
1386 }
1387 EXPORT_SYMBOL(__bread);
1388 
1389 /*
1390  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1391  * This doesn't race because it runs in each cpu either in irq
1392  * or with preempt disabled.
1393  */
1394 static void invalidate_bh_lru(void *arg)
1395 {
1396 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1397 	int i;
1398 
1399 	for (i = 0; i < BH_LRU_SIZE; i++) {
1400 		brelse(b->bhs[i]);
1401 		b->bhs[i] = NULL;
1402 	}
1403 	put_cpu_var(bh_lrus);
1404 }
1405 
1406 static void invalidate_bh_lrus(void)
1407 {
1408 	on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1409 }
1410 
1411 void set_bh_page(struct buffer_head *bh,
1412 		struct page *page, unsigned long offset)
1413 {
1414 	bh->b_page = page;
1415 	BUG_ON(offset >= PAGE_SIZE);
1416 	if (PageHighMem(page))
1417 		/*
1418 		 * This catches illegal uses and preserves the offset:
1419 		 */
1420 		bh->b_data = (char *)(0 + offset);
1421 	else
1422 		bh->b_data = page_address(page) + offset;
1423 }
1424 EXPORT_SYMBOL(set_bh_page);
1425 
1426 /*
1427  * Called when truncating a buffer on a page completely.
1428  */
1429 static void discard_buffer(struct buffer_head * bh)
1430 {
1431 	lock_buffer(bh);
1432 	clear_buffer_dirty(bh);
1433 	bh->b_bdev = NULL;
1434 	clear_buffer_mapped(bh);
1435 	clear_buffer_req(bh);
1436 	clear_buffer_new(bh);
1437 	clear_buffer_delay(bh);
1438 	clear_buffer_unwritten(bh);
1439 	unlock_buffer(bh);
1440 }
1441 
1442 /**
1443  * block_invalidatepage - invalidate part of all of a buffer-backed page
1444  *
1445  * @page: the page which is affected
1446  * @offset: the index of the truncation point
1447  *
1448  * block_invalidatepage() is called when all or part of the page has become
1449  * invalidatedby a truncate operation.
1450  *
1451  * block_invalidatepage() does not have to release all buffers, but it must
1452  * ensure that no dirty buffer is left outside @offset and that no I/O
1453  * is underway against any of the blocks which are outside the truncation
1454  * point.  Because the caller is about to free (and possibly reuse) those
1455  * blocks on-disk.
1456  */
1457 void block_invalidatepage(struct page *page, unsigned long offset)
1458 {
1459 	struct buffer_head *head, *bh, *next;
1460 	unsigned int curr_off = 0;
1461 
1462 	BUG_ON(!PageLocked(page));
1463 	if (!page_has_buffers(page))
1464 		goto out;
1465 
1466 	head = page_buffers(page);
1467 	bh = head;
1468 	do {
1469 		unsigned int next_off = curr_off + bh->b_size;
1470 		next = bh->b_this_page;
1471 
1472 		/*
1473 		 * is this block fully invalidated?
1474 		 */
1475 		if (offset <= curr_off)
1476 			discard_buffer(bh);
1477 		curr_off = next_off;
1478 		bh = next;
1479 	} while (bh != head);
1480 
1481 	/*
1482 	 * We release buffers only if the entire page is being invalidated.
1483 	 * The get_block cached value has been unconditionally invalidated,
1484 	 * so real IO is not possible anymore.
1485 	 */
1486 	if (offset == 0)
1487 		try_to_release_page(page, 0);
1488 out:
1489 	return;
1490 }
1491 EXPORT_SYMBOL(block_invalidatepage);
1492 
1493 /*
1494  * We attach and possibly dirty the buffers atomically wrt
1495  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1496  * is already excluded via the page lock.
1497  */
1498 void create_empty_buffers(struct page *page,
1499 			unsigned long blocksize, unsigned long b_state)
1500 {
1501 	struct buffer_head *bh, *head, *tail;
1502 
1503 	head = alloc_page_buffers(page, blocksize, 1);
1504 	bh = head;
1505 	do {
1506 		bh->b_state |= b_state;
1507 		tail = bh;
1508 		bh = bh->b_this_page;
1509 	} while (bh);
1510 	tail->b_this_page = head;
1511 
1512 	spin_lock(&page->mapping->private_lock);
1513 	if (PageUptodate(page) || PageDirty(page)) {
1514 		bh = head;
1515 		do {
1516 			if (PageDirty(page))
1517 				set_buffer_dirty(bh);
1518 			if (PageUptodate(page))
1519 				set_buffer_uptodate(bh);
1520 			bh = bh->b_this_page;
1521 		} while (bh != head);
1522 	}
1523 	attach_page_buffers(page, head);
1524 	spin_unlock(&page->mapping->private_lock);
1525 }
1526 EXPORT_SYMBOL(create_empty_buffers);
1527 
1528 /*
1529  * We are taking a block for data and we don't want any output from any
1530  * buffer-cache aliases starting from return from that function and
1531  * until the moment when something will explicitly mark the buffer
1532  * dirty (hopefully that will not happen until we will free that block ;-)
1533  * We don't even need to mark it not-uptodate - nobody can expect
1534  * anything from a newly allocated buffer anyway. We used to used
1535  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1536  * don't want to mark the alias unmapped, for example - it would confuse
1537  * anyone who might pick it with bread() afterwards...
1538  *
1539  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1540  * be writeout I/O going on against recently-freed buffers.  We don't
1541  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1542  * only if we really need to.  That happens here.
1543  */
1544 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1545 {
1546 	struct buffer_head *old_bh;
1547 
1548 	might_sleep();
1549 
1550 	old_bh = __find_get_block_slow(bdev, block);
1551 	if (old_bh) {
1552 		clear_buffer_dirty(old_bh);
1553 		wait_on_buffer(old_bh);
1554 		clear_buffer_req(old_bh);
1555 		__brelse(old_bh);
1556 	}
1557 }
1558 EXPORT_SYMBOL(unmap_underlying_metadata);
1559 
1560 /*
1561  * NOTE! All mapped/uptodate combinations are valid:
1562  *
1563  *	Mapped	Uptodate	Meaning
1564  *
1565  *	No	No		"unknown" - must do get_block()
1566  *	No	Yes		"hole" - zero-filled
1567  *	Yes	No		"allocated" - allocated on disk, not read in
1568  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1569  *
1570  * "Dirty" is valid only with the last case (mapped+uptodate).
1571  */
1572 
1573 /*
1574  * While block_write_full_page is writing back the dirty buffers under
1575  * the page lock, whoever dirtied the buffers may decide to clean them
1576  * again at any time.  We handle that by only looking at the buffer
1577  * state inside lock_buffer().
1578  *
1579  * If block_write_full_page() is called for regular writeback
1580  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1581  * locked buffer.   This only can happen if someone has written the buffer
1582  * directly, with submit_bh().  At the address_space level PageWriteback
1583  * prevents this contention from occurring.
1584  */
1585 static int __block_write_full_page(struct inode *inode, struct page *page,
1586 			get_block_t *get_block, struct writeback_control *wbc)
1587 {
1588 	int err;
1589 	sector_t block;
1590 	sector_t last_block;
1591 	struct buffer_head *bh, *head;
1592 	const unsigned blocksize = 1 << inode->i_blkbits;
1593 	int nr_underway = 0;
1594 
1595 	BUG_ON(!PageLocked(page));
1596 
1597 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1598 
1599 	if (!page_has_buffers(page)) {
1600 		create_empty_buffers(page, blocksize,
1601 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1602 	}
1603 
1604 	/*
1605 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1606 	 * here, and the (potentially unmapped) buffers may become dirty at
1607 	 * any time.  If a buffer becomes dirty here after we've inspected it
1608 	 * then we just miss that fact, and the page stays dirty.
1609 	 *
1610 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1611 	 * handle that here by just cleaning them.
1612 	 */
1613 
1614 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1615 	head = page_buffers(page);
1616 	bh = head;
1617 
1618 	/*
1619 	 * Get all the dirty buffers mapped to disk addresses and
1620 	 * handle any aliases from the underlying blockdev's mapping.
1621 	 */
1622 	do {
1623 		if (block > last_block) {
1624 			/*
1625 			 * mapped buffers outside i_size will occur, because
1626 			 * this page can be outside i_size when there is a
1627 			 * truncate in progress.
1628 			 */
1629 			/*
1630 			 * The buffer was zeroed by block_write_full_page()
1631 			 */
1632 			clear_buffer_dirty(bh);
1633 			set_buffer_uptodate(bh);
1634 		} else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1635 			WARN_ON(bh->b_size != blocksize);
1636 			err = get_block(inode, block, bh, 1);
1637 			if (err)
1638 				goto recover;
1639 			if (buffer_new(bh)) {
1640 				/* blockdev mappings never come here */
1641 				clear_buffer_new(bh);
1642 				unmap_underlying_metadata(bh->b_bdev,
1643 							bh->b_blocknr);
1644 			}
1645 		}
1646 		bh = bh->b_this_page;
1647 		block++;
1648 	} while (bh != head);
1649 
1650 	do {
1651 		if (!buffer_mapped(bh))
1652 			continue;
1653 		/*
1654 		 * If it's a fully non-blocking write attempt and we cannot
1655 		 * lock the buffer then redirty the page.  Note that this can
1656 		 * potentially cause a busy-wait loop from pdflush and kswapd
1657 		 * activity, but those code paths have their own higher-level
1658 		 * throttling.
1659 		 */
1660 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1661 			lock_buffer(bh);
1662 		} else if (test_set_buffer_locked(bh)) {
1663 			redirty_page_for_writepage(wbc, page);
1664 			continue;
1665 		}
1666 		if (test_clear_buffer_dirty(bh)) {
1667 			mark_buffer_async_write(bh);
1668 		} else {
1669 			unlock_buffer(bh);
1670 		}
1671 	} while ((bh = bh->b_this_page) != head);
1672 
1673 	/*
1674 	 * The page and its buffers are protected by PageWriteback(), so we can
1675 	 * drop the bh refcounts early.
1676 	 */
1677 	BUG_ON(PageWriteback(page));
1678 	set_page_writeback(page);
1679 
1680 	do {
1681 		struct buffer_head *next = bh->b_this_page;
1682 		if (buffer_async_write(bh)) {
1683 			submit_bh(WRITE, bh);
1684 			nr_underway++;
1685 		}
1686 		bh = next;
1687 	} while (bh != head);
1688 	unlock_page(page);
1689 
1690 	err = 0;
1691 done:
1692 	if (nr_underway == 0) {
1693 		/*
1694 		 * The page was marked dirty, but the buffers were
1695 		 * clean.  Someone wrote them back by hand with
1696 		 * ll_rw_block/submit_bh.  A rare case.
1697 		 */
1698 		end_page_writeback(page);
1699 
1700 		/*
1701 		 * The page and buffer_heads can be released at any time from
1702 		 * here on.
1703 		 */
1704 		wbc->pages_skipped++;	/* We didn't write this page */
1705 	}
1706 	return err;
1707 
1708 recover:
1709 	/*
1710 	 * ENOSPC, or some other error.  We may already have added some
1711 	 * blocks to the file, so we need to write these out to avoid
1712 	 * exposing stale data.
1713 	 * The page is currently locked and not marked for writeback
1714 	 */
1715 	bh = head;
1716 	/* Recovery: lock and submit the mapped buffers */
1717 	do {
1718 		if (buffer_mapped(bh) && buffer_dirty(bh)) {
1719 			lock_buffer(bh);
1720 			mark_buffer_async_write(bh);
1721 		} else {
1722 			/*
1723 			 * The buffer may have been set dirty during
1724 			 * attachment to a dirty page.
1725 			 */
1726 			clear_buffer_dirty(bh);
1727 		}
1728 	} while ((bh = bh->b_this_page) != head);
1729 	SetPageError(page);
1730 	BUG_ON(PageWriteback(page));
1731 	set_page_writeback(page);
1732 	do {
1733 		struct buffer_head *next = bh->b_this_page;
1734 		if (buffer_async_write(bh)) {
1735 			clear_buffer_dirty(bh);
1736 			submit_bh(WRITE, bh);
1737 			nr_underway++;
1738 		}
1739 		bh = next;
1740 	} while (bh != head);
1741 	unlock_page(page);
1742 	goto done;
1743 }
1744 
1745 static int __block_prepare_write(struct inode *inode, struct page *page,
1746 		unsigned from, unsigned to, get_block_t *get_block)
1747 {
1748 	unsigned block_start, block_end;
1749 	sector_t block;
1750 	int err = 0;
1751 	unsigned blocksize, bbits;
1752 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1753 
1754 	BUG_ON(!PageLocked(page));
1755 	BUG_ON(from > PAGE_CACHE_SIZE);
1756 	BUG_ON(to > PAGE_CACHE_SIZE);
1757 	BUG_ON(from > to);
1758 
1759 	blocksize = 1 << inode->i_blkbits;
1760 	if (!page_has_buffers(page))
1761 		create_empty_buffers(page, blocksize, 0);
1762 	head = page_buffers(page);
1763 
1764 	bbits = inode->i_blkbits;
1765 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1766 
1767 	for(bh = head, block_start = 0; bh != head || !block_start;
1768 	    block++, block_start=block_end, bh = bh->b_this_page) {
1769 		block_end = block_start + blocksize;
1770 		if (block_end <= from || block_start >= to) {
1771 			if (PageUptodate(page)) {
1772 				if (!buffer_uptodate(bh))
1773 					set_buffer_uptodate(bh);
1774 			}
1775 			continue;
1776 		}
1777 		if (buffer_new(bh))
1778 			clear_buffer_new(bh);
1779 		if (!buffer_mapped(bh)) {
1780 			WARN_ON(bh->b_size != blocksize);
1781 			err = get_block(inode, block, bh, 1);
1782 			if (err)
1783 				break;
1784 			if (buffer_new(bh)) {
1785 				unmap_underlying_metadata(bh->b_bdev,
1786 							bh->b_blocknr);
1787 				if (PageUptodate(page)) {
1788 					set_buffer_uptodate(bh);
1789 					continue;
1790 				}
1791 				if (block_end > to || block_start < from) {
1792 					void *kaddr;
1793 
1794 					kaddr = kmap_atomic(page, KM_USER0);
1795 					if (block_end > to)
1796 						memset(kaddr+to, 0,
1797 							block_end-to);
1798 					if (block_start < from)
1799 						memset(kaddr+block_start,
1800 							0, from-block_start);
1801 					flush_dcache_page(page);
1802 					kunmap_atomic(kaddr, KM_USER0);
1803 				}
1804 				continue;
1805 			}
1806 		}
1807 		if (PageUptodate(page)) {
1808 			if (!buffer_uptodate(bh))
1809 				set_buffer_uptodate(bh);
1810 			continue;
1811 		}
1812 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1813 		    !buffer_unwritten(bh) &&
1814 		     (block_start < from || block_end > to)) {
1815 			ll_rw_block(READ, 1, &bh);
1816 			*wait_bh++=bh;
1817 		}
1818 	}
1819 	/*
1820 	 * If we issued read requests - let them complete.
1821 	 */
1822 	while(wait_bh > wait) {
1823 		wait_on_buffer(*--wait_bh);
1824 		if (!buffer_uptodate(*wait_bh))
1825 			err = -EIO;
1826 	}
1827 	if (!err) {
1828 		bh = head;
1829 		do {
1830 			if (buffer_new(bh))
1831 				clear_buffer_new(bh);
1832 		} while ((bh = bh->b_this_page) != head);
1833 		return 0;
1834 	}
1835 	/* Error case: */
1836 	/*
1837 	 * Zero out any newly allocated blocks to avoid exposing stale
1838 	 * data.  If BH_New is set, we know that the block was newly
1839 	 * allocated in the above loop.
1840 	 */
1841 	bh = head;
1842 	block_start = 0;
1843 	do {
1844 		block_end = block_start+blocksize;
1845 		if (block_end <= from)
1846 			goto next_bh;
1847 		if (block_start >= to)
1848 			break;
1849 		if (buffer_new(bh)) {
1850 			void *kaddr;
1851 
1852 			clear_buffer_new(bh);
1853 			kaddr = kmap_atomic(page, KM_USER0);
1854 			memset(kaddr+block_start, 0, bh->b_size);
1855 			flush_dcache_page(page);
1856 			kunmap_atomic(kaddr, KM_USER0);
1857 			set_buffer_uptodate(bh);
1858 			mark_buffer_dirty(bh);
1859 		}
1860 next_bh:
1861 		block_start = block_end;
1862 		bh = bh->b_this_page;
1863 	} while (bh != head);
1864 	return err;
1865 }
1866 
1867 static int __block_commit_write(struct inode *inode, struct page *page,
1868 		unsigned from, unsigned to)
1869 {
1870 	unsigned block_start, block_end;
1871 	int partial = 0;
1872 	unsigned blocksize;
1873 	struct buffer_head *bh, *head;
1874 
1875 	blocksize = 1 << inode->i_blkbits;
1876 
1877 	for(bh = head = page_buffers(page), block_start = 0;
1878 	    bh != head || !block_start;
1879 	    block_start=block_end, bh = bh->b_this_page) {
1880 		block_end = block_start + blocksize;
1881 		if (block_end <= from || block_start >= to) {
1882 			if (!buffer_uptodate(bh))
1883 				partial = 1;
1884 		} else {
1885 			set_buffer_uptodate(bh);
1886 			mark_buffer_dirty(bh);
1887 		}
1888 	}
1889 
1890 	/*
1891 	 * If this is a partial write which happened to make all buffers
1892 	 * uptodate then we can optimize away a bogus readpage() for
1893 	 * the next read(). Here we 'discover' whether the page went
1894 	 * uptodate as a result of this (potentially partial) write.
1895 	 */
1896 	if (!partial)
1897 		SetPageUptodate(page);
1898 	return 0;
1899 }
1900 
1901 /*
1902  * Generic "read page" function for block devices that have the normal
1903  * get_block functionality. This is most of the block device filesystems.
1904  * Reads the page asynchronously --- the unlock_buffer() and
1905  * set/clear_buffer_uptodate() functions propagate buffer state into the
1906  * page struct once IO has completed.
1907  */
1908 int block_read_full_page(struct page *page, get_block_t *get_block)
1909 {
1910 	struct inode *inode = page->mapping->host;
1911 	sector_t iblock, lblock;
1912 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
1913 	unsigned int blocksize;
1914 	int nr, i;
1915 	int fully_mapped = 1;
1916 
1917 	BUG_ON(!PageLocked(page));
1918 	blocksize = 1 << inode->i_blkbits;
1919 	if (!page_has_buffers(page))
1920 		create_empty_buffers(page, blocksize, 0);
1921 	head = page_buffers(page);
1922 
1923 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1924 	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
1925 	bh = head;
1926 	nr = 0;
1927 	i = 0;
1928 
1929 	do {
1930 		if (buffer_uptodate(bh))
1931 			continue;
1932 
1933 		if (!buffer_mapped(bh)) {
1934 			int err = 0;
1935 
1936 			fully_mapped = 0;
1937 			if (iblock < lblock) {
1938 				WARN_ON(bh->b_size != blocksize);
1939 				err = get_block(inode, iblock, bh, 0);
1940 				if (err)
1941 					SetPageError(page);
1942 			}
1943 			if (!buffer_mapped(bh)) {
1944 				void *kaddr = kmap_atomic(page, KM_USER0);
1945 				memset(kaddr + i * blocksize, 0, blocksize);
1946 				flush_dcache_page(page);
1947 				kunmap_atomic(kaddr, KM_USER0);
1948 				if (!err)
1949 					set_buffer_uptodate(bh);
1950 				continue;
1951 			}
1952 			/*
1953 			 * get_block() might have updated the buffer
1954 			 * synchronously
1955 			 */
1956 			if (buffer_uptodate(bh))
1957 				continue;
1958 		}
1959 		arr[nr++] = bh;
1960 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
1961 
1962 	if (fully_mapped)
1963 		SetPageMappedToDisk(page);
1964 
1965 	if (!nr) {
1966 		/*
1967 		 * All buffers are uptodate - we can set the page uptodate
1968 		 * as well. But not if get_block() returned an error.
1969 		 */
1970 		if (!PageError(page))
1971 			SetPageUptodate(page);
1972 		unlock_page(page);
1973 		return 0;
1974 	}
1975 
1976 	/* Stage two: lock the buffers */
1977 	for (i = 0; i < nr; i++) {
1978 		bh = arr[i];
1979 		lock_buffer(bh);
1980 		mark_buffer_async_read(bh);
1981 	}
1982 
1983 	/*
1984 	 * Stage 3: start the IO.  Check for uptodateness
1985 	 * inside the buffer lock in case another process reading
1986 	 * the underlying blockdev brought it uptodate (the sct fix).
1987 	 */
1988 	for (i = 0; i < nr; i++) {
1989 		bh = arr[i];
1990 		if (buffer_uptodate(bh))
1991 			end_buffer_async_read(bh, 1);
1992 		else
1993 			submit_bh(READ, bh);
1994 	}
1995 	return 0;
1996 }
1997 
1998 /* utility function for filesystems that need to do work on expanding
1999  * truncates.  Uses prepare/commit_write to allow the filesystem to
2000  * deal with the hole.
2001  */
2002 static int __generic_cont_expand(struct inode *inode, loff_t size,
2003 				 pgoff_t index, unsigned int offset)
2004 {
2005 	struct address_space *mapping = inode->i_mapping;
2006 	struct page *page;
2007 	unsigned long limit;
2008 	int err;
2009 
2010 	err = -EFBIG;
2011         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2012 	if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2013 		send_sig(SIGXFSZ, current, 0);
2014 		goto out;
2015 	}
2016 	if (size > inode->i_sb->s_maxbytes)
2017 		goto out;
2018 
2019 	err = -ENOMEM;
2020 	page = grab_cache_page(mapping, index);
2021 	if (!page)
2022 		goto out;
2023 	err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2024 	if (err) {
2025 		/*
2026 		 * ->prepare_write() may have instantiated a few blocks
2027 		 * outside i_size.  Trim these off again.
2028 		 */
2029 		unlock_page(page);
2030 		page_cache_release(page);
2031 		vmtruncate(inode, inode->i_size);
2032 		goto out;
2033 	}
2034 
2035 	err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2036 
2037 	unlock_page(page);
2038 	page_cache_release(page);
2039 	if (err > 0)
2040 		err = 0;
2041 out:
2042 	return err;
2043 }
2044 
2045 int generic_cont_expand(struct inode *inode, loff_t size)
2046 {
2047 	pgoff_t index;
2048 	unsigned int offset;
2049 
2050 	offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2051 
2052 	/* ugh.  in prepare/commit_write, if from==to==start of block, we
2053 	** skip the prepare.  make sure we never send an offset for the start
2054 	** of a block
2055 	*/
2056 	if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2057 		/* caller must handle this extra byte. */
2058 		offset++;
2059 	}
2060 	index = size >> PAGE_CACHE_SHIFT;
2061 
2062 	return __generic_cont_expand(inode, size, index, offset);
2063 }
2064 
2065 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2066 {
2067 	loff_t pos = size - 1;
2068 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2069 	unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2070 
2071 	/* prepare/commit_write can handle even if from==to==start of block. */
2072 	return __generic_cont_expand(inode, size, index, offset);
2073 }
2074 
2075 /*
2076  * For moronic filesystems that do not allow holes in file.
2077  * We may have to extend the file.
2078  */
2079 
2080 int cont_prepare_write(struct page *page, unsigned offset,
2081 		unsigned to, get_block_t *get_block, loff_t *bytes)
2082 {
2083 	struct address_space *mapping = page->mapping;
2084 	struct inode *inode = mapping->host;
2085 	struct page *new_page;
2086 	pgoff_t pgpos;
2087 	long status;
2088 	unsigned zerofrom;
2089 	unsigned blocksize = 1 << inode->i_blkbits;
2090 	void *kaddr;
2091 
2092 	while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2093 		status = -ENOMEM;
2094 		new_page = grab_cache_page(mapping, pgpos);
2095 		if (!new_page)
2096 			goto out;
2097 		/* we might sleep */
2098 		if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2099 			unlock_page(new_page);
2100 			page_cache_release(new_page);
2101 			continue;
2102 		}
2103 		zerofrom = *bytes & ~PAGE_CACHE_MASK;
2104 		if (zerofrom & (blocksize-1)) {
2105 			*bytes |= (blocksize-1);
2106 			(*bytes)++;
2107 		}
2108 		status = __block_prepare_write(inode, new_page, zerofrom,
2109 						PAGE_CACHE_SIZE, get_block);
2110 		if (status)
2111 			goto out_unmap;
2112 		kaddr = kmap_atomic(new_page, KM_USER0);
2113 		memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2114 		flush_dcache_page(new_page);
2115 		kunmap_atomic(kaddr, KM_USER0);
2116 		generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2117 		unlock_page(new_page);
2118 		page_cache_release(new_page);
2119 	}
2120 
2121 	if (page->index < pgpos) {
2122 		/* completely inside the area */
2123 		zerofrom = offset;
2124 	} else {
2125 		/* page covers the boundary, find the boundary offset */
2126 		zerofrom = *bytes & ~PAGE_CACHE_MASK;
2127 
2128 		/* if we will expand the thing last block will be filled */
2129 		if (to > zerofrom && (zerofrom & (blocksize-1))) {
2130 			*bytes |= (blocksize-1);
2131 			(*bytes)++;
2132 		}
2133 
2134 		/* starting below the boundary? Nothing to zero out */
2135 		if (offset <= zerofrom)
2136 			zerofrom = offset;
2137 	}
2138 	status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2139 	if (status)
2140 		goto out1;
2141 	if (zerofrom < offset) {
2142 		kaddr = kmap_atomic(page, KM_USER0);
2143 		memset(kaddr+zerofrom, 0, offset-zerofrom);
2144 		flush_dcache_page(page);
2145 		kunmap_atomic(kaddr, KM_USER0);
2146 		__block_commit_write(inode, page, zerofrom, offset);
2147 	}
2148 	return 0;
2149 out1:
2150 	ClearPageUptodate(page);
2151 	return status;
2152 
2153 out_unmap:
2154 	ClearPageUptodate(new_page);
2155 	unlock_page(new_page);
2156 	page_cache_release(new_page);
2157 out:
2158 	return status;
2159 }
2160 
2161 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2162 			get_block_t *get_block)
2163 {
2164 	struct inode *inode = page->mapping->host;
2165 	int err = __block_prepare_write(inode, page, from, to, get_block);
2166 	if (err)
2167 		ClearPageUptodate(page);
2168 	return err;
2169 }
2170 
2171 int block_commit_write(struct page *page, unsigned from, unsigned to)
2172 {
2173 	struct inode *inode = page->mapping->host;
2174 	__block_commit_write(inode,page,from,to);
2175 	return 0;
2176 }
2177 
2178 int generic_commit_write(struct file *file, struct page *page,
2179 		unsigned from, unsigned to)
2180 {
2181 	struct inode *inode = page->mapping->host;
2182 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2183 	__block_commit_write(inode,page,from,to);
2184 	/*
2185 	 * No need to use i_size_read() here, the i_size
2186 	 * cannot change under us because we hold i_mutex.
2187 	 */
2188 	if (pos > inode->i_size) {
2189 		i_size_write(inode, pos);
2190 		mark_inode_dirty(inode);
2191 	}
2192 	return 0;
2193 }
2194 
2195 
2196 /*
2197  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2198  * immediately, while under the page lock.  So it needs a special end_io
2199  * handler which does not touch the bh after unlocking it.
2200  *
2201  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2202  * a race there is benign: unlock_buffer() only use the bh's address for
2203  * hashing after unlocking the buffer, so it doesn't actually touch the bh
2204  * itself.
2205  */
2206 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2207 {
2208 	if (uptodate) {
2209 		set_buffer_uptodate(bh);
2210 	} else {
2211 		/* This happens, due to failed READA attempts. */
2212 		clear_buffer_uptodate(bh);
2213 	}
2214 	unlock_buffer(bh);
2215 }
2216 
2217 /*
2218  * On entry, the page is fully not uptodate.
2219  * On exit the page is fully uptodate in the areas outside (from,to)
2220  */
2221 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2222 			get_block_t *get_block)
2223 {
2224 	struct inode *inode = page->mapping->host;
2225 	const unsigned blkbits = inode->i_blkbits;
2226 	const unsigned blocksize = 1 << blkbits;
2227 	struct buffer_head map_bh;
2228 	struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2229 	unsigned block_in_page;
2230 	unsigned block_start;
2231 	sector_t block_in_file;
2232 	char *kaddr;
2233 	int nr_reads = 0;
2234 	int i;
2235 	int ret = 0;
2236 	int is_mapped_to_disk = 1;
2237 
2238 	if (PageMappedToDisk(page))
2239 		return 0;
2240 
2241 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2242 	map_bh.b_page = page;
2243 
2244 	/*
2245 	 * We loop across all blocks in the page, whether or not they are
2246 	 * part of the affected region.  This is so we can discover if the
2247 	 * page is fully mapped-to-disk.
2248 	 */
2249 	for (block_start = 0, block_in_page = 0;
2250 		  block_start < PAGE_CACHE_SIZE;
2251 		  block_in_page++, block_start += blocksize) {
2252 		unsigned block_end = block_start + blocksize;
2253 		int create;
2254 
2255 		map_bh.b_state = 0;
2256 		create = 1;
2257 		if (block_start >= to)
2258 			create = 0;
2259 		map_bh.b_size = blocksize;
2260 		ret = get_block(inode, block_in_file + block_in_page,
2261 					&map_bh, create);
2262 		if (ret)
2263 			goto failed;
2264 		if (!buffer_mapped(&map_bh))
2265 			is_mapped_to_disk = 0;
2266 		if (buffer_new(&map_bh))
2267 			unmap_underlying_metadata(map_bh.b_bdev,
2268 							map_bh.b_blocknr);
2269 		if (PageUptodate(page))
2270 			continue;
2271 		if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2272 			kaddr = kmap_atomic(page, KM_USER0);
2273 			if (block_start < from)
2274 				memset(kaddr+block_start, 0, from-block_start);
2275 			if (block_end > to)
2276 				memset(kaddr + to, 0, block_end - to);
2277 			flush_dcache_page(page);
2278 			kunmap_atomic(kaddr, KM_USER0);
2279 			continue;
2280 		}
2281 		if (buffer_uptodate(&map_bh))
2282 			continue;	/* reiserfs does this */
2283 		if (block_start < from || block_end > to) {
2284 			struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2285 
2286 			if (!bh) {
2287 				ret = -ENOMEM;
2288 				goto failed;
2289 			}
2290 			bh->b_state = map_bh.b_state;
2291 			atomic_set(&bh->b_count, 0);
2292 			bh->b_this_page = NULL;
2293 			bh->b_page = page;
2294 			bh->b_blocknr = map_bh.b_blocknr;
2295 			bh->b_size = blocksize;
2296 			bh->b_data = (char *)(long)block_start;
2297 			bh->b_bdev = map_bh.b_bdev;
2298 			bh->b_private = NULL;
2299 			read_bh[nr_reads++] = bh;
2300 		}
2301 	}
2302 
2303 	if (nr_reads) {
2304 		struct buffer_head *bh;
2305 
2306 		/*
2307 		 * The page is locked, so these buffers are protected from
2308 		 * any VM or truncate activity.  Hence we don't need to care
2309 		 * for the buffer_head refcounts.
2310 		 */
2311 		for (i = 0; i < nr_reads; i++) {
2312 			bh = read_bh[i];
2313 			lock_buffer(bh);
2314 			bh->b_end_io = end_buffer_read_nobh;
2315 			submit_bh(READ, bh);
2316 		}
2317 		for (i = 0; i < nr_reads; i++) {
2318 			bh = read_bh[i];
2319 			wait_on_buffer(bh);
2320 			if (!buffer_uptodate(bh))
2321 				ret = -EIO;
2322 			free_buffer_head(bh);
2323 			read_bh[i] = NULL;
2324 		}
2325 		if (ret)
2326 			goto failed;
2327 	}
2328 
2329 	if (is_mapped_to_disk)
2330 		SetPageMappedToDisk(page);
2331 
2332 	return 0;
2333 
2334 failed:
2335 	for (i = 0; i < nr_reads; i++) {
2336 		if (read_bh[i])
2337 			free_buffer_head(read_bh[i]);
2338 	}
2339 
2340 	/*
2341 	 * Error recovery is pretty slack.  Clear the page and mark it dirty
2342 	 * so we'll later zero out any blocks which _were_ allocated.
2343 	 */
2344 	kaddr = kmap_atomic(page, KM_USER0);
2345 	memset(kaddr, 0, PAGE_CACHE_SIZE);
2346 	flush_dcache_page(page);
2347 	kunmap_atomic(kaddr, KM_USER0);
2348 	SetPageUptodate(page);
2349 	set_page_dirty(page);
2350 	return ret;
2351 }
2352 EXPORT_SYMBOL(nobh_prepare_write);
2353 
2354 /*
2355  * Make sure any changes to nobh_commit_write() are reflected in
2356  * nobh_truncate_page(), since it doesn't call commit_write().
2357  */
2358 int nobh_commit_write(struct file *file, struct page *page,
2359 		unsigned from, unsigned to)
2360 {
2361 	struct inode *inode = page->mapping->host;
2362 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2363 
2364 	SetPageUptodate(page);
2365 	set_page_dirty(page);
2366 	if (pos > inode->i_size) {
2367 		i_size_write(inode, pos);
2368 		mark_inode_dirty(inode);
2369 	}
2370 	return 0;
2371 }
2372 EXPORT_SYMBOL(nobh_commit_write);
2373 
2374 /*
2375  * nobh_writepage() - based on block_full_write_page() except
2376  * that it tries to operate without attaching bufferheads to
2377  * the page.
2378  */
2379 int nobh_writepage(struct page *page, get_block_t *get_block,
2380 			struct writeback_control *wbc)
2381 {
2382 	struct inode * const inode = page->mapping->host;
2383 	loff_t i_size = i_size_read(inode);
2384 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2385 	unsigned offset;
2386 	void *kaddr;
2387 	int ret;
2388 
2389 	/* Is the page fully inside i_size? */
2390 	if (page->index < end_index)
2391 		goto out;
2392 
2393 	/* Is the page fully outside i_size? (truncate in progress) */
2394 	offset = i_size & (PAGE_CACHE_SIZE-1);
2395 	if (page->index >= end_index+1 || !offset) {
2396 		/*
2397 		 * The page may have dirty, unmapped buffers.  For example,
2398 		 * they may have been added in ext3_writepage().  Make them
2399 		 * freeable here, so the page does not leak.
2400 		 */
2401 #if 0
2402 		/* Not really sure about this  - do we need this ? */
2403 		if (page->mapping->a_ops->invalidatepage)
2404 			page->mapping->a_ops->invalidatepage(page, offset);
2405 #endif
2406 		unlock_page(page);
2407 		return 0; /* don't care */
2408 	}
2409 
2410 	/*
2411 	 * The page straddles i_size.  It must be zeroed out on each and every
2412 	 * writepage invocation because it may be mmapped.  "A file is mapped
2413 	 * in multiples of the page size.  For a file that is not a multiple of
2414 	 * the  page size, the remaining memory is zeroed when mapped, and
2415 	 * writes to that region are not written out to the file."
2416 	 */
2417 	kaddr = kmap_atomic(page, KM_USER0);
2418 	memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2419 	flush_dcache_page(page);
2420 	kunmap_atomic(kaddr, KM_USER0);
2421 out:
2422 	ret = mpage_writepage(page, get_block, wbc);
2423 	if (ret == -EAGAIN)
2424 		ret = __block_write_full_page(inode, page, get_block, wbc);
2425 	return ret;
2426 }
2427 EXPORT_SYMBOL(nobh_writepage);
2428 
2429 /*
2430  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2431  */
2432 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2433 {
2434 	struct inode *inode = mapping->host;
2435 	unsigned blocksize = 1 << inode->i_blkbits;
2436 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2437 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2438 	unsigned to;
2439 	struct page *page;
2440 	const struct address_space_operations *a_ops = mapping->a_ops;
2441 	char *kaddr;
2442 	int ret = 0;
2443 
2444 	if ((offset & (blocksize - 1)) == 0)
2445 		goto out;
2446 
2447 	ret = -ENOMEM;
2448 	page = grab_cache_page(mapping, index);
2449 	if (!page)
2450 		goto out;
2451 
2452 	to = (offset + blocksize) & ~(blocksize - 1);
2453 	ret = a_ops->prepare_write(NULL, page, offset, to);
2454 	if (ret == 0) {
2455 		kaddr = kmap_atomic(page, KM_USER0);
2456 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2457 		flush_dcache_page(page);
2458 		kunmap_atomic(kaddr, KM_USER0);
2459 		/*
2460 		 * It would be more correct to call aops->commit_write()
2461 		 * here, but this is more efficient.
2462 		 */
2463 		SetPageUptodate(page);
2464 		set_page_dirty(page);
2465 	}
2466 	unlock_page(page);
2467 	page_cache_release(page);
2468 out:
2469 	return ret;
2470 }
2471 EXPORT_SYMBOL(nobh_truncate_page);
2472 
2473 int block_truncate_page(struct address_space *mapping,
2474 			loff_t from, get_block_t *get_block)
2475 {
2476 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2477 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2478 	unsigned blocksize;
2479 	sector_t iblock;
2480 	unsigned length, pos;
2481 	struct inode *inode = mapping->host;
2482 	struct page *page;
2483 	struct buffer_head *bh;
2484 	void *kaddr;
2485 	int err;
2486 
2487 	blocksize = 1 << inode->i_blkbits;
2488 	length = offset & (blocksize - 1);
2489 
2490 	/* Block boundary? Nothing to do */
2491 	if (!length)
2492 		return 0;
2493 
2494 	length = blocksize - length;
2495 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2496 
2497 	page = grab_cache_page(mapping, index);
2498 	err = -ENOMEM;
2499 	if (!page)
2500 		goto out;
2501 
2502 	if (!page_has_buffers(page))
2503 		create_empty_buffers(page, blocksize, 0);
2504 
2505 	/* Find the buffer that contains "offset" */
2506 	bh = page_buffers(page);
2507 	pos = blocksize;
2508 	while (offset >= pos) {
2509 		bh = bh->b_this_page;
2510 		iblock++;
2511 		pos += blocksize;
2512 	}
2513 
2514 	err = 0;
2515 	if (!buffer_mapped(bh)) {
2516 		WARN_ON(bh->b_size != blocksize);
2517 		err = get_block(inode, iblock, bh, 0);
2518 		if (err)
2519 			goto unlock;
2520 		/* unmapped? It's a hole - nothing to do */
2521 		if (!buffer_mapped(bh))
2522 			goto unlock;
2523 	}
2524 
2525 	/* Ok, it's mapped. Make sure it's up-to-date */
2526 	if (PageUptodate(page))
2527 		set_buffer_uptodate(bh);
2528 
2529 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2530 		err = -EIO;
2531 		ll_rw_block(READ, 1, &bh);
2532 		wait_on_buffer(bh);
2533 		/* Uhhuh. Read error. Complain and punt. */
2534 		if (!buffer_uptodate(bh))
2535 			goto unlock;
2536 	}
2537 
2538 	kaddr = kmap_atomic(page, KM_USER0);
2539 	memset(kaddr + offset, 0, length);
2540 	flush_dcache_page(page);
2541 	kunmap_atomic(kaddr, KM_USER0);
2542 
2543 	mark_buffer_dirty(bh);
2544 	err = 0;
2545 
2546 unlock:
2547 	unlock_page(page);
2548 	page_cache_release(page);
2549 out:
2550 	return err;
2551 }
2552 
2553 /*
2554  * The generic ->writepage function for buffer-backed address_spaces
2555  */
2556 int block_write_full_page(struct page *page, get_block_t *get_block,
2557 			struct writeback_control *wbc)
2558 {
2559 	struct inode * const inode = page->mapping->host;
2560 	loff_t i_size = i_size_read(inode);
2561 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2562 	unsigned offset;
2563 	void *kaddr;
2564 
2565 	/* Is the page fully inside i_size? */
2566 	if (page->index < end_index)
2567 		return __block_write_full_page(inode, page, get_block, wbc);
2568 
2569 	/* Is the page fully outside i_size? (truncate in progress) */
2570 	offset = i_size & (PAGE_CACHE_SIZE-1);
2571 	if (page->index >= end_index+1 || !offset) {
2572 		/*
2573 		 * The page may have dirty, unmapped buffers.  For example,
2574 		 * they may have been added in ext3_writepage().  Make them
2575 		 * freeable here, so the page does not leak.
2576 		 */
2577 		do_invalidatepage(page, 0);
2578 		unlock_page(page);
2579 		return 0; /* don't care */
2580 	}
2581 
2582 	/*
2583 	 * The page straddles i_size.  It must be zeroed out on each and every
2584 	 * writepage invokation because it may be mmapped.  "A file is mapped
2585 	 * in multiples of the page size.  For a file that is not a multiple of
2586 	 * the  page size, the remaining memory is zeroed when mapped, and
2587 	 * writes to that region are not written out to the file."
2588 	 */
2589 	kaddr = kmap_atomic(page, KM_USER0);
2590 	memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2591 	flush_dcache_page(page);
2592 	kunmap_atomic(kaddr, KM_USER0);
2593 	return __block_write_full_page(inode, page, get_block, wbc);
2594 }
2595 
2596 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2597 			    get_block_t *get_block)
2598 {
2599 	struct buffer_head tmp;
2600 	struct inode *inode = mapping->host;
2601 	tmp.b_state = 0;
2602 	tmp.b_blocknr = 0;
2603 	tmp.b_size = 1 << inode->i_blkbits;
2604 	get_block(inode, block, &tmp, 0);
2605 	return tmp.b_blocknr;
2606 }
2607 
2608 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2609 {
2610 	struct buffer_head *bh = bio->bi_private;
2611 
2612 	if (bio->bi_size)
2613 		return 1;
2614 
2615 	if (err == -EOPNOTSUPP) {
2616 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2617 		set_bit(BH_Eopnotsupp, &bh->b_state);
2618 	}
2619 
2620 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2621 	bio_put(bio);
2622 	return 0;
2623 }
2624 
2625 int submit_bh(int rw, struct buffer_head * bh)
2626 {
2627 	struct bio *bio;
2628 	int ret = 0;
2629 
2630 	BUG_ON(!buffer_locked(bh));
2631 	BUG_ON(!buffer_mapped(bh));
2632 	BUG_ON(!bh->b_end_io);
2633 
2634 	if (buffer_ordered(bh) && (rw == WRITE))
2635 		rw = WRITE_BARRIER;
2636 
2637 	/*
2638 	 * Only clear out a write error when rewriting, should this
2639 	 * include WRITE_SYNC as well?
2640 	 */
2641 	if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2642 		clear_buffer_write_io_error(bh);
2643 
2644 	/*
2645 	 * from here on down, it's all bio -- do the initial mapping,
2646 	 * submit_bio -> generic_make_request may further map this bio around
2647 	 */
2648 	bio = bio_alloc(GFP_NOIO, 1);
2649 
2650 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2651 	bio->bi_bdev = bh->b_bdev;
2652 	bio->bi_io_vec[0].bv_page = bh->b_page;
2653 	bio->bi_io_vec[0].bv_len = bh->b_size;
2654 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2655 
2656 	bio->bi_vcnt = 1;
2657 	bio->bi_idx = 0;
2658 	bio->bi_size = bh->b_size;
2659 
2660 	bio->bi_end_io = end_bio_bh_io_sync;
2661 	bio->bi_private = bh;
2662 
2663 	bio_get(bio);
2664 	submit_bio(rw, bio);
2665 
2666 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2667 		ret = -EOPNOTSUPP;
2668 
2669 	bio_put(bio);
2670 	return ret;
2671 }
2672 
2673 /**
2674  * ll_rw_block: low-level access to block devices (DEPRECATED)
2675  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2676  * @nr: number of &struct buffer_heads in the array
2677  * @bhs: array of pointers to &struct buffer_head
2678  *
2679  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2680  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2681  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2682  * are sent to disk. The fourth %READA option is described in the documentation
2683  * for generic_make_request() which ll_rw_block() calls.
2684  *
2685  * This function drops any buffer that it cannot get a lock on (with the
2686  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2687  * clean when doing a write request, and any buffer that appears to be
2688  * up-to-date when doing read request.  Further it marks as clean buffers that
2689  * are processed for writing (the buffer cache won't assume that they are
2690  * actually clean until the buffer gets unlocked).
2691  *
2692  * ll_rw_block sets b_end_io to simple completion handler that marks
2693  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2694  * any waiters.
2695  *
2696  * All of the buffers must be for the same device, and must also be a
2697  * multiple of the current approved size for the device.
2698  */
2699 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2700 {
2701 	int i;
2702 
2703 	for (i = 0; i < nr; i++) {
2704 		struct buffer_head *bh = bhs[i];
2705 
2706 		if (rw == SWRITE)
2707 			lock_buffer(bh);
2708 		else if (test_set_buffer_locked(bh))
2709 			continue;
2710 
2711 		if (rw == WRITE || rw == SWRITE) {
2712 			if (test_clear_buffer_dirty(bh)) {
2713 				bh->b_end_io = end_buffer_write_sync;
2714 				get_bh(bh);
2715 				submit_bh(WRITE, bh);
2716 				continue;
2717 			}
2718 		} else {
2719 			if (!buffer_uptodate(bh)) {
2720 				bh->b_end_io = end_buffer_read_sync;
2721 				get_bh(bh);
2722 				submit_bh(rw, bh);
2723 				continue;
2724 			}
2725 		}
2726 		unlock_buffer(bh);
2727 	}
2728 }
2729 
2730 /*
2731  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2732  * and then start new I/O and then wait upon it.  The caller must have a ref on
2733  * the buffer_head.
2734  */
2735 int sync_dirty_buffer(struct buffer_head *bh)
2736 {
2737 	int ret = 0;
2738 
2739 	WARN_ON(atomic_read(&bh->b_count) < 1);
2740 	lock_buffer(bh);
2741 	if (test_clear_buffer_dirty(bh)) {
2742 		get_bh(bh);
2743 		bh->b_end_io = end_buffer_write_sync;
2744 		ret = submit_bh(WRITE, bh);
2745 		wait_on_buffer(bh);
2746 		if (buffer_eopnotsupp(bh)) {
2747 			clear_buffer_eopnotsupp(bh);
2748 			ret = -EOPNOTSUPP;
2749 		}
2750 		if (!ret && !buffer_uptodate(bh))
2751 			ret = -EIO;
2752 	} else {
2753 		unlock_buffer(bh);
2754 	}
2755 	return ret;
2756 }
2757 
2758 /*
2759  * try_to_free_buffers() checks if all the buffers on this particular page
2760  * are unused, and releases them if so.
2761  *
2762  * Exclusion against try_to_free_buffers may be obtained by either
2763  * locking the page or by holding its mapping's private_lock.
2764  *
2765  * If the page is dirty but all the buffers are clean then we need to
2766  * be sure to mark the page clean as well.  This is because the page
2767  * may be against a block device, and a later reattachment of buffers
2768  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2769  * filesystem data on the same device.
2770  *
2771  * The same applies to regular filesystem pages: if all the buffers are
2772  * clean then we set the page clean and proceed.  To do that, we require
2773  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2774  * private_lock.
2775  *
2776  * try_to_free_buffers() is non-blocking.
2777  */
2778 static inline int buffer_busy(struct buffer_head *bh)
2779 {
2780 	return atomic_read(&bh->b_count) |
2781 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2782 }
2783 
2784 static int
2785 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2786 {
2787 	struct buffer_head *head = page_buffers(page);
2788 	struct buffer_head *bh;
2789 
2790 	bh = head;
2791 	do {
2792 		if (buffer_write_io_error(bh) && page->mapping)
2793 			set_bit(AS_EIO, &page->mapping->flags);
2794 		if (buffer_busy(bh))
2795 			goto failed;
2796 		bh = bh->b_this_page;
2797 	} while (bh != head);
2798 
2799 	do {
2800 		struct buffer_head *next = bh->b_this_page;
2801 
2802 		if (!list_empty(&bh->b_assoc_buffers))
2803 			__remove_assoc_queue(bh);
2804 		bh = next;
2805 	} while (bh != head);
2806 	*buffers_to_free = head;
2807 	__clear_page_buffers(page);
2808 	return 1;
2809 failed:
2810 	return 0;
2811 }
2812 
2813 int try_to_free_buffers(struct page *page)
2814 {
2815 	struct address_space * const mapping = page->mapping;
2816 	struct buffer_head *buffers_to_free = NULL;
2817 	int ret = 0;
2818 
2819 	BUG_ON(!PageLocked(page));
2820 	if (PageWriteback(page))
2821 		return 0;
2822 
2823 	if (mapping == NULL) {		/* can this still happen? */
2824 		ret = drop_buffers(page, &buffers_to_free);
2825 		goto out;
2826 	}
2827 
2828 	spin_lock(&mapping->private_lock);
2829 	ret = drop_buffers(page, &buffers_to_free);
2830 
2831 	/*
2832 	 * If the filesystem writes its buffers by hand (eg ext3)
2833 	 * then we can have clean buffers against a dirty page.  We
2834 	 * clean the page here; otherwise the VM will never notice
2835 	 * that the filesystem did any IO at all.
2836 	 *
2837 	 * Also, during truncate, discard_buffer will have marked all
2838 	 * the page's buffers clean.  We discover that here and clean
2839 	 * the page also.
2840 	 *
2841 	 * private_lock must be held over this entire operation in order
2842 	 * to synchronise against __set_page_dirty_buffers and prevent the
2843 	 * dirty bit from being lost.
2844 	 */
2845 	if (ret)
2846 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
2847 	spin_unlock(&mapping->private_lock);
2848 out:
2849 	if (buffers_to_free) {
2850 		struct buffer_head *bh = buffers_to_free;
2851 
2852 		do {
2853 			struct buffer_head *next = bh->b_this_page;
2854 			free_buffer_head(bh);
2855 			bh = next;
2856 		} while (bh != buffers_to_free);
2857 	}
2858 	return ret;
2859 }
2860 EXPORT_SYMBOL(try_to_free_buffers);
2861 
2862 void block_sync_page(struct page *page)
2863 {
2864 	struct address_space *mapping;
2865 
2866 	smp_mb();
2867 	mapping = page_mapping(page);
2868 	if (mapping)
2869 		blk_run_backing_dev(mapping->backing_dev_info, page);
2870 }
2871 
2872 /*
2873  * There are no bdflush tunables left.  But distributions are
2874  * still running obsolete flush daemons, so we terminate them here.
2875  *
2876  * Use of bdflush() is deprecated and will be removed in a future kernel.
2877  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2878  */
2879 asmlinkage long sys_bdflush(int func, long data)
2880 {
2881 	static int msg_count;
2882 
2883 	if (!capable(CAP_SYS_ADMIN))
2884 		return -EPERM;
2885 
2886 	if (msg_count < 5) {
2887 		msg_count++;
2888 		printk(KERN_INFO
2889 			"warning: process `%s' used the obsolete bdflush"
2890 			" system call\n", current->comm);
2891 		printk(KERN_INFO "Fix your initscripts?\n");
2892 	}
2893 
2894 	if (func == 1)
2895 		do_exit(0);
2896 	return 0;
2897 }
2898 
2899 /*
2900  * Buffer-head allocation
2901  */
2902 static struct kmem_cache *bh_cachep;
2903 
2904 /*
2905  * Once the number of bh's in the machine exceeds this level, we start
2906  * stripping them in writeback.
2907  */
2908 static int max_buffer_heads;
2909 
2910 int buffer_heads_over_limit;
2911 
2912 struct bh_accounting {
2913 	int nr;			/* Number of live bh's */
2914 	int ratelimit;		/* Limit cacheline bouncing */
2915 };
2916 
2917 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2918 
2919 static void recalc_bh_state(void)
2920 {
2921 	int i;
2922 	int tot = 0;
2923 
2924 	if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
2925 		return;
2926 	__get_cpu_var(bh_accounting).ratelimit = 0;
2927 	for_each_online_cpu(i)
2928 		tot += per_cpu(bh_accounting, i).nr;
2929 	buffer_heads_over_limit = (tot > max_buffer_heads);
2930 }
2931 
2932 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2933 {
2934 	struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
2935 	if (ret) {
2936 		get_cpu_var(bh_accounting).nr++;
2937 		recalc_bh_state();
2938 		put_cpu_var(bh_accounting);
2939 	}
2940 	return ret;
2941 }
2942 EXPORT_SYMBOL(alloc_buffer_head);
2943 
2944 void free_buffer_head(struct buffer_head *bh)
2945 {
2946 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
2947 	kmem_cache_free(bh_cachep, bh);
2948 	get_cpu_var(bh_accounting).nr--;
2949 	recalc_bh_state();
2950 	put_cpu_var(bh_accounting);
2951 }
2952 EXPORT_SYMBOL(free_buffer_head);
2953 
2954 static void
2955 init_buffer_head(void *data, struct kmem_cache *cachep, unsigned long flags)
2956 {
2957 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2958 			    SLAB_CTOR_CONSTRUCTOR) {
2959 		struct buffer_head * bh = (struct buffer_head *)data;
2960 
2961 		memset(bh, 0, sizeof(*bh));
2962 		INIT_LIST_HEAD(&bh->b_assoc_buffers);
2963 	}
2964 }
2965 
2966 static void buffer_exit_cpu(int cpu)
2967 {
2968 	int i;
2969 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2970 
2971 	for (i = 0; i < BH_LRU_SIZE; i++) {
2972 		brelse(b->bhs[i]);
2973 		b->bhs[i] = NULL;
2974 	}
2975 	get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
2976 	per_cpu(bh_accounting, cpu).nr = 0;
2977 	put_cpu_var(bh_accounting);
2978 }
2979 
2980 static int buffer_cpu_notify(struct notifier_block *self,
2981 			      unsigned long action, void *hcpu)
2982 {
2983 	if (action == CPU_DEAD)
2984 		buffer_exit_cpu((unsigned long)hcpu);
2985 	return NOTIFY_OK;
2986 }
2987 
2988 void __init buffer_init(void)
2989 {
2990 	int nrpages;
2991 
2992 	bh_cachep = kmem_cache_create("buffer_head",
2993 					sizeof(struct buffer_head), 0,
2994 					(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2995 					SLAB_MEM_SPREAD),
2996 					init_buffer_head,
2997 					NULL);
2998 
2999 	/*
3000 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3001 	 */
3002 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3003 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3004 	hotcpu_notifier(buffer_cpu_notify, 0);
3005 }
3006 
3007 EXPORT_SYMBOL(__bforget);
3008 EXPORT_SYMBOL(__brelse);
3009 EXPORT_SYMBOL(__wait_on_buffer);
3010 EXPORT_SYMBOL(block_commit_write);
3011 EXPORT_SYMBOL(block_prepare_write);
3012 EXPORT_SYMBOL(block_read_full_page);
3013 EXPORT_SYMBOL(block_sync_page);
3014 EXPORT_SYMBOL(block_truncate_page);
3015 EXPORT_SYMBOL(block_write_full_page);
3016 EXPORT_SYMBOL(cont_prepare_write);
3017 EXPORT_SYMBOL(end_buffer_read_sync);
3018 EXPORT_SYMBOL(end_buffer_write_sync);
3019 EXPORT_SYMBOL(file_fsync);
3020 EXPORT_SYMBOL(fsync_bdev);
3021 EXPORT_SYMBOL(generic_block_bmap);
3022 EXPORT_SYMBOL(generic_commit_write);
3023 EXPORT_SYMBOL(generic_cont_expand);
3024 EXPORT_SYMBOL(generic_cont_expand_simple);
3025 EXPORT_SYMBOL(init_buffer);
3026 EXPORT_SYMBOL(invalidate_bdev);
3027 EXPORT_SYMBOL(ll_rw_block);
3028 EXPORT_SYMBOL(mark_buffer_dirty);
3029 EXPORT_SYMBOL(submit_bh);
3030 EXPORT_SYMBOL(sync_dirty_buffer);
3031 EXPORT_SYMBOL(unlock_buffer);
3032