1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/smp_lock.h> 28 #include <linux/capability.h> 29 #include <linux/blkdev.h> 30 #include <linux/file.h> 31 #include <linux/quotaops.h> 32 #include <linux/highmem.h> 33 #include <linux/module.h> 34 #include <linux/writeback.h> 35 #include <linux/hash.h> 36 #include <linux/suspend.h> 37 #include <linux/buffer_head.h> 38 #include <linux/task_io_accounting_ops.h> 39 #include <linux/bio.h> 40 #include <linux/notifier.h> 41 #include <linux/cpu.h> 42 #include <linux/bitops.h> 43 #include <linux/mpage.h> 44 #include <linux/bit_spinlock.h> 45 46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 47 static void invalidate_bh_lrus(void); 48 49 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 50 51 inline void 52 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 53 { 54 bh->b_end_io = handler; 55 bh->b_private = private; 56 } 57 58 static int sync_buffer(void *word) 59 { 60 struct block_device *bd; 61 struct buffer_head *bh 62 = container_of(word, struct buffer_head, b_state); 63 64 smp_mb(); 65 bd = bh->b_bdev; 66 if (bd) 67 blk_run_address_space(bd->bd_inode->i_mapping); 68 io_schedule(); 69 return 0; 70 } 71 72 void fastcall __lock_buffer(struct buffer_head *bh) 73 { 74 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer, 75 TASK_UNINTERRUPTIBLE); 76 } 77 EXPORT_SYMBOL(__lock_buffer); 78 79 void fastcall unlock_buffer(struct buffer_head *bh) 80 { 81 smp_mb__before_clear_bit(); 82 clear_buffer_locked(bh); 83 smp_mb__after_clear_bit(); 84 wake_up_bit(&bh->b_state, BH_Lock); 85 } 86 87 /* 88 * Block until a buffer comes unlocked. This doesn't stop it 89 * from becoming locked again - you have to lock it yourself 90 * if you want to preserve its state. 91 */ 92 void __wait_on_buffer(struct buffer_head * bh) 93 { 94 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE); 95 } 96 97 static void 98 __clear_page_buffers(struct page *page) 99 { 100 ClearPagePrivate(page); 101 set_page_private(page, 0); 102 page_cache_release(page); 103 } 104 105 static void buffer_io_error(struct buffer_head *bh) 106 { 107 char b[BDEVNAME_SIZE]; 108 109 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 110 bdevname(bh->b_bdev, b), 111 (unsigned long long)bh->b_blocknr); 112 } 113 114 /* 115 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 116 * unlock the buffer. This is what ll_rw_block uses too. 117 */ 118 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 119 { 120 if (uptodate) { 121 set_buffer_uptodate(bh); 122 } else { 123 /* This happens, due to failed READA attempts. */ 124 clear_buffer_uptodate(bh); 125 } 126 unlock_buffer(bh); 127 put_bh(bh); 128 } 129 130 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 131 { 132 char b[BDEVNAME_SIZE]; 133 134 if (uptodate) { 135 set_buffer_uptodate(bh); 136 } else { 137 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { 138 buffer_io_error(bh); 139 printk(KERN_WARNING "lost page write due to " 140 "I/O error on %s\n", 141 bdevname(bh->b_bdev, b)); 142 } 143 set_buffer_write_io_error(bh); 144 clear_buffer_uptodate(bh); 145 } 146 unlock_buffer(bh); 147 put_bh(bh); 148 } 149 150 /* 151 * Write out and wait upon all the dirty data associated with a block 152 * device via its mapping. Does not take the superblock lock. 153 */ 154 int sync_blockdev(struct block_device *bdev) 155 { 156 int ret = 0; 157 158 if (bdev) 159 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping); 160 return ret; 161 } 162 EXPORT_SYMBOL(sync_blockdev); 163 164 /* 165 * Write out and wait upon all dirty data associated with this 166 * device. Filesystem data as well as the underlying block 167 * device. Takes the superblock lock. 168 */ 169 int fsync_bdev(struct block_device *bdev) 170 { 171 struct super_block *sb = get_super(bdev); 172 if (sb) { 173 int res = fsync_super(sb); 174 drop_super(sb); 175 return res; 176 } 177 return sync_blockdev(bdev); 178 } 179 180 /** 181 * freeze_bdev -- lock a filesystem and force it into a consistent state 182 * @bdev: blockdevice to lock 183 * 184 * This takes the block device bd_mount_sem to make sure no new mounts 185 * happen on bdev until thaw_bdev() is called. 186 * If a superblock is found on this device, we take the s_umount semaphore 187 * on it to make sure nobody unmounts until the snapshot creation is done. 188 */ 189 struct super_block *freeze_bdev(struct block_device *bdev) 190 { 191 struct super_block *sb; 192 193 down(&bdev->bd_mount_sem); 194 sb = get_super(bdev); 195 if (sb && !(sb->s_flags & MS_RDONLY)) { 196 sb->s_frozen = SB_FREEZE_WRITE; 197 smp_wmb(); 198 199 __fsync_super(sb); 200 201 sb->s_frozen = SB_FREEZE_TRANS; 202 smp_wmb(); 203 204 sync_blockdev(sb->s_bdev); 205 206 if (sb->s_op->write_super_lockfs) 207 sb->s_op->write_super_lockfs(sb); 208 } 209 210 sync_blockdev(bdev); 211 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */ 212 } 213 EXPORT_SYMBOL(freeze_bdev); 214 215 /** 216 * thaw_bdev -- unlock filesystem 217 * @bdev: blockdevice to unlock 218 * @sb: associated superblock 219 * 220 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 221 */ 222 void thaw_bdev(struct block_device *bdev, struct super_block *sb) 223 { 224 if (sb) { 225 BUG_ON(sb->s_bdev != bdev); 226 227 if (sb->s_op->unlockfs) 228 sb->s_op->unlockfs(sb); 229 sb->s_frozen = SB_UNFROZEN; 230 smp_wmb(); 231 wake_up(&sb->s_wait_unfrozen); 232 drop_super(sb); 233 } 234 235 up(&bdev->bd_mount_sem); 236 } 237 EXPORT_SYMBOL(thaw_bdev); 238 239 /* 240 * Various filesystems appear to want __find_get_block to be non-blocking. 241 * But it's the page lock which protects the buffers. To get around this, 242 * we get exclusion from try_to_free_buffers with the blockdev mapping's 243 * private_lock. 244 * 245 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 246 * may be quite high. This code could TryLock the page, and if that 247 * succeeds, there is no need to take private_lock. (But if 248 * private_lock is contended then so is mapping->tree_lock). 249 */ 250 static struct buffer_head * 251 __find_get_block_slow(struct block_device *bdev, sector_t block) 252 { 253 struct inode *bd_inode = bdev->bd_inode; 254 struct address_space *bd_mapping = bd_inode->i_mapping; 255 struct buffer_head *ret = NULL; 256 pgoff_t index; 257 struct buffer_head *bh; 258 struct buffer_head *head; 259 struct page *page; 260 int all_mapped = 1; 261 262 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 263 page = find_get_page(bd_mapping, index); 264 if (!page) 265 goto out; 266 267 spin_lock(&bd_mapping->private_lock); 268 if (!page_has_buffers(page)) 269 goto out_unlock; 270 head = page_buffers(page); 271 bh = head; 272 do { 273 if (bh->b_blocknr == block) { 274 ret = bh; 275 get_bh(bh); 276 goto out_unlock; 277 } 278 if (!buffer_mapped(bh)) 279 all_mapped = 0; 280 bh = bh->b_this_page; 281 } while (bh != head); 282 283 /* we might be here because some of the buffers on this page are 284 * not mapped. This is due to various races between 285 * file io on the block device and getblk. It gets dealt with 286 * elsewhere, don't buffer_error if we had some unmapped buffers 287 */ 288 if (all_mapped) { 289 printk("__find_get_block_slow() failed. " 290 "block=%llu, b_blocknr=%llu\n", 291 (unsigned long long)block, 292 (unsigned long long)bh->b_blocknr); 293 printk("b_state=0x%08lx, b_size=%zu\n", 294 bh->b_state, bh->b_size); 295 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits); 296 } 297 out_unlock: 298 spin_unlock(&bd_mapping->private_lock); 299 page_cache_release(page); 300 out: 301 return ret; 302 } 303 304 /* If invalidate_buffers() will trash dirty buffers, it means some kind 305 of fs corruption is going on. Trashing dirty data always imply losing 306 information that was supposed to be just stored on the physical layer 307 by the user. 308 309 Thus invalidate_buffers in general usage is not allwowed to trash 310 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to 311 be preserved. These buffers are simply skipped. 312 313 We also skip buffers which are still in use. For example this can 314 happen if a userspace program is reading the block device. 315 316 NOTE: In the case where the user removed a removable-media-disk even if 317 there's still dirty data not synced on disk (due a bug in the device driver 318 or due an error of the user), by not destroying the dirty buffers we could 319 generate corruption also on the next media inserted, thus a parameter is 320 necessary to handle this case in the most safe way possible (trying 321 to not corrupt also the new disk inserted with the data belonging to 322 the old now corrupted disk). Also for the ramdisk the natural thing 323 to do in order to release the ramdisk memory is to destroy dirty buffers. 324 325 These are two special cases. Normal usage imply the device driver 326 to issue a sync on the device (without waiting I/O completion) and 327 then an invalidate_buffers call that doesn't trash dirty buffers. 328 329 For handling cache coherency with the blkdev pagecache the 'update' case 330 is been introduced. It is needed to re-read from disk any pinned 331 buffer. NOTE: re-reading from disk is destructive so we can do it only 332 when we assume nobody is changing the buffercache under our I/O and when 333 we think the disk contains more recent information than the buffercache. 334 The update == 1 pass marks the buffers we need to update, the update == 2 335 pass does the actual I/O. */ 336 void invalidate_bdev(struct block_device *bdev) 337 { 338 struct address_space *mapping = bdev->bd_inode->i_mapping; 339 340 if (mapping->nrpages == 0) 341 return; 342 343 invalidate_bh_lrus(); 344 invalidate_mapping_pages(mapping, 0, -1); 345 } 346 347 /* 348 * Kick pdflush then try to free up some ZONE_NORMAL memory. 349 */ 350 static void free_more_memory(void) 351 { 352 struct zone **zones; 353 pg_data_t *pgdat; 354 355 wakeup_pdflush(1024); 356 yield(); 357 358 for_each_online_pgdat(pgdat) { 359 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones; 360 if (*zones) 361 try_to_free_pages(zones, GFP_NOFS); 362 } 363 } 364 365 /* 366 * I/O completion handler for block_read_full_page() - pages 367 * which come unlocked at the end of I/O. 368 */ 369 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 370 { 371 unsigned long flags; 372 struct buffer_head *first; 373 struct buffer_head *tmp; 374 struct page *page; 375 int page_uptodate = 1; 376 377 BUG_ON(!buffer_async_read(bh)); 378 379 page = bh->b_page; 380 if (uptodate) { 381 set_buffer_uptodate(bh); 382 } else { 383 clear_buffer_uptodate(bh); 384 if (printk_ratelimit()) 385 buffer_io_error(bh); 386 SetPageError(page); 387 } 388 389 /* 390 * Be _very_ careful from here on. Bad things can happen if 391 * two buffer heads end IO at almost the same time and both 392 * decide that the page is now completely done. 393 */ 394 first = page_buffers(page); 395 local_irq_save(flags); 396 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 397 clear_buffer_async_read(bh); 398 unlock_buffer(bh); 399 tmp = bh; 400 do { 401 if (!buffer_uptodate(tmp)) 402 page_uptodate = 0; 403 if (buffer_async_read(tmp)) { 404 BUG_ON(!buffer_locked(tmp)); 405 goto still_busy; 406 } 407 tmp = tmp->b_this_page; 408 } while (tmp != bh); 409 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 410 local_irq_restore(flags); 411 412 /* 413 * If none of the buffers had errors and they are all 414 * uptodate then we can set the page uptodate. 415 */ 416 if (page_uptodate && !PageError(page)) 417 SetPageUptodate(page); 418 unlock_page(page); 419 return; 420 421 still_busy: 422 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 423 local_irq_restore(flags); 424 return; 425 } 426 427 /* 428 * Completion handler for block_write_full_page() - pages which are unlocked 429 * during I/O, and which have PageWriteback cleared upon I/O completion. 430 */ 431 static void end_buffer_async_write(struct buffer_head *bh, int uptodate) 432 { 433 char b[BDEVNAME_SIZE]; 434 unsigned long flags; 435 struct buffer_head *first; 436 struct buffer_head *tmp; 437 struct page *page; 438 439 BUG_ON(!buffer_async_write(bh)); 440 441 page = bh->b_page; 442 if (uptodate) { 443 set_buffer_uptodate(bh); 444 } else { 445 if (printk_ratelimit()) { 446 buffer_io_error(bh); 447 printk(KERN_WARNING "lost page write due to " 448 "I/O error on %s\n", 449 bdevname(bh->b_bdev, b)); 450 } 451 set_bit(AS_EIO, &page->mapping->flags); 452 set_buffer_write_io_error(bh); 453 clear_buffer_uptodate(bh); 454 SetPageError(page); 455 } 456 457 first = page_buffers(page); 458 local_irq_save(flags); 459 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 460 461 clear_buffer_async_write(bh); 462 unlock_buffer(bh); 463 tmp = bh->b_this_page; 464 while (tmp != bh) { 465 if (buffer_async_write(tmp)) { 466 BUG_ON(!buffer_locked(tmp)); 467 goto still_busy; 468 } 469 tmp = tmp->b_this_page; 470 } 471 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 472 local_irq_restore(flags); 473 end_page_writeback(page); 474 return; 475 476 still_busy: 477 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 478 local_irq_restore(flags); 479 return; 480 } 481 482 /* 483 * If a page's buffers are under async readin (end_buffer_async_read 484 * completion) then there is a possibility that another thread of 485 * control could lock one of the buffers after it has completed 486 * but while some of the other buffers have not completed. This 487 * locked buffer would confuse end_buffer_async_read() into not unlocking 488 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 489 * that this buffer is not under async I/O. 490 * 491 * The page comes unlocked when it has no locked buffer_async buffers 492 * left. 493 * 494 * PageLocked prevents anyone starting new async I/O reads any of 495 * the buffers. 496 * 497 * PageWriteback is used to prevent simultaneous writeout of the same 498 * page. 499 * 500 * PageLocked prevents anyone from starting writeback of a page which is 501 * under read I/O (PageWriteback is only ever set against a locked page). 502 */ 503 static void mark_buffer_async_read(struct buffer_head *bh) 504 { 505 bh->b_end_io = end_buffer_async_read; 506 set_buffer_async_read(bh); 507 } 508 509 void mark_buffer_async_write(struct buffer_head *bh) 510 { 511 bh->b_end_io = end_buffer_async_write; 512 set_buffer_async_write(bh); 513 } 514 EXPORT_SYMBOL(mark_buffer_async_write); 515 516 517 /* 518 * fs/buffer.c contains helper functions for buffer-backed address space's 519 * fsync functions. A common requirement for buffer-based filesystems is 520 * that certain data from the backing blockdev needs to be written out for 521 * a successful fsync(). For example, ext2 indirect blocks need to be 522 * written back and waited upon before fsync() returns. 523 * 524 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 525 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 526 * management of a list of dependent buffers at ->i_mapping->private_list. 527 * 528 * Locking is a little subtle: try_to_free_buffers() will remove buffers 529 * from their controlling inode's queue when they are being freed. But 530 * try_to_free_buffers() will be operating against the *blockdev* mapping 531 * at the time, not against the S_ISREG file which depends on those buffers. 532 * So the locking for private_list is via the private_lock in the address_space 533 * which backs the buffers. Which is different from the address_space 534 * against which the buffers are listed. So for a particular address_space, 535 * mapping->private_lock does *not* protect mapping->private_list! In fact, 536 * mapping->private_list will always be protected by the backing blockdev's 537 * ->private_lock. 538 * 539 * Which introduces a requirement: all buffers on an address_space's 540 * ->private_list must be from the same address_space: the blockdev's. 541 * 542 * address_spaces which do not place buffers at ->private_list via these 543 * utility functions are free to use private_lock and private_list for 544 * whatever they want. The only requirement is that list_empty(private_list) 545 * be true at clear_inode() time. 546 * 547 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 548 * filesystems should do that. invalidate_inode_buffers() should just go 549 * BUG_ON(!list_empty). 550 * 551 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 552 * take an address_space, not an inode. And it should be called 553 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 554 * queued up. 555 * 556 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 557 * list if it is already on a list. Because if the buffer is on a list, 558 * it *must* already be on the right one. If not, the filesystem is being 559 * silly. This will save a ton of locking. But first we have to ensure 560 * that buffers are taken *off* the old inode's list when they are freed 561 * (presumably in truncate). That requires careful auditing of all 562 * filesystems (do it inside bforget()). It could also be done by bringing 563 * b_inode back. 564 */ 565 566 /* 567 * The buffer's backing address_space's private_lock must be held 568 */ 569 static inline void __remove_assoc_queue(struct buffer_head *bh) 570 { 571 list_del_init(&bh->b_assoc_buffers); 572 WARN_ON(!bh->b_assoc_map); 573 if (buffer_write_io_error(bh)) 574 set_bit(AS_EIO, &bh->b_assoc_map->flags); 575 bh->b_assoc_map = NULL; 576 } 577 578 int inode_has_buffers(struct inode *inode) 579 { 580 return !list_empty(&inode->i_data.private_list); 581 } 582 583 /* 584 * osync is designed to support O_SYNC io. It waits synchronously for 585 * all already-submitted IO to complete, but does not queue any new 586 * writes to the disk. 587 * 588 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 589 * you dirty the buffers, and then use osync_inode_buffers to wait for 590 * completion. Any other dirty buffers which are not yet queued for 591 * write will not be flushed to disk by the osync. 592 */ 593 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 594 { 595 struct buffer_head *bh; 596 struct list_head *p; 597 int err = 0; 598 599 spin_lock(lock); 600 repeat: 601 list_for_each_prev(p, list) { 602 bh = BH_ENTRY(p); 603 if (buffer_locked(bh)) { 604 get_bh(bh); 605 spin_unlock(lock); 606 wait_on_buffer(bh); 607 if (!buffer_uptodate(bh)) 608 err = -EIO; 609 brelse(bh); 610 spin_lock(lock); 611 goto repeat; 612 } 613 } 614 spin_unlock(lock); 615 return err; 616 } 617 618 /** 619 * sync_mapping_buffers - write out and wait upon a mapping's "associated" 620 * buffers 621 * @mapping: the mapping which wants those buffers written 622 * 623 * Starts I/O against the buffers at mapping->private_list, and waits upon 624 * that I/O. 625 * 626 * Basically, this is a convenience function for fsync(). 627 * @mapping is a file or directory which needs those buffers to be written for 628 * a successful fsync(). 629 */ 630 int sync_mapping_buffers(struct address_space *mapping) 631 { 632 struct address_space *buffer_mapping = mapping->assoc_mapping; 633 634 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 635 return 0; 636 637 return fsync_buffers_list(&buffer_mapping->private_lock, 638 &mapping->private_list); 639 } 640 EXPORT_SYMBOL(sync_mapping_buffers); 641 642 /* 643 * Called when we've recently written block `bblock', and it is known that 644 * `bblock' was for a buffer_boundary() buffer. This means that the block at 645 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 646 * dirty, schedule it for IO. So that indirects merge nicely with their data. 647 */ 648 void write_boundary_block(struct block_device *bdev, 649 sector_t bblock, unsigned blocksize) 650 { 651 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 652 if (bh) { 653 if (buffer_dirty(bh)) 654 ll_rw_block(WRITE, 1, &bh); 655 put_bh(bh); 656 } 657 } 658 659 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 660 { 661 struct address_space *mapping = inode->i_mapping; 662 struct address_space *buffer_mapping = bh->b_page->mapping; 663 664 mark_buffer_dirty(bh); 665 if (!mapping->assoc_mapping) { 666 mapping->assoc_mapping = buffer_mapping; 667 } else { 668 BUG_ON(mapping->assoc_mapping != buffer_mapping); 669 } 670 if (list_empty(&bh->b_assoc_buffers)) { 671 spin_lock(&buffer_mapping->private_lock); 672 list_move_tail(&bh->b_assoc_buffers, 673 &mapping->private_list); 674 bh->b_assoc_map = mapping; 675 spin_unlock(&buffer_mapping->private_lock); 676 } 677 } 678 EXPORT_SYMBOL(mark_buffer_dirty_inode); 679 680 /* 681 * Add a page to the dirty page list. 682 * 683 * It is a sad fact of life that this function is called from several places 684 * deeply under spinlocking. It may not sleep. 685 * 686 * If the page has buffers, the uptodate buffers are set dirty, to preserve 687 * dirty-state coherency between the page and the buffers. It the page does 688 * not have buffers then when they are later attached they will all be set 689 * dirty. 690 * 691 * The buffers are dirtied before the page is dirtied. There's a small race 692 * window in which a writepage caller may see the page cleanness but not the 693 * buffer dirtiness. That's fine. If this code were to set the page dirty 694 * before the buffers, a concurrent writepage caller could clear the page dirty 695 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 696 * page on the dirty page list. 697 * 698 * We use private_lock to lock against try_to_free_buffers while using the 699 * page's buffer list. Also use this to protect against clean buffers being 700 * added to the page after it was set dirty. 701 * 702 * FIXME: may need to call ->reservepage here as well. That's rather up to the 703 * address_space though. 704 */ 705 int __set_page_dirty_buffers(struct page *page) 706 { 707 struct address_space * const mapping = page_mapping(page); 708 709 if (unlikely(!mapping)) 710 return !TestSetPageDirty(page); 711 712 spin_lock(&mapping->private_lock); 713 if (page_has_buffers(page)) { 714 struct buffer_head *head = page_buffers(page); 715 struct buffer_head *bh = head; 716 717 do { 718 set_buffer_dirty(bh); 719 bh = bh->b_this_page; 720 } while (bh != head); 721 } 722 spin_unlock(&mapping->private_lock); 723 724 if (TestSetPageDirty(page)) 725 return 0; 726 727 write_lock_irq(&mapping->tree_lock); 728 if (page->mapping) { /* Race with truncate? */ 729 if (mapping_cap_account_dirty(mapping)) { 730 __inc_zone_page_state(page, NR_FILE_DIRTY); 731 task_io_account_write(PAGE_CACHE_SIZE); 732 } 733 radix_tree_tag_set(&mapping->page_tree, 734 page_index(page), PAGECACHE_TAG_DIRTY); 735 } 736 write_unlock_irq(&mapping->tree_lock); 737 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 738 return 1; 739 } 740 EXPORT_SYMBOL(__set_page_dirty_buffers); 741 742 /* 743 * Write out and wait upon a list of buffers. 744 * 745 * We have conflicting pressures: we want to make sure that all 746 * initially dirty buffers get waited on, but that any subsequently 747 * dirtied buffers don't. After all, we don't want fsync to last 748 * forever if somebody is actively writing to the file. 749 * 750 * Do this in two main stages: first we copy dirty buffers to a 751 * temporary inode list, queueing the writes as we go. Then we clean 752 * up, waiting for those writes to complete. 753 * 754 * During this second stage, any subsequent updates to the file may end 755 * up refiling the buffer on the original inode's dirty list again, so 756 * there is a chance we will end up with a buffer queued for write but 757 * not yet completed on that list. So, as a final cleanup we go through 758 * the osync code to catch these locked, dirty buffers without requeuing 759 * any newly dirty buffers for write. 760 */ 761 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 762 { 763 struct buffer_head *bh; 764 struct list_head tmp; 765 int err = 0, err2; 766 767 INIT_LIST_HEAD(&tmp); 768 769 spin_lock(lock); 770 while (!list_empty(list)) { 771 bh = BH_ENTRY(list->next); 772 __remove_assoc_queue(bh); 773 if (buffer_dirty(bh) || buffer_locked(bh)) { 774 list_add(&bh->b_assoc_buffers, &tmp); 775 if (buffer_dirty(bh)) { 776 get_bh(bh); 777 spin_unlock(lock); 778 /* 779 * Ensure any pending I/O completes so that 780 * ll_rw_block() actually writes the current 781 * contents - it is a noop if I/O is still in 782 * flight on potentially older contents. 783 */ 784 ll_rw_block(SWRITE, 1, &bh); 785 brelse(bh); 786 spin_lock(lock); 787 } 788 } 789 } 790 791 while (!list_empty(&tmp)) { 792 bh = BH_ENTRY(tmp.prev); 793 list_del_init(&bh->b_assoc_buffers); 794 get_bh(bh); 795 spin_unlock(lock); 796 wait_on_buffer(bh); 797 if (!buffer_uptodate(bh)) 798 err = -EIO; 799 brelse(bh); 800 spin_lock(lock); 801 } 802 803 spin_unlock(lock); 804 err2 = osync_buffers_list(lock, list); 805 if (err) 806 return err; 807 else 808 return err2; 809 } 810 811 /* 812 * Invalidate any and all dirty buffers on a given inode. We are 813 * probably unmounting the fs, but that doesn't mean we have already 814 * done a sync(). Just drop the buffers from the inode list. 815 * 816 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 817 * assumes that all the buffers are against the blockdev. Not true 818 * for reiserfs. 819 */ 820 void invalidate_inode_buffers(struct inode *inode) 821 { 822 if (inode_has_buffers(inode)) { 823 struct address_space *mapping = &inode->i_data; 824 struct list_head *list = &mapping->private_list; 825 struct address_space *buffer_mapping = mapping->assoc_mapping; 826 827 spin_lock(&buffer_mapping->private_lock); 828 while (!list_empty(list)) 829 __remove_assoc_queue(BH_ENTRY(list->next)); 830 spin_unlock(&buffer_mapping->private_lock); 831 } 832 } 833 834 /* 835 * Remove any clean buffers from the inode's buffer list. This is called 836 * when we're trying to free the inode itself. Those buffers can pin it. 837 * 838 * Returns true if all buffers were removed. 839 */ 840 int remove_inode_buffers(struct inode *inode) 841 { 842 int ret = 1; 843 844 if (inode_has_buffers(inode)) { 845 struct address_space *mapping = &inode->i_data; 846 struct list_head *list = &mapping->private_list; 847 struct address_space *buffer_mapping = mapping->assoc_mapping; 848 849 spin_lock(&buffer_mapping->private_lock); 850 while (!list_empty(list)) { 851 struct buffer_head *bh = BH_ENTRY(list->next); 852 if (buffer_dirty(bh)) { 853 ret = 0; 854 break; 855 } 856 __remove_assoc_queue(bh); 857 } 858 spin_unlock(&buffer_mapping->private_lock); 859 } 860 return ret; 861 } 862 863 /* 864 * Create the appropriate buffers when given a page for data area and 865 * the size of each buffer.. Use the bh->b_this_page linked list to 866 * follow the buffers created. Return NULL if unable to create more 867 * buffers. 868 * 869 * The retry flag is used to differentiate async IO (paging, swapping) 870 * which may not fail from ordinary buffer allocations. 871 */ 872 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 873 int retry) 874 { 875 struct buffer_head *bh, *head; 876 long offset; 877 878 try_again: 879 head = NULL; 880 offset = PAGE_SIZE; 881 while ((offset -= size) >= 0) { 882 bh = alloc_buffer_head(GFP_NOFS); 883 if (!bh) 884 goto no_grow; 885 886 bh->b_bdev = NULL; 887 bh->b_this_page = head; 888 bh->b_blocknr = -1; 889 head = bh; 890 891 bh->b_state = 0; 892 atomic_set(&bh->b_count, 0); 893 bh->b_private = NULL; 894 bh->b_size = size; 895 896 /* Link the buffer to its page */ 897 set_bh_page(bh, page, offset); 898 899 init_buffer(bh, NULL, NULL); 900 } 901 return head; 902 /* 903 * In case anything failed, we just free everything we got. 904 */ 905 no_grow: 906 if (head) { 907 do { 908 bh = head; 909 head = head->b_this_page; 910 free_buffer_head(bh); 911 } while (head); 912 } 913 914 /* 915 * Return failure for non-async IO requests. Async IO requests 916 * are not allowed to fail, so we have to wait until buffer heads 917 * become available. But we don't want tasks sleeping with 918 * partially complete buffers, so all were released above. 919 */ 920 if (!retry) 921 return NULL; 922 923 /* We're _really_ low on memory. Now we just 924 * wait for old buffer heads to become free due to 925 * finishing IO. Since this is an async request and 926 * the reserve list is empty, we're sure there are 927 * async buffer heads in use. 928 */ 929 free_more_memory(); 930 goto try_again; 931 } 932 EXPORT_SYMBOL_GPL(alloc_page_buffers); 933 934 static inline void 935 link_dev_buffers(struct page *page, struct buffer_head *head) 936 { 937 struct buffer_head *bh, *tail; 938 939 bh = head; 940 do { 941 tail = bh; 942 bh = bh->b_this_page; 943 } while (bh); 944 tail->b_this_page = head; 945 attach_page_buffers(page, head); 946 } 947 948 /* 949 * Initialise the state of a blockdev page's buffers. 950 */ 951 static void 952 init_page_buffers(struct page *page, struct block_device *bdev, 953 sector_t block, int size) 954 { 955 struct buffer_head *head = page_buffers(page); 956 struct buffer_head *bh = head; 957 int uptodate = PageUptodate(page); 958 959 do { 960 if (!buffer_mapped(bh)) { 961 init_buffer(bh, NULL, NULL); 962 bh->b_bdev = bdev; 963 bh->b_blocknr = block; 964 if (uptodate) 965 set_buffer_uptodate(bh); 966 set_buffer_mapped(bh); 967 } 968 block++; 969 bh = bh->b_this_page; 970 } while (bh != head); 971 } 972 973 /* 974 * Create the page-cache page that contains the requested block. 975 * 976 * This is user purely for blockdev mappings. 977 */ 978 static struct page * 979 grow_dev_page(struct block_device *bdev, sector_t block, 980 pgoff_t index, int size) 981 { 982 struct inode *inode = bdev->bd_inode; 983 struct page *page; 984 struct buffer_head *bh; 985 986 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 987 if (!page) 988 return NULL; 989 990 BUG_ON(!PageLocked(page)); 991 992 if (page_has_buffers(page)) { 993 bh = page_buffers(page); 994 if (bh->b_size == size) { 995 init_page_buffers(page, bdev, block, size); 996 return page; 997 } 998 if (!try_to_free_buffers(page)) 999 goto failed; 1000 } 1001 1002 /* 1003 * Allocate some buffers for this page 1004 */ 1005 bh = alloc_page_buffers(page, size, 0); 1006 if (!bh) 1007 goto failed; 1008 1009 /* 1010 * Link the page to the buffers and initialise them. Take the 1011 * lock to be atomic wrt __find_get_block(), which does not 1012 * run under the page lock. 1013 */ 1014 spin_lock(&inode->i_mapping->private_lock); 1015 link_dev_buffers(page, bh); 1016 init_page_buffers(page, bdev, block, size); 1017 spin_unlock(&inode->i_mapping->private_lock); 1018 return page; 1019 1020 failed: 1021 BUG(); 1022 unlock_page(page); 1023 page_cache_release(page); 1024 return NULL; 1025 } 1026 1027 /* 1028 * Create buffers for the specified block device block's page. If 1029 * that page was dirty, the buffers are set dirty also. 1030 * 1031 * Except that's a bug. Attaching dirty buffers to a dirty 1032 * blockdev's page can result in filesystem corruption, because 1033 * some of those buffers may be aliases of filesystem data. 1034 * grow_dev_page() will go BUG() if this happens. 1035 */ 1036 static int 1037 grow_buffers(struct block_device *bdev, sector_t block, int size) 1038 { 1039 struct page *page; 1040 pgoff_t index; 1041 int sizebits; 1042 1043 sizebits = -1; 1044 do { 1045 sizebits++; 1046 } while ((size << sizebits) < PAGE_SIZE); 1047 1048 index = block >> sizebits; 1049 1050 /* 1051 * Check for a block which wants to lie outside our maximum possible 1052 * pagecache index. (this comparison is done using sector_t types). 1053 */ 1054 if (unlikely(index != block >> sizebits)) { 1055 char b[BDEVNAME_SIZE]; 1056 1057 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1058 "device %s\n", 1059 __FUNCTION__, (unsigned long long)block, 1060 bdevname(bdev, b)); 1061 return -EIO; 1062 } 1063 block = index << sizebits; 1064 /* Create a page with the proper size buffers.. */ 1065 page = grow_dev_page(bdev, block, index, size); 1066 if (!page) 1067 return 0; 1068 unlock_page(page); 1069 page_cache_release(page); 1070 return 1; 1071 } 1072 1073 static struct buffer_head * 1074 __getblk_slow(struct block_device *bdev, sector_t block, int size) 1075 { 1076 /* Size must be multiple of hard sectorsize */ 1077 if (unlikely(size & (bdev_hardsect_size(bdev)-1) || 1078 (size < 512 || size > PAGE_SIZE))) { 1079 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1080 size); 1081 printk(KERN_ERR "hardsect size: %d\n", 1082 bdev_hardsect_size(bdev)); 1083 1084 dump_stack(); 1085 return NULL; 1086 } 1087 1088 for (;;) { 1089 struct buffer_head * bh; 1090 int ret; 1091 1092 bh = __find_get_block(bdev, block, size); 1093 if (bh) 1094 return bh; 1095 1096 ret = grow_buffers(bdev, block, size); 1097 if (ret < 0) 1098 return NULL; 1099 if (ret == 0) 1100 free_more_memory(); 1101 } 1102 } 1103 1104 /* 1105 * The relationship between dirty buffers and dirty pages: 1106 * 1107 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1108 * the page is tagged dirty in its radix tree. 1109 * 1110 * At all times, the dirtiness of the buffers represents the dirtiness of 1111 * subsections of the page. If the page has buffers, the page dirty bit is 1112 * merely a hint about the true dirty state. 1113 * 1114 * When a page is set dirty in its entirety, all its buffers are marked dirty 1115 * (if the page has buffers). 1116 * 1117 * When a buffer is marked dirty, its page is dirtied, but the page's other 1118 * buffers are not. 1119 * 1120 * Also. When blockdev buffers are explicitly read with bread(), they 1121 * individually become uptodate. But their backing page remains not 1122 * uptodate - even if all of its buffers are uptodate. A subsequent 1123 * block_read_full_page() against that page will discover all the uptodate 1124 * buffers, will set the page uptodate and will perform no I/O. 1125 */ 1126 1127 /** 1128 * mark_buffer_dirty - mark a buffer_head as needing writeout 1129 * @bh: the buffer_head to mark dirty 1130 * 1131 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1132 * backing page dirty, then tag the page as dirty in its address_space's radix 1133 * tree and then attach the address_space's inode to its superblock's dirty 1134 * inode list. 1135 * 1136 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1137 * mapping->tree_lock and the global inode_lock. 1138 */ 1139 void fastcall mark_buffer_dirty(struct buffer_head *bh) 1140 { 1141 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh)) 1142 __set_page_dirty_nobuffers(bh->b_page); 1143 } 1144 1145 /* 1146 * Decrement a buffer_head's reference count. If all buffers against a page 1147 * have zero reference count, are clean and unlocked, and if the page is clean 1148 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1149 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1150 * a page but it ends up not being freed, and buffers may later be reattached). 1151 */ 1152 void __brelse(struct buffer_head * buf) 1153 { 1154 if (atomic_read(&buf->b_count)) { 1155 put_bh(buf); 1156 return; 1157 } 1158 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1159 WARN_ON(1); 1160 } 1161 1162 /* 1163 * bforget() is like brelse(), except it discards any 1164 * potentially dirty data. 1165 */ 1166 void __bforget(struct buffer_head *bh) 1167 { 1168 clear_buffer_dirty(bh); 1169 if (!list_empty(&bh->b_assoc_buffers)) { 1170 struct address_space *buffer_mapping = bh->b_page->mapping; 1171 1172 spin_lock(&buffer_mapping->private_lock); 1173 list_del_init(&bh->b_assoc_buffers); 1174 bh->b_assoc_map = NULL; 1175 spin_unlock(&buffer_mapping->private_lock); 1176 } 1177 __brelse(bh); 1178 } 1179 1180 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1181 { 1182 lock_buffer(bh); 1183 if (buffer_uptodate(bh)) { 1184 unlock_buffer(bh); 1185 return bh; 1186 } else { 1187 get_bh(bh); 1188 bh->b_end_io = end_buffer_read_sync; 1189 submit_bh(READ, bh); 1190 wait_on_buffer(bh); 1191 if (buffer_uptodate(bh)) 1192 return bh; 1193 } 1194 brelse(bh); 1195 return NULL; 1196 } 1197 1198 /* 1199 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1200 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1201 * refcount elevated by one when they're in an LRU. A buffer can only appear 1202 * once in a particular CPU's LRU. A single buffer can be present in multiple 1203 * CPU's LRUs at the same time. 1204 * 1205 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1206 * sb_find_get_block(). 1207 * 1208 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1209 * a local interrupt disable for that. 1210 */ 1211 1212 #define BH_LRU_SIZE 8 1213 1214 struct bh_lru { 1215 struct buffer_head *bhs[BH_LRU_SIZE]; 1216 }; 1217 1218 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1219 1220 #ifdef CONFIG_SMP 1221 #define bh_lru_lock() local_irq_disable() 1222 #define bh_lru_unlock() local_irq_enable() 1223 #else 1224 #define bh_lru_lock() preempt_disable() 1225 #define bh_lru_unlock() preempt_enable() 1226 #endif 1227 1228 static inline void check_irqs_on(void) 1229 { 1230 #ifdef irqs_disabled 1231 BUG_ON(irqs_disabled()); 1232 #endif 1233 } 1234 1235 /* 1236 * The LRU management algorithm is dopey-but-simple. Sorry. 1237 */ 1238 static void bh_lru_install(struct buffer_head *bh) 1239 { 1240 struct buffer_head *evictee = NULL; 1241 struct bh_lru *lru; 1242 1243 check_irqs_on(); 1244 bh_lru_lock(); 1245 lru = &__get_cpu_var(bh_lrus); 1246 if (lru->bhs[0] != bh) { 1247 struct buffer_head *bhs[BH_LRU_SIZE]; 1248 int in; 1249 int out = 0; 1250 1251 get_bh(bh); 1252 bhs[out++] = bh; 1253 for (in = 0; in < BH_LRU_SIZE; in++) { 1254 struct buffer_head *bh2 = lru->bhs[in]; 1255 1256 if (bh2 == bh) { 1257 __brelse(bh2); 1258 } else { 1259 if (out >= BH_LRU_SIZE) { 1260 BUG_ON(evictee != NULL); 1261 evictee = bh2; 1262 } else { 1263 bhs[out++] = bh2; 1264 } 1265 } 1266 } 1267 while (out < BH_LRU_SIZE) 1268 bhs[out++] = NULL; 1269 memcpy(lru->bhs, bhs, sizeof(bhs)); 1270 } 1271 bh_lru_unlock(); 1272 1273 if (evictee) 1274 __brelse(evictee); 1275 } 1276 1277 /* 1278 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1279 */ 1280 static struct buffer_head * 1281 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1282 { 1283 struct buffer_head *ret = NULL; 1284 struct bh_lru *lru; 1285 unsigned int i; 1286 1287 check_irqs_on(); 1288 bh_lru_lock(); 1289 lru = &__get_cpu_var(bh_lrus); 1290 for (i = 0; i < BH_LRU_SIZE; i++) { 1291 struct buffer_head *bh = lru->bhs[i]; 1292 1293 if (bh && bh->b_bdev == bdev && 1294 bh->b_blocknr == block && bh->b_size == size) { 1295 if (i) { 1296 while (i) { 1297 lru->bhs[i] = lru->bhs[i - 1]; 1298 i--; 1299 } 1300 lru->bhs[0] = bh; 1301 } 1302 get_bh(bh); 1303 ret = bh; 1304 break; 1305 } 1306 } 1307 bh_lru_unlock(); 1308 return ret; 1309 } 1310 1311 /* 1312 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1313 * it in the LRU and mark it as accessed. If it is not present then return 1314 * NULL 1315 */ 1316 struct buffer_head * 1317 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1318 { 1319 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1320 1321 if (bh == NULL) { 1322 bh = __find_get_block_slow(bdev, block); 1323 if (bh) 1324 bh_lru_install(bh); 1325 } 1326 if (bh) 1327 touch_buffer(bh); 1328 return bh; 1329 } 1330 EXPORT_SYMBOL(__find_get_block); 1331 1332 /* 1333 * __getblk will locate (and, if necessary, create) the buffer_head 1334 * which corresponds to the passed block_device, block and size. The 1335 * returned buffer has its reference count incremented. 1336 * 1337 * __getblk() cannot fail - it just keeps trying. If you pass it an 1338 * illegal block number, __getblk() will happily return a buffer_head 1339 * which represents the non-existent block. Very weird. 1340 * 1341 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1342 * attempt is failing. FIXME, perhaps? 1343 */ 1344 struct buffer_head * 1345 __getblk(struct block_device *bdev, sector_t block, unsigned size) 1346 { 1347 struct buffer_head *bh = __find_get_block(bdev, block, size); 1348 1349 might_sleep(); 1350 if (bh == NULL) 1351 bh = __getblk_slow(bdev, block, size); 1352 return bh; 1353 } 1354 EXPORT_SYMBOL(__getblk); 1355 1356 /* 1357 * Do async read-ahead on a buffer.. 1358 */ 1359 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1360 { 1361 struct buffer_head *bh = __getblk(bdev, block, size); 1362 if (likely(bh)) { 1363 ll_rw_block(READA, 1, &bh); 1364 brelse(bh); 1365 } 1366 } 1367 EXPORT_SYMBOL(__breadahead); 1368 1369 /** 1370 * __bread() - reads a specified block and returns the bh 1371 * @bdev: the block_device to read from 1372 * @block: number of block 1373 * @size: size (in bytes) to read 1374 * 1375 * Reads a specified block, and returns buffer head that contains it. 1376 * It returns NULL if the block was unreadable. 1377 */ 1378 struct buffer_head * 1379 __bread(struct block_device *bdev, sector_t block, unsigned size) 1380 { 1381 struct buffer_head *bh = __getblk(bdev, block, size); 1382 1383 if (likely(bh) && !buffer_uptodate(bh)) 1384 bh = __bread_slow(bh); 1385 return bh; 1386 } 1387 EXPORT_SYMBOL(__bread); 1388 1389 /* 1390 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1391 * This doesn't race because it runs in each cpu either in irq 1392 * or with preempt disabled. 1393 */ 1394 static void invalidate_bh_lru(void *arg) 1395 { 1396 struct bh_lru *b = &get_cpu_var(bh_lrus); 1397 int i; 1398 1399 for (i = 0; i < BH_LRU_SIZE; i++) { 1400 brelse(b->bhs[i]); 1401 b->bhs[i] = NULL; 1402 } 1403 put_cpu_var(bh_lrus); 1404 } 1405 1406 static void invalidate_bh_lrus(void) 1407 { 1408 on_each_cpu(invalidate_bh_lru, NULL, 1, 1); 1409 } 1410 1411 void set_bh_page(struct buffer_head *bh, 1412 struct page *page, unsigned long offset) 1413 { 1414 bh->b_page = page; 1415 BUG_ON(offset >= PAGE_SIZE); 1416 if (PageHighMem(page)) 1417 /* 1418 * This catches illegal uses and preserves the offset: 1419 */ 1420 bh->b_data = (char *)(0 + offset); 1421 else 1422 bh->b_data = page_address(page) + offset; 1423 } 1424 EXPORT_SYMBOL(set_bh_page); 1425 1426 /* 1427 * Called when truncating a buffer on a page completely. 1428 */ 1429 static void discard_buffer(struct buffer_head * bh) 1430 { 1431 lock_buffer(bh); 1432 clear_buffer_dirty(bh); 1433 bh->b_bdev = NULL; 1434 clear_buffer_mapped(bh); 1435 clear_buffer_req(bh); 1436 clear_buffer_new(bh); 1437 clear_buffer_delay(bh); 1438 clear_buffer_unwritten(bh); 1439 unlock_buffer(bh); 1440 } 1441 1442 /** 1443 * block_invalidatepage - invalidate part of all of a buffer-backed page 1444 * 1445 * @page: the page which is affected 1446 * @offset: the index of the truncation point 1447 * 1448 * block_invalidatepage() is called when all or part of the page has become 1449 * invalidatedby a truncate operation. 1450 * 1451 * block_invalidatepage() does not have to release all buffers, but it must 1452 * ensure that no dirty buffer is left outside @offset and that no I/O 1453 * is underway against any of the blocks which are outside the truncation 1454 * point. Because the caller is about to free (and possibly reuse) those 1455 * blocks on-disk. 1456 */ 1457 void block_invalidatepage(struct page *page, unsigned long offset) 1458 { 1459 struct buffer_head *head, *bh, *next; 1460 unsigned int curr_off = 0; 1461 1462 BUG_ON(!PageLocked(page)); 1463 if (!page_has_buffers(page)) 1464 goto out; 1465 1466 head = page_buffers(page); 1467 bh = head; 1468 do { 1469 unsigned int next_off = curr_off + bh->b_size; 1470 next = bh->b_this_page; 1471 1472 /* 1473 * is this block fully invalidated? 1474 */ 1475 if (offset <= curr_off) 1476 discard_buffer(bh); 1477 curr_off = next_off; 1478 bh = next; 1479 } while (bh != head); 1480 1481 /* 1482 * We release buffers only if the entire page is being invalidated. 1483 * The get_block cached value has been unconditionally invalidated, 1484 * so real IO is not possible anymore. 1485 */ 1486 if (offset == 0) 1487 try_to_release_page(page, 0); 1488 out: 1489 return; 1490 } 1491 EXPORT_SYMBOL(block_invalidatepage); 1492 1493 /* 1494 * We attach and possibly dirty the buffers atomically wrt 1495 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1496 * is already excluded via the page lock. 1497 */ 1498 void create_empty_buffers(struct page *page, 1499 unsigned long blocksize, unsigned long b_state) 1500 { 1501 struct buffer_head *bh, *head, *tail; 1502 1503 head = alloc_page_buffers(page, blocksize, 1); 1504 bh = head; 1505 do { 1506 bh->b_state |= b_state; 1507 tail = bh; 1508 bh = bh->b_this_page; 1509 } while (bh); 1510 tail->b_this_page = head; 1511 1512 spin_lock(&page->mapping->private_lock); 1513 if (PageUptodate(page) || PageDirty(page)) { 1514 bh = head; 1515 do { 1516 if (PageDirty(page)) 1517 set_buffer_dirty(bh); 1518 if (PageUptodate(page)) 1519 set_buffer_uptodate(bh); 1520 bh = bh->b_this_page; 1521 } while (bh != head); 1522 } 1523 attach_page_buffers(page, head); 1524 spin_unlock(&page->mapping->private_lock); 1525 } 1526 EXPORT_SYMBOL(create_empty_buffers); 1527 1528 /* 1529 * We are taking a block for data and we don't want any output from any 1530 * buffer-cache aliases starting from return from that function and 1531 * until the moment when something will explicitly mark the buffer 1532 * dirty (hopefully that will not happen until we will free that block ;-) 1533 * We don't even need to mark it not-uptodate - nobody can expect 1534 * anything from a newly allocated buffer anyway. We used to used 1535 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1536 * don't want to mark the alias unmapped, for example - it would confuse 1537 * anyone who might pick it with bread() afterwards... 1538 * 1539 * Also.. Note that bforget() doesn't lock the buffer. So there can 1540 * be writeout I/O going on against recently-freed buffers. We don't 1541 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1542 * only if we really need to. That happens here. 1543 */ 1544 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1545 { 1546 struct buffer_head *old_bh; 1547 1548 might_sleep(); 1549 1550 old_bh = __find_get_block_slow(bdev, block); 1551 if (old_bh) { 1552 clear_buffer_dirty(old_bh); 1553 wait_on_buffer(old_bh); 1554 clear_buffer_req(old_bh); 1555 __brelse(old_bh); 1556 } 1557 } 1558 EXPORT_SYMBOL(unmap_underlying_metadata); 1559 1560 /* 1561 * NOTE! All mapped/uptodate combinations are valid: 1562 * 1563 * Mapped Uptodate Meaning 1564 * 1565 * No No "unknown" - must do get_block() 1566 * No Yes "hole" - zero-filled 1567 * Yes No "allocated" - allocated on disk, not read in 1568 * Yes Yes "valid" - allocated and up-to-date in memory. 1569 * 1570 * "Dirty" is valid only with the last case (mapped+uptodate). 1571 */ 1572 1573 /* 1574 * While block_write_full_page is writing back the dirty buffers under 1575 * the page lock, whoever dirtied the buffers may decide to clean them 1576 * again at any time. We handle that by only looking at the buffer 1577 * state inside lock_buffer(). 1578 * 1579 * If block_write_full_page() is called for regular writeback 1580 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1581 * locked buffer. This only can happen if someone has written the buffer 1582 * directly, with submit_bh(). At the address_space level PageWriteback 1583 * prevents this contention from occurring. 1584 */ 1585 static int __block_write_full_page(struct inode *inode, struct page *page, 1586 get_block_t *get_block, struct writeback_control *wbc) 1587 { 1588 int err; 1589 sector_t block; 1590 sector_t last_block; 1591 struct buffer_head *bh, *head; 1592 const unsigned blocksize = 1 << inode->i_blkbits; 1593 int nr_underway = 0; 1594 1595 BUG_ON(!PageLocked(page)); 1596 1597 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 1598 1599 if (!page_has_buffers(page)) { 1600 create_empty_buffers(page, blocksize, 1601 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1602 } 1603 1604 /* 1605 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1606 * here, and the (potentially unmapped) buffers may become dirty at 1607 * any time. If a buffer becomes dirty here after we've inspected it 1608 * then we just miss that fact, and the page stays dirty. 1609 * 1610 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1611 * handle that here by just cleaning them. 1612 */ 1613 1614 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1615 head = page_buffers(page); 1616 bh = head; 1617 1618 /* 1619 * Get all the dirty buffers mapped to disk addresses and 1620 * handle any aliases from the underlying blockdev's mapping. 1621 */ 1622 do { 1623 if (block > last_block) { 1624 /* 1625 * mapped buffers outside i_size will occur, because 1626 * this page can be outside i_size when there is a 1627 * truncate in progress. 1628 */ 1629 /* 1630 * The buffer was zeroed by block_write_full_page() 1631 */ 1632 clear_buffer_dirty(bh); 1633 set_buffer_uptodate(bh); 1634 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) { 1635 WARN_ON(bh->b_size != blocksize); 1636 err = get_block(inode, block, bh, 1); 1637 if (err) 1638 goto recover; 1639 if (buffer_new(bh)) { 1640 /* blockdev mappings never come here */ 1641 clear_buffer_new(bh); 1642 unmap_underlying_metadata(bh->b_bdev, 1643 bh->b_blocknr); 1644 } 1645 } 1646 bh = bh->b_this_page; 1647 block++; 1648 } while (bh != head); 1649 1650 do { 1651 if (!buffer_mapped(bh)) 1652 continue; 1653 /* 1654 * If it's a fully non-blocking write attempt and we cannot 1655 * lock the buffer then redirty the page. Note that this can 1656 * potentially cause a busy-wait loop from pdflush and kswapd 1657 * activity, but those code paths have their own higher-level 1658 * throttling. 1659 */ 1660 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { 1661 lock_buffer(bh); 1662 } else if (test_set_buffer_locked(bh)) { 1663 redirty_page_for_writepage(wbc, page); 1664 continue; 1665 } 1666 if (test_clear_buffer_dirty(bh)) { 1667 mark_buffer_async_write(bh); 1668 } else { 1669 unlock_buffer(bh); 1670 } 1671 } while ((bh = bh->b_this_page) != head); 1672 1673 /* 1674 * The page and its buffers are protected by PageWriteback(), so we can 1675 * drop the bh refcounts early. 1676 */ 1677 BUG_ON(PageWriteback(page)); 1678 set_page_writeback(page); 1679 1680 do { 1681 struct buffer_head *next = bh->b_this_page; 1682 if (buffer_async_write(bh)) { 1683 submit_bh(WRITE, bh); 1684 nr_underway++; 1685 } 1686 bh = next; 1687 } while (bh != head); 1688 unlock_page(page); 1689 1690 err = 0; 1691 done: 1692 if (nr_underway == 0) { 1693 /* 1694 * The page was marked dirty, but the buffers were 1695 * clean. Someone wrote them back by hand with 1696 * ll_rw_block/submit_bh. A rare case. 1697 */ 1698 end_page_writeback(page); 1699 1700 /* 1701 * The page and buffer_heads can be released at any time from 1702 * here on. 1703 */ 1704 wbc->pages_skipped++; /* We didn't write this page */ 1705 } 1706 return err; 1707 1708 recover: 1709 /* 1710 * ENOSPC, or some other error. We may already have added some 1711 * blocks to the file, so we need to write these out to avoid 1712 * exposing stale data. 1713 * The page is currently locked and not marked for writeback 1714 */ 1715 bh = head; 1716 /* Recovery: lock and submit the mapped buffers */ 1717 do { 1718 if (buffer_mapped(bh) && buffer_dirty(bh)) { 1719 lock_buffer(bh); 1720 mark_buffer_async_write(bh); 1721 } else { 1722 /* 1723 * The buffer may have been set dirty during 1724 * attachment to a dirty page. 1725 */ 1726 clear_buffer_dirty(bh); 1727 } 1728 } while ((bh = bh->b_this_page) != head); 1729 SetPageError(page); 1730 BUG_ON(PageWriteback(page)); 1731 set_page_writeback(page); 1732 do { 1733 struct buffer_head *next = bh->b_this_page; 1734 if (buffer_async_write(bh)) { 1735 clear_buffer_dirty(bh); 1736 submit_bh(WRITE, bh); 1737 nr_underway++; 1738 } 1739 bh = next; 1740 } while (bh != head); 1741 unlock_page(page); 1742 goto done; 1743 } 1744 1745 static int __block_prepare_write(struct inode *inode, struct page *page, 1746 unsigned from, unsigned to, get_block_t *get_block) 1747 { 1748 unsigned block_start, block_end; 1749 sector_t block; 1750 int err = 0; 1751 unsigned blocksize, bbits; 1752 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1753 1754 BUG_ON(!PageLocked(page)); 1755 BUG_ON(from > PAGE_CACHE_SIZE); 1756 BUG_ON(to > PAGE_CACHE_SIZE); 1757 BUG_ON(from > to); 1758 1759 blocksize = 1 << inode->i_blkbits; 1760 if (!page_has_buffers(page)) 1761 create_empty_buffers(page, blocksize, 0); 1762 head = page_buffers(page); 1763 1764 bbits = inode->i_blkbits; 1765 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1766 1767 for(bh = head, block_start = 0; bh != head || !block_start; 1768 block++, block_start=block_end, bh = bh->b_this_page) { 1769 block_end = block_start + blocksize; 1770 if (block_end <= from || block_start >= to) { 1771 if (PageUptodate(page)) { 1772 if (!buffer_uptodate(bh)) 1773 set_buffer_uptodate(bh); 1774 } 1775 continue; 1776 } 1777 if (buffer_new(bh)) 1778 clear_buffer_new(bh); 1779 if (!buffer_mapped(bh)) { 1780 WARN_ON(bh->b_size != blocksize); 1781 err = get_block(inode, block, bh, 1); 1782 if (err) 1783 break; 1784 if (buffer_new(bh)) { 1785 unmap_underlying_metadata(bh->b_bdev, 1786 bh->b_blocknr); 1787 if (PageUptodate(page)) { 1788 set_buffer_uptodate(bh); 1789 continue; 1790 } 1791 if (block_end > to || block_start < from) { 1792 void *kaddr; 1793 1794 kaddr = kmap_atomic(page, KM_USER0); 1795 if (block_end > to) 1796 memset(kaddr+to, 0, 1797 block_end-to); 1798 if (block_start < from) 1799 memset(kaddr+block_start, 1800 0, from-block_start); 1801 flush_dcache_page(page); 1802 kunmap_atomic(kaddr, KM_USER0); 1803 } 1804 continue; 1805 } 1806 } 1807 if (PageUptodate(page)) { 1808 if (!buffer_uptodate(bh)) 1809 set_buffer_uptodate(bh); 1810 continue; 1811 } 1812 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1813 !buffer_unwritten(bh) && 1814 (block_start < from || block_end > to)) { 1815 ll_rw_block(READ, 1, &bh); 1816 *wait_bh++=bh; 1817 } 1818 } 1819 /* 1820 * If we issued read requests - let them complete. 1821 */ 1822 while(wait_bh > wait) { 1823 wait_on_buffer(*--wait_bh); 1824 if (!buffer_uptodate(*wait_bh)) 1825 err = -EIO; 1826 } 1827 if (!err) { 1828 bh = head; 1829 do { 1830 if (buffer_new(bh)) 1831 clear_buffer_new(bh); 1832 } while ((bh = bh->b_this_page) != head); 1833 return 0; 1834 } 1835 /* Error case: */ 1836 /* 1837 * Zero out any newly allocated blocks to avoid exposing stale 1838 * data. If BH_New is set, we know that the block was newly 1839 * allocated in the above loop. 1840 */ 1841 bh = head; 1842 block_start = 0; 1843 do { 1844 block_end = block_start+blocksize; 1845 if (block_end <= from) 1846 goto next_bh; 1847 if (block_start >= to) 1848 break; 1849 if (buffer_new(bh)) { 1850 void *kaddr; 1851 1852 clear_buffer_new(bh); 1853 kaddr = kmap_atomic(page, KM_USER0); 1854 memset(kaddr+block_start, 0, bh->b_size); 1855 flush_dcache_page(page); 1856 kunmap_atomic(kaddr, KM_USER0); 1857 set_buffer_uptodate(bh); 1858 mark_buffer_dirty(bh); 1859 } 1860 next_bh: 1861 block_start = block_end; 1862 bh = bh->b_this_page; 1863 } while (bh != head); 1864 return err; 1865 } 1866 1867 static int __block_commit_write(struct inode *inode, struct page *page, 1868 unsigned from, unsigned to) 1869 { 1870 unsigned block_start, block_end; 1871 int partial = 0; 1872 unsigned blocksize; 1873 struct buffer_head *bh, *head; 1874 1875 blocksize = 1 << inode->i_blkbits; 1876 1877 for(bh = head = page_buffers(page), block_start = 0; 1878 bh != head || !block_start; 1879 block_start=block_end, bh = bh->b_this_page) { 1880 block_end = block_start + blocksize; 1881 if (block_end <= from || block_start >= to) { 1882 if (!buffer_uptodate(bh)) 1883 partial = 1; 1884 } else { 1885 set_buffer_uptodate(bh); 1886 mark_buffer_dirty(bh); 1887 } 1888 } 1889 1890 /* 1891 * If this is a partial write which happened to make all buffers 1892 * uptodate then we can optimize away a bogus readpage() for 1893 * the next read(). Here we 'discover' whether the page went 1894 * uptodate as a result of this (potentially partial) write. 1895 */ 1896 if (!partial) 1897 SetPageUptodate(page); 1898 return 0; 1899 } 1900 1901 /* 1902 * Generic "read page" function for block devices that have the normal 1903 * get_block functionality. This is most of the block device filesystems. 1904 * Reads the page asynchronously --- the unlock_buffer() and 1905 * set/clear_buffer_uptodate() functions propagate buffer state into the 1906 * page struct once IO has completed. 1907 */ 1908 int block_read_full_page(struct page *page, get_block_t *get_block) 1909 { 1910 struct inode *inode = page->mapping->host; 1911 sector_t iblock, lblock; 1912 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 1913 unsigned int blocksize; 1914 int nr, i; 1915 int fully_mapped = 1; 1916 1917 BUG_ON(!PageLocked(page)); 1918 blocksize = 1 << inode->i_blkbits; 1919 if (!page_has_buffers(page)) 1920 create_empty_buffers(page, blocksize, 0); 1921 head = page_buffers(page); 1922 1923 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1924 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; 1925 bh = head; 1926 nr = 0; 1927 i = 0; 1928 1929 do { 1930 if (buffer_uptodate(bh)) 1931 continue; 1932 1933 if (!buffer_mapped(bh)) { 1934 int err = 0; 1935 1936 fully_mapped = 0; 1937 if (iblock < lblock) { 1938 WARN_ON(bh->b_size != blocksize); 1939 err = get_block(inode, iblock, bh, 0); 1940 if (err) 1941 SetPageError(page); 1942 } 1943 if (!buffer_mapped(bh)) { 1944 void *kaddr = kmap_atomic(page, KM_USER0); 1945 memset(kaddr + i * blocksize, 0, blocksize); 1946 flush_dcache_page(page); 1947 kunmap_atomic(kaddr, KM_USER0); 1948 if (!err) 1949 set_buffer_uptodate(bh); 1950 continue; 1951 } 1952 /* 1953 * get_block() might have updated the buffer 1954 * synchronously 1955 */ 1956 if (buffer_uptodate(bh)) 1957 continue; 1958 } 1959 arr[nr++] = bh; 1960 } while (i++, iblock++, (bh = bh->b_this_page) != head); 1961 1962 if (fully_mapped) 1963 SetPageMappedToDisk(page); 1964 1965 if (!nr) { 1966 /* 1967 * All buffers are uptodate - we can set the page uptodate 1968 * as well. But not if get_block() returned an error. 1969 */ 1970 if (!PageError(page)) 1971 SetPageUptodate(page); 1972 unlock_page(page); 1973 return 0; 1974 } 1975 1976 /* Stage two: lock the buffers */ 1977 for (i = 0; i < nr; i++) { 1978 bh = arr[i]; 1979 lock_buffer(bh); 1980 mark_buffer_async_read(bh); 1981 } 1982 1983 /* 1984 * Stage 3: start the IO. Check for uptodateness 1985 * inside the buffer lock in case another process reading 1986 * the underlying blockdev brought it uptodate (the sct fix). 1987 */ 1988 for (i = 0; i < nr; i++) { 1989 bh = arr[i]; 1990 if (buffer_uptodate(bh)) 1991 end_buffer_async_read(bh, 1); 1992 else 1993 submit_bh(READ, bh); 1994 } 1995 return 0; 1996 } 1997 1998 /* utility function for filesystems that need to do work on expanding 1999 * truncates. Uses prepare/commit_write to allow the filesystem to 2000 * deal with the hole. 2001 */ 2002 static int __generic_cont_expand(struct inode *inode, loff_t size, 2003 pgoff_t index, unsigned int offset) 2004 { 2005 struct address_space *mapping = inode->i_mapping; 2006 struct page *page; 2007 unsigned long limit; 2008 int err; 2009 2010 err = -EFBIG; 2011 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2012 if (limit != RLIM_INFINITY && size > (loff_t)limit) { 2013 send_sig(SIGXFSZ, current, 0); 2014 goto out; 2015 } 2016 if (size > inode->i_sb->s_maxbytes) 2017 goto out; 2018 2019 err = -ENOMEM; 2020 page = grab_cache_page(mapping, index); 2021 if (!page) 2022 goto out; 2023 err = mapping->a_ops->prepare_write(NULL, page, offset, offset); 2024 if (err) { 2025 /* 2026 * ->prepare_write() may have instantiated a few blocks 2027 * outside i_size. Trim these off again. 2028 */ 2029 unlock_page(page); 2030 page_cache_release(page); 2031 vmtruncate(inode, inode->i_size); 2032 goto out; 2033 } 2034 2035 err = mapping->a_ops->commit_write(NULL, page, offset, offset); 2036 2037 unlock_page(page); 2038 page_cache_release(page); 2039 if (err > 0) 2040 err = 0; 2041 out: 2042 return err; 2043 } 2044 2045 int generic_cont_expand(struct inode *inode, loff_t size) 2046 { 2047 pgoff_t index; 2048 unsigned int offset; 2049 2050 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */ 2051 2052 /* ugh. in prepare/commit_write, if from==to==start of block, we 2053 ** skip the prepare. make sure we never send an offset for the start 2054 ** of a block 2055 */ 2056 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) { 2057 /* caller must handle this extra byte. */ 2058 offset++; 2059 } 2060 index = size >> PAGE_CACHE_SHIFT; 2061 2062 return __generic_cont_expand(inode, size, index, offset); 2063 } 2064 2065 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2066 { 2067 loff_t pos = size - 1; 2068 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 2069 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1; 2070 2071 /* prepare/commit_write can handle even if from==to==start of block. */ 2072 return __generic_cont_expand(inode, size, index, offset); 2073 } 2074 2075 /* 2076 * For moronic filesystems that do not allow holes in file. 2077 * We may have to extend the file. 2078 */ 2079 2080 int cont_prepare_write(struct page *page, unsigned offset, 2081 unsigned to, get_block_t *get_block, loff_t *bytes) 2082 { 2083 struct address_space *mapping = page->mapping; 2084 struct inode *inode = mapping->host; 2085 struct page *new_page; 2086 pgoff_t pgpos; 2087 long status; 2088 unsigned zerofrom; 2089 unsigned blocksize = 1 << inode->i_blkbits; 2090 void *kaddr; 2091 2092 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) { 2093 status = -ENOMEM; 2094 new_page = grab_cache_page(mapping, pgpos); 2095 if (!new_page) 2096 goto out; 2097 /* we might sleep */ 2098 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) { 2099 unlock_page(new_page); 2100 page_cache_release(new_page); 2101 continue; 2102 } 2103 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2104 if (zerofrom & (blocksize-1)) { 2105 *bytes |= (blocksize-1); 2106 (*bytes)++; 2107 } 2108 status = __block_prepare_write(inode, new_page, zerofrom, 2109 PAGE_CACHE_SIZE, get_block); 2110 if (status) 2111 goto out_unmap; 2112 kaddr = kmap_atomic(new_page, KM_USER0); 2113 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom); 2114 flush_dcache_page(new_page); 2115 kunmap_atomic(kaddr, KM_USER0); 2116 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE); 2117 unlock_page(new_page); 2118 page_cache_release(new_page); 2119 } 2120 2121 if (page->index < pgpos) { 2122 /* completely inside the area */ 2123 zerofrom = offset; 2124 } else { 2125 /* page covers the boundary, find the boundary offset */ 2126 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2127 2128 /* if we will expand the thing last block will be filled */ 2129 if (to > zerofrom && (zerofrom & (blocksize-1))) { 2130 *bytes |= (blocksize-1); 2131 (*bytes)++; 2132 } 2133 2134 /* starting below the boundary? Nothing to zero out */ 2135 if (offset <= zerofrom) 2136 zerofrom = offset; 2137 } 2138 status = __block_prepare_write(inode, page, zerofrom, to, get_block); 2139 if (status) 2140 goto out1; 2141 if (zerofrom < offset) { 2142 kaddr = kmap_atomic(page, KM_USER0); 2143 memset(kaddr+zerofrom, 0, offset-zerofrom); 2144 flush_dcache_page(page); 2145 kunmap_atomic(kaddr, KM_USER0); 2146 __block_commit_write(inode, page, zerofrom, offset); 2147 } 2148 return 0; 2149 out1: 2150 ClearPageUptodate(page); 2151 return status; 2152 2153 out_unmap: 2154 ClearPageUptodate(new_page); 2155 unlock_page(new_page); 2156 page_cache_release(new_page); 2157 out: 2158 return status; 2159 } 2160 2161 int block_prepare_write(struct page *page, unsigned from, unsigned to, 2162 get_block_t *get_block) 2163 { 2164 struct inode *inode = page->mapping->host; 2165 int err = __block_prepare_write(inode, page, from, to, get_block); 2166 if (err) 2167 ClearPageUptodate(page); 2168 return err; 2169 } 2170 2171 int block_commit_write(struct page *page, unsigned from, unsigned to) 2172 { 2173 struct inode *inode = page->mapping->host; 2174 __block_commit_write(inode,page,from,to); 2175 return 0; 2176 } 2177 2178 int generic_commit_write(struct file *file, struct page *page, 2179 unsigned from, unsigned to) 2180 { 2181 struct inode *inode = page->mapping->host; 2182 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 2183 __block_commit_write(inode,page,from,to); 2184 /* 2185 * No need to use i_size_read() here, the i_size 2186 * cannot change under us because we hold i_mutex. 2187 */ 2188 if (pos > inode->i_size) { 2189 i_size_write(inode, pos); 2190 mark_inode_dirty(inode); 2191 } 2192 return 0; 2193 } 2194 2195 2196 /* 2197 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed 2198 * immediately, while under the page lock. So it needs a special end_io 2199 * handler which does not touch the bh after unlocking it. 2200 * 2201 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 2202 * a race there is benign: unlock_buffer() only use the bh's address for 2203 * hashing after unlocking the buffer, so it doesn't actually touch the bh 2204 * itself. 2205 */ 2206 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2207 { 2208 if (uptodate) { 2209 set_buffer_uptodate(bh); 2210 } else { 2211 /* This happens, due to failed READA attempts. */ 2212 clear_buffer_uptodate(bh); 2213 } 2214 unlock_buffer(bh); 2215 } 2216 2217 /* 2218 * On entry, the page is fully not uptodate. 2219 * On exit the page is fully uptodate in the areas outside (from,to) 2220 */ 2221 int nobh_prepare_write(struct page *page, unsigned from, unsigned to, 2222 get_block_t *get_block) 2223 { 2224 struct inode *inode = page->mapping->host; 2225 const unsigned blkbits = inode->i_blkbits; 2226 const unsigned blocksize = 1 << blkbits; 2227 struct buffer_head map_bh; 2228 struct buffer_head *read_bh[MAX_BUF_PER_PAGE]; 2229 unsigned block_in_page; 2230 unsigned block_start; 2231 sector_t block_in_file; 2232 char *kaddr; 2233 int nr_reads = 0; 2234 int i; 2235 int ret = 0; 2236 int is_mapped_to_disk = 1; 2237 2238 if (PageMappedToDisk(page)) 2239 return 0; 2240 2241 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2242 map_bh.b_page = page; 2243 2244 /* 2245 * We loop across all blocks in the page, whether or not they are 2246 * part of the affected region. This is so we can discover if the 2247 * page is fully mapped-to-disk. 2248 */ 2249 for (block_start = 0, block_in_page = 0; 2250 block_start < PAGE_CACHE_SIZE; 2251 block_in_page++, block_start += blocksize) { 2252 unsigned block_end = block_start + blocksize; 2253 int create; 2254 2255 map_bh.b_state = 0; 2256 create = 1; 2257 if (block_start >= to) 2258 create = 0; 2259 map_bh.b_size = blocksize; 2260 ret = get_block(inode, block_in_file + block_in_page, 2261 &map_bh, create); 2262 if (ret) 2263 goto failed; 2264 if (!buffer_mapped(&map_bh)) 2265 is_mapped_to_disk = 0; 2266 if (buffer_new(&map_bh)) 2267 unmap_underlying_metadata(map_bh.b_bdev, 2268 map_bh.b_blocknr); 2269 if (PageUptodate(page)) 2270 continue; 2271 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) { 2272 kaddr = kmap_atomic(page, KM_USER0); 2273 if (block_start < from) 2274 memset(kaddr+block_start, 0, from-block_start); 2275 if (block_end > to) 2276 memset(kaddr + to, 0, block_end - to); 2277 flush_dcache_page(page); 2278 kunmap_atomic(kaddr, KM_USER0); 2279 continue; 2280 } 2281 if (buffer_uptodate(&map_bh)) 2282 continue; /* reiserfs does this */ 2283 if (block_start < from || block_end > to) { 2284 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS); 2285 2286 if (!bh) { 2287 ret = -ENOMEM; 2288 goto failed; 2289 } 2290 bh->b_state = map_bh.b_state; 2291 atomic_set(&bh->b_count, 0); 2292 bh->b_this_page = NULL; 2293 bh->b_page = page; 2294 bh->b_blocknr = map_bh.b_blocknr; 2295 bh->b_size = blocksize; 2296 bh->b_data = (char *)(long)block_start; 2297 bh->b_bdev = map_bh.b_bdev; 2298 bh->b_private = NULL; 2299 read_bh[nr_reads++] = bh; 2300 } 2301 } 2302 2303 if (nr_reads) { 2304 struct buffer_head *bh; 2305 2306 /* 2307 * The page is locked, so these buffers are protected from 2308 * any VM or truncate activity. Hence we don't need to care 2309 * for the buffer_head refcounts. 2310 */ 2311 for (i = 0; i < nr_reads; i++) { 2312 bh = read_bh[i]; 2313 lock_buffer(bh); 2314 bh->b_end_io = end_buffer_read_nobh; 2315 submit_bh(READ, bh); 2316 } 2317 for (i = 0; i < nr_reads; i++) { 2318 bh = read_bh[i]; 2319 wait_on_buffer(bh); 2320 if (!buffer_uptodate(bh)) 2321 ret = -EIO; 2322 free_buffer_head(bh); 2323 read_bh[i] = NULL; 2324 } 2325 if (ret) 2326 goto failed; 2327 } 2328 2329 if (is_mapped_to_disk) 2330 SetPageMappedToDisk(page); 2331 2332 return 0; 2333 2334 failed: 2335 for (i = 0; i < nr_reads; i++) { 2336 if (read_bh[i]) 2337 free_buffer_head(read_bh[i]); 2338 } 2339 2340 /* 2341 * Error recovery is pretty slack. Clear the page and mark it dirty 2342 * so we'll later zero out any blocks which _were_ allocated. 2343 */ 2344 kaddr = kmap_atomic(page, KM_USER0); 2345 memset(kaddr, 0, PAGE_CACHE_SIZE); 2346 flush_dcache_page(page); 2347 kunmap_atomic(kaddr, KM_USER0); 2348 SetPageUptodate(page); 2349 set_page_dirty(page); 2350 return ret; 2351 } 2352 EXPORT_SYMBOL(nobh_prepare_write); 2353 2354 /* 2355 * Make sure any changes to nobh_commit_write() are reflected in 2356 * nobh_truncate_page(), since it doesn't call commit_write(). 2357 */ 2358 int nobh_commit_write(struct file *file, struct page *page, 2359 unsigned from, unsigned to) 2360 { 2361 struct inode *inode = page->mapping->host; 2362 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 2363 2364 SetPageUptodate(page); 2365 set_page_dirty(page); 2366 if (pos > inode->i_size) { 2367 i_size_write(inode, pos); 2368 mark_inode_dirty(inode); 2369 } 2370 return 0; 2371 } 2372 EXPORT_SYMBOL(nobh_commit_write); 2373 2374 /* 2375 * nobh_writepage() - based on block_full_write_page() except 2376 * that it tries to operate without attaching bufferheads to 2377 * the page. 2378 */ 2379 int nobh_writepage(struct page *page, get_block_t *get_block, 2380 struct writeback_control *wbc) 2381 { 2382 struct inode * const inode = page->mapping->host; 2383 loff_t i_size = i_size_read(inode); 2384 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2385 unsigned offset; 2386 void *kaddr; 2387 int ret; 2388 2389 /* Is the page fully inside i_size? */ 2390 if (page->index < end_index) 2391 goto out; 2392 2393 /* Is the page fully outside i_size? (truncate in progress) */ 2394 offset = i_size & (PAGE_CACHE_SIZE-1); 2395 if (page->index >= end_index+1 || !offset) { 2396 /* 2397 * The page may have dirty, unmapped buffers. For example, 2398 * they may have been added in ext3_writepage(). Make them 2399 * freeable here, so the page does not leak. 2400 */ 2401 #if 0 2402 /* Not really sure about this - do we need this ? */ 2403 if (page->mapping->a_ops->invalidatepage) 2404 page->mapping->a_ops->invalidatepage(page, offset); 2405 #endif 2406 unlock_page(page); 2407 return 0; /* don't care */ 2408 } 2409 2410 /* 2411 * The page straddles i_size. It must be zeroed out on each and every 2412 * writepage invocation because it may be mmapped. "A file is mapped 2413 * in multiples of the page size. For a file that is not a multiple of 2414 * the page size, the remaining memory is zeroed when mapped, and 2415 * writes to that region are not written out to the file." 2416 */ 2417 kaddr = kmap_atomic(page, KM_USER0); 2418 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2419 flush_dcache_page(page); 2420 kunmap_atomic(kaddr, KM_USER0); 2421 out: 2422 ret = mpage_writepage(page, get_block, wbc); 2423 if (ret == -EAGAIN) 2424 ret = __block_write_full_page(inode, page, get_block, wbc); 2425 return ret; 2426 } 2427 EXPORT_SYMBOL(nobh_writepage); 2428 2429 /* 2430 * This function assumes that ->prepare_write() uses nobh_prepare_write(). 2431 */ 2432 int nobh_truncate_page(struct address_space *mapping, loff_t from) 2433 { 2434 struct inode *inode = mapping->host; 2435 unsigned blocksize = 1 << inode->i_blkbits; 2436 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2437 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2438 unsigned to; 2439 struct page *page; 2440 const struct address_space_operations *a_ops = mapping->a_ops; 2441 char *kaddr; 2442 int ret = 0; 2443 2444 if ((offset & (blocksize - 1)) == 0) 2445 goto out; 2446 2447 ret = -ENOMEM; 2448 page = grab_cache_page(mapping, index); 2449 if (!page) 2450 goto out; 2451 2452 to = (offset + blocksize) & ~(blocksize - 1); 2453 ret = a_ops->prepare_write(NULL, page, offset, to); 2454 if (ret == 0) { 2455 kaddr = kmap_atomic(page, KM_USER0); 2456 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2457 flush_dcache_page(page); 2458 kunmap_atomic(kaddr, KM_USER0); 2459 /* 2460 * It would be more correct to call aops->commit_write() 2461 * here, but this is more efficient. 2462 */ 2463 SetPageUptodate(page); 2464 set_page_dirty(page); 2465 } 2466 unlock_page(page); 2467 page_cache_release(page); 2468 out: 2469 return ret; 2470 } 2471 EXPORT_SYMBOL(nobh_truncate_page); 2472 2473 int block_truncate_page(struct address_space *mapping, 2474 loff_t from, get_block_t *get_block) 2475 { 2476 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2477 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2478 unsigned blocksize; 2479 sector_t iblock; 2480 unsigned length, pos; 2481 struct inode *inode = mapping->host; 2482 struct page *page; 2483 struct buffer_head *bh; 2484 void *kaddr; 2485 int err; 2486 2487 blocksize = 1 << inode->i_blkbits; 2488 length = offset & (blocksize - 1); 2489 2490 /* Block boundary? Nothing to do */ 2491 if (!length) 2492 return 0; 2493 2494 length = blocksize - length; 2495 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2496 2497 page = grab_cache_page(mapping, index); 2498 err = -ENOMEM; 2499 if (!page) 2500 goto out; 2501 2502 if (!page_has_buffers(page)) 2503 create_empty_buffers(page, blocksize, 0); 2504 2505 /* Find the buffer that contains "offset" */ 2506 bh = page_buffers(page); 2507 pos = blocksize; 2508 while (offset >= pos) { 2509 bh = bh->b_this_page; 2510 iblock++; 2511 pos += blocksize; 2512 } 2513 2514 err = 0; 2515 if (!buffer_mapped(bh)) { 2516 WARN_ON(bh->b_size != blocksize); 2517 err = get_block(inode, iblock, bh, 0); 2518 if (err) 2519 goto unlock; 2520 /* unmapped? It's a hole - nothing to do */ 2521 if (!buffer_mapped(bh)) 2522 goto unlock; 2523 } 2524 2525 /* Ok, it's mapped. Make sure it's up-to-date */ 2526 if (PageUptodate(page)) 2527 set_buffer_uptodate(bh); 2528 2529 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2530 err = -EIO; 2531 ll_rw_block(READ, 1, &bh); 2532 wait_on_buffer(bh); 2533 /* Uhhuh. Read error. Complain and punt. */ 2534 if (!buffer_uptodate(bh)) 2535 goto unlock; 2536 } 2537 2538 kaddr = kmap_atomic(page, KM_USER0); 2539 memset(kaddr + offset, 0, length); 2540 flush_dcache_page(page); 2541 kunmap_atomic(kaddr, KM_USER0); 2542 2543 mark_buffer_dirty(bh); 2544 err = 0; 2545 2546 unlock: 2547 unlock_page(page); 2548 page_cache_release(page); 2549 out: 2550 return err; 2551 } 2552 2553 /* 2554 * The generic ->writepage function for buffer-backed address_spaces 2555 */ 2556 int block_write_full_page(struct page *page, get_block_t *get_block, 2557 struct writeback_control *wbc) 2558 { 2559 struct inode * const inode = page->mapping->host; 2560 loff_t i_size = i_size_read(inode); 2561 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2562 unsigned offset; 2563 void *kaddr; 2564 2565 /* Is the page fully inside i_size? */ 2566 if (page->index < end_index) 2567 return __block_write_full_page(inode, page, get_block, wbc); 2568 2569 /* Is the page fully outside i_size? (truncate in progress) */ 2570 offset = i_size & (PAGE_CACHE_SIZE-1); 2571 if (page->index >= end_index+1 || !offset) { 2572 /* 2573 * The page may have dirty, unmapped buffers. For example, 2574 * they may have been added in ext3_writepage(). Make them 2575 * freeable here, so the page does not leak. 2576 */ 2577 do_invalidatepage(page, 0); 2578 unlock_page(page); 2579 return 0; /* don't care */ 2580 } 2581 2582 /* 2583 * The page straddles i_size. It must be zeroed out on each and every 2584 * writepage invokation because it may be mmapped. "A file is mapped 2585 * in multiples of the page size. For a file that is not a multiple of 2586 * the page size, the remaining memory is zeroed when mapped, and 2587 * writes to that region are not written out to the file." 2588 */ 2589 kaddr = kmap_atomic(page, KM_USER0); 2590 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2591 flush_dcache_page(page); 2592 kunmap_atomic(kaddr, KM_USER0); 2593 return __block_write_full_page(inode, page, get_block, wbc); 2594 } 2595 2596 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2597 get_block_t *get_block) 2598 { 2599 struct buffer_head tmp; 2600 struct inode *inode = mapping->host; 2601 tmp.b_state = 0; 2602 tmp.b_blocknr = 0; 2603 tmp.b_size = 1 << inode->i_blkbits; 2604 get_block(inode, block, &tmp, 0); 2605 return tmp.b_blocknr; 2606 } 2607 2608 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err) 2609 { 2610 struct buffer_head *bh = bio->bi_private; 2611 2612 if (bio->bi_size) 2613 return 1; 2614 2615 if (err == -EOPNOTSUPP) { 2616 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2617 set_bit(BH_Eopnotsupp, &bh->b_state); 2618 } 2619 2620 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2621 bio_put(bio); 2622 return 0; 2623 } 2624 2625 int submit_bh(int rw, struct buffer_head * bh) 2626 { 2627 struct bio *bio; 2628 int ret = 0; 2629 2630 BUG_ON(!buffer_locked(bh)); 2631 BUG_ON(!buffer_mapped(bh)); 2632 BUG_ON(!bh->b_end_io); 2633 2634 if (buffer_ordered(bh) && (rw == WRITE)) 2635 rw = WRITE_BARRIER; 2636 2637 /* 2638 * Only clear out a write error when rewriting, should this 2639 * include WRITE_SYNC as well? 2640 */ 2641 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER)) 2642 clear_buffer_write_io_error(bh); 2643 2644 /* 2645 * from here on down, it's all bio -- do the initial mapping, 2646 * submit_bio -> generic_make_request may further map this bio around 2647 */ 2648 bio = bio_alloc(GFP_NOIO, 1); 2649 2650 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2651 bio->bi_bdev = bh->b_bdev; 2652 bio->bi_io_vec[0].bv_page = bh->b_page; 2653 bio->bi_io_vec[0].bv_len = bh->b_size; 2654 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2655 2656 bio->bi_vcnt = 1; 2657 bio->bi_idx = 0; 2658 bio->bi_size = bh->b_size; 2659 2660 bio->bi_end_io = end_bio_bh_io_sync; 2661 bio->bi_private = bh; 2662 2663 bio_get(bio); 2664 submit_bio(rw, bio); 2665 2666 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2667 ret = -EOPNOTSUPP; 2668 2669 bio_put(bio); 2670 return ret; 2671 } 2672 2673 /** 2674 * ll_rw_block: low-level access to block devices (DEPRECATED) 2675 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead) 2676 * @nr: number of &struct buffer_heads in the array 2677 * @bhs: array of pointers to &struct buffer_head 2678 * 2679 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 2680 * requests an I/O operation on them, either a %READ or a %WRITE. The third 2681 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers 2682 * are sent to disk. The fourth %READA option is described in the documentation 2683 * for generic_make_request() which ll_rw_block() calls. 2684 * 2685 * This function drops any buffer that it cannot get a lock on (with the 2686 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be 2687 * clean when doing a write request, and any buffer that appears to be 2688 * up-to-date when doing read request. Further it marks as clean buffers that 2689 * are processed for writing (the buffer cache won't assume that they are 2690 * actually clean until the buffer gets unlocked). 2691 * 2692 * ll_rw_block sets b_end_io to simple completion handler that marks 2693 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 2694 * any waiters. 2695 * 2696 * All of the buffers must be for the same device, and must also be a 2697 * multiple of the current approved size for the device. 2698 */ 2699 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 2700 { 2701 int i; 2702 2703 for (i = 0; i < nr; i++) { 2704 struct buffer_head *bh = bhs[i]; 2705 2706 if (rw == SWRITE) 2707 lock_buffer(bh); 2708 else if (test_set_buffer_locked(bh)) 2709 continue; 2710 2711 if (rw == WRITE || rw == SWRITE) { 2712 if (test_clear_buffer_dirty(bh)) { 2713 bh->b_end_io = end_buffer_write_sync; 2714 get_bh(bh); 2715 submit_bh(WRITE, bh); 2716 continue; 2717 } 2718 } else { 2719 if (!buffer_uptodate(bh)) { 2720 bh->b_end_io = end_buffer_read_sync; 2721 get_bh(bh); 2722 submit_bh(rw, bh); 2723 continue; 2724 } 2725 } 2726 unlock_buffer(bh); 2727 } 2728 } 2729 2730 /* 2731 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2732 * and then start new I/O and then wait upon it. The caller must have a ref on 2733 * the buffer_head. 2734 */ 2735 int sync_dirty_buffer(struct buffer_head *bh) 2736 { 2737 int ret = 0; 2738 2739 WARN_ON(atomic_read(&bh->b_count) < 1); 2740 lock_buffer(bh); 2741 if (test_clear_buffer_dirty(bh)) { 2742 get_bh(bh); 2743 bh->b_end_io = end_buffer_write_sync; 2744 ret = submit_bh(WRITE, bh); 2745 wait_on_buffer(bh); 2746 if (buffer_eopnotsupp(bh)) { 2747 clear_buffer_eopnotsupp(bh); 2748 ret = -EOPNOTSUPP; 2749 } 2750 if (!ret && !buffer_uptodate(bh)) 2751 ret = -EIO; 2752 } else { 2753 unlock_buffer(bh); 2754 } 2755 return ret; 2756 } 2757 2758 /* 2759 * try_to_free_buffers() checks if all the buffers on this particular page 2760 * are unused, and releases them if so. 2761 * 2762 * Exclusion against try_to_free_buffers may be obtained by either 2763 * locking the page or by holding its mapping's private_lock. 2764 * 2765 * If the page is dirty but all the buffers are clean then we need to 2766 * be sure to mark the page clean as well. This is because the page 2767 * may be against a block device, and a later reattachment of buffers 2768 * to a dirty page will set *all* buffers dirty. Which would corrupt 2769 * filesystem data on the same device. 2770 * 2771 * The same applies to regular filesystem pages: if all the buffers are 2772 * clean then we set the page clean and proceed. To do that, we require 2773 * total exclusion from __set_page_dirty_buffers(). That is obtained with 2774 * private_lock. 2775 * 2776 * try_to_free_buffers() is non-blocking. 2777 */ 2778 static inline int buffer_busy(struct buffer_head *bh) 2779 { 2780 return atomic_read(&bh->b_count) | 2781 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 2782 } 2783 2784 static int 2785 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 2786 { 2787 struct buffer_head *head = page_buffers(page); 2788 struct buffer_head *bh; 2789 2790 bh = head; 2791 do { 2792 if (buffer_write_io_error(bh) && page->mapping) 2793 set_bit(AS_EIO, &page->mapping->flags); 2794 if (buffer_busy(bh)) 2795 goto failed; 2796 bh = bh->b_this_page; 2797 } while (bh != head); 2798 2799 do { 2800 struct buffer_head *next = bh->b_this_page; 2801 2802 if (!list_empty(&bh->b_assoc_buffers)) 2803 __remove_assoc_queue(bh); 2804 bh = next; 2805 } while (bh != head); 2806 *buffers_to_free = head; 2807 __clear_page_buffers(page); 2808 return 1; 2809 failed: 2810 return 0; 2811 } 2812 2813 int try_to_free_buffers(struct page *page) 2814 { 2815 struct address_space * const mapping = page->mapping; 2816 struct buffer_head *buffers_to_free = NULL; 2817 int ret = 0; 2818 2819 BUG_ON(!PageLocked(page)); 2820 if (PageWriteback(page)) 2821 return 0; 2822 2823 if (mapping == NULL) { /* can this still happen? */ 2824 ret = drop_buffers(page, &buffers_to_free); 2825 goto out; 2826 } 2827 2828 spin_lock(&mapping->private_lock); 2829 ret = drop_buffers(page, &buffers_to_free); 2830 2831 /* 2832 * If the filesystem writes its buffers by hand (eg ext3) 2833 * then we can have clean buffers against a dirty page. We 2834 * clean the page here; otherwise the VM will never notice 2835 * that the filesystem did any IO at all. 2836 * 2837 * Also, during truncate, discard_buffer will have marked all 2838 * the page's buffers clean. We discover that here and clean 2839 * the page also. 2840 * 2841 * private_lock must be held over this entire operation in order 2842 * to synchronise against __set_page_dirty_buffers and prevent the 2843 * dirty bit from being lost. 2844 */ 2845 if (ret) 2846 cancel_dirty_page(page, PAGE_CACHE_SIZE); 2847 spin_unlock(&mapping->private_lock); 2848 out: 2849 if (buffers_to_free) { 2850 struct buffer_head *bh = buffers_to_free; 2851 2852 do { 2853 struct buffer_head *next = bh->b_this_page; 2854 free_buffer_head(bh); 2855 bh = next; 2856 } while (bh != buffers_to_free); 2857 } 2858 return ret; 2859 } 2860 EXPORT_SYMBOL(try_to_free_buffers); 2861 2862 void block_sync_page(struct page *page) 2863 { 2864 struct address_space *mapping; 2865 2866 smp_mb(); 2867 mapping = page_mapping(page); 2868 if (mapping) 2869 blk_run_backing_dev(mapping->backing_dev_info, page); 2870 } 2871 2872 /* 2873 * There are no bdflush tunables left. But distributions are 2874 * still running obsolete flush daemons, so we terminate them here. 2875 * 2876 * Use of bdflush() is deprecated and will be removed in a future kernel. 2877 * The `pdflush' kernel threads fully replace bdflush daemons and this call. 2878 */ 2879 asmlinkage long sys_bdflush(int func, long data) 2880 { 2881 static int msg_count; 2882 2883 if (!capable(CAP_SYS_ADMIN)) 2884 return -EPERM; 2885 2886 if (msg_count < 5) { 2887 msg_count++; 2888 printk(KERN_INFO 2889 "warning: process `%s' used the obsolete bdflush" 2890 " system call\n", current->comm); 2891 printk(KERN_INFO "Fix your initscripts?\n"); 2892 } 2893 2894 if (func == 1) 2895 do_exit(0); 2896 return 0; 2897 } 2898 2899 /* 2900 * Buffer-head allocation 2901 */ 2902 static struct kmem_cache *bh_cachep; 2903 2904 /* 2905 * Once the number of bh's in the machine exceeds this level, we start 2906 * stripping them in writeback. 2907 */ 2908 static int max_buffer_heads; 2909 2910 int buffer_heads_over_limit; 2911 2912 struct bh_accounting { 2913 int nr; /* Number of live bh's */ 2914 int ratelimit; /* Limit cacheline bouncing */ 2915 }; 2916 2917 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 2918 2919 static void recalc_bh_state(void) 2920 { 2921 int i; 2922 int tot = 0; 2923 2924 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096) 2925 return; 2926 __get_cpu_var(bh_accounting).ratelimit = 0; 2927 for_each_online_cpu(i) 2928 tot += per_cpu(bh_accounting, i).nr; 2929 buffer_heads_over_limit = (tot > max_buffer_heads); 2930 } 2931 2932 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 2933 { 2934 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags); 2935 if (ret) { 2936 get_cpu_var(bh_accounting).nr++; 2937 recalc_bh_state(); 2938 put_cpu_var(bh_accounting); 2939 } 2940 return ret; 2941 } 2942 EXPORT_SYMBOL(alloc_buffer_head); 2943 2944 void free_buffer_head(struct buffer_head *bh) 2945 { 2946 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 2947 kmem_cache_free(bh_cachep, bh); 2948 get_cpu_var(bh_accounting).nr--; 2949 recalc_bh_state(); 2950 put_cpu_var(bh_accounting); 2951 } 2952 EXPORT_SYMBOL(free_buffer_head); 2953 2954 static void 2955 init_buffer_head(void *data, struct kmem_cache *cachep, unsigned long flags) 2956 { 2957 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 2958 SLAB_CTOR_CONSTRUCTOR) { 2959 struct buffer_head * bh = (struct buffer_head *)data; 2960 2961 memset(bh, 0, sizeof(*bh)); 2962 INIT_LIST_HEAD(&bh->b_assoc_buffers); 2963 } 2964 } 2965 2966 static void buffer_exit_cpu(int cpu) 2967 { 2968 int i; 2969 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 2970 2971 for (i = 0; i < BH_LRU_SIZE; i++) { 2972 brelse(b->bhs[i]); 2973 b->bhs[i] = NULL; 2974 } 2975 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr; 2976 per_cpu(bh_accounting, cpu).nr = 0; 2977 put_cpu_var(bh_accounting); 2978 } 2979 2980 static int buffer_cpu_notify(struct notifier_block *self, 2981 unsigned long action, void *hcpu) 2982 { 2983 if (action == CPU_DEAD) 2984 buffer_exit_cpu((unsigned long)hcpu); 2985 return NOTIFY_OK; 2986 } 2987 2988 void __init buffer_init(void) 2989 { 2990 int nrpages; 2991 2992 bh_cachep = kmem_cache_create("buffer_head", 2993 sizeof(struct buffer_head), 0, 2994 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2995 SLAB_MEM_SPREAD), 2996 init_buffer_head, 2997 NULL); 2998 2999 /* 3000 * Limit the bh occupancy to 10% of ZONE_NORMAL 3001 */ 3002 nrpages = (nr_free_buffer_pages() * 10) / 100; 3003 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3004 hotcpu_notifier(buffer_cpu_notify, 0); 3005 } 3006 3007 EXPORT_SYMBOL(__bforget); 3008 EXPORT_SYMBOL(__brelse); 3009 EXPORT_SYMBOL(__wait_on_buffer); 3010 EXPORT_SYMBOL(block_commit_write); 3011 EXPORT_SYMBOL(block_prepare_write); 3012 EXPORT_SYMBOL(block_read_full_page); 3013 EXPORT_SYMBOL(block_sync_page); 3014 EXPORT_SYMBOL(block_truncate_page); 3015 EXPORT_SYMBOL(block_write_full_page); 3016 EXPORT_SYMBOL(cont_prepare_write); 3017 EXPORT_SYMBOL(end_buffer_read_sync); 3018 EXPORT_SYMBOL(end_buffer_write_sync); 3019 EXPORT_SYMBOL(file_fsync); 3020 EXPORT_SYMBOL(fsync_bdev); 3021 EXPORT_SYMBOL(generic_block_bmap); 3022 EXPORT_SYMBOL(generic_commit_write); 3023 EXPORT_SYMBOL(generic_cont_expand); 3024 EXPORT_SYMBOL(generic_cont_expand_simple); 3025 EXPORT_SYMBOL(init_buffer); 3026 EXPORT_SYMBOL(invalidate_bdev); 3027 EXPORT_SYMBOL(ll_rw_block); 3028 EXPORT_SYMBOL(mark_buffer_dirty); 3029 EXPORT_SYMBOL(submit_bh); 3030 EXPORT_SYMBOL(sync_dirty_buffer); 3031 EXPORT_SYMBOL(unlock_buffer); 3032